HttpClient Tutorial

Oleg KalnichevskKi

L HUPCHENT SCOPE ...eieiiiiiiiee e ettt e e e s e e e e e e e e e e en b r e e e e e e s snnnsbeneeaaens iv
2. What HEPCHENt IS INOT .ot e e e e e e e ere e e e e e e e aa iv
O o T 0= =SSP 1
1.1, REQUESE EXECULTON ...ooiiiiiieiiieee e ettt e et e e e e e et e e e e e e e e e e e s 1
0 O I = o 0= SRS 1
112, HTTP FEIPONSE ..eeeeeiieeeeiiitit ettt ettt e e ettt e e e e e s bbb e e e e e e e e e annnenes 2
1.1.3. Working with message headerseevveeiiiiiiiiiiiei e 2
I B I = 011 Y PRSPPI 4
1.1.5. Ensuring release of 10w [eVEl rESOUICESuuuuuuiiiiiii e 5
1.1.6. ConsumMing entity CONLENTccoivrreeeiireie e e e e e 6
1.1.7. ProducCing entity COMMENTcoourrieeiiiiieeeiiiee e et e e e e 6
1.1.8. ReSPONSE NANAIENS ... e 8

1.2, HTTP €XECULION CONLEXLvveieiiiiiieeeiitiee ettt ettt e e s e e e ane 8
1.3, EXCeption handlingcccuviiiiiiee e 9
1.3.1. HTTP transport SAfELYccceceeeeeieiiiiieici s siss s 9
1.3.2. Idempotent MELhOOSceuiiiiiiie e 9
1.3.3. AULOMALIC EXCEPLION TECOVETY ...ceiiiiiiieeeiiiieeee et e e et e e e st e e e s e e nnneeee e e 10
1.3.4. Request retry NaNAIErcoooieiiiiiiie e 10

1.4, ADOIING FEOUESESeeiiieeiee e e e s ettt e e e s e e e e e s e et e e e e e e s e st e e e e e e e e e snnnnerees 11
1.5, HTTP protOCOl iNtErCEPLONSuvvveiieieeeeiiiiiieeie e e e e e eeettr e e e e e s s et e e e e e e e s s eannrreeeeaeeas 11
T o I I == T (RPN 12
1.6.1. Parameter NierarChiescoooiiiiiiiiiiie e 12
1.6.2. HTTP parameters DEaNSoccuvviiiiiiiiieiee e 13

1.7. HTTP request EXECULION PAIAIMELEN'Sveieiiiieeeeeiiireeeasiieeee s st e e e s snee e e e snnneeesenees 14
2. CONNECLION MANAGEIMIENLvveiiieeee s i ittt e e e e e e s s esr e e e eee e s s ssa bt b e e e e aaeessasssaaaeeeeaeessaansrrnneeeeas 15
2.1. CONNECLION PAFBMELEN'Suuiiieiieeeeeeiiiitee e e e e e e e s e et r e e e e e e e s s st b e rereeeeessanatareeeeaaeeeaans 15
2.2. CONNECLION PEFSISEENCE ..vviiiieeei ittt e e et e e e e e e et e e e e e e s s st re e e e e e e e e e e nnsarenes 16
2.3. HTTP CONNECLION FOULING ...vvvvuriiiiiiiiiiiiinniinnniinnnnernenrnrnensnenennnnnnnenennnnnnnnnnnnnnnnnnnnnnnnnnns 16
2.3.1. ROULE COMPUEALTONveeeeeiieeee e ettt e e s e e e e e 16
2.3.2. SeCUre HTTP CONNECLIONSuuviiiiieeeeeiiiiiiieteee e e s ettt ee e e e e e s s e seeeeanreeaeeeeennes 17

2.4, HTTP rOULE PAraMEBLENSueeieiiieeeiiiitite et e e e e e sttt e e e e e e e s s anbbbe e e e e e e e s aannbbreeeeeaeeeaaaas 17
2.5, SOCKEL TACIOMES ...vevieiiiiiiii ettt ettt et e e s st e e st r e e e e nrees 17
2.5.1. SecUre SOCKEL [AYEITNG ..vveveeeeii e e e e e e e e e 18
2.5.2. SSL/ITLS CUSIOMIZBLIONeeeiiiieieee et e e e e e e e e e 18
2.5.3. Hostname VErifiCaIONccuuiiiiiiiie e e e 18

2.6. ProtOCOl SCNEIMES ...t e e e e e r e e e e e e s s b areeaaeeeeannnees 19
2.7. HttpClient proxy CONFIQUIBLIONeeieiiiieieeiiiiiee ettt e e 19
2.8. HTTP CONNECLION MANAGETSvvveeiieeeeiieiiieeie e e e e e e e eeittaee e e e e e e s e st e e e e e e e s snnnaraaeeeaeens 20
2.8.1. CONNECLION OPEIGLOLSvvvveiieeeeiiiiiiiieee e e e e e e esitbrr e e e e e e e s e aeatrre e e e e e e e s s ssnsaraaeeaaaeeas 20
2.8.2. Managed connections and CONNECtiON MANAJEN'Svvrrrrrrrrrrrmrrmmenmnernnrnmnnmnnnnn 20
2.8.3. SImple CONNECEION MANAGESeeeiirieeeeiiiiie et e e e e e 22
2.8.4. Pooling CONNECLION MANAJEYcceiiuirreeeiiiieeeeairie e e st e e s s e e e s s e e e s snbneeeeaaes 22
2.8.5. Connection manager SNULAOWNccooiiiiieiiiiiee et 23

2.9. Multithreaded reqUESt EXECULIONuuviiiiieeeiiiiiiier e e e e e s e e e e e s s s e e e e e e e e ennes 23
2.10. CoNNECLioN EVICtION POLICYuvviiieiieeeei ittt e e e e sttt e e e e e e s e e e e s e e nrbrereeaeas 24
2.11. Connection Keep aliVe SIratgycovvvviiiiiieiiiiieeeeeeeeeeeeeeeeee et 25
3. HTTP State MaNaQEMENTcoeiiiiiiieeee e e e e s e e e e e s s e e e e e e s s sannrrn e e e e e e e e snne 27
0 I o0 == PSR 27

HttpClient Tutorial

3.1.1. COOKIE VEISIONS ...ccceieeiiiiieiee e e ettt e e s e e e e e e e et e e e e e e e s e e nnernneeeeas 27

3.2. COoOKI€ SPECITICALIONSeeeiieeeii ittt e s e e e e e e e anarraeeeas 28
3.3. HTTP cookie and state management Parameterscccveveeeeeeiiiiciiineeeeee e e e s ecirnneeeee e 29
3.4. Cookie SPECITICALION FEUISITY ..vvvvrurrrrrrerereurrereneuenanenenenrnenenrrerrrenererensnsnsnrerrrrsnenrnnnsrnnes 29
3.5. ChoOSING COOKIE POIICYuveeieiiieie ettt e 29
3.6. CUSLOM COOKIE POIICY ...eeeiiuiriiieiiiiieee ettt e e ettt e ettt e e e e e s e s et e e s nnnee s 30
3.7. COOKIE PEISISTENCEeeieeiiiiiee e et ie ettt ettt e et e e e et e e e st e e e nnb e e e e annneee s 30
3.8. HTTP state management and eXeCUtion CONLEXLceeveeeiiiiiiiierieeeeeeesiiineeeeeae e 30
3.9. Per user / thread state ManagemENtccvvvieiiie oo 31
o I =0 10 T= 0o o] PSR 32
A0 USEN CrEOENTIAIS ..eeeeiiiee ettt e e e e e e et e e e e e e e e e s nenreeeeeaaeeaaaa 32
4.2. AUthentication SCHEIMEScoiii i 32
4.3. HTTP authentiCation ParamELErSccooiuriieeiiiieieeiieee e et e et e e e e e e nnees 33
4.4. Authentication SChEME FEQISLIYeiiveie i 34
4.5, CredentialS ProVIGENceeiiiei i e e e e e e naneees 34
4.6. HTTP authentication and exeCution CONLEXLuveieriieriiiiiiiiiie e eiiieeee e e e 35
4.7. Caching of authentiCation dalalooieiieiiiiiie e 35
4.8. Preemptive aUtNENTICAIIONeviiiiiiiie ettt 36
4.9. NTLM AULNENEICALTONvvveiiieeeiiiiiiiiiee e e e s e e e e s st r e e e e e s e st aae e e e e e e e e s nnnneaeees 36
4.9.1. NTLM CONNECLION PEISISLENCEuvvvvreiieeeeeeiiiiiieeee e e e e e e s sttt e e e e e e e e e eanrareeeeae s 36
4.10. SPNEGO/Kerberos AUtNENtICALIONcooviiieiiieiiiiiie e 37
4.10.1. SPNEGO support in HEEPCHENLuuuiureiiiiiiiiiiiiiiiiiieeeeneeeeenees 38
4.10.2. GSS/Java Kerberos SEIUDcoeiiee i 38
4.10.3. 1 ogin. conf fil@ oo 38
4.10.4. krb5. conf [krb5.ini Fil€ i 38
4.10.5. Windows Specific configurationcccceeeeiiiiciiiiier e 39
4.10.6. Customizing SPNEGO authentication schemecccceeeveee i, 39

5. HTTP CHEME SEIVICEeveiiieiiiiiee ettt ettt e e et e e e et e e e e st e e e e ennte e e e e nnneeeas 41
5.1, HUPCHENE TACAHEeeeieeeeeeee ittt e e e e e e e e e e e nnneeeeeaeens 41
5.2. HItPCHENt PArAMELENS ...ttt e e e e e e nrnee e 42
5.3. Automcatic redireCt NANAIINGccooiiiiiiiiie e 42
5.4. HTTP client and eXeCution CONEXEuiieeiiiiciiiieiiee e e e e e 43
5.5. Compressed reSPONSE COMEENTuuviiiieeeeiiciiiiieeee e e e s eectrre e e e e e e e s s srrr e e e e e e e s s e nnrrrneeeaeas 43
L o I I S O o o 1 oo U PPERUR 44
T I €= 01 = 0 o= o (= 44
6.2. RFC-2616 COMPIIBINCEeeiiiiiiiieeiiiiiee ettt si e e et ssne e e e e e snnee e e e 44
6.3, EXAMPIE USAGE ..ottt ettt 45
A X0 1Yz 0= o 0] o xS PPPRT PP 46
7.1. CuStOmM ClIENE CONMECTIONScuvveieeiiiiiee ettt et et e et e e s enae e e e 46
7.2. Stateful HTTP CONNECLIONSuvveieeeeiieee ettt e e e e e enaeee e 47
7.2.0. User toKen handler ... 47
7.2.2. User token and eXeCution CONTEXTcoveeeiiiiiiiiiiiie e e e 48

Preface

The Hyper-Text Transfer Protocol (HTTP) isperhaps the most significant protocol used on the Internet
today. Web services, network-enabled appliances and the growth of network computing continue to
expand the role of the HTTP protocol beyond user-driven web browsers, while increasing the number
of applications that require HT TP support.

Although thejava.net package provides basic functionality for accessing resourcesviaHTTP, it doesn't
provide the full flexibility or functionality needed by many applications. HttpClient seeks to fill this
void by providing an efficient, up-to-date, and feature-rich package implementing the client side of
the most recent HT TP standards and recommendations.

Designed for extension while providing robust support for the base HTTP protocol, HttpClient may
be of interest to anyone building HTTP-aware client applications such as web browsers, web service
clients, or systems that leverage or extend the HT TP protocol for distributed communication.

1. HttpClient scope

¢ Client-side HTTP transport library based on HttpCore [http://hc.apache.org/httpcomponents-core/
index.html]

» Based on classic (blocking) 1/0

» Content agnostic

2. What HttpClient is NOT

» HttpClient is NOT a browser. It is a client side HTTP transport library. HitpClient's purpose is
to transmit and receive HTTP messages. HttpClient will not attempt to cache content, execute
javascript embedded in HTML pages, try to guess content type, or reformat request / redirect location
URIs, or other functionality unrelated to the HTTP transport.

http://hc.apache.org/httpcomponents-core/index.html
http://hc.apache.org/httpcomponents-core/index.html
http://hc.apache.org/httpcomponents-core/index.html

Chapter 1. Fundamentals

1.1. Request execution

The most essential function of HttpClient isto execute HT TP methods. Execution of an HT TP method
involves one or several HTTP request / HTTP response exchanges, usually handled internally by
HttpClient. The user is expected to provide a request object to execute and HttpClient is expected to
transmit the request to the target server return a corresponding response object, or throw an exception
if execution was unsuccessful.

Quite naturally, the main entry point of the HttpClient API is the HttpClient interface that defines the
contract described above.

Here is an example of request execution processin its simplest form:

HtpCient httpclient = new DefaultHtpCient();
Htt pGet httpget = new H tpGet("http://Ilocal host/");
Ht t pResponse response = httpclient. execute(httpget);
HttpEntity entity = response.getEntity();
if (entity !'= null) {

I nput Streaminstream = entity. getContent();

int I;

byte[] tnmp = new byte[2048];

while ((I = instreamread(tnp)) != -1) {

}

1.1.1. HTTP request

All HTTP requests have arequest line consisting a method name, arequest URI and aHTTP protocol
version.

HttpClient supports out of the box al HTTP methods defined in the HTTP/1.1 specification: GeT,
HEAD, POST, PUT, DELETE, TRACE and OPTI ONS. Thereisa special class for each method type.: Ht t pGet ,
Ht t pHead, Ht t pPost , Ht t pPut , Ht t pDel et e, Ht t pTrace, and Ht t pOpt i ons.

The Request-URI is a Uniform Resource Identifier that identifies the resource upon which to apply
the request. HT TP request URI s consist of a protocol scheme, host name, optional port, resource path,
optional query, and optional fragment.

Htt pCet httpget = new HttpGet (
"http://ww. googl e. com’ sear ch?hl =en&q=htt pcl i ent &t nG=CGoogl e+Sear ch&aq=f &q=") ;

HttpClient provides anumber of utility methodsto simplify creation and modification of request URIs.

URI can be assembled programmatically:

URI uri = URIUtils.createURl ("http", "ww.google.cont, -1, "/search",
"g=htt pcl i ent &t nG=Googl e+Sear ch&aq=f &qg=", null);

Htt pGet httpget = new HttpGet(uri);

Systemout.println(httpget.getURI());

Fundamentals

stdout >

http://ww. googl e. conf sear ch?gq=ht t pcl i ent &t nG=Coogl e+Sear ch&aq=f &oq=

Query string can aso be generated from individual parameters:

Li st <NaneVal uePai r> gparans = new ArraylLi st <NaneVal uePai r>();

gpar ans. add(new Basi cNaneVal uePair("q", "httpclient"));

gpar ans. add(new Basi cNaneVal uePair ("btnG', "Google Search"));

gpar ans. add(new Basi cNaneVal uePai r("aq", "f"));

gpar ans. add(new Basi cNaneVal uePair("oq", null));

URI uri = URIUtils.createURl ("http", "ww.google.cont, -1, "/search",
URLEncodedUti | s. format (qparans, "UTF-8"), null);

Htt pGet httpget = new HttpGet(uri);

Systemout. println(httpget.getURI());

stdout >

http://ww. googl e. conlf sear ch?g=ht t pcl i ent &t nG=CGoogl e+Sear ch&aq=f &oq=

1.1.2. HTTP response

HTTP response is a message sent by the server back to the client after having received and interpreted
arequest message. Thefirst line of that message consists of the protocol version followed by anumeric
status code and its associated textual phrase.

Ht t pResponse response = new Basi cHtt pResponse(Htt pVersion. HTTP_1_1,
Ht t pSt at us. SC_ OK, "OK");

System out. printl n(response. get Prot ocol Version());

System out. println(response. get St atusLi ne(). get StatusCode());
System out . println(response. get St at usLi ne() . get ReasonPhrase());
System out. println(response. getStatusLine().toString());

stdout >

HTTP/ 1.1

200

(0.¢

HTTP/ 1.1 200 OK

1.1.3. Working with message headers

An HTTP message can contain a number of headers describing properties of the message such as
the content length, content type and so on. HttpClient provides methods to retrieve, add, remove and
enumerate headers.

Ht t pResponse response = new Basi cHtt pResponse(Htt pVersion. HTTP_1_1,
Htt pStatus. SC_ OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domain=local host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c¢3=c; domain=\"|ocal host\"");

Header hl = response. get First Header (" Set - Cooki e") ;

Fundamentals

System out . println(hl);

Header h2 = response. get Last Header (" Set - Cooki e") ;
System out. println(h2);

Header[] hs = response. get Header s(" Set - Cooki e") ;
System out. println(hs.|ength);

stdout >

Set - Cooki e: cl=a; path=/; domai n=l ocal host
Set - Cooki e: c¢2=b; path="/", c3=c; donmmi n="Iocal host"
2

The most efficient way to obtain all headers of agiven typeisby using the Header | t er at or interface.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1_1,
Htt pSt at us. SC_OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domai n=l ocal host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; domain=\"Iocal host\"");

Header|lterator it = response. headerlterator("Set-Cookie");

while (it.hasNext()) {
Systemout.printlin(it.next());

}

stdout >

Set - Cooki e: cl=a; path=/; donmi n=l ocal host
Set - Cooki e: c¢2=b; path="/", c3=c; donmmi n="Iocal host"

It also provides convenience methods to parse HT TP messages into individual header elements.

Ht t pResponse response = new Basi cHt t pResponse(Ht t pVersi on. HTTP_1_1,
Htt pSt at us. SC_OK, "OK");

response. addHeader (" Set - Cooki e",
"cl=a; path=/; domai n=l ocal host");

response. addHeader (" Set - Cooki e",
"c2=b; path=\"/\", c3=c; domain=\"|ocal host\"");

Header El enent I terator it = new Basi cHeader El enent | t er at or (
response. header | t er at or (" Set - Cooki e")) ;

while (it.hasNext()) {
Header El enent el em = it.nextEl enent ();

Systemout.println(elemgetNane() + " =" + elemgetValue());
NaneVal uePair[] parans = el em get Paraneters();
for (int i =0; i < parans.length; i++) {
Systemout.println(" " + parans[i]);
}
}
stdout >
cl =a
pat h=/

donmi n=l ocal host

Fundamentals

c2 =b
pat h=/
c3 =c

domai n=l ocal host

1.1.4. HTTP entity

HTTP messages can carry acontent entity associated with the request or response. Entities can befound
in some requests and in some responses, as they are optional. Requests that use entities are referred to
as entity enclosing requests. The HTTP specification defines two entity enclosing methods: POST and
PUT. Responses are usually expected to enclose a content entity. There are exceptions to this rule such
as responses to HEAD method and 204 No Cont ent, 304 Not Mbdi fi ed, 205 Reset Cont ent r€SPONSES.

HttpClient distinguishes three kinds of entities, depending on where their content originates:

e streamed: The content is received from a stream, or generated on the fly. In particular, this
category includes entities being received from HT TP responses. Streamed entities are generally not
repeatable.

« self-contained: The content isin memory or obtained by means that are independent from a
connection or other entity. Self-contained entities are generally repeatable. Thistype of entitieswill
be mostly used for entity enclosing HTTP requests.

e wrapping: The content is obtained from another entity.

This distinction is important for connection management when streaming out content from an HTTP
response. For request entities that are created by an application and only sent using HttpClient, the
difference between streamed and self-contained is of little importance. In that case, it is suggested to
consider non-repeatabl e entities as streamed, and those that are repeatable as self-contained.

1.1.4.1. Repeatable entities

An entity can be repeatable, meaning its content can be read more than once. Thisisonly possible with
self contained entities (like Byt eArrayEntity O StringEntity)

1.1.4.2. Using HTTP entities

Since an entity can represent both binary and character content, it has support for character encodings
(to support the latter, ie. character content).

Theentity iscreated when executing arequest with enclosed content or when the request was successful
and the response body is used to send the result back to the client.

To read the content from the entity, one can either retrieve the input stream via the
Ht t pEnt i t y#get Cont ent () method, which returns an j ava. i o. I nput St ream Or one can supply an
output stream to the Ht t pEnt i t y#wr i t eTo(Qut put St rean) method, which will return once all content
has been written to the given stream.

When the entity has been received with an incoming message, the methods
Ht t pEnt i t y#get Cont ent Type() and Htt pEntit y#get Cont ent Lengt h() methods can be used for
reading the common metadata such as Cont ent - Type and Cont ent - Lengt h headers (if they are
available). Since the cont ent - Type header can contain a character encoding for text mime-types
like text/plain or text/html, the Htt pEnti t y#get Cont ent Encodi ng() method is used to read this

Fundamentals

information. If the headers aren't available, alength of -1 will be returned, and NULL for the content
type. If the Cont ent - Type header is available, aHeader object will be returned.

When creating an entity for a outgoing message, this meta data has to be supplied by the creator of
the entity.

StringEntity myEntity = new StringEntity("inportant nmessage",
"UTF-8");

Systemout. println(myEntity. get Content Type());

System out. println(myEntity. get ContentLength());
Systemout.printIn(EntityUils. get ContentCharSet(nyEntity));
Systemout.printin(EntityUtils.toString(nmyEntity));
Systemout.printiln(EntityUils.toByteArray(nyEntity).length);

stdout >

Content - Type: text/plain; charset=UTF-8
17

UTF- 8

i mportant nessage

17

1.1.5. Ensuring release of low level resources

In order to ensure proper release of system resources one must close the content stream associated
with the entity.

Ht t pResponse response;
HtpEntity entity = response. getEntity();
if (entity !I'=null) {
I nput Stream i nstream = entity.get Content();

try {
/! do sonet hing useful
} finally {

i nstream cl ose();

}

Please notethat Ht t pEnt i t y#wri t eTo(Qut put St rean) method isalso required to ensure proper release
of system resources once the entity has been fully written out. If this method obtains an instance of
java.io. | nput Streamby calling Htt pEnti t y#get Cont ent (), it iS also expected to close the stream
inafinaly clause.

When working with streaming entities, one can usethe Enti tyUti | s#consume(Htt pEntity) method
to ensure that the entity content has been fully consumed and the underlying stream has been closed.

There can be situations, however, when only asmall portion of the entire response content needsto be
retrieved and the performance penalty for consuming the remaining content and making the connection
reusableistoo high, one can simply terminatetherequest by calling Ht t pUr i Request #abor t () method.

Htt pGet httpget = new HttpGet("http://|ocal host/");
Ht t pResponse response = httpclient. execute(httpget);
HtpEntity entity = response.getEntity();

if (entity '= null) {

Fundamentals

I nput Streaminstream = entity. getContent();
int byteOne = instreamread();

int byteTwo = instreamread();

/1 Do not need the rest

htt pget. abort();

The connection will not be reused, but all level resources held by it will be correctly deallocated.

1.1.6. Consuming entity content

The recommended way to consume content of an entity is by using itSHt t pEnt i t y#get Cont ent () Of
Htt pEnt it y#writ eTo(Qut put St rean) methods. HttpClient also comes with the Entityutils class,
which exposes severa static methods to more easily read the content or information from an entity.
Instead of reading the j ava. i o. I nput St r eamdirectly, one can retrieve the whole content body in a
string / byte array by using the methods from this class. However, the use of Entityutil s isstrongly
discouraged unless the response entities originate from a trusted HTTP server and are known to be
of limited length.

Htt pGet httpget = new HttpGet("http://|ocal host/");
Ht t pResponse response = httpclient. execute(httpget);
HtpEntity entity = response.getEntity();
if (entity '= null) {

long len = entity.getContentlLength();

if (len!=-1 & len < 2048) {
Systemout.printin(EntityUtils.toString(entity));
} else {

/1 Stream content out

}

In some situations it may be necessary to be able to read entity content more than once. In this case
entity content must be buffered in some way, either in memory or on disk. The simplest way to
accomplish that is by wrapping the original entity with the Buf f er edHt t pEnt i ty class. Thiswill cause
the content of the original entity to beread into ain-memory buffer. In all other waysthe entity wrapper
will be have the original one.

Htt pGet httpget = new H tpGet("http://Ilocal host/");
Ht t pResponse response = httpclient.execute(httpget);
HtpEntity entity = response.getEntity();
if (entity !'=null) {

entity = new BufferedHtt pEntity(entity);

}

1.1.7. Producing entity content

HttpClient provides several classes that can be used to efficiently stream out content though HTTP
connections. Instances of those classes can be associated with entity enclosing requests such as
POST and PUT in order to enclose entity content into outgoing HTTP requests. HttpClient provides
several classes for most common data containers such as string, byte array, input stream, and file:
StringEntity, ByteArrayEntity, | nputStreanEntity,andFileEntity.

File file = new File("sonefile.txt");
FileEntity entity = new FileEntity(file, "text/plain; charset=\"UTF-8\"");

Fundamentals

Htt pPost httppost = new HttpPost("http://1ocal host/action.do");
htt ppost.setEntity(entity);

Please note | nput St reanEnti ty iS not repeatable, because it can only read from the underlying data
stream once. Generally it is recommended to implement a custom Ht t pEnti ty class which is self-
contained instead of using generic | nput StreanEntity. Fi |l eEntity can be agood starting point.

1.1.7.1. Dynamic content entities

Often HT TP entities need to be generated dynamically based a particul ar execution context. HttpClient
provides support for dynamic entities by using Enti t yTenpl at e entity class and Cont ent Pr oducer
interface. Content producers are objects which produce their content on demand, by writing it out to
an output stream. They are expected to be able produce their content every time they are requested to
do so. So entities created with Ent i t yTenpl at e are generally self-contained and repeatable.

Cont ent Producer cp = new Cont ent Producer () {
public void witeTo(QutputStream outstreanm) throws | OException {
Witer witer = new QutputStreanmWiter(outstream "UTF-8");
witer.wite("<response>");
witer.wite(" <content>");
witer.wite(" i mportant stuff");
witer.wite(" </content>");
witer.wite("</response>");
witer.flush();

}
b
HtpEntity entity = new EntityTenpl ate(cp);
Htt pPost httppost = new HttpPost("http://1 ocal host/handl er. do");
htt ppost.setEntity(entity);

1.1.7.2. HTML forms

Many applications frequently need to simulate the process of submitting an HTML form, for instance,
in order to log in to a web application or submit input data. HttpClient provides specia entity class
Ur | EncodedFor nEnt i ty to facilitate the process.

Li st <NaneVal uePai r> fornparans = new ArraylLi st <NaneVal uePai r>();

f or npar ans. add(new Basi cNaneVal uePai r (" paraml”, "val uel"));

f or rpar ans. add(new Basi cNaneVal uePai r (" paranR", "val ue2"));

Ur | EncodedFornEntity entity = new Url EncodedFor nEntity(fornparans, "UTF-8");
Htt pPost httppost = new HttpPost("http://1 ocal host/handl er. do");

ht t ppost . set Entity(entity);

This Ur1 EncodedFor nEnt i ty instance will use the so called URL encoding to encode parameters and
produce the following content:

par anil=val uel&par an=val ue2

1.1.7.3. Content chunking

Generdly it isrecommended to let HttpClient choose the most appropriate transfer encoding based on
the properties of the HT TP message being transferred. It ispossible, however, to inform HttpClient that
the chunk coding is preferred by setting He t pEnt i t y#set Chunked() totrue. Please notethat HttpClient
will use this flag as a hint only. This value well be ignored when using HTTP protocol versions that
do not support chunk coding, such as HTTP/1.0.

Fundamentals

StringEntity entity = new StringEntity("inportant nessage",
"text/plain; charset=\"UTF-8\"");

entity. set Chunked(true);

Ht t pPost httppost = new HttpPost("http://|ocal host/acrtion.do");

httppost.setEntity(entity);

1.1.8. Response handlers

The simplest and the most convenient way to handle responsesisby using ResponseHandl er interface.
This method completely relieves the user from having to worry about connection management. When
using aResponseHand! er HttpClient will automatically take care of ensuring rel ease of the connection
back to the connection manager regardless whether the request execution succeeds or causes an
exception.

HtpCient httpclient = new Defaul tH tpCient();
Htt pGet httpget = new HttpGet("http://|ocal host/");

ResponseHandl er <byt e[] > handl er = new ResponseHandl er <byte[]>() {
public byte[] handl eResponse(

Ht t pResponse response) throws Cdient Protocol Exception, | OException {

HtpEntity entity = response.getEntity();

if (entity '= null) {
return EntityUtils.toByteArray(entity);

} else {
return null;

}
be

byte[] response = httpclient.execute(httpget, handler);

1.2. HTTP execution context

Originally HTTP has been designed as a statel ess, response-request oriented protocol. However, real
world applications often need to be able to persist state information through several logically related
reguest-response exchanges. In order to enable applications to maintain a processing state HttpClient
allows HTTP requests to be executed within a particular execution context, referred to as HTTP
context. Multiple logically related requests can participate in alogical session if the same context is
reused between consecutive requests. HTTP context functions similarly to j ava. uti| . Map<Stri ng,

vj ect >. Itissimply acollection of arbitrary named values. Application can popul ate context attributes
prior to arequest execution or examine the context after the execution has been compl eted.

In the course of HTTP request execution HttpClient adds the following attributes to the execution
context:

e 'http.connection': Ht t pConnect i on instance representing the actual connection to the target
server.

* 'http.target_host': Htt pHost instance representing the connection target.
e 'http.proxy_host': Ht t pHost instance representing the connection proxy, if used
e 'http.request’: Htt pRequest instance representing the actual HT TP request.

» 'http.response’: Htt pResponse instance representing the actual HT TP response.

Fundamentals

e 'http.request_sent': java. | ang. Bool ean object representing the flag indicating whether the
actual request has been fully transmitted to the connection target.

For instance, in order to determine the final redirect target, one can examine the value of the
http.target _host attribute after the request execution:

DefaultHtpdient httpclient = new Defaul tH tpCdient();

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext ();
Htt pGet httpget = new H tpGet ("http://ww. google.com");

Ht t pResponse response = httpclient. execute(httpget, |ocal Context);

Htt pHost target = (HttpHost) | ocal Context.getAttribute(
Execut i onCont ext . HTTP_TARGET_HOST) ;

Systemout.printin("Final target: " + target);
HtpEntity entity = response.getEntity();

EntityUtils.consune(entity);

}

stdout >

Final target: http://ww.google.ch

1.3. Exception handling

HttpClient can throw two types of exceptions: j ava. i o. | OExcept i on in case of an I/O failure such as
socket timeout or an socket reset and H: t pExcept i on that signalsan HTTP failure such as aviolation
of the HTTP protocol. Usually 1/O errors are considered non-fatal and recoverable, whereas HTTP
protocol errors are considered fatal and cannot be automatically recovered from.

1.3.1. HTTP transport safety

It is important to understand that the HTTP protocol is not well suited for all types of applications.
HTTP is asimple request/response oriented protocol which was initially designed to support static or
dynamically generated content retrieval. It has never been intended to support transactional operations.
For instance, the HTTP server will consider its part of the contract fulfilled if it succeedsin receiving
and processing the request, generating a response and sending a status code back to the client. The
server will make no attempts to roll back the transaction if the client fails to receive the response in
its entirety due to aread timeout, arequest cancellation or a system crash. If the client decidesto retry
the same request, the server will inevitably end up executing the same transaction more than once. In
some cases this may lead to application data corruption or inconsistent application state.

Even though HTTP has never been designed to support transactional processing, it can still be used
as atransport protocol for mission critical applications provided certain conditions are met. To ensure
HTTP transport layer safety the system must ensure the idempotency of HTTP methods on the
application layer.

1.3.2. Idempotent methods

HTTP/1.1 specification defines idempotent method as

Fundamentals

[Methods can also have the property of "idempotence” in that (aside from error or expiration issues)
the side-effects of N > 0 identical requests is the same as for a single request]

In other wordsthe application ought to ensurethat it is prepared to deal with theimplicationsof multiple
execution of the same method. This can be achieved, for instance, by providing a unique transaction
id and by other means of avoiding execution of the same logical operation.

Please note that this problem is not specific to HttpClient. Browser based applications are subject to
exactly the same issues related to HTTP methods non-idempotency.

HttpClient assumes non-entity enclosing methods such as GET and HEAD to be idempotent and entity
enclosing methods such as PosT and PUT to be not.

1.3.3. Automatic exception recovery

By default HttpClient attemptsto automatically recover from I/O exceptions. The default auto-recovery
mechanismis limited to just afew exceptions that are known to be safe.

 HttpClient will make no attempt to recover from any logical or HTTP protocol errors (those derived
from Ht t pExcept i on class).

« HttpClient will automatically retry those methods that are assumed to be idempotent.

« HttpClient will automatically retry those methodsthat fail with atransport exception whiletheHTTP
request is till being transmitted to the target server (i.e. the request has not been fully transmitted
to the server).

« HttpClient will automatically retry those methods that have been fully transmitted to the server,
but the server failed to respond with an HTTP status code (the server ssmply drops the connection
without sending anything back). In thiscaseit is assumed that the request has not been processed by
the server and the application state has not changed. If thisassumption may not hold truefor the web
server your applicationistargeting it ishighly recommended to provide a custom exception handler.

1.3.4. Request retry handler

In order to enable a custom exception recovery mechanism one should provide an implementation of
the Ht t pRequest Ret r yHandl er interface.

DefaultHtpdient httpclient = new DefaultH tpCient();
Ht t pRequest Ret ryHandl er nyRetryHandl er = new Htt pRequest RetryHandl er () {

publ i c bool ean retryRequest (

| OExcepti on exception,
i nt executionCount,
Ht t pCont ext context) {

i f (executionCount >= 5) {
// Do not retry if over max retry count
return fal se;

}

i f (exception instanceof NoHttpResponseException) {
/!l Retry if the server dropped connection on us
return true;

}
i f (exception instanceof SSLHandshakeException) {

10

Fundamentals

/1 Do not retry on SSL handshake exception

return fal se;
}
Ht t pRequest request = (HttpRequest) context.getAttribute(

Execut i onCont ext . HTTP_REQUEST) ;

bool ean idenpotent = ! (request instanceof HttpEntityEncl osingRequest);
if (idenpotent) {

/!l Retry if the request is considered idenpotent

return true;

}

return fal se;

b

httpclient.setHtpRequest Ret ryHandl er (nyRetryHandl er);

1.4. Aborting requests

In some situations HT TP request execution fail to complete within the expected time frame dueto high
load on the target server or too many concurrent requestsissued on the client side. In such casesit may
be necessary to terminate the request prematurely and unblock the execution thread blocked in al/O
operation. HTTP requests being executed by HttpClient can be aborted at any stage of execution by
invoking Ht t pUr i Request #abor t () method. This method is thread-safe and can be called from any
thread. When an HT TP request isaborted its execution thread blocked in an 1/0O operation isguaranteed
to unblock by throwing a nt er r upt edl OExcept i on

1.5. HTTP protocol interceptors

HTTP protocol interceptor isaroutine that implements a specific aspect of the HTTP protocol. Usually
protocol interceptors are expected to act upon one specific header or a group of related headers of the
incoming message or populate the outgoing message with one specific header or a group of related
headers. Protocol i nterceptors can al so mani pul ate content entities enclosed with messages, transparent
content compression / decompression being agood example. Usually thisis accomplished by using the
'‘Decorator' pattern where awrapper entity classis used to decorate the original entity. Several protocol
interceptors can be combined to form one logical unit.

Protocol interceptors can collaborate by sharing information - such as a processing state - through the
HTTP execution context. Protocol interceptors can use HTTP context to store a processing state for
one request or several consecutive regquests.

Usually the order in which interceptors are executed should not matter aslong asthey do not depend on
aparticular state of the execution context. If protocol interceptors have interdependenciesand therefore
must be executed in a particular order, they should be added to the protocol processor in the same
sequence as their expected execution order.

Protocol interceptors must be implemented as thread-safe. Similarly to servlets, protocol interceptors
should not use instance variables unless access to those variablesis synchronized.

Thisisan example of how local context can be used to persist a processing state between consecutive
requests.

DefaultH tpdient httpclient = new DefaultH tpCient();

11

Fundamentals

Ht t pCont ext | ocal Context = new Basi cHtt pContext ();
At omi cl nteger count = new Atoniclnteger(1);
| ocal Cont ext.setAttribute("count”, count);
httpclient.addRequest| nterceptor(new Htt pRequest|nterceptor() {
public void process(
final HttpRequest request,
final HttpContext context) throws HttpException, | OException {

At omi cl nteger count = (Atomi clnteger) context.getAttribute("count");
request . addHeader (" Count", |Integer.toString(count.getAndlncrement()));

});

Htt pGet httpget = new HttpGet("http://Iocal host/");
for (int i =0; i < 10; i++) {
Ht t pResponse response = httpclient. execute(httpget, |ocal Context);

HttpEntity entity = response.getEntity();
EntityUtils.consune(entity);

1.6. HTTP parameters

HttpParams interface represents a collection of immutable values that define a runtime behavior of a
component. In many ways Ht t pPar ans iS Similar to Ht t pCont ext . The main distinction between the
two liesin their use at runtime. Both interfaces represent a collection of objects that are organized as
amap of keysto object values, but serve distinct purposes:

e Htt pPar ans isintended to contain simple objects: integers, doubles, strings, collections and objects
that remain immutable at runtime.

* Htt pPar anms is expected to be used in the 'write once - ready many' mode. Ht t pCont ext isintended
to contain complex objectsthat are very likely to mutatein the course of HT TP message processing.

e The purpose of H: t pPar ans is to define a behavior of other components. Usually each complex
component hasitsown Ht t pPar ans Object. The purpose of Ht t pCont ext iSto represent an execution
state of an HT TP process. Usually the same execution context is shared among many collaborating
objects.

1.6.1. Parameter hierarchies

In the course of HTTP request execution H: t pPar ans Of the Ht t pRequest object are linked together
with He t pParans Of the Htt pdi ent instance used to execute the request. This enables parameters
set at the HTTP request level take precedence over Htt pParans set at the HTTP client level. The
recommended practice is to set common parameters shared by all HTTP requests at the HTTP client
level and selectively override specific parameters at the HTTP request level.

DefaultHtpCient httpclient = new DefaultHttpdient();
httpclient.getParans().set Paranet er (Cor ePr ot ocol PNanes. PROTOCOL_VERSI ON,
Ht t pVersi on. HTTP_1_0);
ht t pcl i ent. get Parans() . set Par anet er (Cor ePr ot ocol PNanes. HTTP_CONTENT_CHARSET,
"UTF-8");

Htt pGet httpget = new HttpGet ("http://ww.google.conl");

12

Fundamentals

ht t pget . get Par ans() . set Par anet er (Cor ePr ot ocol PNanmes. PROTOCOL_VERSI ON,
Htt pVersi on. HTTP_1 1);

ht t pget . get Par ans() . set Par anet er (Cor ePr ot ocol PNanes. USE_EXPECT_CONT| NUE,
Bool ean. FALSE) ;

httpclient.addRequest| nterceptor(new Htt pRequestInterceptor() {

public void process(
final HttpRequest request,
final HttpContext context) throws HttpException, | OException {
System out . println(request. get Parans(). get Paraneter (
Cor ePr ot ocol PNanmes. PROTOCOL_VERSI ON)) ;
System out . println(request. get Parans(). get Paranet er (
Cor ePr ot ocol PNanes. HTTP_CONTENT _CHARSET)) ;
System out. printl n(request. get Parans(). get Paranet er (
Cor ePr ot ocol PNames. USE_EXPECT_CONTI NUE)) ;
System out. println(request. get Parans(). get Paraneter (
Cor ePr ot ocol PNanes. STRI CT_TRANSFER_ENCODI NG)) ;

1)

stdout >

HTTP/ 1.1
UTF- 8
fal se
nul |

1.6.2. HTTP parameters beans

Ht t pPar ams interface allows for a great deal of flexibility in handling configuration of components.
Most importantly, new parameters can be introduced without affecting binary compatibility with older
versions. However, Hi t pPar ans also has a certain disadvantage compared to regular Java beans:
Ht t pPar ans cannot be assembled using aDI framework. To mitigate the limitation, HttpClient includes
anumber of bean classes that can used in order to initialize Ht t pPar ans objects using standard Java

bean conventions.

Ht t pPar ans parans = new Basi cHt t pParans();

Ht t pPr ot ocol Par anBean paransBean = new Htt pProt ocol Par anBean(par ans) ;
par ansBean. set Ver si on(Ht t pVersi on. HTTP_1_1);

par ansBean. set Cont ent Char set (" UTF-8") ;

par ansBean. set UseExpect Cont i nue(true);

System out . printl n(parans. get Par anet er (

Cor ePr ot ocol PNanmes. PROTOCOL_VERSI ON)) ;
System out . printl n(parans. get Par anet er (

Cor ePr ot ocol PNanes. HTTP_CONTENT _CHARSET)) ;
System out. print| n(parans. get Par anet er (

Cor ePr ot ocol PNames. USE_EXPECT_CONTI NUE)) ;
System out . printl n(parans. get Par anet er (

Cor ePr ot ocol PNanmes. USER_AGENT)) ;

stdout >

HTTP/ 1.1
UTF- 8
fal se
nul |

13

Fundamentals

1.7. HTTP request execution parameters

These are parameters that can impact the process of request execution:

e 'http.protocol.version': defines HTTP protocol version used if not set explicitly on the request
object. This parameter expects a value of type Prot ocol Versi on. If this parameter is not set
HTTP/1.1 will be used.

e 'http.protocol.element-char set': defines the charset to be used for encoding HTTP protocol
elements. This parameter expectsavalue of typej ava. | ang. Stri ng. If thisparameter isnot set Us-
Ascl | will be used.

» 'http.protocol.content-charset': defines the charset to be used per default for content body
coding. This parameter expects a value of type j ava. | ang. String. If this parameter is not set
| SO-8859- 1 will be used.

* 'http.useragent': definesthe content of the User - Agent header. This parameter expects avalue
of type j ava. | ang. String. If this parameter is not set, HttpClient will automatically generate a
valuefor it.

» 'http.protocol.strict-transfer-encoding': defines whether responseswith aninvalid Tr ansf er -
Encodi ng header should be rejected. This parameter expectsavalue of typej ava. | ang. Bool ean. If
this parameter is not set invalid Tr ansf er - Encodi ng values will be ignored.

* 'http.protocol.expect-continue': activates Expect: 100- Cont i nue handshake for the entity
enclosing methods. The purpose of the Expect: 100- Conti nue handshake is to allow the client
that is sending a request message with a request body to determine if the origin server is willing
to accept the request (based on the request headers) before the client sends the request body. The
use of the Expect : 100- cont i nue handshake can result in a noticeabl e performance improvement
for entity enclosing requests (such as PosT and PUT) that require the target server's authentication.
Expect: 100-continue handshake should be used with caution, as it may cause problems with
HTTP serversand proxiesthat do not support HTTP/1.1 protocol. This parameter expects avalue of
typej ava. | ang. Bool ean. If this parameter is not set HitpClient will attempt to use the handshake.

* 'http.protocol.wait-for-continue': defines the maximum period of time in milliseconds the
client should spend waiting for a 100- cont i nue response. This parameter expects a value of type
java.l ang. | nt eger . If this parameter is not set HttpClient will wait 3 seconds for a confirmation
before resuming the transmission of the request body.

14

Chapter 2. Connection management

HttpClient has a complete control over the process of connection initialization and termination as well
as 1/0O operations on active connections. However various aspects of connection operations can be
controlled using a number of parameters.

2.1. Connection parameters

These are parameters that can influence connection operations:

e 'http.socket.timeout': defines the socket timeout (so TiI MEQUT) in milliseconds, which is
the timeout for waiting for data or, put differently, a maximum period inactivity between two
consecutive data packets). A timeout value of zero is interpreted as an infinite timeout. This
parameter expects avalue of typej ava. | ang. | nt eger . If this parameter is not set read operations
will not time out (infinite timeout).

e 'http.tcp.nodelay': determines whether Nagle's algorithm is to be used. The Nagle's algorithm
triesto conserve bandwidth by minimizing the number of segmentsthat are sent. When applications
wish to decrease network latency and increase performance, they can disable Nagle's algorithm (that
isenable TcP_NODELAY. Datawill be sent earlier, at the cost of anincreasein bandwidth consumption.
This parameter expects avalue of typej ava. | ang. Bool ean. If this parameter is not, TCP_NODELAY
will be enabled (no delay).

» 'http.socket.buffer-size': determines the size of the internal socket buffer used to buffer
data while receiving / transmitting HTTP messages. This parameter expects a value of type
java.lang. I nteger. If this parameter is not set HitpClient will allocate 8192 byte socket buffers.

» 'http.socket.linger': sets SO LI NGER with the specified linger time in seconds. The maximum
timeout value is platform specific. Value 0 impliesthat the option is disabled. Vaue -1 implies that
the JRE default is used. The setting only affects the socket close operation. If this parameter is not
set value -1 (JRE default) will be assumed.

» 'http.connection.timeout': determines the timeout in milliseconds until a connection is
established. A timeout value of zero isinterpreted as an infinite timeout. This parameter expects a
value of typej ava. | ang. I nt eger . If this parameter is not set connect operations will not time out
(infinite timeout).

 'http.connection.stalecheck': determines whether stale connection check is to be used.
Disabling stale connection check may result in a noticeable performance improvement (the check
can cause up to 30 millisecond overhead per request) at the risk of getting an I/O error when
executing arequest over aconnection that hasbeen closed at the server side. Thisparameter expectsa
value of typej ava. | ang. Bool ean. For performance critical operationsthe check should be disabled.
If this parameter is not set the stale connection will be performed before each request execution.

* 'http.connection.max-line-length': determinesthemaximum linelength limit. If set to apositive
value, any HTTP line exceeding thislimit will cause anj ava. i o. | OExcept i on. A negative or zero
valuewill effectively disablethe check. Thisparameter expectsavalue of typej ava. | ang. | nt eger .
If this parameter is not set, no limit will be enforced.

 'http.connection.max-header-count': determines the maximum HTTP header count allowed.
If set to a positive value, the number of HTTP headers received from the data stream exceeding

15

Connection management

thislimit will causeanj ava. i o. | OExcept i on. A negative or zero value will effectively disable the
check. This parameter expects avalue of typej ava. | ang. I nt eger . If this parameter is not set, no
limit will be enforced.

e 'http.connection.max-status-line-garbage': defines the maximum number of ignorable lines
before we expect aHT TP response's status line. With HTTP/1.1 persistent connections, the problem
arises that broken scripts could return a wrong Cont ent - Lengt h (there are more bytes sent than
specified). Unfortunately, in some cases, this cannot be detected after the bad response, but only
before the next one. So HttpClient must be able to skip those surplus lines thisway. This parameter
expects avalue of type javalang.Integer. O disallows al garbage/empty lines before the status line.
Usej ava. | ang. I nt eger #MAX_VALUE for unlimited number. If this parameter is not set unlimited
number will be assumed.

2.2. Connection persistence

The process of establishing a connection from one host to another is quite complex and involves
multiple packet exchanges between two endpoints, which can be quite time consuming. The overhead
of connection handshaking can be significant, especially for small HT TP messages. One can achieve
amuch higher data throughput if open connections can be re-used to execute multiple requests.

HTTP/1.1 states that HTTP connections can be re-used for multiple requests per default. HTTP/1.0
compliant endpoints can a so use similar mechanism to explicitly communicatetheir preferenceto keep
connection aliveand useit for multiplerequests. HT TP agents can al so keep idle connectionsalivefor a
certain period timein case a connection to the same target host may be needed for subsequent requests.
The ability to keep connections alive is usually refered to as connection persistence. HttpClient fully
supports connection persistence.

2.3. HTTP connection routing

HttpClient is capable of establishing connections to the target host either directly or via a route that
may involve multiple intermediate connections also referred to as hops. HttpClient differentiates
connections of a route into plain, tunneled and layered. The use of multiple intermediate proxies to
tunnel connections to the target host is referred to as proxy chaining.

Plain routes are established by connecting to the target or the first and only proxy. Tunnelled routes
are established by connecting to thefirst and tunnelling through achain of proxiesto the target. Routes
without a proxy cannot be tunnelled. Layered routes are established by layering a protocol over an
existing connection. Protocols can only belayered over atunnel to thetarget, or over adirect connection
without proxies.

2.3.1. Route computation

Rout el nf o interface represents information about a definitive route to a target host involving one or
more intermediate steps or hops. H t pRout e isaconcrete implementation of Rout el nf o, which cannot
be changed (isimmutable). Ht t pTracker isamutable Rout el nf o implementation used internally by
HttpClient to track the remaining hops to the ultimate route target. H: t pTr acker can be updated after
a successful execution of the next hop towards the route target. Ht t pRout ebi r ect or IS a helper class
that can be used to compute the next step in aroute. This classis used internally by HttpClient.

Ht t pRout ePl anner iSan interface representing astrategy to compute acomplete routeto agiven target
based on the execution context. HttpClient shipswith two default Ht t pRout ePl anner implementation.

16

Connection management

ProxySel ect or Rout ePl anner iS based on j ava. net . ProxySel ect or . By default, it will pick up the
proxy settings of the VM, either from system properties or from the browser running the application.
Def aul t Ht t pRout ePl anner implementation does not make use of any Java system properties, nor of
system or browser proxy settings. It computes routes based exclusively on HT TP parameters described
below.

2.3.2. Secure HTTP connections

HTTP connections can be considered secure if information transmitted between two connection
endpoints cannot be read or tampered with by an unauthorized third party. The SSL/TLS protocol
is the most widely used technique to ensure HTTP transport security. However, other encryption
techniques could be employed aswell. Usually, HT TP transport islayered over the SSL/TL S encrypted
connection.

2.4. HTTP route parameters

These are parameters that can influence route computation:

» 'http.routedefault-proxy': definesaproxy host to be used by default route plannersthat do not
make use of JRE settings. This parameter expects avalue of type Ht t pHost . If this parameter is not
set direct connections to the target will be attempted.

e 'http.route.local-address': defines a local address to be used by all default route planner.
On machines with multiple network interfaces, this parameter can be used to select the
network interface from which the connection originates. This parameter expects a value of
type j ava. net . | net Address. If this parameter is not set a default local address will be used
automatically.

* 'http.routeforced-route’: definesan forced routeto be used by all default route planner. Instead
of computing a route, the given forced route will be returned, even if it points to a completely
different target host. This parameter expects avalue of type Ht t pRout e.

2.5. Socket factories

HTTP connections make use of a j ava. net. Socket object internally to handle transmission of
data across the wire. They, however, rely on ScheneSocket Fact ory interface to create, initialize
and connect sockets. This enables the users of HttpClient to provide application specific socket
initialization code at runtime. Pl ai nSocket Fact ory isthe default factory for creating and initializing
plain (unencrypted) sockets.

The process of creating a socket and that of connecting it to a host are decoupled, so that the socket
could be closed while being blocked in the connect operation.

Pl ai nSocket Factory sf = Pl ai nSocket Fact ory. get Socket Factory();
Socket socket = sf.createSocket();

Ht t pPar ans parans = new Basi cHt t pParans();

par ans. set Par anmet er (Cor eConnect i onPNanmes. CONNECTI ON_TI MEQUT, 1000L) ;
| net Socket Addr ess address = new | net Socket Addr ess("| ocahost", 8080);
sf . connect Socket (socket, address, null, parans);

17

Connection management

2.5.1. Secure socket layering

Layer edSchenmeSocket Fact ory iS an extension of ScheneSocket Fact ory interface. Layered socket
factories are capable of creating sockets layered over an existing plain socket. Socket layering is
used primarily for creating secure sockets through proxies. HttpClient ships with SSLSocket Fact ory
that implements SSL/TLS layering. Please note HttpClient does not use any custom encryption
functionality. It is fully reliant on standard Java Cryptography (JCE) and Secure Sockets (JSEE)
extensions.

2.5.2. SSL/TLS customization

HttpClient makes use of SSL SocketFactory to create SSL connections. SSLSocket Fact ory allows for
ahigh degree of customization. It can take an instance of j avax. net . ssl . SSLCont ext as a parameter
and use it to create custom configured SSL connections.

Trust Manager easyTrust Manager = new X509Trust Manager () {

@verride
public void checkd ient Trusted(
X509Certificate[] chain,
String authType) throws CertificateException {
/1 Ch, | am easy!

}

@verride
public void checkServer Trust ed(
X509Certificate[] chain,
String authType) throws CertificateException {
/1 Onh, | am easy!

}

@verride
public X509Certificate[] getAcceptedlssuers() {
return null;

}
be

SSLCont ext ssl context = SSLCont ext.getlnstance("TLS");
sslcontext.init(null, new TrustManager[] { easyTrustManager }, null);

SSLSocket Factory sf = new SSLSocket Fact ory(ssl cont ext);
SSLSocket socket = (SSLSocket) sf.createSocket();
socket . set Enabl edCi pher Sui tes(new String[] { "SSL_RSA WTH RC4_128 MX5" });

Ht t pPar ans parans = new Basi cHtt pParans();

par ans. set Par anmet er (Cor eConnect i onPNanmes. CONNECTI ON_TI MEQUT, 1000L);
I net Socket Addr ess address = new | net Socket Addr ess("| ocahost", 443);
sf. connect Socket (socket, address, null, parans);

Customization of SSLSocketFactory implies a certain degree of familiarity with the concepts of
the SSL/TLS protocol, a detailed explanation of which is out of scope for this document. Please
refer to the Java Secure Socket Extension [http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/
JSSERefGuide.html] for a detailed description of j avax. net . ssl . SSLCont ext and related tools.

2.5.3. Hostname verification

In addition to the trust verification and the client authentication performed on the SSL/TLS protocol
level, HttpClient can optionally verify whether the target hostname matches the names stored inside

18

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Connection management

the server's X.509 certificate, once the connection has been established. This verification can provide
additional guarantees of authenticity of the server trust material. X509HostnameV erifier interface
represents a strategy for hostname verification. HttpClient ships with three X509HostnameV erifier.
Important: hostname verification should not be confused with SSL trust verification.

e StrictHostnameVerifier: The strict hostname verifier works the same way as Sun Java 1.4,
Sun Java 5, Sun Java 6. It's also pretty close to |E6. This implementation appears to be compliant
with RFC 2818 for dealing with wildcards. The hostname must match either the first CN, or any of
the subject-alts. A wildcard can occur in the CN, and in any of the subject-alts.

e Browser Conpat Host nameVerifier: The hostname verifier that works the same way as
Curl and Firefox. The hosthame must match either the first CN, or any of the subject-
ats. A wildcard can occur in the CN, and in any of the subject-alts. The only difference
between Br owser Conpat Host nameVerifier and StrictHostnameVerifier is that a wildcard
(such as "*.foo.com") with Br owser Conpat Host nameVeri fi er matches all subdomains, including
"a.b.foo.com".

* Al'l owAl | Host naneVeri fi er: Thishostname verifier essentially turns hostname verification off.
Thisimplementation is a no-op, and never throwsthej avax. net . ssl . SSLExcept i on.

Per default HttpClient uses Br owser Conpat Host naneVeri fi er implementation. One can specify a
different hostname verifier implementation if desired

SSLSocket Factory sf = new SSLSocket Fact ory(
SSLCont ext . get | nst ance("TLS"),
SSLSocket Fact ory. STRI CT_HOSTNAME_VERI FI ER) ;

2.6. Protocol schemes

Schene class represents a protocol scheme such as "http" or "https" and contains a number of protocol
properties such as the default port and the socket factory to be used to creating j ava. net . Socket
instances for the given protocol. SchermeRegi st ry classisused to maintain a set of Schemes HttpClient
can choose from when trying to establish a connection by arequest URI:

Schene http = new Schene("http", 80, PlainSocketFactory. getSocketFactory());

SSLSocket Factory sf = new SSLSocket Fact ory(

SSLCont ext . get | nst ance("TLS"),

SSLSocket Fact ory. STRI CT_HOSTNAME_VERI FI ER) ;
Schenme https = new Schenme("https", 443, sf);

ScheneRegi stry sr = new SchermeRegi stry();
sr.register(http);
sr.regi ster(https);

2.7. HttpClient proxy configuration

Even though HttpClient is aware of complex routing scemes and proxy chaining, it supports only
simple direct or one hop proxy connections out of the box.

The simplest way to tell HttpClient to connect to the target host via a proxy is by setting the default
proxy parameter:

19

Connection management

DefaultHtpdient httpclient = new DefaultHtpdient();

Ht t pHost proxy = new Htt pHost (" sonmeproxy", 8080);
htt pcl i ent. get Parans() . set Par anet er (ConnRout ePNanes. DEFAULT_PROXY, proxy);

One can also instruct HttpClient to use standard JRE proxy selector to obtain proxy information:

DefaultHtpCient httpclient = new DefaultHtpCient();

ProxySel ect or Rout ePl anner rout ePl anner = new ProxySel ect or Rout ePl anner (
ht t pcl i ent. get Connect i onManager () . get ScheneRegi stry(),
ProxySel ector. get Defaul t());

httpclient.set Rout ePl anner (rout ePl anner);

Alternatively, one can provide a custom Rout ePl anner implementation in order to have a complete
control over the process of HT TP route computation:

DefaultHtpCient httpclient = new DefaultHttpdient();
ht t pcl i ent . set Rout ePl anner (new Ht t pRout ePl anner () {

public HttpRoute determ neRout e(
Ht t pHost target,
Ht t pRequest request,
Ht t pCont ext context) throws HttpException {
return new HttpRoute(target, null, new HttpHost("soneproxy", 8080),
"https". equal sl gnoreCase(target. get SchemeNanme()));

1)

2.8. HTTP connection managers

2.8.1. Connection operators

Operated connections are client side connections whose underlying socket or its state
can be manipulated by an externa entity, usually referred to as a connection operator.
Oper at edd i ent Connect i on interfaceextendsH: t pd i ent Connect i on interface and define additional
methods to manage connection socket. The d i ent Connecti onOper at or interface represents a
strategy for creating Oper at edd i ent Connection instances and updating the underlying socket
of those objects. Implementations will most likely make use SchemeSocket Fact oryS to create
j ava. net. Socket instances. The dientConnectionOperator interface enables the users of
HttpClient to provide a custom strategy for connection operators as well as an ability to provide
alternative implementation of the Gper at edd i ent Connect i on interface.

2.8.2. Managed connections and connection managers

HTTP connections are complex, stateful, thread-unsafe objects which need to be properly managed to
function correctly. HTTP connections can only be used by one execution thread at atime. HttpClient
employsaspecial entity to manage accessto HT TP connections called HT TP connection manager and
represented by thed i ent Connect i onManager interface. The purpose of an HT TP connection manager
is to serve as a factory for new HTTP connections, manage persistent connections and synchronize
access to persistent connections making sure that only one thread can have access to a connection at
atime.

20

Connection management

Internally HTTP connection managers work with instances of Operatedd i ent Connecti on,
but they hands out instances of Managedd ientConnection to the service consumers.
Managedd i ent Connect i on actsasawrapper for adper at edd i ent Connect i on instance that manages
its state and controls all 1/O operations on that connection. It also abstracts away socket operations
and provides convenience methods for opening and updating sockets in order to establish a route.
ManagedCl i ent Connect i on instances are aware of their link to the connection manager that spawned
them and of the fact that they must be returned back to the manager when no longer in use.
Managedd i ent Connect i on classes also implement Connect i onRel easeTri gger interfacethat can be
used to trigger the release of the connection back to the manager. Once the connection release has
been triggered the wrapped connection gets detached from the Managedd i ent Connect i on wrapper
and the oper at edd i ent Connect i on instanceisreturned back to the manager. Even though the service
consumer still holds a reference to the Managedd i ent Connect i on instance, it is no longer able to
execute any /O operation or change the state of the per at edd i ent Connect i on €ither intentionally
or unintentionally.

Thisis an example of acquiring a connection from a connection manager:

Schene http = new Schene("http", 80, PlainSocketFactory. getSocketFactory());
SchenmeRegi stry sr = new ScheneRegi stry();

sr.register(http);

Cl i ent Connecti onManager connM g = new Singl ed i ent ConnManager (sr);

// Request new connection. This can be a | ong process
Cl i ent Connecti onRequest connRequest = connM g. request Connecti on(
new Htt pRout e(new Htt pHost ("I ocal host", 80)), null);

/1 Wit for connection up to 10 sec
Managedd i ent Connecti on conn = connRequest . get Connecti on(10, Ti neUnit. SECONDS);
try {
/1 Do useful things with the connecti on.
/'l Release it when done.
conn. rel easeConnecti on();
} catch (1 OException ex) {
/1 Abort connection upon an I/O error.
conn. abor t Connection();
throw ex;

The connection request can be terminated prematurely by calling
C i ent Connect i onRequest #abor t Request () if necessary. Thiswill unblock thethread blocked inthe
d i ent Connect i onRequest #get Connect i on() method.

Basi cManagedEnt ity wrapper class can be used to ensure automatic release of the underlying
connection once the response content has been fully consumed. HttpClient uses this
mechanism internally to achieve transparent connection release for all responses obtained from
Htt pd i ent #execut e() methods:

Cl i ent Connecti onRequest connRequest = connM g. request Connecti on(
new Htt pRout e(new Htt pHost ("1 ocal host", 80)), null);

Managedd i ent Connecti on conn = connRequest. get Connecti on(10, Ti neUnit. SECONDS);
try {

Basi cHt t pRequest request = new Basi cHtt pRequest (" GET", "/");

conn. sendRequest Header (request) ;

Ht t pResponse response = conn.recei veResponseHeader () ;

conn. recei veResponseEntity(response);

HtpEntity entity = response.getEntity();

if (entity '= null) {

21

Connection management

Basi cManagedEntity managedEntity = new Basi cManagedEntity(entity, conn, true);
/1 Replace entity
response. set Entity(nmanagedEntity);

}

/! Do sonmething useful with the response

/1 The connection will be rel eased automatically

/1 as soon as the response content has been consuned

} catch (1 OException ex) {

/1 Abort connection upon an I/O error.

conn. abor t Connection();

t hrow ex;

2.8.3. Simple connection manager

Si ngl eCl i ent ConnManager iS a sSimple connection manager that maintains only one connection at
a time. Even though this class is thread-safe it ought to be used by one execution thread only.
Si ngl ed i ent ConnManager Will make an effort to reuse the connection for subsequent requests with
the same route. It will, however, close the existing connection and open it for the given route, if the
route of the persistent connection does not match that of the connection request. If the connection has
been already been alocated j ava. | ang. I | | egal St at eExcept i on iSthrown.

Si ngl eC i ent ConnManager isused by HttpClient per default.

2.8.4. Pooling connection manager

Thr eadSaf ed i ent ConnManager iS a more complex implementation that manages a pool of client
connections and is able to service connection requests from multiple execution threads. Connections
are pooled on a per route basis. A request for a route which already the manager has persistent
connections for available in the pool will be services by leasing a connection from the pool rather than
creating a brand new connection.

Thr eadSaf ed i ent ConnManager maintains a maximum limit of connection on a per route basisand in
total. Per default thisimplementation will create no more than than 2 concurrent connections per given
route and no more 20 connections in total. For many real-world applications these limits may prove
too constraining, especidly if they use HTTP as a transport protocol for their services. Connection
limits, however, can be adjusted using HTTP parameters.

This example shows how the connection pool parameters can be adjusted:

SchenmeRegi stry schenmeRegi stry = new ScheneRegi stry();
schenmeRegi stry. register(

new Scherme("http", 80, PlainSocketFactory. getSocketFactory()));
schenmeRegi stry. regi ster(

new Schene("https", 443, SSLSocket Factory. get Socket Factory()));

Thr eadSaf eCl i ent ConnManager cm = new Thr eadSaf el i ent ConnManager (scheneRegi stry);
/1 Increase max total connection to 200

cm set MaxTot al Connecti ons(200);

/1 Increase default nax connection per route to 20

cm set Def aul t MaxPer Rout e(20) ;

/'l I ncrease max connections for |ocal host:80 to 50

Ht t pHost | ocal host = new HttpHost ("Il ocahost”, 80);

cm set MaxFor Rout e(new Htt pRout e(l ocal host), 50);

Htpdient httpCient = new DefaultH tpCient(cm;

22

Connection management

2.8.5. Connection manager shutdown

When an HttpClient instance is no longer needed and is about to go out of scopeit isimportant to shut
down its connection manager to ensure that all connections kept alive by the manager get closed and
system resources allocated by those connections are released.

DefaultHtpdient httpclient = new DefaultHttpdient();
Htt pGet httpget = new H tpGet ("http://ww. google.com");
Ht t pResponse response = httpclient. execute(httpget);
HttpEntity entity = response.getEntity();

System out . println(response. get StatusLine());
EntityUtils.consune(entity);

ht t pcl i ent . get Connect i onManager () . shut down();

2.9. Multithreaded request execution

When equipped with a pooling connection manager such as ThreadSafeClientConnManager
HttpClient can be used to execute multiple requests simultaneously using multiplethreads of execution.

Thr eadSaf ed i ent ConnManager Will allocate connectionsbased onitsconfiguration. If all connections
for a given route have already been leased, a request for connection will block until a
connection is released back to the pool. One can ensure the connection manager does not
block indefinitely in the connection request operation by setting ' htt p. conn- manager . ti meout
to a positive value. If the connection request cannot be serviced within the given time period
Connect i onPool Ti meout Except i on Will be thrown.

ScheneRegi stry schemeRegi stry = new SchenmeRegi stry();
schenmeRegi stry. regi ster(
new Schenme("http", 80, PlainSocketFactory.getSocketFactory()));

Cl i ent Connecti onManager cm = new Thr eadSaf eCl i ent ConnManager (scheneRegi stry);
Htplient httpCient = new DefaultH tpCient(cm;

/!l URIs to perform GETs on

String[] urisToGet = {
"http://ww. domai n1. com ",
"http://ww. domai n2. conl ",
"http://ww. domai n3. com’ ",
"http://ww. domai n4. com "

be

I/l create a thread for each URI
Get Thread[] threads = new Get Thread[urisToGet.|ength];

for (int i =0; i < threads.length; i++) {
Htt pGet httpget = new H tpGet (urisToCGet[i]);
threads[i] = new Get Thread(httpdient, httpget);
}

/'l start the threads

for (int j =0; j < threads.length; j++) {
threads[j].start();

}

/'l join the threads

for (int j =0; j < threads.length; j++) {
threads[j].join();

}

23

Connection management

static class Get Thread extends Thread {

private final HtpCient httpdient;
private final HttpContext context;
private final H tpGet httpget;

public GetThread(HtpClient httpCient, HtpGet httpget) {
this.httplient = httpdient;
this. context = new BasicH t pContext();
this. httpget ht t pget ;

}

@verride
public void run() {
try {
Ht t pResponse response = this.httpCdient.execute(this.httpget, this.context);
HtpEntity entity = response.getEntity();
if (entity !I'=null) {
/1 do sonething useful with the entity
}
/'l ensure the connection gets released to the manager
EntityUtils.consune(entity);
} catch (Exception ex) {
this. httpget.abort();

}

2.10. Connection eviction policy

One of the major shortcoming of the classic blocking 1/0 model isthat the network socket can react to
1/0 events only when blocked in an 1/0 operation. When a connection is released back to the manager,
it can be kept alive however it is unable to monitor the status of the socket and react to any /O events.
If the connection gets closed on the server side, the client side connection is unabl e to detect the change
in the connection state and react appropriately by closing the socket on its end.

HttpClient tries to mitigate the problem by testing whether the connection is 'stal€/, that is
no longer valid because it was closed on the server side, prior to using the connection for
executing an HTTP request. The stale connection check is not 100% reliable and adds 10 to
30 ms overhead to each request execution. The only feasible solution that does not involve a
one thread per socket model for idle connections is a dedicated monitor thread used to evict
connections that are considered expired due to a long period of inactivity. The monitor thread
can periodically call d i ent Connect i onManager #cl oseExpi r edConnect i ons() method to close al
expired connections and evict closed connections from the pool. It can also optionaly call
d i ent Connect i onManager #cl osel dl eConnecti ons() method to closeall connectionsthat have been
idle over agiven period of time.

public static class |dl eConnecti onMnitorThread extends Thread {

private final dientConnecti onManager connMr;
private volatile bool ean shutdown;

publ i c 1dl eConnecti onhbnitorThread(d i ent Connecti onManager connMyr) {
super () ;
this. connMgr = connMyr;

24

Connection management

@verride
public void run() {
try {
whil e (!shutdown) {
synchroni zed (this) {
wai t (5000) ;
/1 Cl ose expired connections
connMyr . cl oseExpi redConnecti ons();
// Optionally, close connections
/'l that have been idle | onger than 30 sec
connMyr . cl osel dl eConnecti ons(30, Ti neUnit. SECONDS);
}
}
} catch (InterruptedException ex) {
[/ term nate
}
}

public void shutdown() ({
shutdown = true;
synchroni zed (this) {
notifyAll();
}

2.11. Connection keep alive strategy

The HTTP specification does not specify how long a persistent connection may be and should be kept
alive. Some HT TP serversuse non-standard keep- Al i ve header to communicate to the client the period
of time in seconds they intend to keep the connection alive on the server side. HttpClient makes use
of thisinformation if available. If the Keep- Al i ve header is not present in the response, HttpClient
assumes the connection can be kept alive indefinitely. However, many HTTP servers out there are
configured to drop persistent connections after acertain period of inactivity in order to conserve system
resources, quite often without informing the client. In case the default strategy turns out to be too

optimistic, one may want to provide a custom keep-alive strategy.

DefaultHtpCient httpclient = new DefaultHtpCient();
httpclient.set KeepAliveStrategy(new Connecti onKeepAliveStrategy() {

public | ong get KeepAliveDuration(H tpResponse response, HttpContext context) {
// Honor 'keep-alive' header
Header El enent I terator it = new Basi cHeader El enent | t er at or (
response. header | t er at or (HTTP. CONN_KEEP_ALI VE)) ;
while (it.hasNext()) {
Header El enent he = it.nextEl enent ();
String param = he. get Nane();
String val ue = he. get Val ue();
if (value !'= null && param equal sl gnoreCase("tinmeout")) {
try {
return Long. parseLong(val ue) * 1000;
} cat ch(Nunber For mat Excepti on i gnore) {
}
}
}
Htt pHost target = (HttpHost) context.getAttribute(
Execut i onCont ext . HTTP_TARGET_HOST) ;
i f ("ww. naughty-server. cont. equal sl gnoreCase(target.get Host Nane())) {
I/ Keep alive for 5 seconds only
return 5 * 1000;
} else {

25

Connection management

B8

/'l otherw se keep alive for 30 seconds
return 30 * 1000;

26

Chapter 3. HTTP state management

Originally HTTP was designed as a statel ess, request / response oriented protocol that made no special
provisionsfor stateful sessions spanning across several logically related request / response exchanges.
As HTTP protocol grew in popularity and adoption more and more systems began to use it for
applications it was never intended for, for instance as a transport for e-commerce applications. Thus,
the support for state management became a necessity.

Netscape Communications, at that time a leading developer of web client and server software,
implemented support for HTTP state management in their products based on a proprietary
specification. Later, Netscape tried to standardise the mechanism by publishing a specification draft.
Thoseefforts contributed to the formal specification defined through the RFC standard track. However,
state management in asignificant number of applicationsisstill largely based on the Netscape draft and
is incompatible with the official specification. All mgjor developers of web browsers felt compelled
to retain compatibility with those applications greatly contributing to the fragmentation of standards
compliance.

3.1. HTTP cookies

Cookie is atoken or short packet of state information that the HTTP agent and the target server can
exchange to maintain a session. Netscape engineers used to refer to it as as a "magic cookie" and the
name stuck.

HttpClient uses Cooki e interface to represent an abstract cookie token. In its smples form an HTTP
cookie is merely a name / value pair. Usually an HTTP cookie also contains a number of attributes
such as version, a domain for which is valid, a path that specifies the subset of URLS on the origin
server to which this cookie applies, and maximum period of time the cookieisvalid for.

Set Cooki e interface represents a Set - Cooki e response header sent by the origin server to the HTTP
agent in order to maintain a conversational state. Set Cooki e2 interface extends SetCookie with Set -
Cooki e2 specific methods.

d i ent Cooki e interface extends Cooki e interface with additional client specific functionality such
ability to retrieve original cookie attributes exactly as they were specified by the origin server. Thisis
important for generating the Cooki e header because some cookie specifications require that the Cooki e
header should include certain attributes only if they were specified in the Set - Cooki e Or Set - Cooki e2
header.

3.1.1. Cookie versions

Cookies compatible with Netscape draft specification but non-compliant with the official specification
areconsidered to be of version 0. Standard compliant cookiesare expected to haveversion 1. HttpClient
may handle cookies differently depending on the version.

Here is an example of re-creating a Netscape cookie:

Basi cd i ent Cooki e net scapeCooki e = new Basi cC i ent Cooki e("nane", "val ue");
net scapeCooki e. set Ver si on(0) ;

net scapeCooki e. set Domai n(". myconpany. cont') ;

net scapeCooki e. set Pat h("/");

27

HTTP state management

Hereis an example of re-creating a standard cookie. Please note that standard compliant cookie must
retain all attributes as sent by the origin server:

Basi cd i ent Cooki e st dCooki e = new Basi cC i ent Cooki e("nanme", "val ue");
st dCooki e. set Versi on(1);

st dCooki e. set Domai n(". myconpany. conl') ;

st dCooki e. set Path("/");

st dCooki e. set Secure(true);

/1 Set attributes EXACTLY as sent by the server

st dCooki e. set Attri but e(d i ent Cooki e. VERSI ON_ATTR, "1");

st dCooki e. set Attri bute(C i ent Cooki e. DOVAI N_ATTR, ". myconpany.conl');

Hereisan example of re-creating aSet - Cooki e2 compliant cookie. Please note that standard compliant
cookie must retain all attributes as sent by the origin server:

Basi cd i ent Cooki e2 stdCooki e = new Basi cC i ent Cooki e2("nane", "value");
st dCooki e. set Versi on(1);

st dCooki e. set Domai n(". myconpany. cont') ;

st dCooki e. set Ports(new i nt[] {80, 8080});

st dCooki e. set Pat h("/");

st dCooki e. set Secure(true);

/1 Set attributes EXACTLY as sent by the server

st dCooki e. set Attri bute(C i ent Cooki e. VERSI ON_ATTR, "1");

st dCooki e. set Attri but e(Cl i ent Cooki e. DOVAI N_ATTR, ". myconpany. conl');

st dCooki e. set Attri bute(C i ent Cooki e. PORT_ATTR, "80, 8080");

3.2. Cookie specifications

Cooki eSpec interface represents a cookie management specification. Cookie management
specification is expected to enforce:

 rules of parsing Set - Cooki e and optionally Set - Cooki e2 headers.

* rulesof validation of parsed cookies.

« formatting of cooki e header for a given host, port and path of origin.
HttpClient ships with several Cooki eSpec implementations:

¢ Netscape draft: This specification conforms to the original draft specification published by
Netscape Communications. It should be avoided unless absolutely necessary for compatibility with
legacy code.

e RFC 2109: Older version of the official HTTP state management specification superseded by
RFC 2965.

« RFC 2965: The official HTTP state management specification.

e Browser compatibility: This implementations strives to closely mimic (mis)behavior of
common web browser applications such as Microsoft Internet Explorer and Mozilla FireFox.

e Best match: 'Meta cookie specification that picks up a cookie policy based on the format of
cookies sent with the HTTP response. It basically aggregates al above implementations into one
class.

28

HTTP state management

It is strongly recommended to use the Best Mat ch policy and let HttpClient pick up an appropriate
compliance level at runtime based on the execution context.

3.3. HTTP cookie and state management parameters

These are parameters that be used to customize HTTP state management and behaviour of individual
cookie specifications:

"http.protocol.cookie-datepatterns': defines valid date patterns to be used for parsing non-
standard expi res attribute. Only required for compatibility with non-compliant servers that
still use expi res defined in the Netscape draft instead of the standard nax- age attribute. This
parameter expects avalue of typej ava. uti | . Col | ecti on. The collection elements must be of type
java. | ang. Stri ng compatible with the syntax of j ava. t ext . Si npl eDat eFor mat . If this parameter
is not set the choice of a default value is Cooki eSpec implementation specific. Please note this
parameter applies

"http.protocol.single-cookie-header': defines whether cookies should be forced into a single
Cooki e request header. Otherwise, each cookie is formatted as a separate Cooki e header. This
parameter expects a value of type j ava. | ang. Bool ean. If this parameter is not set the choice of
adefault value is CookieSpec implementation specific. Please note this parameter applies to strict
cookie specifications (RFC 2109 and RFC 2965) only. Browser compatibility and netscape draft
policies will always put al cookies into one request header.

'http.protocol.cookie-palicy': defines the name of a cookie specification to be used for HTTP
state management. This parameter expects a value of typej ava. | ang. Stri ng. If this parameter is
not set valid date patterns are Cooki eSpec implementation specific.

3.4. Cookie specification registry

HttpClient maintains a registry of available cookie specifications using Cooki eSpecRegi stry class.
The following specifications are registered per default:

compatibility: ~ Browser compatibility (Ienient policy).
netscape: Netscape draft.

rfc2109: RFC 2109 (outdated strict policy).

rfc2965: RFC 2965 (standard conformant strict policy).

best-match: Best match meta-policy.

3.5. Choosing cookie policy

Cookie policy can be set at the HTTP client and overridden on the HTTP request level if required.

HtpCient httpclient = new Defaul tH tpCient();
/1l force strict cookie policy per default
httpclient.getParans(). set Paraneter (

Cl i ent PNanes. COCKI E_PCLI CY, Cooki ePol i cy. RFC_2965) ;

Htt pGet httpget = new Ht tpGet("http://ww. broken-server.conl");
/1l Override the default policy for this request

29

HTTP state management

htt pget . get Parans() . set Par anet er (
Cl i ent PNanes. COOKI E_POLI CY, Cooki ePol i cy. BROASER_COWPATI Bl LI TY) ;

3.6. Custom cookie policy

In order to implement a custom cookie policy one should create a custom implementation of
Cooki eSpec interface, create a Cooki eSpecFact ory implementation to create and initialize instances
of the custom specification and register the factory with HttpClient. Once the custom specification has

been registered, it can be activated the same way as the standard cookie specifications.

Cooki eSpecFact ory csf = new Cooki eSpecFactory() {
publ i ¢ Cooki eSpec newl nstance(HttpParans parans) {
return new Browser Conpat Spec() {
@verride
public void validate(Cooki e cookie, CookieOigin origin)
throws Mal f or medCooki eExcepti on {
/1l On, | am easy

}

be

DefaultHtpdient httpclient = new Defaul tH tpCient();
ht t pcl i ent . get Cooki eSpecs().regi ster("easy", csf);
httpclient.getParans().set Paraneter (

Cl i ent PNanes. COCKI E_PCLI CY, "easy");

3.7. Cookie persistence

HttpClient can work with any physical representation of a persistent cookie store that implements
the Cooki eSt or e interface. The default Cooki eSt or e implementation called Basi cC i ent Cooki e iSa
simpleimplementation backed by aj ava. util . ArrayLi st. Cookiesstored in an Basi cd i ent Cooki e
object are lost when the container object get garbage collected. Users can provide more complex

implementations if necessary.

DefaultHitpdient httpclient = new Defaul tH tpCient();
Il Create a |local instance of cookie store

Cooki eSt ore cooki eStore = new MyCooki eStore();

/'l Popul ate cookies if needed

Basi cd i ent Cooki e cooki e = new Basi cd i ent Cooki e("nane", "val ue");
cooki e. set Versi on(0) ;

cooki e. set Domai n(". myconpany. cont') ;

cooki e.setPath("/");

cooki eSt or e. addCooki e(cooki e) ;

/1 Set the store

httpclient.set Cooki eSt ore(cooki eStore);

3.8. HTTP state management and execution context

In the course of HTTP request execution HttpClient adds the following state management related

objects to the execution context:

* 'http.cookiespec-registry': Cooki eSpecRegi stry instance representing the actual cookie
specification registry. The value of this attribute set in the local context takes precedence over the

default one.

HTTP state management

e 'http.cookie-spec': Cooki eSpec instance representing the actual cookie specification.
e 'http.cookie-origin': Cooki eOri gi n instance representing the actual details of the origin server.

» 'http.cookie-stor€': Cooki eSt or e instance represents the actual cookie store. The value of this
attribute set in the local context takes precedence over the default one.

Thelocal Ht t pCont ext Object can be used to customize the HT TP state management context prior to
reguest execution or examine its state after the request has been executed:

HtpCient httpclient = new DefaultHtpCient();

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext ();

HttpCGet httpget = new HitpGet("http://I|ocal host:8080/");

Ht t pResponse response = httpclient. execute(httpget, |ocal Context);

Cooki eOri gin cookieOrigin = (CookieCOrigin) |ocal Context.getAttribute(
ClientContext. COOKIE CRIG N);

System out. println("Cookie origin: " + cookieOigin);

Cooki eSpec cooki eSpec = (Cooki eSpec) | ocal Context.getAttri bute(
Cl i ent Cont ext . COOKI E_SPEC) ;

System out . println("Cookie spec used: " + cooki eSpec);

3.9. Per user / thread state management

One can use an individual local execution context in order to implement per user (or per thread) state
management. Cookie specification registry and cookie store defined in the local context will take
precedence over the default ones set at the HTTP client level.

Htpdient httpclient = new Defaul tH tpCdient();

// Create a local instance of cookie store

Cooki eSt ore cooki eStore = new Basi cCooki eStore();

/'l Create | ocal HTTP context

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext () ;

/1 Bind custom cookie store to the |ocal context

| ocal Cont ext.set Attri bute(d ientContext.COOKIE _STORE, cookieStore);
Htt pGet httpget = new HttpGet("http://ww.google.com");

/1 Pass |ocal context as a paraneter

Ht t pResponse response = httpclient. execute(httpget, |ocal Context);

31

Chapter 4. HTTP authentication

HttpClient provides full support for authentication schemes defined by the HTTP standard
specification as well as a number of widely used non-standard authentication schemes such as NTLM
and SPNEGO.

4.1. User credentials

Any process of user authentication requires a set of credentials that can be used to establish
user identity. In the simplest form user crednetials can be just a user name / password pair.
User nanePasswor dCr edent i al s represents a set of credentials consisting of a security principa and a
password in clear text. Thisimplementation is sufficient for standard authentication schemes defined
by the HTTP standard specification.

User nanePasswor dCr edenti al s creds = new User nanePasswor dCr edenti al s("user", "pwd");
System out. println(creds. getUserPrincipal ().getNane());
System out . println(creds. get Password());

stdout >

user
pwd

NTCr edent i al s isaMicrosoft Windows specific implementation that includes in addition to the user
name/ password pair aset of additional Windows specific attributes such asaname of the user domain,
as in Microsoft Windows network the same user can belong to multiple domains with a different set
of authorizations.

NTCredential s creds = new NTCredential s("user", "pwd", "workstation", "domain");
System out. println(creds. getUserPrincipal ().getNane());
System out . println(creds. get Password());

stdout >

DOVAI N/ user
pwd

4.2. Authentication schemes

The Aut hschene interface represents an abstract challenge-response oriented authentication scheme.
An authentication scheme is expected to support the following functions:

» Parse and process the challenge sent by the target server in response to request for a protected
resource.

» Provide properties of the processed challenge: the authentication scheme type and its parameters,
such the realm this authentication scheme is applicable to, if available

32

HTTP authentication

Generate authorization string for the given set of credentials and the HTTP request in response to
the actual authorization challenge.

Please note authenti cation schemesmay be stateful involving aseries of challenge-response exchanges.

HttpClient ships with several Aut hScheme implementations:

Basic: Basic authentication scheme as defined in RFC 2617. This authentication scheme is
insecure, as the credentials are transmitted in clear text. Despite its insecurity Basic authentication
scheme is perfectly adequate if used in combination with the TLS/SSL encryption.

Digest. Digest authentication scheme as defined in RFC 2617. Digest authentication schemeis
significantly more secure than Basic and can be a good choice for those applications that do not
want the overhead of full transport security through TLS/SSL encryption.

NTLM: NTLM isa proprietary authentication scheme developed by Microsoft and optimized
for Windows platforms. NTLM is believed to be more secure than Digest.

SPNEGO/Kerberos: sPNEGO(Smpleand Protected Gssapl Negotiation Mechanism) isaGSSAPI
"pseudo mechanism" that is used to negotiate one of a number of possible real mechanisms.
SPNEGO's most visible use is in Microsoft's HTTP Negoti ate authentication extension. The
negotiable sub-mechanismsinclude NTLM and Kerberos supported by Active Directory. Presently
HttpClient supports Kerberos sub-mechanism only.

4.3. HTTP authentication parameters

These are parameters that be used to customize HTTP authentication process and behaviour of
individual authentication schemes:

"http.protocol.handle-authentication': defines whether authentication should be handled
automatically. This parameter expects avalue of typej ava. | ang. Bool ean. If this parameter is not
set HitpClient will handle authentication automatically.

'http.auth.credential-charset': defines the charset to be used when encoding user credentials.
This parameter expects a value of typej ava. | ang. Stri ng. If this parameter is not set us- ASCI |
will be used.

'http.auth.tar get-scheme-pref': Defines the order of preference for supported Aut hSchemes
when authenticating with the target host. This parameter expects avalue of typejava.util.Collection.
The collection is expected to contain java.lang. String instances representing an id of an
authentication scheme.

"http.auth.proxy-scheme-pref': Defines the order of preference for supported Aut hSchenes
when authenticating with the proxy host. This parameter expectsavalue of typejava.util.Collection.
The collection is expected to contain java.lang. String instances representing an id of an
authentication scheme.

For example, one can force HttpClient to use adifferent order of preference for authentication schemes

DefaultHttpdient httpclient = new DefaultH tpCient(ccm parans);
/| Choose BASIC over DI GEST for proxy authentication

33

HTTP authentication

Li st<String> authpref = new ArrayList<String>();

aut hpr ef . add(Aut hPol i cy. BASI C) ;

aut hpr ef . add(Aut hPol i cy. DI GEST) ;

httpclient.getParans().set Paranet er (Aut hPNanes. PROXY_AUTH_PREF, aut hpref);

4.4. Authentication scheme registry

HttpClient maintains a registry of available authentication scheme using Aut hScheneRegi st ry class.
The following schemes are registered per default:

* Basic: Basic authentication

» Digest: Digest authentication

NTLM: NTLMv1, NTLMv2, and NTLM2 Session authentication

SPNEGO: SPNEGO/Kerberos authentication

4.5. Credentials provider

Credentials providers are intended to maintain a set of user credentials and to be able to produce user
credentials for a particular authentication scope. Authentication scope consists of a host name, a port
number, a realm name and an authentication scheme name. When registering credentials with the
credentials provider one can provide awild card (any host, any port, any realm, any scheme) instead
of a concrete attribute value. The credentials provider is then expected to be able to find the closest
match for a particular scope if the direct match cannot be found.

HttpClient can work with any physical representation of a credentials provider that implements
the Credential sProvider interface. The default Credential sProvider implementation called
Basi cCredent i al sProvi der isasimple implementation backed by aj ava. uti | . Hashvap.

Credenti al sProvi der credsProvider = new Basi cCredenti al sProvider();
credsProvi der. set Credenti al s(
new Aut hScope("sonehost"”, AuthScope. ANY_PORT),
new User nanmePasswor dCr edenti al s("ul", "pl"));
credsProvi der. set Credenti al s(
new Aut hScope("sonmehost", 8080),
new User nanmePasswor dCr edenti al s("u2", "p2"));
credsProvi der. set Credenti al s(
new Aut hScope("ot her host", 8080, AuthScope. ANY_REALM "ntlni),
new User namePasswor dCr edenti al s("u3", "p3"));

System out . println(credsProvider. get Credenti al s(

new Aut hScope("sonehost”, 80, "realn, "basic")));
System out . println(credsProvider. get Credenti al s(

new Aut hScope("sonehost”, 8080, "realnf, "basic")));
System out. println(credsProvider. get Credenti al s(

new Aut hScope("ot herhost", 8080, "realni, "basic")));
System out . println(credsProvider. get Credenti al s(

new Aut hScope("ot herhost”, 8080, null, "ntlnt)));

stdout >

[principal: ul]
[principal: u2]
nul |

34

HTTP authentication

[principal: u3]

4.6. HTTP authentication and execution context

HttpClient relies on the Aut hst at e class to keep track of detailed information about the state of the
authentication process. HttpClient creates two instances of Aut hst at e in the course of HTTP request
execution: onefor target host authentication and another onefor proxy authentication. In casethetarget
server or the proxy require user authentication therespective Aut hScope instancewill be populated with
the Aut hScope, Aut hScheme and Cr ednet i al s used during the authentication process. The Aut hst at e
can be examined in order to find out what kind of authentication was requested, whether a matching
Aut hSchene implementation was found and whether the credentials provider managed to find user
credentials for the given authentication scope.

In the course of HTTP request execution HttpClient adds the following authentication related objects
to the execution context:

* 'http.authscheme-registry': Aut hScheneRegi stry instance representing the actual
authentication scheme registry. The value of this attribute set in the local context takes precedence
over the default one.

 'http.auth.credentials-provider': Cooki eSpec instance representing the actual credentials
provider. The value of this attribute set in the local context takes precedence over the default one.

e 'http.auth.target-scop€e’: Aut hSt at e instance representing the actual target authentication state.
The value of this attribute set in the local context takes precedence over the default one.

» 'http.auth.proxy-scop€e’: Aut hSt at e instance representing the actual proxy authentication state.
The value of this attribute set in the local context takes precedence over the default one.

e 'http.auth.auth-cache': Aut hCache instance representing the actual authentication data cache.
The value of this attribute set in the local context takes precedence over the default one.

The local Htt pCont ext object can be used to customize the HTTP authentication context prior to
request execution or examine its state after the request has been executed:

HtpCient httpclient = new DefaultHttpdient();

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext () ;

Htt pGet httpget = new HtpGet("http://I|ocal host:8080/");

Ht t pResponse response = httpclient.execute(httpget, |ocal Context);

Aut hSt at e proxyAuthState = (AuthState) | ocal Context.getAttribute(

Cl i ent Cont ext . PROXY_AUTH_STATE) ;
System out.println("Proxy auth scope: " + proxyAuthState. get Aut hScope());
System out. println("Proxy auth schene: " + proxyAuthState. get Aut hSchene());
Systemout. println("Proxy auth credentials: " + proxyAuthState.getCredentials());
Aut hState target AuthState = (AuthState) | ocal Context.getAttribute(

Cl i ent Cont ext. TARGET_AUTH_STATE) ;
Systemout.println("Target auth scope: " + targetAuthState. get Aut hScope());
System out.println("Target auth schene: " + targetAuthState. get AuthSchenme());
Systemout.println("Target auth credentials: " + targetAuthState.getCredentials());

4.7. Caching of authentication data

Asof version 4.1 HttpClient automatically cachesinformation about hostsit successfully authenticated
with. Please note that one must use the same execution context to execute logically related requests

35

HTTP authentication

in order for cached authentication data to propagate from one request to another. Authentication data
will be lost as soon as the execution context goes out of scope.

4.8. Preemptive authentication

HttpClient does not support preemptive authentication out of the box, because if misused or used
incorrectly the preemptive authentication can lead to significant security issues, such as sending user
credentials in clear text to an unauthorized third party. Therefore, users are expected to evaluate
potential benefits of preemptive authentication versus security risks in the context of their specific
application environment.

Nonethess one can configure HttpClient to authenticate preemptively by prepopulating the
authentication data cache.

Ht t pHost targetHost = new HttpHost ("l ocal host", 80, "http");
DefaultHtpCient httpclient = new DefaultHtpCient();

httpclient.getCredential sProvider().setCredential s(
new Aut hScope(t ar get Host . get Host Nane(), target Host.getPort()),
new User nanmePasswor dCr edenti al s("usernane", "password"));

/| Create AuthCache instance

Aut hCache aut hCache = new Basi cAut hCache();

/] Generate BASIC schene object and add it to the |ocal auth cache
Basi cSchene basi cAuth = new Basi cSchene();

aut hCache. put (t ar get Host, basi cAut h);

/1 Add Aut hCache to the execution context
Basi cHt t pCont ext | ocal cont ext = new Basi cH t pCont ext () ;
| ocal cont ext.setAttribute(d ientContext.AUTH CACHE, authCache);

Htt pGet httpget = new HtpGet("/");

for (int i =0; i <3; i++) {
Ht t pResponse response = httpclient.execute(targetHost, httpget, |ocal context);
HtpEntity entity = response.getEntity();
EntityUtils.consune(entity);

4.9. NTLM Authentication

As of version 4.1 HttpClient provides full support for NTLMv1, NTLMv2, and NTLM2 Session
authentication out of the box. One can still continue using an external NTLM engine such as JCIFS
[http://jcifs.samba.org/] library developed by the Samba [http://www.samba.org/] project as a part of
their Windows interoperability suite of programs.

4.9.1. NTLM connection persistence

NTLM authentication scheme is significantly more expensive in terms of computational overhead and
performance impact than the standard Basi ¢ and bi gest schemes. Thisislikely to be one of the main
reasonswhy Microsoft chose to make NTLMauthenti cation scheme stateful . That is, once authenticated,
the user identity is associated with that connection for its entire life span. The stateful nature of
NTLM connections makes connection persistence more complex, as for the obvious reason persistent
NTLM connections may not be re-used by users with a different user identity. The standard connection
managers shipped with HttpClient are fully capable of managing stateful connections. However, it
is critically important that logically related requests within the same session use the same execution

36

http://jcifs.samba.org/
http://jcifs.samba.org/
http://www.samba.org/
http://www.samba.org/

HTTP authentication

context in order to make them aware of the current user identity. Otherwise, HttpClient will end up
creating anew HT TP connection for each HT TP request against NTLMprotected resources. For detailed
discussion on stateful HTTP connections please refer to this section.

As NTLM connections are stateful it is generally recommended to trigger NTLM authentication using
a relatively cheap method, such as GET or HEAD, and re-use the same connection to execute more
expensive methods, especialy those enclose a request entity, such as POST or PUT.

DefaultHtpdient httpclient = new DefaultH tpCient();

NTCredential s creds = new NTCredential s("user", "pwd", "nyworkstation", "mcrosoft.cont);
httpclient.getCredential sProvider().setCredential s(Aut hScope. ANY, creds);

Htt pHost target = new HttpHost ("ww. m crosoft.cont, 80, "http");

/1 Make sure the sane context is used to execute logically related requests
Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext ();

/! Execute a cheap nethod first. This will trigger NTLM authentication

Htt pGet httpget = new HttpGet("/ntl mprotected/info");

Ht t pResponse responsel = httpclient.execute(target, httpget, |ocal Context);
HtpEntity entityl = responsel.getEntity();

EntityUtils.consune(entityl);

/'l Execute an expensive nethod next reusing the sanme context (and connecti on)
Ht t pPost httppost = new HttpPost("/ntlmprotected/ forn');

htt ppost.setEntity(new StringEntity("lots and lots of data"));

Ht t pResponse response2 = httpclient.execute(target, httppost, |ocal Context);
HtpEntity entity2 = response2.getEntity();

EntityUtils.consune(entity2);

4.10. sPNecdKerberos Authentication

SPNEGO (Smple and Protected GssaAPI Negotiation Mechanism) is designed to allow for authentication
to services when neither end knows what the other can use/provide. It is most commonly used to do
Kerberos authentication. It can wrap other mechanisms, however the current version in HttpClient is
designed solely with Kerberosin mind.

1. Client Web Browser doesHTTP GET for resource.
2. Web server returns HTTP 401 status and a header: WV Aut hent i cate: Negoti ate

3. Client generates a NegTokenl nit, base64 encodes it, and resubmits the Ger with an
Authorization header: Aut hori zati on: Negoti ate <base64 encodi ng>.

4. Server decodes the NegTokenl ni t, extracts the supported MechTypes (only Kerberos V5 in
our case), ensures it is one of the expected ones, and then extracts the MechToken (Kerberos
Token) and authenticates it.

If more processing is required another HTTP 401 is returned to the client with more datain
the the wwv Aut hent i cat e header. Client takes the info and generates another token passing
this back in the Aut hor i zat i on header until complete.

5. When the client has been authenticated the Web server should return the HTTP 200 status, a
final W Aut hent i cat e header and the page content.

37

HTTP authentication

4.10.1. sPNEGO support in HttpClient

SPNEGO authentication scheme is compatible with Sun Java versions 1.5 and up. However the use of
Java >= 1.6 is strongly recommended as it supports SPNEGO authentication more completely.

The Sun JRE provides the supporting classesto do nearly all the kerberos and sSPNEGO token handling.
This means that a lot of the setup is for the GSS classes. The Negot i at eSchene is a simple class to
handle marshalling the tokens and reading and writing the correct headers.

The best way to start is to grab the KerberosHt t pd i ent . j ava file in examples and try and get it to
work. There are alot of issues that can happen but if lucky it'll work without too much problem. It
should also provide some output to debug with.

In windows it should default to using the logged in credentials, this can be overridden by using
kinit' e.g. $JAVA_HOVE\ bi n\ ki ni t testuser @\D. EXAMPLE. NET, wWhich is very helpful for testing and
debugging issues. Remove the cache file created to revert back to the windows Kerberos cache.

Make sureto list domai n_r eal ns inthekr bs. conf file. Thisisamajor source of problems.

4.10.2. GSS/Java Kerberos Setup

This documentation assumes you are using windows but much of the information applies to Unix as
well.

The org.ietf.jgss classes have lots of possible configuration parameters, mainly in the
krb5. conf /krb5. ini file. Some more info on the format at http://web.mit.edu/kerberos/krb5-1.4/
krb5-1.4.1/doc/krb5-admin/krb5.conf.html.

4.10.3. | ogi n. conf file

The following configuration is a basic setup that works in Windows XP against both | 1 S and JBoss
Negot i ati on modules.

The system property j ava. securi ty. aut h. | ogi n. confi g can be useto point at thel ogi n. conf file.

I ogi n. conf content may look like the following:

com sun. security.jgss.login {
com sun. security. aut h. nodul e. Kr b5Logi nModul e required client=TRUE useTi cket Cache=true;

be

com sun. security.jgss.initiate {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required client=TRUE useTi cket Cache=tr ue;

%

com sun. security.jgss.accept {
com sun. security. aut h. nodul e. Krb5Logi nMbdul e required client=TRUE useTi cket Cache=tr ue;

be

4.10.4. kr b5. conf / krb5.ini file

If unspecified the system default will be used. Override if needed by the setting system property
java. security. krb5. conf to point at a custom kr b5. conf file.

38

http://web.mit.edu/kerberos/krb5-1.4/krb5-1.4.1/doc/krb5-admin/krb5.conf.html
http://web.mit.edu/kerberos/krb5-1.4/krb5-1.4.1/doc/krb5-admin/krb5.conf.html

HTTP authentication

kr b5. conf content may look like the following:

[1'i bdefaul ts]
default _real m = AD. EXAMPLE. NET
udp_preference_ limt =1
[real ns]
AD. EXAMPLE. NET = {
kdc = KDC. AD. EXAMPLE. NET
}
[domai n_r eal ns]
. ad. exanpl e. net =AD. EXAMPLE. NET
ad. exanpl e. net =AD. EXAMPLE. NET

4.10.5. Windows Specific configuration

To dlow windows to use the current users tickets system property
javax. security. auth. useSubj ect CredsOnly must be set to fal se and Windows registry key
al | owt gt sessi onkey should be added and set correctly to allow session keysto be sent in the Kerberos
Ticket-Granting Ticket.

On the Windows Server 2003 and Windows 2000 SP4, here is the required registry setting:

HKEY_LOCAL_MACHI NE\ Syst eml Current Control Set\ Control\ Lsa\ Ker ber os\ Par anet ers
Val ue Nare: al | owt gt sessi onkey

Val ue Type: REG DWORD

Val ue: 0x01

Here isthe location of the registry setting on Windows XP SP2:

HKEY_LOCAL_MACHI NE\ Syst em Current Control Set\ Contr ol \ Lsa\ Ker ber os\
Val ue Nane: all owt gt sessi onkey

Val ue Type: REG DWORD

Val ue: 0x01

4.10.6. Customizing SPNEGO authentication scheme

In order to customize SPNEGO support a new instance of Negot i at eSchermeFact ory class must be
created and registered with the authentication scheme registry of HttpClient.

DefaultHttpCient httpclient = new DefaultHttpCient();
Negot i at eScheneFact ory nsf = new Negoti at eScheneFactory();
httpclient.get Aut hSchemes(). regi ster(AuthPolicy. SPNEGO, nsf);

There are several options that can be used to customize the behaviour of Negot i at eScheneFact ory.
4.10.6.1. Strip port

Strips the port off service names e.g. HTTP/ webserver. ad. exanpl e. net: 8080 -> HITTP/

webserver. ad. exanpl e. net

39

HTTP authentication

Found it useful when authenticating against JBoss Negotiation.

4.10.6.2. Custom sPNeGOtoken generator

Use this method to inject a custom SpnegoTokenGener at or class to do the Kerberos to SPNEGO token
wrapping. BouncySpnegoTokenGener at or implementation is provided as unsupported contribution
from the contrib package. This requires the BouncyCastle libs "http://www.bouncycastle.org/
java.html" [http://www.bouncycastle.org/java.html]. Found especially useful when using Java 1.5 that
is known to provide only alimited support for SPNEGO authentication.

40

http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html

Chapter 5. HTTP client service

5.1. HttpClient facade

Htt pd i ent interface represents the most essential contract for HTTP request execution. It imposes
no restrictions or particular details on the request execution process and leaves the specifics of
connection management, state management, authentication and redirect handling up to individual
implementations. Thisshould makeit easier to decorate the interface with additional functionality such
as response content caching.

Def aul t Ht t pd i ent is the default implementation of the Htt pd i ent interface. This class acts as
a facade to a number of special purpose handler or strategy interface implementations responsible
for handling of a particular aspect of the HTTP protocol such as redirect or authentication handling
or making decision about connection persistence and keep alive duration. This enables the users to
selectively replace default implementation of those aspects with custom, application specific ones.

DefaultHtpCient httpclient = new DefaultHttpCient();
htt pcl i ent. set KeepAl i veStrat egy(new Def aul t Connect i onKeepAl i veStrategy() {

@verride
public | ong get KeepAliveDuration(
Ht t pResponse response,
Ht t pCont ext context) {
| ong keepAl i ve = super. get KeepAl i veDur ati on(response, context);
if (keepAlive == -1) {
/! Keep connections alive 5 seconds if a keep-alive val ue
/1 has not be explicitly set by the server
keepAl i ve = 5000;
}

return keepAli ve;

5)s

Defaul t H t pd i ent @so maintains a list of protocol interceptors intended for processing outgoing
requests and incoming responses and provides methods for managing those interceptors. New protocol
interceptors can be introduced to the protocol processor chain or removed from it if needed. Internally
protocol interceptors are stored in asimple java. util. ArrayList. They are executed in the same
natural order asthey are added to the list.

DefaultHitpdient httpclient = new Defaul tH tpCdient();
httpclient.renmveRequest | nt ercept or Byd ass(Request User Agent . cl ass) ;
httpclient.addRequest| nterceptor(new Htt pRequest|nterceptor() {

public void process(
Ht t pRequest request, HttpContext context)
throws Htt pException, | OException {
request . set Header (HTTP. USER_ACGENT, "M-own-client");

1)

Def aul t Ht t pd i ent is thread safe. It is recommended that the same instance of this class is reused
for multiple request executions. When an instance of Def aul t H t pd i ent iSho longer needed and is

41

HTTP client service

about to go out of scope the connection manager associated with it must be shut down by calling the
d i ent Connect i onManager #shut down() method.

HtpCient httpclient = new DefaultHttpCient();
/1 Do somet hing useful
ht t pcl i ent . get Connect i onManager () . shut down();

5.2. HttpClient parameters

These are parametersthat be used to customize the behaviour of the default HttpClient implementation:

e 'http.protocol.handle-redirects: defines whether redirects should be handled automatically.
This parameter expects avalue of typej ava. | ang. Bool ean. If this parameter is not HttpClient will
handle redirects automatically.

e 'http.protocol.rgect-relative-redirect’: defines whether relative redirects should be rejected.
HTTP specification requires the location value be an absolute URI. This parameter expects avalue
of typej ava. | ang. Bool ean. If this parameter is not set relative redirects will be allowed.

* 'http.protocol.max-redirects: defines the maximum number of redirects to be followed. The
limit on number of redirectsisintended to prevent infiniteloops caused by broken server side scripts.
This parameter expects a value of typej ava. | ang. I nt eger. If this parameter is not set no more
than 100 redirects will be allowed.

e 'http.protocol.allow-circular-redirects': defines whether circular redirects (redirects to the
samelocation) should be allowed. The HTTP spec is not sufficiently clear whether circular redirects
are permitted, therefore optionally they can be enabled. This parameter expects a value of type
j ava. | ang. Bool ean. If this parameter is not set circular redirects will be disallowed.

 'http.connection-manager .factory-class-name': defines the class name of the default
C i ent Connecti onVanager implementation. This parameter expects a value of type
j ava. |l ang. Stri ng. If thisparameter is not set Si ngl ed i ent ConnManager Will be used per default.

» 'http.virtual-host': defines the virtual host name to be used in the Host header instead of the
physical host name. This parameter expects a value of type Ht t pHost . If this parameter is not set
name or | P address of the target host will be used.

e 'http.default-headers: definesthe request headersto be sent per default with each request. This
parameter expects avalue of typej ava. util. Col | ecti on containing Header objects.

e 'http.default-host': defines the default host. The default value will be used if the target host is
not explicitly specified in the request URI (relative URIS). This parameter expects a value of type
Ht t pHost .

5.3. Automcatic redirect handling

HttpClient handles all types of redirects automatically, except those explicitly prohibited by the HTTP
specification as requiring user intervention. see O her (status code 303) redirects on PCST and PUT
requests are converted to GET requests as required by the HT TP specification.

42

HTTP client service

5.4. HTTP client and execution context

TheDef aul t H t pd i ent treatsHT TP requests asimmutable objectsthat are never supposed to change
in the course of request execution. Instead, it creates a private mutable copy of the original request
object, whose properties can be updated depending on the execution context. Thereforethefinal request
properties such as the target host and request URI can be determined by examining the content of the
local HTTP context after the request has been executed.

DefaultH tpCdient httpclient = new Defaul tH tpCient();

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext ();
HttpCGet httpget = new HtpGet("http://I|ocal host:8080/");
Ht t pResponse response = httpclient. execute(httpget, |ocal Context);
Htt pHost target = (HttpHost) |ocal Context.getAttribute(
Execut i onCont ext . HTTP_TARGET_HOST) ;
Htt pUri Request req = (H tpUri Request) | ocal Context.getAttribute(
Execut i onCont ext . HTTP_REQUEST) ;

System out.println("Target host: " + target);
Systemout.println("Final request URI: " + reg.getURI());
System out. println("Final request nmethod: " + req.getMethod());

5.5. Compressed response content

The Cont ent Encodi ngHt t pd i ent IS a Simple sub-class of Def aul t Hi t pd i ent Which adds support
indicating to servers that it will support gzi p and def | at e compressed responses. It does this via
the existing published APIs of HTTP Protocol Interceptors . Depending on the type of response
(text will compress well versus images, which are typically aready well-compressed), this can
speed up responses due to the smaller amount of network traffic involved, aong with saving
bandwidth, which can be important in mobile environments. The Request Accept Encodi ng and
ResponseCont ent Encodi ng interceptors used as also part of the published APl and can be used by
other Def aul t Hi t pd i ent implementations. These provide transparent handling of gzi p and def | at e
encoding, so it will not be apparent to clients that this processing has happened.

Cont ent Encodi ngHtt pCl i ent httpclient = new Content Encodi ngHttpClient();
Htt pGet httpget = new H tpGet("http://ww. yahoo.com ");
Ht t pResponse response = httpclient. execute(httpget);

Header h = rsp. getFirst Header (" Cont ent - Encodi ng") ;
if (h!=null) {

Systemout. println("------mmmomm ");
System out. println("Response is " + h.getValue() + " encoded");
Systemout.println("----------------------------- ")

One can aso add the Request Accept Encodi ng and ResponseCont ent Encodi ng interceptors to an
instance of the Def aul t Ht t pd i ent , if desired.

Defaul tHttpCient httpclient = new DefaultHttpCdient();
httpclient.addRequest | nt ercept or (new Request Accept Encodi ng());
ht t pcl i ent . addResponsel nt er cept or (new ResponseCont ent Encodi ng()) ;

43

Chapter 6. HTTP Caching

6.1. General Concepts

HttpClient Cache provides an HTTP 1.1 compliant caching layer to be used with HttpClient. It is
implemented as a decorator of HttpClient. It provides basic HTTP 1.1 caching capability. You can
specify alimit on the maximum cacheable object size to have some control over the size of your cache.

When CachingHttpClient executes a request, it goes through the following flow:

1

Check the request for basic compliance with the HTTP 1.1 protocol and attempt to correct the
request.

Flush any cache entries which would be invalidated by this request.

. Determine if the current request would be servable from cache. If not, directly pass through the

request to the origin server and return the response, after caching it if appropriate.

. If itwas aacache-servable request, it will attempt to read it from the cache. If it isnot in the cache,

call the origin server and cache the response, if appropriate.

. If the cached response is suitable to be served as a response, construct a BasicHttpResponse

containing a ByteArrayEntity and return it. Otherwise, attempt to revalidate the cache entry against
the origin server.

. In the case of a cached response which cannot be revalidated, call the origin server and cache the

response, if appropriate.

When CachingHttpClient receives aresponse, it goes through the following flow:

1

Examing the response for protocol compliance

Determine whether the response is cacheable

. If it is cacheable, attempt to read up to the maximum size allowed in the configuration and store

it in the cache.

If the response is too large for the cache, reconstruct the partially consumed response and return
it directly without caching it.

It isimportant to note that CachingHttpClient is not, itself, an implementation of HttpClient, but that
it decorates an instance of an HttpClient implementation. If you do not provide an implementation, it
will use DefaultHttpClient internally by default.

6.2. RFC-2616 Compliance

HttpClient Cache makes an effort to be at least conditionally compliant with RFC-2616 [http://
www.ietf.org/rfc/rfc2616.txt]. That is, wherever the specification indicates MUST or MUST NOT for
HTTP caches, the caching layer attempts to behave in away that satisfies those requirements.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

HTTP Caching

6.3. Example Usage

This is a simple example of how to set up a basic CachingHttpClient. As configured, it will store
a maximum of 1000 cached objects, each of which may have a maximum body size of 8192 bytes.
The numbers selected here are for example only and not intended to be prescriptive or considered as
recommendations.

CacheConfig cacheConfig = new CacheConfig();
cacheConfi g. set MaxCacheEnt ri es(1000);
cacheConfi g. set Max(Obj ect Si zeByt es(8192) ;

Htt pd i ent cachingdient = new CachingHttpdient(new DefaultH tpdient(), cacheConfig);

Ht t pCont ext | ocal Cont ext = new Basi cHtt pCont ext () ;
Htt pGet httpget = new H tpGet ("http://ww. mydomai n. conf content/");
Ht t pResponse response = cachi ngdient.execute(httpget, |ocal Context);
HttpEntity entity = response.getEntity();
EntityUtils.consune(entity);
CacheResponseSt at us responseStatus = (CacheResponseSt atus) | ocal Context.getAttribute(
Cachi ngHt t pCl i ent . CACHE_RESPONSE_STATUS) ;
switch (responseStatus) {
case CACHE_HIT:
Systemout.println("A response was generated fromthe cache with no requests " +
"sent upstreant');
br eak;
case CACHE MODULE_RESPONSE:
System out. println("The response was generated directly by the cachi ng nodul e");
br eak;
case CACHE_M SS:
System out. println("The response cane from an upstream server");
br eak;
case VALI DATED:
System out. println("The response was generated fromthe cache after validating " +
"the entry with the origin server");
br eak;

45

Chapter 7. Advanced topics

7.1. Custom client connections

In certain situations it may be necessary to customize the way HT TP messages get transmitted across
the wire beyond what is possible possible using HTTP parameters in order to be able to deal non-
standard, non-compliant behaviours. For instance, for web crawlers it may be necessary to force
HttpClient into accepting malformed response heads in order to salvage the content of the messages.

Usually the process of plugging in a custom message parser or a custom connection implementation
involves several steps:

* Provide a custom Li neParser / LineFormatter interface implementation. Implement message
parsing / formatting logic as required.

cl ass M/Li neParser extends BasicLi neParser {

@verride
publ i ¢ Header parseHeader (
final CharArrayBuffer buffer) throws ParseException {
try {
return super. parseHeader (buffer);
} catch (ParseException ex) {
/| Suppress ParseException exception
return new Basi cHeader ("invalid", buffer.toString());

* Provide a custom Oper at edd i ent Connect i on implementation. Replace default request / response
parsers, request / response formatters with custom ones as required. Implement different message
writing / reading code if necessary.

class MyC i ent Connection extends Defaul tdientConnection {

@verride
protected HttpMessagePar ser createResponseParser(
final SessionlnputBuffer buffer,
final HttpResponseFactory responseFactory,
final HttpParans parans) {
return new Def aul t ResponsePar ser (
buffer,
new MyLi neParser (),
responseFactory,
par ans) ;

e Provide a custom dient ConnectionQperator interface implementation in order to create
connections of new class. Implement different socket initialization code if necessary.

class Myd i ent Connecti onOper at or extends Defaul tdientConnecti onOperator {

46

Advanced topics

public Mydient Connecti onOperator(final SchemeRegistry sr) {
super (sr);

}

@verride
publ i c Operatedd ientConnection createConnection() {
return new MyCl i ent Connecti on();

}

» Provideacustomd i ent Connect i onManager interfaceimplementationin order to create connection
operator of new class.

cl ass Myd i ent ConnManager extends Singl ed i ent ConnManager {

public Myd i ent ConnManager (
final HttpParanms parans,
final SchenmeRegistry sr) {
super (parans, Sr);

}

@verride
protected CientConnecti onOperator createConnecti onOper at or (
final SchenmeRegistry sr) {
return new MyCl i ent Connecti onOper at or (sr);

7.2. Stateful HTTP connections

While HTTP specification assumes that session state information is always embedded in HTTP
messages in the form of HTTP cookies and therefore HTTP connections are aways stateless, this
assumption does not always hold truein real life. There are cases when HTTP connections are created
with a particular user identity or within a particular security context and therefore cannot be shared
with other users and can be reused by the same user only. Examples of such stateful HTTP connections
are NTLMauthenticated connections and SSL connections with client certificate authentication.

7.2.1. User token handler

HttpClient relies on User TokenHandl er interface to determine if the given execution context is user
specific or not. The token object returned by this handler is expected to uniquely identify the current
user if the context is user specific or to be null if the context does not contain any resources or details
specific to the current user. The user token will be used to ensure that user specific resources will not
be shared with or reused by other users.

The default implementation of the User TokenHandl er interface uses an instance of Principa class to
represent a state object for HTTP connections, if it can be obtained from the given execution context.
Def aul t User TokenHand! er will use the user principle of connection based authentication schemes
such as NTLMor that of the SSL session with client authentication turned on. If both are unavailable,
null token will be returned.

Users can provide a custom implementation if the default one does not satisfy their needs:

DefaultHtpClient httpclient = new Defaul tH tpCient();

47

Advanced topics

httpclient.set User TokenHandl er (new User TokenHandl er () {
public Object getUserToken(HttpContext context) {
return context.getAttribute("my-token");

}

});

7.2.2. User token and execution context

In the course of HTTP request execution HttpClient adds the following user identity related objects

to the execution context:

« 'http.user-token': Object instance representing the actual user identity, usually expected to be

aninstance of Pri nci pl e interface

One can find out whether or not the connection used to execute the request was stateful by examining

the content of the local HT TP context after the request has been executed.

Defaul tHtpCient httpclient = new DefaultHttpCdient();

Ht t pCont ext | ocal Cont ext = new Basi cHtt pContext ();

Htt pGet httpget = new H tpGet("http://I|ocal host:8080/");

Ht t pResponse response = httpclient.execute(httpget, |ocal Context);
HttpEntity entity = response.getEntity();

EntityUtils.consune(entity);

Obj ect user Token = | ocal Context.getAttribute(C ientContext.USER TOKEN);
System out . printl n(user Token) ;

7.2.2.1. Persistent stateful connections

Please note that persistent connection that carry a state object can be reused only if the same state
object isbound to the execution context when requests are executed. So, it isreally important to ensure
the either same context is reused for execution of subsequent HT TP requests by the same user or the

user token is bound to the context prior to request execution.

DefaultHtpCient httpclient = new DefaultHtpCient();
Ht t pCont ext | ocal Context1l = new Basi cHtt pContext();
Htt pGet httpgetl = new HttpGet(“http://Iocal host: 8080/");
Ht t pResponse responsel = httpclient.execute(httpgetl, |ocal Contextl);
HtpEntity entityl = responsel. getEntity();
EntityUtils.consune(entityl);
Principal principal = (Principal) |ocal Contextl.getAttribute(
Cl i ent Cont ext . USER_TCKEN) ;

Ht t pCont ext | ocal Cont ext2 = new Basi cHtt pCont ext () ;

| ocal Cont ext 2. set Attribute(C ientContext.USER TOKEN, principal);

Htt pGet httpget2 = new HttpGet("http://|ocal host: 8080/");

Ht t pResponse response2 = httpclient.execute(httpget2, |ocal Context?2);
HtpEntity entity2 = response2.getEntity();
EntityUtils.consune(entity2);

48

	HttpClient Tutorial
	Table of Contents
	Preface
	1. HttpClient scope
	2. What HttpClient is NOT

	Chapter 1. Fundamentals
	1.1. Request execution
	1.1.1. HTTP request
	1.1.2. HTTP response
	1.1.3. Working with message headers
	1.1.4. HTTP entity
	1.1.4.1. Repeatable entities
	1.1.4.2. Using HTTP entities

	1.1.5. Ensuring release of low level resources
	1.1.6. Consuming entity content
	1.1.7. Producing entity content
	1.1.7.1. Dynamic content entities
	1.1.7.2. HTML forms
	1.1.7.3. Content chunking

	1.1.8. Response handlers

	1.2. HTTP execution context
	1.3. Exception handling
	1.3.1. HTTP transport safety
	1.3.2. Idempotent methods
	1.3.3. Automatic exception recovery
	1.3.4. Request retry handler

	1.4. Aborting requests
	1.5. HTTP protocol interceptors
	1.6. HTTP parameters
	1.6.1. Parameter hierarchies
	1.6.2. HTTP parameters beans

	1.7. HTTP request execution parameters

	Chapter 2. Connection management
	2.1. Connection parameters
	2.2. Connection persistence
	2.3. HTTP connection routing
	2.3.1. Route computation
	2.3.2. Secure HTTP connections

	2.4. HTTP route parameters
	2.5. Socket factories
	2.5.1. Secure socket layering
	2.5.2. SSL/TLS customization
	2.5.3. Hostname verification

	2.6. Protocol schemes
	2.7. HttpClient proxy configuration
	2.8. HTTP connection managers
	2.8.1. Connection operators
	2.8.2. Managed connections and connection managers
	2.8.3. Simple connection manager
	2.8.4. Pooling connection manager
	2.8.5. Connection manager shutdown

	2.9. Multithreaded request execution
	2.10. Connection eviction policy
	2.11. Connection keep alive strategy

	Chapter 3. HTTP state management
	3.1. HTTP cookies
	3.1.1. Cookie versions

	3.2. Cookie specifications
	3.3. HTTP cookie and state management parameters
	3.4. Cookie specification registry
	3.5. Choosing cookie policy
	3.6. Custom cookie policy
	3.7. Cookie persistence
	3.8. HTTP state management and execution context
	3.9. Per user / thread state management

	Chapter 4. HTTP authentication
	4.1. User credentials
	4.2. Authentication schemes
	4.3. HTTP authentication parameters
	4.4. Authentication scheme registry
	4.5. Credentials provider
	4.6. HTTP authentication and execution context
	4.7. Caching of authentication data
	4.8. Preemptive authentication
	4.9. NTLM Authentication
	4.9.1. NTLM connection persistence

	4.10. SPNEGO/Kerberos Authentication
	4.10.1. SPNEGO support in HttpClient
	4.10.2. GSS/Java Kerberos Setup
	4.10.3. login.conf file
	4.10.4. krb5.conf / krb5.ini file
	4.10.5. Windows Specific configuration
	4.10.6. Customizing SPNEGO authentication scheme
	4.10.6.1. Strip port
	4.10.6.2. Custom SPNEGO token generator

	Chapter 5. HTTP client service
	5.1. HttpClient facade
	5.2. HttpClient parameters
	5.3. Automcatic redirect handling
	5.4. HTTP client and execution context
	5.5. Compressed response content

	Chapter 6. HTTP Caching
	6.1. General Concepts
	6.2. RFC-2616 Compliance
	6.3. Example Usage

	Chapter 7. Advanced topics
	7.1. Custom client connections
	7.2. Stateful HTTP connections
	7.2.1. User token handler
	7.2.2. User token and execution context
	7.2.2.1. Persistent stateful connections

