Pig UDF Manual

Table of contents

L OVEIVIEIW. ...t etee et et e et e et e e e e e beesateeabeeeaseeaseeease e beeeaseeseesaseeseeaaseeseesateenseeannenneesn 2
2 EVEAl FUNCHIONS......c.eiiceeccee ettt ettt et e et e et e e ebe e st e e b e e eneeeneeennas 2
3 L0ad/SIOre FUNCLIONS........c.eieiie ettt et s re e sna e e ae e nneenreas 17
4 ComMPAriSON FUNCLIONS.........cooiiiiciestieie ettt s esneen e s e neeneenne e 21
5 Builtin Functions and FUNCtiON REPOSITONES.........ccvevieieeierece et 21
6 ACCUMUIGLON INEEITACE.veeeeeeeeiieesie et sn e e ne e reeneenns 22

7 AGVANCEA TOPICS....c.eieitiriieiieieee ettt sttt b bbbt bt se e e e et e be st e s beebenae e e e e 23

Pig UDF Manual

1. Overview

Pig provides extensive support for user-defined functions (UDFs) as away to specify custom
processing. Functions can be a part of amost every operator in Pig. This document describes
how to use existing functions as well as how to write your own functions.

2. Eval Functions

2.1. How to Use a Simple Eval Function

Eval isthe most common type of function. It can be used in FOREACH statements as shown
in this script:

- nyscript.pig
REG STER myudfs. j ar;
A = LOAD 'student _data' AS (name: chararray, age: int, gpa: float);
B = FOREACH A GENERATE nyudfs. UPPER(nane) ;
DUMP B;
The command below can be used to run the script. Note that all examplesin this document
run in local mode for ssimplicity but the examples can aso run in Hadoop mode. For more

information on how to run Pig, please see the PigTutorial.

java -cp pig.jar org.apache.pig.Main -x |ocal nyscript.pig

Thefirst line of the script providesthe location of thej ar fi | e that contains the UDF.
(Note that there are no quotes around the jar file. Having quotes would result in a syntax
error.) To locate the jar file, Pig first checksthe cl asspat h. If thejar file can't be found in
the classpath, Pig assumes that the location is either an absolute path or a path relative to the
location from which Pig was invoked. If the jar file can't be found, an error will be printed:
java.io.| Oexception: Can't read jar file: nyudfs.jar.

Multipler egi st er commands can be used in the same script. If the same fully-qualified
function is present in multiple jars, the first occurrence will be used consistently with Java
semantics.

The name of the UDF has to be fully qualified with the package name or an error will be
reported: j ava. i 0. | OException: Cannot instanti ate: UPPER. Also, the
function name is case sensitive (UPPER and upper are not the same). A UDF can take one or
more parameters. The exact signature of the function should clear from its documentation.

The function provided in this example takes an ASCI| string and produces its uppercase
version. If you are familiar with column transformation functions in SQL, you will recognize

Page 2

Pig UDF Manual

that UPPER fits this concept. However, as we will seelater in the document, eval functions
in Pig go beyond column transformation functions and include aggregate and filter functions.

If you arejust a user of UDFs, thisis most of what you need to know about UDFsto use
them in your code.

2.2. How to Write a Simple Eval Function
Let'snow look at the implementation of the UPPER UDF.

package nyudfs;

I mport java.io. | OException;

i nport org. apache. pi g. Eval Func;

i nport org.apache. pi g. dat a. Tupl e;

i mport org.apache.pig.inpl.util.Wappedl OExcepti on

public class UPPER extends Eval Func (String)

public String exec(Tuple input) throws | OException {
if (input == null || input.size() == 0)
return null;

try{
String str = (String)input.get(0);
return str.toUpperCase();
}cat ch(Exception e){
throw W appedl OExcepti on. wr ap(" Caught exception processing
i nput row ", e);

}
}

Thefirst line indicates that the function is part of the nyudf s package. The UDF class
extends the Eval Func classwhich isthe base classfor al eval functions. Itis
parameterized with the return type of the UDF whichisaJava St ri ng in this case. We will
look into the Eval Func classin more detail later, but for now all we need to do isto
implement the exec function. Thisfunction isinvoked on every input tuple. The input into
the function is atuple with input parameters in the order they are passed to the function in the
Pig script. In our example, it will contain asingle string field corresponding to the student
name.

Thefirst thing to decide iswhat to do with invalid data. This depends on the format of the
data. If the datais of type byt ear r ay it meansthat it has not yet been converted to its
proper type. In this case, if the format of the data does not match the expected type, aNULL
value should be returned. If, on the other hand, the input data is of another type, this means
that the conversion has already happened and the data should be in the correct format. Thisis
the case with our example and that's why it throws an error (line 16.) Note that

W appedl OExcept i on isahelper class to convert the actual exception to an

Page 3

Pig UDF Manual

| OException.
Also, note that lines 10-11 check if the input datais null or empty and if so returns null.
The actual function implementation ison lines 13-14 and is self-explanatory.

Now that we have the function implemented, it needs to be compiled and included in ajar.
You will need to build pi g. j ar to compile your UDF. Y ou can use the following set of
commands to checkout the code from SVN repository and create pig.jar:

svn co http://svn. apache. or g/ repos/ asf/ hadoop/ pi g/t runk

cd trunk

ant

You should see pi g. j ar inyour current working directory. The set of commands below
first compiles the function and then creates ajar file that containsit.

cd nyudfs
javac -cp pig.jar UPPER java
cd

jar';cf myudf s. jar myudfs

Y ou should now see myudf s. j ar inyour current working directory. Y ou can use thisjar
with the script described in the previous section.

2.3. Aggregate Functions

Aggregate functions are another common type of eval function. Aggregate functions are
usually applied to grouped data, as shown in this script:

- nyscript2.pig

A = LOAD 'student data' AS (nanme: chararray, age: int, gpa: float);
B = GROUP A BY nane;
C = FOREACH B GENERATE gr oup, COUNT(A);

DUMP C,

The script above uses the COUNT function to count the number of students with the same
name. There are a couple of things to note about this script. First, even though we are using a
function, thereisnor egi st er command. Second, the function is not qualified with the
package name. The reason for both isthat COUNT isabui | t i n function meaning that it
comes with the Pig distribution. These are the only two differences between builtins and
UDFs. Builtins are discussed in more detail later in this document.

An aggregate function is an eval function that takes a bag and returns a scalar value. One
interesting and useful property of many aggregate functions is that they can be computed
incrementally in adistributed fashion. We call these functionsal gebr ai ¢c. COUNT isan
example of an algebraic function because we can count the number of elementsin a subset of

Page 4

Pig UDF Manual

the data and then sum the counts to produce afinal output. In the Hadoop world, this means
that the partial computations can be done by the map and combiner, and the final result can
be computed by the reducer.

It isvery important for performance to make sure that aggregate functions that are algebraic
are implemented as such. Let'slook at the implementation of the COUNT function to see
what this means. (Error handling and some other code is omitted to save space. The full code
can be accessed here.

COUNT implements Al gebr ai c interface which looks like this:

Page 5

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/COUNT.java?view=markup

Pig UDF Manual

For afunction to be algebraic, it needs to implement Al gebr ai ¢ interface that consist of
definition of three classes derived from Eval Func. The contract is that the exec function
of thel ni ti al classiscalled once and is passed the original input tuple. Itsoutput is a
tuple that contains partial results. The exec function of the | nt er med class can be called
zero or more times and takes as its input a tuple that contains partial results produced by the
I ni tial classor by prior invocations of the | nt er med class and produces a tuple with
another partial result. Finally, the exec function of the Fi nal classis called and produces
the final result as a scalar type.

Here's the way to think about thisin the Hadoop world. The exec function of thel ni ti al
classisinvoked once by the map process and produces partial results. The exec function of
thel nt er med classisinvoked once by each conbi ner invocation (which can happen
zero or more times) and also produces partial results. The exec function of the Fi nal class
isinvoked once by the reducer and produces the final result.

Take alook at the COUNT implementation to see how thisis done. Note that the exec
function of thel ni ti al and| nt er med classes is parameterized with Tupl e and the
exec of theFi nal classis parameterized with the real type of the function, which in the
case of the COUNT isLong. Also, note that the fully-qualified name of the class needsto be
returned fromget I ni ti al ,get | nt er med, and get Fi nal methods.

2.4. Filter Functions

Filter functions are eval functions that return abool ean value. Filter functions can be used
anywhere a Boolean expression is appropriate, including the FI LTER operator or bi ncond
expression.

The example below usesthe | sEnpy builtin filter function to implement joins.

- inner join
A = LOAD 'student data' AS (nane: chararray, age: int, gpa: float);
B = LOAD 'voter_data' AS (nane: chararray, age: int, reglistration:
chararay, contributions: float);

C = COGROUP A BY nane, B BY nane;

D = FILTER C BY not IsErrpty(A)

E = FILTER D BY not |sEnpty(B);

F = FOREACH E CGENERATE f | atten(A) flatten(B);

DUMP F;

Note that, even if filtering is omitted, the same results will be produced because the
f or each resultsis a cross product and cross products get rid of empty bags. However,
doing up-front filtering is more efficient since it reduces the input of the cross product.

- full outer join
A = LOAD 'student data' AS (nane: chararray, age: int, gpa: float);

Page 6

Pig UDF Manual

The implementation of the | sEnpt y function looks like this:

2.5. Pig Types

The main thing to know about Pig's type system is that Pig uses native Javatypes for amost
all of itstypes, as shown in this table.

Pig Type Java Class
bytearray DataByteArray
chararray String
Page 7

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig UDF Manual

int I nteger

long Long

float Float

double Double

tuple Tuple

bag DataBag

map Map<Object, Object>

All Pig-specific classes are available here.

Tupl e and Dat aBag are different in that they are not concrete classes but rather interfaces.
This enables users to extend Pig with their own versions of tuples and bags. As aresult,
UDFs cannot directly instantiate bags or tuples; they need to go through factory classes:
Tupl eFact ory and BagFact ory.

The builtin TOKENI ZE function shows how bags and tuples are created. A function takes a
text string as input and returns a bag of words from the text. (Note that currently Pig bags
always contain tuples.)

Page 8

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/data/

Pig UDF Manual

2.6. Schema

The latest version of Pig uses type information for validation and performance. It is
important for UDFs to participate in type propagation. Until now, our UDFs made no effort
to communicate their output schemato Pig. Thisis because, most of the time, Pig can figure
out thisinformation by using Java's Reflection. If your UDF returns a scalar or amap, no
work isrequired. However, if your UDF returnsat upl e or abag (of tuples), it needsto
help Pig figure out the structure of the tuple.

If aUDF returnsat upl e or abag and schemainformation is not provided, Pig assumes
that the tuple contains asingle field of type byt ear r ay. If thisis not the case, then not
specifying the schema can cause failures. We look at this next.

Let's assume that we have UDF Swap that, given atuple with two fields, swaps their order.
L et's assume that the UDF does not specify a schema and look at the scripts below:

This script will result in the following error cause by line 4.

Thisis because Pig isonly aware of two columnsin B while line 4 is requesting the third
column of the tuple. (Column indexing in Pig starts with 0.)

The function, including the schema, looks like this:

Page 9

http://java.sun.com/developer/technicalArticles/ALT/Reflection/

Pig UDF Manual

The function creates a schemawith asingle field (of type

Fi el dSchema=) of type =t upl e. Thename of thefield is constructed using the
get SchemaName function of the Eval Func class. The name consists of the name of the
UDF function, the first parameter passed to it, and a sequence number to guarantee
uniqueness. In the previous script, if you replacedunp D; withdescri be B; ,youwill
see the following output:

The second parameter to the Fi el dSchenma constructor is the schema representing this
field, which in this caseis atuple with two fields. The third parameter represents the type of
the schema, which in this caseisa TUPLE. All supported schema types are defined in the
or g. apache. pi g. dat a. Dat aType class.

Page 10

Pig UDF Manual

You need to import theor g. apache. pi g. dat a. Dat aType classinto your code to
define schemas. Y ou also need to import the schema class

or g. apache. pi g. i npl . | ogi cal Layer. schema. Schenma.

The example above shows how to create an output schema for atuple. Doing thisfor abag is
very similar. Let's extend the TOKENI ZE function to do that:

Page 11

Pig UDF Manual

}

public Schema out put Schema(Schena i nput) {

try{
Schema bagSchema = new Schenma();

bagSchenma. add(new Schera. Fi el dSchema("t oken",
Dat aType. CHARARRAY)) ;

return new Schema(new
Scherr;a. Fi el dSchema(get SchemaNane(t hi s. get C ass() . get Nane() .t oLower Case(),
i nput),
bagSchenms,
Dat aType. BAG)) ;
}catch (Exception e){
return null;

}
}
Asyou can see, thisisvery similar to the output schema definition in the Swap function.
One difference isthat instead of reusing input schema, we create a brand new field schemato

represent the tokens stored in the bag. The other difference is that the type of the schema
created is BAG (not =TUPLE=).

2.7. Error Handling

There are several types of errorsthat can occur in a UDF:

1. Anerror that affects a particular row but is not likely to impact other rows. An example
of such an error would be a malformed input value or divide by zero problem. A
reasonable handling of this situation would be to emit awarning and return anull value.
ABS function in the next section demonstrates this approach. The current approach isto
write the warning to st der r . Eventually we would like to pass alogger to the UDFs.
Note that returning a NULL value only makes sense if the malformed valueis of type
byt ear r ay. Otherwise the proper type has been already created and should have an
appropriate value. If thisisnot the case, it isan internal error and should cause the system
to fail. Both cases can be seen in the implementation of the ABS function in the next
section.

2. Aneror that affects the entire processing but can succeed on retry. An example of such a
failureistheinability to open alookup file because the file could not be found. This
could be atemporary environmental issue that can go away on retry. A UDF can signal
thisto Pig by throwing an | OExcept i on aswith the case of the ABS function below.

3. Anerror that affects the entire processing and is not likely to succeed on retry. An
example of such afailureistheinability to open alookup file because of file permission
problems. Pig currently does not have a way to handle this case. Hadoop does not have a
way to handle this case either. It will be handled the same way as 2 above.

Page 12

Pig UDF Manual

Pig provides a helper class W appedl OExcept i on. Theintent hereisto allow you to
convert any exception into | CExcept i on. Its usage can be seen in the UPPER function in
our first example.

2.8. Function Overloading

Before the type system was available in Pig, al values for the purpose of arithmetic
calculations were assumed to be doubles as the safest choice. However, thisis not very
efficient if the datais actually of type integer or long. (We saw about a 2x slowdown of a
guery when using double where integer could be used.) Now that Pig supports types we can
take advantage of the type information and choose the function that is most efficient for the
provided operands.

UDF writers are encouraged to provide type-specific versions of afunction if this can result
in better performance. On the other hand, we don't want the users of the functions to worry
about different functions - the right thing should just happen. Pig allows for thisviaa
function table mechanism as shown in the next example.

This example shows the implementation of the ABS function that returns the absolute value
of anumeric value passed to it asinpuit.

Page 13

Pig UDF Manual

The main thing to notice in this exampleisthe get Ar gToFuncMappi ng() method. This
method returns alist that contains a mapping from the input schema to the class that should
be used to handleit. In this example the main class handlesthe byt ear r ay input and
outsources the rest of the work to other classes implemented in separate files in the same
package. The example of one such classis below. This class handles integer input values.

A note on error handling. The ABS class covers the case of the byt ear r ay which means
the data has not been converted yet to its actual type. Thisiswhy anull valueis returned
when Nunber For mat Except i on isencountered. However, the | nt Abs function isonly
caled if the datais aready of typel nt eger which meansit has aready been converted to
the real type and bad format has been dealt with. Thisiswhy an exception is thrown if the
input can't becast to | nt eger.

The example above covers a reasonably simple case where the UDF only takes one

Page 14

Pig UDF Manual

parameter and there is a separate function for each parameter type. However, thiswill not
aways bethe case. If Pig can't find anexact mat ch ittriestodoabest match. The
rule for the best match isto find the most efficient function that can be used safely. This
means that Pig must find the function that, for each input parameter, provides the smallest
type that is equal to or greater than the input type. The type progression rules are:

i nt =- >=| ong=- >=f | oat =- >=doubl e.

For instance, let's consider function MAX which is part of the pi ggybank described later in
this document. Given two values, the function returns the larger value. The function table for
MAX looks like this:

public List (FuncSpec) getArgToFuncMappi ng() throws FrontendException {
Li st (FuncSpec) funcList = new ArraylList (FuncSpec) ();
Util.addToFuncti onLi st (funcLi st, |ntMx.cl ass. get Nanme(),

Dat aType. | NTEGER) ;
Uti|.addToFuncti onLi st (funcLi st, Doubl eMax. cl ass. get Nane(),

Dat aType. DOUBLE) ;
Uti|.addToFuncti onLi st (funcLi st, Fl oat Max. cl ass. get Nanme(),

Dat aType. FLOAT) ;
Uti|.addToFuncti onLi st (funcLi st, LongMax. cl ass. get Nane(),

Dat aType. LONG) ;

return funclLi st;

TheUWU i | . addToFuncti onLi st function isahelper function that adds an entry to the
list as the first argument, with the key of the class name passed as the second argument, and
the schema containing two fields of the same type as the third argument.

Let's now see how this function can be used in a Pig script:

REG STER pi ggybank. j ar

A = LOAD 'student _data' AS (nane: chararray, gpal: float, gpa2: double);
B = FOREACH A GENERATE nane,

or g. apache. pi g. pi ggybank. eval uati on. mat h. MAX(gpal, gpa2);

DUMP B;

In this example, the function gets one parameter of typef | oat and another of type

doubl e. The best fit will be the function that takes two double values. Pig makes this choice
on the user's behalf by inserting implicit casts for the parameters. Running the script aboveis
equivalent to running the script below:

A = LOAD 'student _data' AS (name: chararray, gpal: float, gpa2: double);
B = FOREACH A GENERATE nane,

or g. apache. pi g. pi ggybank. eval uati on. mat h. MAX((doubl e) gpal, gpa2);

DUMP B;

A special case of thebest fit approach ishandling data without a schema specified. The

Page 15

Pig UDF Manual

type for thisdataisinterpreted as byt ear r ay. Since the type of the datais not known,
there is no way to choose a best fit version. The only time a cast is performed is when the
function table contains only asingle entry. This works well to maintain backward
compatibility.

Let'srevisit the UPPER function from our first example. Asit iswritten now, it would only
work if the data passed to it is of type char ar r ay. To make it work with data whose typeis
not explicitly set, afunction table with a single entry needs to be added:

Now the following script will ran:

2.9. Reporting Progress

A challenge of running alarge shared system is to make sure system resources are used
efficiently. One aspect of this challenge is detecting runaway processes that are no longer
making progress. Pig uses a heartbeat mechanism for this purpose. If any of the tasks stops
sending a heartbeat, the system assumes that it is dead and killsit.

Page 16

Pig UDF Manual

Most of the time, single-tuple processing within a UDF is very short and does not require a
UDF to heartbeat. The same is true for aggregate functions that operate on large bags because
bag iteration code takes care of it. However, if you have afunction that performs a complex
computation that can take an order of minutes to execute, you should add a progress indicator
to your code. Thisisvery easy to accomplish. The Eval Func function provides a

pr ogr ess function that you need to call in your exec method.

For instance, the UPPER function would now ook as follows:

2.10. Import Lists

Animport list allows you to specify the package to which a UDF or a group of UDFs belong,
eliminating the need to qualify the UDF on every call. An import list can be specified viathe
udf.import.list Java property on the Pig command line:

Y ou can supply multiple locations as well:

To make use of import scripts, do the following:

3. Load/Stor e Functions

Page 17

Pig UDF Manual

These user-defined functions control how data goes into Pig and comes out of Pig. Often, the
same function handles both input and output but that does not have to be the case.

3.1. Load Functions

Every load function needs to implement the LoadFunc interface. An abbreviated version is
shown below. The full definition can be seen here.

public interface LoadFunc {

public void bindTo(String fil eNane, BufferedPositionedl nputStreami s,
| ong offset, long end) throws | OException;

public Tuple getNext() throws | OException;

/1 conversion functions

public Integer bytesTolnteger(byte[] b) throws | OException;

publi c Long bytesToLong(byte[] b) throws | OExcepti on;

publ i ¢ RequiredFi el dResponse fi el dsToRead(Requi r edFi el dLi st
requi redFi el dLi st) throws FrontendExcepti on;

public Schema determ neSchema(String fil eNane, ExecType execType,
Dat aSt or age storage) throws | OExcepti on;

bindTo

Thebi ndTo function is called once by each Pig task before it starts processing data. It is
intended to connect the function to its input. It provides the following information:

e« fil eNane - The name of the file from which the datais read. Not used most of the time

e i s -Theinput stream from which the dataisread. It is already positioned at the place
where the function needs to start reading

« of fset - The offset into the stream from which to read. It is equivalent to
i s. getPosition() andnot strictly needed

« end - The position of the last byte that should be read by the function.

In the Hadoop world, the input datais treated as a continuous stream of bytes. A sl i cer,
discussed in the Advanced Topics section, is used to split the data into chunks with each
chunk going to a particular task for processing. This chunk iswhat bi ndTo providesto the
UDF. Note that unless you use a custom dlicer, the default slicer is not aware of tuple
boundaries. This means that the chunk you get can start and end in the middle of a particular
tuple. One common approach isto skip thefirst partial tuple and continue past the end
position to finish processing atuple. Thisiswhat Pi gSt or age does as the example later in
this section shows.

getNext

Theget Next function reads the input stream and constructs the next tuple. It returnsnul |

Page 18

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/LoadFunc.java?view=markup

Pig UDF Manual

when it is done with processing and throwsan | OExcept i on if it fails to process an input
tuple.

conversion routines

Next is abunch of conversion routines that convert datafrom byt ear r ay to the requested
type. Thisrequires further explanation. By default, we would like the loader to do aslittle
per-tuple processing as possible. Thisis because many tuples can be thrown out during
filtering or joins. Also, many fields might not get used because they get projected out. If the
data needs to be converted into another form, we would like this conversion to happen as late
as possible. The magjority of the loaders should return the data as bytearrays and the Pig will
request a conversion from bytearray to the actual type when needed. Let's looks at the
example below:

A = | oad 'student _data' using PigStorage() as (nane: chararray, age: int,
gpa: float);

B =~filter A by age >25;

C = foreach B generate nane;

dunmp G

In this query, only age needsto be converted to its actual type (=int=) right away. name
only needs to be converted in the next step of processing where the datais likely to be much
smaller. gpa isnot used at all and will never need to be converted.

Thisisthe main reason for Pig to separate the reading of the data (which can happen
immediately) from the converting of the data (to the right type, which can happen later). For
ASCII data, Pig provides Ut f 8St or ageConver t er that your loader class can extend and
will take care of all the conversion routines. The code for it can be found here.

Note that conversion rutines should return null values for data that can't be converted to the
specified type.

Loaders that work with binary datalike Bi nSt or age are not going to use this model.
Instead, they will produce objects of the appropriate types. However, they might still need to
define conversion routines in case some of the fieldsin atuple are of type byt earr ay.

fieldsToRead

Theintent of thef i el dsToRead function isto reduce the amount of data returned from the
loader. Pig will evaluate the script and determine the minimal set of columns needed to
execute it. Thisinformation will be passed to thef i el dsToRead function of the loader in
ther equi r edFi el dLi st parameter. The parameter is of type Requi r edFi el dLi st
that is defined as part of the LoadFunc interface. If the loader chooses not to purge unneeded
columns, it can use the following implementation:

Page 19

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/Utf8StorageConverter.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/branches/branch-0.6/src/org/apache/pig/LoadFunc.java?view=markup

Pig UDF Manual

publ i ¢ LoadFunc. Requi r edFi el dResponse

fi el dsToRead(LoadFunc. Requi r edFi el dLi st requiredFi el dLi st) throws
Front endExcepti on {

| return new LoadFunc. Requi r edFi el dResponse(fal se);

Thistells Pig that it should expect the entire column set from the loader. We expect that most
loaders will stick to thisimplementation. In our tests of PigStorage, we saw about 5%
improvement when selecting 5 columns out of 40. The |oaders that should take advantage of
this functionality are the ones, like Zebra, that can pass this information directly to the
storage layer. For an exampleof f i el dsToRead see the implementation in PigStorage.

deter mineSchema

Thedet er m neSchemna function must be implemented by loaders that return real data
typesrather than byt ear r ay fields. Other loaders should just return nul | . Theideahereis
that Pig needs to know the actual typesit will be getting; Pig will call det er m neSchema
on the client side to get thisinformation. The function is provided as a way to sample the
data to determine its schema.

Here is the example of the function implemented by =BinStorage=:

public Schema deternm neSchema(String fil eName, ExecType execType,
Dat aSt orage storage) throws | OException {
InputStreamis = Fil eLocalizer.open(fileNane, execType, storage);
bi ndTo(fil eNane, new BufferedPositionedl nputStrean(is), O,
Long. MAX_VALUE)
/1 get the first record fromthe input file and figure out the
schema
Tuple t = get Next();
if(t == null) return null;
int nunFields =t.size();
Schema s = new Schema() ;
for (int i =0; i nunFields; i++) {
try {
s. add(Dat aType. det er m neFi el dSchema(t.get(i)));
} catch (Exception e) {
t hrow W appedl OExcepti on. w ap(e);

} return s;
Note that this approach assumes that the data has a uniform schema. The function needs to
make sure that the data it produces conforms to the schema returned by
det er m neSchema, otherwise the processing will fail. This means producing the right
number of fieldsin the tuple (dropping fields or emitting null valuesif needed) and
producing fields of the right type (again emitting null values as needed).

For complete examples, see BinStorage and PigStorage.

Page 20

http://svn.apache.org/viewvc/hadoop/pig/branches/branch-0.6/src/org/apache/pig/builtin/PigStorage.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/BinStorage.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/PigStorage.java?view=markup

Pig UDF Manual

3.2. Store Functions

All store functions need to implement the St or eFunc interface:

The bi ndTo method is called in the beginning of the processing to connect the store
function to the output stream it will write to. The put Next method is called for every tuple
to be stored and is responsible for writing the tuple into the output. Thef i ni sh functionis
called at the end of the processing to do all needed cleanup like flushing the output stream.

Hereis an example of asimple store function that writes data as a string returned from the
t oSt ri ng function.

4. Comparison Functions

Comparison UDFs are mostly obsolete now. They were added to the language because, at
that time, the ORDER operator had two significant shortcomings. First, it did not allow
descending order and, second, it only supported al phanumeric order.

The latest version of Pig solves both of these issues. The pointer to the original
documentation is provided here for completeness.
5. Builtin Functions and Function Repositories

Pig comes with a set of builtin functions. Two main properties differentiate builtin functions

Page 21

http://wiki.apache.org/pig/UserDefinedOrdering

Pig UDF Manual

from UDFs. First, they don't need to be registered because Pig knows where they are.
Second, they don't need to be qualified when used because Pig knows where to find them.

Pig also hosts a UDF repository called pi ggybank that allows users to share UDFs that
they have written. The details are described in PiggyBank.

6. Accumulator Interface

In Pig, problems with memory usage can occur when data, which results from a group or
cogroup operation, needs to be placed in abag and passed in its entirety to a UDF.

This problem is partially addressed by Algebraic UDFs that use the combiner and can deal
with data being passed to them incrementally during different processing phases (map,
combiner, and reduce.) However, there are a number of UDFs that are not Algebraic, don't
use the combiner, but still don’t need to be given all data at once.

The new Accumulator interface is designed to decrease memory usage by targeting such
UDFs. For the functions that implement this interface, Pig guarantees that the datafor the
same key is passed continuously but in small increments. To work with incremental data,
here isthe interface a UDF needs to implement:

public interface Accunul ator <T> {

/**
* Process tuples. Each DataBag may contain O to many tuples for current
key .
public void accumul ate(Tupl e b) throws | OException
/**

* Called when all tuples fromcurrent key have been passed to the
accumul at or .
* @eturn the value for the UDF for this key.
*/
public T getVal ue();
/**

* Called after getValue() to prepare processing for next key.
*/
public void cleanup();

There are several things to note here:

1. Each UDF must extend the EvalFunc class and implement all necessary functions there.

2. If afunctionisagebraic but can be used in a FOREACH statement with accumulator
functions, it needs to implement the Accumulator interface in addition to the Algebraic
interface.

3. Theinterface is parameterized with the return type of the function.

4. The accumulate function is guaranteed to be called one or more times, passing one or

Page 22

http://wiki.apache.org/pig/PiggyBank

Pig UDF Manual

more tuplesin abag, to the UDF. (Note that the tuple that is passed to the accumulator
has the same content as the one passed to exec — all the parameters passed to the UDF —
one of which should be abag).

5. ThegetVauefunction is called after all the tuples for a particular key have been
processed to retrieve the final value.

6. The cleanup function is called after getValue but before the next value is processed.

Here us a code snippet of the integer version of the MAX function that implements the
interface:

Page 23

Pig UDF Manual

7. Advanced Topics

7.1. Function I nstantiation

One problem that users run into is when they make assumption about how many times a
constructor for their UDF is called. For instance, they might be creating side filesin the store
function and doing it in the constructor seems like agood idea. The problem with this
approach isthat in most cases Pig instantiates functions on the client side to, for instance,
examine the schema of the data.

Users should not make assumptions about how many times afunction is instantiated; instead,
they should make their code resilient to multiple instantiations. For instance, they could
check if the files exist before creating them.

7.2. Schemas

One request from users is to have the ability to examine the input schema of the data before
processing the data. For example, they would like to know how to convert an input tupleto a
map such that the keys in the map are the names of the input columns. The current answer is
that there is now way to do this. Thisis something we would like to support in the future.

7.3. Custom Slicer
Sometimes a LoadFunc needs more control over how input is chopped up or even found.

Here are some scenarios that call for a custom slicer:

» Input needs to be chopped up differently than on block boundaries. (Perhaps you want
every 1M instead of every 128M. Or, you may want to processin big 1G chunks.)

* Input comes from a source outside of HDFS. (Perhaps you are reading from a database.)
« Therearelocality preferences for processing the data that is more than smple HDFS
locality.

« Extrainformation needs to be passed from the client machine to the LoadFunc
instances running remotely.

All of these scenarios are addressed by dlicers. There are two parts to the slicing framework:
Sl i cer, theclassthat creates slices, and Sl i ce, the class that represents a particular piece
of the input. Slicing kicks in when Pig sees that the LoadFunc implementsthe Sl i cer
interface.

Page 24

Pig UDF Manual

7.3.1. Slicer

The dlicer has two basic functions: validate input and slice up the input. Both of these
methods will be called on the client machine.

7.3.2. Slice
Each dlice describes a unit of work and will correspond to a map task in Hadoop.

Only one of the methods is used for scheduling: get Locat i ons() . Thismethod allows
the implementor to give hints to Pig about where the task should be run. It isonly a hint. If
things are busy, the task may get scheduled elsewhere.

Therest of the SI i ce methods are used to read records on the processing nodes. i ni t is
called right after the Sl i ce object isdeserialized and cl ose is called after the last record
has been read. The Pig runtime will read records from the Sl i ce until get Pos() exceeds
get Lengt h() . Because Sl i ce implements serializable, Sl i cer can encode information
inthe SI i ce that will later be available when the task is run.

7.3.3. Example

This example showsasimple Sl i cer that gets a count from the input stream and generates
that number of Sl i ce s.

Page 25

Pig UDF Manual

You can invoke the RangeSl i cer classwith the following Pig Latin statement:

Page 26

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig UDF Manual

Page 27

	1 Overview
	2 Eval Functions
	2.1 How to Use a Simple Eval Function
	2.2 How to Write a Simple Eval Function
	2.3 Aggregate Functions
	2.4 Filter Functions
	2.5 Pig Types
	2.6 Schema
	2.7 Error Handling
	2.8 Function Overloading
	2.9 Reporting Progress
	2.10 Import Lists

	3 Load/Store Functions
	3.1 Load Functions
	3.2 Store Functions

	4 Comparison Functions
	5 Builtin Functions and Function Repositories
	6 Accumulator Interface
	7 Advanced Topics
	7.1 Function Instantiation
	7.2 Schemas
	7.3 Custom Slicer
	7.3.1 Slicer
	7.3.2 Slice
	7.3.3 Example

