
Page Flow Overview

Table of contents

1 Introduction..2

2 Page Flow Features.. 2

3 The Logical Flow...4

4 The Implementation of the Flow: Controllers and Actions... 5

5 Next..6

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

1. Introduction

A Java Page Flow (JPF) is a group of Java Server Pages (JSP) and a Java class that controls
the user experience flow through an application. In addition to allowing complex logic to
dictate which pages are displayed, JPF technology helps decouple page authoring from
application logic by preventing one JSP from directly referencing another. It also allows for
easy state management within a single Java class.

2. Page Flow Features

Page Flows make building Java web applications easy and intuitive. When programming
with Page Flows, the developer writes JAVA classes and JSP pages--that's it. There is very
little occasion to work with configuration files, or other components. Page Flow
programming also excels at separating presentation logic from data processing logic,
resulting in uncluttered JSP code which is easy to understand and edit. Data processing and
the web application configurables are handled in a single Java class using a simple
declarative programming model.

Declarative Programming

Many common web app programming tasks are accomplished through a declarative
programming model using JSR 175 metadata annotations, a new feature in JKD5. JSR 175
metadata annotations, "annotations" for short, are property setters for Java classes and
methods, alleviating the need for independent configuration files. Navigation, exception
handling, validation, and other tasks become configurable properties of a single Java class,
the "controller" class that drives the web application.

Page Flows are Stateful

When a user enters a Page Flow (by calling an URL in the Page Flow's URL space), an
instance of the Page Flow's controller class is created. While the user is in the Page Flow, the
controller class stores the accumulated flow-related state in member variables of the conroller
class. The methods within the class have access to the accumulated state, making for easy
state management within the web application. For example, suppose your web application
calls for a multi-page registration, where the user moves from page to page filling out a user
profile. The controller class stores the user data as the user progresses through the
registration and has access to the profile data as session state. When the user leaves the Page
Flow, the state is automatically cleaned up.

Page Flows are Modular

A single web application can have multiple Page Flows within it, allowing you to break up

Page Flow Overview

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

the application into separate, self-contained chunks of functionality. For an example, see the
Petstore Sample (../jpetstore.html) , which has different Page Flows for browsing the
Petstore, buying products, and handling user accounts.

Page Flow web applications also contain a global Page Flow, called the "shared flow", which
is both a fallback handler for unhandled actions and exceptions and a place to store session
state. An instance of the shared flow class is stored in the user session upon the first request
to any Page Flow and remains until the session ends. When an action is raised in a Page
Flow, and that action is not handled by the Page Flow, the shared flow gets a chance to
handle it. The same is true for an exception raised within a Page Flow: if it is unhandled in
the Page Flow, the shared flow gets a chance to handle it.

Page Flows are Nestable

Page flow nesting gives you an even greater ability to break up your project into separate,
self-contained bits of functionality. At its heart, it is a way of pushing aside the current page
flow temporarily and transferring control to another (nested) page flow with the intention of
coming back to the original (nesting) one.

So when would you use this? Nesting is useful when you want to do one of the following
tasks:

• gather data from the user, for use in the current page flow
• allow the user to correct errors or supply additional information en route to executing a

desired action
• show an alternate view of data represented in the current page flow
• show the user information that will be useful in the current page flow (e.g., help screens

can be easily implemented as nested page flows)

Struts Integration

Page Flows are built on top of Apache Struts 1.1. Each Page Flow is compiled into a Struts
module. As a result, Page Flow and Struts applications can work closely together.

Struts and Page Flow apps can co-habitate and interact with one another inside a web app. To
forward from a Page Flow to a (pure) Struts module, simply reference the desired action
within the Struts module. The same goes for the reverse direction: from a Struts module,
simply configure an action to point to the desired method in the Page Flow.

You can also use the Struts merge feature to read configuration data from a pure Struts app
into your Page Flow app's configuration files. Ordinarily, your Page Flow's configuration
files are generated entirely from your application's JAVA source files (specifically from the
metadata annotations that decorate the controller files). But, in cases where you want to
integrate a Struts module into your application, you can specify that the configuration files be

Page Flow Overview

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

../jpetstore.html

generated from both the JAVA source files and the Struts module's configuration files,
allowing you to change or add any tag in the generated configuration file. For example,
suppose you want to override an action form's default scoping from request-scoping to
session-scoping. To do this, you simply create a Struts configuration file that overrides the
appropriate parts of the Page Flow's configuration file, and then refer to this override file
from within the Page Flow's JAVA source file (= the controller file) using a special
annotation. In particular, you would specify the override file to state that such-and-such an
action form should have session-scope rather then request-scope (so that the action form can
now be shared with the Struts app).

3. The Logical Flow

Writing traditional web applications without a JPF controller class requires a fair amount of
logic to be applied within the application's pages. For example, a site that provides a "My
Page" functionality for logged in users would have to include logic on the home page to
determine if the "My Page" link should take the user to the login form or directly to their
customized page.

Using a JPF, the home page of the application would not link directly to either the login page
or the user's "My Page" location, but rather would point back into Java code that makes the
decision.

For the rest of this overview, the following logical page flow will be used:

logical page flow

This flow supports several routes from the home page of the application to the user's "My
Page":

1. The user may directly navigate from index.jsp to mypage.jsp (by clicking a link),
if the user is already logged in.

2. If the user is not already logged in, attempts to navigate from index.jsp to
mypage.jsp will be intercepted and the user will be taken to the login.jsp instead.
After successfully logging in, the user will be automatically taken to mypage.jsp

3. The user may directly navigate from index.jsp to login.jsp (by clicking a link).
After logging in, the user will be automatically taken to mypage.jsp.

In the event of a login failure, login.jsp will be redisplayed to give them another
opportunity to authenticate themselves.

4. If the user desires to register with the site, he can click a link that will take him to
signup.jsp. One signed up, the thanks.jsp will be displayed which offers a link
to the login.jsp page.

Page Flow Overview

© 2004, Apache Software Foundation

Page 4
Copyright © 2004 The Apache Software Foundation. All rights reserved.

4. The Implementation of the Flow: Controllers and Actions

In the above logical flow there are several if statements that cause the user flow to vary
depending on their previous actions and other state.

• If the user is not logged in...
• If the user is logged in...
• If the user's login attempt fails...

Java Page Flows moves this condition logic out of the JSP pages and into a Java class that
controls the movement through the application. This Java class is the controller portion of
the Model-View-Controller (MVC) pattern. This allows a page to be written, for example,
that appears to link directly from the home page of the application to the user's "My Page".
The controller is given the opportunity to intercept the navigation between the two and
redirect the user to the login page, if required.

Each of the interception points is an action of the particular controller class. Actions perform
common application tasks. Here are some of the things that an action can do:

• navigate the user to a specified JSP page
• perform conditional logic
• handle submitted data
• validate submitted data
• handle exceptions that arise in the application

Note that controller classes, and the actions they contain, are URL addressable. Hitting the
following URL creates an instance of the controller class foo.MyControllerClass and
runs its begin action. (When no other action is specified, the begin method is run by
default.)
http://some.domain.com/foo/MyControllerClass.jpf

Hitting the following URL creates an instance of foo.MyControllerClass (if it doesn't
already exist) and invokes the someAction action. Note that the controller class isn't
mentioned by name: it's assumed that only one controller class exists in the directory, so
there is only one candidate controller class to instantiate.
http://some.domain.com/foo/someAction.do

Actions may perform any required complex logic. For example, if a user clicks on the "My
Page" link, the action may check if the user is logged in, and if so, navigate the user to the
mypage.jsp page; otherwise it will navigate the user to the login.jsp page.

With normal HTML pages, each page is linked directly to other pages.

• page > page > page > page
When using JPFs, pages and actions are interwoven, transparently.

Page Flow Overview

© 2004, Apache Software Foundation

Page 5
Copyright © 2004 The Apache Software Foundation. All rights reserved.

• page > action > page > action > page > action > page
The above logical page flow can be redrawn with JPF controller actions in mind, as:

implementation page flow

Now it is apparent that to navigate from index.jsp to mypage.jsp, the user traverses
across the myPage action. This action performs the necessary check to determine if the user
has already been authenticated. If the user has logged in already, it will direct the user
straight to mypage.jsp; otherwise it will direct the user to login.jsp.

5. Next...

Next, learn about writing a controller class with actions.

• Page Flow Controller (pageflow_controllers.html)
Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

© 2004, Apache Software Foundation

Page Flow Overview

Java, J2EE, and JCP are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

pageflow_controllers.html

	1 Introduction
	2 Page Flow Features
	3 The Logical Flow
	4 The Implementation of the Flow: Controllers and Actions
	5 Next...

