Jdbc Control Developer's Guide

Table of contents

1 Jdbc Control ANNOtatioN'S REFENENCE..........ccoviieiiereee e 3
1.1 The ConnectionDataSource ANNOLALION.ceierrereereeie e sieeee e e e ee e see e 3
1.2 The ConnectioNDIiVEer ANNOLELION.c.covueieeieriisee ettt eeas 3
1.3 The ConnectionOptioNS ANNOLALION.ccoviieiieirecee e sre e 4
1.4 The SQL ANNOLALION.cciivieiieecieectee et eetee et etee et e steesbeeereesabeesaeesaseesbeesareeseesnneeseens 4

2 Parameter Substitution in the SQL Annotation's Statement Member............ccccoeevveeeneene. 6
RSB oS LU (0] g [1 (= g - TS 6
2.2 Substituting SIMPle Parameters..........ccooeereeieniesee et 6
2.3 Treatment of Curly Braces Within Literals.........cccooeiiiiieie i, 7
2.4 Substituting INAireCt ParametersS...........cccoveieiieie e 7
2.5 GENENIC SUBSLITULTON.cveiiieiieiieieseee st 8
2.6 Referring to Functions in Substitution Statements..........ccocvvverveceveeresse e 9
2.7 SQL ESCAPES SUPPOIT......ceeerieieiiieeiesee sttt sr s n e s sne e sneennens 9

3 Invoking Stored Procedures with the Jdbc Control............ccoeeieeiinieneeieceeeeeceee 10
3.1 Calling Stored Procedures with IN Parameters...........cccvcveveeiieiiie e 10
3.2 Calling Stored Procedures with OUT Parameters...........ccovevvveeieeceseeseccie e 11
3.3 Wrapping ProcedureS in FUNCLIONS..........cccoiieieie e ses st 12
3.4 Creating Strored PrOCEAUIES..........cceiviriiriesiesesieeice sttt 13

4 SEOIEA FUNCLIONS......ovieiecesee ettt enae e sneenseeneennes 14
4.1 Caling StOred FUNCLIONS........cccuiiieieeiesieeie et e e 14
4.2 Creating Stored FUNCLIONS..........ciiiiieiiie et 14

5 Jdbc Control Return TYPe MapPinNg.......cccecueieeieeieeieseesesee s e sieeee e sse e sreenneseesreenns 15
5.1 Mapping @SINGIE VAIUE........ccooieee et 16

52 MappiNg 8 SINGIE ROW........coiiiiiiiiiesie et 16

Jdbc Control Developer's Guide

5.3 Returning Multiple Rows from a Jdbc Control Method............cccoivriiinienieneeee 19
5.4 Returning Apache XMLBeans from a Jdbc Control...........cccccovevieiceiie e, 24
5.5 Mapping t0 @ROWSEL.........coiiee et ns 27
5.6 Creating Customer ResUlt Set MapPENS.......ccveiveiereereeeeseesie e s e see e see e 28
5.7 Database -> Java Type Mapping Tables..........ccccvreiniineniseeeee e 31
5.8 New Features and ENhanCemMENTS...........coeeririenierie et 33

Page 2

Jdbc Control Developer's Guide

1. Jdbc Control Annotation's Reference

The Jdbc Control uses Java 1.5 annotations extensively. All annotations are defined in the
org.apache.beehive.controls.system.jdbc.JdbcControl interface. Whenever possible
annotations are checked for validity during compile time using an apt processor. The compile
time checks include parsing the _statement_ member of the SQL annotation to make sure it
conforms to the parameter substitution syntax expected by the Jdbc Control.

1.1. The ConnectionDataSour ce Annotation

The ConnectionDataSource annotation is a class-level annotation used to lookup a
DataSource using the INDI service.

Member Name

jndiName

jndiContextFactory

1.2. The ConnectionDriver Annotation

Value Type
String

Class <? extends
JndiContextFactory>

Yes

No

Value Required

Description

A data source name
which can be used for
a JNDI lookup

A JNDI context factory

The ConnectionDriver annotation is a class-level annotation used to connect directly to a
database instance using a connection URL.

Member Name

databaseDriverClass

databaseURL

userName

password

properties

Value Type

java.lang.Class

String

String

String

String

Yes

Yes

No

No

No

Value Required

Description

The database driver
class

The database
connection URL

The username to
connect to the
database with

The password
associated with
userName

A comma seperated
list of properties for the
connection

Page 3

Jdbc Control Developer's Guide

1.3. The ConnectionOptions Annotation

The ConnectionOptions annotation is a class-level annotation used to set options on aJDBC
connection. It is used in conjunction with the ConnectionDataSource and ConnectionDriver
annotations but is not required.

Member Name Value Type Value Required Description

readOnly |boolean No If set to true tells the
database to optimize
the connection for
read-only access (still
can do updates, etc),
defaults to false

resultSetHoldability HoldabilityType No Specifies ResultSet
cursor holdability,
defaults to close
cursors after commit

typeMappers TypeMapper][] No Type mappers
implement the
java.sgl.SQLData
interface and handle
mappings between
SQL UDTs and Java
classes

1.4. The SQL Annotation

The SQL annotation is method annotation which specifies the SQL to send to the database as
well as any other options for the query.

Member Name Value Type Value Required Description

statement String Yes The SQL statement to
send to the database

arrayMaxLength int No If the method return
type is an array type,
limit the size of the
array to this value

batchUpdate boolean No Defaults to false, JDBC
3.0 batch update

fetchSize int No Performance hint for
fetching ResultSet

Page 4

Jdbc Control Developer's Guide

fetchDirection FetchDirection

getGeneratedKeys boolean

generatedKeyColumnNars&sng array

generatedKeyColumnindéxearray

iteratorElementType Class

maxRows int

resultSetHoldabilityOverritieldability Type

resultSetMapper Class
scrollableResultSet ScrollType
enumeration

No

No

No

No

No

No

No

No

No

rows, defaults to zero,
indicating db shoud
determine fectch size.

Performance hint for
fetching ResultSet
rows, defaults to
foward.

Defaults to false, JDBC
3.0 generated keys

Defines column names
of columns with
generated keys to be
returned

Defines column
indexes of columns
with generated keys to
be returned

Defines type of class to
iterate over when
method return type is
Iterator

Limit the maximum
number of rows
returned by the
database.

Overrides value set by
ConnectionOptions
holdability element for
the duration of the
method call.

Defines a custom
ResultSetMapper for
use with this method

Enables the return of
scrollable ResultSet's,
default is
non-scrollable. See
JdbcControl.java for
ScrollType values.

Page 5

Jdbc Control Developer's Guide

typeMappersOverride | TypeMapper(] No Overrides
typemapper's set in the
ConnectionOptions
annotation.

2. Parameter Substitution in the SQL Annotation's Statement Member

Y ou can use parameter substitution in the SQL annotation's _statement_ member to form a
guery dynamically. The client calls the method on the Jdbc control, passing in values for the
method's parameters, and those parameter values are substituted into the SQL statement.

This topic describes substitution techniques and rules, including how to treat curly braces,
how to substitute whole SQL statements, SQL phrases, ssmple parameters, and indirect
parameters.

2.1. Substitution Criteria

Substitution is subject to the following criteria:

« Substitution matching is case sensitive. For example, the method parameter CustCity
will not match the substitution pattern { custCity} .

» Thetypeof the method parameter must be compatible with the type of the
associated database field in the statement. If you attempt to substitute a Java String
where the database expects aNUMBER, the statement will fail. For information on
mapping between database types and Java types, see Mapping Database Field Typesto
Java Typesin the Database Control.

« Substitution will not occur if the substitution pattern contains spaces. The Java
Database Connectivity (JDBC) API allows access to built-in database functions via
escapes of the form {fn user()}. If spaces occur in an item enclosed in curly braces ({})
item, the Database control treats the item as a JDBC escape and passes it on without
substitution. For example, the custCity method parameter will not be substituted if the
substitution is specified as { custCity } or { custCity}. For more information on JDBC
escapes, please consult the documentation for your JDBC driver.

« When substituting date or time values, use the classesin the java.sgl package. For
example, attempting to substitute java.util.Date in a SQL Date field will not work. Use
java.sgl.Date instead.

2.2. Substituting Simple Parameters

If you are substituting individual valuesinto a WHERE, LIKE, or AND clause, you may
substitute them directly in the @SQL annotation's statement parameter without escaping the
values with the { sql:} substitution syntax.

Page 6

Jdbc Control Developer's Guide

The following example illustrates simple parameter substitution:

@QL(st at enent =" SELECT nanme FROM customer WHERE city={custCity} AND
state={cust State}")
public String [] getCustonersinCity(String custCity, String custState);

The value of the custCity method parameter is substituted in the query in place of the
{custCity} item, and the value of the custState method parameter is substituted in the query
in place of the { custState} item.

2.3. Treatment of Curly Braces Within Literals

Curly braces (\{\}) within literals (strings within quotes) are ignored. This means statements
like the following will not work as you might expect. In the following example the curly
braces have lost their substitution functionality, because they appear within single quotes.

@QL(statenent="SELECT name FROM enpl oyees WHERE nane LI KE
"% partial Name}% ")
public String[] partial NameSearch(String parti al Nane) ;

Since the curly braces are ignored inside the literal string, the expected substitution of the
partialName Java String into the SELECT statement does not occur. To avoid this problem,
pre-format the match string before invoking the Jdbc control method, as shown below. Note
that single quotes are not included in the pre-formatted string because single quotes are
implicitly added to the substitution value when it is passed to the SQL query.

String partial NameTovatch = "% + matchString + "%
String [] nanes = myJdbcControl . partial NaneSeach(parti al NameToMat ch) ;

Then pass the pre-formatted string to the Jdbc control:

@Q (statenent="SELECT name FROM enpl oyees WHERE nane LI KE
{partial NanreToMat ch}")
public String[] partial NameSearch(String partial NameToMat ch) ;

2.4. Substituting Indirect Parameters
Assume the following classis declared and is accessible to the Database control:

public static class Custoner

public String firstNaneg;
public String | astNaneg;

Page 7

Jdbc Control Developer's Guide

public String streetAddress;

public String city;

private String state;

public String zi pCode;

public String getState() {return state};
}

Y ou can then refer to the members of the Customer class in the SQL statement, as shown in
the following example:

@Q.(statenment="SELECT nane FROM cust oner WHERE city={cust.city} AND
state={cust.state}")
public String [] getCustonerslinCity(Custonmer cust);

Note: Class member variables and accessor (getXxx) methods must be public in order for the
Database control to substitute them.

The dot notation is used to access the members of the parameter object.

The following list describes the precedence for resolving dot notations in substitutions given
the substitution pattern { myClass.myMember} :

« If class myClass exposes public getMyMember() and setMyMember() methods,
getMyMember() is called and the return value is substituted. For Boolean variables,
substitute isMyMember() for getMyMemnber().

« Elseif class myClass exposes a public field named myMember, myClass.myMember is
substituted.

« Lastly, if class myClass implements java.util.Map, myClass.get("myMember") is called
and the return value is substituted.

e Any combination of these may exist, asin { A.B.C} where B is a public member of A and
B has a public getC() method.

If none of these conditions exist, the Jdbc control method will throw a
com.bea.control.Control Exception.

2.5. Generic Substitution
To pass awhole SQL statement to the database, use the substitution syntax shown in red.

@Q. (statenent ="{sql: sql Statenent}")
publ i c nyRecordType nmyQuery(String sgl Statenent);

The SQL statement placed within the bracket syntax {sql: } is escaped and passed directly to
the database.

Y ou can use same substitution syntax to passin any part of a SQL statement, such asa

Page 8

Jdbc Control Developer's Guide

WHERE or LIKE clause, or a column name. In the following example, filtering phrases can
be substituted into the base SQL statement.

@Q (st at enent =" SELECT * FROM CUSTOMER {sql : whereCd ause}")
public nyRecordType nyQuery(String whered ause);

In the following example, a column name is dynamically written to the SQL statement by
means of the{sql: } bracket syntax.

@Q. (st at enent =" SELECT SUM {sql: col Nane}) FROM MYTABLE")
public int sunColumm(String col Nane) ;

2.6. Referring to Functionsin Substitution Statements

If your database supports internal functions, you can refer to the internal function within the
substitution syntax { sql: }. The following method refers to the function in(), by placing the
function call within the brackets {sql: }.

@Q(statenment="SELECT * FROM custoner WHERE {sql:fn
in(custid, {customer|Ds})}")
Custoner[] calllnternal Function(lnteger[] custonerlDs);

Not all databases and database drivers support internal functions within substitution brackets,
for example, Oracle drivers do not support this scenario.

2.7. SQL Escapes Support

The SQL annotations statement member supports the use of the SQL Escape syntax within
the SQL statement. SQL Escapes follow the standard escape syntax and may contain
parameter substitutions. The set of supported escape keywordsis:

escape

fn

d

t

ts

cal

7=

oj

The following examplesiillustrate some of the possible usages.

@QL(st at enent ="1 NSERT | NTO USERS (creati onDate, userName) VALUES({d

Page 9

Jdbc Control Developer's Guide

{creationDat eFormat}}, { user Nane})
public int addUser(String creationDateFormat, String userNane) throws
SQLExcepti on;

@QL (st at enent ="1 NSERT | NTO USERS (userld, userNane) VALUES({?=
sp_userld()},{userNane})")
public int addUser(String userNanme) throws SQ.LExcepti on;

3. Invoking Stored Procedureswith the Jdbc Control

The following topics explain how to call and create stored procedures with the Jdbc Control.

3.1. Calling Stored Procedureswith IN Parameters

If the stored procedure contains only IN parameters, you can call the procedure by passing
method parameters to the procedure.

Assume the following procedure sp_updateData has been created on the database.

CREATE OR REPLACE PROCEDURE sp_updat eDat a
(pkID I N SMALLI NT,
intVal I N INT)
AS
BEG N
UPDATE CUSTOVER
SET NAME = i nt Val
VWHERE CUSTI D = pkl D
END sp_updat eDat a;

The following database control method calls the procedure sp_updateData and passes two
method parameters to the procedure.

@Q. (statenent="call sp_updateData({keyVal}, {intVval})"
void cal |l _sp_updat eCust(short keyVal, int intVal);

The method parameters are substituted into the procedure call using the curly brace
substitution syntax.

If you are calling this stored procedure against a Sybase database, you must include curly
braces around the stored procedure call. For Sybase, the annotation value should look like
this:

@Q (statenent ="{call sp_updateData({keyVal}, {intVal})}")

Page 10

Jdbc Control Developer's Guide

3.2. Calling Stored Procedureswith OUT Parameters

To call aprocedure that contains OUT parameters:

1. UseaSQLParameter Array as the parameter of the Java method that calls the procedure.
2. Use question marks as placeholders for the parameters within the procedure call.

The SQL Parameter classis an public inner class of JdbcControl.java, source follows:

public static class SQParaneter {
public static final int IN = 1;
public static final int QUT =
public static final int |NOUT

nN-

IN | OUT;

public Object value = null;
public int type = Types. NULL;
public int dir = IN,

public SQ_Paraneter (Object val ue) {
thi s.val ue = val ue;

public SQ.Paraneter(Cbject value, int type) {
t hi s. val ue = val ue;
this.type = type;

}

public SQ.Paraneter(CObject value, int type, int dir) {
t hi s. val ue = val ue;
this.type = type;
this.dir = dir;

}

public Object clone() {
return new SQLPar anet er(val ue, type, dir);
}

}
For example, assume that the following procedure sp_squarelnt exists on the database.

CREATE OR REPLACE PROCEDURE sp_squar el nt
(fieldl IN INTEGER, field2 OUT INTEGER) | S
BEG N
field2 := fieldl * fieldi;
END sp_squarel nt;

The following Java method will call the procedure sp_squarelnt.

@Q(statenment ="{call sp_squarelnt(?, ?)})"
void call _sp _squarelnt (SQ.Paraneter[] parans) throws SQLException;

Page 11

Jdbc Control Developer's Guide

Note that the method parameter paramsis not explicitly substituted into the procedure call
{cal sp_squarelnt(?, ?)}. The substitution syntax { call ...} has special meaning within the
@SQL statement annotation. When the substitution syntax { call myStoredProc(?,?,2...)} is
encountered, it automatically distributes the elements of params into the procedure call.

The following shows how to construct an SQL Parameter[] to call the procedure sp_squarelnt.

/1 Construct a SQLParamneter][]
/1 to hold two SQ.Paraneter objects
SQLParaneter[] params = new SQ.Paraneter|[2];

/1 Construct two objects corresponding to the initial values of the
/1 stored procedure's two paraneters.
bj ect obj0 = new Integer\(x);

(bj ect obj 1 new | nt eger (0);

/1 The stored procedure sp_squarelnt has two paraneters:
/1 an I N paraneter of data type | NTEGER

/1 and an OUT parameter of data type | NTEGER

/1 params[0] is build to correspond to the I N paraneter
/1 paranms[1l] is build to correspond to the OQUT paraneter

paranms[0] = new SQLPar anet er (obj 0, Types.|NTEGER, SQLParaneter.|N);
par ans| 1] new SQ.Paranet er (obj 1, Types. | NTECGER,
SQLPar anet er. QUT) ;

/1 Call the stored procedure.

/1 Note that the procedure does not return any val ue.

/1 Instead the result of the procedure is |oaded directly into the
QUT paraneter,

/1 and, in turn, into params[1].

nyJDBCControl Fil e. cal | _sp_squar el nt (par ans) ;

/] Get the result |oaded directly into parans[1].
return I nteger. parselnt(parans[1].value.toString());

Note that Jdbc control method call_sp_squarelnt does not return the result of the procedure
call. Instead the result of the procedure isloaded directly into the procedure's OUT
parameter, and thisin turn is loaded directly into the corresponding SQL Parameter object. To
get the result of the procedure, examine the .value property of the of the SQL Parameter
object.

par anms[1] . val ue

3.3. Wrapping Proceduresin Functions

An aternative to calling stored procedures directly isto wrap them in stored functions, then

Page 12

Jdbc Control Developer's Guide

call the wrapping function from your database control file.

For example the following Jdbc control method will create a function that wraps the
procedure sp_squarelnt.

/**

* Waps a procedure in a function.
*

@QL(st at ement =" CREATE OR REPLACE FUNCTI ON wr apProc (pl | NTEGER)
RETURN I NTEGER IS p2 I NTEGER;, BEG N sp_squarel nt (pl, p2); RETURN p2; END;")
public void create wapProc();

Once the procedure has been wrapped, you can call the function, instead of calling the
procedure directly.

@QL(st at ement =" SELECT wr apProc({x}) FROM DUAL")
public int call WapProc(int x, int y);

3.4. Creating Strored Procedures
Y ou can also send any DDL statement to the database through a database control method.

/**

* A stored procedure that takes an integer, squares it, and | oads

* ;he result into an OUT paraneter.

@Q(st at enent =" CREATE OR REPLACE PROCEDURE sp_squarelnt (fieldl IN
| NTEGER, field2 OQUT INTEGER) IS BEA N field2 := fieldl * fieldl; END
sp_squarelnt; ")

void create_sp_squarelnt() throws SQ.Excepti on;

Some XA database drivers contain restrictions on code that rollsback or commits a
transaction independently of the driver's transaction management. Since DDL statements are
implicitly transactional (COMMIT is called whether it or not it explicitly appearsin the DDL
statement), you may have to suspend the transaction with these XA drivers. For example if
you send a DDL statement using the Oracle XA thin client without suspending the
transaction, the driver throws the following exception:

ORA-02089: COMMIT isnot allowed in a subordinate session

The following code suspends the transaction, executes the DDL statement, and then resumes
the transaction.

i mport javax.transaction. Transacti on;
i nport javax.transaction. Transacti onManager;

Page 13

Jdbc Control Developer's Guide

i mport javax.transaction. TxHel per;
Transacti onManager tm = TxHel per. get Transact i onManager () ;
Transacti on saveTx = null;
try
{
/1 Suspend the transaction
saveTx = tmforceSuspend();
/] Execute the DDL statenent
nmyDBControl Fil e.create_sp_squarelnt();
}
finally
{

// Resune the transaction
tm f or ceResunme(saveTx) ;

4. Stored Functions

Thistopic explains how to call and create stored functions using Jdbc control.

4.1. Calling Stored Functions

To call astored function, place the function call in a @SQL statement annotation. When the
Java method callMyFunction is called the SQL statement in the @SQL| statement annotation
is passed to the database. Any data returned by the SQL statement is passed back to, and
returned by, the Java method.

@Q (st at enent =" SELECT ny_functi on FROM DUAL")
int call MyFunction() throws SQ.Excepti on;

In most cases, the Jdbc control automatically converts between the appropriate database data
types to the Java data types. For example, if the database function my_function returns the
database type INTEGER, the Java method callMyFunction() will automatically convert it
into the Javatypeint.

Y ou can substitute values dynamically into the database function call using curly braces. The
following method passes the parameter int x to the function call.

4.2. Creating Stored Functions

Y ou can aso send any DDL statement to the database through a Jdbc control method.

Page 14

Jdbc Control Developer's Guide

/**

* A stored function that takes an integer, squares it, and returns the
* /result t hrough t he dat abase control nethod.
*
@QL(st at enent =" CREATE OR REPLACE FUNCTION fn_squarelnt (fieldl IN
| NTEGER) RETURN INTEGER IS field2 | NTEGER, BEG N field2 := fieldl * fieldl;
RETURN fi el d2; END fn_squarelnt;")
voi d create_fn_squarelnt() throws SQLExcepti on;

Some XA database drivers contain restrictions on code that rolls back or commits a
transaction independently of the driver's transaction management. Since DDL statements are
implicitly transactional (COMMIT is called whether it or not it explicitly appearsin the DDL
statement), you may have to suspend the transaction with these XA drivers. For example if
you send a DDL statement using the Oracle XA thin client without suspending the
transaction, the driver throws the following exception:

ORA-02089: COMMIT isnot allowed in a subordinate session
The following code suspends the transaction, executes the DDL statement, and then resumes
the transaction.

i mport javax.transaction. Transacti on;
i mport javax.transaction. Transacti onManager;
i mport | avax.transaction. TxHel per;

Transacti onManager tm = TxHel per. get Transact i onManager () ;
Transacti on saveTx = null;

try
{

/] Suspend the transaction
saveTx = tm forceSuspend();

/1 Execute the DDL statenent
nyDBControl Fil e.create_fn_squarelnt();

I
finally
{

// Resune the transaction
tm f or ceResunme(saveTx) ;

5. Jdbc Control Return Type Mapping
When returning a value from a database, the Jdbc Control maps the JIDBC ResultSet

Page 15

Jdbc Control Developer's Guide

generated by the SQL to the calling method's return type. These mappings can be
characterized as follows:

5.1. Mapping a Single Value

This topic describes how to write methods that return a single value from the database. The
example provided represents a SELECT statement that requests only asingle field of asingle
row. The return value of the method should be an object or primitive of the appropriate type
for that field's data.

5.1.1. Returning a Single Column

The following example assumes a Customers table in which the field custid, representing the
customer 1D, isthe primary key. Given the customer ID, the method looks up asingle
customer name.

@QL(st at ement =" SELECT name FROM cust omer WHERE custi d={customner| D}")
public String getCustonerNanme(int custonerlD);

In this example, the name field is of type VARCHAR, so the return value is declared as
String. The method's customerID parameter is of type int. When the SQL statement executes,
this parameter is mapped to an appropriate numeric type accepted by the database.

5.1.2. Returning an Update Count

Suppose that with the same database table arow isinserted, the following code could be used
to get the update count from the insert statement:

@Q (st at enent ="1 NSERT | NTO cust omer VALUES ({customer Nane}, {custoner| D})")
public int insertCustomer(String customerName, int customerlD);

5.2. Mapping a Single Row

This topic describes how to write methods on a Jdbc control that return a single row from the
database. When you return a single row with multiple fields, your method must have a return
type that can contain multiple values--either an object that is an instance of a class that you
have built for that purpose, or ajava.util.HashMap object.

If you know the names of the fields returned by the query, you will probably want to return a
custom object. If the number of columns or the particular field names returned by the query
are unknown or may change, you may choose to return a HashMap.

Page 16

Jdbc Control Developer's Guide

5.2.1. Returning an Object

Y ou can specify that the return type of a Jdbc control method is a custom object, an instance
of a class whose members correspond to fields in the database table. In most cases, a class
whose members hold corresponding database field valuesis declared as an inner class (a
class declared inside another class) in the Jdbc control's JCX file. However, it may be any
Java class that meets the following criteria:

e The class must contain members with names that match the names of the columns that
will be returned by the query. Because database column names are case-insensitive, the
matching names are case-insensitive. The class may also contain other members, but
members with matching names are required.

« The members must be of an appropriate type to hold a value from the corresponding
column in the database.

» Theclassmust be declared as public static if the classis an inner class.

The following example declares a Customer class with members corresponding to fieldsin
the Customers table. The findCustomer method returns an object of type Customer:

public static class Custoner

public int custid;
public String nane;
public Custoner() {};

@QL(st at ement =" SELECT custi d, nane FROM cust omer WHERE
custid={custonerl D})"
Cust onmer findCustoner(int custonerl D)

Note: The Customer class above is simplified for the sake of clarity. For data modelling
classes, it is generally good design practice to have private fields, with public setter and
getter methods.

public static class Custoner

{
private int custid,;
private String namne;
public Custoner() {};
public int getCustid()

return this.custid;

}
public void setCustid(int custid)

Page 17

Jdbc Control Developer's Guide

this.custid = custid;

ublic String get Nane()

return this.naneg;

ublic void set Name(String nane)

thi s. nane = name;

— ~0 — ~T — ~

5.2.2. Handling Empty Values When Returning Objects

If adatabase field being queried contains no value for a given row, the class member is set to
null if itisan object and to 0 or false if it isaprimitive. This may affect your decisions
regarding the types you use in your class. If the database field contained no data, an Integer
member would receive the value null, but an int member would receive the value 0. Zero
may be avalid value, so using int instead of Integer makes it impossible for subsequent code
to determine whether a value was present in the database.

If there is no column in the database corresponding to a member of the class, that member is
also set to null or O, depending on whether the member is an primitive or an object.

If the query returns columns that cannot be matched to the members of the class, an
exception isthrown. If you don't know the columns that will be returned or they may change,
you should consider returning a HashMap instead of a specific class. For more information,
see the Returning a HashMap section, below.

If no rows are returned by the query, the returned value of the Jdbc control method is null.

In the example given above, the method is declared as returning a single object of type
Customer. So even if the database operation returns multiple rows, only the first row is
returned to the method's caller. To learn how to return multiple rows to the caller, see
Mapping Multiple Rows.

5.2.3. Returning a HashMap or Map

If the number of columns or the particular column names returned by the query are unknown
or may change, you may choose to return a HashMap. To return a HashMap, declare the
return value of the method as java.util.HashMap, as shown here:

@QL(st at ement =" SELECT * FROM cust omer WHERE custi d={custID})"

Page 18

Jdbc Control Developer's Guide

public java.util.HashMap fi ndCustomerHash(int custlD);

The HashMap returned contains an entry for each column in the result. The key for each
entry is the corresponding column name. The capitalization of the key names returned by
HashMap.keySet() depends on the database driver in use, but al keys are case-insensitive
when accessed via the HashMap's methods. The value is an object of the Java Database
Connectivity (JDBC) default type for the database column.

In the example above, the method is declared as returning a single object of type
java.util.HashMap. So even if the database operation returns multiple rows, only the first row
isreturned to the method's caller.

To learn how return multiple rowsto the caller, see Mapping Multiple Rows.

The following code allows you to access the name field of the returned record:

@cont r ol
private CustonerDBControl cust DB;

public String get CustonerNanme(int custlD)
{
java.util.HashMap hash;
String nane;
hash = cust DB. fi ndCust oner Hash(cust|D);
if(hash !'= null)
{
nane = (String)hash. get (" NAMVE");
el se
{

name = new String("Custoner not found");

return nane,

}

If the query returns no rows, the returned value of the Jdbc control method is null.

5.3. Returning Multiple Rows from a Jdbc Control M ethod

This topic describes how to write a method on a Jdbc control that returns multiple rows from
the database. It describes the ways in which you can perform this operation, including
returning an array, returning an lterator object, and returning a resultset.

5.3.1. Deciding How to Return Multiple Rows

A SELECT query may return one or more fields from multiple rows. A method on a Jdbc

Page 19

Jdbc Control Developer's Guide

control that returns multiple rows should have areturn type that can store these values. The
Jdbc control method can return an array of objects, an Iterator, or a resultset.

Returning an array of objects is the easiest way to return multiple rows, so it isagood choice
if you think your users will prefer simplicity when using your control. However, when an
array isreturned only one database operation is performed and the entire resultset must be
stored in memory. For large resultsets, thisis problematic. Y ou can limit the size of the
returned array, but then you cannot provide away for your user to get the remainder of the
resultset. To learn how to return an array of objects, see the Returning an Array of Objects
section, below.

While Iterators require more sophistication on the part of users of your control, they are more
efficient at handling large resultsets. An lterator is accessed one element (row) at atimevia
the Iterator's next() method, and it transparently makes repeated requests from the database
until all records have been processed. An Iterator does not present the risk of running out of
memory that an array presents. However, note that an Iterator returned from a database
control cannot be used within a Page Flow file (JPF), because an Iterator wraps a ResultSet
object, which is aways closed by thetime it is passed to the web-tier (where page flow files
reside). For this reason, your Jdbc control should return an array of objects (see above) when
itis called from a Page Flow file. Also, an Iterator cannot be returned to a stateful process,
because stateful processes cannot maintain an open database connection (which Iterators
require). To learn about returning ajava.util.lterator, see the Returning an Iterator section,
below.

Finally, you can choose to return ajava.sgl.ResultSet from a Jdbc control method. This
grants complete access to the results of the database operation to clients of your control, but
it requires knowledge of the java.sgl package. Also, note that a ResultSet returned from a
Jdbc control cannot be used within a page flow file (JPF), because a ResultSet object is
aways closed by the timeit is passed to the web-tier (where page flow files reside). For this
reason, your Jdbc control should provide an array of objectswhen it is called from a page
flow file. To learn about returning ajava.sgl.ResultSet, see the Returning a Resultset section,
below.

5.3.2. Returning an Array of Objects

To return an array of objects, declare the method's return type to be an array of the object you
want to return. That type may be either atype you define, or it may be java.util.Hashmap.

Examples of both of these techniques are provided in the following sections.

5.3.3. Returning an Array of User-Defined Objects

Page 20

Jdbc Control Developer's Guide

The following example demonstrates how to return an array of objects whose type you have
declared. In this case, an array of Customer objectsis returned:

public static class Custoner

public int custid;
public String namne;

}

@Q(st at enent =" SELECT custi d, name FROM cust omer WHERE cust age<19"
arrayMaxLengt h=100)
Custoner [] findAl |l M norCustoners()

This example returns all rows in which the custage field contains a value less than 19.

When returning an array of objects, the class declared as the return type of the method must
meet the criteria described in the Returning an Object section of the Returning a Single Row
from a Jdbc Control topic. If no rows are returned by the query, the returned value of the
Database control method is a zero-length array.

If you are returning an array from Jdbc control method, you can limit the size of the array
returned by setting the arrayMaxL ength attribute of the @SQL annotation. This attribute can
protect you from very large resultsets that may be returned by very general queries. If
arrayMaxL ength is present, no more than that many rows are returned by the method.

The default value of arrayMaxLength is 1024. For very large ResultSets you can avoid
excessive memory usage by returning an Iterator object as described below in the Returning
an lterator section, below.

5.3.4. Returning an Array of HashM aps

Returning an array of HashMaps is analogous to returning an array of user-defined objects,
which is described in the preceding section.

The following example demonstrates returning an array of HashM aps:

public static class Custoner

public int custid;
public String name;
public Customer() {};

@QL(st at enent =" SELECT custi d, name FROM cust omer WHERE cust age<19"
arrayMaxLengt h=100)
java.util.HashMap [] findAl I M nor CustomersHash()

Page 21

Jdbc Control Developer's Guide

The array of HashMaps returned contains an element for each row returned, and each
element of the array contains an entry for each column in the result. The key for each entry is
the corresponding column name. The capitalization of the key names returned by
HashMap.keySet() depends on the database driver in use, but keys are case-insensitive when
accessed viathe HashMap's methods. The value returned is an object of the Java Database
Connectivity (JDBC) default type for the database column.

If no rows are returned by the query, the returned value of the Jdbc control method is a
zero-length array.

The following code shows how to access the name field of the returned records:

@Cont r ol
privat e Custoner DBControl cust DB;

java.util.HashMap [] hashArr;
String nane;

hashArr = custDB. fi ndAl I M nor Cust onmer sHash() ;
for(i=0; i<hashArr.length; i++)
{

name = (String)hashArr[i].get (" NAMVE");
/! say hello to the all of the mnors

Systemout.printin("Hello, " + nane + "!");

}

5.3.5. Returning an Iterator

When you want to return an Iterator object, you declare the method's return type to be
java.util.lterator. You then add the iteratorElementType attribute to the @SQL annotation to
indicate the underlying type that the Iterator will contain. The specified type may be either a
type you define, or it may be java.util.Hashmap. Examples of these techniques are givenin
the following sections. If your method returns an Iterator, a compile time error will be
generated if the iteratorElementType annotation member has not been set.

The Iterator that is returned is only guaranteed to be valid for the life of the method call to
which it isreturned. Y ou should not store an Iterator returned from a Jdbc control method as
a static member of your web service's class, nor should you attempt to reuse the Iterator in
subsequent method callsif it is persisted by other means.

5.3.6. Returning an Iterator with a User-Defined Object

To return an Iterator that encapsul ates a user-defined type, provide the class name as the
value of the iteratorElementType attribute of the @SQL annotation, as shown here:

Page 22

Jdbc Control Developer's Guide

public static class Custoner

public int custid;
public String nane;
public Custoner() {};

}

@Q(st at enent =" SELECT custi d, name FROM cust omer "
i teratorEl ement Type=Cust orer. cl ass)
java.util.lterator getAl | Custonerslterator()

The class specified in the iterator-element-type attribute must meet the criteria described in
Returning an Object.

The following example shows how to access the returned records:

Cust oner JDBCCont rol . Cust orer cust;
java.util.lterator iter = null;

iter = custDB. getAll Custonerslterator();
while (iter.hasNext())

cust = (CustonerJDBCControl.Custoner)iter.next();
/! say hello to every custoner
Systemout.printin("hello, " + cust.nane + "!");

5.3.7. Returning an Iterator with HashM ap

To return an Iterator that encapsul ates a HashMap, provide java.util.HashMap as the value of
the iterator-element-type attribute of the @SQL annotation, as shown here:

public static class Custoner

public int custid;
public String name;
public Custoner() {};

@BQ(st at enent =" SELECT custi d, nane FROM cust oner ",
i teratorEl enent Type=j ava. util . HashMap. cl ass)
java.util.lterator getAll Custonerslterator()

The following code shows how to access the returned records:

java. util.HashMap cust Hash;
java. util.lterator iter = null;
int customerl D

String custoner Nane;

Page 23

Jdbc Control Developer's Guide

iter = custDB. get Al |l Custonerslterator();
while (iter.hasNext())

cust Hash =
custoner| D

(java. util.HashMap)iter.next();
= (|
cust oner Name =

i nt) cust Hash. get ("CUSTID") ;
(String)cust Hash. get (" NAME") ;

}

The HashMap contains an entry for each database column that is returned by the query. The
key for each entry is the corresponding column name, in al uppercase. The value is an object
of the JIDBC default type for the database column.

5.3.8. Returning a ResultSet

The Jdbc control is designed to allow you to obtain data from a database in a variety of ways
without having to understand the classes in the java.sgl package. If you and your users do
understand these classes, however, you can gain complete access to the java.sgl.ResultSet
object returned by a query.

If you want to return aresultset, you declare the method's return type to be java.sgl.ResultSet.
A client of your control then accesses the resultset directly to process the results of the
database operation.

The following example demonstrates returning a resultset:

@QL(st at ement =" SELECT * FROM cust onmer")
public java.sqgl.ResultSet findAll CustomersResultSet();

The following code shows how to access the returned resultset:

java.sqgl . Result Set result Set;

String thisCustomerNamne;

result Set = custDB.findAl |l Cust onersResult Set ();
while (resultSet.next())

t hi sCust oner Nane = new String(resultSet.getString("nane"));

}

This example assumes the rows returned from the database operation include a column called
name.

5.4. Returning Apache XML Beans from a Jdbc Control

Thistopic assumes a strong under standing of Apache XML Beans. For additional
information about XML Bean see the Apache XML Beans Site http://xmlbeans.apache.org/.

Page 24

Jdbc Control Developer's Guide

The following topic explains how to return XML Bean types from custom Jdbc controls.

An XMLBean is essentialy an XML document with a Java APl attached to it. The APl is
used for parsing and manipulating the datain the XML document. A typical XMLBean
might represent database data in the following form.

<DCOCTYPE XCust oner >
<XCust oner xm ns="java:///dat abase/ customer_db"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" >
<XCust omer Row>
<CUSTI D>1<CUSTI D>
<NAVE>Fred W I | i anms<NAMVE>
<ADDRESS>123 Sl ugger Circl e<ADDRESS>
<XCust oner Row>
<XCust oner Row>
<CUSTI D>2<CUSTI D>
<NAME>Mar ni e Sm t her s<NAMVE>
<ADDRESS>5 Hi t chcock Lane<ADDRESS>
<XCust omer Row>
<XCust omer Row>
<CUSTI| D>3<CUSTI| D>
<NAME>BI | | Wal t on<NAVE>
<ADDRESS>655 Tal | Ti nbers Road<ADDRESS>
<XCust omer Row>
<XCust oner >

The data can be accessed and manipulated using the XMLBean's API. For example, assume
that custBean represents the XML document above. The following Java code extracts the
Fred Williams from the document.

String nane = cust Bean. get XCust orer (). get XCust omer RoOwAr ray(1) . get NAVE() ;

Retrofitting database controls to return XML Beans rather than RowSets, ResultSets, or
Iterators, is a powerful technique because there are few restrictions on where XML Beans can
be imported. Thisis not the case with ResultSets and Iterators, which cannot be passed
directly to web-tier classes (web services and page flows). Also, datain XMLBean formis
very easy to manipulate because thereisarich API attached to the XMLBean.

5.4.1. Creating a Schema

Thefirst step in using XML Bean classes is creating a schema from which the XMLBean
classes can be generated. The schema you create for a database control must be capable of
modeling the sorts of data returned from the database.

If you write your own schema, at a minimum, the schema's elements should have the same
names as the fields in the database, which allows data returned from the database to be

Page 25

Jdbc Control Developer's Guide

automatically mapped into the XML Bean.

When the XSD fileis compiled, XML Bean types are generated that can be returned by the
methods in the database control.

5.4.2. Editting Schemasto Create New " Document™ Types

Note that only one of the generated typesisa"Document” XMLBean type:

X CustomerDocument. The other types, X CustomerDocument.X Customer and

X CustomerDocument.X Customer.X CustomerRow, can only be used with reference to the
"Document” type. This distinction is especially important because only "Document” types
are eligible for direct participation in abusiness process, or to be passed to a web service. For
this reason you may want to edit your schema to include "Document” types corresponding to
other types in the Schema, especially if you have avery large schemawith many nested types
defined in terms of asingle "Document” type.

To generate a new Document type for some element, move that element so that it becomes a
top-level element in the schema. In the following example, the X CustomerRow element has
been moved to the top-level of the schema: its original position has been replaced with a
reference element: <xsd:element ref="XCustomerRow"/>.

<xm version="1.0" encodi ng="UTF-8"?>
<xsd: schenma t ar get Nanespace="j ava:/// dat abase/ cust oner _db"
xm ns="j ava:/// dat abase/ cust oner _db"
xm ns: xsd="http: // ww. w3. or g/ 2001/ XM_Schena"
xm ns:wl d="http://ww. bea. com 2002/ 10/ webl ogi cdat a"
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

<xsd: el ement nane="XCust oner"
w d: Def aul t Nanespace="j ava: /// dat abase/ cust omer _db" w d: RowSet ="t rue" >
<xsd: conpl exType>
<xsd: choi ce maxCccur s="unbounded" >
<xsd: el enment ref="XCust onmer Row'/ >
<xsd: choi ce>
<xsd: conpl exType>
<xsd: el enent >
<xsd: el ement name=" XCust ormrer Row' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="CUSTI D' type="xsd:int" w d: JDBCType="1 NTEGER"
m nQccur s="0" w d: Tabl eNane=" MYSCHENVA. CUSTOVER"
nillabl e="true"><xsd: el enment >
<xsd: el ement nane="NAME" type="xsd:string" w d: JDBCType="VARCHAR"
m nQccur s="0" w d: Tabl eNane=" MYSCHENMA. CUSTOVER"
ni |l abl e="true"><xsd: el enent >
<xsd: el enent nane="ADDRESS" type="xsd: string"
wl d: JDBCType="VARCHAR' m nQccurs="0" w d: Tabl eNane=" MYSCHEMA. CUSTOVER"

Page 26

Jdbc Control Developer's Guide

nill abl e="true"><xsd: el enent >

<xsd: el enent nane="Cl TY" type="xsd:string" w d: JDBCType="VARCHAR"
m nCccur s="0" w d: Tabl eName=" MYSCHEMA. CUSTOVER'
ni |l abl e="true"><xsd: el enent >

<xsd: el enent nanme="STATE" type="xsd:string" w d: JDBCType="CHAR"
m nCccur s="0" w d: Tabl eName=" MYSCHEMA. CUSTOVER'
nill abl e="true"><xsd: el enent >

<xsd: el ement nanme="ZIP" type="xsd:string" w d: JDBCType="VARCHAR'
m nCccurs="0" w d: Tabl eNanme=" MYSCHEVA. CUSTOVER"
nillabl e="true"><xsd: el ement >

<xsd: el ement nane="AREA CODE" type="xsd:string"
w d: JDBCType="CHAR"' mi nCccurs="0" w d: Tabl eNane=" MYSCHEMA. CUSTOVER"
nill abl e="true"><xsd: el enment >

<xsd: el emrent nane="PHONE" type="xsd:string" w d: JDBCType="CHAR"
m nCccur s="0" w d: Tabl eName=" MYSCHEMA. CUSTOVER'
ni |l abl e="true"><xsd: el enent >

<xsd: sequence>
<xsd: anyAttribute
nanespace="htt p://ww. bea. com 2002/ 10/ webl ogi cdat a"
processCont ent s="ski p" >l t; xsd: anyAttri but e>
<xsd: conpl exType>
<xsd: el ement >

<xsd: schema>

There are now two top-level elements, X Customer and X CustomerRow, which compile into
two corresponding "Document” types. X CustomerDocument and X CustomerRowDocument.
5.4.3. Returning a XML Bean Typesfrom Control Methods

Once you have generated XML Bean types that model the database data, you can import these
types into your Jdbc control.

i mport dat abaseCust onmer Db. XCust omer Docunent ;
i mport dat abaseCust oner Db. XCust omer Docunent . XCust ormer ;
i mport dat abaseCust oner Db. XCust ormer Docunent . Fact ory;

XMLBean types can be returned from the control's methods.

@Q(st at enent =" SELECT custid, nane, address FROM custoner")
publ i ¢ XCust oner Docunent fi ndAl | Cust onersDoc();

The data returned from the query is automatically mapped into the XML Bean because the
names of the database fields match the fields of the XML Bean.

5.5. Mapping to a RowSet

This topic describes how to write methods on a Jdbc control that return a RowSet from the

Page 27

Jdbc Control Developer's Guide

database. Since the RowSet implementations provided by the JDK are part of the javax.sql
package the JdbcControl does not support any of them by default. A sample

ResultSetM apper for RowSet'sisincluded as part of the Jdbc Control's distribution but must
be explicitly set in the @SQL annotation in order to be invoked.

The DefaultRowSetResultSetM apper will create a javax.sgl.CachedRowSetimpl. The
following exampl e sets the resultSetM apper for the method getAllUsers() to the
DefaultRowSetResultSetM apper which enables the Jdbc control to map the ResultSet to a
RowSet.

@Q (st at emrent =" SELECT * FROM USERS",
resul t Set Mapper =or g. apache. beehi ve. control s. syst em j dbc. Def aul t RowSet Resul t Set Mapper . cl
public RowSet getAll Users() throws SQLException;

ResultSetM apper's can be created for other types of RowSets and most any other type of
mapping from aresult set to any object. See the [Jdbc Control Custom ResultSetM appers]
topic for more information.

5.6. Creating Customer Result Set Mappers

5.6.1. Overview

When the Jdbc Control maps a ResultSet to areturn type it first checksto seeif a

resultSetM apper has been set in the method's @SQL annotation. If amapper has been s, it
is always the one used for mapping the ResultSet to the method's return type. If

resultSetM apper has not been set the Jdbc control looks for a_resultSetMapper_ based on the
method's return type.

Mapper Class Name Method Return Type
DefaultlteratorResultSetMapper Iterator
DefaultResultSetMapper ResultSet
DefaultXmlObjectResultSetMapper Classes derived from XmlObject
DefaultObjectresultMapper Default to this mapper

5.6.2. Creating a custom ResultSet M apper

To create your own ResultSet mapper, create a new class which extends the abstract class
org.apache.beehive.controls.system.jdbc.ResultSetM apper. The mapToResultType() method
does al the work of mapping the ResultSet to the method's return type -- it will be invoked
by the JdbcControl when the control is ready to perform the mapping. Below is the code for

Page 28

Jdbc Control Developer's Guide

the ResultSetM apper class.

/**
* Extend this class to create new ResultSet mappers. The extended cl ass

wi Il be invoked by the JdbcController
* when it is time to map a ResultSet to a nethod's return type.
*

* ResultSet mappers must be specified on a per nmethod basis using the SQ
annot ation's resultSet Mapper field

*/

public abstract class ResultSet Mapper {

/**

* Map a ResultSet to an object type

*

* @ar am cont ext A Control BeanCont ext instance, see Beehive controls
javadoc for additional information

* @aram m Met hod assoicated with this call.

* @aramresultSet Result set to map.

* @aram cal A Cal endar instance for tine/date val ue resol ution.
* @eturn The Object resulting fromthe Result Set

*

@hrows Exception On error.
*/
public abstract bject napToResul t Type(Control BeanCont ext context,
Met hod m ResultSet resultSet, Cal endar cal)
t hrows Exception;

/**

* Can the ResultSet which this mapper uses be closed by the Jdbc
control ?

* @eturn true if the ResultSet can be closed by the JdbcControl

*/

public bool ean canC oseResultSet () { return true; }

5.6.3. An Example

Suppose you have areturn type class which needs to do some special processing of a
ResultSet.

public final class CustonerX

private String _custoner Nane;
private String _custoner PhoneNunber;

public void setCustonerName(String firstNanme, String |astName) {
_customerNanme = firstNane + " " + | ast Nane;

public String getCustonmerNane() { return _custonerNane; }

Page 29

Jdbc Control Developer's Guide

public void set Cust oner PhoneNurber (i nt areaCode, String phoneNunmber) {

_cust oner PhoneNunber = "(" + areaCode + ")" + phoneNunber;

}

public String get Customer PhoneNunber () { return _custoner PhoneNunber; }
}
L et's assume the ResultSet contains the following columns:

Column Name Type

FIRST_NAME Varchar
LAST_NAME Varchar
AREA_CODE INT
PHONE_NUMBER Varchar

Here's what the ResultSetM apper implementation might look like:

public final class Custoner XResul t Set Mapper extends Resul t Set Mapper {

public Object mapToResul t Type(Control BeanCont ext context, Method m
Resul t Set resultSet, Cal endar cal)
t hrows Exception

{
resul t Set. next ();
Customer X ¢ = new Cust oner X() ;
final String fName = resultSet.getString("Fl RST_NAVE");
final String | Name = resultSet.getString("LAST_NAME");
c. set Cust oner Nane(f Nane, | Nane);
final int aCode = resultSet.getlnt("AREA CODE");
final int phone = resultSet. get ("PHONE NUVBER') ;
c. set Cust oner PhoneNunber (aCode, phone);
return c;
}

}
and finally the method and SQL annotation to invoke:

@Q (st at ement =" SELECT FI RST_NAME, LAST_NAME, AREA_CODE, PHONE_NUVBER FROM
cust omers WHERE user | d={userld}",

resul t Set Mapper =Cust oner XResul t Set Mapper . cl ass)
public CustomerX get Customer(String userld);

Page 30

Jdbc Control Developer's Guide

5.6.4. Additional Examples

See the Jdbc Control Rowset Mapping topic for an example of using a ResultSet mapper to

support the RowSet return type.

5.7. Database -> Java Type M apping Tables

5.7.1. PointBase 4.4 Type M appings

The following table lists the relationships between database types and Java types for the
PointBase Version 4.4 database.

Java Data Types

boolean

byte

short

int

long

double

double

float
java.math.BigDecimal
java.math.BigDecimal
String

String

String

java.sgl.Date
java.sql.Time
java.sql.Timestamp

byte[]

JDBC Data Types

BIT

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
DOUBLE
FLOAT
NUMERIC
DECIMAL
CHAR
VARCHAR
LONGVARCHAR
DATE

TIME
TIMESTAMP
BINARY

PointBase SQL Data Types
(Version 4.4)

boolean
smallint
smallint
integer
numeric/decimal
real
double
float
numeric
decimal
char
varchar
clob

date

time
timestamp

blob

Page 31

byte[]
byte[]
java.sql.Blob

java.sql.Clob

5.7.2. Oracle Type Mappings
Type Mappings for Oracle 8i

VARBINARY
LONGVARBINARY
BLOB

CLOB

Jdbc Control Developer's Guide

blob
blob
blob

clob

The following table lists the rel ationshi ps between database types and Java types for the

Oracle 8i database.

Java Data Types

boolean

byte

short

int

long

double

float

double
java.math.BigDecimal
java.math.BigDecimal
String

String

String

java.sql.Date
java.sql.Time
java.sql.Timestamp

byte[]

JDBC Data Types

BIT

TINYINT
SMALLINT
INTEGER
BIGINT
FLOAT
REAL
DOUBLE
NUMERIC
DECIMAL
CHAR
VARCHAR
LONGVARCHAR
DATE

TIME
TIMESTAMP
BINARY

Oracle SQL Data Types
(Version 8i)

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
CHAR
VARCHAR2
LONG
DATE
DATE
DATE
NUMBER

Page 32

Jdbc Control Developer's Guide

byte[]
byte[]
java.sql.Blob

java.sql.Clob

5.7.3. Derby Type Mappings
Type Mappings for Derby 10

Java Data Types

long

java.sql.Blob

String

java.sql.Clob
java.sql.Date
java.math.BigDecimal
double

float

int

String

short

java.sql.Time
java.sql.Timestamp

String

VARBINARY
LONGVARBINARY
BLOB

CLOB

JDBC Data Types

BIGINT
BLOB

CHAR

CLOB

DATE
DECIMAL
DOUBLE
FLOAT
INTEGER
LONGVARCHAR
SMALLINT
TIME
TIMESTAMP
VARCHAR

5.8. New Featur es and Enhancements

JDBC 3.0 feature support as well as other new features are being added to the JdbcControl on

RAW
LONGRAW
BLOB
CLOB

Derby SQL Data Types
(Version 4.4)

BIGINT

BLOB

CHAR

CLOB

DATE
DECIMAL,NUMERIC
DOUBLE [PRECISION]
float

integer

LONG VARCHAR
SMALLINT

time

timestamp

VARCHAR

aregular basis. Here some of the latest features which have been added:

« Support for custom mapping of SQL UDTs
« Support for ResultSet holdability (connection and statement level support)

Page 33

Support for fetchSize and direction
Support for scrollable ResultSets
Retrieval of auto-generated keys
BOOLEAN and DATALINK data types
Blob and Clob type support

Batch Update support

Jdbc Control Developer's Guide

Page 34

	1 Jdbc Control Annotation's Reference
	1.1 The ConnectionDataSource Annotation
	1.2 The ConnectionDriver Annotation
	1.3 The ConnectionOptions Annotation
	1.4 The SQL Annotation

	2 Parameter Substitution in the SQL Annotation's Statement Member
	2.1 Substitution Criteria
	2.2 Substituting Simple Parameters
	2.3 Treatment of Curly Braces Within Literals
	2.4 Substituting Indirect Parameters
	2.5 Generic Substitution
	2.6 Referring to Functions in Substitution Statements
	2.7 SQL Escapes Support

	3 Invoking Stored Procedures with the Jdbc Control
	3.1 Calling Stored Procedures with IN Parameters
	3.2 Calling Stored Procedures with OUT Parameters
	3.3 Wrapping Procedures in Functions
	3.4 Creating Strored Procedures

	4 Stored Functions
	4.1 Calling Stored Functions
	4.2 Creating Stored Functions

	5 Jdbc Control Return Type Mapping
	5.1 Mapping a Single Value
	5.1.1 Returning a Single Column
	5.1.2 Returning an Update Count

	5.2 Mapping a Single Row
	5.2.1 Returning an Object
	5.2.2 Handling Empty Values When Returning Objects
	5.2.3 Returning a HashMap or Map

	5.3 Returning Multiple Rows from a Jdbc Control Method
	5.3.1 Deciding How to Return Multiple Rows
	5.3.2 Returning an Array of Objects
	5.3.3 Returning an Array of User-Defined Objects
	5.3.4 Returning an Array of HashMaps
	5.3.5 Returning an Iterator
	5.3.6 Returning an Iterator with a User-Defined Object
	5.3.7 Returning an Iterator with HashMap
	5.3.8 Returning a ResultSet

	5.4 Returning Apache XMLBeans from a Jdbc Control
	5.4.1 Creating a Schema
	5.4.2 Editting Schemas to Create New "Document" Types
	5.4.3 Returning a XMLBean Types from Control Methods

	5.5 Mapping to a RowSet
	5.6 Creating Customer Result Set Mappers
	5.6.1 Overview
	5.6.2 Creating a custom ResultSet Mapper
	5.6.3 An Example
	5.6.4 Additional Examples

	5.7 Database -> Java Type Mapping Tables
	5.7.1 PointBase 4.4 Type Mappings
	5.7.2 Oracle Type Mappings
	5.7.3 Derby Type Mappings

	5.8 New Features and Enhancements

