Apache Avro# 1.5.4 IDL

Table of contents

I 1911 o0 [0 (o= (o) o FHUPRRRRTTR TR
VLS AV AT

010 £ PP
5 DefiniNg an ENUMEIEION.coiiiiiiiiieiee ettt
6 Defining aFixed Length FIeld..........ooooiie e
7 Defining ReCOrdS @nd EITOrS..........ooiuieiieiiie ettt s
7L PrIMITIVE TYPES... et ettt sttt ettt et s e st e et esae e teestesseenteeseesneenseeneesseensenneens
7.2 References to Named SChEMELa...........cccuiiiiiirineee e
7.3 DEFAUIT VAIUES......c.eeeeeeeeeeese ettt et enneeneenneenne s
7.4 COMPIEX TYPES... ittt sttt sttt ettt b e bbbt e e e s e b e sbe st e nbe b e nse e e ennenees
8 DEfINING RPC MESSAJES........coiuiiiieiieiieeie et iesee st e ste et et tesseesaeesseeneesaeessesneesseenseeneens
9 Other Language FEALUIES...........coiuiiieeiie ettt st s e e te e snn e enaeeaneas
0.1 COMIMENTS......eeuteeeuteeiee et et e ste e teeer e e sse e saseesse e e eeesseesaseeaseesaneesmeeenseeameeenseesmnesneesnneanreens

Apache Avro# 1.5.4 IDL

1. Introduction

This document defines Avro IDL, an experimental higher-level language for authoring Avro
schemata. Before reading this document, you should have familiarity with the concepts of
schemata and protocols, as well as the various primitive and complex types available in
Avro.

N.B. Thisfeatureis considered experimenta in the current version of Avro and the language
has not been finalized. Although major changes are unlikely, some syntax may change in
future versions of Avro.

2. Overview

2.1. Purpose

The aim of the Avro IDL language is to enable developers to author schematain away that
feels more similar to common programming languages like Java, C++, or Python.
Additionally, the Avro IDL language may feel more familiar for those users who have
previously used the interface description languages (IDLs) in other frameworks like Thrift,
Protocol Buffers, or CORBA.

2.2. Usage

Each Avro IDL file defines asingle Avro Protocol, and thus generates as its output a
JSON-format Avro Protocol file with extension . avpr .

Toconverta. avdl fileintoa. avpr file, it must be processed by thei dl tool. For
example:

java -jar avroj-tools-1.4.0.jar idl src/test/idl/input/nanespaces. avdl
t mp/ nanespaces. avpr
head /t np/ namespaces. avpr

BT

"protocol" : "Test Nanespace",
"nanmespace" : "avro.test.protocol",

Thei dl tool can also processinput to and from stdin and stdout. Seei dl - - hel p for full
usage information.

3. Defining a Protocol in Avro IDL

An Avro IDL file consists of exactly one protocol definition. The minimal protocol is defined

Page 2

Apache Avro# 1.5.4 IDL

by the following code:

Thisis equivaent to (and generates) the following JSON protocol definition:

The namespace of the protocol may be changed using the @ranmespace annotation:

This notation is used throughout Avro IDL as away of specifying properties for the
annotated element, as will be described later in this document.

Protocolsin Avro IDL can contain the following items:
» Imports of external protocol and schemafiles.

« Definitions of named schemata, including records, errors, enums, and fixeds.
« Definitions of RPC messages
4. Imports

Files may be imported in one of three formats:
« AnIDL file may be imported with a statement like:

e A JSON protocol file may be imported with a statement like:
« A JSON schemafile may be imported with a statement like:

Messages and types in the imported file are added to thisfile's protocol.

Imported file names are resolved relative to the current IDL file.

5. Defining an Enumer ation

Page 3

Apache Avro# 1.5.4 IDL

Enums are defined in Avro IDL using asyntax similar to C or Java:

Note that, unlike the JSON format, anonymous enums cannot be defined.

6. Defining a Fixed Length Field
Fixed fields are defined using the following syntax:

This example defines a fixed-length type called MD5 which contains 16 bytes.

7. Defining Recordsand Errors

Records are defined in Avro IDL using asyntax similar toast r uct definitionin C:

The above example defines arecord with the name “Employee” with three fields.

To define an error, smply use the keyword er r or instead of r ecor d. For example:

Each field in arecord or error consists of atype and a name, optional property annotations
and an optional default value.

A typereferencein Avro IDL must be one of:

e A primitivetype
A named schema defined prior to this usage in the same Protocol
« A complex type (array, map, or union)

Apache Avro# 1.5.4 IDL

7.1. Primitive Types

The primitive types supported by Avro IDL are the same as those supported by Avro's JSON
format. Thislistincludesi nt , | ong, stri ng, bool ean, fl oat,doubl e,nul | ,and
byt es.

7.2. Referencesto Named Schemata

If anamed schema has already been defined in the same Avro IDL file, it may be referenced
by name asif it were a primitive type:

record Card {
Suit suit; // refers to the enum Card defi ned above
i nt nunber;

}
7.3. Default Values

Default values for fields may be optionally specified by using an equals sign after the field
name followed by a JSON expression indicating the default value. This JSON isinterpreted
as described in the spec.

7.4. Complex Types

7.4.1. Arrays

Array types are written in a manner that will seem familiar to C++ or Java programmers. An
array of any typet isdenoted ar r ay<t >. For example, an array of stringsis denoted
array<stri ng>, and amultidimensiona array of Foo records would be
array<array<rFoo>>.

7.4.2. Maps

Map types are written similarly to array types. An array that contains values of typet is
written map<t >. Asin the JSON schemaformat, all maps contain st r i ng-type keys.

7.4.3. Unions

Union types aredenoted asuni on { typeA, typeB, typeC, ... }.Forexample,
thisrecord contains a string field that is optional (unioned with nul 1):

Page 5

spec.html#schema_record

Apache Avro# 1.5.4 IDL

record Recor dWt hUni on {
union { null, string } optional String;

Note that the same restrictions apply to Avro IDL unions as apply to unions defined in the
JSON format; namely, arecord may not contain multiple elements of the same type.
8. Defining RPC M essages

The syntax to define an RPC message within a Avro IDL protocol is similar to the syntax for
amethod declaration within a C header file or a Javainterface. To define an RPC message
add which takes two arguments named f oo and bar , returning ani nt , smply include the
following definition within the protocol:

int add(int foo, int bar = 0);

Message arguments, like record fields, may specify default values.

To define a message with no response, you may use the aliasvoi d, equivalent to the Avro
nul | type:

voi d | ogMessage(string nessage);

If you have previously defined an error type within the same protocol, you may declare that a
message can throw this error using the syntax:

voi d goKaboon{) throws Kaboom

To define a one-way message, use the keyword oneway after the parameter list, for
example:

void fireAndForget (string nessage) oneway;

9. Other Language Features

9.1. Comments

All Java-style comments are supported within a Avro IDL file. Any text following// ona
lineisignored, asis any text between/ * and */ , possibly spanning multiple lines.

Comments that begin with / ** are used as the documentation string for the type or field
definition that follows the comment.

Page 6

Apache Avro# 1.5.4 IDL

9.2. Escaping I dentifiers

Occasionally, one will need to use areserved language keyword as an identifier. In order to
do so, backticks (") may be used to escape the identifier. For example, to define a message
with the literal name error, you may write:

This syntax is alowed anywhere an identifier is expected.

9.3. Annotationsfor Ordering and Namespaces

Java-style annotations may be used to add additional properties to types and fields
throughout Avro IDL.

For example, to specify the sort order of afield within arecord, one may use the @r der
annotation before the field name as follows:

A field'stype may also be preceded by annotations, e.g.:

Similarly, a @anmespace annotation may be used to modify the namespace when defining
anamed schema. For example:

will define aprotocol inthef i r st Namespace namespace. The record Foo will be
definedinsonmeQ her Nanespace and Bar will bedefinedinfi r st Nanmespace asit
inheritsits default from its container.

Page 7

Apache Avro# 1.5.4 IDL

Type and field aliases are specified with the @l i ases annotation as follows:

10. Complete Example

The following is a complete example of a Avro IDL file that shows most of the above
features:

Page 8
Copyright © 2009 The Apache Software Foundation. All rights reserved.

Apache Avro# 1.5.4 IDL

Additional examples may be found in the Avro source tree under the
src/test/idl/input directory.

Apache Avro, Avro, Apache, and the Avro and Apache logos are trademarks of The Apache
Software Foundation.

Page 9

	1 Introduction
	2 Overview
	2.1 Purpose
	2.2 Usage

	3 Defining a Protocol in Avro IDL
	4 Imports
	5 Defining an Enumeration
	6 Defining a Fixed Length Field
	7 Defining Records and Errors
	7.1 Primitive Types
	7.2 References to Named Schemata
	7.3 Default Values
	7.4 Complex Types
	7.4.1 Arrays
	7.4.2 Maps
	7.4.3 Unions

	8 Defining RPC Messages
	9 Other Language Features
	9.1 Comments
	9.2 Escaping Identifiers
	9.3 Annotations for Ordering and Namespaces

	10 Complete Example

