Jms Control Tutorial

Table of contents

LIMS CONIIOl TULOTIAL ...

Jms Control Tutorial

1. JImsControl Tutorial

The JmsControl is an extensible control. Before a JmsControl can be used in an application, a
sub-interface of the org.apache.beehive.controls.system.jms.JmsControl interface must be
created and annotated with @Control Extension.

@Cont r ol Ext ensi on
public interface Sanpl eQueue extends JMsContr ol
{

In order for the control to work, it needs to know the destination of the messages. Thisis
accomplished using a INDI context. Unless otherwise specified the default initial context is
used. This may be overridden by settng the jndi ContextFactory and jndiProviderUrl
properties, either programically (setJndiContextFactory() and setdndiProviderUrl()) or viathe
corresponding @Destination attributes.

The queue/topic destination is then obtained using the value of the sendJndiName property
and a queue/topic connection is obtained using by the jndiConnectionFactory property. In
most cases the same connection factory is used for both queues and topics. The @Destination
sendType attribute may be used to constrain the use of the control to either atopic or a
gueue. By default it's value is Auto which allowes for run-time determination of whether the
sendJndiName names a queue or atopic. By setting it to Queue or Topic arun-time check is
made to see if the connection factory and destination is of the correct type.

If the INDI context to be used (i.e. the control is running in an ejb-container (or
servlet-container with a INDI context) is known (or is the default context) and the
connection-factory (e.g. weblogic.jms.ConnectionFactory) and queue JNDI name (e.g.
jms.SampleQueue) is also known at development time then the extension class can be
annotated with the @Destination annotation as shown in the example:

@ont r ol Ext ensi on

@NsControl . Desti nati on(sendType=JMsSCont rol . Desti nati onType. Queue, sendJndi Nanme="j ns. San
public interface Sanpl eQueue extends JMsContr ol

{

e
Likewise, for atopic (e.g. jms.SampleTopic) the following file might be appropriate:

@ont r ol Ext ensi on
@NMsControl . Desti nati on(sendType=JMsSCont rol . Desti nati onType. Topi ¢, sendJndi Nanme="j ns. San
public interface Sanpl eTopi c extends JMsContr ol

Page 2

Jms Control Tutorial

{

The sendType attribute could be |eft out of these examples and the control extensions would
still work.

See Extension Class Annotation for other annotations defined at the class or type level.

The extension interface can include one or more methods that send messages. These methods
must have at least one unannotated parameter that corresponds to the body of the message.
Other annotated parameters can defined to provide property values and other information at
run-time to the message (see Extension Class Annotation for allowed annotation). The
method itself can be annotated (see Extension Class Annotation for allowed annotation).

Some examples appropriate to topics and queues include:

/**

* Submit an xm object (org.apache.xmnm beans) as a text nessage.
* @ar am docunent the docunent.

* @aramtype the nessage JMS type

*/

public void subm tXm (Xm Cbj ect docunent, @ype String type);

/**

* Submit an xm object (org.apache.xm beans) with JM5 type "xnml Cbject™.
* @ar am docunent the docunent.

*/

@kssage(MessageType. Text)

@ype("xm Ooj ect")

public void subm tXm (Xm Cbj ect docunent);

/**
* Submit an already constructed nessage
* @aram nessage the jns-nessage.
*/
public void subm t Message(Message nessage);

/**

* Submit a BytesMessage with the given byte array body and property hello
* @aram body the byte array.

* @aram hello the value of the hello property.

*/

public void subm t Message(byte[] body, @°roperty(name=hello) hello);

/**

* Submit a MapMessage with the given map and property hello set to world.
* @aram body the byte array.

*/

@roperties({PropertyVal ue(name="hel | 0", val ue="world")})

Page 3

Jms Control Tutorial

public void subm t Message(Map body);

Page 4

	1 Jms Control Tutorial

