JAX-RS: Java™ API for RESTful
Web Services

Version 2.0 Final Release
May 22, 2013

Editors:
Santiago Pericas-Geertsen
Marek Potociar

Comments to: users @jax-rs-spec.java.net

Oracle Corporation
500 Oracle Parkway, Redwood Shores, CA 94065 USA.



ii

JAX-RS

May 22, 2013



JSR-339 Java™ API for RESTful Web Services (‘“Specification”)
Version: 2.0

Status: Final Release

Release: May 22, 2013

Copyright 2011-2013 Oracle America, Inc. (“Oracle”)

500 Oracle Parkway, Redwood Shores, California 94065, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Oracle hereby grants you a fully-paid, non-exclusive, non-transferable,
worldwide, limited license (without the right to sublicense), under Oracle’s applicable intellectual property rights to
view, download, use and reproduce the Specification only for the purpose of internal evaluation. This includes (i)
developing applications intended to run on an implementation of the Specification, provided that such applications do
not themselves implement any portion(s) of the Specification, and (ii) discussing the Specification with any third
party; and (iii) excerpting brief portions of the Specification in oral or written communications which discuss the
Specification provided that such excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Oracle also grants you a perpetual, non-exclusive,
non-transferable, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any
applicable copyrights or, subject to the provisions of subsection 4 below, patent rights it may have covering the
Specification to create and/or distribute an Independent Implementation of the Specification that: (a) fully implements
the Specification including all its required interfaces and functionality; (b) does not modify, subset, superset or
otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces,
fields or methods within the Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented; and (c) passes the Technology Compatibility Kit (including satisfying the
requirements of the applicable TCK Users Guide) for such Specification ("Compliant Implementation”). In addition,
the foregoing license is expressly conditioned on your not acting outside its scope. No license is granted hereunder
for any other purpose (including, for example, modifying the Specification, other than to the extent of your fair use
rights, or distributing the Specification to third parties). Also, no right, title, or interest in or to any trademarks,
service marks, or trade names of Oracle or Oracle’s licensors is granted hereunder. Java, and Java-related logos,
marks and names are trademarks or registered trademarks of Oracle America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other
particular “’pass through” requirements in any license You grant concerning the use of your Independent
Implementation or products derived from it. However, except with respect to Independent Implementations (and
products derived from them) that satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant
or otherwise pass through to your licensees any licenses under Oracles applicable intellectual property rights; nor (b)
authorize your licensees to make any claims concerning their implementation’s compliance with the Specification in
question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be
infringed by all technically feasible implementations of the Specification, such license is conditioned upon your
offering on fair, reasonable and non-discriminatory terms, to any party seeking it from You, a perpetual,
non-exclusive, non-transferable, worldwide license under Your patent rights which are or would be infringed by all
technically feasible implementations of the Specification to develop, distribute and use a Compliant Implementation.

b. With respect to any patent claims owned by Oracle and covered by the license granted under subparagraph 2,
whether or not their infringement can be avoided in a technically feasible manner when implementing the
Specification, such license shall terminate with respect to such claims if You initiate a claim against Oracle that it has,
in the course of performing its responsibilities as the Specification Lead, induced any other entity to infringe Your
patent rights.

c. Also with respect to any patent claims owned by Oracle and covered by the license granted under subparagraph
2 above, where the infringement of such claims can be avoided in a technically feasible manner when implementing
the Specification such license, with respect to such claims, shall terminate if You initiate a claim against Oracle that
its making, having made, using, offering to sell, selling or importing a Compliant Implementation infringes Your

May 22,2013 JAX-RS iii



patent rights.

5. Definitions. For the purposes of this Agreement: “Independent Implementation” shall mean an implementation of
the Specification that neither derives from any of Oracle’s source code or binary code materials nor, except with an
appropriate and separate license from Oracle, includes any of Oracle’s source code or binary code materials;
“Licensor Name Space” shall mean the public class or interface declarations whose names begin with “java”,
“javax”, “com.sun”, com.oracle or their equivalents in any subsequent naming convention adopted by Oracle through
the Java Community Process, or any recognized successors or replacements thereof; and “Technology Compatibility
Kit” or "TCK” shall mean the test suite and accompanying TCK User’s Guide provided by Oracle which corresponds
to the Specification and that was available either (i) from Oracle 120 days before the first release of Your Independent
Implementation that allows its use for commercial purposes, or (ii) more recently than 120 days from such release but
against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Oracle if you breach the Agreement or act outside
the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED ”AS IS”. ORACLE MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS
A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent
any commitment to release or implement any portion of the Specification in any product. In addition, the
Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ORACLE OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE
SPECIFICATION, EVEN IF ORACLE AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. You will indemnify, hold harmless, and defend Oracle and its licensors from
any claims arising or resulting from: (i) your use of the Specification; (ii) the use or distribution of your Java
application, applet and/or implementation; and/or (iii) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government’s rights in the Software and
accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.E.R. 2.101 and 12.212 (for
non-DoD acquisitions).

REPORT

If you provide Oracle with any comments or suggestions concerning the Specification ("Feedback™), you hereby: (i)
agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Oracle a
perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple
levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N.
Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other
countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

iv JAX-RS May 22,2013



This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties and prevails
over any conflicting or additional terms of any quote, order, acknowledgment, or other communication between the
parties relating to its subject matter during the term of this Agreement. No modification to this Agreement will be
binding, unless in writing and signed by an authorized representative of each party.

Rev. December, 2010

May 22,2013 JAX-RS v



vi

JAX-RS

May 22, 2013



Contents

1 Introduction 1
L1 Status . . . . . e e e 1

1.2 Goals . . . . o e e 2

1.3 Non-Goals . . . . . . . e 2

14 ConventionsS . . . . . . . . vt i e e e e e e e e e 2

1.5 Terminology . . . . . . . . o e e e 3

1.6  Expert Group Members . . . . . . . .. L 4

1.7 Acknowledgements . . . . . . . . .. 5

2 Applications 7
2.1 Configuration . . . . . . . . .. e e e e e 7

2.2 Verification . . . . . . . L e e e e e 7

2.3 Publication . . . . . . .. e e e e 7
23.1 JavaSE . . . L 7

232 Servlet . ... e 8

233 OtherContainer. . . . . . . . . .. vt e e 10

3 Resources 11
3.1 Resource CIasses . . . . . . . . oo i e e e e e 11
3.1.1 Lifecycle and Environment . . . . . . . . . .. ... oo 11

3.1.2  ConStruCtors . . . . . oL e e e e e e e e e 11

3.2 Fields and Bean Properties . . . . . . . . . . . . . ... ... 12
3.3 Resource Methods . . . . . . . . .. 13
33,1 Visibility ... 13

332 Parameters . . . . . .. .. e e e e e e e e e 13

333 ReturnType . . . . . . L e e 13

334 EXCeptions . . . . . . .. e e e e e 14

May 22,2013 JAX-RS vii



33,5 HEADand OPTIONS . . . . . . . . . .. e 15

34 URITemplates . . . . . . . o . e e e 15
34.1 SubResources . . . . ... 17

3.5 Declaring Media Type Capabilities . . . . . . . . ... .. ... L 18
3.6 Annotation Inheritance . . . . . . . . ... oL 19
3.7 Matching Requests to Resource Methods . . . . . . .. .. ... .. ... ... . ...... 20
3.7.1 Request Preprocessing . . . . . . . . . . .. 20

3772 Request Matching . . . . . . . . ... 20

3.7.3 Converting URI Templates to Regular Expressions . . . . . ... ... ... .... 24

3.8 Determining the MediaType of Responses . . . . . . . ... .. ... ... ... ...... 25
4 Providers 27
4.1 Lifecycleand Environment . . . . . . . . . . . . .. ... 27
4.1.1 Automatic Discovery . . . . . . . . . ... 27

4.1.2  CONnStrUCIOrS . .« ¢ v v v v e et e e e e e e e e e e 27

4.2 Entity Providers . . . . . . . L 28
42.1 Message Body Reader . . . . ... ... .. ... 28

422 Message Body Writer . . . . . .. ... 28

423 Declaring Media Type Capabilities . . . . . . .. ... ... ... ... ...... 29

424 Standard Entity Providers . . . . . . . .. ... ... 29

425 Transfer Encoding . . . . . . . . . . . . ... 30

42.6 ContentEncoding . . .. .. .. ... 31

43 Context Providers . . . . . . . . L 31
4.3.1 Declaring Media Type Capabilities . . . . .. ... ... ... ... ... ..... 31

4.4 Exception Mapping Providers . . . . . . . . . ... 31
45 EXCepHONS . . . . . . . o e e e e e 32
45.1 ServerRuntime . . . . . . . . ... 32

452 ClientRuntime . . . . . . . . . . . e 32

5 Client API 33
5.1 Bootstrapping aClientInstance . . . . . . . . . ... ... L 33
5.2 Resource ACCESS . . . . v v v v it e e e e e e e e e e 33
5.3 ClientTargets . . . . . . . o o e e e e e 34
54 TypedEntities . . . . . . . . . . e e e e e e e 34
5.5 Invocations . . . . . ... e e 35

viii JAX-RS May 22,2013



5.6 Configurable Types . . . . . . . .. .. ... ... ...

5.6.1 Filters and Entity Interceptors . . . . . ... ... ......

Filters and Interceptors

6.1 Introduction . . . . . . .. . ...
6.2 Filters . . . . . ..
6.3 Entity Interceptors . . . . . .. ... L
6.4 Lifecycle . . ... .. . ...
6.5 Binding . .. .. ... ...
6.5.1 GlobalBinding . . . ... ... ... ... ... ...
6.5.2 NameBinding ... ......................
6.5.3 DynamicBinding . . . . . . ... ... oL
6.54 BindinginClient APT . . ... ... ... ..........
6.6 Priorities. . . . . . ...
6.7 Exceptions. . . . . . . . ...
6.7.1 ServerRuntime . . . . . ... ... ... ... ...,
6.7.2 ClientRuntime . . . ... ... ... ... ..........
Validation
7.1 Constraint Annotations . . . . . . . . .. ..ot
7.2 Annotations and Validators . . . . . ... ... L Lo
7.3 Entity Validation . . . .. ... ... L o
7.4 Default ValidationMode . . . . ... ... ... .. ... .. ... .
7.5 Annotation Inheritance . . . . . ... ... L oL
7.6 Validation and Error Reporting . . . . . . ... ... ... ......

Asynchronous Processing

8.1 Introduction . . . . . . . . . . ... ..
82 Server APL . . . . . .
8.2.1 Timeouts and Callbacks . . . .. ... ... ... ......
83 EJBResourceClasses . . . . . . ... ... ...
84 ClientAPL . . . . . . . ..
Context
0.1 ConCurrenCy . . . . . . . o v v v vt
9.2 ContextTypes . . . . . . . . o v e

May 22,2013 JAX-RS

37
37
38
39
40
41
41
41
42
43
43
44
44
44

45
45
47
47
49
49
49

51
51
51
52
53
53

55
55
55

X



9.2.1 Application . . . . . ... 55

9.22 URIsand URITemplates . . . . . . . . . ... . ... 55

9.23 Headers . . . . . . . . .. 56

9.2.4 Content Negotiation and Preconditions . . . . . ... ... ... ... ....... 56

9.2.5 Security Context . . . . . . . ... e e e e e e e 57

9.2.6 Providers . . . . . . .. e 57

9.277 Resource CONtEXt . . . . . . . . v vt vt e e e e e e e 57

9.2.8 Configuration . . . . . . . . .. L e 58

10 Environment 59
10.1 ServletContainer . . . . . . . . . . . oL e e 59
10.2 Integration with Java EE Technologies . . . . . . . .. ... ... ... ... ........ 59
10.2.1 Servlets . . . . . . o 60

10.2.2 Managed Beans . . . . . . . . . . ... 60

10.2.3 Context and Dependency Injection (CDI) . . . . ... ... .. ... ... ..... 60

10.2.4 Enterprise JavaBeans (EJBs) . . . . . . . ... .. o o 61

10.2.5 Bean Validation . . . . . . . . . ... L e 62

10.2.6 Java APIfor JSON Processing . . . . . . . . . ... .. .. ... ... 62

10.2.7 Additional Requirements . . . . . . . . .. ... L o 62

103 Other . . . . . o e 62

11 Runtime Delegate 63
I11.1 Configuration . . . . . . . . . . o i e e e e e e e e 63

A Summary of Annotations 65
B HTTP Header Support 69
C Processing Pipeline 71
D Change Log 75
D.1 Changes Since 2.0 Proposed Final Draft . . . . ... ... ... ... ... ... ...... 75
D.2 Changes Since 2.0 Public Review Draft . . . . ... ... .. ... ... . ...... 75
D.3 Changes Since 2.0 Early Draft (Third Edition) . . . . . . ... ... ... ... . ...... 76
D.4 Changes Since 2.0 Early Draft (Second Edition) . . . . . . ... .. ... ... ....... 77
D.5 Changes Since 2.0 Early Draft . . . . . . . ... ... ... . ... ... 78
D.6 Changes Since 1.1 Release . . . . . . . . . . . . . . . . . . 79

X JAX-RS May 22,2013



D.7 Changes Since 1.0 Release . . . . .

D.8 Changes Since Proposed Final Draft
D.9 Changes Since Public Review Draft

Bibliography

May 22, 2013

JAX-RS

X1



Xii JAX-RS May 22,2013



Chapter 1

Introduction

This specification defines a set of Java APIs for the development of Web services built according to the
Representational State Transfer[1] (REST) architectural style. Readers are assumed to be familiar with
REST; for more information about the REST architectural style and RESTful Web services, see:

* Architectural Styles and the Design of Network-based Software Architectures|[1]
* The REST Wiki[2]

* Representational State Transfer on Wikipedia[3]

1.1 Status

This is the final release of version 2.0. The issue tracking system for this release can be found at:
http://java.net/jira/browse/JAX_RS_SPEC

The corresponding Javadocs can be found online at:
http://jax-rs-spec.java.net/

The reference implementation can be obtained from:
http://jersey.java.net/

The expert group seeks feedback from the community on any aspect of this specification, please send com-
ments to:

users @jax-rs-spec.java.net

May 22,2013 JAX-RS 1



Chapter 1. Introduction

1.2 Goals

The following are the goals of the API:

POJO-based The API will provide a set of annotations and associated classes/interfaces that may be used
with POJOs in order to expose them as Web resources. The specification will define object lifecycle
and scope.

HTTP-centric The specification will assume HTTP[4] is the underlying network protocol and will pro-
vide a clear mapping between HTTP and URI[5] elements and the corresponding API classes and
annotations. The API will provide high level support for common HTTP usage patterns and will be
sufficiently flexible to support a variety of HTTP applications including WebDAV[6] and the Atom
Publishing Protocol[7].

Format independence The API will be applicable to a wide variety of HTTP entity body content types. It
will provide the necessary pluggability to allow additional types to be added by an application in a
standard manner.

Container independence Artifacts using the API will be deployable in a variety of Web-tier containers.
The specification will define how artifacts are deployed in a Servlet[8] container and as a JAX-WS[9]
Provider.

Inclusion in Java EE The specification will define the environment for a Web resource class hosted in a
Java EE container and will specify how to use Java EE features and components within a Web resource
class.

1.3 Non-Goals

The following are non-goals:
Support for Java versions prior to J2SE 6.0 The API will make extensive use of annotations and will
require J2SE 6.0 or later.

Description, registration and discovery The specification will neither define nor require any service de-
scription, registration or discovery capability.

HTTP Stack The specification will not define a new HTTP stack. HTTP protocol support is provided by a
container that hosts artifacts developed using the API.

Data model/format classes The API will not define classes that support manipulation of entity body con-
tent, rather it will provide pluggability to allow such classes to be used by artifacts developed using
the APL.

1.4 Conventions

The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD
NOT’, ‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’ in this document are to be interpreted as described
in RFC 2119[10].

2 JAX-RS May 22,2013



1.5. Terminology

Figure 1.1: Example Java Code
package com.example.hello;

public class Hello {
public static void main(String argsl[]) {
System.out.println("Hello World");
}

~N N BN

Java code and sample data fragments are formatted as shown in figure 1.1:

URIs of the general form ‘http://example.org/..” and ‘http://example.com/...” represent application or
context-dependent URIs.

All parts of this specification are normative, with the exception of examples, notes and sections explicitly
marked as ‘Non-Normative’. Non-normative notes are formatted as shown below.

Note: This is a note.

1.5 Terminology

Resource class A Java class that uses JAX-RS annotations to implement a corresponding Web resource,
see Chapter 3.

Root resource class A resource class annotated with @Path. Root resource classes provide the roots of the
resource class tree and provide access to sub-resources, see Chapter 3.

Request method designator A runtime annotation annotated with @HttpMethod. Used to identify the
HTTP request method to be handled by a resource method.

Resource method A method of a resource class annotated with a request method designator that is used to
handle requests on the corresponding resource, see Section 3.3.

Sub-resource locator A method of a resource class that is used to locate sub-resources of the correspond-
ing resource, see Section 3.4.1.

Sub-resource method A method of a resource class that is used to handle requests on a sub-resource of
the corresponding resource, see Section 3.4.1.

Provider An implementation of a JAX-RS extension interface. Providers extend the capabilities of a JAX-
RS runtime and are described in Chapter 4.

Filter A provider used for filtering request and responses.

Entity Interceptor A provider used for intercepting calls to message body readers and writers.
Invocation A Client API object that can be configured to issue an HTTP request.

WebTarget The recipient of an Invocation, identified by a URI.

Link A URI with additional meta-data such as a media type, a relation, a title, etc.

May 22,2013 JAX-RS 3



Chapter 1. Introduction

1.6 Expert Group Members

This specification is being developed as part of JSR 339 under the Java Community Process. It is the result
of the collaborative work of the members of the JSR 339 Expert Group. The following are the present expert
group members:

— Jan Algermissen (Individual Member)
— Florent Benoit (OW?2)

— Sergey Beryozkin (Talend)

— Adam Bien (Individual Member)

— Bill Burke (Red Hat Middleware LLC)
— Clinton Combs (Individual Member)
— Bill De Hora (Individual Member)

— Markus Karg (Individual Member)

— Sastri Malladi (Ebay)

— Wendy Raschke (IBM)

— Julian Reschke (Individual Member)

— Guilherme Silveira (Individual Member)

— Dionysios Synodinos (Individual Member)
The following are former group members of the JSR 339 Expert Group:
— Tony Ng (Ebay)

JAX-RS 1.X has been developed as part of JSR 311 under the Java Community Process. The following were
group members of the JSR 311 Expert Group:

— Heiko Braun (Red Hat Middleware LLC)
— Larry Cable (BEA Systems)

— Roy Fielding (Day Software, Inc.)

— Harpreet Geekee (Nortel)

— Nickolas Grabovas (Individual Member)
— Mark Hansen (Individual Member)

— John Harby (Individual Member)

— Hao He (Individual Member)

— Ryan Heaton (Individual Member)

— David Hensley (Individual Member)

— Stephan Koops (Individual Member)

— Changshin Lee (NCsoft Corporation)

— Francois Leygues (Alcatel-Lucent)

4 JAX-RS May 22,2013



1.7. Acknowledgements

— Jerome Louvel (Individual Member)

— Hamid Ben Malek (Fujitsu Limited)

— Ryan J. McDonough (Individual Member)
— Felix Meschberger (Day Software, Inc.)

— David Orchard (BEA Systems)

— Dhanji R. Prasanna (Individual Member)
— Julian Reschke (Individual Member)

— Jan Schulz-Hofen (Individual Member)

— Joel Smith (IBM)

— Stefan Tilkov (innoQ Deutschland GmbH)

1.7 Acknowledgements

During the course of this JSR we received many excellent suggestions. Special thanks to Martin Matula,
Gerard Davison, Jakub Podlesak and Pavel Bucek from Oracle as well as Pete Muir and Emmanuel Bernard
from Red Hat. Also to Gunnar Morling and Ron Sigal (Red Hat) for their suggestions on how to improve
resource validation, and to Mattias Arthursson for his insights on hypermedia.

During the course of the JSR 311 we received many excellent suggestions on the JSR and Jersey (RI)
mailing lists, thanks in particular to James Manger (Telstra) and Reto Bachmann-Gmiir (Trialox) for their
contributions. The following individuals (all Sun Microsystems at the time) have also made invaluable
technical contributions: Roberto Chinnici, Dianne Jiao (TCK), Ron Monzillo, Rajiv Mordani, Eduardo
Pelegri-Llopart, Jakub Podlesak (RI) and Bill Shannon.

The GenericEntity class was inspired by the Google Guice TypeLiteral class. Our thanks to Bob Lee
and Google for donating this class to JAX-RS.

May 22,2013 JAX-RS 5



Chapter 1. Introduction

6 JAX-RS May 22,2013



Chapter 2

Applications

A JAX-RS application consists of one or more resources (see Chapter 3) and zero or more providers (see
Chapter 4). This chapter describes aspects of JAX-RS that apply to an application as a whole, subsequent
chapters describe particular aspects of a JAX-RS application and requirements on JAX-RS implementations.

2.1 Configuration

The resources and providers that make up a JAX-RS application are configured via an application-supplied
subclass of Application. An implementation MAY provide alternate mechanisms for locating resource
classes and providers (e.g. runtime class scanning) but use of Application is the only portable means of
configuration.

2.2 \Verification

Specific application requirements are detailed throughout this specification and the JAX-RS Javadocs. Im-
plementations MAY perform verification steps that go beyond what it is stated in this document.

A JAX-RS implementation MAY report an error condition if it detects that two or more resources could
result in an ambiguity during the execution of the algorithm described Section 3.7.2. For example, if two
resource methods in the same resource class have identical (or even intersecting) values in all the annotations
that are relevant to the algorithm described in that section. The exact set of verification steps as well as the
error reporting mechanism is implementation dependent.

2.3 Publication

Applications are published in different ways depending on whether the application is run in a Java SE
environment or within a container. This section describes the alternate means of publication.

2.3.1 Java SE

In a Java SE environment a configured instance of an endpoint class can be obtained using the create-
Endpoint method of Runt imeDelegate. The application supplies an instance of Application and the

May 22,2013 JAX-RS 7



Chapter 2. Applications

type of endpoint required. An implementation MAY support zero or more endpoint types of any desired
type.

How the resulting endpoint class instance is used to publish the application is outside the scope of this
specification.

2.3.1.1 JAX-WS

An implementation that supports publication via JAX-WS MUST support createEndpoint with an end-
point type of javax.xml.ws.Provider. JAX-WS describes how a Provider based endpoint can be
published in an SE environment.

2.3.2 Servlet

A JAX-RS application is packaged as a Web application in a . war file. The application classes are packaged
in WEB-INF/classes or WEB-INF/1lib and required libraries are packaged in WEB-INF/1ib. See the
Servlet specification for full details on packaging of web applications.

It is RECOMMENDED that implementations support the Servlet 3 framework pluggability mechanism to
enable portability between containers and to avail themselves of container-supplied class scanning facilities.
When using the pluggability mechanism the following conditions MUST be met:

* If no Application subclass is present, JAX-RS implementations are REQUIRED to dynamically
add a servlet and set its name to

javax.ws.rs.core.Application

and to automatically discover all root resource classes and providers which MUST be packaged with
the application. Additionally, the application MUST be packaged with a web.xml that specifies a
servlet mapping for the added servlet. An example of such a web . xm1 file is:

1 <web—app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
2 xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"

3 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

4 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

5 <servlet>

6 <servlet-name>javax.ws.rs.core.Application</servlet—-name>
7 </servlet>

8 <servlet-mapping>

9 <servlet-name>javax.ws.rs.core.Application</servlet—-name>
10 <url-pattern>/myresources/x</url-pattern>

11 </servlet-mapping>

12 </web-app>

* If an Application subclass is present:

— If there is already a servlet that handles this application. That is, a servlet that has an initialization
parameter named

javax.ws.rs.Application

whose value is the fully qualified name of the Application subclass, then no additional con-
figuration steps are required by the JAX-RS implementation.

8 JAX-RS May 22,2013



2.3. Publication

— If no servlet handles this application, JAX-RS implementations are REQUIRED to dynami-
cally add a servlet whose fully qualified name must be that of the Application subclass. If
the Application subclass is annotated with @ApplicationPath, implementations are RE-
QUIRED to use the value of this annotation appended with */*” to define a mapping for the added
server. Otherwise, the application MUST be packaged with a web.xml that specifies a servlet
mapping. For example, if org.example.MyApplication is the name of the Application
subclass, a sample web . xm1 would be:

1 <web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
2 xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

3 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

4 http://java.sun.com/xml/ns/javaee/web—app_3_0.xsd">

5 <servlet>

6 <servlet-name>org.example.MyApplication</servlet—-name>
7 </servlet>

8 <servlet-mapping>

9 <servlet-name>org.example.MyApplication</servlet-name>
10 <url-pattern>/myresources/*</url-pattern>

11 </servlet-mapping>

12 </web-app>

When an Application subclass is present in the archive, if both Application.getClasses
and Application.getSingletons return an empty collection then all root resource classes and
providers packaged in the web application MUST be included and the JAX-RS implementation is
REQUIRED to discover them automatically by scanning a .war file as described above. If either
getClasses or getSingletons returns a non-empty collection then only those classes or single-
tons returned MUST be included in the published JAX-RS application.

The following table summarizes the Servlet 3 framework pluggability mechanism:

Condition | Action | Servlet Name | web.xml |

No Application | Addservlet | javax.ws.rs.core.Application | Required for servlet mapping
subclass
Application sub- | (none) (already defined) Not required
class handled by ex-
isting servlet

Application sub- | Add servlet | Subclass name If no @ApplicationPath
class not handled by then required for servlet map-
existing servlet ping

Table 2.1: Summary of Servlet 3 framework pluggability cases

If not using the Servlet 3 framework pluggability mechanism (e.g. in a pre-Servlet 3.0 container), the
servlet-class or filter-class element of the web.xml descriptor SHOULD name the JAX-RS
implementation-supplied servlet or filter class respectively. The Application subclass SHOULD be iden-
tified using an init-param with a param-name of javax.ws.rs.Application.

Note that the Servlet 3 framework pluggability mechanism described above is based on servlets and not
filters. Applications that prefer to use an implementation-supplied filter class must use the pre-Servlet 3.0
configuration mechanism.

May 22,2013 JAX-RS 9



Chapter 2. Applications

2.3.3 Other Container

An implementation MAY provide facilities to host a JAX-RS application in other types of container, such
facilities are outside the scope of this specification.

10 JAX-RS May 22,2013



Chapter 3

Resources

Using JAX-RS a Web resource is implemented as a resource class and requests are handled by resource
methods. This chapter describes resource classes and resource methods in detail.

3.1 Resource Classes

A resource class is a Java class that uses JAX-RS annotations to implement a corresponding Web resource.
Resource classes are POJOs that have at least one method annotated with @Path or a request method desig-
nator.

3.1.1 Lifecycle and Environment

By default a new resource class instance is created for each request to that resource. First the constructor (see
Section 3.1.2) is called, then any requested dependencies are injected (see Section 3.2), then the appropriate
method (see Section 3.3) is invoked and finally the object is made available for garbage collection.

An implementation MAY offer other resource class lifecycles, mechanisms for specifying these are outside
the scope of this specification. E.g. an implementation based on an inversion-of-control framework may
support all of the lifecycle options provided by that framework.

3.1.2 Constructors

Root resource classes are instantiated by the JAX-RS runtime and MUST have a public constructor for which
the JAX-RS runtime can provide all parameter values. Note that a zero argument constructor is permissible
under this rule.

A public constructor MAY include parameters annotated with one of the following: @Context, @Header-
Param, @CookieParam, @MatrixParam, @QueryParam or @PathParam. However, depending on the
resource class lifecycle and concurrency, per-request information may not make sense in a constructor. If
more than one public constructor is suitable then an implementation MUST use the one with the most
parameters. Choosing amongst suitable constructors with the same number of parameters is implementation
specific, implementations SHOULD generate a warning about such ambiguity.

Non-root resource classes are instantiated by an application and do not require the above-described public
constructor.

May 22,2013 JAX-RS 11



Chapter 3. Resources

3.2 Fields and Bean Properties

When a resource class is instantiated, the values of fields and bean properties annotated with one the follow-
ing annotations are set according to the semantics of the annotation:

@MatrixParam Extracts the value of a URI matrix parameter.
@QueryParam Extracts the value of a URI query parameter.
@PathParam Extracts the value of a URI template parameter.
@CookieParam Extracts the value of a cookie.
@HeaderParam Extracts the value of a header.

@Context Injects an instance of a supported resource, see chapters 9 and 10 for more details.

Because injection occurs at object creation time, use of these annotations (with the exception of @Context)
on resource class fields and bean properties is only supported for the default per-request resource class
lifecycle. An implementation SHOULD warn if resource classes with other lifecycles use these annotations
on resource class fields or bean properties.

A JAX-RS implementation is only required to set the annotated field and bean property values of instances
created by its runtime. Objects returned by sub-resource locators (see Section 3.4.1) are expected to be
initialized by their creator.

Valid parameter types for each of the above annotations are listed in the corresponding Javadoc, however in
general (excluding @Context) the following types are supported:

1. Types for which a ParamConverter is available via a registered ParamConverterProvider. See
Javadoc for these classes for more information.

2. Primitive types.
3. Types that have a constructor that accepts a single St ring argument.

4. Types that have a static method named valueOf or fromString with a single String argument
that return an instance of the type. If both methods are present then valueof MUST be used unless
the type is an enum in which case fromString MUST be used'.

5. List<T>, Set<T>, or SortedSet<T>, where T satisfies 3 or 4 above.

The DefaultVvalue annotation may be used to supply a default value for some of the above, see the Javadoc
for Defaultvalue for usage details and rules for generating a value in the absence of this annotation and
the requested data. The Encoded annotation may be used to disable automatic URI decoding for @Mat rix-
Param, @QueryParam, and @PathParam annotated fields and properties.

A WebApplicationException thrown during construction of field or property values using 3 or 4 above
is processed directly as described in Section 3.3.4. Other exceptions thrown during construction of field
or property values using 3 or 4 above are treated as client errors: if the field or property is annotated with
@MatrixParam, @QueryParam Oor @PathParam then an implementation MUST generate an instance of

"Due to limitations of the built-in valueOf method that is part of all Java enumerations, a £ romSt ring method is often
defined by the enum writers. Consequently, the f romSt ring method is preferred when available.

12 JAX-RS May 22,2013



3.3. Resource Methods

NotFoundException (404 status) that wraps the thrown exception and no entity; if the field or property is
annotated with @HeaderParam or @CookieParam then an implementation MUST generate an instance of
BadRequestException (400 status) that wraps the thrown exception and no entity. Exceptions MUST be
processed as described in Section 3.3.4.

3.3 Resource Methods

Resource methods are methods of a resource class annotated with a request method designator. They are
used to handle requests and MUST conform to certain restrictions described in this section.

A request method designator is a runtime annotation that is annotated with the @Ht t pMethod annotation.
JAX-RS defines a set of request method designators for the common HTTP methods: @GET, @POST, @GPUT,
@DELETE, @HEAD and @OPTIONS. Users may define their own custom request method designators including
alternate designators for the common HTTP methods.

3.3.1 Visibility

Only public methods may be exposed as resource methods. An implementation SHOULD warn users if a
non-public method carries a method designator or @Path annotation.

3.3.2 Parameters

When a resource method is invoked, parameters annotated with @FormParam or one of the annotations
listed in Section 3.2 are mapped from the request according to the semantics of the annotation. Similar to
fields and bean properties:

* The DefaultValue annotation may be used to supply a default value for parameters
* The Encoded annotation may be used to disable automatic URI decoding of parameter values

» Exceptions thrown during construction of parameter values are treated the same as exceptions thrown
during construction of field or bean property values, see Section 3.2. Exceptions thrown during con-
struction of @FormParam annotated parameter values are treated the same as if the parameter were
annotated with @HeaderParam.

3.3.2.1 Entity Parameters
The value of a parameter not annotated with @FormParam or any of the annotations listed in in Section 3.2,
called the entity parameter, is mapped from the request entity body. Conversion between an entity body and

a Java type is the responsibility of an entity provider, see Section 4.2. Resource methods MUST have at
most one entity parameter.

3.3.3 Return Type

Resource methods MAY return void, Response, GenericEntity, or another Java type, these return types
are mapped to a response entity body as follows:

May 22,2013 JAX-RS 13



Chapter 3. Resources

void Results in an empty entity body with a 204 status code.

Response Results in an entity body mapped from the entity property of the Response with the status code
specified by the status property of the Response. A null return value results in a 204 status code.
If the status property of the Response is not set: a 200 status code is used for a non-null entity
property and a 204 status code is used if the entity property is null.

GenericEntity Results in an entity body mapped from the Ent ity property of the GenericEntity. If
the return value is not null a 200 status code is used, a nul1l return value results in a 204 status code.

Other Results in an entity body mapped from the class of the returned instance; if this class is an anonymous
inner class, its superclass is used instead. If the return value is not null a 200 status code is used, a
null return value results in a 204 status code.

Methods that need to provide additional metadata with a response should return an instance of Response,
the ResponseBuilder class provides a convenient way to create a Response instance using a builder
pattern.

Conversion between a Java object and an entity body is the responsibility of an entity provider, see Section
4.2. The return type of a resource method and the type of the returned instance are used to determine the
raw type and generic type supplied to the i sWritable m