JCSv.1.3

Project Documentation

Apache Software Foundation 30 May 2007






TABLE OF CONTENTS

Table of Contents

General Information

OVBIVIBW . . o o 1
JCS and JCACHE . . ... 4
DOWNIOAAS . . . .o 6
A . o 7

Getting Started

OVBIVIBW . . ot e e e e e 11
BasiC JCS CoNfig . . ..ot e 15
Plugin OVEIVIEW . . . ..o e 19
Basic Web Example . ... .. 21

JCS User's Guide

L 0] 28
BasiC JCS Config . . ..ot 31
Element Config . . ... ... o 35
Element Event Handling . . ... ... . 38
REQION Properties . . . oot 40
Basic Web Example . ... .. 43

AUXIATY . o 50
Indexed Disk Cache . . . ... ... 52
Indexed Disk Properties . . .. ... 57
Block Disk Cache . . . ... ... 60
JDBC Disk Cache . . .. ... 62
JDBC Disk Properties . . .. ..o 64
MySQL Disk Properties . . . ... 67
Remote Cache . . ... ... .. 70
Remote Cache Properties . . . ... 75
Lateral TCP Cache . . . . ... 77

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



TABLE OF CONTENTS

Lateral TCP Properties
Lateral UDP Discovery

Lateral JGroups Cache

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



11

1.1 OVERVIEW 1

Overview

News: Version 1.3 is available

The Java Caching System, version 1.3 has been released. This release is actually the first official release of
JCS. You can download it from the Download page.

Java Caching System

JCS is a distributed caching system written in java. It is intended to speed up applications by providing a
means to manage cached data of various dynamic natures. Like any caching system, JCS is most useful for
high read, low put applications. Latency times drop sharply and bottlenecks move away from the database
in an effectively cached system. Learn how to start using JCS.

The JCS goes beyond simply caching objects in memory. It provides numerous additional features:

* Memory management

* Disk overflow (and defragmentation)

* Thread pool controls

* Element grouping

* Minimal dependencies

* Quick nested categorical removal

* Data expiration (idle time and max life)

* Extensible framework

* Fully configurable runtime parameters

* Region data separation and configuration

* Fine grained element configuration options

* Remote synchronization

* Remote store recovery

* Non-blocking "zombie" (balking facade) pattern

e Lateral distribution of elements via HTTP, TCP, or UDP
* UDP Discovery of other caches

* Element event handling

* Remote server chaining (or clustering) and failover

JCS works on JDK versions 1.3 and up. It only has two dependencies: Commons Logging and Doug
Lea's Util Concurrent.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



1.1 OVERVIEW 2

JCSis a Composite Cache

The foundation of JCS is the Composite Cache, which is the pluggable controller for a cache region. Four
types of caches can be plugged into the Composite Cache for any given region: (1) Memory, (2) Disk, (3)
Lateral, and (4) Remote. The Composite Cache orchestrates access to the various caches configured for
use in a region.

The JCS jar provides production ready implementations of each of the four types of caches. In addition
to the core four, JCS also provides additional plugins of each type.

LRU Memory Cache

The LRU Memory Cache is an extremely fast, highly configurable memory cache . It uses a Least
Recently Used algorithm to manage the number of items that can be stored in memory. The LRU
Memory Cache uses its own LRU Map implementation that is significantly faster than both the commons
LRUMap implementation and the LinkedHashMap that is provided with JDK1.4 up. This makes JCS
faster than its competitors .

Indexed Disk Cache

The Indexed Disk Cache is a fast, reliable, and highly configurable swap for cached data. The indexed
disk cache follows the fastest pattern for disk swapping. Cache elements are written to disk via a
continuous queue-based process. The length of the item is stored in the first few bytes of the entry. The
offset is stored in memory and can be reference via the key. When items are removed from the disk
cache, the location and size are recorded and reused when possible. Every aspect of the disk cache is
configurable, and a thread pool can be used to reduce the number of queue worker threads across the
system.

TCP Lateral Cache

The TCP Lateral Cache provides an easy way to distribute cached data to multiple servers. It comes with
a UDP discovery mechanism, so you can add nodes without having to reconfigure the entire farm. The
TCP Lateral Cache works by establishing connections with socket server running on other nodes. Each
node maintains a connection to every other. Only one server is needed for any number of regions. The
client is able to re-establish connections if it looses its connection with another server. The TCP Lateral is
highly configurable . You can choose to only send data, to not look for data on other setrvers, to send
removes instead of puts, and to filter removes based on hash codes.

RMI Remote Cache

JCS also provides an RMI based Remote Cache Server . Rather than having each node connect to every
other node, you can use the remote cache server as the connection point. Each node connects to the
remove server, which then broadcasts events to the other nodes. To maintain consistency across a cluster
without incurring the overhead of serialization, you can decide to send invalidation messages to the other
locals rather than send the object over the wire. The remote cache server holds a serialized version of
your objects, so it does not need to be deployed with your class libraries. The remote servers can be

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



1.1 OVERVIEW 3

chained and a list of failover servers can be configured on the client.

What JCS is not

JCS is not a tag library or a web specific application. JCS is a general purpose caching system that can be
used in web applications, setvices, and stand alone Java applications.

JCS is not a transactional distribution mechanism. Transactional distributed caches are not scalable. JCS is
a cache not a database. The distribution mechanisms provided by JCS can scale into the tens of servers.
In a well-designed service oriented architecture, JCS can be used in a high demand service with numerous
nodes. This would not be possible if the distribution mechanism were transactional.

JCS does not use AOP. JCS is a high performance, non-invasive cache. It does not manipulate your
objects so it can just send a field or two fewer over the wire.

JCS is not a fork, an offshoot, a branch, or any other derivation of JCS. Nor is JCS named after another
library. JCS is a mature project that has been under development and in use since 2001. Over the years
JCS has encorporated numerous bug fixes and has added dozens of features, making it the best designed
and most feature rich caching solution available.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



1.2

1.2 JCS AND JCACHE 4

JCS and JCACHE

JCS and JCACHE (JSR-107)

The JCS is an attempt to build a system close to JCACHE , J[SR-107 , a description of the caching system
used in Oracle9i. JCS grew out of my work over the past two years to build an enterprise level caching
system. Though it is replete with good ideas, there are some aspects of the JCACHE architecture that
could lead to inefficiency (ex, the lateral distribution and net searches) and a few programming
preferences that I found cumbersome (ex, the use of exceptions to report the common place).
Subsequently there are a few differences between the two systems. In some cases I have moved my
original system closer to the JCACHE model where it presented a better idea. Briefly:

Element vs. Region Attributes

My original cache was regionally defined. Each entry required a very minimal wrapper. The osc4j
specification is an element driven model where each element is fully configurable. This could lead to a
slight performance penalty, but it is a richer model, where elements can inherit or have their own
attributes. So, I converted the entire system into element centered framework.

Lateral Broadcast vs. Remote Consistency

The oracle model is a laterally distributed framework with no centralized control. The JCS model has the
option for lateral broadcast (which will need to be made more efficient) and a remote store that
coordinates consistency. In the JCS Local caches send data to the remote store which then notifies other
local caches of changes to "regions" (caches) that are registered. In JCACHE' lateral model an update is
never broadcast from the remote, rather updates come via the lateral caches. If you broadcast changes to
all servers then every server must be ready for every user. The usage patterns of a user on one box can
affect the whole. Also, the lateral model can make it difficult to synchronize combinations of updates and
invalidations.

With a remote store the local caches are primed to take on similar patterns by talking to the remote store,
but aren't flooded with the elements from another machine. This significantly cuts down on traffic. This
way each local cache is a relatively separate realm with remotely configurable regions that stay in synch
without overriding the user habits of any machine. It also allows for an efficient mechanism of retrieval,
where searching for an element involves, at maximum, only as many steps as there are remote servers in
the cluster. In the lateral model a failed net search could take an extremely long time to complete, making
it necessary for the programmer to decide how long of a wait is acceptable.

Though this is by and large a poor model, the JCS will include the ability to perform full lateral searches.
A more important feature is remote failover and remote server clustering. With clustering any concerns
about the remote server being a single point of failure vanish and the remote server model is significantly
more robust.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED


http://jcp.org/jsr/detail/107.jsp

1.2 JCS AND JCACHE 5

Put vs. Replace

The difference between put and replace is not present in the JCS by default. The overhead associated
with this distinction is tremendous. However, there will be an alternate "safe-put" method to deal with
special caches.

Nulls vs. Errors

I started to support Cbj ect Not FoundExcept i ons for failed gets but the overhead and cumbersome
coding needed to surround a simple get method is ridiculous. Instead the JCS returns null.

Cache Loaders

I'm not supporting cache loaders at this time. They seem unnecessary, but may be useful in a smart
portal.

Groups vs. Hierarchy

The JCS provides feature rich grouping mechanism, where groups of elements can be invalidated and
whose attributes can be listed. The grouping feature is much like the session API. In addition, the JCS
provides a mechanism for hierarchical removal without the overhead of keeping track of all the elements
of a group across machines. Element keys with ": " separators (a value that will be fully configurable) can
be arranged in a hierarchy. A remove command ending in a ": " will issue a removal of all child elements.
I can associate search and menu drop down lists for a particular company in a multi-company system by
starting each key in disparate caches with the company id followed by ": " and then the normal key.
Invalidating this data when a change is made to data affecting something falling under that company can

be removed by simply calling cacheAccess. renove(conp_id + ":").

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



13

1.3 DOWNLOADS

Downloads

Releases

The latest release version of JCS is 1.3. Grab it here. The core JCS jar is compiled using JDK 1.3.

Binary versions

* JCS 1.3 Binary Distribution in TAR format Signature MD5
* JCS 1.3 Binary Distribution in ZIP format Signature MD5

Source versions

* JCS 1.3 Source Distribution in TAR format Signature MD5
* JCS 1.3 Source Distribution in ZIP format Signature MD5

Versioned Temp Builds

You can find versioned binary builds of JCS in the tempbuild directory of the repository.

Getting The Development Source From SVN

You can check out the latest source from the Jakarta SVN module.
JCS resides in the jakarta/jcs module.

svn checkout http://svn.apache. org/repos/asf/jakartal/jcs/trunk

or browse the source code through ViewVC .

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED


http://www.apache.org/dyn/closer.cgi/jakarta/jcs/binaries/jcs-1.3.tar.gz
http://www.apache.org/dist/jakarta/jcs/binaries/jcs-1.3.tar.gz.asc
http://www.apache.org/dist/jakarta/jcs/binaries/jcs-1.3.tar.gz.md5
http://www.apache.org/dyn/closer.cgi/jakarta/jcs/binaries/jcs-1.3.zip
http://www.apache.org/dist/jakarta/jcs/binaries/jcs-1.3.zip.asc
http://www.apache.org/dist/jakarta/jcs/binaries/jcs-1.3.zip.md5
http://www.apache.org/dyn/closer.cgi/jakarta/jcs/sources/jcs-1.3-src.tar.gz
http://www.apache.org/dist/jakarta/jcs/sources/jcs-1.3-src.tar.gz.asc
http://www.apache.org/dist/jakarta/jcs/sources/jcs-1.3-src.tar.gz.md5
http://www.apache.org/dyn/closer.cgi/jakarta/jcs/sources/jcs-1.3-src.zip
http://www.apache.org/dist/jakarta/jcs/sources/jcs-1.3-src.zip.asc
http://www.apache.org/dist/jakarta/jcs/sources/jcs-1.3-src.zip.md5
http://svn.apache.org/viewcvs.cgi/jakarta/jcs/trunk/tempbuild/
http://svn.apache.org/viewvc/jakarta/jcs

1.4 FAQ 7

Frequently Asked Questions
Configuration

1. What jars are required by JCS?

2. How do I configure JCS?

3. How can I configure JCS with my own properties?

4. Can JCS use system properties during configuration?
General Questions

1. Is JCS faster than EHCache?

2. Where can I get the admin jsp?

3. Where can I get the source?

4. How do I compile the source?
Elements

1. How do I set the element attributes?

2. How do I register an element event?

3. Can I remove all items beginning with part of a key?
Indexed Disk Cache

1. How do I limit the number of threads used by the disk cache?

Remote Cache Server

1. Do I need to put my jars in the classpath of the remote server?

Configuration

Configuration
What jars are required by JCS?

As of verison 1.2.7.0, the core of JCS (the LRU memory cache, the indexed disk cache, the TCP
lateral, and the RMI remote server) requires only two other jars.

concurrent
commons-logging

Versions 1.2.6.9 and below also require the following two additional jars:

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED


http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html

1.4 FAQ

commons-collections
commons-lang

All of the other dependencies listed on the project info page are for optional plugins.

How do I configure JCS?

By default JCS looks for a cache.ccf file in the classpath. You must have a configuration file on the
classpath to use JCS. The documentation describes how to configure the cache.

How can I configure JCS with my own properties?

You don't have to put the cache.ccf file in the classpath; instead you can do the following:

Conposi t eCacheManager ccm =

Conposi t eCacheManager . get Unconfi gur edl nstance(); Properties props = new
Properties(); props.load(/* |load properties fromsone |ocation defined
by your app */); ccmconfigure(props);

Can JCS use system properties during configuration?

Yes. JCS will look for a system property for any name inside the delimiters ${}. Also, JCS will check
to see if any property key in the cache.ccf is defined in the system properties. If so, the system value
will be used.

General Questions

General Questions
Is JCS faster than EHCache?

Yes. JCS is almost twice as fast as EHCache. JCS 1.2.7.0, using the default LRU Memory Cache, has
proven to be nearly twice as fast as EHCache 1.2-beta4 at gets and puts. The EHCache benchmark
data is unsubstantiated and very old. As such the EHCache site benchmark data is completely
inaccurate. Read More

Where can I get the admin jsp?

You can download the admin jsp here .

Where can I get the source?

You can view the source here or get the source code from subversion with svn co
http://svn. apache. or g/ repos/ asf/jakartaljcs/trunk. The tagged releases are
available with svn co. ex. http://svn.apache.org/repos/asf/jakarta/jcs/tags/jes_1_2_7_0

How do I compile the source?

You first need to install Maven 1.0.2 The download is available at
http://maven.apache.org/maven-1.x/start/download.html. Maven 2.0 is not supported yet. After
installing run "maven" which compiles and tests the entire package. To build a jar run "maven jar".

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED


http://svn.apache.org/viewcvs.cgi/jakarta/jcs/trunk/src/java/org/apache/jcs/admin/JCSAdmin.jsp
http://svn.apache.org/viewcvs.cgi/jakarta/jcs/trunk/
http://maven.apache.org/

1.4 FAQ

Elements

Elements
How do I set the element attributes?

Every element put into the cache has its own set of attributes. By default elements are given a copy
of the default element attributes associated with a region. You can also specify the attributes to use
for an element when you put it in the cache. See Element Attributes for more information on the
attributes that are available.

How do I register an element event?

Element event handlers must be added to the element attributes. See Element Event Handling for
more information on how to handle element events.

Can I remove all items beginning with part of a key?

Yes, but it is somewhat expensive, since some of the auxiliaries will have to iterate over their keysets.
Although all the auxiliaries honor this, it is not part of the auxiliary API. There is no method along
the lines of "removeStartingWith", but all the remove methods can do it.

By default, the hierarchical key delimiter used in JCS is a colon. You cannot add a String key that
ends with a colon. If you call remove with a String key that ends in a colon, everything that has a key
that starts with the argument will be removed.

If your keys are in this format
TYPESOURCE:OBJECT

And you put n objects int he cache with keys like this
"ABC:123:0" to "ABC:123:n"

then you could remove all the obejcts by calling

jes.remove( "ABC:123:" );

Indexed Disk Cache

Indexed Disk Cache
How do I limit the number of threads used by the disk cache?

The indexed disk cache uses an event queue for each region. By default these queues are worked by
their own dedicated threads. Hence, you will have one thread per disk cache region. Although the
queues kill off idle threads, you may want to limit the overall number of threads used by the queues.
You can do this by telling the disk cache to use a thread pool. The configuration is described on the
disk cache configuration page .

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



1.4 FAQ

Remote Cache Server

Remote Cache Server

Do I need to put my jars in the classpath of the remote server?

No. The remote server never deserializes your classes.

©2002 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

10



2.1

2.1 OVERVIEW 11

Overview

Getting Started

To start using JCS you need to (1) understand the core concepts, (2) download JCS, (3) get the required
dependencies, (4) configure JCS, and (5) then start programming to it. The purpose of the getting started
guide is to help you get up and running with JCS as quickly as possible. In depth doumentation on the
various featutes of JCS is provided in the User’s Guide.

STEP 1: Understand the Core Concepts

In order to use JCS, you must understand a few core concepts, most importantly you need to know the

difference between "elements," "regions," and "auxiliaries".

JCS is an object cache. You can put objects, ot "elements," into JCS and reference them via a key, much
like a hashtable.

You can think of JCS as a collection of hashtables that you reference by name. Each of these hashtables
is called a "region," and each region can be configured independently of the others. For instance, I may
have a region called Cities where I cache City objects that change infrequently. I may also define a region
called Products where I cache product data that changes more frequently. I would configure the volatile
Product region to expire elements more quickly than the City region.

"Auxiliaries" are optional plugins that a region can use. The core auxiliaties are the Indexed Disk Cache,
the TCP Lateral Cache, and the Remote Cache Server. The Disk Cache, for example, allows you to swap
items onto disk when a memory threshold is reached. You can read more about the available auxiliaries
HERE .

STEP 2: Download JCS
Download the latest version of JCS. The latest JCS builds are located HERE

If you would like to build JCS yourself, check it out from Subversion and build it as you would any other
project built by Maven 1.x. The location of the repository is documented in the project info pages that
are linked via the left nav.

STEP 3: Get the Required Dependencies

As of version 1.2.7.0, the core of JCS (the LRU memory cache, the indexed disk cache, the TCP lateral,
and the RMI remote server) requires only two other jars.

concurrent

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED


http://svn.apache.org/viewcvs.cgi/jakarta/jcs/trunk/tempbuild/
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html

2.1 OVERVIEW 12

commons-logging

Versions 1.2.6.9 and below also require the following two additional jars:
commons-collections

commons-lang

All of the other dependencies listed on the project info page are for optional plugins.

STEP 4: Configure JCS

JCS is configured from a propertties file called "cache.ccf”. There are alternatives to using this file, but
they are beyond the scope of the getting started guide.

The cache configuration has three parts: default, regions, and auxiliaries. You can think of the auxiliaries
as log4j appenders and the regions as log4j categories. For each region (or category) you can specify and
auxiliary (ot appender to use). If you don't define a region in the cache.ccf, then the default settings are
used. The difference between JCS and log4j is that in JCS, pre-defined regions do not inherent auxiliaries
from the default region.

The following cache.ccf file defines one region called "testCachel" and uses the Indexed Disk Cache,
hete called "DC" by default. The LRU Memory Cache is selected as the memory managet.

# DEFAULT CACHE REG ON
j cs. defaul t =DC
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri butes
jcs.defaul t.cacheattributes. MaxObj ect s=1000
jcs.defaul t.cacheattributes. MenoryCacheNane=

org. apache.jcs. engi ne. menory. | ru. LRUMenor yCache
jcs.defaul t.cacheattributes. UseMenoryShri nker =f al se
jcs.defaul t.cacheattributes. MaxMenoryl dl eTi neSeconds=3600
jcs.defaul t.cacheattributes. Shrinkerlnterval Seconds=60
jcs.defaul t. el ementattri butes=org. apache.jcs. engi ne. El ement Attri butes
jcs.default. el ementattributes. | sEternal =fal se
jcs.default. el ementattri butes. MaxLi f eSeconds=21600
jcs.default.elementattributes.|dl eTi ne=1800
jcs.default. el ementattributes.|sSpool =true
jcs.default. el ementattributes. | sRenpte=true
jcs.default.elementattributes.|sLateral =true

# PRE- DEFI NED CACHE REG ONS
jcs.region.testCachel=DC
j cs.region.testCachel. cacheattri butes=

org. apache. j cs. engi ne. Conposi t eCacheAttri butes
j cs.region.testCachel. cacheattri butes. MaxChj ect s=1000
jcs.region.testCachel. cacheattri butes. MenoryCacheNane=

or g. apache. j cs. engi ne. menory. | ru. LRUMenor yCache
jcs.region.testCachel. cacheattri butes. UseMenoryShri nker =f al se
jcs.region.testCachel. cacheattri butes. MaxMenoryl dl eTi neSeconds=3600
j cs.region.testCachel. cacheattri butes. Shrinkerl nterval Seconds=60
j cs.region.testCachel. cacheattri butes. MaxSpool Per Run=500
jcs.region.testCachel. el enentattributes=org. apache. jcs. engi ne. El ement Attri butes
jcs.region.testCachel. el ementattributes. | sEternal =fal se

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.1 OVERVIEW

13

# AVAI LABLE AUXI LI ARY CACHES
jcs.auxiliary. DC=

org. apache.jcs. auxiliary. di sk.indexed. | ndexedDi skCacheFact ory
jcs.auxiliary.DC. attributes=

org. apache. jcs. auxiliary.di sk.indexed. | ndexedDi skCacheAttri butes
jcs.auxiliary.DC attributes. Di skPat h=${user.dir}/jcs_swap
jcs.auxiliary.DC attributes. MaxPurgat orySi ze=10000000
jcs.auxiliary.DC. attributes. MaxKeySi ze=1000000
jcs.auxiliary.DC attributes. MaxRecycl eBi nSi ze=5000
jcs.auxiliary.DC. attributes. Optim zeAt RenbveCount =300000
jcs.auxiliary.DC. attributes. Shut downSpool Ti neLi m t =60

Basic JCS configuration is described in more detail HERE

Element level configuration is described in more detail HERE

For more information on advanced configuration options and the available plugins, see the User’s Guide.

STEP 5: Programming to JCS

JCS provides a convenient class that should meet all your needs. It is called, appropriately enough,
org. apache.jcs. JCS

To get a cache region you simply ask JCS for the region by name. If you wanted to use JCS for City

objects, you would do something like this:

i mport org. apache.jcs. JCS;
i mport org. apache.jcs. access. excepti on. CacheExcepti on;

private static final String cacheRegi onName = "city";

private JCS cache = null;

/1 in your constructor you mght do this

try
{
set Cache( JCS. getlnstance( this.getCacheRegi onNane() ) );
}
catch ( CacheException e )
{
log.error( "Probleminitializing cache for region nane ["
+ this. getCacheRegi onNane() + "].", e );
}

// to get a city out of the cache by id you mght do this:
String key = "cityld:" + String.valueOT( id);

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.1 OVERVIEW

City city = (Cty) cache.get( key );

// to put a city object

in the cache, you could do this:

insert it

city );

+ city + " in the cache, for key " + key, e );

try
{

[ if it isn't null,

if (city !=null )

{

cache. put ( key,

}
}
catch ( CacheException e )
{

log.error( "Problemputting "
}

©2002 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

14



2.2

2.2 BASIC JCS CONFIG 15

Basic JCS Config

Basic JCS Configuration

The following document illustrates several basic JCS configurations. As you'll see, using JCS can be as
simple as creating a single memory cache for you application. However, with a few configuration changes,
you can quickly enable some distributed caching features that can scale your application even further.

Building a cache.ccf file

Configuring the JCS can be as simple as your needs. The most basic configuration would be a pure
memory cache where every region takes the default values. The complete configuration file (cache.ccf)
could look like this:

# DEFAULT CACHE REG ON

jcs.defaul t=
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
jcs.defaul t.cacheattributes. MaxObj ect s=1000
jcs.defaul t.cacheattributes. MenoryCacheNanme=

org. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache

If you want to add memory shrinking then you can add these lines:

jcs.defaul t.cacheattributes. UseMenoryShri nker =true

jcs.defaul t.cacheattributes. MaxMenoryl dl eTi neSeconds=3600

jcs.defaul t.cacheattributes. Shrinkerlnterval Seconds=60

jcs.defaul t.cacheattri butes. MaxSpool Per Run=500

jcs.defaul t. el ementattri butes=org. apache. jcs. engi ne. El ement Attri butes
jcs.default. el ementattributes.|sEternal =fal se

Adding a disk cache is as simple as telling it what folder to use. It is recommended that you add a disk
cache. If you want to add a disk cache to your default parameters, then (1) add this to the bottom of the
file to create the auxiliary:

jcs.auxiliary. DC=

org. apache. jcs. auxiliary.disk.indexed. | ndexedDi skCacheFactory
jcs.auxiliary.DC attributes=

org. apache. jcs. auxiliary.di sk.indexed. | ndexedDi skCacheAttri butes

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.2 BASIC JCS CONFIG

16

jcs.auxiliary.DC attributes. D skPat h=g:/dev/jcs/r af

and (2) change the first line to:

jcs

. defaul t =DC

If you want to predefine a specific region, say called t est Cachel, then add these lines:

jcs
jcs

jcs
jcs

jcs
jcs
jcs
jcs
jcs
jcs

.region.testCach

el=DC

.region.testCachel. cacheattributes=
or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
.region.testCachel. cacheattribut es. MaxObj ect s=1000
.region.test Cachel. cacheattri but es. MenoryCacheNane=
or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache

.region.testCach
.region.testCach
.region.testCach
.region.testCach
.region.testCach
.region.testCach

el. cacheatt
el. cacheatt
el. cacheatt
el. cacheatt
el. el ementa
el. el ementa

ri butes. UseMenoryShri nker=true

ri butes. MaxMenoryl dl eTi meSeconds=3600

ri butes. Shrinkerl nterval Seconds=60

ri but es. MaxSpool Per Run=500

ttributes=org. apache.jcs. engi ne. El enent Attri butes
ttributes.|sEternal =fal se

If you want to add a lateral cache for distribution (the TCP Lateral Auxiliary is recommended), then add
these lines to the bottom of the file to define the auxiliary:

jcs.
jcs.

jcs.
jcs.
jcs.
jcs.

auxiliary. LTCP=
org. apache.jcs.
auxiliary.LTCP.
org. apache.jcs.
auxiliary. LTCP.
auxiliary. LTCP.
auxiliary.LTCP.
auxiliary.LTCP.

auxiliary.|l
attributes=
auxiliary.|

attributes.
attributes.
attributes
attributes.

ateral . Lat eral CacheFact ory

ateral . Lateral CacheAttributes
Transm ssi onTypeNanme=TCP
TcpServers=l ocal host: 1111

. TcpLi st ener Port=1110

Put Onl yMbde=f al se

See the TCP Lateral documentation for more information. If you want to set up t est Cachel to use
this, then change the definition to:

j cs.region.test Cachel=DC, LTCP

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.2 BASIC JCS CONFIG 17

A few comments on configuration

Auxiliary definitions are like log4j appenders, they are defined and then associated with a region like a
log4j category.

The order of configuration file is unimportant, though you should try to keep it organized for your own
sake.

Configuration is being refactored and is subject to change. It should only become easier.

The complete file

The complete file from above would look like this:

# DEFAULT CACHE REG ON

j cs. defaul t =DC, LTCP
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri butes
jcs.defaul t.cacheattributes. MaxObj ect s=1000
jcs.defaul t.cacheattri butes. MenoryCacheNane=

org. apache. j cs. engi ne. menory. | ru. LRUMenor yCache

# PRE- DEFI NED CACHE REG ONS

j cs.region.test Cachel=DC, LTCP
jcs.region.testCachel. cacheattri butes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
j cs.region.testCachel. cacheattri butes. MaxChj ect s=1000
j cs.region.testCachel. cacheattri butes. MenoryCacheNane=

or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache
jcs.region.testCachel. cacheattri butes. UseMenoryShri nker=true
jcs.region.testCachel. cacheattri butes. MaxMenoryl dl eTi mreSeconds=3600
jcs.region.testCachel. cacheattri butes. Shrinkerlnterval Seconds=60
jcs.region.testCachel. cacheattri but es. MaxSpool Per Run=500
jcs.region.testCachel. el enentattributes=org. apache.jcs. engi ne. El ement Attri butes
jcs.region.testCachel. el enentattributes. | sEternal =fal se

# AVAI LABLE AUXI LI ARY CACHES
jcs.auxiliary. DC=

org. apache.jcs. auxiliary. di sk.i ndexed. | ndexedDi skCacheFact ory
jcs.auxiliary.DC attributes=

org. apache.jcs. auxiliary. di sk.indexed. | ndexedDi skCacheAttri butes
jcs.auxiliary.DC attributes. D skPat h=g:/dev/jcs/r af
jcs.auxiliary.DC. attributes. maxKeySi ze=100000

jcs.auxiliary. LTCP=

org. apache.jcs.auxiliary.lateral.Lateral CacheFactory
jcs.auxiliary.LTCP. attri butes=

org. apache.jcs.auxiliary.lateral.Lateral CacheAttri butes
jcs.auxiliary.LTCP. attributes. Transm ssi onTypeName=TCP
jcs.auxiliary.LTCP. attri butes. TcpServers=l ocal host: 1111
jcs.auxiliary.LTCP. attri butes. TcpLi stenerPort=1110
jcs.auxiliary.LTCP. attri butes. Put Onl yMbde=f al se

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.2 BASIC JCS CONFIG

©2002 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

18



2.3

2.3 PLUGIN OVERVIEW 19

Plugin Overview

JCS Plugin Overview

JCS provides multiple auxiliaries which can be plugged into a cache region, in a manner similar to adding
Log4j appenders to a logger. JCS auxiliaries are defined in the cache.ccf file. You can specify which
plugins a particular cache region should use.

There are four types of auxiliaries: (1) memory, (2) disk, (3) lateral, and (4) remote. Each region is
required to have one and only one memory auxiliary. No other auxiliaries are required and any possible
combination of disk, lateral, and remote auxiliaries is allowed. If you do not want to store items in
memoty, then the maximum size for the memory caches can be set to 0 on a per region basis.

Memory Plugins

Currently, JCS provides four memory management options: (1) LRUMemoryCache, (2)
LHMLRUMemoryCache, (3) MRUMemoryCache, and (4) ARCMemoryCache. All memory caches
restrict the number of items that can be stored in memory per region. If a disk cache is configured for the
region, the items will be spooled to disk when the memory capacity is reached. JCS enforces configurable
parameters such as time to live and maximum idle time. Expired elements can be cleaned up by the
ShrinkerThread, otherwise they will be removed at the next retrieval attempt or when the capacity is
reached.

The LRUMemoryCache is the currently recommended plugin. Upon misconfiguration it is used as the
default. The LRUMemoryCache removes the least recently used items when the cache is full.

The ARCMemoryCache is currently experimental, but will be fully tested soon. It implements an adaptive
replacement caching algorithm that combines an LRU and an LFU that adapt to usage patterns.

Disk Plugins

JCS provides several disk swap options: indexed disk, HSQL, JISP, and Berkeley DB JE. The
IndexedDiskCache is the recommended disk cache. It maintains the cached data on disk and the keys in
memory for the fastest possible lookup times. Writing to disk is done asynchronously. Items are typically
put in purgatory and queued for background disk writing. While in purgatory, the items remain available.

In addition, JCS provides a disk auxiliary that uses the Berkeley DB Java Edition for disk storage. JCS can
effectively function as an expiration manager and distribution mechanism on top of a Berkeley DB JE.

Lateral Plugins

JCS provides two recommended lateral distribution options: TCP socket server distribution and JGroups

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.3 PLUGIN OVERVIEW

(or JavaGroups). There are also several other experimental lateral distribution auxiliaries using servlets,
UDP, and xmlrpc.

Remote Plugins

JCS also provides an RMI based remote server to manage distribution of cached data.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

20



2.4

2.4 BASIC WEB EXAMPLE 21

Basic Web Example

Using JCS: Some basics for the web

The primary bottleneck in most dynamic web-based applications is the retrieval of data from the
database. While it is relatively inexpensive to add more front-end servers to scale the serving of pages and
images and the processing of content, it is an expensive and complex ordeal to scale the database. By
taking advantage of data caching, most web applications can reduce latency times and scale farther with
fewer machines.

JCS is a front-tier cache that can be configured to maintain consistency across multiple servers by using a
centralized remote server or by lateral distribution of cache updates. Other caches, like the Javlin EJB
data cache, are basically in-memory databases that sit between your EJB's and your database. Rather than
trying to speed up your slow EJBS, you can avoid most of the network traffic and the complexity by
implementing JCS front-tier caching. Centralize your EJB access or your JDBC data access into local
managers and perform the caching there.

What to cache?

The data used by most web applications vaties in its dynamicity, from completely static to always
changing at every request. Everything that has some degree of stability can be cached. Prime candidates
for caching range from the list data for stable dropdowns, user information, discrete and infrequently
changing information, to stable search results that could be sorted in memory.

Since JCS is distributed and allows updates and invalidations to be broadcast to multiple listeners,
frequently changing items can be easily cached and kept in sync through your data access layer. For data
that must be 100% up to date, say an account balance prior to a transfer, the data should directly be
retrieved from the database. If your application allows for the viewing and editing of data, the data for the
view pages could be cached, but the edit pages should, in most cases, pull the data directly from the
database.

How to cache discrete data

Let’s say that you have an e-commetce book stote. Each book has a related set of information that you
must present to the user. Lets say that 70% of your hits during a particular day are for the same 1,000
popular items that you advertise on key pages of your site, but users are still actively browsing your
catalog of over a million books. You cannot possibly cache your entire database, but you could
dramatically decrease the load on your database by caching the 1,000 or so most popular items.

For the sake of simplicity let's ignore tie-ins and user-profile based suggestions (also good candidates for
caching) and focus on the core of the book detail page.

A simple way to cache the core book information would be to create a value object for book data that

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.4 BASIC WEB EXAMPLE 22

contains the necessary information to build the display page. This value object could hold data from
multiple related tables or book subtype table, but lets say that you have a simple table called BOOK that
looks something like this:

Tabl e BOOK
BOOK_I D_PK
TITLE

AUTHOR

| SBN

PRI CE

PUBLI SH_DATE

We could create a value object for this table called BookVObj that has variables with the same names as
the table columns that might look like this:

package com generi cbookstore. data;

import java.io.Serializable;
import java.util.Date;

public class BookVObj inplenments Serializable

{
public int bookld = 0;
public String title;
public String author;
public String | SBN,
public String price;
public Date publishDate;
publ i ¢ BookVQbj ()
{
}

}

Then we can create a manager called BookVCbj Manager to store and retrieve BookVQbj 's. All access
to core book data should go through this class, including inserts and updates, to keep the caching simple.
Lets make BookVCbj Manager a singleton that gets a JCS access object in initialization. The start of the
class might look like:

package com generichbookstore. data;

i mport org. apache.jcs. JCS;
/1l in case we want to set some special behavior
i nport org. apache. jcs. engi ne. behavi or. | El enent Attri but es;

public class BookVObj Manager

{
private static BookVObj Manager instance;
private static int checkedOut = 0;
private static JCS bookCache;

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.4 BASIC WEB EXAMPLE 23

privat e BookVOhj Manager ()

{
try
{
bookCache = JCS. get | nst ance("bookCache");
}
catch (Exception e)
{
/1 Handl e cache region initialization failure
}
/1 Do other initialization that nmay be necessary, such as getting
/Il references to any data access classes we nay need to popul ate
/1 val ue objects later
}
/**

* Singleton access point to the manager.
*/
public static BookVOhj Manager getlnstance()

{
synchroni zed (BookVObhj Manager . cl ass)
{
if (instance == null)
{
i nstance = new BookVObj Manager () ;
}
}
synchroni zed (instance)
{
i nst ance. checkedQut ++;
}
return instance;
}

To get a BookVObj we will need some access methods in the manager. We should be able to get a
non-cached version if necessary, say before allowing an administrator to edit the book data. The methods
might look like:

/**

* Retrieves a BookVQhj. Default to look in the cache.
*/

publ i ¢ BookVOhj get BookVObj (int id)

{

}

/**

* Retrieves a BookVQbj. Second argunent deci des whether to | ook
* in the cache. Returns a new value object if one can't be

* | oaded fromthe database. Database cache synchronization is

* handl ed by renoving cache el ements upon nodification.

*/

publ i ¢ BookVObj getBookVObj (int id, boolean fronCache)

return get BookVQbj (id, true);

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



©2002 APACHE SOFTWARE FOUNDATION

2.4 BASIC WEB EXAMPLE

{
BookVObj vObj = null;
/1 First, if requested, attenpt to | oad from cache
if (fromCache)
{
vQbj = (BookV(hj) bookCache. get ("BookVCbj " + id);
}
/1 Either fronCache was false or the object was not found, so
/1 call | oadBookVOhj to create it
if (vObj == null)
{
vQbj = | oadvpj (id);
}
return vObj;
}
/**
* Creates a BookVhj based on the id of the BOOK table. Data
* access could be direct JDBC, sone or nmapping tool, or an EJB.

*/

the rest of the fields
t was found

if found

vQoj
characteristics

)

vQj ) ;

publ i ¢ BookVObj | oadBookVOhj (int id)
{
BookVObj vCbj = new BookVObj ();
vQoj . bookI D = id;
try
{
bool ean found = fal se;
/1 load the data and set
/1 set found to true if i
found = true;
/1 cache the val ue object
if (found)
{
/1 could use the defaults like this
/'l bookCache. put ( "BookVObj " + id,
/'l or specify special
/1 put to cache
bookCache. put (" BookVOhj " + id,
}
}
catch (Exception e)
{
// Handle failure putting object to cache
}
return vObj;
}

« ALL RIGHTS RESERVED



2.4 BASIC WEB EXAMPLE 25

We will also need a method to insert and update book data. To keep the caching in one place, this should
be the primary way core book data is created. The method might look like:

/**
* Stores BookVOhj's in database. Cears old items and caches
* new.
*/
public int storeBookVbj (BookVObhj vObj)
{
try
{
/1 since any cached data is no |longer valid, we should
/1 rermove the itemfromthe cache if it an update.
if (vObj.booklD!= 0)
{
bookCache. renove(" BookVOhj " + vQbj . bookl D);
}
/1 put the new object in the cache
bookCache. put (" BookVoj " + id, voj);
}
catch (Exception e)
{
// Handle failure renoving object or putting object to cache.
}
}

As elements atre placed in the cache via put , it is possible to specify custom attributes for those elements
such as its maximum lifetime in the cache, whether or not it can be spooled to disk, etc. It is also possible
(and easier) to define these attributes in the configuration file as demonstrated later. We now have the
basic infrastructure for caching the book data.

Selecting the appropriate auxiliary caches

The first step in creating a cache region is to determine the makeup of the memory cache. For the book
store example, I would create a region that could store a bit over the minimum number I want to have in
memory, so the core items always readily available. I would set the maximum memory size to 1200. In
addition, I might want to have all objects in this cache region expire after 7200 seconds. This can be
configured in the element attributes on a default or per-region basis as illustrated in the configuration file
below.

For most cache regions you will want to use a disk cache if the data takes over about .5 milliseconds to
create. The indexed disk cache is the most efficient disk caching auxiliary, and for normal usage it is
recommended.

The next step will be to select an appropriate distribution layer. If you have a back-end server running an
appserver or scripts or are running multiple webserver VMs on one machine, you might want to use the
centralized remote cache . The lateral cache would be fine, but since the lateral cache binds to a port,

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.4 BASIC WEB EXAMPLE 26

you'd have to configure each VM’ lateral cache to listen to a different pott on that machine.

If your environment is very flat, say a few load-balanced webservers and a database machine or one
webserver with multiple VMs and a database machine, then the lateral cache will probably make more
sense. The TCP lateral cache is recommended.

For the book store configuration I will set up a region for the bookCache that uses the LRU memory
cache, the indexed disk auxiliary cache, and the remote cache. The configuration file might look like this:

# DEFAULT CACHE REG ON

# sets the default aux value for any non configured caches
j cs. def aul t =DC, RFai | over
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
jcs.defaul t.cacheattributes. MaxObj ect s=1000
jcs.defaul t.cacheattributes. MenoryCacheNane=

or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache
jcs.default. el ementattributes.|sEternal =fal se
jcs.default. el ementattributes. MaxLi f eSeconds=3600
jcs.default.elementattributes.|dl eTi ne=1800
jcs.default. el ementattributes.|sSpool =true
jcs.default. el ementattributes. | sRenote=true
jcs.default.el ementattributes.|sLateral =true

# CACHE REG ONS AVAI LABLE

# Regions preconfigured for caching

j cs. regi on. bookCache=DC, RFai | over

j cs. regi on. bookCache. cacheattri but es=
or g. apache. j cs. engi ne. Conposi t eCacheAttri butes

j cs.regi on. bookCache. cacheat tri but es. MaxQhj ect s=1200

j cs. regi on. bookCache. cacheat tri but es. Menor yCacheNane=
org. apache. j cs. engi ne. menory. | ru. LRUMenor yCache

j cs.regi on. bookCache. el enentattri butes. | sEternal =fal se

j cs.regi on. bookCache. el enentattri but es. MaxLi f eSeconds=7200

j cs. regi on. bookCache. el enentattri butes. |dl eTi me=1800

j cs. regi on. bookCache. el enentattri butes. | sSpool =true

j cs. regi on. bookCache. el enentattri butes. | sRenpt e=true

j cs.regi on. bookCache. el enentattri butes.|sLateral =true

# AUXI LI ARY CACHES AVAI LABLE

# Primary Disk Cache -- faster than the rest because of nmenory key storage
jcs.auxiliary. DC=

org. apache. jcs. auxiliary. di sk.indexed. | ndexedDi skCacheFact ory
jcs.auxiliary.DC attributes=

org. apache.jcs. auxiliary. di sk.indexed. | ndexedDi skCacheAttri butes
jcs.auxiliary.DC. attributes. Di skPat h=/usr/ opt/bookst ore/raf
jcs.auxiliary.DC. attributes. MaxPur gat orySi ze=10000
jcs.auxiliary.DC. attributes. MaxKeySi ze=10000
jcs.auxiliary.DC attributes. Optim zeAt RemoveCount =300000
jcs.auxiliary.DC attributes. MaxRecycl eBi nSi ze=7500

# Remote RM Cache set up to failover
jcs.auxiliary. RFail over=

org. apache.jcs.auxiliary.renote. Renot eCacheFact ory
jcs.auxiliary. RFailover.attributes=

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



2.4 BASIC WEB EXAMPLE

org. apache.jcs. auxiliary.renote. Renot eCacheAttri butes
jcs.auxiliary. RFailover.attributes. Renpt eTypeNane=LOCAL
jcs.auxiliary. RFailover.attributes. Fail over Servers=scri ptserver: 1102
jcs.auxiliary. RFailover.attributes. Get Onl y=fal se

I've set up the default cache settings in the above file to approximate the bookCache settings. Other
non-preconfigured cache regions will use the default settings. You only have to configure the auxiliary
caches once. For most caches you will not need to pre-configure your regions unless the size of the
clements varies radically. We could easily put several hundred thousand BookVQbj s in memory. The
1200 limit was very conservative and would be more appropriate for a large data structure.

To get running with the book store example, I will also need to start up the remote cache server on the
scriptserver machine. The remote cache documentation describes the configuration.

I now have a basic caching system implemented for my book data. Performance should improve
immediately.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

27



3.1

3.1 CORE 28

Configuring the Local Cache

This document is intended to provide various answers to questions regarding the configuration of a local
cache. The document is presented in a question / answer format.

Where is the configuration information?

Configuration of local caches involves editing the cache configuration file, named cache. ccf. The
classpath should include the directory where this file is located or the file should be placed at the root of
the classpath, since it is discovered automatically.

What is in the cache.ccf file?

The cache. ccf file contains default configuration information for cache regions and specific
configuration information for regions that you predefine. Regions not using default behaviors should
generally be configured via the cache. ccf file. If you can put configuration information in a class, you
can edit a props file just as easily. This makes modification of the regional setting more efficient and
allows for startup error checking.

There are three main sections of the cache. ccf file:

* the default and system settings
* the region specific settings

* the auxiliary cache definitions

How do | set up default values for regions?

You can establish default values that any non-preconfigured region will inherit. The non-predefined
region will be created when you call CacheAccess. get Access( " cacheNanme") . The default setting
look like this:

# DEFAULT CACHE REG ON

# sets the default aux value for any non configured caches
j cs. def aul t =DC, RFai | over
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri butes
jcs.defaul t.cacheattributes. MaxObj ect s=1000

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1 CORE 29

The most important line is j ¢s. def aul t =DC, Rf ai | over . This tells the cache what auxiliary caches
should be used. Auxiliary caches are configured in the third section of the cache. ccf and ate
referenced in a comma separated list. You can add as many auxiliary caches as you want, but the behavior
of remote and lateral auxiliaries may conflict. This allows you to define different configurations for
auxiliary caches and to use these different configurations for different regions.

How do | define aregion?

Defining a region involves specifying which auxiliary caches it will use and how many objects it will store
in memory. A typical region definition looks like:

j cs.region.test Cache=DC, RFai | over
jcs.region.testCache. cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
jcs.region.testCache. cacheattri but es. MaxObj ect s=1000

The region name is t est Cache. It will have a 1000 item memory limit and will use the DC and
RFailover auxiliary caches. If a typical element for this region was very large, you might want to lower the
number of items stored in memory. The size of the memory storage is dependent on the priority of the
cache, the size of its elements, and the amount of RAM on the machine.

How do | configure an auxiliary cache?

Each auxiliary cache is created through a factory that passes an attribute object to the constructor. The
attributes are set via reflection and should be fairly simple to understand. Each auxiliary cache will be
fully documented. Plugging in your own auxiliary cache become a simple matter given the reflexive
manner of initialization.

The most important settings for common usage are the disk path and the remote cache location. It is
recommended that only disk and remote auxiliaries be used. The lateral caches are functional but not as
efficient.

The default configuration code above specifies that non-preconfigured caches use the auxiliary cache by
the name DC. This cache is defined in the third section of the file:

jcs.auxiliary. DC=

org. apache.jcs. auxiliary. di sk. Di skCacheFact ory
jcs.auxiliary.DC. attributes=

org. apache. jcs.auxiliary. di sk. Di skCacheAttri butes
jcs.auxiliary.DC. attributes. Di skPat h=c:/ dev/ cache/r af

The only thing that needs to be set here is the Di skPat h value. Change it to wherever you want the
cache to persist unused items.

The default region is also set to use an auxiliary called RFai | over . This is a remote cache that is

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1 CORE

designed to failover to other remote servers in a cluster:

jcs.
jcs.

jcs.
jcs.

auxiliary. RFail over=

org. apache.jcs.auxiliary.renote. Renot eCacheFact ory
auxiliary. RFail over.attributes=

org. apache.jcs. auxiliary. renpote. Renot eCacheAttri butes
auxiliary. RFai |l over. attributes. Renot eTypeNanme=LOCAL
auxiliary. RFail over.attributes. Fail over Servers=

| ocal host: 1102, | ocal host: 1101

If you don't have more than one remote server running, just specify it by itself in the
Fai | over Server s attribute.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

30



3.1.1

3.1.1 BASIC JCS CONFIG 31

Basic JCS Config

Basic JCS Configuration

The following document illustrates several basic JCS configurations. As you'll see, using JCS can be as
simple as creating a single memory cache for you application. However, with a few configuration changes,
you can quickly enable some distributed caching features that can scale your application even further.

Building a cache.ccf file

Configuring the JCS can be as simple as your needs. The most basic configuration would be a pure
memory cache where every region takes the default values. The complete configuration file (cache.ccf)
could look like this:

# DEFAULT CACHE REG ON

jcs.defaul t=
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
jcs.defaul t.cacheattributes. MaxObj ect s=1000
jcs.defaul t.cacheattributes. MenoryCacheNanme=

org. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache

If you want to add memory shrinking then you can add these lines:

jcs.defaul t.cacheattributes. UseMenoryShri nker =true

jcs.defaul t.cacheattributes. MaxMenoryl dl eTi neSeconds=3600

jcs.defaul t.cacheattributes. Shrinkerlnterval Seconds=60

jcs.defaul t.cacheattri butes. MaxSpool Per Run=500

jcs.defaul t. el ementattri butes=org. apache. jcs. engi ne. El ement Attri butes
jcs.default. el ementattributes.|sEternal =fal se

Adding a disk cache is as simple as telling it what folder to use. It is recommended that you add a disk
cache. If you want to add a disk cache to your default parameters, then (1) add this to the bottom of the
file to create the auxiliary:

jcs.auxiliary. DC=

org. apache. jcs. auxiliary.disk.indexed. | ndexedDi skCacheFactory
jcs.auxiliary.DC attributes=

org. apache. jcs. auxiliary.di sk.indexed. | ndexedDi skCacheAttri butes

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.1 BASIC JCS CONFIG

32

jcs.auxiliary.DC attributes. D skPat h=g:/dev/jcs/r af

and (2) change the first line to:

jcs

. defaul t =DC

If you want to predefine a specific region, say called t est Cachel, then add these lines:

jcs
jcs

jcs
jcs

jcs
jcs
jcs
jcs
jcs
jcs

.region.testCach

el=DC

.region.testCachel. cacheattributes=
or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
.region.testCachel. cacheattribut es. MaxObj ect s=1000
.region.test Cachel. cacheattri but es. MenoryCacheNane=
or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache

.region.testCach
.region.testCach
.region.testCach
.region.testCach
.region.testCach
.region.testCach

el. cacheatt
el. cacheatt
el. cacheatt
el. cacheatt
el. el ementa
el. el ementa

ri butes. UseMenoryShri nker=true

ri butes. MaxMenoryl dl eTi meSeconds=3600

ri butes. Shrinkerl nterval Seconds=60

ri but es. MaxSpool Per Run=500

ttributes=org. apache.jcs. engi ne. El enent Attri butes
ttributes.|sEternal =fal se

If you want to add a lateral cache for distribution (the TCP Lateral Auxiliary is recommended), then add
these lines to the bottom of the file to define the auxiliary:

jcs.
jcs.

jcs.
jcs.
jcs.
jcs.

auxiliary. LTCP=
org. apache.jcs.
auxiliary.LTCP.
org. apache.jcs.
auxiliary. LTCP.
auxiliary. LTCP.
auxiliary.LTCP.
auxiliary.LTCP.

auxiliary.|l
attributes=
auxiliary.|

attributes.
attributes.
attributes
attributes.

ateral . Lat eral CacheFact ory

ateral . Lateral CacheAttributes
Transm ssi onTypeNanme=TCP
TcpServers=l ocal host: 1111

. TcpLi st ener Port=1110

Put Onl yMbde=f al se

See the TCP Lateral documentation for more information. If you want to set up t est Cachel to use
this, then change the definition to:

j cs.region.test Cachel=DC, LTCP

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.1 BASIC JCS CONFIG 33

A few comments on configuration

Auxiliary definitions are like log4j appenders, they are defined and then associated with a region like a
log4j category.

The order of configuration file is unimportant, though you should try to keep it organized for your own
sake.

Configuration is being refactored and is subject to change. It should only become easier.

The complete file

The complete file from above would look like this:

# DEFAULT CACHE REG ON

j cs. defaul t =DC, LTCP
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri butes
jcs.defaul t.cacheattributes. MaxObj ect s=1000
jcs.defaul t.cacheattri butes. MenoryCacheNane=

org. apache. j cs. engi ne. menory. | ru. LRUMenor yCache

# PRE- DEFI NED CACHE REG ONS

j cs.region.test Cachel=DC, LTCP
jcs.region.testCachel. cacheattri butes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
j cs.region.testCachel. cacheattri butes. MaxChj ect s=1000
j cs.region.testCachel. cacheattri butes. MenoryCacheNane=

or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache
jcs.region.testCachel. cacheattri butes. UseMenoryShri nker=true
jcs.region.testCachel. cacheattri butes. MaxMenoryl dl eTi mreSeconds=3600
jcs.region.testCachel. cacheattri butes. Shrinkerlnterval Seconds=60
jcs.region.testCachel. cacheattri but es. MaxSpool Per Run=500
jcs.region.testCachel. el enentattributes=org. apache.jcs. engi ne. El ement Attri butes
jcs.region.testCachel. el enentattributes. | sEternal =fal se

# AVAI LABLE AUXI LI ARY CACHES
jcs.auxiliary. DC=

org. apache.jcs. auxiliary. di sk.i ndexed. | ndexedDi skCacheFact ory
jcs.auxiliary.DC attributes=

org. apache.jcs. auxiliary. di sk.indexed. | ndexedDi skCacheAttri butes
jcs.auxiliary.DC attributes. D skPat h=g:/dev/jcs/r af
jcs.auxiliary.DC. attributes. maxKeySi ze=100000

jcs.auxiliary. LTCP=

org. apache.jcs.auxiliary.lateral.Lateral CacheFactory
jcs.auxiliary.LTCP. attri butes=

org. apache.jcs.auxiliary.lateral.Lateral CacheAttri butes
jcs.auxiliary.LTCP. attributes. Transm ssi onTypeName=TCP
jcs.auxiliary.LTCP. attri butes. TcpServers=l ocal host: 1111
jcs.auxiliary.LTCP. attri butes. TcpLi stenerPort=1110
jcs.auxiliary.LTCP. attri butes. Put Onl yMbde=f al se

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.1 BASIC JCS CONFIG

©2002 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

34



3.1.2

3.1.2 ELEMENT CONFIG 35

Element Config

Element Attribute Configuration

The following document describes the various configuration options available for cache elements. Each
element put into the cache can be configured independently. You can define element behavior in three
ways: as a default setting, as a region setting, or at the element level.

Setting the defaults

The configuration below can be put in the cache.ccf configuration file. It establishes the default behavior
for all regions. A region can override these defaults and an individual element can override these defaults
and the region settings.

# DEFAULT CACHE REG ON

j cs. defaul t =DC
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
jcs.defaul t.cacheattributes. MaxObj ect s=1000
jcs.default.cacheattributes. MenoryCacheNane=

or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache
jcs.defaul t.cacheattributes. UseMenoryShri nker =true
jcs.defaul t.cacheattributes. MaxMenoryl dl eTi neSeconds=3600
jcs.defaul t.cacheattributes. Shrinkerlnterval Seconds=60
jcs.default. el ementattributes=org. apache.jcs. engi ne. El ement Attri butes
jcs.default. el ementattributes.|sEternal =fal se
jcs.default. el ementattri butes. MaxLi f eSeconds=700
jcs.default. el ementattributes. |dl eTi nre=1800
jcs.default. el ementattributes.|sSpool =true
jcs.default. el ementattributes. | sRenpte=true
jcs.default.elementattributes.|sLateral =true

The default and region configuration settings have three components. They define what auxiliaries are
available, how the cache should control the memory, and how the elements should behave. This
configuration tells all regions to use an auxiliary called DC by default. It also establishes several settings
for memory management (see Basic JCS Configuration for more information on the cacheattribute
settings). In addition, by default all regions will take these element configuration settings.

These settings specify that elements are not eternal, i.e. they can expire. By default elements are
considered eternal.

You can define the maximum life of an item by setting the MaxLi f eSeconds parameter. If an item has

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.2 ELEMENT CONFIG 36

been in the cache for longer than the set number of seconds it will not be retrieved on a get request. If
you use the memory shrinker the item will be actively removed from memory. Currently there is no
background disk shrinker, but the disk cache does allow for a maximum number of keys (see Indexed
Disk Cache for more information on the disk cache settings).

You can define the maximum time an item can live without being accessed by setting the | dl eTi me
parameter. This is different than the MaxMenor yl dl eTi meSeconds parameter, which just specifies
how long an object can be in memory before it is subjected to removal or being spooled to a disk cache if
it is available. Note: the | dl eTi nme parameter may not function propetly for items retrieved from disk, if
you have a memory size of 0.

| sSpool determines whether or not the element can go to disk, if a disk cache is configured for the
region.

| sRenot e determines whether or not the element can be sent to a remote server, if one is configured
for the region.

I sLat eral determines whether or not the element can be laterally distributed, if a lateral auxiliary is
configured for the region.

Programmatic Configuration

Every element put into the cache has its own set of attributes. By default elements are given a copy of the
default element attributes associated with a region. You can also specify the attributes to use for an
element when you put it in the cache.

JCS jcs = JCS. getlnstance( "nyregion" );

/'l jcs.getDefaul tEl ementAttributes returns a copy not a reference
| El enent Attributes attributes = jcs.getDefaultEl enentAttributes();

/'l set some special value

attributes.setlsEternal ( true );

jcs.put( "key", "data", attributes );

You can also programmatically modify the default element attributes.

JCS jcs = JCS. getlnstance( "nyregion" );

/'l jcs.getDefaul tEl ement Attributes returns a copy not a reference
| El ement Attributes attributes = jcs.getDefaultEl ement Attributes();

/'l set some special value
attributes.setlsEternal ( true );

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.2 ELEMENT CONFIG

jcs.setDefaul tEl ement Attributes( attributes );

©2002 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

37



3.1.3 ELEMENT EVENT HANDLING 38

313 Element Event Handling

Element Event Handling
JCS allows you to attach event handlers to elements in the local memory cache.

There are several events that you can listen for. All of the events are local memory related events.
Element event handlers are not transmitted to other caches via lateral or remote auxiliaries, nor are they
spooled to disk.

You can register multiple handlers for a single item. Although the handlers are associated with particular
items, you can also setup default handlers for any region. Each item put into the region, that will take the
default element attributes, will be assigned the event default event handlers.

The various events that you can handle have all been assigned integer codes. The codes are defined in the
org.apache.jcs.engine.control.event.behavior.lElementEventConstants interface. The events are named
descriptively and include:

Name Description

ELEMENT_EVENT_EXCEEDED_MAXLIFE_BACKGROUND The element exceeded its max life. This was detected in a
background cleanup.

ELEMENT_EVENT_EXCEEDED_MAXLIFE_ONREQUEST The element exceeded its max life. This was detected on request.

ELEMENT_EVENT_EXCEEDED_IDLETIME_BACKGROUND The element exceeded its max idle. This was detected in a
background cleanup.

ELEMENT_EVENT_EXCEEDED_IDLETIME_ONREQUEST The element exceeded its max idle time. This was detected on
request.

ELEMENT_EVENT_SPOOLED_DISK_AVAILABLE The element was pushed out of the memory store, there is a disk
store available for the region, and the element is marked as
spoolable.

ELEMENT_EVENT_SPOOLED_DISK_NOT_AVAILABLE The element was pushed out of the memory store, and there is not a
disk store available for the region.

ELEMENT_EVENT_SPOOLED_NOT_ALLOWED The element was pushed out of the memory store, there is a disk
store available for the region, but the element is marked as not
spoolable.

To create an event handler you must implement the
org.apache.jcs.engine.control.event.behavior.lElementEventHandler interface. This interface contains
only one method:

public void handl eEl enent Event ( | El enent Event event );

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.3 ELEMENT EVENT HANDLING 39

The IElementEvent object contains both the event code and the source. The source is the element for
which the event occurred. The code is the type of event. If you have an event handler registered, it will be
called whenever any event occurs. It is up to the handler to decide what it would like to do for the
particular event. Since there are not that many events, this does not create too much activity. Also, the
event handling is done asynchronously. Events are added to an event queue and processed by

background threads.

Once you have an IElementEventHandler implementation, you can attach it to an element via the
Element Attributes. You can either add it to the element attributes when you put an item into the cache,
add it to the attributes of an item that exist in the cache (which just results in a re-put), or add the event
handler to the default element attributes for a region. If you add it to the default attributes, then all
elements subsequently added to the region that do not define their own element attributes will be
assigned the default event handlers.

JCS jcs = JCS. getlnstance( "nyregion" );

MyEvent Handl er meh = new MyEvent Handl er () ;

/1 jcs.getDefaul tEl enentAttributes returns a copy not a reference
| El enent Attributes attributes = jcs.getDefaultEl enentAttributes();
attributes. addEl enent Event Handl er ( meh );

jcs.put( "key", "data", attributes );

Here is how to setup an event handler as a default setting for a region:

JCS jcs = JCS. getlnstance( "nyregion" );

MyEvent Handl er meh = new MyEvent Handl er () ;

/] this should add the event handler to all itens as

//they are created.

/'l jcs.getDefaul tEl ement Attributes returns a copy not a reference
| El ement Attributes attributes = jcs.getDefaultEl ement Attributes();
attribut es. addEl enent Event Handl er ( meh );

jcs.setDefaul tEl enent Attributes( attributes );

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.14

3.1.4 REGION PROPERTIES

Region Properties

40

Cache Region Configuration

The following properties apply to any cache region. They can be specified as default values and specified

on a region by region basis. There are three types of settings: auxiliary, cache, and element. The cache

settings define the memory management for the region. The element settings define default element

behavior within the region.

Region (Auxiliary) Properties

Property Description

Required

Default Value

You can specify the list of

Y

auxiliaries that regions can use.
This has no attribute name. The
list can be empty, otherwise it
should be comma delimited.

n/a

Region (Cache) Properties

Property Description

Required

Default Value

MaxObjects The maximum number of items Y
allowed in memory. Eviction of

elements in excess of this

number is determined by the
memory cache. By default JCS
uses the LRU memory cache.

MemoryCacheName This property allows you to N
specify what memory manager
you would like to use. You can

create your own memory

manager by implementing the
org.apache.jcs.engine.memory.MemoryCache
interface. Alternatively, you can

extend the

org.apache.jcs.engine.memory.AbstractMemoryCache
class. Several different memory

caches are available: two LRU

implementations, an LFU, and an

adaptive replacement algorithm.

UseMemoryShrinker By default, the memory shrinker N
is shared by all regions that use
the LRU memory cache. The
memory shrinker iterates through
the items in memory, looking for
items that have expired or that

have exceeded their max
memory idle time.

©2002 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

n/a

org.apache.jcs.engine.memory.Iru.LRUMemoryCache

false



3.1.4 REGION PROPERTIES

Property

Description Required

Default Value

41

MaxMemoryldleTimeSeconds

ShrinkerIntervalSeconds

DiskUsagePattern

This is only used if you are using N
the memory shrinker. If this value

is set above -1, then if an item

has not been accessed in this
number of seconds, it will be

spooled to disk if the disk is

available. You can register an

event handler on this event.

This specifies how often the N
shrinker should run, if it has been
activated. If you set
UseMemoryShrinker to false,

then this setting has no effect.

SWAP is the default. Under the N
swap pattern, data is only put to
disk when the max memory size
is reached. Since items puled
from disk are put into memory, if
the memory cache is full and you
get an item off disk, the lest
recently used item will be spooled
to disk. If you have a low memory
hit ration, you end up thrashing.
The UPDATE usage pattern
allows items to go to disk on an
update. It disables the swap. This
allows you to persist all items to
disk. If you are using the JDBC
disk cache for instance, you can
put all the items on disk while
using the memory cache for
performance, and not worry
about lossing data from a system
crash or improper shutdown.
Also, since all items are on disk,
there is no need to swap to disk.
This prevents the possibility of
thrashing.

-1

60

SWAP

Region (Element) Properties

Property

Description Required

Default Value

IsEternal

MaxLifeSeconds

IsSpool

IsRemote

©2002 APACHE SOFTWARE FOUNDATION

If an element is specified as N
eternal, then it will never be

subject to removal for exceeding

its max life.

If you specify that elements within N
a region are not eternal, then you

can set the max life seconds. If

this is exceeded the elmenets will

be removed passively when a

client tries to retrieve them. If you

are using a memory shrinker,

then the items can be removed
actively.

By default, can elements in this N
region be sent to a disk cache if
one is available.

By default, can elements in this N
region be sent to a lateral cache
if one is available.

« ALL RIGHTS RESERVED

true

true

true



3.1.4 REGION PROPERTIES 42

Property Description Required Default Value

IsLateral By default, can elements in this N true
region be sent to a remote cache
if one is available.

Example Configuration

jcs.defaul t=

jcs.defaul t.cacheattri butes=org. apache. jcs. engi ne. Conposi t eCacheAttri butes
jcs.defaul t.cacheattributes. MaxObj ect s=200001

jcs.defaul t.cacheattributes. MenoryCacheNane=or g. apache. j cs. engi ne. menory. | ru. LRUMenor yCache
jcs.defaul t.cacheattributes. UseMenoryShri nker=true

jcs.defaul t.cacheattributes. MaxMenoryl dl eTi neSeconds=3600

jcs.defaul t.cacheattributes. Shrinkerlnterval Seconds=60

jcs.default. el ementattributes=org. apache. jcs. engi ne. El ement Attri butes
jcs.default.el ementattributes. | sEternal =fal se

jcs.defaul t. el ementattri butes. MaxLi f eSeconds=700

jcs.default. el ementattributes.|sSpool =true

jcs.default.elementattributes. | sRenpte=true
jcs.default.elementattributes.|sLateral =true

# optional region "testCachel" specific configuration settings
jcs.region.testCachel=

jcs.region.testCachel. cacheattri but es=org. apache. j cs. engi ne. Conposi t eCacheAttri butes
jcs.region.testCachel. cacheattri butes. MaxChj ect s=123456

j cs.region.testCachel. cacheattri butes. MenoryCacheNane=or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache
jcs.region.testCachel. cacheattri butes. UseMenoryShri nker=true

jcs.region.testCachel. cacheattri butes. Shrinkerl nterval Seconds=30
jcs.region.testCachel. cacheattri butes. MaxMenoryl dl eTi mreSeconds=300

j cs.region.testCachel. cacheattri butes. MaxSpool Per Run=100

jcs.region.testCachel. el ementattri but es=org. apache. j cs. engi ne. El enent Attri butes
jcs.region.testCachel. el enentattributes. | sEternal =fal se

jcs.region.testCachel. el enentattributes. MaxLi f eSeconds=60000

jcs.region.testCachel. el enentattributes.|sSpool =true

jcs.region.testCachel. el ementattributes.|sLateral =true

jcs.region.testCachel. el ementattributes. | sRenpte=true

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.15

3.1.5 BASIC WEB EXAMPLE 43

Basic Web Example

Using JCS: Some basics for the web

The primary bottleneck in most dynamic web-based applications is the retrieval of data from the
database. While it is relatively inexpensive to add more front-end servers to scale the serving of pages and
images and the processing of content, it is an expensive and complex ordeal to scale the database. By
taking advantage of data caching, most web applications can reduce latency times and scale farther with
fewer machines.

JCS is a front-tier cache that can be configured to maintain consistency across multiple servers by using a
centralized remote server or by lateral distribution of cache updates. Other caches, like the Javlin EJB
data cache, are basically in-memory databases that sit between your EJB's and your database. Rather than
trying to speed up your slow EJBS, you can avoid most of the network traffic and the complexity by
implementing JCS front-tier caching. Centralize your EJB access or your JDBC data access into local
managers and perform the caching there.

What to cache?

The data used by most web applications vaties in its dynamicity, from completely static to always
changing at every request. Everything that has some degree of stability can be cached. Prime candidates
for caching range from the list data for stable dropdowns, user information, discrete and infrequently
changing information, to stable search results that could be sorted in memory.

Since JCS is distributed and allows updates and invalidations to be broadcast to multiple listeners,
frequently changing items can be easily cached and kept in sync through your data access layer. For data
that must be 100% up to date, say an account balance prior to a transfer, the data should directly be
retrieved from the database. If your application allows for the viewing and editing of data, the data for the
view pages could be cached, but the edit pages should, in most cases, pull the data directly from the
database.

How to cache discrete data

Let’s say that you have an e-commetce book stote. Each book has a related set of information that you
must present to the user. Lets say that 70% of your hits during a particular day are for the same 1,000
popular items that you advertise on key pages of your site, but users are still actively browsing your
catalog of over a million books. You cannot possibly cache your entire database, but you could
dramatically decrease the load on your database by caching the 1,000 or so most popular items.

For the sake of simplicity let's ignore tie-ins and user-profile based suggestions (also good candidates for
caching) and focus on the core of the book detail page.

A simple way to cache the core book information would be to create a value object for book data that

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.5 BASIC WEB EXAMPLE 44

contains the necessary information to build the display page. This value object could hold data from
multiple related tables or book subtype table, but lets say that you have a simple table called BOOK that
looks something like this:

Tabl e BOOK
BOOK_I D_PK
TITLE

AUTHOR

| SBN

PRI CE

PUBLI SH_DATE

We could create a value object for this table called BookVObj that has variables with the same names as
the table columns that might look like this:

package com generi cbookstore. data;

import java.io.Serializable;
import java.util.Date;

public class BookVObj inplenments Serializable

{
public int bookld = 0;
public String title;
public String author;
public String | SBN,
public String price;
public Date publishDate;
publ i ¢ BookVQbj ()
{
}

}

Then we can create a manager called BookVCbj Manager to store and retrieve BookVQbj 's. All access
to core book data should go through this class, including inserts and updates, to keep the caching simple.
Lets make BookVCbj Manager a singleton that gets a JCS access object in initialization. The start of the
class might look like:

package com generichbookstore. data;

i mport org. apache.jcs. JCS;
/1l in case we want to set some special behavior
i nport org. apache. jcs. engi ne. behavi or. | El enent Attri but es;

public class BookVObj Manager

{
private static BookVObj Manager instance;
private static int checkedOut = 0;
private static JCS bookCache;

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.5 BASIC WEB EXAMPLE 45

privat e BookVOhj Manager ()

{
try
{
bookCache = JCS. get | nst ance("bookCache");
}
catch (Exception e)
{
/1 Handl e cache region initialization failure
}
/1 Do other initialization that nmay be necessary, such as getting
/Il references to any data access classes we nay need to popul ate
/1 val ue objects later
}
/**

* Singleton access point to the manager.
*/
public static BookVOhj Manager getlnstance()

{
synchroni zed (BookVObhj Manager . cl ass)
{
if (instance == null)
{
i nstance = new BookVObj Manager () ;
}
}
synchroni zed (instance)
{
i nst ance. checkedQut ++;
}
return instance;
}

To get a BookVObj we will need some access methods in the manager. We should be able to get a
non-cached version if necessary, say before allowing an administrator to edit the book data. The methods
might look like:

/**

* Retrieves a BookVQhj. Default to look in the cache.
*/

publ i ¢ BookVOhj get BookVObj (int id)

{

}

/**

* Retrieves a BookVQbj. Second argunent deci des whether to | ook
* in the cache. Returns a new value object if one can't be

* | oaded fromthe database. Database cache synchronization is

* handl ed by renoving cache el ements upon nodification.

*/

publ i ¢ BookVObj getBookVObj (int id, boolean fronCache)

return get BookVQbj (id, true);

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



©2002 APACHE SOFTWARE FOUNDATION

3.1.5 BASIC WEB EXAMPLE

{
BookVObj vObj = null;
/1 First, if requested, attenpt to | oad from cache
if (fromCache)
{
vQbj = (BookV(hj) bookCache. get ("BookVCbj " + id);
}
/1 Either fronCache was false or the object was not found, so
/1 call | oadBookVOhj to create it
if (vObj == null)
{
vQbj = | oadvpj (id);
}
return vObj;
}
/**
* Creates a BookVhj based on the id of the BOOK table. Data
* access could be direct JDBC, sone or nmapping tool, or an EJB.

*/

the rest of the fields
t was found

if found

vQoj
characteristics

)

vQj ) ;

publ i ¢ BookVObj | oadBookVOhj (int id)
{
BookVObj vCbj = new BookVObj ();
vQoj . bookI D = id;
try
{
bool ean found = fal se;
/1 load the data and set
/1 set found to true if i
found = true;
/1 cache the val ue object
if (found)
{
/1 could use the defaults like this
/'l bookCache. put ( "BookVObj " + id,
/'l or specify special
/1 put to cache
bookCache. put (" BookVOhj " + id,
}
}
catch (Exception e)
{
// Handle failure putting object to cache
}
return vObj;
}

« ALL RIGHTS RESERVED



3.1.5 BASIC WEB EXAMPLE 47

We will also need a method to insert and update book data. To keep the caching in one place, this should
be the primary way core book data is created. The method might look like:

/**
* Stores BookVOhj's in database. Cears old items and caches
* new.
*/
public int storeBookVbj (BookVObhj vObj)
{
try
{
/1 since any cached data is no |longer valid, we should
/1 rermove the itemfromthe cache if it an update.
if (vObj.booklD!= 0)
{
bookCache. renove(" BookVOhj " + vQbj . bookl D);
}
/1 put the new object in the cache
bookCache. put (" BookVoj " + id, voj);
}
catch (Exception e)
{
// Handle failure renoving object or putting object to cache.
}
}

As elements atre placed in the cache via put , it is possible to specify custom attributes for those elements
such as its maximum lifetime in the cache, whether or not it can be spooled to disk, etc. It is also possible
(and easier) to define these attributes in the configuration file as demonstrated later. We now have the
basic infrastructure for caching the book data.

Selecting the appropriate auxiliary caches

The first step in creating a cache region is to determine the makeup of the memory cache. For the book
store example, I would create a region that could store a bit over the minimum number I want to have in
memory, so the core items always readily available. I would set the maximum memory size to 1200. In
addition, I might want to have all objects in this cache region expire after 7200 seconds. This can be
configured in the element attributes on a default or per-region basis as illustrated in the configuration file
below.

For most cache regions you will want to use a disk cache if the data takes over about .5 milliseconds to
create. The indexed disk cache is the most efficient disk caching auxiliary, and for normal usage it is
recommended.

The next step will be to select an appropriate distribution layer. If you have a back-end server running an
appserver or scripts or are running multiple webserver VMs on one machine, you might want to use the
centralized remote cache . The lateral cache would be fine, but since the lateral cache binds to a port,

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.5 BASIC WEB EXAMPLE 48

you'd have to configure each VM’ lateral cache to listen to a different pott on that machine.

If your environment is very flat, say a few load-balanced webservers and a database machine or one
webserver with multiple VMs and a database machine, then the lateral cache will probably make more
sense. The TCP lateral cache is recommended.

For the book store configuration I will set up a region for the bookCache that uses the LRU memory
cache, the indexed disk auxiliary cache, and the remote cache. The configuration file might look like this:

# DEFAULT CACHE REG ON

# sets the default aux value for any non configured caches
j cs. def aul t =DC, RFai | over
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
jcs.defaul t.cacheattributes. MaxObj ect s=1000
jcs.defaul t.cacheattributes. MenoryCacheNane=

or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache
jcs.default. el ementattributes.|sEternal =fal se
jcs.default. el ementattributes. MaxLi f eSeconds=3600
jcs.default.elementattributes.|dl eTi ne=1800
jcs.default. el ementattributes.|sSpool =true
jcs.default. el ementattributes. | sRenote=true
jcs.default.el ementattributes.|sLateral =true

# CACHE REG ONS AVAI LABLE

# Regions preconfigured for caching

j cs. regi on. bookCache=DC, RFai | over

j cs. regi on. bookCache. cacheattri but es=
or g. apache. j cs. engi ne. Conposi t eCacheAttri butes

j cs.regi on. bookCache. cacheat tri but es. MaxQhj ect s=1200

j cs. regi on. bookCache. cacheat tri but es. Menor yCacheNane=
org. apache. j cs. engi ne. menory. | ru. LRUMenor yCache

j cs.regi on. bookCache. el enentattri butes. | sEternal =fal se

j cs.regi on. bookCache. el enentattri but es. MaxLi f eSeconds=7200

j cs. regi on. bookCache. el enentattri butes. |dl eTi me=1800

j cs. regi on. bookCache. el enentattri butes. | sSpool =true

j cs. regi on. bookCache. el enentattri butes. | sRenpt e=true

j cs.regi on. bookCache. el enentattri butes.|sLateral =true

# AUXI LI ARY CACHES AVAI LABLE

# Primary Disk Cache -- faster than the rest because of nmenory key storage
jcs.auxiliary. DC=

org. apache. jcs. auxiliary. di sk.indexed. | ndexedDi skCacheFact ory
jcs.auxiliary.DC attributes=

org. apache.jcs. auxiliary. di sk.indexed. | ndexedDi skCacheAttri butes
jcs.auxiliary.DC. attributes. Di skPat h=/usr/ opt/bookst ore/raf
jcs.auxiliary.DC. attributes. MaxPur gat orySi ze=10000
jcs.auxiliary.DC. attributes. MaxKeySi ze=10000
jcs.auxiliary.DC attributes. Optim zeAt RemoveCount =300000
jcs.auxiliary.DC attributes. MaxRecycl eBi nSi ze=7500

# Remote RM Cache set up to failover
jcs.auxiliary. RFail over=

org. apache.jcs.auxiliary.renote. Renot eCacheFact ory
jcs.auxiliary. RFailover.attributes=

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.1.5 BASIC WEB EXAMPLE

org. apache.jcs. auxiliary.renote. Renot eCacheAttri butes
jcs.auxiliary. RFailover.attributes. Renpt eTypeNane=LOCAL
jcs.auxiliary. RFailover.attributes. Fail over Servers=scri ptserver: 1102
jcs.auxiliary. RFailover.attributes. Get Onl y=fal se

I've set up the default cache settings in the above file to approximate the bookCache settings. Other
non-preconfigured cache regions will use the default settings. You only have to configure the auxiliary
caches once. For most caches you will not need to pre-configure your regions unless the size of the
clements varies radically. We could easily put several hundred thousand BookVQbj s in memory. The
1200 limit was very conservative and would be more appropriate for a large data structure.

To get running with the book store example, I will also need to start up the remote cache server on the
scriptserver machine. The remote cache documentation describes the configuration.

I now have a basic caching system implemented for my book data. Performance should improve
immediately.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

49



3.2

3.2 AUXILIARY 50

Auxiliary

JCS Plugin Overview

JCS provides multiple auxiliaries which can be plugged into a cache region, in a manner similar to adding
Log4j appenders to a logger. JCS auxiliaries are defined in the cache.ccf file. You can specify which
plugins a particular cache region should use.

There are four types of auxiliaries: (1) memory, (2) disk, (3) lateral, and (4) remote. Each region is
required to have one and only one memory auxiliary. No other auxiliaries are required and any possible
combination of disk, lateral, and remote auxiliaries is allowed. If you do not want to store items in
memoty, then the maximum size for the memory caches can be set to 0 on a per region basis.

Memory Plugins

Currently, JCS provides four memory management options: (1) LRUMemoryCache, (2)
LHMLRUMemoryCache, (3) MRUMemoryCache, and (4) ARCMemoryCache. All memory caches
restrict the number of items that can be stored in memory per region. If a disk cache is configured for the
region, the items will be spooled to disk when the memory capacity is reached. JCS enforces configurable
parameters such as time to live and maximum idle time. Expired elements can be cleaned up by the
ShrinkerThread, otherwise they will be removed at the next retrieval attempt or when the capacity is
reached.

The LRUMemoryCache is the currently recommended plugin. Upon misconfiguration it is used as the
default. The LRUMemoryCache removes the least recently used items when the cache is full.

The ARCMemoryCache is currently experimental, but will be fully tested soon. It implements an adaptive
replacement caching algorithm that combines an LRU and an LFU that adapt to usage patterns.

Disk Plugins

JCS provides several disk swap options: indexed disk, HSQL, JISP, and Berkeley DB JE. The
IndexedDiskCache is the recommended disk cache. It maintains the cached data on disk and the keys in
memory for the fastest possible lookup times. Writing to disk is done asynchronously. Items are typically
put in purgatory and queued for background disk writing. While in purgatory, the items remain available.

In addition, JCS provides a disk auxiliary that uses the Berkeley DB Java Edition for disk storage. JCS can
effectively function as an expiration manager and distribution mechanism on top of a Berkeley DB JE.

Lateral Plugins

JCS provides two recommended lateral distribution options: TCP socket server distribution and JGroups

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2 AUXILIARY

(or JavaGroups). There are also several other experimental lateral distribution auxiliaries using servlets,
UDP, and xmlrpc.

Remote Plugins

JCS also provides an RMI based remote server to manage distribution of cached data.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

51



3.2.1

3.2.1 INDEXED DISK CACHE 52

Indexed Disk Cache

Indexed Disk Auxiliary Cache

The Indexed Disk Auxiliary Cache is an optional plugin for the JCS. It is primarily intended to provide a
secondary store to ease the memory burden of the cache. When the memory cache exceeds its maximum
size it tells the cache hub that the item to be removed from memory should be spooled to disk. The
cache checks to see if any auxiliaries of type "disk" have been configured for the region. If the "Indexed
Disk Auxiliary Cache" is used, the item will be spooled to disk.

Disk Indexing

The Indexed Disk Auxiliary Cache follows the fastest pattern of disk caching. Items are stored at the end
of a file dedicated to the cache region. The first byte of each disk entry specifies the length of the entry.
The start position in the file is saved in memoty, referenced by the item's key. Though this still requires
memory, it is insignificant given the performance trade off. Depending on the key size, 500,000 disk
entries will probably only require about 3 MB of memory. Locating the position of an item is as fast as a
map lookup and the retrieval of the item only requires 2 disk accesses.

When items are removed from the disk cache, the location of the available block on the storage file is
recorded in a sorted preferential array of a size not to exceed the maximum number of keys allowed in
memory. This allows the disk cache to reuse empty spots, thereby keeping the file size to a minimum.

Purgatory

Writing to the disk cache is asynchronous and made efficient by using a memory staging area called
purgatory. Retrievals check purgatory then disk for an item. When items are sent to purgatory they are
simultaneously queued to be put to disk. If an item is retrieved from purgatory it will no longer be written
to disk, since the cache hub will move it back to memory. Using purgatory insures that there is no wait
for disk writes, unecessary disk writes are avoided for bordetline items, and the items are always available.

Persistence

When the disk cache is properly shutdown, the memory index is written to disk and the value file is
defragmented. When the cache starts up, the disk cache can be configured to read or delete the index file.
This provides an unreliable persistence mechanism.

Configuration

Configuration is simple and is done in the auxiliary cache section of the cache. ccf configuration file.
In the example below, I created an Indexed Disk Auxiliary Cache referenced by DC. It uses files located
in the "DiskPath" directory.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.1 INDEXED DISK CACHE 53

The Disk indexes are equipped with an LRU storage limit. The maximum number of keys is configured
by the maxKeySize parameter. If the maximum key size is less than 0, no limit will be placed on the
number of keys. By default, the max key size is 5000.

jcs.auxiliary. DC=

org. apache. jcs. auxiliary. di sk.i ndexed. | ndexedDi skCacheFact ory
jcs.auxiliary.DC attributes=

org. apache.jcs. auxiliary. di sk.indexed. | ndexedDi skCacheAttri butes
jcs.auxiliary.DC. attributes. Di skPat h=g:\ dev\j akarta-turbine-stratumraf
jcs.auxiliary.DC. attributes. MaxKeySi ze=100000

Additional Configuration Options
The indexed disk cache provides some additional configuration options.

The purgatory size of the Disk cache is equipped with an LRU storage limit. The maximum number of
elements allowed in purgatory is configured by the MaxPurgatorySize parameter. By default, the max
purgatory size is 5000.

Initial testing indicates that the disk cache performs better when the key and purgatory sizes are limited.

jcs.auxiliary.DC. attributes. MaxPur gat orySi ze=10000

Slots in the data file become empty when items are removed from the disk cache. The indexed disk cache
keeps track of empty slots in the data file, so they can be reused. The slot locations are stored in a sorted
preferential array -- the recycle bin. The smallest items are removed from the recycle bin when it reaches
the specified limit. The MaxRecycleBinSize cannot be larger than the MaxKeySize. If the MaxKeySize is
less than 0, the recycle bin will default to 5000.

If all the items put on disk are the same size, then the recycle bin will always return perfect matches.
However, if the items are of various sizes, the disk cache will use the free spot closest in size but not
smaller than the item being written to disk. Since some recycled spots will be larger than the items written
to disk, unusable gaps will result. Optimization is intended to remove these gaps.

jcs.auxiliary.DC attributes. MaxRecycl eBi nSi ze=10000

The Disk cache can be configured to defragment the data file at runtime. Since defragmentation is only

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.1 INDEXED DISK CACHE 54

necessary if items have been removed, the deframentation interval is determined by the number of
removes. Currently there is no way to schedule defragmentation to run at a set time. If you set the
OptimizeAtRemoveCount to -1, no optimizations of the data file will occur until shutdown. By default
the value is -1.

In version 1.2.7.9 of JCS, the optimization routine was significantly improved. It now occurs in place,
without the aid of a temporary file.

jcs.auxiliary.DC. attributes. Opti m zeAt RenoveCount =30000

A Complete Configuration Example

In this sample cache.ccf file, I configured the cache to use a disk cache, called DC, by default. Also, 1
explicitly set a cache region called myRegion1 to use DC. I specified custom settings for all of the
Indexed Disk Cache configuration parameters.

B H A

##### Default Regi on Configuration

j cs. defaul t =DC

jcs.defaul t.cacheattribut es=org. apache. jcs. engi ne. Conposi teCacheAttri butes

jcs.defaul t.cacheattributes. MaxObj ect s=100

jcs.defaul t.cacheattributes. MenoryCacheNanme=or g. apache. j cs. engi ne. menory. | ru. LRUMenor yCache

HHBHHBHH B H BB R B R R R R R R

##### CACHE REG ONS

j cs. region. nyRegi on1=DC

j cs.regi on. nyRegi onl. cacheat tri but es=or g. apache. j cs. engi ne. Conposi t eCacheAttri butes

j cs.regi on. nyRegi onl. cacheattri but es. MaxObj ect s=1000

j cs.regi on. nyRegi onl. cacheat tri but es. Menor yCacheNane=or g. apache. j cs. engi ne. nenory. | r u. LRUMenor yCache

B H A I A G A A A B A

#it##H# AUXI LI ARY CACHES

# I ndexed Di sk Cache

jcs.auxiliary. DC=org. apache.jcs. auxiliary. di sk.i ndexed. | ndexedDi skCacheFact ory
jcs.auxiliary. attributes=org. apache.jcs. auxiliary. di sk.i ndexed. | ndexedDi skCacheAttrji butes
jcs.auxiliary. attributes. D skPat h=t arget/t est-sandbox/i ndexed- di sk- cache
jcs.auxiliary. attri butes. MaxPurgat orySi ze=10000

jcs.auxiliary.DC. attributes. MaxKeySi ze=10000

jcs.auxiliary.DC attributes. Opti m zeAt RenbveCount =300000

jcs.auxiliary.DC attributes. Opti m zeOnShut down=t r ue

jcs.auxiliary.DC. attributes. MaxRecycl eBi nSi ze=7500

BBB8888E

Using Thread Pools to Reduce Threads

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.1 INDEXED DISK CACHE 55

The Indexed Disk Cache allows you to use fewer threads than active regions. By default the disk cache
will use the standard cache event queue which has a dedicated thread. Although the standard queue kills

its worker thread after a minute of inactivity, you may want to restrict the total number of threads. You

can accomplish this by using a pooled event queue.

The configuration file below defines a disk cache called DC2. It uses an event queue of type POOLED.
The queue is named disk_cache_event_queue. The disk_cache_event_queue is defined in the bottom of

the file.

TR I R I R I R o I i i o i

# sets the default aux value for any non configured caches

jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.

def aul t =DC2

defaul t. cacheattri but es=org. apache. j cs. engi ne. Conposi t eCacheAttri butes
def aul t. cacheattri butes. Max(hj ect s=200001

defaul t. cacheattri butes. MenoryCacheNane=or g. apache. j cs. engi ne. nenory. | ru. LRUMenor yCache
defaul t. cacheattri but es. UseMenoryShri nker =f al se

defaul t.cacheattributes. MaxMenoryl dl eTi mreSeconds=3600

defaul t. cacheattri butes. Shrinkerl nterval Seconds=60

defaul t. el ementattri butes=org. apache. jcs. engine. El ement Attri butes
default.el ementattributes.|sEternal =fal se

defaul t.el ementattri butes. MaxLi f eSeconds=700
default.elementattributes.|dl eTi re=1800

default. el ementattributes.|sSpool =true

default. el ementattributes. | sRenpt e=true
default.elenmentattributes.|sLateral =true

HHHHH B R R
#HHHRR R AUX LI ARY CACHES AVAI LABLE ###########HEH 1

# Di sk Cache Using a Pool ed Event Queue -- this allows you

# to control the maxi num nunber of threads it will use.

# Each region uses 1 thread by default in the SINGLE nodel .

# adding nore threads than regi ons does not hel p performance.

# If you want to use a separate pool for each di sk cache, either use

# the single nodel or define a different auxiliary for each region and use the
Pool ed type.

# SINGLE is generally best unless you ahve a huge # of regions.

j cs.auxiliary. DC2=org. apache.jcs. auxiliary. di sk.indexed. | ndexedDi skCacheFact ory
jcs.auxiliary.DC2. attributes=org. apache.jcs. auxiliary. disk.indexed. | ndexedDi skCacheAtt|ri butes
jcs.auxiliary.DC2. attributes. Di skPat h=t arget/t est - sandbox/ r af
jcs.auxiliary.DC2.attributes. MaxPur gat orySi ze=10000

jcs.auxiliary.DC2. attri butes. MaxKeySi ze=10000

jcs.auxiliary.DC2. attributes. MaxRecycl eBi nSi ze=5000
jcs.auxiliary.DC2.attributes. Opti m zeAt RenoveCount =300000

jcs.auxiliary.DC. attributes. Opti m zeOnShut down=t r ue

jcs.auxiliary. DC2. attributes. Event QueueType=POOLED

jcs.auxiliary.DC2. attributes. Event QueuePool Nane=di sk_cache_event _queue

HHHHH AR R R R R R
HEHHRHH A OPTI ONAL THREAD POOL CONFI GURATI ON ########

# Di sk Cache Event Queue Pool

t hread_pool . di sk_cache_event _queue. useBoundar y=f al se
t hread_pool . renot e_cache_cl i ent. maxi munPool Si ze=15

t hr ead_pool . di sk_cache_event _queue. m ni nunPool Si ze=1
t hr ead_pool . di sk_cache_event _queue. keepAl i veTi ne=3500
t hread_pool . di sk_cache_event _queue. start UpSi ze=1

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.1 INDEXED DISK CACHE

©2002 APACHE SOFTWARE FOUNDATION

.

ALL RIGHTS RESERVED

56



3.2.2 INDEXED DISK PROPERTIES 57

322 Indexed Disk Properties

Indexed Disk Auxiliary Cache Configuration

The following properties apply to the Indexed Disk Cache plugin.

Indexed Disk Configuration Properties

Property Description Required Default Value

DiskPath The directory where the disk Y n/a
cache should write its files.

MaxPurgatorySize The maximum number of items N 5000
allowed in the queue of items to
be written to disk.

MaxKeySize The maximum number of keys N 5000
that the indexed disk cache can
have. Since the keys are stored
in memory, you may want to limit
this number to something
reasonable. The default is a bit
small.

OptimizeAtRemoveCount At how many removes should the N -1
cache try to defragment the data
file. Since we recycle empty
spots, defragmentation is usually
not needed. To prevent the cache
from defragmenting the data file,
you can set this to -1. This is the
default value.

OptimizeOnShutdown By default the Indexed Disk N true
Cache will optimize on shutdown
if the free data size is greater
than 0. If you want to prevent this
behavior, you can set this
parameter to false.

MaxRecycleBinSize The maximum number of empty N 5000
spots the cache will keep track of.
The smallest are removed when
the maximum size is reached.
Keeping track of empty spots on
disk allows us to reuse spots,
thereby keeping the file from
growing unncessarily.

Example Configuration

jcs.auxiliary. DC=org. apache.jcs. auxiliary. di sk.i ndexed. | ndexedDi skCacheFact ory
jcs.auxiliary.DC. attributes=org.apache.jcs.auxiliary.disk.indexed.|ndexedD skCacheAttri butes

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.2 INDEXED DISK PROPERTIES 58

.attributes. Di skPat h=t arget/t est - sandbox/ i ndexed- di sk- cache
.attributes. MaxPur gat orySi ze=10000

.attributes. MaxKeySi ze=10000

.attributes. Optim zeAt RenoveCount =300000

.attributes. Optim zeOnShut down=t r ue

.attributes. MaxRecycl eBi nSi ze=7500

jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.

888888

Indexed Disk Event Queue Configuration

Property Description Required Default Value

EventQueueType This should be either SINGLE or N SINGLE
POOLED. By default the single
style pool is used. The single
style pool uses a single thread
per event queue. That thread is
killed whenever the queue is
inactive for 30 seconds. Since the
disk cache uses an event queue
for every region, if you have
many regions and they are all
active, you will be using many
threads. To limit the number of
threads, you can configure the
disk cache to use the pooled
event queue. Using more threads
than regions will not add any
benefit for the indexed disk
cache, since only one thread can
read or write at a time for a single
region.

EventQueuePoolName This is the name of the pool to Y n/a
use. It is required if you choose
the POOLED event queue type,
otherwise it is ignored.

Example Configuration Using Thread Pool

jcs.auxiliary. DC=org. apache.jcs. auxiliary. di sk.i ndexed. | ndexedDi skCacheFact ory
jcs.auxiliary. attributes=org. apache.jcs. auxiliary.di sk.indexed. | ndexedDi skCacheAttr|i butes
jcs.auxiliary. attributes. D skPat h=t arget/t est-sandbox/i ndexed- di sk- cache

jcs.auxiliary. attri butes. MaxPurgat orySi ze=10000

jcs.auxiliary.DC attributes. MaxKeySi ze=10000

jcs.auxiliary.DC attributes. Opti m zeAt RenbveCount =300000

jcs.auxiliary.DC attributes. Opti m zeOnShut down=t r ue

jcs.auxiliary.DC. attributes. MaxRecycl eBi nSi ze=7500

jcs.auxiliary.DC attributes. Event QueueType=POOLED

jcs.auxiliary.DC. attributes. Event QueuePool Nane=di sk_cache_event _queue

888888888

# Di sk Cache pool

t hread_pool . di sk_cache_event _queue. boundar ySi ze=50

t hread_pool . di sk_cache_event _queue. useBoundar y=true

t hr ead_pool . di sk_cache_event _queue. maxi munPool Si ze=15
t hr ead_pool . di sk_cache_event _queue. m ni nunPool Si ze=1
t hread_pool . di sk_cache_event _queue. keepAl i veTi me=3500

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.2 INDEXED DISK PROPERTIES

t hread_pool . di sk_cache_event _queue. start UpSi ze=1

©2002 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

59



3.2.3 BLOCK DISK CACHE 60

323 Block Disk Cache

Block Disk Auxiliary Cache

The Block Disk Cache stores cached values on disk. Like the Indexed Disk Cache, the Block Disk Cache
keeps the keys in memory. The Block Disk Cache stores the values in a group of fixed size blocks,
whereas the Indexed Disk Cache writes items to disk in one chunk.

The Block Disk Cache has advantages over the normal indexed model for regions where the size of the
items varies. Since all the blocks are the same size, the recycle bin is very simple. It is just a list of block
numbers. Also, the Block Disk Cache will never need to be optimized. Once the maximum number of
keys is reached, blocks will be reused.

Example cache.ccf

FH BRI R AR R R R R R R R AR R R R R R AR
##### DEFAULT REG ON ###HH#HHHHHBHHHHHHHHHHHH AR A

j cs. def aul t =bl ockDi skCache

jcs.defaul t.cacheattri butes=org. apache. jcs. engi ne. Conposi t eCacheAttri butes

jcs.defaul t.cacheattributes. MaxObj ect s=0

jcs.defaul t.cacheattributes. MenoryCacheNane=or g. apache. j cs. engi ne. menory. | ru. LRUMenor yCache

TR R I R I R o I i i o i it

# Bl ock Di sk Cache

jcs.auxiliary. bl ockD skCache=or g. apache. j cs. auxiliary. di sk. bl ock. Bl ockDi skCacheFact ory,
jcs.auxiliary. bl ockDi skCache. attribut es=org. apache.jcs. auxiliary. di sk. bl ock. Bl ockDi skCacheAttri butes
jcs.auxiliary. bl ockD skCache. attri butes. D skPat h=t arget/t est - sandbox/ bl ock- di sk- cache-huge
jcs.auxiliary. bl ockD skCache. attri but es. MaxPur gat or ySi ze=300000

jcs.auxiliary. bl ockD skCache. attri butes. MaxKeySi ze=1000000

jcs.auxiliary. bl ockD skCache. attri butes. bl ockSi zeByt es=500

jcs.auxiliary. bl ockDi skCache. attri but es. Event QueueType=S| NGLE

#j cs. auxiliary. bl ockDi skCache. attri but es. Event QueuePool Nane=di sk_cache_event _queue

BHBHB AR ARG R AR AR R AR R R AR ARG R AR AR R R R AR R AR AR
#H#HAH AR RS THREAD POOL CONFI GURATI ON #######HHHHAHAHHHH

# Default thread pool config

t hr ead_pool . def aul t. boundar ySi ze=2000

t hread_pool . def aul t. maxi munPool Si ze=150

t hr ead_pool . def aul t. mi ni nunPool Si ze=4

t hread_pool . def aul t . keepAl i veTi ne=350000
#RUN ABORT WAI T BLOCK DI SCARDOLDEST

t hr ead_pool . def aul t . whenBl ockedPol i cy=RUN
t hread_pool . defaul t. start UpSi ze=4

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.3 BLOCK DISK CACHE

# Di sk Cache pool

t hr ead_pool . di sk_cache_event _queue
t hr ead_pool . di sk_cache_event _queue
t hr ead_pool . di sk_cache_event _queue
t hr ead_pool . di sk_cache_event _queue

©2002 APACHE SOFTWARE FOUNDATION

. useBoundar y=f al se
. m ni nunPool Si ze=2
. keepAl i veTi ne=3500
.start UpSi ze=10

« ALL RIGHTS RESERVED

61



3.24

3.2.4 JDBC DISK CACHE 62

JDBC Disk Cache

JDBC Disk Auxiliary Cache

The JDBC disk cache uses a relational database such as MySQL as a persistent store. It works with
Oracle, MySQL and HSQL. The cache elements are serialized and written into a BLOB. Multiple regions
can share a single table. You can define multiple, differently configured JDBC disk caches in one JCS
instance. This allows you to use different tables for different cache regions.

Example cache.ccf (MySQL)

HEHBH BRI HBH IR AR A A A R R R R R R R R
HitH R DEFAULT CACHE REG ON  ######HEHIFHIHIHAHAHAHE
# sets the default aux value for any non configured caches

jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.

def aul
def aul
def aul
def aul
def aul
def aul
def aul
def aul
def aul
def aul
def aul
def aul
def aul
def aul

t =MYSQL, RCl ust er

t.cacheattribut es=org. apache. jcs. engi ne. Conposi t eCacheAttri but es
t.cacheattributes. MaxObj ect s=5000

t.cacheattributes. MenoryCacheNane=or g. apache. j cs. engi ne. menory. | ru. LRUMenor yCache
t.cacheattributes. UseMenoryShri nker=true

t.cacheattributes. MaxMenoryl dl eTi meSeconds=7200
t.cacheattributes. Shrinkerlnterval Seconds=60
t.elementattributes=org. apache.jcs. engi ne. El ement Attri butes
t.elementattributes.|sEternal =fal se

t.elementattributes. MaxLi f eSeconds=14400

t.elementattributes.|dl eTi me=14400

t.elementattributes.|sSpool =true
t.elementattributes.|sRenote=true

t.elementattributes.|sLateral =true

FH AT R R R R R R R R R R R R R A R R R R R R
##HHH AR R CACHE REG ONS AVAI LABLE #####H###HHHHHAHHHH

HARAH A AR RH AR SN SRG R AR AR AR AR R H R AR S
HH R AUXT LI ARY CACHES AVAI LABLE #####H##H#HEH#HEH#HEH
# MYSQL di sk cache used for flight options

jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.
jcs.

auxi i
auxi i
auxi i
auxi i
auxi i
auxi li
auxi li
auxi li
auxi i
auxi li
auxi i
auxi i
auxi i
auxi li

ary. M\YSQL=or g. apache. j cs. auxi | i ary. di sk. j dbc. JDBCDi skCacheFact ory
ary. M\YSQL. attri but es=or g. apache. jcs. auxiliary. di sk.jdbc. JDBCD skCacheAttri butes
ary. MYSQL. at t ri but es. user Name=nyUser nane

ary. MYSQL. at t ri but es. passwor d=nyPasswor d

ary. MYSQL. attri butes. url =${ MYSQL}

ary. \YSQL. attri butes. driverC assName=org. gjt.mm nysql . Driver

ary. MYSQL. attri but es. t abl eName=JCS_STORE

ary. \YSQL. attri butes. testBeforel nsert =fal se

ary. M\YSQL. attri but es. maxActive=100

ary. MYSQL. att ri but es. MaxPur gat or ySi ze=10000000

ary. MYSQL. attri but es. UseDi skShri nker=true

ary. MYSQL. at tri but es. Shri nker | nt erval Seconds=1800

ary. MYSQL. attri but es. al | onRenpveAl | =f al se

ary. M\YSQL. attri but es. Event QueueType=POOLED

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.4 JDBC DISK CACHE

jcs.auxiliary. MYSQ. attri but es. Event QueuePool Nane=di sk_cache_event _queue

B
HEHRHHHHH . OPTI ONAL THREAD POOL CONFI GURATI ON  ##t##H#H#HHHE
# Di sk Cache poo

t hr ead_pool . di sk_cache_event _queue. useBoundary=true

t hr ead_pool . di sk_cache_event _queue. boundar ySi ze=1000

t hread_pool . di sk_cache_event _queue. maxi nunPool Si ze=50

t hr ead_pool . di sk_cache_event _queue. m ni munPool Si ze=10

t hr ead_pool . di sk_cache_event _queue. keepAl i veTi ne=3500

t hr ead_pool . di sk_cache_event _queue. whenBl ockedPol i cy=RUN

t hr ead_pool . di sk_cache_event _queue. start UpSi ze=10

Table Creation Script (MySQL)

drop TABLE JCS_STORE

CREATE TABLE JCS_STORE

(
CACHE_KEY VARCHAR( 250) NOT NULL,
REG ON VARCHAR( 250) NOT NULL,
ELENENT BLOB,
CREATE_TI ME DATETI ME,
CREATE_TI ME_SECONDS Bl GI NT,
MAX_LI FE_SECONDS Bl GI NT,
SYSTEM EXPI RE_TI ME_SECONDS Bl Gl NT,
| S_ETERNAL CHAR(1),

PRI MARY KEY (CACHE_KEY, REG ON)
)

alter table JCS_STORE MAX_ROWS = 10000000
alter table JCS_STORE AVG ROW LENGTH = 2100

create index JCS_STORE DELETE | DX on JCS_STORE
( SYSTEM EXPI RE_TI ME_SECONDS, | S_ETERNAL, REG ON) ;

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.5 JDBC DISK PROPERTIES 64

325 JDBC Disk Properties

JDBC Disk Auxiliary Cache Configuration

The following properties apply to the JDBC Disk Cache plugin.

JDBC Disk Configuration Properties

Property Description Required Default Value

MaxPurgatorySize The maximum number of items N 5000
allowed in the queue of items to
be written to disk.

url The database url. The database Y
name will be added to this value
to create the full database url.

database This is appended to the url. Y

driverClassName The class name of the driver to Y
talk to your database.

tableName The name of the table. N JCS_STORE

testBeforelnsert Should the disk cache do a select N true
before trying to insert new
element on update, or should it
try to insert and handle the error.

maxActive This sets the maximum number Y
of connections allowed.

allowRemoveAll Should the disk cache honor N true
remove all (i.e. clear) requests.
You might set this to false to
prevent someone from
accidentally clearing out an entire

database.

UseDiskShrinker Should the disk cache try to N true
delete expired items from the
database.

ShrinkerIntervalSeconds How often should the disk N 300

shrinker run.

Example Configuration

HHHHHHHBRHBRH BB H R RH R R R R R R R R
HitH R HEH AUXI LI ARY CACHES AVAI LABLE ####H##H#H#H#H#H#HH
# JDBC di sk cache

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



Property

3.2.5 JDBC DISK PROPERTIES

jcs.auxiliary.JDBC=org. apache. j cs. auxiliary. di sk. j dbc. JDBCDi skCacheFact ory
jcs.auxiliary.JDBC. attributes=org. apache.jcs. auxiliary.disk.jdbc. JDBCD skCacheAttri butes

jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attri butes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attributes.
jcs.auxiliary.JDBC attri butes.

Description

user Nane=sa

passwor d=

ur | =j dbc: hsql db:

dat abase=t ar get/ cache_hsql _db

t abl eNane=JCS_STORE2

test Bef orel nsert =f al se
maxAct i ve=15

al | owRenoveAl | =true

MaxPur gat or ySi ze=10000000
UseDi skShri nker=true

Shri nker | nterval Seconds=300

JDBC Disk Event Queue Configuration

Required

driver C assNane=or g. hsql db. j dbcDri ver

Default Value

65

EventQueueType

EventQueuePoolName

This should be either SINGLE or N

POOLED. By default the single
style pool is used. The single
style pool uses a single thread
per event queue. That thread is
killed whenever the queue is

inactive for 30

seconds. Since the

disk cache uses an event queue
for every region, if you have

many regions

and they are all

active, you will be using many
threads. To limit the number of

threads, you ¢

an configure the

disk cache to use the pooled
event queue. Using more threads
than regions will not add any

benefit for the

indexed disk

cache, since only one thread can
read or write at a time for a single

region.

This is the name of the pool to Y

use. It is required if you choose
the POOLED event queue type,

otherwise it is

ignored.

SINGLE

n/a

HHBH BB R R RHRRRRH RER HRAR R R R R R R R R R
#HHH# AR AR AUX LI ARY CACHES AVAI LABLE ######HHHHH#HHHH

# JDBC di sk cache

Example Configuration Using Thread Pool

jcs.auxiliary.JDBC=org. apache.jcs. auxiliary.di sk.jdbc. JDBCD skCacheFactory
jcs.auxiliary.JDBC attributes=org. apache.jcs. auxiliary. di sk.jdbc. JDBCD skCacheAttri butes

jcs.auxiliary.JDBC attributes
jcs.auxiliary.JDBC attributes
jcs.auxiliary.JDBC attributes
jcs.auxiliary.JDBC attributes

. user Nanme=sa

. passwor d=

.url =j dbc: hsql db:

. dat abase=t ar get / cache_hsqgl _db

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.5 JDBC DISK PROPERTIES

jcs.auxiliary.JDBC attributes. driverC assNane=or g. hsql db. j dbcDri ver
jcs.auxiliary.JDBC attributes.tabl eName=JCS_STORE2

jcs.auxiliary.JDBC attributes.testBeforelnsert=fal se

jcs.auxiliary.JDBC. attributes. naxActive=15
jcs.auxiliary.JDBC attributes. al | owRenoveAl | =t rue
jcs.auxiliary.JDBC. attributes. MaxPurgat orySi ze=10000000
jcs.auxiliary.JDBC attributes. UseD skShrinker=true
jcs.auxiliary.JDBC attributes. Shrinkerlnterval Seconds=300
jcs.auxiliary.JDBC. attri butes. Event QueueType=POCLED
jcs.auxiliary.JDBC. attributes. Event QueuePool Nane=di sk_cache_event _queueue

B i i i i i i i i e i e i e i i e e e i e e iaiciaiaiaiaiaiaiciaiaiciaid
Y OPTI ONAL THREAD POOL CONFI GURATI ON #########
# Di sk Cache poo

t hread_pool . di sk_cache_event _queue. useBoundar y=f al se

t hread_pool . di sk_cache_event _queue. boundar ySi ze=500

t hr ead_pool . di sk_cache_event _queue. maxi munPool Si ze=15

t hr ead_pool . di sk_cache_event _queue. m ni munPool Si ze=10

t hread_pool . di sk_cache_event _queue. keepAl i veTi me=3500

t hr ead_pool . di sk_cache_event _queue. whenBl ockedPol i cy=RUN

t hread_pool . di sk_cache_event _queue. start UpSi ze=10

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.6 MYSQL DISK PROPERTIES 67

326 MySQL Disk Properties

MySQL Disk Auxiliary Cache Configuration

The MySQL Disk Cache uses all of the JDBC Disk Cache properties. It adds a few of its own. The
following properties only apply to the MySQL Disk Cache plugin.

MySQL Disk Configuration Properties

Property Description Required Default Value

optimizationSchedule For now this is a simple comma N null
delimited list of HH:MM:SS times
to optimize the table. If none is
supplied, then no optimizations
will be performed. In the future
we can add a cron like
scheduling system. This was
created to meet a pressing need
to optimize fragmented MylSAM
tables. When the table becomes
fragmented, it starts to take a
long time to run the shrinker that
deletes expired elements. Setting
the value to "03:01,15:00" will
cause the optimizer to run at 3
am and at 3 pm.

balkDuringOptimization If this is true, then when JCS is N true
optimizing the table it will return
null from get requests and do
nothing for put requests. If you
are using the remote cache and
have a failover server configured
in a remote cache cluster, and
you allow clustered gets, the
primary server will act as a proxy
to the failover. This way,
optimization should have no
impact for clients of the remote
cache.

Example Configuration

g g g g
L e O L o B L o o o o O  a a L  E E  Een r R R s s

HitHHH A AUXI LI ARY CACHES AVAI LABLE ###Hi#H#H###HHEHHH

# MYSQL di sk cache

jcs.auxiliary. MYSQL=or g. apache. j cs. auxi |l i ary. di sk. j dbc. nysql . \ySQLDi skCacheFact ory
jcs.auxiliary. MYSQL. attri but es=org. apache.jcs. auxiliary.disk.jdbc. nmysql. MySQLDi skCacheAttri butes
jcs.auxiliary. MYSQL. attri butes. user Nane=sa

jcs.auxiliary. MYSQL. attri butes. password=

jcs.auxiliary. MYSQL. attri butes. url =j dbc: hsql db: target/ cache_hsql _db

jcs.auxiliary. MYSQL. attri butes. driverd assNane=org. hsqgl db. j dbcDri ver

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.6 MYSQL DISK PROPERTIES 68

jcs.auxiliary. MYSQ. attri butes. t abl eNanme=JCS_STORE_MYSQL
jcs.auxiliary. MYSQL. attri butes.testBeforelnsert=fal se

jcs.auxiliary. MYSQL. attri but es. maxActi ve=15

jcs.auxiliary. MYSQL. attri butes. al |l owRenoveAl | =t rue

jcs.auxiliary. MYSQL. attri but es. MaxPur gat orySi ze=10000000
jcs.auxiliary. MYSQL. attri butes. optim zati onSchedul e=12: 34: 56, 02: 34: 54
jcs.auxiliary. MYSQL. attri butes. bal kDuri ngOpti m zation=true

MySQL Disk Event Queue Configuration

Property Description Required Default Value

EventQueueType This should be either SINGLE or N SINGLE
POOLED. By default the single
style pool is used. The single
style pool uses a single thread
per event queue. That thread is
killed whenever the queue is
inactive for 30 seconds. Since the
disk cache uses an event queue
for every region, if you have
many regions and they are all
active, you will be using many
threads. To limit the number of
threads, you can configure the
disk cache to use the pooled
event queue. Using more threads
than regions will not add any
benefit for the indexed disk
cache, since only one thread can
read or write at a time for a single
region.

EventQueuePoolName This is the name of the pool to Y n/a
use. It is required if you choose
the POOLED event queue type,
otherwise it is ignored.

Example Configuration Using Thread Pool

HHHHHHH TR R TR TR

HtH R AUXI LI ARY CACHES AVAI LABLE ###Ht#H#HH#IHHHHH#H

# MYSQL di sk cache

jcs.auxiliary. MYSQL=or g. apache. jcs. auxiliary.di sk.jdbc. nysql . MySQLDi skCacheFact ory
jcs.auxiliary. MYSQ. attri but es=org. apache. jcs. auxiliary. di sk.jdbc. nysqgl . My\SQLDi skCacheAttri butes
jcs.auxiliary. MYSQL. attri butes. user Nane=sa

jcs.auxiliary. MYSQL. attri but es. password=

jcs.auxiliary. MYSQL. attributes. url = dbc: hsql db: target/ cache_hsql _db

jcs.auxiliary. MYSQL. attributes. driverd assNane=org. hsql db. j dbcDri ver

jcs.auxiliary. MYSQL. attri butes.tabl eName=JCS_STORE_MYSQL

jcs.auxiliary. MYSQL. attri butes.testBeforel nsert=fal se

jcs.auxiliary. MVSQ. attri but es. maxActi ve=15

jcs.auxiliary. MVSQL. attri butes. al | owRenpveAl | =t rue

jcs.auxiliary. MYSQL. attri butes. MaxPur gat orySi ze=10000000

jcs.auxiliary. MYSQL. attri butes. optim zati onSchedul e=12: 34: 56, 02: 34: 54
jcs.auxiliary. MYSQL. attri butes. bal kDuri ngOpti m zati on=true

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.6 MYSQL DISK PROPERTIES

jcs.auxiliary. MYSQL. attri but es. Event QueueType=POOLED
jcs.auxiliary. MYSQL. attri but es. Event QueuePool Nanme=di sk_cache_event _queue

B
B OPTI ONAL THREAD POOL CONFI GURATI ON  ##t#H#H#HEHHEE
# Di sk Cache poo

t hread_pool . di sk_cache_event _queue. useBoundar y=f al se

t hread_pool . di sk_cache_event _queue. boundar ySi ze=500

t hr ead_pool . di sk_cache_event _queue. maxi munPool Si ze=15

t hr ead_pool . di sk_cache_event _queue. m ni munPool Si ze=10

t hr ead_pool . di sk_cache_event _queue. keepAl i veTi ne=3500

t hr ead_pool . di sk_cache_event _queue. whenBl ockedPol i cy=RUN

t hr ead_pool . di sk_cache_event _queue. start UpSi ze=10

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.7

3.2.7 REMOTE CACHE 70

Remote Cache

Remote Auxiliary Cache Client / Server

The Remote Auxiliary Cache is an optional plug in for JCS. It is intended for use in multi-tiered systems
to maintain cache consistency. It uses a highly reliable RMI client server framework that currently allows
for any number of clients. Using a listener id allows multiple clients running on the same machine to
connect to the remote cache server. All cache regions on one client share a listener per auxiliary, but
register separately. This minimizes the number of connections necessary and still avoids unnecessary
updates for regions that are not configured to use the remote cache.

Local remote cache clients connect to the remote cache on a configurable port and register a listener to
receive cache update callbacks at a configurable port.

If there is an error connecting to the remote server or if an error occurs in transmission, the client will
retry for a configurable number of tries before moving into a failover-recovery mode. If failover servers
are configured the remote cache clients will try to register with other failover servers in a sequential order.
If a connection is made, the client will broadcast all relevant cache updates to the failover server while
trying periodically to reconnect with the primary server. If there are no failovers configured the client will
move into a zombie mode while it tries to re-establish the connection. By default, the cache clients run in
an optimistic mode and the failure of the communication channel is detected by an attempted update to
the server. A pessimistic mode is configurable so that the clients will engage in active status checks.

The remote cache server broadcasts updates to listeners other than the originating source. If the remote
cache fails to propagate an update to a client, it will retry for a configurable number of tries before
de-registering the client.

The cache hub communicates with a facade that implements a zombie pattern (balking facade) to prevent
blocking. Puts and removals are queued and occur asynchronously in the background. Get requests are
synchronous and can potentially block if there is a communication problem.

By default client updates are light weight. The client listeners are configured to remove elements form the
local cache when there is a put order from the remote. This allows the client memory store to control the
memory size algorithm from local usage, rather than having the usage patterns dictated by the usage
patterns in the system at large.

When using a remote cache the local cache hub will propagate elements in regions configured for the
remote cache if the element attributes specify that the item to be cached can be sent remotely. By default
there are no remote restrictions on elements and the region will dictate the behavior. The order of
auxiliary requests is dictated by the order in the configuration file. The examples are configured to look in
memoty, then disk, then remote caches. Most elements will only be retrieved from the remote cache
once, when they are not in memory or disk and are first requested, or after they have been invalidated.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.7 REMOTE CACHE 71

Client Configuration

The configuration is faitly straightforward and is done in the auxiliary cache section of the cache. ccf
configuration file. In the example below, I created a Remote Auxiliary Cache Client referenced by
RFai | over .

This auxiliary cache will use | ocal host : 1102 as its primary remote cache server and will attempt to
failover to | ocal host : 1103 if the primary is down.

Setting RenmbveUponRenot ePut to f al se would cause remote puts to be translated into put requests
to the client region. By defaultitis t r ue , causing remote put requests to be issued as removes at the
client level. For groups the put request functions slightly differently: the item will be removed, since it is
no longer valid in its current form, but the list of group elements will be updated. This way the client can
maintain the complete list of group elements without the burden of storing all of the referenced elements.
Session distribution works in this half-lazy replication mode.

Setting Get Onl y to t r ue would cause the remote cache client to stop propagating updates to the
remote server, while continuing to get items from the remote store.

# Remote RM Cache set up to failover
jcs.auxiliary. RFail over=

org. apache. jcs.auxiliary.renote. Renot eCacheFact ory
jcs.auxiliary. RFailover.attributes=

org. apache.jcs.auxiliary.renote. RenoteCacheAttri butes
jcs.auxiliary. RFailover.attributes. Fail over Servers=

| ocal host: 1102, | ocal host: 1103
jcs.auxiliary. RC attributes. RenbveUponRenot ePut =t r ue
jcs.auxiliary. RFailover.attributes. Gt Onl y=fal se

This cache region is setup to use a disk cache and the remote cache configured above:

#Regi ons preconfirgured for caching
j cs.region.test Cachel=DC, RFai | over
jcs.region.testCachel. cacheattri butes=
or g. apache. j cs. engi ne. Conposi t eCacheAttri butes
j cs.region.testCachel. cacheattri butes. MaxChj ect s=1000
j cs.region.testCachel. cacheattri butes. MenoryCacheNane=
org. apache. j cs. engi ne. menory. | ru. LRUMenor yCache

Server Configuration

The remote cache configuration is growing. For now, the configuration is done at the top of the
renot e. cache. ccf file. The st ar t Renpt eCache script passes the configuration file name to the

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.7 REMOTE CACHE 72

server when it starts up. The configuration parameters below will create a remote cache server that listens
to port 1102 and performs call backs on the r enot e. cache. servi ce. port , also specified as port
1102.

# Registry used to register and provide the
# | Renpot eCacheServi ce service.

regi stry. host =l ocal host

regi stry. port=1102

# call back port to |ocal caches.

renot e. cache. servi ce. port=1102

# cluster setting

renot e. cl uster. Local C ust er Consi stency=true
renote. cluster. Al l owC ust er Get =t rue

Remote servers can be chained (or clustered). This allows gets from local caches to be distributed
between multiple remote servers. Since gets are the most common operation for caches, remote server
chaining can help scale a caching solution.

The Local Cl ust er Consi st ency setting tells the remote cache server if it should broadcast updates
received from other cluster servers to registered local caches.

The Al | owCl ust er Get setting tells the remote cache server whether it should allow the cache to look
in non-local auxiliaries for items if they are not present. Basically, if the get request is not from a cluster
server, the cache will treat it as if it originated locally. If the get request originated from a cluster client,
then the get will be restricted to local (i.e. memory and disk) auxiliaries. Hence, cluster gets can only go
one server deep. They cannot be chained. By default this setting is true.

To use remote server clustering, the remote cache will have to be told what regions to cluster. The
configuration below will cluster all non-preconfigured regions with RCl uster1 .

# sets the default aux value for any non configured caches
jcs.defaul t=DC, RCl usterl
jcs.defaul t.cacheattributes=

or g. apache. j cs. engi ne. Conposi t eCacheAttri but es
jcs.defaul t.cacheattributes. MaxObj ect s=1000

jcs.auxiliary. RCl usterl=

org. apache.jcs. auxiliary.renote. Renot eCacheFact ory
jcs.auxiliary. RClusterl.attributes=

org. apache.jcs.auxiliary.renote. Renot eCacheAttri butes
jcs.auxiliary. RO usterl. attributes. Renot eTypeNanme=CLUSTER
jcs.auxiliary. RCusterl. attributes. RenoveUponRenot ePut =f al se
jcs.auxiliary. RO usterl.attributes. C usterServers=l ocal host: 1103
jcs.auxiliary. RO usterl.attributes. Get Onl y=f al se

RCluster1 is configured to talk to a remote server at | ocal host : 1103 . Additional servers can be

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.7 REMOTE CACHE 73

added in a comma separated list.

If we startup another remote server listening to port 1103, ServerB) then we can have that server talk to
the server we have been configuring, listening at 1102 ServerA). This would allow us to set some local
caches to talk to ServerA and some to talk to ServerB. The two remote servers will broadcast all puts and
removes between themselves, and the get requests from local caches could be divided. The local caches
do not need to know anything about the server chaining configuration, unless you want to use a standby,
or failover server.

We could also use ServerB as a hot standby. This can be done in two ways. You could have all local
caches point to ServerA as a primary and ServerB as a secondary. Alternatively, you can set ServerA as
the primary for some local caches and ServerB for the primary for some others.

The local cache configuration below uses ServerA as a primary and ServerB as a backup. More than one
backup can be defined, but only one will be used at a time. If the cache is connected to any server except
the primary, it will try to restore the primary connection indefinitely, at 20 second intervals.

# Renpte RM Cache set up to failover
jcs.auxiliary. RFail over=

org. apache.jcs. auxiliary.renote. Renot eCacheFact ory
jcs.auxiliary. RFailover.attributes=

org. apache.jcs.auxiliary.renote. Renot eCacheAttri butes
jcs.auxiliary. RFailover.attributes. Fail over Servers=

| ocal host: 1102, | ocal host: 1103
jcs.auxiliary. RC attributes. RenbveUponRenot ePut =t r ue
jcs.auxiliary. RFailover.attributes. Get Onl y=f al se

Server Startup / Shutdown

It is highly recommended that you embed the Remote Cache Server in a Servlet container such as
Tomcat. Running inside Tomcat allows you to use the JCSAdmin.jsp page. It also takes care of the
complexity of creating working startup and shutdown scripts.

JCS provides a convenient startup servlet for this purpose. It will start the registry and bind the JCS
server to the registry. To use the startup servlet, add the following to the web.xml file and make sure you
have the remote.cache.ccf file in the WEB-INF/classes directly of your war file.

<servl et >
<servl et - nane>JCSRenot eCacheSt art upSer vl et </ ser vl et - nane>
<servl et-class>
org. apache.jcs.auxiliary.renote. server. Renot eCacheSt art upSer vl et
</servl et-class>
<l oad- on- st artup>1</1| oad-on-startup>
</ servlet>

<servl et - mappi ng>

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.7 REMOTE CACHE

<servl et - name>JCSRenot eCacheSt ar t upSer vl et </ ser vl et - nanme>
<url-pattern>/jcs</url-pattern>
</ servl et - mappi ng>

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

74



3.2.8

3.2.8 REMOTE CACHE PROPERTIES

Remote Cache Properties

Remote Auxiliary Cache Configuration

The following properties apply to the Remote Cache plugin.

Remote Client Configuration Properties

Property

Description Required

Default Value

75

FailoverServers

LocalPort

RemoveUponRemotePut

RmiSocketFactory TimeoutMillis

GetOnly

©2002 APACHE SOFTWARE FOUNDATION

This is a comma separated list of Y
remote servers to use. They
should be specified in the
host:port format. The first server
in the list will be used as the
primary server. If the connection
is lost with the primary, the cache
will try to connect to the next
server in the list. If a connection
is successfully established with a
failover server, then the cache
will attempt to restore the
conenction with the primary
server.

This is the port on which the N
client will receive callbacks from

the remote server. If it is not
specified, then some port in the
default range used by RMI will be

the callback port.

If you configure the cache to N
remove upon a remote put, this
means that the client will
translate updates into removes.
The client will remove any local
copy it has of the object rather
than storing the new version. If
you have sticky load balancing
across your client servers, then it
would make sense to set
RemoveUponRemotePut to true
if the data is mostly client
specific. If the data is re-usable,
the you should most likely set this
option to false, which is the
default.

If this is greater than 0, then a N
custom socket factory will be

installed in the VM. It will then

use this timeout for all RMI
communication.

GetOnly is somewhat misnamed. N
If it is set to true, then the client

will not send updates or removes

to the remote server. It can still
receive updates and removes.

« ALL RIGHTS RESERVED

n/a

default RMI port range

false

5000

false



3.2.8 REMOTE CACHE PROPERTIES

Property

Description Required Default Value

76

Receive

ZombieQueueMaxSize

By default Receive is set to true. N true
This means that the remote client
will receive updates and removes
from the remote server. If you set
Receive to false, the remote
client will not register a listener
with the remote server. This
means that the client can send
update and remove requests to
the server, and it can get from the
server, but it will never receive
notifications from the server. You
might configure Receive to false
if you just want to use the remote
server as a data store. For
instance, you may back the
Remote Cache Server with the
JDBC disk cache and set
Receive=false when you have a
high put and low read region.

The number of elements the N 1000
zombie queue will hold. This

queue is used to store events if

we lose our connection with the

server.

Example Configuration

# This renote

jcs.

auxi li

ary.

jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.
jcs.auxiliary.

client does not receive
RC=or g. apache. j cs. auxi |l i ary. r ennt e. Renpt eCacheFact ory

3888888

attributes=org. apache.jcs. auxiliary.renote. RenoteCacheAttributes
attributes. Fai |l over Server s=| ocal host: 1101, | ocal host: 1102
attributes. Local Port=1201

.attribut es. RembveUponRenot ePut =f al se

.attributes. Rm Socket Fact oryTi meout M | | i s=5000

.attributes. Get Onl y=f al se

.attributes. Recei ve=fal se

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.9 LATERAL TCP CACHE 77

329 Lateral TCP Cache

Lateral TCP Auxiliary Cache

The TCP Lateral Auxiliary Cache is an optional plug in for the JCS. It is primarily intended to broadcast
puts and removals to other local caches, though it can also get cached objects. It functions by opening up
a Socket Ser ver that listens to a configurable port and by creating Socket connections with other
local cache Socket Ser ver s. It can be configured to connect to any number of servers.

If there is an error connecting to another server or if an error occurs in transmission, it will move into a
recovery mode. In recovery mode the TCP Lateral Auxiliary Cache will continue to communicate with
healthy servers while it tries to restore the connection with the server that is in error.

The cache hub communicates with a facade that implements a zombie pattern (balking facade) to prevent
blocking. Puts and removals are queued and occur synchronously in the background. Get requests ate
synchronous and can potentially block for a configurable interval if there is a communication problem.

Non-UDP Discovery Configuration

The configuration is fairly straightforward and is done in the auxiliary cache section of the cache. ccf
configuration file. In the example below, I created a TCP Lateral Auxiliary Cache referenced by LTCP. It
connects to two servers defined in a comma separated list in the TcpSer ver s attribute. It listens to port
1110 and does Al | owGet . Setting Al | owGet equal to f al se would cause the auxiliary cache to return
nul I from any get request. In most cases this attribute should be set to f al se, since if the lateral caches
were propetly configured, the elements in one would be present in all.

jcs.auxiliary. LTCP=org. apache.jcs.auxiliary.lateral.socket.tcp.Lateral TCPCacheFactory
jcs.auxiliary.LTCP. attri butes=org. apache.jcs.auxiliary.lateral.socket.tcp. TCPLateral CacheAttributes
jcs.auxiliary.LTCP. attri butes. TcpServers=l ocal host: 1111, | ocal host: 1112

jcs.auxiliary.LTCP. attri butes. TcpLi stenerPort=1110

jcs.auxiliary.LTCP.attributes. Al |l owCet =true

A mostly configurationless mode is available for the TCP lateral cache if you use the UDP Discovery
mechanism.

Send Only Configuration

You can configure the TCP lateral cache to operate in send only mode by setting the Recei ve attribute
to false. By default the receive attribute is true. When it is set to false, the lateral cache will not establish a
socket server.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.9 LATERAL TCP CACHE 78

Setting receive to false allows you to broadcast puts and removes, but not receive any. This is useful for
nodes of an application that produce data, but are not involved in data retrieval.

The configuration below is the same as above, except the Recei ve attribute is set to false. It also uses
UDP discovery to find the servers, rather than listing them in the servers attribute.

jcs.auxiliary. LTCP=org. apache.jcs.auxiliary.lateral.socket.tcp.Lateral TCPCacheFactory
jcs.auxiliary.LTCP. attributes=org. apache.jcs.auxiliary.|lateral.socket.tcp. TCPLat eral CacheAttributes
#jcs.auxiliary.LTCP. attributes. TcpServers=

jcs.auxiliary.LTCP. attri butes. TcpLi stenerPort=1118

jcs.auxiliary.LTCP. attri butes. UdpDi scover yAddr=228.5.6. 8

jcs.auxiliary.LTCP. attri butes. UdpDi scoveryPort=6780

jcs.auxiliary.LTCP. attri butes. UdpDi scover yEnabl ed=true

jcs.auxiliary.LTCP. attri butes. Recei ve=true

jcs.auxiliary.LTCP. attri butes. Al |l owCet =f al se

jcs.auxiliary.LTCP. attri butes. | ssueRenmbveOnPut =f al se

jcs.auxiliary.LTCP.attributes. FilterRenoveByHashCode=f al se

Potential Issues

The TCP Lateral Auxiliary Cache can provide a high level of consistency but it does not guarantee
consistency between caches. A put for the same object could be issued in two different local caches. Since
the transmission is queued, a situation could occur where the item put last in one cache is overridden by a
put request from another local cache. The two local caches could potentially have different versions of
the same item. Like most caches, this is intended for high get and low put utilization, and this occurrence
would hint at improper usage. The RMI Remote cache makes this situation a bit less likely to occur, since
the default behavior is to remove local copies on put operations. If either local cache needed the item put
in the above situation, it would have to go remote to retrieve it. Both local copies would have been
expired and would end up using the same version, though it is possible that the version stored remotely
would not be the last version created. The OCS4] tries to implement a locking system to prevent this
from occurring, but the locking system itself could suffer from similar problems (when granting locks
from two roughly simultaneous lock requests) and it would create a significant burden on all the caches
involved. Since this situation would be extremely rare and is nearly impossible to solve practically, for
now JCS will not offer any type of locking.

Recent

I added a | ssueRenpbveOnPut attribute that causes the lateral cache to remove an element from the
cache rather than inserting it when a put. This allows the local caches to dictate their own memory usage
pattern.

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.10

3.2.10 LATERAL TCP PROPERTIES

Lateral TCP Properties

79

Lateral TCP Auxiliary Cache Configuration

The following properties apply to the TCP Lateral Cache plugin.

TCP Configuration Properties

Property Description

Required

Default Value

TcpServers This is the list of servers this N
cache should try to connect to.
With UDP discovery this is not

necessary.

TcpListenerPort This is the port this cache should Y

listen on.

AllowGet Should this cache be allowed to N
get from other laterals. False
means that it can only put, i.e.

send updates and remove

requests to other laterals. Lateral
gets are not recommended for
performance reasons. This used
to be controlled by the attribute

PutOnlyMode.

Receive Should this cache receive oronly N
send to other laterals. You may
want to set receive to false if you
just need to broadcast to other
caches. If you have a feed data
parser, that doesn't need to
receive updates, but you do want
it to send invalidation messages,
then you would set receive to
false. If receive is false, the
discovery service, if enabled, will

only listen.

IssueRemoveOnPut If this is set to true, then the N
lateral client will send a remove
command rather than a put
command to any registered

listeners.

FilterRemoveByHashCode If this is true, and

IssueRemoveOnPut is true, the
client will include the hashCode
of the element to remove. If it is
also true on the receiving end,
the receiver will check to see if
the element exists. If the element
exists, and the hashCodes are
the same, the item will not be

removed.

©2002 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

none

n/a

true

true

false

false



3.2.10 LATERAL TCP PROPERTIES 80

Property Description Required Default Value

UdpDiscoveryAddr The address the UDP discovery N 228.5.6.7
process should broadcast
messages to.

UdpDiscoveryPort The port the UDP discovery N 6789
process should send messages
to.

UdpDiscoveryEnabled Whether or not the UDP N true
discovery service should be used
to locate other lateral caches.

Example Configuration

jcs.auxiliary. LTCP=org. apache.jcs.auxiliary.lateral.socket.tcp.Lateral TCPCacheFactory
jcs.auxiliary. LTCP. attri butes=org. apache.jcs.auxiliary.|lateral.socket.tcp. TCPLateral CacheAttributes
#jcs.auxiliary.LTCP. attributes. TcpServers=

jcs.auxiliary.LTCP. attri butes. TcpLi stenerPort=1118

jcs.auxiliary.LTCP. attri butes. UdpDi scover yAddr=228.5.6. 8

jcs.auxiliary.LTCP. attri butes. UdpDi scoveryPort=6780

jcs.auxiliary.LTCP. attri butes. UdpDi scover yEnabl ed=true

jcs.auxiliary.LTCP. attri butes. Recei ve=true

jcs.auxiliary.LTCP. attri butes. Al |l owCet =f al se

jcs.auxiliary.LTCP. attri butes. | ssueRenbveOnPut =f al se

jcs.auxiliary.LTCP. attributes. FilterRenoveByHashCode=f al se

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.11 LATERAL UDP DISCOVERY 81

s211 Lateral UDP Discovery

Lateral UDP Discovery

Rather than list all the other lateral servers in the configuration file, you can configure the TCP lateral to
use UDP discovery. In discovery mode, lateral TCP caches will broadcast to a multicast address and port,
letting all listeners know where they are.

On startup each lateral will issue a special message requesting a broadcast from the other caches. Normal
broadcasts occur every 30 seconds. (This is to be made configurable.) Regions that don't receive, are
running in send only mode, don't broadcast anything but requests.

When a lateral receives a discovery message it will try to add the lateral to the nowait facade for the
region. If it already exists nothing happens. If a region is not configured to send laterally, nothing
happens, since it doesn't have a no wait.

This allows you to have the same configuration on every machine.

Configuration

The configuration is faitly straightforward and is done in the auxiliary cache section of the cache. ccf
configuration file. In the example below, I created a TCP Lateral Auxiliary Cache referenced by LTCP. It
uses UDP Discovery to locate other servers. It broadcasts to multicast address 228. 5. 6. 8 and port
6780. It listens to port 1110.

jcs.auxiliary. LTCP=org. apache.jcs.auxiliary.lateral.socket.tcp. Lateral TCPCacheFactory
jcs.auxiliary.LTCP. attri butes=org. apache.jcs.auxiliary.|lateral.socket.tcp. TCPLateral CacheAttributes
jcs.auxiliary.LTCP. attri butes. TcpLi stenerPort=1110

jcs.auxiliary.LTCP. attri butes. Put Onl yMbde=true

jcs.auxiliary.LTCP. attri butes. UdpDi scover yAddr=228.5.6.8

jcs.auxiliary.LTCP. attri butes. UdpDi scoveryPort=6780

jcs.auxiliary.LTCP. attri butes. UdpDi scover yEnabl ed=true

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



3.2.12 LATERAL JGROUPS CACHE 82

3212 Lateral JGroups Cache

Lateral JGroups Auxiliary Cache

The Lateral JGroups Auxiliary Cache is an optional plug in for JCS. It is primarily intended to broadcast
puts and removals to other local caches, though it can also get cached objects. It uses JGroups for
distribution.

The Lateral Lateral JGroups Auxiliary Cache is far slower than that Lateral TCP Auxiliary Cache. Since
the Lateral TCP Auxiliary is faster and has UDP discovery built in, the TCP auxiliary is the recommended
form of lateral distribution. However, the JGroups Auxiliary requires fewer socket connections than the
TCP lateral.

A functional configuration example is below:

# Lateral JavaG oups Distribution

jcs.auxiliary.LJG=org. apache.jcs.auxiliary.lateral.Lateral CacheFactory

jcs.auxiliary.LJG attributes=org. apache.jcs.auxiliary.lateral.Lateral CacheAttributes

jcs.auxiliary.LJG attributes. Transm ssi onTypeNanme=J AVAGROUPS

jcs.auxiliary.LJG attri butes. Put Onl yMode=t rue

jcs.auxiliary.LJG attributes.JGChannel Properti es=UDP(ntast _addr=224.0. 0. 100; ntast _port=7501) : PI NG FD: STAE

©2002 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED



