
Cocoon Best Practises
Lessons learnt during the development of big projects.

Speaker : Jeremy Quinn of Luminas
Venue : Cocoon GT2004

Or : How to avoid
my stupid mistakes

v. 1.0

I am a developer for Luminas, a web development
company in the UK, specialising in Open Source solutions
to industry.
Luminas is a member of the Orixo XML Business Alliance.
This presentation is about best practises for
development of projects within Cocoon and is a
distillation of techniques culled from the Cocoon mail
lists and my Orixo colleagues.

1

Usecases

Testing

Sitemap Usage

i18n

Relational Databases

Production

Going Live

Be a Good Citizen

Contents

The talk will be broken down into these sections.
2

Write Use Cases

Describe your project

Keep your use cases updated

Find the happy balance

Use cases are a formalised way of describing how a piece
of software will work from the point of view of specific
‘actors’, eg. Users, Admins, The System etc.
Luminas are in the process of preparing their in-house
UseCaseML and sample XSLT for the community to use. It
is work in progress, so we hope others will get involved
in improving it.

3

Describe your Project

Developers need to know what
to do

Clients need to know what they
will get

Managers need to allocate
resources

Writing use cases is the stage when you make sure that
everyone knows what is supposed to be happening.
Use cases can be used to make sure everything that is
being asked for is possible.
Everyone involved in a project needs to be able to flag up
any issues involving their domain.
Use cases can form the basis of the functional contract
between you and the client.
Use cases can tell you when you have finished !!!

4

Keep it updated

Projects change

Your use cases should reflect this

Keep them versioned

Publish them online for the client

As the project changes due to engineering or client
constraints, your usecases should be updated to reflect
the changes.
This allows both the client and the developers to keep in
sync and make sure changes are properly described and
possible to implement.
Keep your use cases in a versioning repository like your
source code. Code releases will typically be related to
use case versions.

5

Find the balance

Enough detail for it to be useful
for the developer

Written in language the client
can understand

Finding the happy ground between descriptions the
client can understand and a level of detail that is useful
for the developer can be difficult.
Use cases should not be considered a marketing
document, but an engineering document.
Luminas use them as the point of communication
between developer and client.
They need to be written in collaboration between both
groups.

6

CATEGORIES TV RADIO COMMUNICATE WHEREÂ IÂ LIVE INDEX SEARCH

Home

AAF Files
AAF Editor

Documentation
- AAF Reader
- Editor
Usecases
- Editor
- XSLT

Use Case:

Use case ID: UC-3.0

Use case title: Programme Screen

Project: BBC XML-AAF Editor

Scope: BBC AAF Management System

Level: Unknown

Author: Jeremy Quinn

Status: Draft

Version: 1.0

Summary

A programme screen, where the viewer is able to edit information about the
Programme

Overview

Goal in context: The viewer is able to edit basic information about the
Programme.

Preconditions: There are StoryBoards to view.

Success
guarantee:

The viewer can edit and save the relevant information.

Minimal
guarantee:

N/A

Performance
target:

Unknown

Invoked: Often

Priority: Must

Trigger: The Viewer's desire to edit info about the Programme

Main success scenario

Step Actor Description

1 Author can edit the fields specified in UC-3.1

2 Author can save etc. their changes using the buttons specified in UC-
3.2

3 Author can use the download button specified in UC-3.3

Extensions

Step Condition Actor Description

1

Variations

Step Domain Actor Description

2 Unknown Author cancels the screen's actions, is then directed to
UC-2.0

Notes

This is a slim sample from an ongoing project at
Luminas.
You can see from this a description of a single use case,
and how it relates to other use cases.
We are still learning how to use this tool effectively.

7

Testing

Continuous testing
CruiseControl, Gump etc.

Write unit tests
jUnit, ejbUnit, Cactus etc.

Automate functional tests
AntEater, httpUnit, Cactus etc.

Products like Cruisecontrol or Gump can be used for
continuous testing (Luminas do not actually do this yet).
Write unit tests for business objects. Tests can be run by
Ant, Eclipse or Maven etc. Test suites include jUnit,
Cactus, ejbUnit etc., Luminas currently use jUnit.
Tests should be conducted before the code is used from
FlowScript etc.
Run the tests before committing code to reassure
yourself that you are not breaking anything.
Use AntEater, httpUnit, Cactus etc. for automated
functional tests.
Maven can impose many of these best practises on you.

8

Sitemap Usage

Design your URI request space

Setup the top level

Use Sub-Sitemaps

Use Resources

The sitemap is a key and maybe unique Cocoon
resource.
Learning to use it effectively is key to using Cocoon
efficiently.

9

Design your URIs

Make URIs memorable

Principle of least surprise
Use suffixes consistently

Make sure / goes somewhere sensible

No accented characters

Fine control of your URI request space is central to
Cocoon.
Design your URL request-space early on.
A URI is a contract with the world.
Clean URIs are an important aspect of the overall good
design of your site.
We use suffixes for static content, especially where we
may need to provide that content in different formats
like HTML, PDF, WAP etc. but we tend to avoid using
suffixes within the webapp part of projects.
Output relative URLs so Development and Live can work
within different URL contexts, as you will probably want
to serve this behind a virtualhost via Apache mod_proxy.

10

Setup the top level

Components

Error handling

Authentication regions

Mounting sub-sitemaps

Simple static pipelines

Your top level (project) sitemap should be set up
carefully
Don’t rely on the default components from the main
Cocoon sitemap, these could change when you update
Cocoon. Be specific.
Declare the Components you actually use and
parameterise them according to how you need to use
them in the project.
We declare authentication regions in the top-level Project
sitemap, but keep authentication in it’s own sitemap.
Some recommend using the container for authentication.
If you have simple url patterns for simple static content,
that is re-used in many URIs, the top-level Project
Sitemap is a good place for these.

11

Use Sub-SiteMaps

Keeps sitemaps small

Break your URI space down into
sub-sitemaps

Separate functionality into sub-
sitemaps

Keep sitemaps as small as reasonably possible, this
makes debugging problems much easier, aids
maintainability and makes them easier to understand.
The use of sub-sitemaps makes this possible.
Keep similar bits of functionality together, so that
pipelines can share resources.

12

Use Resources

<map:resource>
Aids re-use

Aids readability

Aids management

Use good naming schemes

Read and understand the Wiki entry :
“CleanerSiteMapsThroughResources”

13

Always use i18n

Labels sent to the user
CForms

Messages from FlowScript

JX Template

Localise dates and numbers

Test UTF-8 cross-platform

Always use i18n for messages or labels sent to the user,
regardless of whether you expect there to be translations
to other languages.
Never embed user strings in flowscript etc. it makes
maintenance a nightmare.
i18n dictionaries can be passed off to those with writing
skills i.e. they should not be written by developers,
remember what they say about developers not being able
to write documentation !!!
We have experienced problems with different Server
OSes outputting UTF-8 inconsistently, specifically the
‘high’ characters. Test thoroughly!!!

14

Relational Databases

Use persistence frameworks
Apache ORB/OJB

Hibernate

Spring tools

If you are reading from and/or writing to SQL databases,
particularly business objects, the use of persistence
frameworks can assist you to separate your logic from
the structure of your database tables.

15

Persistence

<hibernate-mapping package="org.project.bean">
 <class name="Image" table="image">
 <meta attribute="class-description">
 This bean represents the basic information about an Image.
 </meta>
 <meta attribute="implements">Persistable</meta>
 <id name="id" column="id" type="long">
 <generator class="sequence">
 <param name="sequence">image_id_seq</param>
 </generator>
 </id>
 <discriminator column="class" type="string" force="false"/>
 <property name="title" type="string" not-null="true"/>
 <property name="description" type="string"/>
 <many-to-one name="imagecategory" class="ImageCategory"
 column="image_category_id"/>
 . . .
</hibernate-mapping>

A sample mapping between a Bean and an SQL Table

This is a snippet from a Hibernate mapping file showing
how a Bean may be mapped to SQL Tables.

16

function imageRecord() {
 var factory = cocoon.getComponent(PersistanceFactory.ROLE);
 var session = factory.createSession();
 try {
 var id = new Long(cocoon.parameters["imageid"]);

 var image = ImagePeer.load(session, id);
 if (image != null) {
 cocoon.sendPage(cocoon.parameters["screen"], { image: image });
 } else {
 cocoon.sendPage("screen/error", {message: "non.existant.record"});
 }
 } catch (e) {
 cocoon.log.error(e);
 cocoon.sendPage("screen/error", {message: e});
 } finally {
 session.close();
 cocoon.releaseComponent(factory);
 }
}

Some sample flowscript to access an SQL Table as a Bean
Persistence

This is a simple function that loads a named entity from
SQL as a Bean that is passed to JXTG for display.

17

Flowscript

Explicitly pass parameters

Write business logic in Java

Flow > Actions > XSP

Explicitly pass parameters from your sitemap to
flowscript, rather than asking for arbitrary parameters
from request (etc.) in flowscript, as the sitemap will
quickly show you what the input contract required by the
flowscript should be.
It is possible to use Chained Input Modules to provide
defaults for missing request params (eg. Wiki:
WorkingWithLocales).
Write complex business logic in Java, call those methods
from flowscript (though flowscript can be used to
prototype those classes).
Prefer Flow over Actions, and Actions over XSP.

18

Development

Use SCM tools

Replicate the environment

Use Bugzilla

Choose a development environment that suits your real
needs.

19

Source Code

Test before committing

Commit early, commit often

Don’t commit built material

Don’t commit local customisation

Read commit-mails

Use Source Code Management tools like CVS or
Subversion etc.
Test before committing, to save holding up other people
with your new bugs.
Don't hang around until you've finished the entire
project, get discrete functioning units committed as soon
as they work.
Always write proper comments in your commits.
Don't check-in generated build results, rebuild them on
each build-run. Don’t commit local.build.properties.
Provide commitmails and viewcvs.cgi on your repos.
Read the commit mails, to keep up with what others on
your team are doing !!!

20

Replicate

Choose a build pattern

Make Ant scripts that build into
a Cocoon distribution

Make build scripts that strip your
project out of Cocoon

Allow developers to override
defaults values

For a consistent development environment, you want to
make a project that patches itself into Cocoon (and
cleans itself out) in a predictable way, so that anyone
doing work in it is not going to introduce bugs merely
due to the way they have the project set up.
If you have databases in your project, have scripts that
load a consistent test dataset into them.
Choose one of the build patterns in the Wiki:
”YourCocoonBasedProject”,
“YourCocoonBasedProjectAnt16”, “ ProjectBuilding”.
The main criteria seem to be:

One or many developers.
One or many concurrent projects.

The combination of Ant, XConfPatch Task and
build.properties can be used very effectively for this.
local.build.properties can be used for customisation.

21

Bugzilla

Track bugs

Discuss details

Track change requests

Use tools like Bugzilla in your own projects.
You can use it for notifying the group of the addition and
completion of bugs, tracking their progress and
discussing their details.
“Bug” can seem like a very rude word to the hard-
working developer I remember feeling “That is not a
bug, it is the result of a poor specification !!”.
Remember, “Bugs” can include visual, behavioural,
communicative and logical problems with all aspects of
the project, not just the source code. Bugs can include
enhancements and feature requests.
Tip: Warn developers to mind their language if the client
is subscribed to Bugzilla as well ;)

22

Going Live

Minimise log messages

Disable dangerous features

Hide Cocoon behind Apache

Serve static assets via Apache

Turn off debug messages in logkit.xconf.
Disable dangerous components and features, including
views, cocoon-reload, cocoon-status, cache-clearance
etc.
Don't run cocoon in a publicly-visible way.
Close the ports used by your Servlet engine.
Run with a front-end proxy (see the Wiki:
“ApacheModProxy”).
Get Apache to provide error pages if the Servlet goes
down or is under maintenance. This way developers
working directly from the Servlet, get to see verbose
error messages, while users see something polite.
Write an Ant Task for automating the creation of a
special version for going live.
Serve static resources (images, css, javascript, etc.)

23

Be a good citizen

Read the manual

Search the Wiki or Mail Lists

Ask on the User’s List

Write your solution in the Wiki

Report errors in the documentation

If you don't know how to do something, read the
documentation on the cocoon site. Search the Wiki and
the mailing lists.
If you still cannot find a solution, ask on the users list.
If you can't find documentation for something and then
later work out how to do it, be a good citizen and write it
up in the Wiki.
If you find mistakes in the code or documentation,
submit a patch or at least a bug report.

24

Last Words

Be liberal in what you accept

Be strict in what you send

Separate concerns ruthlessly

When pulling in external content, pass it through Tidy if
it is HTML, and clean it through XSLT in an intelligent
way if it is XML, so that the mess made by others cannot
break your processes.
When handling URIs, apply the “Process of least
surprise”, when handling form inputs, provide sensible
defaults for missing values where possible.
When sending pages, make sure you validate against the
relevant standards. When you output HTML, validate
against the WAI standards.
Don’t fight against the SoC that is embedded in Cocoon,
embrace it, it is your friend!!! There is a very good reason
Cocoon works like that. Even if you are a sole developer
prototyping a project, separate!!! Sooner or later, other
people will be sharing the work.

25

