HttpClient Tutorial

Oleg KalnichevskKi

L HUPCHENT SCOPE ...eieiiiiiiiee e ettt e e e s e e e e e e e e e e en b r e e e e e e s snnnsbeneeaaens iv
2. What HEPCHENt IS INOT .ot e e e e e e e ere e e e e e e e aa iv
O o T 0= =SSP 1
1.1, REQUESE EXECULTON ...ooiiiiiieiiieee e ettt e et e e e e e et e e e e e e e e e e e s 1
0 O I = o 0= SRS 1
112, HTTP FEIPONSE ..eeeeeiieeeeiiitit ettt ettt e e ettt e e e e e s bbb e e e e e e e e e annnenes 2
1.1.3. Working with message headerseevveeiiiiiiiiiiiei e 2
I B I = 011 Y PRSPPI 4
1.1.5. Ensuring release of 10w [eVEl rESOUICESuuuuuuiiiiiii e 5
1.1.6. ConsumMing entity CONLENTccoivrreeeiireie e e e e e 5
1.1.7. ProducCing entity COMMENTcoourrieeiiiiieeeiiiee e et e e e e 6
1.1.8. ReSPONSE NANAIENS ... e 7

1.2, HTTP €XECULION CONLEXLvveieiiiiiieeeiitiee ettt ettt e e s e e e ane 8
1.3, EXCeption handlingcccuviiiiiiee e 9
1.3.1. HTTP transport SAfELYccceceeeeeieiiiiieici s siss s 9
1.3.2. Idempotent MELhOOSceuiiiiiiie e 9
1.3.3. AULOMALIC EXCEPLION TECOVETY ...ceiiiiiiieeeiiiieeee et e e et e e e st e e e s e e nnneeee e e 10
1.3.4. Request retry NaNAIErcoooieiiiiiiie e 10

1.4, ADOIING FEOUESESeeiiieeiee e e e s ettt e e e s e e e e e s e et e e e e e e s e st e e e e e e e e e snnnnerees 11
1.5, HTTP protOCOl iNtErCEPLONSuvvveiieieeeeiiiiiieeie e e e e e eeettr e e e e e s s et e e e e e e e s s eannrreeeeaeeas 11
T o I I == T (RPN 12
1.6.1. Parameter NierarChiescoooiiiiiiiiiiie e 12
1.6.2. HTTP parameters DEaNSoccuvviiiiiiiiieiee e 13

1.7. HTTP request EXECULION PAIAIMELEN'Sveieiiiieeeeeiiireeeasiieeee s st e e e s snee e e e snnneeesenees 13
2. CONNECLION MANAGEIMIENLvveiiieeee s i ittt e e e e e e s s esr e e e eee e s s ssa bt b e e e e aaeessasssaaaeeeeaeessaansrrnneeeeas 15
2.1. CONNECLION PAFBMELEN'Suuiiieiieeeeeeiiiitee e e e e e e e s e et r e e e e e e e s s st b e rereeeeessanatareeeeaaeeeaans 15
2.2. CONNECLION PEFSISEENCE ..vviiiieeei ittt e e et e e e e e e et e e e e e e s s st re e e e e e e e e e e nnsarenes 16
2.3. HTTP CONNECLION FOULING ...vvvvuriiiiiiiiiiiiinniinnniinnnnernenrnrnensnenennnnnnnenennnnnnnnnnnnnnnnnnnnnnnnnnns 16
2.3.1. ROULE COMPUEALTONveeeeeiieeee e ettt e e s e e e e e 16
2.3.2. SeCUre HTTP CONNECLIONSuuviiiiieeeeeiiiiiiieteee e e s ettt ee e e e e e s s e seeeeanreeaeeeeennes 17

2.4, HTTP rOULE PAraMEBLENSueeieiiieeeiiiitite et e e e e e sttt e e e e e e e s s anbbbe e e e e e e e s aannbbreeeeeaeeeaaaas 17
2.5, SOCKEL TACIOMES ...vevieiiiiiiii ettt ettt et e e s st e e st r e e e e nrees 17
2.5.1. SecUre SOCKEL [AYEITNG ..vveveeeeii e e e e e e e e e 18
2.5.2. SSL/ITLS CUSIOMIZBLIONeeeiiiieieee et e e e e e e e e e 18
2.5.3. Hostname VErifiCaIONccuuiiiiiiiie e e e 18

2.6. ProtOCOl SCNEIMES ...t e e e e e r e e e e e e s s b areeaaeeeeannnees 19
2.7. HttpClient proxy CONFIQUIBLIONeeieiiiieieeiiiiiee ettt e e 19
2.8. HTTP CONNECLION MANAGETSvvveeiieeeeiieiiieeie e e e e e e e eeittaee e e e e e e s e st e e e e e e e s snnnaraaeeeaeens 20
2.8.1. CONNECLION OPEIGLOLSvvvveiieeeeiiiiiiiieee e e e e e e esitbrr e e e e e e e s e aeatrre e e e e e e e s s ssnsaraaeeaaaeeas 20
2.8.2. Managed connections and CONNECtiON MANAJEN'Svvrrrrrrrrrrrmrrmmenmnernnrnmnnmnnnnn 20
2.8.3. SImple CONNECEION MANAGESeeeiirieeeeiiiiie et e e e e e 22
2.8.4. Pooling CONNECLION MANAJEYcceiiuirreeeiiiieeeeairie e e st e e s s e e e s s e e e s snbneeeeaaes 22
2.8.5. Connection manager SNULAOWNccooiiiiieiiiiiee et 23

2.9. Connection Management PAraMELENScceeeeeiiiiiiiiriereeeseeiiiirrreeeeeesssasnrrreereeaeeeaans 23
2.10. Multithreaded requESt EXECULIONcccuviiiieiie e e e e reeee s 23
2.11. Connection eviCction POLICYccooeeee e 24
2.12. ConNection KeeP aliVe SIIAtEQYcvveeeiiirreeeiiiiiee e st e et e e e e e e 25
3. HTTP State ManaQEMENTcooiiiiiiieiiiee e et e e e s r e e e e s s e e e e e e e s s snnrrneeeeeeeeaanes 27

HttpClient Tutorial

3L HTTP COOKIES ..., 27
3.1 1. COOKIE VEISIONS ..coouiiiieeiiiiiie e s ettt e et e ettt et e et e e e e e e e nnte e e e s annaeeas 27

3.2. COOKIE SPECITICALIONS ...veeeiiieiiiiciiiie e e e e e e e e e eanr e aee s 28
3.3. HTTP cookie and state management parameters ... 29
3.4. Cookie SPECITICALION FEUISINYeeiiiriieeiiiiie ettt 29
3.5. ChooSING COOKIE POIICYvveeeeiiiiiee ettt e e e 29
3.6. CUSLOM COOKIE POIICY ..eeiueeeieieiiitiie ettt ettt e e e e e ira e e en 30
3.7. COOKIE PEISISLENCEceeiiiiiieiee e e e e e e e ettt e e e e e e et e e e e e e e s e et e e e e e e e s e anntbaneeeaeeseananes 30
3.8. HTTP state management and eXeCUtion CONLEXLceeeeeeeiiiiiiiierieeeeeeeiiiirneeeeeee e 30
3.9. Per user / thread state management ..., 31
v I =0 10 T= 0o o] o PSR 32
A0, USEN CrEOENTIAIS ..veiiiiee e e et s et e e e e e e s et e e e e e e e e e snntnraneaaaeeeeans 32
4.2. AUthentication SChEIMESooiviiiiiiiieeeeeeeeeeeee e 32
4.3. HTTP authentication ParameELErScooeiuiiiieeiie et ee e e e e e e e e e e 33
4.4. Authentication SChEME FEQISIIYeeiiiieii e e 34
T @ =0 =11 = K3 0 (0] o L= 34
4.6. HTTP authentication and exeCution CONLEXLuueiiireereiiiciiiieeee e eiieeee e e e 35
4.7. Caching of authentiCation daaceeiiuiiiieiiiiee e 35
4.8. Preemptive aUtNENtiCAIIONeeiiiiiiiiee e e e 36
4.9. NTLM AULNENEICAITONeveiieiiiiie et e e ee e 36
4.9.1. NTLM CONNECLION PEFSISLENCEvvvvieiieeeeeeiciiiteee e e e e e e e s eertree e e e e e e s e e sanrareeeeae s 36
4.10. SPNEGO/K erberos AUthENtiCaLiONoooiiiiiiiiiiieiie e 37
4.10.1. SPNEGO SUpPPOrt in HEPCTHIENt ... 38
4.10.2. GSS/Java KerDEros SELUDcocvriieiiiiiie et 38
4.10.3. 1 ogin.conf fil@ oo 38
4.10.4. krb5. conf [Krb5.ini Fil@ oo 39
4.10.5. Windows Specific configurationcccceeeiviiiiiiieeeie e 39
4.,10.6. Activating and customizing SPNEGO authentication scheme...............ccccvvveeen. 40

I o I o 1T 0 = o S 41
5.1, HEtPCHENt FACAOEooiiiiiiie et 41
5.2. HItPCHENt PAraMELENS ...ttt e e e eeen 42
5.3. Automcatic redireCt NANAIINGcoooiiiiiiiiiiie e 42
5.4. HTTP client and eXeCUtion COMNEEXLcoiuuieriiiiieieiiiiiie e siieee s siieee e siree e sineee e 43
5.5. Compressed reSPONSE COMEENTuuviiiieeeei e e e e e s eeetirre e e e e e e e s et ar e e e e e e s s eennrbreeeeeans 43
SN0 V7 g Voo I (] o 1= 44
6.1. Custom Client CONNECLIONScoeiiiiiee e e et a e e e e e e e e e e e s ennnneees 44
6.2. Stateful HTTP CONNECLIONScooeiiiiiiiiiiiiceeeeeeeeeeeee e, 45
6.2.1. UsSer tOKEN NANAIESvuviiiiiiiiiiiiiiiiiiitiiir bbb eserararsesssrasessrsssrsraree 45
6.2.2. User token and eXeCUtioN CONTEXTueeiiiivrieeniiieieesiiieee e 46

Preface

The Hyper-Text Transfer Protocol (HTTP) isperhaps the most significant protocol used on the Internet
today. Web services, network-enabled appliances and the growth of network computing continue to
expand the role of the HTTP protocol beyond user-driven web browsers, while increasing the number
of applications that require HT TP support.

Although thejava.net package provides basic functionality for accessing resourcesviaHTTP, it doesn't
provide the full flexibility or functionality needed by many applications. HttpClient seeks to fill this
void by providing an efficient, up-to-date, and feature-rich package implementing the client side of
the most recent HT TP standards and recommendations.

Designed for extension while providing robust support for the base HTTP protocol, HttpClient may
be of interest to anyone building HTTP-aware client applications such as web browsers, web service
clients, or systems that leverage or extend the HT TP protocol for distributed communication.

1. HttpClient scope

¢ Client-side HTTP transport library based on HttpCore [http://hc.apache.org/httpcomponents-core/
index.html]

» Based on classic (blocking) 1/0

» Content agnostic

2. What HttpClient is NOT

» HttpClient is NOT a browser. It is a client side HTTP transport library. HitpClient's purpose is
to transmit and receive HTTP messages. HttpClient will not attempt to cache content, execute
javascript embedded in HTML pages, try to guess content type, or reformat request / redirect location
URIs, or other functionality unrelated to the HTTP transport.

http://hc.apache.org/httpcomponents-core/index.html
http://hc.apache.org/httpcomponents-core/index.html
http://hc.apache.org/httpcomponents-core/index.html

Chapter 1. Fundamentals

1.1. Request execution

The most essential function of HttpClient isto execute HT TP methods. Execution of an HTTP method
involves one or several HTTP request / HTTP response exchanges, usualy handled internally by
HttpClient. The user is expected to provide a request object to execute and HttpClient is expected to
transmit the request to the target server return a corresponding response object, or throw an exception
if execution was unsuccessful.

Quite naturally, the main entry point of the HttpClient API isthe HttpClient interface that defines the
contract described above.

Here is an example of request execution processin its simplest form:

HtpCient httpclient = new DefaultHttpCient();
Htt pGet httpget = new H tpGet("http://Ilocal host/");
Ht t pResponse response = httpclient.execute(httpget);
HtpEntity entity = response.getEntity();
if (entity !'=null) {

I nput Stream i nstream = entity.get Content();

int |;

byte[] tnmp = new byt e[2048];

while ((I = instreamread(tnp)) !'=-1) {

}

1.1.1. HTTP request

All HTTP requests have areguest line consisting a method name, arequest URI and aHTTP protocol
version.

HttpClient supports out of the box al HTTP methods defined in the HTTP/1.1 specification: GeT,
HEAD, POST, PUT, DELETE, TRACE and OPTI ONS. Thereisa special class for each method type.: Ht t pGet ,
Ht t pHead, Ht t pPost , Htt pPut , Ht t pDel et e, Ht t pTrace, and Ht t pOpt i ons.

The Request-URI is a Uniform Resource Identifier that identifies the resource upon which to apply
the request. HTTP request URIs consist of aprotocol scheme, host name, optional port, resource path,
optional query, and optional fragment.

Htt pGet httpget = new Ht t pGet (
"http://ww. googl e. conl sear ch?hl =en&g=ht t pcl i ent &t nG=Googl e+Sear ch&ag=f &g=") ;

HttpClient providesanumber of utility methodsto simplify creation and modification of request URIs.

URI can be assembled programmatically:

URI uri = URIUtils.createURl ("http", "ww.google.cont, -1, "/search",
"g=htt pcl i ent &t nG=CGoogl e+Sear ch&aq=f &oqg=", null);

Htt pGet httpget = new HttpGet(uri);

Systemout.println(httpget.getURI());

stdout >

Fundamentals

ht t p: / / ww. googl e. conf sear ch?qg=ht t pcl i ent &t nG=CGoogl e+Sear ch&aq=f &q=

Query string can a'so be generated from individual parameters:

Li st <NaneVal uePai r> gparans = new ArraylLi st <NaneVal uePair>();

gpar anms. add(new Basi cNaneVal uePair("q", "httpclient"));

gpar ans. add(new Basi cNaneVal uePair ("bt nG', "Google Search"));

gpar ans. add(new Basi cNaneVal uePair("aq", "f"));

gpar ans. add(new Basi cNaneVal uePair("oq", null));

URI uri = URIUtils.createURl ("http", "ww.google.cont, -1, "/search",
URLEncodedUti | s. format (qparans, "UTF-8"), null);

Htt pGet httpget = new HttpGet(uri);

Systemout. println(httpget.getURI());

stdout >

http: //ww. googl e. conf sear ch?g=htt pcl i ent &t nG=Googl e+Sear ch&aq=f &oq=

1.1.2. HTTP response

HTTP response is a message sent by the server back to the client after having received and interpreted
areguest message. Thefirst line of that message consists of the protocol version followed by anumeric
status code and its associated textual phrase.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,
Htt pSt at us. SC OK, "OK");

System out . println(response. get Protocol Version());

System out . println(response. get St at usLi ne() . get StatusCode());
System out . println(response. get St at usLi ne() . get ReasonPhrase());
System out. println(response. get StatusLine().toString());

stdout >

HTTP/ 1.1

200

K

HTTP/ 1.1 200 OK

1.1.3. Working with message headers

An HTTP message can contain a number of headers describing properties of the message such as
the content length, content type and so on. HttpClient provides methods to retrieve, add, remove and
enumerate headers.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1 1,
Htt pStatus. SC OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; dommin=\"|ocal host\"");

Header hl = response. get First Header (" Set - Cooki e") ;

System out. println(hl);

Header h2 = response. get Last Header (" Set - Cooki e") ;

Fundamentals

System out . println(h2);
Header[] hs = response. get Header s(" Set - Cooki e") ;
Systemout. println(hs.|ength);

stdout >

Set - Cooki e: cl=a; path=/; donmi n=l ocal host
Set - Cooki e: c2=b; path="/", c3=c; domai n="|ocal host"
2

The most efficient way to obtain all headers of agiven typeisby using the Header I t er at or interface.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1_1,
Htt pSt at us. SC_OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domai n=l ocal host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; domain=\"Iocal host\"");

Headerlterator it = response. headerlterator("Set-Cookie");

while (it.hasNext()) {
Systemout.printlin(it.next());

}

stdout >

Set - Cooki e: cl=a; path=/; donmi n=l ocal host
Set - Cooki e: c2=b; path="/", c3=c; domai n="|ocal host"

It also provides convenience methods to parse HT TP messages into individual header elements.

Ht t pResponse response = new Basi cHt t pResponse(H t pVersi on. HTTP_1 1,
Htt pStatus. SC OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; domain=\"|ocal host\"");

Header El ement Iterator it = new Basi cHeader El enent |t erat or (
response. header | t er at or (" Set - Cooki ")) ;

while (it.hasNext()) {
Header El enent el em = it.nextEl enent ();

Systemout.printin(elemgetNane() + " =" + elemgetValue());
NameVal uePair[] paranms = el em get Paraneters();
for (int i =0; i < parans.length; i++) {
Systemout.println(" " + parans[i]);

}

}

stdout >

cl =a

pat h=/

donmi n=Il ocal host

c2 =b

pat h=/

c3 =c

Fundamentals

domai n=l ocal host

1.1.4. HTTP entity

HTTP messages can carry acontent entity associated with the request or response. Entities can befound
in some requests and in some responses, as they are optional. Requests that use entities are referred to
as entity enclosing requests. The HTTP specification defines two entity enclosing methods. PosT and
PUT. Responses are usually expected to enclose a content entity. There are exceptions to this rule such
asresponsesto HEAD method and 204 No Cont ent, 304 Not Modi fi ed, 205 Reset Content r€SpONSES.

HttpClient distinguishes three kinds of entities, depending on where their content originates:

» streamed: The content is received from a stream, or generated on the fly. In particular, this
category includes entities being received from HT TP responses. Streamed entities are generally not
repeatable.

» self-contained: The content isin memory or obtained by means that are independent from a
connection or other entity. Self-contained entities are generally repeatable. Thistype of entitieswill
be mostly used for entity enclosing HT TP requests.

e wrapping: The content is obtained from another entity.

This distinction is important for connection management when streaming out content from an HTTP
response. For request entities that are created by an application and only sent using HttpClient, the
difference between streamed and self-contained is of little importance. In that case, it is suggested to
consider non-repeatabl e entities as streamed, and those that are repeatable as self-contained.

1.1.4.1. Repeatable entities

An entity can be repeatable, meaning its content can be read more than once. Thisisonly possible with
self contained entities (like Byt eArrayEntity OF StringEntity)

1.1.4.2. Using HTTP entities

Since an entity can represent both binary and character content, it has support for character encodings
(to support the latter, ie. character content).

Theentity iscreated when executing arequest with enclosed content or when the request was successful
and the response body is used to send the result back to the client.

To read the content from the entity, one can either retrieve the input stream via the
Ht t pEnt i t y#get Cont ent () method, which returns an j ava. i o. I nput St ream Or one can supply an
output stream to the Ht t pEnt i t y#wr i t eTo(Qut put St r ean) method, which will return once all content
has been written to the given stream.

When the entity has been received with an incoming message, the methods
Htt pEnt i t y#get Cont ent Type() and Htt pEntit y#get Cont ent Lengt h() methods can be used for
reading the common metadata such as Cont ent - Type and Cont ent - Lengt h headers (if they are
available). Since the cont ent - Type header can contain a character encoding for text mime-types
like text/plain or text/html, the Htt pEnti t y#get Cont ent Encodi ng() method is used to read this
information. If the headers aren't available, alength of -1 will be returned, and NULL for the content
type. If the Cont ent - Type header is available, aHeader object will be returned.

Fundamentals

When creating an entity for a outgoing message, this meta data has to be supplied by the creator of
the entity.

StringEntity nmyEntity = new StringEntity("inportant nessage",
"UTF-8");

System out. println(nmyEntity. get Content Type());

System out. println(myEntity. get ContentLength());
Systemout.println(EntityUils. get Content CharSet (nyEntity));
Systemout.printin(EntityUtils.toString(nyEntity));
Systemout.println(EntityUils.toByteArray(nyEntity).length);

stdout >

Cont ent - Type: text/plain; charset=UTF-8
17

UTF- 8

i mportant nessage

17

1.1.5. Ensuring release of low level resources

When finished with a response entity, it's important to ensure that all entity content has been
fully consumed, so that the connection could be safely returned to the connection pool and re-
used by the connection manager for subsequent requests. The easiest way to do so is to call the
Ht t pEnt i t y#consumeCont ent () method to consume any available content on the stream. HttpClient
will automatically release the underlying connection back to the connection manager as soon as it
detects that the end of the content stream has been reached. The Ht t pEnti t y#consunmeCont ent ()
method is safe to call more than once.

There can be situations, however, when only asmall portion of the entire response content needs to be
retrieved and the performance penalty for consuming the remaining content and making the connection
reusableistoo high, one can simply terminatetherequest by calling Ht t pUr i Request #abor t () method.

Htt pGet httpget = new H tpGet("http://Ilocal host/");
Ht t pResponse response = httpclient.execute(httpget);
HtpEntity entity = response.getEntity();
if (entity !'=null) {

I nput Stream i nstream = entity.get Content();

int byteOne = instreamread();

int byteTwo = instreamread();

/1 Do not need the rest

htt pget. abort();

The connection will not be reused, but all level resources held by it will be correctly deallocated.

1.1.6. Consuming entity content

The recommended way to consume content of an entity is by using itSHt t pEnt i t y#get Cont ent () Of
Htt pEnti t y#writ eTo(Qut put St rean) methods. HttpClient also comes with the Entityutils class,
which exposes severa static methods to more easily read the content or information from an entity.
Instead of reading the j ava. i o. I nput St reamdirectly, one can retrieve the whole content body in a
string / byte array by using the methods from this class. However, the use of Entityutil s isstrongly

Fundamentals

discouraged unless the response entities originate from a trusted HTTP server and are known to be
of limited length.

Htt pGet httpget = new H tpGet("http://Ilocal host/");
Ht t pResponse response = httpclient. execute(httpget);
HttpEntity entity = response.getEntity();
if (entity !'= null) {

long len = entity. getContentlLength();

if (len!=-1 & len < 2048) {
Systemout.printin(EntityUtils.toString(entity));
} else {

/1 Stream content out

}

In some situations it may be necessary to be able to read entity content more than once. In this case
entity content must be buffered in some way, either in memory or on disk. The smplest way to
accomplish that is by wrapping the original entity with the Buf f er edHt t pEntii t y class. Thiswill cause
the content of the original entity to beread into ain-memory buffer. In all other waysthe entity wrapper
will be have the original one.

Htt pGet httpget = new H tpGet("http://I|ocal host/");
Ht t pResponse response = httpclient.execute(httpget);
HtpEntity entity = response.getEntity();
if (entity !'=null) {

entity = new BufferedHttpEntity(entity);

}

1.1.7. Producing entity content

HttpClient provides several classes that can be used to efficiently stream out content though HTTP
connections. Instances of those classes can be associated with entity enclosing requests such as
POST and PUT in order to enclose entity content into outgoing HTTP requests. HttpClient provides
several classes for most common data containers such as string, byte array, input stream, and file:
StringEntity,ByteArrayEntity, | nputStreanEntity, and Fil eEntity.

File file = new File("sonefile.txt");
FileEntity entity = new FileEntity(file, "text/plain; charset=\"UTF-8\"");

Ht t pPost httppost = new HttpPost("http://|ocal host/action.do");
httppost.setEntity(entity);

Please note | nput StreanEnt i ty IS not repeatable, because it can only read from the underlying data
stream once. Generally it is recommended to implement a custom Ht t pEnti ty class which is self-
contained instead of using generic | nput StreanEntity. Fil eEntity can be agood starting point.

1.1.7.1. Dynamic content entities

Often HT TP entities need to be generated dynamically based a particul ar execution context. HttpClient
provides support for dynamic entities by using Enti t yTenpl at e entity class and Cont ent Pr oducer
interface. Content producers are objects which produce their content on demand, by writing it out to
an output stream. They are expected to be able produce their content every time they are requested to
do so. So entities created with Ent i t yTenpl at e are generally self-contained and repeatable.

Fundamentals

Cont ent Producer cp = new Cont ent Producer () {
public void witeTo(QutputStream outstreanm) throws | OException {
Witer witer = new QutputStreanmWiter(outstream "UTF-8");
witer.wite("<response>");
witer.wite(" <content>");
witer.wite(" i nportant stuff");
witer.wite(" </content>");
witer.wite("</response>");
witer.flush();
}
b
HtpEntity entity = new EntityTenpl ate(cp);
Ht t pPost httppost = new HttpPost("http://1 ocal host/handl er. do");
htt ppost.setEntity(entity);

1.1.7.2. HTML forms

Many applications frequently need to simulate the process of submitting an HTML form, for instance,
in order to log in to a web application or submit input data. HttpClient provides specia entity class
Ur | EncodedFor nEnt i ty to facilitate the process.

Li st <NaneVal uePai r> fornparans = new Arrayli st <NaneVal uePai r>();

f or rpar ans. add(new Basi cNaneVal uePai r (" paraml”, "val uel"));

f or npar ans. add(new Basi cNaneVal uePai r (" paranR", "value2"));

Url EncodedFornEntity entity = new Ul EncodedFor nEntity(fornparans, "UTF-8");
Ht t pPost httppost = new HttpPost("http://1 ocal host/handl er. do");

ht t ppost . set Entity(entity);

This Ur1 EncodedFor nEnt i ty instance will use the so called URL encoding to encode parameters and
produce the following content:

par anil=val uel&par an=val ue2

1.1.7.3. Content chunking

Generally it isrecommended to let HttpClient choose the most appropriate transfer encoding based on
the properties of the HT TP message being transferred. It is possible, however, to inform HttpClient that
the chunk coding is preferred by setting He t pEnt i t y#set Chunked() totrue. Please notethat HttpClient
will use this flag as a hint only. This value well be ignored when using HTTP protocol versions that
do not support chunk coding, such asHTTP/1.0.

StringEntity entity = new StringEntity("inportant nessage",
"text/plain; charset=\"UTF-8\"");

entity. set Chunked(true);

Ht t pPost httppost = new HttpPost("http://|ocal host/acrtion.do");

httppost.setEntity(entity);

1.1.8. Response handlers

The simplest and the most convenient way to handle responsesis by using ResponseHand! er interface.
This method completely relieves the user from having to worry about connection management. When
using aResponseHand! er HitpClient will automatically take care of ensuring rel ease of the connection
back to the connection manager regardless whether the request execution succeeds or causes an
exception.

Fundamentals

HtpCient httpclient = new Defaul tH tpCient();
Htt pGet httpget = new H tpGet("http://Ilocal host/");

ResponseHandl er <byt e[] > handl er = new ResponseHandl er <byte[]>() {
public byte[] handl eResponse(

Ht t pResponse response) throws dient Protocol Exception, |COException {

HtpEntity entity = response.getEntity();

if (entity !'=null) {
return EntityUtils.toByteArray(entity);

} else {
return null;

}
b

byte[] response = httpclient.execute(httpget, handler);

1.2. HTTP execution context

Originally HTTP has been designed as a stateless, response-request oriented protocol. However, real
world applications often need to be able to persist state information through several logically related
reguest-response exchanges. In order to enable applications to maintain a processing state HttpClient
allows HTTP requests to be executed within a particular execution context, referred to as HTTP
context. Multiple logically related requests can participate in alogical session if the same context is
reused between consecutive requests. HTTP context functions similarly to j ava. uti | . Map<Stri ng,

vj ect >. Itissimply acollection of arbitrary named values. Application can popul ate context attributes
prior to arequest execution or examine the context after the execution has been compl eted.

In the course of HTTP request execution HttpClient adds the following attributes to the execution
context:

* 'http.connection’: Ht t pConnect i on instance representing the actual connection to the target
server.

e 'http.target_host': Htt pHost instance representing the connection target.

e 'http.proxy_host': Ht tpHost instance representing the connection proxy, if used
e 'http.request’: Htt pRequest instance representing the actual HTTP request.

e 'http.response’: Htt pResponse instance representing the actual HT TP response.

e 'http.request_sent': java. | ang. Bool ean object representing the flag indicating whether the
actual request has been fully transmitted to the connection target.

For instance, in order to determine the final redirect target, one can examine the value of the
http. target _host attribute after the request execution:

DefaultHtpCient httpclient = new DefaultHttpCient();

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext () ;
Htt pGet httpget = new H t pGet ("http://ww. google.com");

Ht t pResponse response = httpclient.execute(httpget, |ocal Context);

Htt pHost target = (HttpHost) | ocal Context.getAttribute(
Execut i onCont ext . HTTP_TARGET_HOST) ;

Fundamentals

Systemout.printIn("Final target: " + target);

HtpEntity entity = response.getEntity();
if (entity !'=null) {
entity. consuneContent();

}

stdout >

Final target: http://ww.google.ch

1.3. Exception handling

HttpClient can throw two types of exceptions: j ava. i o. | OExcept i on in case of an |/O failure such as
socket timeout or an socket reset and Ht t pExcept i on that signalsan HTTP failure such as aviolation
of the HTTP protocol. Usually /O errors are considered non-fatal and recoverable, whereas HTTP
protocol errors are considered fatal and cannot be automatically recovered from.

1.3.1. HTTP transport safety

It is important to understand that the HTTP protocol is not well suited for all types of applications.
HTTP is asimple request/response oriented protocol which wasinitially designed to support static or
dynamically generated content retrieval. It has never been intended to support transactional operations.
For instance, the HTTP server will consider its part of the contract fulfilled if it succeedsin receiving
and processing the request, generating a response and sending a status code back to the client. The
server will make no attempts to roll back the transaction if the client fails to receive the response in
its entirety due to aread timeout, arequest cancellation or a system crash. If the client decidesto retry
the same request, the server will inevitably end up executing the same transaction more than once. In
some cases this may |lead to application data corruption or inconsistent application state.

Even though HTTP has never been designed to support transactional processing, it can still be used
as atransport protocol for mission critical applications provided certain conditions are met. To ensure
HTTP transport layer safety the system must ensure the idempotency of HTTP methods on the
application layer.

1.3.2. Idempotent methods

HTTP/1.1 specification defines idempotent method as

[Methods can also have the property of "idempotence” in that (aside from error or expiration issues)
the side-effects of N > 0 identical requestsis the same as for a single request]

In other wordsthe application ought to ensurethat it is prepared to deal with theimplicationsof multiple
execution of the same method. This can be achieved, for instance, by providing a unique transaction
id and by other means of avoiding execution of the same logical operation.

Please note that this problem is not specific to HttpClient. Browser based applications are subject to
exactly the same issues related to HT TP methods non-idempotency.

HttpClient assumes non-entity enclosing methods such as GeET and HEAD to be idempotent and entity
enclosing methods such as POsT and PUT to be not.

Fundamentals

1.3.3. Automatic exception recovery

By default HttpClient attemptsto automatically recover from 1/O exceptions. The default auto-recovery
mechanismis limited to just a few exceptions that are known to be safe.

 HttpClient will make no attempt to recover from any logical or HTTP protocol errors (those derived
from Ht t pExcept i on class).

» HttpClient will automatically retry those methods that are assumed to be idempotent.

« HttpClient will automatically retry those methodsthat fail with atransport exceptionwhiletheHTTP
request is still being transmitted to the target server (i.e. the request has not been fully transmitted
to the server).

« HttpClient will automatically retry those methods that have been fully transmitted to the server,
but the server failed to respond with an HTTP status code (the server ssmply drops the connection
without sending anything back). In thiscaseit is assumed that the request has not been processed by
the server and the application state has not changed. If this assumption may not hold truefor the web
server your applicationistargeting it ishighly recommended to provide a custom exception handler.

1.3.4. Request retry handler

In order to enable a custom exception recovery mechanism one should provide an implementation of
the Ht t pRequest Ret r yHandl er interface.

DefaultHtpCient httpclient = new DefaultHtpCient();
Ht t pRequest Ret ryHandl er nyRetryHandl er = new Htt pRequest RetryHandl er () {

publi c bool ean retryRequest (
| OExcepti on excepti on,
i nt executionCount,
Ht t pCont ext context) {

i f (executionCount >= 5) {

/1 Do not retry if over max retry count
return fal se;

}

i f (exception instanceof NoHttpResponseException) {
/!l Retry if the server dropped connection on us
return true;

}

if (exception instanceof SSLHandshakeException) {

/1 Do not retry on SSL handshake exception
return fal se;

}

Ht t pRequest request = (HttpRequest) context.getAttribute(

Execut i onCont ext . HTTP_REQUEST) ;

bool ean idenpotent = !(request instanceof HttpEntityEnclosi ngRequest);

if (idenpotent) {

/Il Retry if the request is considered idenpotent
return true;

}

return fal se;

1%

httpclient. set Ht t pRequest Ret r yHandl er (nyRet r yHandl er) ;

10

Fundamentals

1.4. Aborting requests

In some situations HT TP request execution fail to compl ete within the expected time frame dueto high
load on the target server or too many concurrent requestsissued on the client side. In such casesit may
be necessary to terminate the request prematurely and unblock the execution thread blocked in al/O
operation. HTTP requests being executed by HttpClient can be aborted at any stage of execution by
invoking Ht t pUri Request #abor t () method. This method is thread-safe and can be called from any
thread. When an HT TP request is aborted its execution thread blocked in an |/O operation is guaranteed
to unblock by throwing ai nt er r upt edl OExcepti on

1.5. HTTP protocol interceptors

HTTP protocol interceptor isaroutine that implements a specific aspect of the HTTP protocol . Usually
protocol interceptors are expected to act upon one specific header or a group of related headers of the
incoming message or populate the outgoing message with one specific header or a group of related
headers. Protocol interceptors can al so manipul ate content entities enclosed with messages, transparent
content compression / decompression being agood example. Usually thisisaccomplished by using the
'‘Decorator' pattern where awrapper entity classis used to decorate the original entity. Several protocol
interceptors can be combined to form one logical unit.

Protocol interceptors can collaborate by sharing information - such as a processing state - through the
HTTP execution context. Protocol interceptors can use HTTP context to store a processing state for
one request or several consecutive requests.

Usually the order in which interceptors are executed should not matter aslong asthey do not depend on
aparticular state of the execution context. If protocol interceptors have interdependencies and therefore
must be executed in a particular order, they should be added to the protocol processor in the same
sequence as their expected execution order.

Protocol interceptors must be implemented as thread-safe. Similarly to servlets, protocol interceptors
should not use instance variables unless access to those variables is synchroni zed.

Thisisan example of how local context can be used to persist a processing state between consecutive
requests.

DefaultHtpdient httpclient = new DefaultH tpCient();
Ht t pCont ext | ocal Cont ext = new Basi cHtt pContext ();
At omi cl nt eger count = new Atomi clnteger(1);
| ocal Cont ext.setAttribute("count", count);
httpclient.addRequest| nterceptor(new Htt pRequest|nterceptor() {
public void process(
final HttpRequest request,
final HttpContext context) throws HttpException, | OException {

At omi cl nteger count = (Atom clnteger) context.getAttribute("count");
request . addHeader (" Count", Integer.toString(count.getAndlncrenment()));

55

Htt pGet httpget = new HttpGet("http://Iocal host/");

11

Fundamentals

for (int i =0; i < 10; i++) {
Ht t pResponse response = httpclient. execute(httpget, |ocal Context);

HtpEntity entity = response.getEntity();
if (entity !'=null) {
entity.consunmeContent();

}

1.6. HTTP parameters

HttpParams interface represents a collection of immutable values that define a runtime behavior of a
component. In many ways Ht t pPar ams iS Similar to Ht t pCont ext . The main distinction between the
two liesin their use at runtime. Both interfaces represent a collection of objects that are organized as
amap of keysto object values, but serve distinct purposes:

e Ht t pPar ans isintended to contain simple objects. integers, doubles, strings, collections and objects
that remain immutable at runtime.

e Htt pPar ans iS expected to be used in the 'write once - ready many' mode. H: t pCont ext isintended
to contain complex objectsthat are very likely to mutatein the course of HT TP message processing.

» The purpose of Ht t pPar ans is to define a behavior of other components. Usually each complex
component hasitsown Ht t pPar ans object. The purpose of Ht t pCont ext iSto represent an execution
state of an HTTP process. Usually the same execution context is shared among many collaborating
objects.

1.6.1. Parameter hierarchies

In the course of HTTP request execution H: t pPar ans Of the Ht t pRequest object are linked together
with Ht t pPar ams Of the H t pdl i ent instance used to execute the request. This enables parameters
set at the HTTP request level take precedence over Ht t pPar ans set a the HTTP client level. The
recommended practice is to set common parameters shared by all HTTP requests at the HTTP client
level and selectively override specific parameters at the HTTP request level.

DefaultHtpdient httpclient = new DefaultH tpCient();

ht t pcl i ent. get Par ans() . set Par anet er (Cor ePr ot ocol PNanes. PROTOCOL_VERSI ON,
Htt pVersi on. HTTP_1_0);

httpclient.getParans(). set Paranet er (Cor ePr ot ocol PNanes. HTTP_CONTENT_CHARSET,
"UTF-8");

Htt pGet httpget = new H tpGet("http://ww. google.com");

ht t pget . get Par ans() . set Par anet er (Cor ePr ot ocol PNanes. PROTOCOL_VERSI ON,
Ht t pVersion. HTTP_1_1);

ht t pget . get Par ans() . set Par anet er (Cor ePr ot ocol PNanmes. USE_EXPECT_CONTI NUE,
Bool ean. FALSE) ;

httpclient.addRequest| nterceptor(new Htt pRequest|Interceptor() {

public void process(
final HttpRequest request,
final HttpContext context) throws HttpException, |OException {
System out . println(request. getParans(). get Paraneter (
Cor ePr ot ocol PNanmes. PROTOCOL_VERSI ON)) ;
System out. printl n(request. get Parans(). get Par anet er (
Cor ePr ot ocol PNanes. HTTP_CONTENT _CHARSET)) ;
System out . println(request. get Parans(). get Paraneter (
Cor ePr ot ocol PNanes. USE_EXPECT_CONTI NUE)) ;

12

Fundamentals

System out . println(request. get Parans(). get Paranet er (
Cor ePr ot ocol PNanes. STRI CT_TRANSFER_ENCODI NG)) ;

5)s

stdout >

HTTP/ 1.1
UTF- 8
fal se
nul |

1.6.2. HTTP parameters beans

Ht t pPar ams interface allows for a great deal of flexibility in handling configuration of components.
Most importantly, new parameters can be introduced without affecting binary compatibility with older
versions. However, Hi t pPar ans also has a certain disadvantage compared to regular Java beans:
Ht t pPar ans cannot be assembled using aDI framework. To mitigate thelimitation, HttpClient includes
anumber of bean classes that can used in order to initialize Ht t pPar ans objects using standard Java
bean conventions.

Ht t pPar ans parans = new Basi cHt t pParans();

Ht t pPr ot ocol Par anBean paransBean = new Htt pProt ocol Par anBean(par ans) ;
par ansBean. set Ver si on(Ht t pVersi on. HTTP_1_1);

par ansBean. set Cont ent Char set (" UTF-8");

par ansBean. set UseExpect Cont i nue(true);

System out . printl n(parans. get Paranet er (

Cor ePr ot ocol PNanmes. PROTOCOL_VERSI ON)) ;
System out . print| n(parans. get Par anet er (

Cor ePr ot ocol PNanes. HTTP_CONTENT_CHARSET)) ;
System out . printl n(parans. get Par anet er (

Cor ePr ot ocol PNanes. USE_EXPECT_CONTI NUE)) ;
System out . printl n(parans. get Paranet er (

Cor ePr ot ocol PNames. USER_AGENT)) ;

stdout >

HTTP/ 1.1
UTF- 8
fal se
nul |

1.7. HTTP request execution parameters

These are parameters that can impact the process of request execution:

e 'http.protocol.version': defines HTTP protocol version used if not set explicitly on the request
object. This parameter expects a value of type Prot ocol Versi on. If this parameter is not set
HTTP/1.1 will be used.

» 'http.protocol.element-charset': defines the charset to be used for encoding HTTP protocol
elements. Thisparameter expectsavalue of typej ava. | ang. Stri ng. If thisparameter isnot set us-
Ascl | will be used.

13

Fundamentals

"http.protocol.content-char set': defines the charset to be used per default for content body
coding. This parameter expects a value of type j ava. | ang. String. If this parameter is not set
| SO-8859- 1 will be used.

'http.useragent': defines the content of the User - Agent header. This parameter expects avalue
of type j ava. | ang. Stri ng. If this parameter is not set, HttpClient will automatically generate a
valuefor it.

"http.protocol.strict-transfer-encoding': defineswhether responseswith an invalid Tr ansf er -
Encodi ng header should be rejected. This parameter expects avalue of typej ava. | ang. Bool ean. If
this parameter is not set invalid Tr ansf er - Encodi ng values will be ignored.

"http.protocol.expect-continue': activates Expect: 100- Cont i nue handshake for the entity
enclosing methods. The purpose of the Expect: 100- Conti nue handshake is to allow the client
that is sending a request message with a request body to determine if the origin server is willing
to accept the request (based on the request headers) before the client sends the request body. The
use of the Expect : 100- cont i nue handshake can result in a noticeabl e performance improvement
for entity enclosing requests (such as PosST and PUT) that require the target server's authentication.
Expect: 100-conti nue handshake should be used with caution, as it may cause problems with
HTTP servers and proxiesthat do not support HTTP/1.1 protocol. This parameter expects avalue of
typej ava. | ang. Bool ean. If this parameter is not set HitpClient will attempt to use the handshake.

"http.protocol.wait-for-continue': defines the maximum period of time in milliseconds the
client should spend waiting for a 100- cont i nue response. This parameter expects a value of type
java.l ang. | nt eger . If this parameter is not set HttpClient will wait 3 seconds for a confirmation
before resuming the transmission of the request body.

14

Chapter 2. Connection management

HttpClient has a complete control over the process of connection initialization and termination as well
as 1/0O operations on active connections. However various aspects of connection operations can be
controlled using a number of parameters.

2.1. Connection parameters

These are parameters that can influence connection operations:

e 'http.socket.timeout': defines the socket timeout (so TiI MEQUT) in milliseconds, which is
the timeout for waiting for data or, put differently, a maximum period inactivity between two
consecutive data packets). A timeout value of zero is interpreted as an infinite timeout. This
parameter expects avalue of typej ava. | ang. | nt eger . If this parameter is not set read operations
will not time out (infinite timeout).

e 'http.tcp.nodelay': determines whether Nagle's algorithm is to be used. The Nagle's algorithm
triesto conserve bandwidth by minimizing the number of segmentsthat are sent. When applications
wish to decrease network latency and increase performance, they can disable Nagle's algorithm (that
isenable TcP_NODELAY. Datawill be sent earlier, at the cost of anincreasein bandwidth consumption.
This parameter expects avalue of typej ava. | ang. Bool ean. If this parameter is not, TCP_NODELAY
will be enabled (no delay).

» 'http.socket.buffer-size': determines the size of the internal socket buffer used to buffer
data while receiving / transmitting HTTP messages. This parameter expects a value of type
java.lang. I nteger. If this parameter is not set HitpClient will allocate 8192 byte socket buffers.

» 'http.socket.linger': sets SO LI NGER with the specified linger time in seconds. The maximum
timeout value is platform specific. Value 0 impliesthat the option is disabled. Vaue -1 implies that
the JRE default is used. The setting only affects the socket close operation. If this parameter is not
set value -1 (JRE default) will be assumed.

» 'http.connection.timeout': determines the timeout in milliseconds until a connection is
established. A timeout value of zero isinterpreted as an infinite timeout. This parameter expects a
value of typej ava. | ang. I nt eger . If this parameter is not set connect operations will not time out
(infinite timeout).

 'http.connection.stalecheck': determines whether stale connection check is to be used.
Disabling stale connection check may result in a noticeable performance improvement (the check
can cause up to 30 millisecond overhead per request) at the risk of getting an I/O error when
executing arequest over aconnection that hasbeen closed at the server side. Thisparameter expectsa
value of typej ava. | ang. Bool ean. For performance critical operationsthe check should be disabled.
If this parameter is not set the stale connection will be performed before each request execution.

* 'http.connection.max-line-length': determinesthemaximum linelength limit. If set to apositive
value, any HTTP line exceeding thislimit will cause anj ava. i o. | OExcept i on. A negative or zero
valuewill effectively disablethe check. Thisparameter expectsavalue of typej ava. | ang. | nt eger .
If this parameter is not set, no limit will be enforced.

 'http.connection.max-header-count': determines the maximum HTTP header count allowed.
If set to a positive value, the number of HTTP headers received from the data stream exceeding

15

Connection management

thislimit will causeanj ava. i o. | OExcept i on. A negative or zero value will effectively disable the
check. This parameter expects avalue of typej ava. | ang. I nt eger . If this parameter is not set, no
limit will be enforced.

e 'http.connection.max-status-line-garbage': defines the maximum number of ignorable lines
before we expect aHT TP response's status line. With HTTP/1.1 persistent connections, the problem
arises that broken scripts could return a wrong Cont ent - Lengt h (there are more bytes sent than
specified). Unfortunately, in some cases, this cannot be detected after the bad response, but only
before the next one. So HttpClient must be able to skip those surplus lines thisway. This parameter
expects avalue of type javalang.Integer. O disallows al garbage/empty lines before the status line.
Usej ava. | ang. I nt eger #MAX_VALUE for unlimited number. If this parameter is not set unlimited
number will be assumed.

2.2. Connection persistence

The process of establishing a connection from one host to another is quite complex and involves
multiple packet exchanges between two endpoints, which can be quite time consuming. The overhead
of connection handshaking can be significant, especially for small HT TP messages. One can achieve
amuch higher data throughput if open connections can be re-used to execute multiple requests.

HTTP/1.1 states that HTTP connections can be re-used for multiple requests per default. HTTP/1.0
compliant endpoints can a so use similar mechanism to explicitly communicatetheir preferenceto keep
connection aliveand useit for multiplerequests. HT TP agents can al so keep idle connectionsalivefor a
certain period timein case a connection to the same target host may be needed for subsequent requests.
The ability to keep connections alive is usually refered to as connection persistence. HttpClient fully
supports connection persistence.

2.3. HTTP connection routing

HttpClient is capable of establishing connections to the target host either directly or via a route that
may involve multiple intermediate connections also referred to as hops. HttpClient differentiates
connections of a route into plain, tunneled and layered. The use of multiple intermediate proxies to
tunnel connections to the target host is referred to as proxy chaining.

Plain routes are established by connecting to the target or the first and only proxy. Tunnelled routes
are established by connecting to thefirst and tunnelling through achain of proxiesto the target. Routes
without a proxy cannot be tunnelled. Layered routes are established by layering a protocol over an
existing connection. Protocols can only belayered over atunnel to thetarget, or over adirect connection
without proxies.

2.3.1. Route computation

Rout el nf o interface represents information about a definitive route to a target host involving one or
more intermediate steps or hops. H t pRout e isaconcrete implementation of Rout el nf o, which cannot
be changed (isimmutable). Ht t pTracker isamutable Rout el nf o implementation used internally by
HttpClient to track the remaining hops to the ultimate route target. H: t pTr acker can be updated after
a successful execution of the next hop towards the route target. Ht t pRout ebi r ect or IS a helper class
that can be used to compute the next step in aroute. This classis used internally by HttpClient.

Ht t pRout ePl anner iSan interface representing astrategy to compute acomplete routeto agiven target
based on the execution context. HttpClient shipswith two default Ht t pRout ePl anner implementation.

16

Connection management

ProxySel ect or Rout ePl anner iS based on j ava. net . ProxySel ect or . By default, it will pick up the
proxy settings of the VM, either from system properties or from the browser running the application.
Def aul t Ht t pRout ePl anner implementation does not make use of any Java system properties, nor of
system or browser proxy settings. It computes routes based exclusively on HT TP parameters described
below.

2.3.2. Secure HTTP connections

HTTP connections can be considered secure if information transmitted between two connection
endpoints cannot be read or tampered with by an unauthorized third party. The SSL/TLS protocol
is the most widely used technique to ensure HTTP transport security. However, other encryption
techniques could be employed aswell. Usually, HT TP transport islayered over the SSL/TL S encrypted
connection.

2.4. HTTP route parameters

These are parameters that can influence route computation:

» 'http.routedefault-proxy': definesaproxy host to be used by default route plannersthat do not
make use of JRE settings. This parameter expects avalue of type Ht t pHost . If this parameter is not
set direct connections to the target will be attempted.

e 'http.route.local-address': defines a local address to be used by all default route planner.
On machines with multiple network interfaces, this parameter can be used to select the
network interface from which the connection originates. This parameter expects a value of
type j ava. net . | net Address. If this parameter is not set a default local address will be used
automatically.

* 'http.routeforced-route’: definesan forced routeto be used by all default route planner. Instead
of computing a route, the given forced route will be returned, even if it points to a completely
different target host. This parameter expects avalue of type Ht t pRout e.

2.5. Socket factories

HTTP connections make use of aj ava. net. Socket object internally to handle transmission of data
across the wire. They, however, rely on Socket Fact ory interface to create, initialize and connect
sockets. This enables the users of HttpClient to provide application specific socket initialization code
at runtime. Pl ai nSocket Fact ory isthe default factory for creating and initializing plain (unencrypted)
sockets.

The process of creating a socket and that of connecting it to a host are decoupled, so that the socket
could be closed while being blocked in the connect operation.

Pl ai nSocket Factory sf = Pl ai nSocket Fact ory. get Socket Factory();
Socket socket = sf.createSocket();

Ht t pPar ans parans = new Basi cHt t pParans();
par ans. set Par anmet er (Cor eConnect i onPNanmes. CONNECTI ON_TI MEQUT, 1000L) ;
sf. connect Socket (socket, "l ocahost", 8080, null, -1, parans);

17

Connection management

2.5.1. Secure socket layering

Layer edSocket Fact ory iS an extension of Socket Factory interface. Layered socket factories are
capable of creating sockets that are layered over an existing plain socket. Socket layering is used
primarily for creating secure sockets through proxies. HttpClient ships with SSL SocketFactory
that implements SSL/TLS layering. Please note HttpClient does not use any custom encryption
functionality. It is fully reliant on standard Java Cryptography (JCE) and Secure Sockets (JSEE)
extensions.

2.5.2. SSL/TLS customization

HttpClient makes use of SSL SocketFactory to create SSL connections. SSLSocket Fact ory alowsfor
ahigh degree of customization. It can take an instance of j avax. net . ssl . SSLCont ext as a parameter
and use it to create custom configured SSL connections.

Trust Manager easyTrust Manager = new X509Trust Manager () {

@verride
public void checkd ient Trust ed(
X509Certificate[] chain,
String authType) throws CertificateException {
// Onh, | am easy!

}

@verride
public void checkServer Trust ed(
X509Certificate[] chain,
String authType) throws CertificateException {
/1l Ch, | am easy!

}

@verride
public X509Certificate[] getAcceptedlssuers() {
return null;

}
be

SSLCont ext ssl context = SSLCont ext.getlnstance("TLS");
sslcontext.init(null, new TrustManager[] { easyTrustManager }, null);

SSLSocket Fact ory sf = new SSLSocket Fact ory(ssl cont ext);
SSLSocket socket = (SSLSocket) sf.createSocket();
socket . set Enabl edCi pher Suites(new String[] { "SSL_RSA WTH RC4_128 MD5" });

Ht t pPar anms paranms = new Basi cHt t pParans();
par ans. set Par anet er (Cor eConnect i onPNanes. CONNECTI ON_TI MEQUT, 1000L);
sf . connect Socket (socket, "locahost", 443, null, -1, parans);

Customization of SSLSocketFactory implies a certain degree of familiarity with the concepts of
the SSL/TLS protocol, a detailed explanation of which is out of scope for this document. Please
refer to the Java Secure Socket Extension [http://java.sun.com/j2se/1.5.0/docs/guidel/security/jsse/
JSSERefGuide.html] for a detailed description of j avax. net . ssl . SSLCont ext and related tools.

2.5.3. Hostname verification

In addition to the trust verification and the client authentication performed on the SSL/TLS protocol
level, HttpClient can optionally verify whether the target hostname matches the names stored inside
the server's X.509 certificate, once the connection has been established. This verification can provide

18

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Connection management

additional guarantees of authenticity of the server trust material. X509HostnameV erifier interface
represents a strategy for hostname verification. HttpClient ships with three X509HostnameV erifier.
Important: hostname verification should not be confused with SSL trust verification.

e StrictHostnaneVerifier: The strict hosthame verifier works the same way as Sun Java 1.4,
Sun Java 5, Sun Java 6. It's also pretty close to |E6. This implementation appears to be compliant
with RFC 2818 for dealing with wildcards. The hostname must match either the first CN, or any of
the subject-alts. A wildcard can occur in the CN, and in any of the subject-alts.

e Browser Conpat Host nameVerifier: The hostname verifier that works the same way as
Curl and Firefox. The hostname must match either the first CN, or any of the subject-
alts. A wildcard can occur in the CN, and in any of the subject-alts. The only difference
between Browser Conpat Host naneVerifier and StrictHostnaneVerifier is that a wildcard
(such as "*.foo.com") with Br owser Conpat Host nameVer i fi er matches all subdomains, including
"a.b.foo.com".

e Al'l owAl | Host naneVeri fi er: Thishostname verifier essentially turns hostname verification off.
This implementation is ano-op, and never throwsthej avax. net . ssl . SSLExcept i on.

Per default HttpClient uses Br owser Conpat Host naneVeri fi er implementation. One can specify a
different hostname verifier implementation if desired

SSLSocket Fact ory sf = new SSLSocket Fact or y(SSLCont ext . get | nst ance("TLS"));
sf. set Host nameVeri fi er (SSLSocket Fact ory. STRI CT_HOSTNAME_VERI FI ER) ;

2.6. Protocol schemes

Schene class represents a protocol scheme such as "http" or "https" and contains a number of protocol
properties such as the default port and the socket factory to be used to creating j ava. net . Socket
instancesfor the given protocol. SchemeRegi st ry classis used to maintain a set of schermes HttpClient
can choose from when trying to establish a connection by arequest URI:

Schene http = new Schene("http", PlainSocketFactory. getSocketFactory(), 80);

SSLSocket Factory sf = new SSLSocket Fact or y(SSLCont ext . get | nstance("TLS"));
sf . set Host nameVeri fi er (SSLSocket Fact ory. STRI CT_HOSTNAME_VERI FI ER) ;
Schenme https = new Schenme("https", sf, 443);

ScheneRegi stry sr = new SchenmeRegi stry();
sr.register(http);
sr.regi ster(https);

2.7. HttpClient proxy configuration

Even though HttpClient is aware of complex routing scemes and proxy chaining, it supports only
simple direct or one hop proxy connections out of the box.

The simplest way to tell HttpClient to connect to the target host via a proxy is by setting the default
proxy parameter:

DefaultHtpdient httpclient = new DefaultH tpCient();

19

Connection management

Ht t pHost proxy = new Htt pHost ("sonmeproxy", 8080);
httpclient. get Parans(). set Par anet er (ConnRout ePNanes. DEFAULT_PROXY, proxy);

One can aso instruct HttpClient to use standard JRE proxy selector to obtain proxy information:

DefaultHtpCient httpclient = new DefaultHtpdient();

ProxySel ect or Rout ePl anner rout ePl anner = new ProxySel ect or Rout ePl anner (
ht t pcl i ent . get Connect i onManager () . get ScheneRegi stry(),
ProxySel ector. get Defaul t());

httpclient. set Rout ePl anner (rout ePl anner);

Alternatively, one can provide a custom Rout ePl anner implementation in order to have a complete
control over the process of HT TP route computation:

DefaultHtpCient httpclient = new DefaultHttpCient();
httpclient.set Rout ePl anner (new Htt pRout ePl anner () {

public H tpRoute deterni neRout e(
Ht t pHost target,
Ht t pRequest request,
Ht t pCont ext context) throws H tpException {
return new Htt pRoute(target, null, new HttpHost("sonmeproxy", 8080),
"https". equal sl gnoreCase(target.get SchemeNane()));

1)

2.8. HTTP connection managers

2.8.1. Connection operators

Operated connections are client side connections whose underlying socket or its state
can be manipulated by an externa entity, usually referred to as a connection operator.
Oper at edd i ent Connect i on interfaceextendsH: t pd i ent Connect i on interface and define additional
methodsto manage connection socket. Thed i ent Connect i onOper at or interfacerepresentsastrategy
for creating Qper at edd i ent Connecti on instances and updating the underlying socket of those
objects. Implementations will most likely make use Socket Fact oryS tO create j ava. net . Socket
instances. The d i ent Connecti onCper at or interface enables the users of HttpClient to provide a
custom strategy for connection operators as well as an ability to provide alternative implementation
of the Oper at edd i ent Connecti on interface.

2.8.2. Managed connections and connection managers

HTTP connections are complex, stateful, thread-unsafe objects which need to be properly managed to
function correctly. HTTP connections can only be used by one execution thread at atime. HttpClient
employs aspecial entity to manage accessto HT TP connections called HT TP connection manager and
represented by thed i ent Connect i onManager interface. The purpose of an HT TP connection manager
is to serve as a factory for new HTTP connections, manage persistent connections and synchronize
access to persistent connections making sure that only one thread can have access to a connection at
atime.

Internally HTTP connection managers work with instances of Operatedd ient Connecti on,
but they hands out instances of ManageddientConnection to the service consumers.

20

Connection management

Managedd i ent Connect i on actsasawrapper for acper at edd i ent Connect i on instance that manages
its state and controls all 1/0 operations on that connection. It also abstracts away socket operations
and provides convenience methods for opening and updating sockets in order to establish a route.
Managedd i ent Connect i on instances are aware of their link to the connection manager that spawned
them and of the fact that they must be returned back to the manager when no longer in use.
Managedd i ent Connect i on classes also implement Connect i onRel easeTri gger interface that can be
used to trigger the release of the connection back to the manager. Once the connection release has
been triggered the wrapped connection gets detached from the Managedd i ent Connect i on Wrapper
and the oper at edd i ent Connect i on instanceisreturned back to the manager. Even though the service
consumer still holds a reference to the Managedd i ent Connect i on instance, it is no longer able to
execute any 1/O operation or change the state of the Oper at edd i ent Connect i on €either intentionally
or unintentionally.

Thisis an example of acquiring a connection from a connection manager:

Schenme http = new Schenme("http", PlainSocketFactory. getSocketFactory(), 80);
SchenmeRegi stry sr = new ScheneRegi stry();

sr.register(http);

Cl i ent Connect i onManager connM g = new Si ngl eCl i ent ConnManager (sr);

// Request new connection. This can be a | ong process
Cl i ent Connect i onRequest connRequest = connM g. request Connecti on(
new Htt pRout e(new HttpHost ("1 ocal host", 80)), null);

/1 Wait for connection up to 10 sec
Managedd i ent Connecti on conn = connRequest. get Connecti on(10, Ti neUnit. SECONDS);
try {
/1 Do useful things with the connection.
/'l Release it when done.
conn. rel easeConnecti on();
} catch (I OException ex) {
/] Abort connection upon an I/O error.
conn. abor t Connection();
throw ex;

The connection request can be terminated prematurely by caling
d i ent Connect i onRequest #abor t Request () if necessary. Thiswill unblock thethread blocked inthe
d i ent Connect i onRequest #get Connect i on() method.

Basi cManagedEnt ity wrapper class can be used to ensure automatic release of the underlying
connection once the response content has been fully consumed. HttpClient uses this
mechanism internally to achieve transparent connection release for all responses obtained from
Htt pd i ent #execut e() methods:

Cl i ent Connecti onRequest connRequest = connM g. request Connecti on(
new Htt pRout e(new Htt pHost ("1 ocal host", 80)), null);
Managedd i ent Connecti on conn = connRequest. get Connecti on(10, Ti neUnit. SECONDS);
try {
Basi cHt t pRequest request = new Basi cHtt pRequest (" GET", "/");
conn. sendRequest Header (request) ;
Ht t pResponse response = conn.recei veResponseHeader () ;
conn. recei veResponseEntity(response);
HtpEntity entity = response.getEntity();
if (entity '= null) {
Basi cManagedEntity nmanagedEntity = new Basi cManagedEntity(entity, conn, true);
/1 Replace entity
response. set Entity(managedEntity);

21

Connection management

}

/1 Do sonmething useful with the response

/1 The connection will be rel eased automatically

/'l as soon as the response content has been consumed
} catch (1 OException ex) {

/1 Abort connection upon an I/O error.

conn. abor t Connection();

t hrow ex;

2.8.3. Simple connection manager

Si ngl eCl i ent ConnManager iS a sSimple connection manager that maintains only one connection at
a time. Even though this class is thread-safe it ought to be used by one execution thread only.
Si ngl ed i ent ConnManager Will make an effort to reuse the connection for subsequent requests with
the same route. It will, however, close the existing connection and open it for the given route, if the
route of the persistent connection does not match that of the connection request. If the connection has
been already been alocated j ava. | ang. I | | egal St at eExcept i on iSthrown.

Si ngl eC i ent ConnManager isused by HttpClient per default.

2.8.4. Pooling connection manager

Thr eadSaf edl i ent ConnManager iS a more complex implementation that manages a pool of client
connections and is able to service connection requests from multiple execution threads. Connections
are pooled on a per route basis. A request for a route which already the manager has persistent
connections for available in the pool will be services by leasing a connection from the pool rather than
creating a brand new connection.

Thr eadSaf ed i ent ConnManager maintains a maximum limit of connection on a per route basisand in
total. Per default thisimplementation will create no more than than 2 concurrent connections per given
route and no more 20 connections in total. For many real-world applications these limits may prove
too constraining, especidly if they use HTTP as a transport protocol for their services. Connection
limits, however, can be adjusted using HTTP parameters.

This example shows how the connection pool parameters can be adjusted:

SchenmeRegi stry scheneRegi stry = new ScheneRegi stry();
schenmeRegi stry. regi ster(

new Schene("http", PlainSocket Factory. get Socket Factory(), 80));
schenmeRegi stry. regi ster(

new Scheme("https", SSLSocket Factory. get Socket Factory(), 443));

Thr eadSaf eC i ent ConnManager cm = new Thr eadSaf e i ent ConnManager (scheneRegi stry);
/1 Increase nmax total connection to 200

cm set MaxTot al Connecti ons(200);

/'l Increase default nax connection per route to 20

cm set Def aul t MaxPer Rout e(20) ;

/'l I ncrease max connections for |ocal host:80 to 50

Ht t pHost | ocal host = new HttpHost ("l ocahost”, 80);

cm set MaxFor Rout e(new Htt pRout e(l ocal host), 50);

HtpClient httplient = new DefaultH tpCient(cm;

22

Connection management

2.8.5. Connection manager shutdown

When an HttpClient instance is no longer needed and is about to go out of scope it isimportant to shut
down its connection manager to ensure that al connections kept alive by the manager get closed and
system resources allocated by those connections are rel eased.

DefaultH tpdient httpclient = new Defaul tH tpCient();
Htt pGet httpget = new HttpGet("http://ww.google.conl");
Ht t pResponse response = httpclient. execute(httpget);
HtpEntity entity = response.getEntity();
System out. println(response. get StatusLine());
if (entity !'= null) {

entity. consumeContent();

}
ht t pcl i ent. get Connect i onManager () . shut down() ;

2.9. Connection management parameters

These are parameters that be used to customize standard HT TP connection manager implementations:

 'http.conn-manager.timeout': defines the timeout in milliseconds used when retrieving an
instance of Managedd i ent Connect i on fromthed i ent Connect i onManager Thisparameter expects
avalue of typej ava. | ang. Long. If this parameter is not set connection requests will not time out
(infinite timeout).

2.10. Multithreaded request execution

When equipped with a pooling connection manager such as ThreadSafeClientConnManager
HttpClient can be used to execute multiple requests simultaneously using multiplethreads of execution.

Thr eadSaf eC i ent ConnManager Will allocate connectionsbased onitsconfiguration. If al connections
for a given route have aready been leased, a request for connection will block until a
connection is released back to the pool. One can ensure the connection manager does not
block indefinitely in the connection request operation by setting ' htt p. conn- manager . t i meout "
to a positive value. If the connection request cannot be serviced within the given time period
Connect i onPool Ti meout Except i on Will be thrown.

SchenmeRegi stry schenmeRegi stry = new ScheneRegi stry();
schenmeRegi stry. regi ster(
new Scheme("http", Pl ai nSocket Factory. get Socket Factory(), 80));

Cl i ent Connecti onManager cm = new Thr eadSaf eC i ent ConnManager (scheneRegi stry);
Htpdient httpCient = new DefaultH tpCient(cm;

// URI's to perform CETs on

String[] urisToGet = {
“http://ww. dormai nl. com ",
"http://ww. domai n2. com’ ",
"http://ww. domai n3. com’ ",
“http://ww. dormai n4. com "

I8

I/l create a thread for each URI
Get Thread[] threads = new Get Thread[urisToGet. | ength];
for (int i =0; i < threads.length; i++) {

HttpCGet httpget = new HitpGet(urisToCet[i]);

23

Connection management

threads[i] = new GetThread(httpCient, httpget);
}

/'l start the threads
for (int j =0; j < threads.length; j++) {
threads[j].start();

}

// join the threads

for (int j =0; j < threads.length; j++) {
threads[j].join();

}

static class Get Thread extends Thread {

private final HtpCient httpdient;
private final HttpContext context;
private final H tpGet httpget;

public GetThread(HtpClient httpCient, HtpGet httpget) {
this.httplient = httpdient;
this. context = new Basi cH t pCont ext ();

this.httpget = httpget;

}
@verride
public void run() {
try {
Ht t pResponse response = this.httpCient.execute(this.httpget, this.context);
HtpEntity entity = response.getEntity();
if (entity !I'=null) {
/1 do sonething useful with the entity
...
/'l ensure the connection gets released to the manager
entity.consuneContent();
}
} catch (Exception ex) {
this. httpget.abort();
}
}

2.11. Connection eviction policy

One of the major shortcoming of the classic blocking 1/0 model isthat the network socket can react to
1/0 events only when blocked in an 1/0 operation. When a connection is released back to the manager,
it can be kept alive however it is unable to monitor the status of the socket and react to any /O events.
If the connection gets closed on the server side, the client side connection is unabl e to detect the change
in the connection state and react appropriately by closing the socket on its end.

HttpClient tries to mitigate the problem by testing whether the connection is 'stal€, that is
no longer valid because it was closed on the server side, prior to using the connection for
executing an HTTP request. The stale connection check is not 100% reliable and adds 10 to
30 ms overhead to each request execution. The only feasible solution that does not involve a
one thread per socket model for idle connections is a dedicated monitor thread used to evict
connections that are considered expired due to a long period of inactivity. The monitor thread
can periodically call d i ent Connect i onManager #cl oseExpi r edConnect i ons() method to close all
expired connections and evict closed connections from the pool. It can also optionaly call

24

Connection management

d i ent Connect i onManager #cl osel dl eConnect i ons() method to closeall connectionsthat have been
idle over agiven period of time.

public static class |dl eConnectionhMnitorThread extends Thread {

private final CientConnecti onManager connMr;
private volatile bool ean shutdown;

public |dl eConnecti onMnitorThread(d i entConnecti onManager connMr) {
super () ;
this. connMgr = connMyr;

}
@verride
public void run() {
try {
whil e (!shutdown) {
synchroni zed (this) {
wai t (5000) ;
/1 Cl ose expired connections
connMyr . cl oseExpi redConnecti ons();
// Optionally, close connections
/1 that have been idle |onger than 30 sec
connMyr . cl osel dl eConnecti ons(30, TimeUnit. SECONDS);
}
}
} catch (InterruptedException ex) {
/1l term nate
}
}

public void shutdown() ({
shut down = true;
synchroni zed (this) {
notifyAll();
}

2.12. Connection keep alive strategy

The HTTP specification does not specify how long a persistent connection may be and should be kept
alive. Some HT TP serversuse non-standard keep- Al i ve header to communicate to the client the period
of time in seconds they intend to keep the connection alive on the server side. HttpClient makes use
of thisinformation if available. If the Keep- Al i ve header is not present in the response, HttpClient
assumes the connection can be kept alive indefinitely. However, many HTTP servers out there are
configured to drop persistent connections after acertain period of inactivity in order to conserve system
resources, quite often without informing the client. In case the default strategy turns out to be too
optimistic, one may want to provide a custom keep-alive strategy.

DefaultH tpCient httpclient = new DefaultHttpCient();
httpclient.set KeepAliveStrategy(new Connecti onKeepAliveStrategy() {

public | ong get KeepAliveDuration(H tpResponse response, HttpContext context) {
// Honor 'keep-alive' header
Header El enent I terator it = new Basi cHeader El enent | t er at or (
response. header | t er at or (HTTP. CONN_KEEP_ALI VE)) ;
while (it.hasNext()) {
Header El enent he = it.nextEl enent ();

25

Connection management

1)

String param = he. get Nane();
String value = he. get Val ue();
if (value !'= null && param equal sl gnoreCase("tineout")) {
try {
return Long. parselLong(val ue) * 1000;
} cat ch(Nunmber For mat Excepti on i gnore) {

}

}
Htt pHost target = (HttpHost) context.getAttribute(

Execut i onCont ext . HTTP_TARGET_HOST) ;
if ("ww naughty-server. coni. equal sl gnoreCase(target. getHost Name())) {
/'l Keep alive for 5 seconds only
return 5 * 1000;
} else {
/'l otherwi se keep alive for 30 seconds
return 30 * 1000;

26

Chapter 3. HTTP state management

Originally HTTP was designed as a statel ess, request / response oriented protocol that made no special
provisionsfor stateful sessions spanning across several logically related request / response exchanges.
As HTTP protocol grew in popularity and adoption more and more systems began to use it for
applications it was never intended for, for instance as a transport for e-commerce applications. Thus,
the support for state management became a necessity.

Netscape Communications, at that time a leading developer of web client and server software,
implemented support for HTTP state management in their products based on a proprietary
specification. Later, Netscape tried to standardise the mechanism by publishing a specification draft.
Thoseefforts contributed to the formal specification defined through the RFC standard track. However,
state management in asignificant number of applicationsisstill largely based on the Netscape draft and
is incompatible with the official specification. All mgjor developers of web browsers felt compelled
to retain compatibility with those applications greatly contributing to the fragmentation of standards
compliance.

3.1. HTTP cookies

Cookie is atoken or short packet of state information that the HTTP agent and the target server can
exchange to maintain a session. Netscape engineers used to refer to it as as a "magic cookie" and the
name stuck.

HttpClient uses Cooki e interface to represent an abstract cookie token. In its smples form an HTTP
cookie is merely a name / value pair. Usually an HTTP cookie also contains a number of attributes
such as version, a domain for which is valid, a path that specifies the subset of URLS on the origin
server to which this cookie applies, and maximum period of time the cookieisvalid for.

Set Cooki e interface represents a Set - Cooki e response header sent by the origin server to the HTTP
agent in order to maintain a conversational state. Set Cooki e2 interface extends SetCookie with Set -
Cooki e2 specific methods.

d i ent Cooki e interface extends Cooki e interface with additional client specific functionality such
ability to retrieve original cookie attributes exactly as they were specified by the origin server. Thisis
important for generating the Cooki e header because some cookie specifications require that the Cooki e
header should include certain attributes only if they were specified in the Set - Cooki e Or Set - Cooki e2
header.

3.1.1. Cookie versions

Cookies compatible with Netscape draft specification but non-compliant with the official specification
areconsidered to be of version 0. Standard compliant cookiesare expected to haveversion 1. HttpClient
may handle cookies differently depending on the version.

Here is an example of re-creating a Netscape cookie:

Basi cd i ent Cooki e net scapeCooki e = new Basi cC i ent Cooki e("nane", "val ue");
net scapeCooki e. set Ver si on(0) ;

net scapeCooki e. set Domai n(". myconpany. cont') ;

net scapeCooki e. set Pat h("/");

27

HTTP state management

Hereis an example of re-creating a standard cookie. Please note that standard compliant cookie must
retain all attributes as sent by the origin server:

Basi cd i ent Cooki e st dCooki e = new Basi cC i ent Cooki e("nanme", "val ue");
st dCooki e. set Versi on(1);

st dCooki e. set Domai n(". myconpany. conl') ;

st dCooki e. set Path("/");

st dCooki e. set Secure(true);

/1 Set attributes EXACTLY as sent by the server

st dCooki e. set Attri but e(d i ent Cooki e. VERSI ON_ATTR, "1");

st dCooki e. set Attri bute(C i ent Cooki e. DOVAI N_ATTR, ". myconpany.conl');

Hereisan example of re-creating aSet - Cooki e2 compliant cookie. Please note that standard compliant
cookie must retain all attributes as sent by the origin server:

Basi cd i ent Cooki e2 stdCooki e = new Basi cC i ent Cooki e2("nane", "value");
st dCooki e. set Versi on(1);

st dCooki e. set Domai n(". myconpany. cont') ;

st dCooki e. set Ports(new i nt[] {80, 8080});

st dCooki e. set Pat h("/");

st dCooki e. set Secure(true);

/1 Set attributes EXACTLY as sent by the server

st dCooki e. set Attri bute(C i ent Cooki e. VERSI ON_ATTR, "1");

st dCooki e. set Attri but e(Cl i ent Cooki e. DOVAI N_ATTR, ". myconpany. conl');

st dCooki e. set Attri bute(C i ent Cooki e. PORT_ATTR, "80, 8080");

3.2. Cookie specifications

Cooki eSpec interface represents a cookie management specification. Cookie management
specification is expected to enforce:

 rules of parsing Set - Cooki e and optionally Set - Cooki e2 headers.

* rulesof validation of parsed cookies.

« formatting of cooki e header for a given host, port and path of origin.
HttpClient ships with several Cooki eSpec implementations:

¢ Netscape draft: This specification conforms to the original draft specification published by
Netscape Communications. It should be avoided unless absolutely necessary for compatibility with
legacy code.

e RFC 2109: Older version of the official HTTP state management specification superseded by
RFC 2965.

« RFC 2965: The official HTTP state management specification.

e Browser compatibility: This implementations strives to closely mimic (mis)behavior of
common web browser applications such as Microsoft Internet Explorer and Mozilla FireFox.

e Best match: 'Meta cookie specification that picks up a cookie policy based on the format of
cookies sent with the HTTP response. It basically aggregates al above implementations into one
class.

28

HTTP state management

It is strongly recommended to use the Best Mat ch policy and let HttpClient pick up an appropriate
compliance level at runtime based on the execution context.

3.3. HTTP cookie and state management parameters

These are parameters that be used to customize HTTP state management and behaviour of individual
cookie specifications:

"http.protocol.cookie-datepatterns': defines valid date patterns to be used for parsing non-
standard expi res attribute. Only required for compatibility with non-compliant servers that
still use expi res defined in the Netscape draft instead of the standard nax- age attribute. This
parameter expects avalue of typej ava. uti | . Col | ecti on. The collection elements must be of type
java. | ang. Stri ng compatible with the syntax of j ava. t ext . Si npl eDat eFor mat . If this parameter
is not set the choice of a default value is Cooki eSpec implementation specific. Please note this
parameter applies

"http.protocol.single-cookie-header': defines whether cookies should be forced into a single
Cooki e request header. Otherwise, each cookie is formatted as a separate Cooki e header. This
parameter expects a value of type j ava. | ang. Bool ean. If this parameter is not set the choice of
adefault value is CookieSpec implementation specific. Please note this parameter applies to strict
cookie specifications (RFC 2109 and RFC 2965) only. Browser compatibility and netscape draft
policies will always put al cookies into one request header.

'http.protocol.cookie-palicy': defines the name of a cookie specification to be used for HTTP
state management. This parameter expects a value of typej ava. | ang. Stri ng. If this parameter is
not set valid date patterns are Cooki eSpec implementation specific.

3.4. Cookie specification registry

HttpClient maintains a registry of available cookie specifications using Cooki eSpecRegi stry class.
The following specifications are registered per default:

compatibility: ~ Browser compatibility (Ienient policy).
netscape: Netscape draft.

rfc2109: RFC 2109 (outdated strict policy).

rfc2965: RFC 2965 (standard conformant strict policy).

best-match: Best match meta-policy.

3.5. Choosing cookie policy

Cookie policy can be set at the HTTP client and overridden on the HTTP request level if required.

HtpCient httpclient = new Defaul tH tpCient();
/1l force strict cookie policy per default
httpclient.getParans(). set Paraneter (

Cl i ent PNanes. COCKI E_PCLI CY, Cooki ePol i cy. RFC_2965) ;

Htt pGet httpget = new Ht tpGet("http://ww. broken-server.conl");
/1l Override the default policy for this request

29

HTTP state management

htt pget . get Parans() . set Par anet er (
Cl i ent PNanes. COOKI E_POLI CY, Cooki ePol i cy. BROASER_COWPATI Bl LI TY) ;

3.6. Custom cookie policy

In order to implement a custom cookie policy one should create a custom implementation of
Cooki eSpec interface, create a Cooki eSpecFact ory implementation to create and initialize instances
of the custom specification and register the factory with HttpClient. Once the custom specification has

been registered, it can be activated the same way as the standard cookie specifications.

Cooki eSpecFact ory csf = new Cooki eSpecFactory() {
publ i ¢ Cooki eSpec newl nstance(HttpParans parans) {
return new Browser Conpat Spec() {
@verride
public void validate(Cooki e cookie, CookieOigin origin)
throws Mal f or medCooki eExcepti on {
/1l On, | am easy

}

be

DefaultHtpdient httpclient = new Defaul tH tpCient();
ht t pcl i ent . get Cooki eSpecs().regi ster("easy", csf);
httpclient.getParans().set Paraneter (

Cl i ent PNanes. COCKI E_PCLI CY, "easy");

3.7. Cookie persistence

HttpClient can work with any physical representation of a persistent cookie store that implements
the Cooki eSt or e interface. The default Cooki eSt or e implementation called Basi cC i ent Cooki e iSa
simpleimplementation backed by aj ava. util . ArrayLi st. Cookiesstored in an Basi cd i ent Cooki e
object are lost when the container object get garbage collected. Users can provide more complex

implementations if necessary.

DefaultHitpdient httpclient = new Defaul tH tpCient();
Il Create a |local instance of cookie store

Cooki eSt ore cooki eStore = new MyCooki eStore();

/'l Popul ate cookies if needed

Basi cd i ent Cooki e cooki e = new Basi cd i ent Cooki e("nane", "val ue");
cooki e. set Versi on(0) ;

cooki e. set Domai n(". myconpany. cont') ;

cooki e.setPath("/");

cooki eSt or e. addCooki e(cooki e) ;

/1 Set the store

httpclient.set Cooki eSt ore(cooki eStore);

3.8. HTTP state management and execution context

In the course of HTTP request execution HttpClient adds the following state management related

objects to the execution context:

* 'http.cookiespec-registry': Cooki eSpecRegi stry instance representing the actual cookie
specification registry. The value of this attribute set in the local context takes precedence over the

default one.

HTTP state management

e 'http.cookie-spec': Cooki eSpec instance representing the actual cookie specification.
e 'http.cookie-origin': Cooki eOri gi n instance representing the actual details of the origin server.

» 'http.cookie-stor€': Cooki eSt or e instance represents the actual cookie store. The value of this
attribute set in the local context takes precedence over the default one.

Thelocal Ht t pCont ext Object can be used to customize the HT TP state management context prior to
reguest execution or examine its state after the request has been executed:

HtpCient httpclient = new DefaultHtpCient();

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext ();

HttpCGet httpget = new HitpGet("http://I|ocal host:8080/");

Ht t pResponse response = httpclient. execute(httpget, |ocal Context);

Cooki eOri gin cookieOrigin = (CookieCOrigin) |ocal Context.getAttribute(
ClientContext. COOKIE CRIG N);

System out. println("Cookie origin: " + cookieOigin);

Cooki eSpec cooki eSpec = (Cooki eSpec) | ocal Context.getAttri bute(
Cl i ent Cont ext . COOKI E_SPEC) ;

System out . println("Cookie spec used: " + cooki eSpec);

3.9. Per user / thread state management

One can use an individual local execution context in order to implement per user (or per thread) state
management. Cookie specification registry and cookie store defined in the local context will take
precedence over the default ones set at the HTTP client level.

Htpdient httpclient = new Defaul tH tpCdient();

// Create a local instance of cookie store

Cooki eSt ore cooki eStore = new Basi cCooki eStore();

/'l Create | ocal HTTP context

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext () ;

/1 Bind custom cookie store to the |ocal context

| ocal Cont ext.set Attri bute(d ientContext.COOKIE _STORE, cookieStore);
Htt pGet httpget = new HttpGet("http://ww.google.com");

/1 Pass |ocal context as a paraneter

Ht t pResponse response = httpclient. execute(httpget, |ocal Context);

31

Chapter 4. HTTP authentication

HttpClient provides full support for authentication schemes defined by the HTTP standard
specification. HttpClient's authentication framework can also be extended to support non-standard
authentication schemes such as NTLMand SPNEGO.

4.1. User credentials

Any process of user authentication requires a set of credentials that can be used to establish
user identity. In the simplest form user crednetials can be just a user name / password pair.
User nanePasswor dCr edent i al s represents a set of credentials consisting of a security principa and a
password in clear text. Thisimplementation is sufficient for standard authentication schemes defined
by the HTTP standard specification.

User nanePasswor dCr edenti al s creds = new User nanePasswor dCr edenti al s("user", "pwd");
System out. println(creds. getUserPrincipal ().getNane());
System out . println(creds. get Password());

stdout >

user
pwd

NTCr edent i al s isaMicrosoft Windows specific implementation that includes in addition to the user
name/ password pair aset of additional Windows specific attributes such asaname of the user domain,
as in Microsoft Windows network the same user can belong to multiple domains with a different set
of authorizations.

NTCredential s creds = new NTCredential s("user", "pwd", "workstation", "domain");
System out. println(creds. getUserPrincipal ().getNane());
System out . println(creds. get Password());

stdout >

DOVAI N/ user
pwd

4.2. Authentication schemes

The Aut hschene interface represents an abstract challenge-response oriented authentication scheme.
An authentication scheme is expected to support the following functions:

» Parse and process the challenge sent by the target server in response to request for a protected
resource.

» Provide properties of the processed challenge: the authentication scheme type and its parameters,
such the realm this authentication scheme is applicable to, if available

32

HTTP authentication

« Generate authorization string for the given set of credentials and the HTTP request in response to
the actual authorization challenge.

Please note authenti cation schemes may be stateful involving aseries of challenge-response exchanges.
HttpClient ships with several Aut hSchene implementations:

e Basdic: Basic authentication scheme as defined in RFC 2617. This authentication scheme is
insecure, as the credentials are transmitted in clear text. Despite its insecurity Basic authentication
scheme is perfectly adequate if used in combination with the TLS/SSL encryption.

» Digest. Digest authentication scheme as defined in RFC 2617. Digest authentication schemeis
significantly more secure than Basic and can be a good choice for those applications that do not
want the overhead of full transport security through TLS/SSL encryption.

« NTLM: NTLM isaproprietary authentication scheme developed by Microsoft and optimized for
Windows platforms. NTLM is believed to be more secure than Digest. This scheme is requires an
external NTLM engineto be functional. For details please refer to the NTLM_SUPPORT. t xt document
included with HttpClient distributions.

* SPNEGO/Kerberos: sPNeGO(Smpleand Protected GssaPl Negotiation Mechanism) isaGSSAPI
"pseudo mechanism" that is used to negotiate one of a number of possible rea mechanisms.
SPNEGO's most visible use is in Microsoft's HTTP Negoti at e authentication extension. The
negotiable sub-mechanismsinclude NTLM and Kerberos supported by Active Directory. Presently
HttpClient supports Kerberos