UIMA Tutorial and Developers' Guides
Authors: The Apache UIMA Development Community

Version 2.1

Copyright © 2006, 2007 The Apache Software Foundation
Copyright © 2004, 2006 International Business Machines Corporation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing
incubation at the Apache Software Foundation (ASF). Incubation is required
of all newly accepted projects until a further review indicates that the
infrastructure, communications, and decision making process have stabilized
in a manner consistent with other successful ASF projects. While incubation
status is not necessarily a reflection of the completeness or stability of the
code, it does indicate that the project has yet to be fully endorsed by the ASF.

License and Disclaimer. The ASF licenses this documentation to you under
the Apache License, Version 2.0 (the "License"); you may not use this
documentation except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation
and its contents are distributed under the License on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing permissions
and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks
or service marks have been appropriately capitalized. Use of such terms in this
book should not be regarded as affecting the validity of the the trademark or
service mark.

Published February, 2007

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. Annotator & AE Developer's Guideccocciiiiiiiiiiiiiii 1
1.1. Getting Startedccccovviiiiiiiiiiiiiiii s 2
1.1.1. Defining TYPescccuviiiiiiiiiiiiiiiiiiiicccicccc 3
1.1.2. Generating Java Source Files for CAS Typesccccceeviiiiiiiiiinnns 5
1.1.3. Developing Your Annotator Codeccccccovviiiiiiiiiiiiiiiiiinn, 6
1.1.4. Creating the XML Descriptorcccccoovriiiiiiiiiiiiiiiiiiiiiiicccs 9
1.1.5. Testing Your ANNOtatorcooeviiiiiiiiiiiiiiiiic 12

1.2. Configuration and Loggingccccccoeviiiiiiiiiiiiiiiiii, 14
1.2.1. Configuration Parameterscccccceeiriiiiiiiiiiiiiiiiiiiciicc s 14
1.22. LOgGING .oooiiiii 18

1.3. Building Aggregate Analysis Enginesccccccocoiiiiiiiiiiiiniinn. 21
1.3.1. Combining ANNotatorscccccceiiiiiiiiiiiiiiiii 21
1.3.2. AEs can also contain CAS CONSUMETSccovueiiiiiiiiiiiiiniiennnen. 25
1.3.3. Reading the Results of Previous Annotatorscccccceeveennneen. 25

1.4. Other examplesccccccoiiiiiiiiiiiiiiii 27
1.5. Additional TOPICSvvviiiiiiiiiiiiiiiiiiiiii i 28
1.5.1. Annotator Methodsccccoooiiiiiiii 28
1.5.2. Reporting errors from Annotatorscccccovviiiiiiiiiiinininnnn. 30
1.5.3. Throwing Exceptions from Annotatorscccccceeviiiiiiiinnnnn.n. 30
1.5.4. Accessing External Resource Filescccccooviiiiiiiiiiin. 33
1.5.5. Result Specificationsccoeveiiiiiiiiiiiiii 41
1.5.6. Class path setup when using JCasccoccviiiiiiiiiiiii. 42
1.5.7. Using the Shell Scriptscccccceiiiiiiiiiiiiiiiiiiiii, 42

1.6. Common Pitfallsccccoiiiiiiiiiiii 43
1.7. UIMA Objects in Eclipse Debuggercccccoiiiiiiiiiiiiiiiiiiin, 44
1.8. Analysis Engine XML Descriptorccccociiiiiiiiiiiiiiiiiiiiiiiiinn, 45
1.8.1. Header and Annotator Class Identificationcccccovvinnnnn. 45
1.8.2. Simple Metadata Attributesc..ccocceiviiiiiiiiiii 46
1.8.3. Type System Definitioncccccciiiiiiiiiiiiiiiiii e, 46
1.8.4. Capabilitiescccccceiiiiiiiiiiiiiiiii 46
1.8.5. Configuration Parameters (Optional)ccccooviiiiiiiiiiiiiinn, 47

2. CPE Developer's GUidecccceiiiiiiiiiiiiiiiiiiiicciie e 51
2.1. CPE CONCEPLS ..oviiiiiiiiiiiiiiiiiiccciiicce e 52
2.2. CPE Configurator and CAS viewerc.ccccoiiiiiiiiiiiiiiiiiiiiiiiecccies 53
2.2.1. Using the CPE Configuratorcccccoecviiiiiiiiiiiiiiiiiiiice, 53
2.2.2. Running the CPE Configurator from Eclipseccccccccein. 58

2.3. Running a CPE from Your Own Java Applicationcccccccceeiviiiiinnnnn. 59
2.3.1. Using Listenerscccccoiiiiiiiiiiii i, 59

2.4. Developing Collection Processing Componentsccccceeeiiiiiiinennnne. 59
2.4.1. Developing Collection Readerscccccooviiiiiiiiiiiiiiiiiii, 60

UIMA Tutorial and Developers' Guides

iv

UIMA Tutorial and Developers' Guides

2.4.2. Developing CAS Initializerscccccooviiiiiiiiiiiiiiiiii, 66
2.4.3. Developing CAS CONSUMETScccccoiiiiiiiiiiiiiiiiiiiiiiee e 67

2.5. Deploying a CPEccocoiiiiiiiiiiiiiiii 69
2.5.1. Deploying Managed CAS Processorscoceeeiiiiiiiiiiiiiiinennnne. 71
2.5.2. Deploying Non-managed CAS Processorscccceeevvirienneenne. 73
2.5.3. Deploying Integrated CAS Processorsccccoevvvviiiiiiiiiiinnnnn. 74

2.6. Collection Processing Examplesccccocciiiiiiiiiiiiiiiiiiiis 75
3. Application Developer's Guidecccooiiiiiiiiiiiiiiii 79
3.1. The UIMAFramework Classc..ccoccveiiiiiiiiiiiiiiiiiicccicccicecece 79
3.2. Using Analysis ENginescccccccovviiiiiiiiiiiiiiiiiiecs 80
3.2.1. Instantiating an Analysis Engineccccccooiiiiii 80
3.2.2. Analyzing Text Documentscccccooviiiiiiiiiniiiiiicc, 81
3.2.3. Analyzing Non-Text Artifactscccccccovviiiiiiiiiiiii, 82
3.2.4. Accessing Analysis Resultscccccccovviiiiiiiiiiiiini, 82
3.2.5. Multi-threaded Applicationscccccoeviiiiiiiiiiiiiiiiiii, 83
3.2.6. Multiple AEs & Creating Shared CASesccccoeviiiiiiiiiiiinnnn. 85
3.2.7. Saving CASes to file systemscccocviiiiiiiiiiiiiiii, 86

3.3. Using Collection Processing Enginesccccccccoiiiiiiiiiiiiiiiin, 86
3.3.1. Running a CPE from a Descriptorcccccocviiiiiiiiiiiiiniinii, 87
3.3.2. Configuring a CPE Descriptor Programmatically 87

3.4. Setting Configuration Parameterscccoecuviiiiiiiiiiiiiiiiieiiiiee e, 89
3.5. Integrating Text Analysis and Searchcccccocoiiiii, 90
3.5.1. Building an Indexcccccooviiiiiiiiiiii 90
3.5.2. Semantic Search Query Toolccccccoviiiiiiiiiiiiiii, 94

3.6. Working with Remote Servicesccccoviiiiiiiiiiiiii, 96
3.6.1. Deploying as SOAP Serviceccccccevviiiiiiiiiiiiiiiiiciiiecceee, 96
3.6.2. Deploying as a Vinci Servicecccoceviiiiiiiiiiiiiiiiiiiiiinn, 98
3.6.3. Calling @a UIMA Servicecccoviiiiiiiiiiiiiiiiiiiiciciiiiiiieeneenn 100
3.6.4. Restrictions on remotely deployed servicesc..ccocuvreenennnne. 101
3.6.5. The Vinci Naming Services (VINS)ccccccoviiiiiiiiiiiiiiiinnn, 102
3.6.6. Configuring Timeout Settingsccccviiiiiiiiiiiii 104

3.7. Increasing performance using parallelismcccccocciiiiiiiiiie. 107
3.8. Monitoring AE Performance using JMXccccccooiiiiiiiiiiiniiin, 108
4. Flow Controller Developer's Guideccccccooiiiiiiiiiiiiiiiiiiee 111
4.1. Developing the Flow Controller Codeccccceiiiiiiiiiiiiiiiiiinninne, 111
4.1.1. Flow Controller Interface OVerviewccccccoeviiiiiiiiiiiinnnnnn, 111
4.1.2. Example Codecccccooviiiiiiiiiiiiiiiii 112

4.2. Creating the Flow Controller Descriptorccccoiiiiiiiiiiiiiiiniinnn. 114
4.3. Adding Flow Controller to an Aggregatecccccceevvviiiiiiiiiiinininnns 116
4.4. Adding Flow Controller to CPEcccccooiiiiiiiiiii 117
4.5. Using Flow Controllers with CAS Multiplierscccccccoiviiiiiinnnnn. 118
5. Annotations, Artifacts & SOLAScovuniiiiniiiieiie e 119
5.1. TerminolOgYcc.cooviiiiiiiiiiiiiiiiii e 119
5110 ATtfact oo 119
5.1.2. Subject of Analysis — Sofacccceiiiiiiiiiiiii 119

UIMA Tutorial and Developers' Guides UIMA Version 2.1

UIMA Tutorial and Developers' Guides

5.2. Formats of Sofa Datacccooiiiiiiiiiiiiiiii 119
5.3. Setting and Accessing Sofa Datac..ccccoeoviiiiiiiiiii 120
5.3.1. Setting Sofa Dataccccoeuiiiiiiiiiiiiiiiiii 120
5.3.2. Accessing Sofa Dataccccooviiiiiiiiiiiiii 120
5.3.3. Accessing Sofa Data using a Java Streamccccoevviiiiinnnne. 121

5.4. The Sofa Feature Structurecociiiiiiiiiiiiiic 121
5.5. ANNOtAtiONSooooiiiiiiiiiiiiiii 122
5.5.1. Built-in Annotation typescccccoeviiiiiiiiiiiiiiiiii 122
5.5.2. Annotations have an associated Sofaccccoviiiiiiiin 122

5.6. AnnotationBasecccccoiii 122
6. Multiple CAS VIEWSooiiiiiiiiiiiiiicciicci e 125
6.1. CAS Views and S0fasccceeiiiiiiiiiiiiiiiiiiiccciecccc 125
6.1.1. Naming CAS Views and Sofasccccoviviiiiiiiiiiiiin, 125
6.1.2. Multi/Single View parts in Applicationsccccceeiiiiiiiinnne. 126

6.2. Multi-View COmMPONentsccoeviiiiiiiiiiiiiiiiiicecieccieceeccece 126
6.2.1. Deciding: Multi-Viewccccooiiiiiiiii 126
6.2.2. Multi-View: additional capabilitiesccccccoeiiiiiiiiin, 127
6.2.3. Component XML metadatacccccoooviiiiiiiiiiii 127

6.3. Sofa Capabilities & APIs for APPscccoevvviiiiiiiiiiiiiiiiiiicc 127
6.4. Sofa Name Mappingccccoevuviiiiiiiiiiiiiiiiiiicic e 128
6.4.1. Name Mapping in an Aggregate Descriptor 128
6.4.2. Name Mapping in a CPE Descriptorcocceiiiiiiiiiiiiiiiinn, 129
6.4.3. CAS View for Single-View Partsccccccciiiiiiiiiiiin. 130
6.4.4. Name Mapping in a UIMA Applicationccccccoeeviiiiiiininnin. 131
6.4.5. Name Mapping for Remote Servicesccccoevuiriiiiiiiiiiiininnnn, 131

6.5. JCas extensions for Multiple VIiewWscccooviiiiiiiiiiiiiini, 132
6.6. Sample Multi-View Applicationccccciiiiiiiiiiii, 132
6.6.1. Annotator Descriptorcccccc 132
6.6.2. Application Setupocoeviiiiiiiiiiii 133
6.6.3. Annotator Processingcccocevvviiiiiiiiiiiiiii 133
6.6.4. Accessing the results of analysiscccccccooiviiiiiiiii 134

6.7. Views API SUMMATYc.coooiiiiiiiiiiiiiiiiiiccccie e 135
6.8. Sofa Incompatibilities: V1 and V2c..ccocooiiiiiiiiii 135
7. CAS MULtIPliercccvviiiiiiiiiiiiiiii 137
7.1. Developing the CAS Multiplier Codecccccccovviiiiiiiiiiiinnnin 137
7.1.1. CAS Multiplier Interface OVerviewcccccocvriiiiiiiiiiniinnnne, 137
7.1.2. Getting an empty CAS Instanceccccvvvviiiiiiiiiiiiii, 138
7.1.3. Example Codecooiiiiiiiiiiiiiiii 139

7.2. CAS Multiplier Descriptoroooviiiiiiiiiiiiiiiiiciic, 142
7.3. Using CAS Multipliers in Aggregatesccccoovviiiiiiiiiiiiiiiiiciiiecenn, 143
7.3.1. Aggregate: Adding the CAS Multipliercccccciiiinnnnnn. 143
7.3.2. CAS Multipliers and Flow Controlccccccciivniiiiiiiinnn. 143
7.3.3. Aggregate CAS Multiplierscccccovviiiiiiiiiiiiiiii, 145

7.4. CAS Multipliers in CPE'scccccooviiiiiiiiiiiiiiie, 146
7.5. Applications: Calling CAS Multipliersccccccooiiiiiiiiiiiiii, 146

UIMA Version 2.1 UIMA Tutorial and Developers' Guides

Vi

UIMA Tutorial and Developers' Guides

7.5.1. 0Output CASescooviiiiiiiiiiiiiiiiic 146

7.5.2. CAS Multipliers with other AEsccccccoviiiiiiiiiiiiii, 147

7.6. Merging with CAS Multipliersccccccciiiiiiiiiiii, 148
7.6.1. CAS Merging OVerviewccccoiiiiiiiiiiiiiiiiiiiiicceciecce 148

7.6.2. Example CAS Mergercccccoovviiiiiiiiiiiiiiiceiiicccieccc e 149

7.6.3. SimpleTextMerger in an Aggregateccccccceviiiiiiiiiiiiinnnnn, 151

8. XMI & EMF ...ooiiiiiii 153
8.1 OVEIVIEW .oiiiiiiiiiiiiic i 153

8.2. Converting an Ecore Model to or from a UIMA Type System 154

8.3. Using XMI CAS Serializationcccooeviiiiiiiiiiiiie 154

UIMA Tutorial and Developers' Guides UIMA Version 2.1

Chapter 1. Annotator and Analysis
Engine Developer's Guide

This chapter describes how to develop UIMA type systems, Annotators and Analysis Engines
using the UIMA SDK. It is helpful to read the UIMA Conceptual Overview chapter for a
review on these concepts.

An Analysis Engine (AE) is a program that analyzes artifacts (e.g. documents) and infers
information from them.

Analysis Engines are constructed from building blocks called Annotators. An annotator is
a component that contains analysis logic. Annotators analyze an artifact (for example, a
text document) and create additional data (metadata) about that artifact. It is a goal of
UIMA that annotators need not be concerned with anything other than their analysis logic
— for example the details of their deployment or their interaction with other annotators.

An Analysis Engine (AE) may contain a single annotator (this is referred to as a Primitive
AE), or it may be a composition of others and therefore contain multiple annotators (this is
referred to as an Aggregate AE). Primitive and aggregate AEs implement the same
interface and can be used interchangeably by applications.

Annotators produce their analysis results in the form of typed Feature Structures, which
are simply data structures that have a type and a set of (attribute, value) pairs. An
annotation is a particular type of Feature Structure that is attached to a region of the
artifact being analyzed (a span of text in a document, for example).

For example, an annotator may produce an Annotation over the span of text Pr esi dent
Bush, where the type of the Annotation is Per son and the attribute f ul | Nanme has the
value George W Bush, and its position in the artifact is character position 12 through
character position 26.

It is also possible for annotators to record information associated with the entire document
rather than a particular span (these are considered Feature Structures but not
Annotations).

All feature structures, including annotations, are represented in the UIMA Common
Analysis Structure(CAS). The CAS is the central data structure through which all UIMA
components communicate. Included with the UIMA SDK is an easy-to-use, native Java
interface to the CAS called the JCas. The JCas represents each feature structure as a Java
object; the example feature structure from the previous paragraph would be an instance of
a Java class Person with getFullName() and setFullName() methods. Though the examples
in this guide all use the JCas, it is also possible to directly access the underlying CAS
system; for more information see Chapter 4, CAS Reference in UIMA References .

Annotator & AE Developer's Guide 1

../references/references.pdf#ugr.ref.cas

Getting Started

The remainder of this chapter will refer to the analysis of text documents and the creation
of annotations that are attached to spans of text in those documents. Keep in mind that the
CAS can represent arbitrary types of feature structures, and feature structures can refer to
other feature structures. For example, you can use the CAS to represent a parse tree for a
document. Also, the artifact that you are analyzing need not be a text document.

This guide is organized as follows:

* Section 1.1, “Getting Started” [2] is a tutorial with step-by-step instructions for how to
develop and test a simple UIMA annotator.

* Section 1.2, “Configuration and Logging” [14]discusses how to make your UIMA
annotator configurable, and how it can write messages to the UIMA log file.

* Section 1.3, “Building Aggregate Analysis Engines” [21]describes how annotators can be
combined into aggregate analysis engines. It also describes how one annotator can
make use of the analysis results produced by an annotator that has run previously.

* Section 1.4, “Other examples” [27]describes several other examples you may find
interesting, including
¢ SimpleTokenAndSentenceAnnotator — a simple tokenizer and sentence annotator.
¢ PersonTitleDBWriterCasConsumer — a sample CAS Consumer which populates a
relational database with some annotations. It uses JDBC and in this example, hooks
up with the Open Source Apache Derby database.

e Section 1.5, “Additional Topics” [28] describes additional features of the UIMA SDK
that may help you in building your own annotators and analysis engines.

* Section 1.6, “Common Pitfalls” [43]contains some useful guidelines to help you ensure
that your annotators will work correctly in any UIMA application.

This guide does not discuss how to build UIMA Applications, which are programs that
use Analysis Engines, along with other components, e.g. a search engine, document store,
and user interface, to deliver a complete package of functionality to an end-user. For
information on application development, see Chapter 3: “Application Developer's Guide”
[79].

1.1. Getting Started

This section is a step-by-step tutorial that will get you started developing UIMA
annotators. All of the files referred to by the examples in this chapter are in the exanpl es
directory of the UIMA SDK. This directory is designed to be imported into your Eclipse
workspace; see Section 3.2, “Setting up Eclipse to view Example Code” in Overview &
Setup for instructions on how to do this. Also you may wish to refer to the UIMA SDK
JavaDocs located in the docs/api1 directory.

2 Annotator & AE Developer's Guide UIMA Version 2.1

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code
file:api/index.html

Defining Types

Note: In Eclipse 3.1, if you highlight a UIMA class or method defined in the
UIMA SDK JavaDocs, you can conveniently have Eclipse open the corresponding
JavaDoc for that class or method in a browser, by pressing Shift + F2.

The example annotator that we are going to walk through will detect room numbers for
rooms where the room numbering scheme follows some simple conventions. In our
example, there are two kinds of patterns we want to find; here are some examples,
together with their corresponding regular expression patterns:

Yorktown patterns:
20-001, 31-206, 04-123(Regular Expression Pattern: ##-[0-2]##)

Hawthorne patterns:
GN-K35, 15-L07, 4N-B21 (Regular Expression Pattern: [G1-4][NS]-[A-Z]##)

There are several steps to develop and test a simple UIMA annotator.
. Define the CAS types that the annotator will use.

. Generate the Java classes for these types.

. Write the actual annotator Java code.

. Create the Analysis Engine descriptor.

Ol = W N

. Test the annotator.

These steps are discussed in the next sections.

1.1.1. Defining Types

The first step in developing an annotator is to define the CAS Feature Structure types that
it creates. This is done in an XML file called a Type System Descriptor. UIMA defines basic
primitive types such as Boolean, Byte, Short, Integer, Long, Float, and Double, as well as
Arrays of these primitive types. UIMA also defines the built-in types TOP, which is the
root of the type system, analogous to Object in Java; FSAr r ay, which is an array of Feature
Structures (i.e. an array of instances of TOP); and Annot at i on, which we will discuss in
more detail in this section.

UIMA includes an Eclipse plug-in that will help you edit Type System Descriptors, so if
you are using Eclipse you will not need to worry about the details of the XML syntax. See
Chapter 3, Setting up the Eclipse IDE to work with UIMA in Ouverview & Setup for
instructions on setting up Eclipse and installing the plugin.

The Type System Descriptor for our annotator is located in the file
descriptors/tutorial/exl/ Tutorial TypeSystem xm . (This and all other examples
are located in the exanpl es directory of the installation of the UIMA SDK, which can be
imported into an Eclipse project for your convenience, as described in Section 3.2, “Setting
up Eclipse to view Example Code” in Overview & Setup.)

1 file:api/index.html

UIMA Version 2.1 Annotator & AE Developer's Guide 3

file:api/index.html
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code

Defining Types

In Eclipse, expand the ui maj - exanpl es project in the Package Explorer view, and browse
to the file descri ptors/tutorial / ex1/ Tut ori al TypeSyst em xni . Right-click on the file
in the navigator and select Open With — Component Descriptor Editor. Once the editor
opens, click on the “Type System” tab at the bottom of the editor window. You should see
a view such as the following:

B TutoriaTypesystem.aml 52]
TutorialTypeSystem, xml

Type System Definition

+ Types (or Classes) + Imported Type Systems
The following types (dasses) are defined in this analysis engine descriptor, The following type systems are included as
The grayed out items are imported or merged from other descriptors, and cannot be edited here. (To part of this one.
edit them, edit their source files).

_Type Mame or Feature Mame SuperType or Range Element Type Add Type —

—| org.apache.uima. tutorial.RoomMumber uima. tcas, Annotation -_E atar'a

buildi ima. cas. Stri Add... ; z
- SR - Kind | Location/Name

Overview | Type System Source

Our annotator will need only one type — or g. apache. ui ma. tut ori al . RoomNunber . (We
use the same namespace conventions as are used for Java classes.) Just as in Java, types
have supertypes. The supertype is listed in the second column of the left table. In this case
our RoomNumber annotation extends from the built-in type ui ma. t cas. Annot at i on.

Descriptions can be included with types and features. In this example, there is a
description associated with the bui | di ng feature. To see it, hover the mouse over the
feature.

The bottom tab labeled “Source” will show you the XML source file associated with this
descriptor.

The built-in Annotation type declares three fields (called Features in CAS terminology).
The features begi n and end store the character offsets of the span of text to which the
annotation refers. The feature sof a (Subject of Analysis) indicates which document the
begin and end offsets point into. The sof a feature can be ignored for now since we
assume in this tutorial that the CAS contains only one subject of analysis (document).

Our RoomNumber type will inherit these three features from ui na. t cas. Annot ati on, its
supertype; they are not visible in this view because inherited features are not shown. One
additional feature, bui | di ng, is declared. It takes a String as its value. Instead of String,
we could have declared the range-type of our feature to be any other CAS type (defined or
built-in).

Annotator & AE Developer's Guide UIMA Version 2.1

Generating Java Source Files for CAS Types

If you are not using Eclipse, if you need to edit the type system, do so using any XML or
text editor, directly. The following is the actual XML representation of the Type System
displayed above in the editor:

<?xm version="1.0" encodi ng="UTF-8" ?>
<t ypeSyst enDescri pti on xm ns="http://ui ma. apache. or g/ resourceSpeci fier">
<name>Tut ori al TypeSyst enx/ name>
<descri pti on>Type System Definition for the tutorial exanples -
as of Exercise 1</description>
<vendor >Apache Software Foundati on</vendor>
<ver si on>1. 0</ ver si on>
<t ypes>
<t ypeDescri pti on>
<name>or g. apache. ui na. t ut ori al . RoonNunber </ nanme>
<descri pti on></ descri pti on>
<supert ypeNanme>ui nma. t cas. Annot at i on</ supert ypeNane>
<f eat ures>
<f eat ureDescri pti on>
<name>bui | di ng</ nanme>
<descri pti on>Bui | di ng containing this roonx/description>
<rangeTypeNane>ui ma. cas. Stri ng</rangeTypeNane>
</ f eatureDescription>
</features>
</typeDescri ption>
</types>
</ typeSyst enDescri pti on>

1.1.2. Generating Java Source Files for CAS Types

When you save a descriptor that you have modified, the Component Descriptor Editor
will automatically generate Java classes corresponding to the types that are defined in that
descriptor (unless this has been disabled), using a utility called JCasGen. These Java
classes will have the same name (including package) as the CAS types, and will have get
and set methods for each of the features that you have defined.

This feature is enabled/disabled using the UIMA menu pulldown (or the Eclipse
Preferences — UIMA). If automatic running of JCasGen is not happening, please make
sure the option is checked:

o S

Fie Edt Nevigate Seach Project Run UIMA Window Hep
Run JCasEen .
Settings F o Auto generate JCAS source java files when changing types
v Dhsplay fully qualified type names

The Java class for the example org.apache.uima.tutorial. RoomNumber type can be found
in src/ or g/ apache/ ui ma/ t ut ori al / RoomNunber . j ava . You will see how to use these
generated classes in the next section.

If you are not using the Component Descriptor Editor, you will need to generate these
Java classes by using the JCasGen tool. JCasGen reads a Type System Descriptor XML file
and generates the corresponding Java classes that you can then use in your annotator

UIMA Version 2.1 Annotator & AE Developer's Guide 5

Developing Your Annotator Code

code. To launch JCasGen, run the jcasgen shell script located in the / bi n directory of the
UIMA SDK installation. This should launch a GUI that looks something like this:

& ICasten BE*

Fis Help

.fliﬁl,. Unstructured Information Management Archileciurne
m. Am Apocie Baxnbaior Prapect
Wekema ta the JCasiGan bool, 'fou can drsg corners ko rasize.

?.‘ Djapashs-uimal exanples) descriptors) tutoriall exl) BoopNumber Annatator . xml
Input File: Eritaags

2 temp
Dkt Directory! Bircwasa

Use the “Browse” buttons to select your input file (Tutorial TypeSystem.xml) and output
directory (the root of the source tree into which you want the generated files placed). Then
click the “Go” button. If the Type System Descriptor has no errors, new Java source files
will be generated under the specified output directory.

There are some additional options to choose from when running JCasGen; please refer to
the Chapter 6, JCasGen User's Guide in UIMA Tools Guide and Reference for details.

1.1.3. Developing Your Annotator Code

Annotator implementations all implement a standard interface (AnalysisComponent),
having several methods, the most important of which are:

einitialize,

® process, and

e destroy.

initializeiscalled by the framework once when it first creates an instance of the
annotator class. pr ocess is called once per item being processed. dest r oy may be called
by the application when it is done using your annotator. There is a default
implementation of this interface for annotators using the JCas, called
JCasAnnotator_ImplBase, which has implementations of all required methods except for
the process method.

Our annotator class extends the JCasAnnotator_ImplBase; most annotators that use the
JCas will extend from this class, so they only have to implement the process method. This
class is not restricted to handling just text; see Chapter 5, Annotations, Artifacts, and Sofas
[119]

6 Annotator & AE Developer's Guide UIMA Version 2.1

../tools/tools.pdf#ugr.tools.jcasgen

Developing Your Annotator Code

Annotators are not required to extend from the JCasAnnotator_ImplBase class; they may
instead directly implement the AnalysisComponent interface, and provide all method
implementations themselves. 2 This allows you to have your annotator inherit from some
other superclass if necessary. If you would like to do this, see the JavaDocs for
JCasAnnotator for descriptions of the methods you must implement.

Annotator classes need to be public, cannot be declared abstract, and must have public,
0-argument constructors, so that they can be instantiated by the framework. ’,

The class definition for our RoomNumberAnnotator implements the process method, and
is shown here. You can find the source for this in the
ui maj - exanpl es/ src/ org/ apache/ ui ma/tutori al / exl/ RoonNunber Annot at or. j ava.

Note: In Eclipse, in the “Package Explorer” view, this will appear by default in
the project ui maj - exanpl es, in the folder sr c, in the package
org. apache. ui ma. tutori al . ex1.
In Eclipse, open the RoomNumberAnnotator.java in the uimaj-examples project, under
the src directory.

package org. apache. uima.tutorial.exl;

i mport java.util.regex. Mat cher;
import java.util.regex. Pattern;

i mport org. apache. ui ma. anal ysi s_conponent . JCasAnnot at or _I npl Base;
i mport org. apache. ui ma. j cas. JCas;
i mport org.apache. ui na. tutori al . RoomNunber ;

/**
* Exanpl e annotator that detects room nunbers using
* Java 1.4 regul ar expressions.
*/
publ i c class RoomNunmber Annot at or ext ends JCasAnnot at or _I npl Base {
private Pattern n¥orktownPattern =
Pattern. conpil e("\\b[0-4]\\d-[0-2]\\d\\d\\b");

private Pattern nHawt hornePattern =
Pattern. conpil e("\\b[GL-4] [NS] -[A-Z]\\d\\d\\b");

public void process(JCas aJCas) {
/'l Discussed Later

}
}

The two Java class fields, mYorktownPattern and mHawthornePattern, hold regular

*Note that AnalysisComponent is not specific to JCAS. There is a method getRequiredCasInterface() which the
user would have to implement to return JCas. cl ass. Then in the process(Abstract Cas cas)
method, they would need to typecast cas to type JCas.

3 Although Java classes in which you do not define any constructor will, by default, have a 0-argument
constructor that doesn't do anything, a class in which you have defined at least one constructor does not get a
default 0-argument constructor.

UIMA Version 2.1 Annotator & AE Developer's Guide 7

Developing Your Annotator Code

expressions that will be used in the process method. Note that these two fields are part of
the Java implementation of the annotator code, and not a part of the CAS type system. We
are using the regular expression facility that is built into Java 1.4. It is not critical that you
know the details of how this works, but if you are curious the details can be found in the
Java API docs for the java.util.regex package.

The only method that we are required to implement is pr ocess. This method is typically
called once for each document that is being analyzed. This method takes one argument,
which is a JCas instance; this holds the document to be analyzed and all of the analysis
results. *

public void process(JCas aJCas) {
/1 get docunent text
String docText = aJCas. get Docunment Text () ;
/'l search for Yorktown room nunbers
Mat cher mat cher = mvYor kt ownPat t er n. mat cher (docText) ;
int pos = 0;
whil e (matcher.find(pos)) {
/1 found one - create annotation
Room\umber annot ati on = new RoomNunber (aJCas) ;
annot ati on. set Begi n(mat cher.start());
annot ati on. set End(mat cher. end());
annot at i on. set Bui | di ng(" Yor kt own") ;
annot at i on. addTol ndexes() ;
pos = matcher. end();

/'l search for Hawt horne room nunbers
mat cher = nHawt hor nePat t er n. mat cher (docText);
pos = 0;
whil e (matcher.find(pos)) {
/1 found one - create annotation
Room\umber annot ati on = new RoomNunber (aJCas) ;
annot ati on. set Begi n(matcher.start());
annot ati on. set End(mat cher. end());
annot at i on. set Bui | di ng(" Hawt hor ne") ;
annot at i on. addTol ndexes() ;
pos = mat cher. end();

The Matcher class is part of the java.util.regex package and is used to find the room
numbers in the document text. When we find one, recording the annotation is as simple as
creating a new Java object and calling some set methods:

Room\umber annot ati on = new RoomNunber (aJCas) ;
annot ati on. set Begi n(matcher.start());

annot ati on. set End(mat cher. end());

annot at i on. set Bui | di ng(" Yor kt own") ;

*Version 1 of UIMA specified an additional parameter, the ResultSpecification. This provides a specification of
which types and features are desired to be computed and "output” from this annotator. Its use is optional; many
annotators ignore it.

This parameter has been replaced by specific set/getResultSpecification() methods, which allow the annotator to
receive a signal (a method call) when the result specification changes.

Annotator & AE Developer's Guide UIMA Version 2.1

Creating the XML Descriptor

The RoomNunber class was generated from the type system description by the Component
Descriptor Editor or the JCasGen tool, as discussed in the previous section.

Finally, we call annot at i on. addTol ndexes() to add the new annotation to the indexes
maintained in the CAS. By default, the CAS implementation used for analysis of text
documents keeps an index of all annotations in their order from beginning to end of the
document. Subsequent annotators or applications use the indexes to iterate over the
annotations.

Note: If you don't add the instance to the indexes, it cannot be retrieved by
down-stream annotators, using the indexes.

Note: You can also call addTol ndexes() on Feature Structures that are not
subtypes of ui ma. t cas. Annot at i on, but these will not be sorted in any particular
way. If you want to specify a sort order, you can define your own custom indexes
in the CAS: see Chapter 4, CAS Reference in UIMA References and Section 2.4.1.7,
“Index Definition” in UIMA References for details.

We're almost ready to test the RoomNumberAnnotator. There is just one more step
remaining.

1.1.4. Creating the XML Descriptor

The UIMA architecture requires that descriptive information about an annotator be
represented in an XML file and provided along with the annotator class file(s) to the
UIMA framework at run time. This XML file is called an Analysis Engine Descriptor. The
descriptor includes:

* Name, description, version, and vendor

* The annotator's inputs and outputs, defined in terms of the types in a Type System
Descriptor

¢ Declaration of the configuration parameters that the annotator accepts

The Component Descriptor Editor plugin, which we previously used to edit the Type System
descriptor, can also be used to edit Analysis Engine Descriptors.

A descriptor for our RoomNumberAnnotator is provided with the UIMA distribution
under the name descri pt ors/tutori al / exl/ RoomNunber Annot at or. xml . To edit it in
Eclipse, right-click on that file in the navigator and select Open With — Component
Descriptor Editor.

Tip: In Eclipse, you can double click on the tab at the top of the Component
Descriptor Editor's window identifying the currently selected editor, and the
window will “Maximize”. Double click it again to restore the original size.

UIMA Version 2.1 Annotator & AE Developer's Guide 9

../references/references.pdf#ugr.ref.cas
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.index
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.index

10

Creating the XML Descriptor

If you are not using Eclipse, you will need to edit Analysis Engine descriptors manually.
See Section 1.8, “Analysis Engine XML Descriptor” [45]for an introduction to the Analysis
Engine descriptor XML syntax. The remainder of this section assumes you are using the
Component Descriptor Editor plug-in to edit the Analysis Engine descriptor.

The Component Descriptor Editor consists of several tabbed pages; we will only need to
use a few of them here. For more information on using this editor, see Chapter 1,
Component Descriptor Editor User's Guide in UIMA Tools Guide and Reference .

The initial page of the Component Descriptor Editor is the Overview page, which appears
as follows:

2 Roomtiumber Annotatar i 1 =5
Ropmiumber Annotator. xm

Overview
= Implementation Details = Owerall Identification Information
Implementation Language {1 C/C++ (& Java This section specifies the bask identification
o~ infarmation for this desoiphor
Ergne Type (e} Primitiwe (} Aggregate
Name Rgom Mumber Armatator

= Runtime Information

This section describes information about haw to run this component Venaen L0

[Flupdatas the Cas Verder Thie Apache Saftware Faundation
[#] multiple deployment alawed Descriphen: | An example arnotator that

Ouibputs e CASE seerches far ragm rumbers in the
Cloutpute n o2 TBM Waksan ressarch buidings.
tame of the Java dass fle org.apache uima. tutonal. ex 1 Roomiumber Annotator
Browse)

Ovarvew [Aggragate | Parametars | Parametar Settings | Type Systam | Capablities | Indexes | Resources | Source |

This presents an overview of the RoomNumberAnnotator Analysis Engine (AE). The left
side of the page shows that this descriptor is for a Primitive AE (meaning it consists of a
single annotator), and that the annotator code is developed in Java. Also, it specifies the
Java class that implements our logic (the code which was discussed in the previous
section). Finally, on the right side of the page are listed some descriptive attributes of our
annotator.

The other two pages that need to be filled out are the Type System page and the
Capabilities page. You can switch to these pages using the tabs at the bottom of the
Component Descriptor Editor. In the tutorial, these are already filled out for you.

The RoomNumberAnnotator will be using the Tutorial TypeSystem we looked at in
Section Section 1.1.1, “Defining Types” [3]. To specify this, we add this type system to the
Analysis Engine's list of Imported Type Systems, using the Type System page's right side
panel, as shown here:

Annotator & AE Developer's Guide UIMA Version 2.1

../tools/tools.pdf#ugr.tools.cde
../tools/tools.pdf#ugr.tools.cde

Creating the XML Descriptor

Type System Definition

* Types (or Classes) + Imported Type Syr_itemi

The foliowing types (dasses) are defined in this analysis engine desoriptor, The following type systems are included as
The grayed out items are imported or merged from other descriptors, and cannot be part of this one,

edited here. {To edit them, edit their source files), =
Type Mame or Feature Name SuperType or Range Add Type
= org.apache . uima. tutorial Roomiumber wima, teas. Annotation set Datfath

Kind LocationMame
By Location TutoralTypeSystem.sam

< I (2]

On the Capabilities page, we define our annotator's inputs and outputs, in terms of the
types in the type system. The Capabilities page is shown below:

2 RoomMumberAnnotatar sl Eé* ==

FoomMumberAnnotator. xml

Capabilities: Inputs and Outputs

= Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of
the Types and Features.

Mame Input | Output | MName Space [Add Capability Set]
[~ set
Land... [Add Language]
Sofas
= Type: Roombumber Output org.apache,uima. hutorial [Add Type]
building Cutput [YT]
[Remove]

¢ Sofa Mappings (Only used in aggregate Descriptors)

Although capabilities come in sets, having multiple sets is deprecated; here we're just

using one set. The RoomNumberAnnotator is very simple. It requires no input types, as it

operates directly on the document text -- which is supplied as a part of the CAS
initialization (and which is always assumed to be present). It produces only one output

type (RoomNumber), and it sets the value of the bui | di ng feature on that type. This is all

represented on the Capabilities page.

UIMA Version 2.1 Annotator & AE Developer's Guide

11

Testing Your Annotator

The Capabilities page has two other parts for specifying languages and Sofas. The
languages section allows you to specify which languages your Analysis Engine supports.
The RoomNumberAnnotator happens to be language-independent, so we can leave this
blank. The Sofas section allows you to specify the names of additional subjects of analysis.
This capability and the Sofa Mappings at the bottom are advanced topics, described in
Chapter 5, Annotations, Artifacts, and Sofas [119]

This is all of the information we need to provide for a simple annotator. If you want to
peek at the XML that this tool saves you from having to write, click on the “Source” tab at
the bottom to view the generated XML.

1.1.5

12

Testing Your Annotator

Having developed an annotator, we need a way to try it out on some example documents.
The UIMA SDK includes a tool called the Document Analyzer that will allow us to do this.
To run the Document Analyzer, execute the documentAnalyzer shell script that is in the

bi n directory of your UIMA SDK installation, or, if you are using the example Eclipse
project, execute the “UIMA Document Analyzer” run configuration supplied with that
project. (To do this, click on the menu bar Run - Run ... » and under Java Applications
in the left box, click on UIMA Document Analyzer.)

You should see a screen that looks like this:

#f Document Analyzer E@@
File Hep
"'_.ﬂ Unstructured Information Management Architecture
) JI . An dpache Browbator Progect
Irpuk Directory: | examplesidats Browse..
Dukpk Directory: | examples\datsiprocessed Browse..
Location of Analysis Engine SML Descriptor: | examplesidescriptorslanabesis_engineiPersonTibesnnotator.xml Browse. |
¥ML Tag conkaining Text {optional):
Langusge: &0]
Character Encodng: LITF-3 :|
[Run | I Inkeractive] I Wisw]

There are six options on this screen:
1. Directory containing documents to analyze
2. Directory where analysis results will be written

3. The XML descriptor for the Analysis Engine (AE) you want to run

Annotator & AE Developer's Guide UIMA Version 2.1

Testing Your Annotator

4. (Optional) an XML tag, within the input documents, that contains the text to be
analyzed. For example, the value TEXT would cause the AE to only analyze the portion
of the document enclosed within <TEXT>...</TEXT> tags.

5. Language of the document
6. Character encoding

Use the Browse button next to the third item to set the “Location of AE XML Descriptor”
field to the descriptor we've just been discussing —

<wher e-you-instal | ed-ui ma-e. g. U MA_HOVE>

/ exanpl es/ descri ptors/tutorial /ex1l/ RoomNunber Annot at or . xnl . Set the other
fields to the values shown in the screen shot above (which should be the default values if
this is the first time you've run the Document Analyzer). Then click the “Run” button to
start processing.

When processing completes, an “Analysis Results” window should appear.
"

|

Theze are the Analyzed Documents.
=elect wievver type ahd double-click file to open.

|#] IBM_LifeSciences tx

[#] Mew _EM_Fellowes txt

@ zeminarChallengesinspeechRecognition tx
@ TrainablelnformationExtractionsy stems txd
E UIMASummer School2003

[#] Uina_Seminars tx

@ WatzonConferenceRooms tit

Rezults Display Format, () Java Viewer (JHTML () XML

| Performance Stats]| Cloze]

Make sure “Java Viewer” is selected as the Results Display Format, and double-click on
the document UIMASummerSchool2003.txt to view the annotations that were discovered.
The view should look something like this:

UIMA Version 2.1 Annotator & AE Developer's Guide 13

Configuration and Logging

4
Chck In Tex to See Annotation Detad
led

LA, Surrinsdr Sohodl f-!"'-

August 26, 2003

LA 10 - The Nevw LEWLA, Indrochaction
(Hards-on Tuforsal)

S O0AM-5.00PM in HAW GREKES

Augast 28, 2003
FROST Tuforial
S D0AM-S 00PN) HaW GN-H3S

September 15, 2003

LA, 20 UBMA, Advanced Topics
(Harids-on Tutceial)

SD0AM-5 00PM i HaWYW 15-F53

Sepbember 17, 2003

The LA, System inlegration Test and Hardening Service
Thas *SITH®

S00PM-4:30PM in HEW GN-KES

eoend
[JDocumenta, ., [#] Roombhumber

| Selectal || DeselectAl | ViewerMode: (3) Annctations () Entties

You can click the mouse on one of the highlighted annotations to see a list of all its
features in the frame on the right.

Note: The legend will only show those types which have at least one instance in
the CAS, and are declared as outputs in the capabilities section of the descriptor
(see Section 1.1.4, “Creating the XML Descriptor” [9].

You can use the DocumentAnalyzer to test any UIMA annotator — just make sure that the
annotator's classes are in the class path.

1.2. Configuration and Logging

1.2.1. Configuration Parameters

14

The example RoomNumberAnnotator from the previous section used hardcoded regular
expressions and location names, which is obviously not very flexible. For example, you
might want to have the patterns of room numbers be supplied by a configuration
parameter, rather than having to redo the annotator's Java code to add additional
patterns. Rather than add a new hardcoded regular expression for a new pattern, a better
solution is to use configuration parameters.

Annotator & AE Developer's Guide UIMA Version 2.1

Configuration Parameters

UIMA allows annotators to declare configuration parameters in their descriptors. The

descriptor also specifies default values for the parameters, though these can be overridden
at runtime.

1.2.1.1. Declaring Parameters in the Descriptor

The example descriptor descri ptors/tutori al / ex2/ Room\unber Annot at or . xni is the
same as the descriptor from the previous section except that information has been filled in
for the Parameters and Parameter Settings pages of the Component Descriptor Editor.

First, in Eclipse, open example two's RoomNumberAnnotator in the Component
Descriptor Editor, and then go to the Parameters page (click on the parameters tab at the
bottom of the window), which is shown below:

%’ RoomMNumberfnnotatorxml &2 =
RoomMumberAnnotator xml
Parameter Definitions
& Configuration Parameters + Mot Used

This section shows all configuration parameters defined for this This part is onhy used for Aggregate
engine. Descriptors
[Use Parameter Groups

=|-=Mot in amy group:= Add
Multi Req String Mame: Pattems

Multi Req String MName: i ..
List of room number regular expression patttems.

Edi

Remove

Owerview | Agaregate | Parameters | Parameter Settings | Type System | Capabilities | Indexes Flesu:nurces:‘ﬁ

Two parameters — Patterns and Locations -- have been declared. In this screen shot, the
mouse (not shown) is hovering over Patterns to show its description in the small popup
window. Every parameter has the following information associated with it:

* name — the name by which the annotator code refers to the parameter
¢ description — a natural language description of the intent of the parameter

* type — the data type of the parameter's value — must be one of String, Integer, Float, or
Boolean.

e multiValued - true if the parameter can take multiple-values (an array), false if the

UIMA Version 2.1 Annotator & AE Developer's Guide 15

Configuration Parameters

parameter takes only a single value. Shown above as Mul ti .

* mandatory — true if a value must be provided for the parameter. Shown above as Req
(for required).

Both of our parameters are mandatory and accept an array of Strings as their value.

Next, default values are assigned to the parameters on the Parameter Settings page:

%’ RoomMNumberfnnotatorxml &3 1
RoomMumberAnnotator xml

Parameter Settings (HHE=

= Configuration Parameters = Values

This section list all corfiguration parameters, either Specify the value of the selected corfiguration

as plain parameters, or as part of one or more parameter.

groups. Select one to show, or set the value in the _

right hand panel. Value

=+ Mot in any group:

y : ; “bl0-4Pd-[0-21d d b
Multi Req St MName: Patt :
e bl 4iNS AT dd
Multi Req String Mame: Locations . PR
b1 2HA-Zd Wb Edit

Walue list: Remove

Up

Down

Cwerview | Agaregate | Farameters :F'alameter Settings | Type System | Capahbilties | Indexes | Resources :»‘I

Here the “Patterns” parameter is selected, and the right pane shows the list of values for
this parameter, in this case the regular expressions that match particular room numbering
conventions. Notice the third pattern is new, for matching the style of room numbers in
the third building, which has room numbers such as J2- A11.

1.2.1.2. Accessing Parameter Values from the Annotator Code

16

The class or g. apache. ui ma. t ut ori al . ex2. RoonNunber Annot at or has overridden the
initialize method. The initialize method is called by the UIMA framework when the
annotator is instantiated, so it is a good place to read configuration parameter values. The
default initialize method does nothing with configuration parameters, so you have to
override it. To see the code in Eclipse, switch to the src folder, and open

org. apache. ui ma. tutori al . ex2. Here is the method body:

/**

* @ee Anal ysi sConponent#initialize(U naCont ext)
*/

public void initialize(U maContext aContext)

Annotator & AE Developer's Guide UIMA Version 2.1

Configuration Parameters

throws ResourcelnitializationException {
super.initialize(aContext);

/1 CGet config. paraneter val ues
String[] patternStrings =

(String[]) aContext.getConfigParaneterVal ue("Patterns");
mLocations =

(String[]) aContext.getConfigParaneterVal ue("Locations");

/1 conpile regul ar expressions

nmPatterns = new Pattern[patternStrings.|ength];

for (int i =0; i < patternStrings.length; i++) {
nmPatterns[i] = Pattern.conpile(patternStrings[i]);

}
}

Configuration parameter values are accessed through the UimaContext. As you will see in
subsequent sections of this chapter, the UimaContext is the annotator's access point for all
of the facilities provided by the UIMA framework — for example logging and external
resource access.

The UimaContext's get Conf i gPar anet er Val ue method takes the name of the parameter
as an argument; this must match one of the parameters declared in the descriptor. The
return value of this method is a Java Object, whose type corresponds to the declared type
of the parameter. It is up to the annotator to cast it to the appropriate type, String[] in this
case.

If there is a problem retrieving the parameter values, the framework throws an exception.
Generally annotators don't handle these, and just let them propagate up.

To see the configuration parameters working, run the Document Analyzer application and
select the descriptor

exanpl es/ descriptors/tutorial/ex2/ RoomNunber Annot at or . xni . In the example
document Wat sonConf er enceRoons. t xt, you should see some examples of Hawthorne II
room numbers that would not have been detected by the ex1 version of
RoomNumberAnnotator.

1.2.1.3. Supporting Reconfiguration

If you take a look at the JavaDocs (located in the docs./api5 directory) for

or g. apache. ui ma. anal ysi s_conponent . Anaysi sConponent (which our annotator
implements indirectly through JCasAnnotator_ImplBase), you will see that there is a
reconfigure() method, which is called by the containing application through the UIMA
framework, if the configuration parameter values are changed.

The AnalysisComponent_ImplBase class provides a default implementation that just calls
the annotator's destroy method followed by its initialize method. This works fine for our

5 api/index.html

UIMA Version 2.1 Annotator & AE Developer's Guide 17

api/index.html
api/index.html

Logging

annotator. The only situation in which you might want to override the default
reconfigure() is if your annotator has very expensive initialization logic, and you don't
want to reinitialize everything if just one configuration parameter has changed. In that
case, you can provide a more intelligent implementation of reconfigure() for your
annotator.

1.2.1.4. Configuration Parameter Groups

For annotators with many sets of configuration parameters, UIMA supports organizing
them into groups. It is possible to define a parameter with the same name in multiple
groups; one common use for this is for annotators that can process documents in several
languages and which want to have different parameter settings for the different
languages.

The syntax for defining parameter groups in your descriptor is fairly straightforward — see
Chapter 2, Component Descriptor Reference in UIMA References for details. Values of
parameters defined within groups are accessed through the two-argument version of

U maCont ext . get Conf i gPar anet er Val ue, which takes both the group name and the
parameter name as its arguments.

1.2.2.

18

Logging

The UIMA SDK provides a logging facility, which is very similar to the
java.util.logging.Logger class that was introduced in Java 1.4.

In the Java architecture, each logger instance is associated with a name. By convention,
this name is often the fully qualified class name of the component issuing the logging call.
The name can be referenced in a configuration file when specifying which kinds of log
messages to actually log, and where they should go.

The UIMA framework supports this convention using the Ui maCont ext object. If you
access a logger instance using get Cont ext () . get Logger () within an Annotator, the
logger name will be the fully qualified name of the Annotator implementation class.

Here is an example from the process method of
org. apache. ui ma. tutorial . ex2. RoomNunber Annot at or :

get Cont ext (). get Logger (). og(Level . FI NEST, "Found: " + annotation);

The first argument to the log method is the level of the log output. Here, a value of
FINEST indicates that this is a highly-detailed tracing message. While useful for
debugging, it is likely that real applications will not output log messages at this level, in
order to improve their performance. Other defined levels, from lowest to highest
importance, are FINER, FINE, CONFIG, INFO, WARNING, and SEVERE.

Annotator & AE Developer's Guide UIMA Version 2.1

../references/references.pdf#ugr.ref.xml.component_descriptor

Logging

If no logging configuration file is provided (see next section), the Java Virtual Machine
defaults would be used, which typically set the level to INFO and higher messages, and
direct output to the console.

If you specify the standard UIMA SDK Logger . properti es, the output will be directed
to a file named uima.log, in the current working directory (often the “project” directory
when running from Eclipse, for instance).

Note: When using Eclipse, the uima.log file, if written into the Eclipse
workspace in the project uimaj-examples, for example, may not appear in the
Eclipse package explorer view until you right-click the uimaj-examples project
with the mouse, and select “Refresh”. This operation refreshes the Eclipse display
to conform to what may have changed on the file system. Also, you can set the
Eclipse preferences for the workspace to automatically refresh (Window —
Preferences — General — Workspace, then click the “refresh automatically”
checkbox.

1.2.2.1. Specifying the Logging Configuration

The standard UIMA logger uses the underlying Java 1.4 logging mechanism. You can use
the APIs that come with that to configure the logging. In addition, the standard Java 1.4
logging initialization mechanisms will look for a Java System Property named
java.util.logging. config.fileand if found, will use the value of this property as the
name of a standard “properties” file, for setting the logging level. Please refer to the Java
1.4. documentation for more information on the format and use of this file.

Two sample logging specification property files can be found in the UIMA_HOME
directory where the UIMA SDK is installed: conf i g/ Logger . properti es, and

confi g/ Fi |l eConsol eLogger . properti es. These specify the same logging, except the
tirst logs just to a file, while the second logs both to a file and to the console. You can edit
these files, or create additional ones, as described below, to change the logging behavior.

When running your own Java application, you can specify the location of the logging
configuration file on your Java command line by setting the Java system property

java.util.logging.config.filetobe the logging configuration filename. This file
specification can be either absolute or relative to the working directory. For example:

java "-Djava.util.logging.config.file=C/Program Fil es/apache-ui ma/ confi g/ Logger. properties"

Note: In a shell script, you can use environment variables such as UIMA_HOME
if convenient.

If you are using Eclipse to launch your application, you can set this property in the VM
arguments section of the Arguments tab of the run configuration screen. If you've set an
environment variable UIMA_HOME, you could for example, use the string:

"-Djava. util.logging.config.file=${env_var: U MA HOVE}/ confi g/ Logger. properties".

UIMA Version 2.1 Annotator & AE Developer's Guide 19

Logging

1.2.2.2. Setting Logging Levels

Within the logging control file, the default global logging level specifies which kinds of
events are logged across all loggers. For any given facility this global level can be
overridden by a facility specific level. Multiple handlers are supported. This allows
messages to be directed to a log file, as well as to a “console”. Note that the
ConsoleHandler also has a separate level setting to limit messages printed to the console.
For example: . | evel = | NFO

The properties file can change where the log is written, as well.

Facility specific properties allow different logging for each class, as well. For example, to
set the com.xyz.foo logger to only log SEVERE messages: com xyz. f 0o. | evel = SEVERE

If you have a sample annotator in the package or g. apache. ui ma. Sanpl eAnnot at or you
can set the log level by specifying: or g. apache. ui ma. Sanpl eAnnot ator. | evel = ALL

There are other logging controls; for a full discussion, please read the contents of the
Logger . properti es file and the Java specification for logging in Java 1.4.

1.2.2.3. Format of logging output

The logging output is formatted by handlers specified in the properties file for configuring
logging, described above. The default formatter that comes with the UIMA SDK formats
logging output as follows:

Timestanp - threadl D. sourcelnfo: Message | evel: nessage
Here's an example:

7/ 12/ 04 2:15:35 PM - 10: org.apache.uinma.util.TestC ass. mai n(62): | NFO
You are not | ogged in!

1.2.2.4. Meaning of the logging severity levels

20

These levels are defined by the Java logging framework, which was incorporated into Java
as of the 1.4 release level. The levels are defined in the JavaDocs for
java.util.logging.Level, and include both logging and tracing levels:

* OFF is a special level that can be used to turn off logging.

¢ ALL indicates that all messages should be logged.

CONFIG is a message level for configuration messages. These would typically occur
once (during configuration) in methods like i ni ti al i ze().

INFO is a message level for informational messages, for example, connected to server
IP: 192.168.120.12

WARNING is a message level indicating a potential problem.

SEVERE is a message level indicating a serious failure.

Annotator & AE Developer's Guide UIMA Version 2.1

Building Aggregate Analysis Engines

Tracing levels, typically used for debugging:

* FINE is a message level providing tracing information, typically at a collection level
(messages occurring once per collection).

* FINER indicates a fairly detailed tracing message, typically at a document level (once
per document).

* FINEST indicates a highly detailed tracing message.

1.2.2.5. Using the logger outside of an annotator

An application using UIMA may want to log its messages using the same logging
framework. This can be done by getting a reference to the UIMA logger, as follows:

Logger | ogger = U MAFranmewor k. get Logger (Test Cl ass. cl ass) ;

The optional class argument allows filtering by class (if the log handler supports this). If
not specified, the name of the returned logger instance is “org.apache.uima”.

1.3. Building Aggregate Analysis Engines

1.3.1. Combining Annotators

The UIMA SDK makes it very easy to combine any sequence of Analysis Engines to form
an Aggregate Analysis Engine. This is done through an XML descriptor; no Java code is
required!

If you go to the exanpl es/ descri ptors/tutorial / ex3 folder (in Eclipse, it's in your
uimaj-examples project, under the descri ptors/tutori al / ex3 folder), you will find a
descriptor for a TutorialDateTime annotator. This annotator detects dates and times (and
also sentences and words). To see what this annotator can do, try it out using the
Document Analyzer. If you are curious as to how this annotator works, the source code is
included, but it is not necessary to understand the code at this time.

We are going to combine the TutorialDateTime annotator with the
RoomNumberAnnotator to create an aggregate Analysis Engine. This is illustrated in the
following figure:

UIMA Version 2.1 Annotator & AE Developer's Guide 21

Combining Annotators

TutorialDateTime Date, Time
>
RoomNumberAnnotator RoomNumber
' >
RoomNumberAnffDaleTime
v % Date, Time,
TutorialDateTime RoomNumberAnnotator RoomNumber
>
>

Figure 1.1. Combining Annotators to form an Aggregate Analysis Engine

The descriptor that does this is named RoonNunber AndDat eTi me. xm , which you can
open in the Component Descriptor Editor plug-in. This is in the uimaj-examples project in
the folder descri ptors/tutorial / ex3.

The “Aggregate” page of the Component Descriptor Editor is used to define which
components make up the aggregate. A screen shot is shown below. (If you are not using
Eclipse, see Section 1.8, “Analysis Engine XML Descriptor” [45]for the actual XML syntax
for Aggregate Analysis Engine Descriptors.)
(7 RoomNumberAndDateTime.xml £ =]
RoomhiumberAndDateTime, xmi !
Aggregate Delegates and Flows 1 E

=i Component Engines + Component Engine Flow

The following engines are included in this aggregate, Choose a flow type and describe the
execution order of your engines.

Delegate | Key Name The table shows the delegates using their

El v fex2fRoomiumber Annotator.sml - RoomMumber key names.

@Tuwiaiﬂateﬁme.ml DateTime Flow Kind: Fixed Flow -
EiRuomMmbEr
[} DateTme I:I

(B

Find AE

il 1

A >

[][]

| Overview | Aggregate | Parameters | Parameter Settings Type System | Capabibties | Indexes | Resources | Source

On the left side of the screen is the list of component engines that make up the aggregate —

Annotator & AE Developer's Guide UIMA Version 2.1

Combining Annotators

in this case, the TutorialDateTime annotator and the RoomNumberAnnotator. To add a
component, you can click the “Add” button and browse to its descriptor. You can also
click the “Find AE” button and search for an Analysis Engine in your Eclipse workspace.

Note: The “AddRemote” button is used for adding components which run
remotely (for example, on another machine using a remote networking
connection). This capability is described in section Section 3.6.3, “Calling a UIMA
Service” [100]

The order of the components in the left pane does not imply an order of execution. The
order of execution, or “flow” is determined in the “Component Engine Flow” section on
the right. UIMA supports different types of algorithms (including user-definable) for
determining the flow. Here we pick the simplest: Fi xedFl ow. We have chosen to have the
RoomNumberAnnotator execute first, although in this case it doesn't really matter, since
the RoomNumber and DateTime annotators do not have any dependencies on one
another.

If you look at the “Type System” page of the Component Descriptor Editor, you will see
that it displays the type system but is not editable. The Type System of an Aggregate
Analysis Engine is automatically computed by merging the Type Systems of all of its
components.

Warning: If the components have different definitions for the same type name,
The Component Descriptor Editor will show a warning. It is possible to continue
past this warning, in which case your aggregate's type system will have the correct
“merged” type definition that contains all of the features defined on that type by
all of your components. However, it is not recommended to use this feature in
conjunction with JCAS, since the JCAS Java Class definitions cannot be so easily
merged. See Section 5.5, “Merging Types” in UIMA References for more
information.

The Capabilities page is where you explicitly declare the aggregate Analysis Engine's
inputs and outputs. Sofas and Languages are described later.

UIMA Version 2.1 Annotator & AE Developer's Guide 23

../references/references.pdf#ugr.ref.jcas.merging_types_from_other_specs

Combining Annotators

[I%? RoomMumber AndDateTime. xml &3

|RoomNumberAndDateTime. ymi

Capabilities: Inputs and Outputs

I
]

[aT#
]

]
|E=m]

= Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of the
Types and Features.

= MName Input | Output| Mame Space
I=l'Set
en
Sofas
—| Type: DateAnnot CQutput org.apache.uima. tutorial
<all features = Cutput
= Type: RoomMumber Output org.apache.uima. tutorial {/Edit Features
<all features = Cutput
EType: TimeAnnot Cutput org.apache.uima. tutarial
<all features » Cutput

b Sofa Mappings (Mo Sofas are defined)

| Overview : Agaregate [Parameters [Parameter Settings Type System | Capabiliies | Indexes : Resources [Source [

Note that it is not automatically assumed that all outputs of each component Analysis
Engine (AE) are passed through as outputs of the aggregate AE. In this case, for example,
we have decided to suppress the Word and Sentence annotations that are produced by the
TutorialDateTime annotator.

You can run this AE using the Document Analyzer in the same way that you run any
other AE. Just select the exanpl es/ descri ptors/tutorial /ex3/

RoormNumber AndDat eTi me. xnl descriptor and click the Run button. You should see that
RoomNumbers, Dates, and Times are all shown but that Words and Sentences are not:

Annotator & AE Developer's Guide UIMA Version 2.1

AEs can also contain CAS Consumers

i
4
LB Summer School | | Klick In Text to See Annctation Detad

)

August 26, 2003

LBAA 101 - Thie Mew LIk, Irtroduction
(Hands-on Tutorial)

S00AM-5:00PM in HAW GM-K35

August 28, 2003
FROST Tutorisl

S 00AM-S00PM in HAWY GMN-K3S

September 15, 2003

LA, 201 LA, Advanced Topics
(Hands-on Tutarial)

2 00AM-5:00PM in HEVY 15-F53

September 17, 2003

The LiMA System infegration Test and Hardening Service
The “SITH"

Z00PM-4: 30PM in HAW GN-K35

! ._.
egend
[[]Docume.., [v]Catedn.. [¢]TimeAn... [v]Roomh...

| selectas |[Deselectan |

1.3.2. AEs can also contain CAS Consumers

In addition to aggregating Analysis Engines, Aggregates can also contain CAS Consumers
(see Chapter 2, Collection Processing Engine Developer's Guide [51] or even a mixture of
these components with regular Analysis Engines. The UIMA Examples has an example of
an Aggregate which contains both an analysis engine and a CAS consumer, in

exanpl es/ descri pt ors/ M xedAggr egat e. xm .

1.3.3. Reading the Results of Previous Annotators

So far, we have been looking at annotators that look directly at the document text.
However, annotators can also use the results of other annotators. One useful thing we can
do at this point is look for the co-occurrence of a Date, a RoomNumber, and two Times —
and annotate that as a Meeting.

The CAS maintains indexes of annotations, and from an index you can obtain an iterator
that allows you to step through all annotations of a particular type. Here's some example
code that would iterate over all of the TimeAnnot annotations in the JCas:

UIMA Version 2.1 Annotator & AE Developer's Guide 25

26

Reading the Results of Previous Annotators

FSI ndex ti nel ndex aJCas. get Annot at i onl ndex(Ti nreAnnot . type) ;
Iterator tinelter tinmelndex.iterator();
while (tinmelter.hasNext()) {

Ti meAnnot tine = (TimeAnnot)tinelter.next();

/1 do sonet hi ng

}

Note: You can also use the method

JCAS. get JFSI ndexReposi tory(). get Al | | ndexedFS(Your Cl ass. t ype), which
returns an iterator over all instances of Your C ass in no particular order. This can
be useful for types that are not subtypes of the built-in Annotation type and which
therefore have no default sort order.

Now that we've explained the basics, let's take a look at the process method for

org. apache. ui ma. tutori al . ex4. Meet i ngAnnot at or . Since we're looking for a
combination of a RoomNumber, a Date, and two Times, there are four nested iterators.
(There's surely a better algorithm for doing this, but to keep things simple we're just going
to look at every combination of the four items.)

For each combination of the four annotations, we compute the span of text that includes
all of them, and then we check to see if that span is smaller than a “window” size, a
configuration parameter. There are also some checks to make sure that we don't annotate
the same span of text multiple times. If all the checks pass, we create a Meeting annotation
over the whole span. There's really nothing to it!

The XML descriptor, located in

exanpl es/ descri ptors/tutorial/ex4/ Meeti ngAnnot ator. xm , is also very
straightforward. An important difference from previous descriptors is that this is the first
annotator we've discussed that has input requirements. This can be seen on the
“Capabilities” page of the Component Descriptor Editor:

Annotator & AE Developer's Guide UIMA Version 2.1

Other examples

%?Meeﬁng.ﬁ.nmmtor.xml Eni =l]
IMeetingAnnatator., xmi

Capabilities: Inputs and Outputs 0 |

+ Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of the
Types and Features.

Marne Input | Output | Mame Space Add Capability Set
—| Set

—|Languages Add Language

en
D Add Type

—| Type: DateAnnot Input org.apache.uima. tutorial Add Sofa
<all features= Input

HType: Meeting Cutput org.apache.uima. tutorial :
<all features = Cutput

= Type: FioomMumber Input org,apache.uima. tutorial E
<zl features = Input

= Type: TimeAnnot Input org.apache.uima, tutorial EmovE

<all features>= Input

} Sofa Mappings (Only used in aggregate Descriptors)

Owerview [Aggregate : Parameters . Parameter Setlings [Type System .Capal:uiliﬁes | Indexes [Resources Source :

If we were to run the MeetingAnnotator on its own, it wouldn't detect anything because it
wouldn't have any input annotations to work with. The required input annotations can be
produced by the RoomNumber and DateTime annotators. So, we create an aggregate
Analysis Engine containing these two annotators, followed by the Meeting annotator. This
aggregate is illustrated in Figure 1.2, “An Aggregate Analysis Engine where an internal
component uses output from previous engines” [27] The descriptor for this is in

exanpl es/ descriptors/tutorial/ex4/ MeetingDet ect or AE. xnl . Give it a try in the

Document Analyzer.
Date, Time Date, Time,
RoomNumber

MeetingDetectorTAE = ——
TutorialDateTime RoomNumberAnnotator MeetingAnnotator hesting
N 5| (Requires: Date, Time —
and RoomNumber) G

Figure 1.2. An Aggregate Analysis Engine where an internal component uses output from
previous engines

1.4. Other examples

UIMA Version 2.1 Annotator & AE Developer's Guide 27

Additional Topics

The UIMA SDK include several other examples you may find interesting, including

¢ SimpleTokenAndSentenceAnnotator — a simple tokenizer and sentence annotator.

* XmlDetagger — A multi-sofa annotator that does XML detagging. Multiple Sofas
(Subjects of Analysis) are described in a later — see Chapter 6, Multiple CAS Views of an
Artifact [125Reads XML data from the input Sofa (named "xmlDocument"); this data
can be stored in the CAS as a string or array, or it can be a URI to a remote file. The
XML is parsed using the JVM's default parser, and the plain-text content is written to a
new sofa called "plainTextDocument".

¢ PersonTitleDBWriterCasConsumer — a sample CAS Consumer which populates a
relational database with some annotations. It uses JDBC and in this example, hooks up
with the Open Source Apache Derby database.

1.5. Additional Topics

1.5.1. Contract: Annotator Methods Called by the
Framework

28

The UIMA framework ensures that an Annotator instance is called by only one thread at a
time. An instance never has to worry about running some method on one thread, and then
asynchronously being called using another thread. This approach simplifies the design of
annotators — they do not have to be designed to support multi-threading. When multiple
threading is wanted, for performance, multiple instances of the Annotator are created,
each one running on just one thread.

The following table defines the methods called by the framework, when they are called,
and the requirements annotator implementations must follow.

Method When Called by Requirements
Framework

initialize Typically only called once, = Normally does one-time
when instance is created. initialization, including
Can be called again if reading of configuration
application does a parameters. If the
reinitialize call and the application changes the
default behavior isn't parameters, it can call
overridden (the default initialize to have the
behavior for reinitialize is to annotator re-do its
call dest r oy followed by initialization.
initialize

typeSystemlInit Called before pr ocess Typically, users of JCas do

whenever the type system not implement any method
in the CAS being passed in for this. An annotator can

Annotator & AE Developer's Guide UIMA Version 2.1

Annotator Methods

Method

When Called by
Framework

differs from what was
previously passed in a
process call (and called for
the first CAS passed in,
too). The Type System
being passed to an
annotator only changes in
the case of remote
annotators that are active as
servers, receiving possibly
different type systems to
Operate on.

Requirements

use this call to read the CAS
type system and setup any
instance variables that make
accessing the types and
features convenient.

process

destroy

Called once for each CAS.
Called by the application if
not using Collection
Processing Manager (CPM);
the application calls the
process method on the
analysis engine, which is
then delegated by the
framework to all the
annotators in the engine.
For Collection Processing
application, the CPM calls
the process method. If the
application creates and
manages your own
Collection Processing
Engine via API calls (see
JavaDocs), the application
calls this on the Collection
Processing Engine, and it is
delegated by the framework
to the components.

This method can be called
by applications, and is also
called by the Collection
Processing Manager
framework when the
collection processing

Process the CAS, adding
and/or modifying elements
init

An annotator should release
all resources, close files,
close database connections,
etc., and return to a state
where another initialize call
could be received to restart.

UIMA Version 2.1

Annotator & AE Developer's Guide 29

Reporting errors from Annotators

Method When Called by Requirements
Framework

completes. If called by an Typically, after a destroy

application on the Engine call, no further calls will be
object, it is propagated to all made to an annotator
contained annotators. instance.

reconfigure A default implementation

This method is never called
by the framework, unless an
application calls it on the
Engine object — in which
case it the framework
propagates it to all
annotators contained in the
Engine.

of this calls destroy,
followed by initialize. This
is the only case where
initialize would be called
more than once. Users
should implement whatever
logic is needed to return the
annotator to an initialized
state, including re-reading
the configuration parameter
data.

Its purpose is to signal that
the configuration
parameters have changed.

1.5.2.

Reporting errors from Annotators

There are two broad classes of errors that can occur: recoverable and unrecoverable.
Because Annotators are often expected to process very large numbers of artifacts (for
example, text documents), they should be written to recover where possible.

For example, if an upstream annotator created some input for an annotator which is
invalid, the annotator may want to log this event, ignore the bad input and continue. It
may include a notification of this event in the CAS, for further downstream annotators to
consider. Or, it may throw an exception (see next section) — but in this case, it cannot do
any further processing on that document.

Note: The choice of what to do can be made configurable, using the
configuration parameters.

1.5.3.

30

Throwing Exceptions from Annotators

Let's say an invalid regular expression was passed as a parameter to the
RoomNumberAnnotator. Because this is an error related to the overall configuration, and
not something we could expect to ignore, we should throw an appropriate exception, and
most Java programmers would expect to do so like this:

throw new Resourcelnitializati onException(

Annotator & AE Developer's Guide UIMA Version 2.1

Throwing Exceptions from Annotators

"The regul ar expression " + x + " is not valid.");

UIMA, however, does not do it this way. All UIMA exceptions are internationalized,
meaning that they support translation into other languages. This is accomplished by
eliminating hardcoded message strings and instead using external message digests.
Message digests are files containing (key, value) pairs. The key is used in the Java code
instead of the actual message string. This allows the message string to be easily translated
later by modifying the message digest file, not the Java code. Also, message strings in the
digest can contain parameters that are filled in when the exception is thrown. The format
of the message digest file is described in the JavaDocs for the Java class
java.util.PropertyResourceBundl e and in the load method of
java.util.Properties.

The first thing an annotator developer must choose is what Exception class to use. There
are three to choose from:

1. ResourceConfigurationException should be thrown from the annotator's initialize()
method if invalid configuration parameter values have been specified.

2. ResourcelnitializationException should be thrown from the annotator's initialize()
method if initialization fails for some other reason.

3. AnalysisEngineProcessException should be thrown from the annotator's process()
method if the processing of a particular document fails for any reason.

Generally you will not need to define your own custom exception classes, but if you do
they must extend one of these three classes, which are the only types of Exceptions that
the annotator interface permits annotators to throw.

All of the UIMA Exception classes share common constructor varieties. There are four
possible arguments:

The name of the message digest to use (optional — if not specified the default UIMA
message digest is used).

The key string used to select the message in the message digest.

An object array containing the parameters to include in the message. Messages can have
substitutable parts. When the message is given, the string representation of the objects
passed are substituted into the message. The object array is often created using the syntax
new Object[]{x, y}.

Another exception which is the “cause” of the exception you are throwing. This feature is
commonly used when you catch another exception and rethrow it. (optional)

If you look at source file (folder: src in Eclipse)

UIMA Version 2.1 Annotator & AE Developer's Guide 31

32

Throwing Exceptions from Annotators

org. apache. ui ma. tutori al . ex5. RoomNunber Annot at or, you will see the following
code:

try {
nmPatterns[i] = Pattern.conpile(patternStrings[i]);

}
catch (PatternSyntaxException e) {
throw new Resourcelnitializati onException(
MESSAGE_DI GEST, "regex_syntax_error",
new Cbject[]{patternStrings[i]}, e);
}

where the MESSAGE_DIGEST constant has the value
"org. apache. ui ma. tut ori al . ex5. RoomNunber Annot at or _Messages".

Message digests are specified using a dotted name, just like Java classes. This file, with the
.properties extension, must be present in the class path. In Eclipse, you find this file under
the src folder, in the package org.apache.uima.tutorial.ex5, with the name
RoomNumberAnnotator_Messages.properties. Outside of Eclipse, you can find this in the
ui maj - exanpl es. j ar with the name

or g/ apache/ ui ma/ t ut ori al / ex5/ RoomNunber Annot at or _Messages. properties. If
you look in this file you will see the line:

regex_syntax_error = {0} is not a valid regul ar expression.

which is the error message for the example exception we showed above. The placeholder
{0} will be filled by the toString() value of the argument passed to the exception
constructor — in this case, the regular expression pattern that didn't compile. If there were
additional arguments, their locations in the message would be indicated as {1}, {2}, and so
on.

If a message digest is not specified in the call to the exception constructor, the default is

Ul MAExcept i on. STANDARD MESSAGE_CATALOG (whose value is

“or g. apache. ui ma. U MAExcept i on_Messages ” in the current release but may change).
This message digest is located in the ui ma- core. j ar file at

or g/ apache/ ui ma/ U MAExcept i on_nessages. properti es —you can take a look to see if
any of these exception messages are useful to use.

To try out the regex_syntax_error exception, just use the Document Analyzer to run
exanpl es/ descri ptors/tutorial/ex5/ RoomNunber Annot at or. xni , which happens to
have an invalid regular expression in its configuration parameter settings.

To summarize, here are the steps to take if you want to define your own exception
message:

Create a file with the .properties extension, where you declare message keys and their
associated messages, using the same syntax as shown above for the regex_syntax_error
exception. The properties file syntax is more completely described in the JavaDocs for the
load® method of the java.util.Properties class.

Annotator & AE Developer's Guide UIMA Version 2.1

http://java.sun.com/j2se/1.4.1/docs/api/java/util/Properties.html#load(java.io.InputStream)

Accessing External Resource Files

Put your properties file somewhere in your class path (it can be in your annotator's .jar
file).

Define a String constant (called MESSAGE_DIGEST for example) in your annotator code
whose value is the dotted name of this properties file. For example, if your properties file
is inside your jar file at the location or g/ nyor g/ nyannot at or / Messages. properti es,
then this String constant should have the value or g. nyor g. myannot at or . Messages. Do
not include the .properties extension. In Java Internationalization terminology, this is
called the Resource Bundle name. For more information see the JavaDocs for the
PropertyResourceBundle7 class.

In your annotator code, throw an exception like this:

t hr ow new Resour ceConfi gurati onExcepti on(
MESSAGE_DI GEST, "your _nessage_nane",
new Cbj ect[]{parant, paran?,...});

You may also wish to look at the JavaDocs for the UIMAException class.

For more information on Java's internationalization features, see the Java
. . . ., 8
Internationalization Guide”.

1.5.4.

Accessing External Resource Files

Sometimes you may want an annotator to read from an external file — for example, a long
list of keys and values that you are going to build into a HashMap. You could, of course,
just introduce a configuration parameter that holds the absolute path to this resource file,
and build the HashMap in your annotator's initialize method. However, this is not the
best solution for three reasons:

1. Including an absolute path in your descriptor makes your annotator difficult for others
to use. Each user will need to edit this descriptor and set the absolute path to a value
appropriate for his or her installation.

2. You cannot share the HashMap between multiple annotators. Also, in some
deployment scenarios there may be more than one instance of your annotator, and you
would like to have the option for them to use the same HashMap instance.

3. Your annotator would become dependent on a particular data representation — the
word list would have to come from a file on the local disk and it would have to be in a
particular format. It would be better if this were decoupled.

A better way to access external resources is through the ResourceManager component. In

6 http://java.sun.com/j2se/1.4.1/docs/api/java/util/Properties.html#load(java.io.InputStream)
7 http://java.sun.com/j2se/1.4.1/docs/api/java/util/PropertyResourceBundle.html
8 http://java.sun.com/j2se/1.4/docs/guide/intl/index.html

UIMA Version 2.1 Annotator & AE Developer's Guide 33

http://java.sun.com/j2se/1.4.1/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.4.1/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/j2se/1.4.1/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/j2se/1.4/docs/guide/intl/index.html
http://java.sun.com/j2se/1.4/docs/guide/intl/index.html
http://java.sun.com/j2se/1.4/docs/guide/intl/index.html

34

Accessing External Resource Files

this section we are going to show an example of how to use the Resource Manager.

This example annotator will annotate UIMA acronyms (e.g. UIMA, AE, CAS, JCas) and
store the acronym's expanded form as a feature of the annotation. The acronyms and their
expanded forms are stored in an external file.

First, look at the exanpl es/ descri ptors/tutori al / ex6/ Ui maAcr onymAnnot at or . xni
descriptor.

B Umascronymannotater s
LimasmranymAnnotatar.xml
Resources (B

- Ih.-mun:e—pﬂ:edn._, Definitions and ﬂ'ndingi’.- - Rl:!nun:eﬂ:p:ndl:rll:il:—p

Speafy External Resources; Bind them to dependendes on the nght panel by Primitives dedare what resources they meed, A primite

selacting the corresponding dependency and dicking Bind. cam only bind toone externat resounce.
2 UimaAeranymTabiaRle URL: flz:orgjapache ina tuterial fexe | Bound | Optional? | Keys Intet [ad
Bourd to: AdorymTable |:J

Bourd required AcromymTable org.:

&l - : B
= Imports for External Resources and Bindings
The follewing definitions are included:

Add...
| Set DataPath
Kind | Locabon/Mame
< . =)

Creryieye | Apgregate | Parameters Parameter Settings | Type System | Capabilties | Indexes |Resources | Source

The values of the rows in the two tables are longer than can be easily shown. You can click
the small button at the top right to shift the layout from two side-by-side tables, to a
vertically stacked layout. You can also click the small twisty on the “Imports for External

Resources and Bindings” to collapse this section, because it's not used here. Then the same
screen will appear like this:

Annotator & AE Developer's Guide UIMA Version 2.1

Accessing External Resource Files

gLimaA:rmrm!lnmla:nr.xni paxcd =0
UmaAcronymAnnotator. xml
Resources

~ Resources Needs, Definitions and Bindings
Spedfy External Resources; Bing them to dependendies on the right panel by selecting the corresponding dependency and diddng Bind.

= UmaAcromymTableFle URL: file:orgfapache uima futorialfextfumatoronyms. ixt Implemeantation: org.apache.uma. tonial.exs. SirngMapResource_impl Add, .
Bound to: MeranymTable .

» Imports for External Resources and Bindings

= Resgurce Dependencies

Primitives dedare what resources they need. A primitive can only bind fo one external resource,

Bound Optional? | Keys Interface Mame A
Bound requred AconymTable erg.apache.uma.iutonalext StringMasResouroe

Cheervieve | Apgregate | Parameters | Paramefter Setlings Type System | Capabiies | Indexes |Fesources | Source

The top window has a scroll bar allowing you to see the rest of the line.

1.5.4.1. Declaring Resource Dependencies

The bottom window is where an annotator declares an external resource dependency. The
XML for this is as follows:

<ext er nal Resour ceDependency>

<key>Acr onyniTabl e</ key>

<descri pti on>Tabl e of acronyns and their expanded forns.</description>

<i nt er f aceNane>or g. apache. ui ma. tutori al . ex6. St ri ngvapResour ce</i nt er f aceNanme>
</ ext er nal Resour ceDependency>

The <key> value (AcronymTable) is the name by which the annotator identifies this
resource. The key must be unique for all resources that this annotator accesses, but the
same key could be used by different annotators to mean different things. The interface
name (or g. apache. ui ma. tut ori al . ex6. St ri ngMapResour ce) is the Java interface
through which the annotator accesses the data. Specifying an interface name is optional. If
you do not specify an interface name, annotators will get direct access to the data file.

1.5.4.2. Accessing the Resource from the UimaContext

If you look at the or g. apache. ui ma. tut ori al . ex6. Ui maAcr onymAnnot at or source, you
will see that the annotator accesses this resource from the UimaContext by calling:

Stri ngvapResource mvap =
(StringMapResour ce) get Cont ext () . get Resour ceQbj ect (" Acr onynirabl e") ;

The object returned from the get Resour ceCbj ect method will implement the interface

UIMA Version 2.1 Annotator & AE Developer's Guide 35

Accessing External Resource Files

declared in the <i nt er f aceNanme> section of the descriptor, St ri ngMapResour ce in this
case. The annotator code does not need to know the location of the data nor the Java class
that is being used to read the data and implement the St ri ngMapResour ce interface.

Note that if we did not specify a Java interface in our descriptor, our annotator could
directly access the resource data as follows:

I nput Stream stream = get Cont ext (). get Resour ceAsSt rean(" Acr onynirabl e") ;

If necessary, the annotator could also determine the location of the resource file, by
calling:

URI uri = getContext().getResourceURI ("Acronynrabl e");

These last two options are only available in the case where the descriptor does not declare
a Java interface.

Note: The methods for getting access to resources include get Resour ceURL.
That method returns a URL, which may contain spaces encoded as %?20.
url.getPath() would return the path without decoding these %20 into spaces.

get Resour ceURI on the other hand, returns a URI, and the uri.getPath() does do
the conversion of %20 into spaces. See also get Resour ceFi | ePat h, which does a
getResourceURI followed by uri.getPath().

1.5.4.3. Declaring Resources and Bindings

36

Refer back to the top window in the Resources page of the Component Descriptor Editor.
This is where we specify the location of the resource data, and the Java class used to read
the data. For the example, this corresponds to the following section of the descriptor:

<r esour ceManager Conf i gur ati on>
<ext er nal Resour ces>
<ext er nal Resour ce>
<name>Ui maAcr onyniTabl eFi | e</ nane>
<descri pti on>
A table containing UM acronyns and their expanded forns.
</ descri pti on>
<fil eResour ceSpecifier>
<fileUrl>file:org/apache/ui ma/tutorial/ex6/ui maAcronyns. t xt
</fileUrl>
</fil eResourceSpecifier>
<i npl enent ati onNane>
org. apache. ui ma. tutori al . ex6. Stri ngMapResour ce_i npl
</i npl enent at i onNane>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>Acr onynirabl e</ key>
<r esour ceNane>Ui naAcr onynirabl eFi | e</ r esour ceNane>

Annotator & AE Developer's Guide UIMA Version 2.1

Accessing External Resource Files

</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>
</ r esour ceManager Conf i gurati on>

The first section of this XML declares an externalResource, the Ui maAcr onyniTabl eFi | e.
With this, the fileUrl element specifies the path to the data file. This can be an absolute
URL (e.g. one that starts with file:/ or file:///, or file://my.host.org/), but that is not
recommended because it makes installation of your component more difficult, as noted
earlier. Better is a relative URL, which will be looked up within the classpath (and/or
datapath), as used in this example. In this case, the file

or g/ apache/ ui ma/ tut ori al / ex6/ ui maAcr onyms. t xt is located in

ui maj - exanpl es. j ar, which is in the classpath. If you look in this file you will see the
definitions of several UIMA acronyms.

The second section of the XML declares an externalResourceBinding, which connects the
key Acr onyniabl e, declared in the annotator's external resource dependency, to the
actual resource name Ui naAcr onynirabl eFi | e. This is rather trivial in this case; for more
on bindings see the example Ui maMeet i ngDet ect or AE. xml below. There is no global
repository for external resources; it is up to the user to define each resource needed by a
particular set of annotators.

In the Component Descriptor Editor, bindings are indicated below the external resource.
To create a new binding, you select an external resource (which must have previously
been defined), and an external resource dependency, and then click the Bi nd button,
which only enables if you have selected two things to bind together.

When the Analysis Engine is initialized, it creates a single instance of

St ri ngMapResour ce_i npl and loads it with the contents of the data file. The
UimaAcronymAnnotator then accesses the data through the St ri ngMapResour ce
interface. This single instance could be shared among multiple annotators, as will be
explained later.

Note that all resource implementation classes (e.g. StringMapResource_impl in the
provided example) must be declared public must not be declared abstract, and must have
public, 0-argument constructors, so that they can be instantiated by the framework.
(Although Java classes in which you do not define any constructor will, by default, have a
0-argument constructor that doesn't do anything, a class in which you have defined at
least one constructor does not get a default 0-argument constructor.)

This annotator is illustrated in Figure 1.3, “External Resource Binding” [38] To see it in
action, just run it using the Document Analyzer. When it finishes, open up the
UIMA_Seminars document in the processed results window, (double-click it), and then
left-click on one of the highlighted terms, to see the expandedForm feature's value.

UIMA Version 2.1 Annotator & AE Developer's Guide 37

Accessing External Resource Files

UimaAcronymAnnotator

(Resource: “AcronymTable”) UimaAcronym

>

2 External Resource Binding:
' UimaAcronymTableFile

UimaAcronyms.txt

Figure 1.3. External Resource Binding

By designing our annotator in this way, we have gained some flexibility. We can freely
replace the StringMapResource_impl class with any other implementation that
implements the simple StringMapResource interface. (For example, for very large
resources we might not be able to have the entire map in memory.) We have also made
our external resource dependencies explicit in the descriptor, which will help others to
deploy our annotator.

1.5.4.4. Sharing Resources among Annotators

38

Another advantage of the Resource Manager is that it allows our data to be shared
between annotators. To demonstrate this we have developed another annotator that will
use the same acronym table. The UimaMeetingAnnotator will iterate over Meeting
annotations discovered by the Meeting Detector we previously developed and attempt to
determine whether the topic of the meeting is related to UIMA. It will do this by looking
for occurrences of UIMA acronyms in close proximity to the meeting annotation. We
could implement this by using the UimaAcronymAnnotator, of course, but for the sake of
this example we will have the UimaMeeting Annotator access the acronym map directly.

The Java code for the UimaMeeting Annotator in example 6 creates a new type,
UimaMeeting, if it finds a meeting within 50 characters of the UIMA acronym.

We combine three analysis engines, the UimaAcronymAnnotator to annotate UIMA
acronyms, the MeetingDectector from example 4 to find meetings and finally the

Annotator & AE Developer's Guide UIMA Version 2.1

Accessing External Resource Files

UimaMeetingAnnotator to annotate just meetings about UIMA. Together these are
assembled to form the new aggregate analysis engine, UimaMeetingDectector. This
aggregate and the sharing of a common resource are illustrated in Figure 1.4, “Component
engines of an aggregate share a common resource” [39]

UimaAcronym UimaAcronym, Meeting

UIMAMeetingDetectorTAE = S ——
UimaAcronymAnnotator MeetingDetectorTAE UimaMeetingAnnotator UimaAcronym,
(Resource: “AcronymTable") | | (Requires: Meeting) = UimaMeeting

(Resource: “UimaTermTable”

. -
“ -

-

-

. T
\ -

External Resource Binding: ™, _.-="" External Rescurce Binding:
UimaAcronymTableFile UimaAcronymTableFile

NS

UimaAcronyms.txt

Figure 1.4. Component engines of an agqregate share a common resource

The important thing to notice is in the Ui maMeet i ngDet ect or AE. xml aggregate
descriptor. It includes both the UimaMeeting Annotator and the UimaAcronymAnnotator,
and contains a single declaration of the UimaAcronymTableFile resource. (The actual
example has the order of the first two annotators reversed versus the above picture, which
is OK since they do not depend on one another).

It also binds the resources as follows:

UIMA Version 2.1 Annotator & AE Developer's Guide 39

40

Result Specifications

B UimaMeetingDetectorTAE xml £ =ml|
‘UimaMeetingDetectorTAE. xm

Resources SHIE]

+ Resources Needs, Definitions and Bindings

Specify External Resources; Bind them to dependendies on the right panel by selecting the corresponding dependency
and dicking Bind.

= UimaAcronymTableFile URL: fille:orgfapache fuima ftutorial fexs fuimaAcronyms, bt Implementaﬁon:.
Bound to: UimaAcronymAnnotator/acronymTable
Bound to: UimaMeetingAnnotator UimaTermTable

¥ Tmnorts for Fxternal Resonrces and Rindinns

+ Resource Dependencies

Primitives dedare what resources they need. A primitive can only bind to one external resource.

Bound | Optional? | Keys Interface Mame

Bound required UimaMeetingAnnotator UimaTermTable org.apache.uima. tutorial,ex6, StringMapR.esource
Bound required UimaAcronymAnnotatorfAcronymTable org.apache.uima.tutorial.exs. StringMapResource

Overview . Aggregaté . Farameters . i:‘araméter Settings | Type System | Capab'iliﬁes . Inﬂexes |Resources | éource .

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>Ui maAcr onymAnnot at or/ Acr onynirabl e</ key>
<r esour ceNane>Ui naAcr onynirabl eFi | e</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>

<ext er nal Resour ceBi ndi ng>
<key>Ui maMeet i ngAnnot at or / Ui maTer nTrabl e</ key>
<r esour ceNane>Ui naAcr onynirabl eFi | e</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi hgs>

This binds the resource dependencies of both the UimaAcronymAnnotator (which uses
the name AcronymTable) and UimaMeetingAnnotator (which uses UimaTermTable) to
the single declared resource named UimaAcronymFile. Therefore they will share the same
instance. Resource bindings in the aggregate descriptor override any resource declarations
in individual annotator descriptors.

If we wanted to have the annotators use different acronym tables, we could easily do that.
We would simply have to change the resourceName elements in the bindings so that they
referred to two different resources. The Resource Manager gives us the flexibility to make
this decision at deployment time, without changing any Java code.

Annotator & AE Developer's Guide UIMA Version 2.1

Result Specifications

1.5.5. Result Specifications

The Result Specification is passed to the annotator instance by calling its
setResultSpecificaiton method. When called, the default implementation saves the result
specification in an instance variable of the Annotator instance, which can be accessed by
the annotator using the protected get Resul t Speci fi cati on() method.

A Result Specification is a list of output types and / or type:feature names, which are
expected to be output from (produced by) the annotator. Annotators may use this to
optimize their operations, when possible, for those cases where only particular outputs
are wanted. The interface to the Result Specification object (see the JavaDocs) allows
querying both types and particular features of types.

Sometimes you can specify the Result Specification; othertimes, you cannot (for instance,
inside a Collection Processing Engine, you cannot). When you cannot specify it, or choose
not to specify it (for example, using the form of the process(...) call on an Analysis Engine
that doesn't include the Result Specification), a “Default” Result Specification is used.

1.5.5.1. Default ResultSpecification

The default Result Specification is taken from the Engine's output Capability Specification.
Remember that a Capability Specification has both inputs and outputs, can specify types
and / or features, and there can be more than one Capability Set. If there is more than one
set, the logical union of these sets is used. The default Result Specification is exactly what's
included in the output Capability Specification.

1.5.5.2. Passing Result Specifications to Annotators

If you are not using a Collection Processing Engine, you can specify a Result Specification
for your AnalysisEngine(s) by calling the
Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) method.

It is also possible to pass a Result Specification on each call to

Anal ysi sEngi ne. process(CAS, Resul t Speci fi cati on). However, this is not
recommended if your Result Specification will stay constant across multiple calls to
process. In that case it will be more efficient to call

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) only when the
Result Specification changes.

For primitive Analysis Engines, whatever Result Specification you pass in is passed along
to the annotator's set Resul t Speci fi cati on(Resul t Speci fi cati on) method. For
aggregate Analysis Engines, see below.

1.5.5.3. Aggregates

For aggregate engines, the Result Specification passed to the

UIMA Version 2.1 Annotator & AE Developer's Guide 41

Class path setup when using JCas

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) method is
intended to specify the set of output types/features that the aggregate should produce.
This is not necessarily equivalent to the set of output types/features that each annotator
should produce. For example, an annotator may need to produce an intermediate type
that is then consumed by a downstream annotator, even though that intermediate type is
not part of the Result Specification.

To handle this situation, when

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) is called on an
aggregate, the framework computes the union of the passed Result Specification with the
set of all input types and features of all component AnalysisEngines within that aggregate.
This forms the complete set of types and features that any component of the aggregate
might need to produce. This derived Result Specification is then passed to the

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cation) of each
component AnalysisEngine. In the case of nested aggregates, this procedure is applied
recursively.

1.5.5.4. Collection Proessing Engines

The Default Result Specification is always used for all components of a Collection
Processing Engine.

1.5.6.

Class path setup when using JCas

JCas provides Java classes that correspond to each CAS type in an application. These
classes are generated by the JCasGen utility (which can be automatically invoked from the
Component Descriptor Editor).

The Java source classes generated by the JCasGen utility are typically compiled and
packaged into a JAR file. This JAR file must be present in the classpath of the UIMA
application.

For more details on issues around setting up this class path, including deployment issues
where class loaders are being used to isolate multiple UIMA applications inside a single
running Java Virtual Machine, please see Section 5.6.6, “Class Loaders in UIMA” in UIMA
References .

1.5.7.

42

Using the Shell Scripts

The SDK includes a / bi n subdirectory containing shell scripts, for Windows (.bat files)
and Unix (.sh files). Many of these scripts invoke sample Java programs which require a
class path; they call a common shell script, set Ui mad assPat h to set up the UIMA
required files and directories on the class path.

If you need to include files on the class path, the scripts will add anything you specify in
the environment variable UIMA_CLASSPATH to the classpath. So, for example, if you are

Annotator & AE Developer's Guide UIMA Version 2.1

../references/references.pdf#ugr.ref.jcas.class_loaders

Common Pitfalls

running the document analyzer, and wanted it to find a Java class file named (on
Windows) c:\a\b\c\myProject\ my]JarFile.jar, you could first issue a set command to set
the UIMA_CLASSPATH to this file, followed by the documentAnalyzer script:

set U MA_CLASSPATH=c:\ a\ b\ c\ nyProj ect\myJarFile.jar

docunent Anal yzer

Other environment variables are used by the shell scripts, as follows:

Inble 1.1. Environment variables used by the shell scripts

Environment Variable

UIMA_HOME

JAVA_HOME

UIMA_CLASSPATH

UIMA_DATAPATH

Description

Path where the UIMA SDK was installed.
Set automatically if installing via the
InstallShield installer.

(Optional) Path to a Java Runtime
Environment. If not set, the Java JRE that is
shipped with the UIMA SDK (InstallShield
versions) is used.

(Optional) if specified, a path specification
to use as the default ClassPath.

(Optional) if specified, a path specification
to use as the default DataPath (see
Section 2.2, “Imports” in UIMA References)

VNS_HOST

VNS_PORT

ECLIPSE_HOME

(Optional) if specified, the network IP
name of the host running the Vinci Name
Server (VNS) (see Section 3.6.5, “The Vinci
Naming Services (VNS)” [102]

(Optional) if specified, the network IP port
number of the Vinci Name Server (VNS)
(see Section 3.6.5, “The Vinci Naming
Services (VNS)” [102]

(Optional) Needs to be set to the root of
your Eclipse installation when using shell
scripts that invoke Eclipse (e.g.
jcasgen_merge)

1.6. Common Pitfalls

UIMA Version 2.1 Annotator & AE Developer's Guide 43

../references/references.pdf#ugr.ref.xml.component_descriptor.datapath

UIMA Objects in Eclipse Debugger

Here are some things to avoid doing in your annotator code:
Retaining references to JCas objects between calls to process()

The JCas will be cleared between calls to your annotator's process() method. All of the
analysis results related to the previous document will be deleted to make way for analysis
of a new document. Therefore, you should never save a reference to a JCas Feature
Structure object (i.e. an instance of a class created using JCasGen) and attempt to reuse it
in a future invocation of the process() method. If you do so, the results will be undefined.

Careless use of static data

Always keep in mind that an application that uses your annotator may create multiple
instances of your annotator class. A multithreaded application may attempt to use two
instances of your annotator to process two different documents simultaneously. This will
generally not cause any problems as long as your annotator instances do not share static
data.

In general, you should not use static variables other than static final constants of primitive
data types (String, int, float, etc). Other types of static variables may allow one annotator
instance to set a value that affects another annotator instance, which can lead to
unexpected effects. Also, static references to classes that aren't thread-safe are likely to
cause errors in multithreaded applications.

1.7. Viewing UIMA objects in the Eclipse
debugger

Eclipse (as of version 3.1 or later) has a new feature for viewing Java Logical Structures.
When enabled, it will permit you to see a view of UIMA objects (such as feature structure
instances, CAS or JCas instances, etc.) which displays the logical subparts. For example,
here is a view of a feature structure for the RoomNumber annotation, from the tutorial

example 1:
)= Variables 3 Breakpnints.ExpressiDns eSS =0
Mame Value
F @ this org.apache.uima. tutorialex 1.RoomMumber Annotator @1a0d 2530
3 @ alCas org.apache.uima.jcas.impl. JCasImpl@3a99a53f
@ docText UIT Seminar: Challenges in Speech Recognitionn August 8, 2003 10:30 AM - 11:30 A...
& matcher java.util.regex.Matcher @25fe53c
il annotation RoomMumberin sofa; _InitialView'n begin: 203 end: 2091 building: “Yorktown™\n
<f addr 21
= jrasType org.apache, uima. tutorial. RoomMumber_Type @5a6ce538

The “annotation” object in Java shows as a 2 element object, not very convenient for
seeing the features or the part of the input that is being annotatoed. But if you turn on the

44 Annotator & AE Developer's Guide UIMA Version 2.1

Analysis Engine XML Descriptor

Java Logical Structure mode by pushing this button:

the features of the FeatureStructure instance will be shown:

(=)= Yariables % . Breakpoints | Expressions [+5E ¥ &0
Mame Value
F @ this org.apache,uima. tutorial. ex 1. RoomMNumber Annotator @ 1a0d253b
E @ zlCas org.apache,uima.jcas.impl. JCasImpl@3a99653f
@ docText LT Seminar: Challenges in Speech Recognition'n August 3, 2003 10:30 AM - 11:30A...
F & matcher java.util,regex. Matcher @25fe 53c
- ' annotation RoomMumberin sofa: _InitialView'n begin: 203% end: 209 building: ™forktown™n
2 & [0] Features: [Lorg.apache,uima.cas.impl. DebugMameValuePair; @ 1126538
H & [0] sofa: Sofaln sofaMum: 1% sofalD: " InitialView™n mimeType: “text™\n sofadrray: ...
E & [1] begin: 203
F & [7] end: 209
H a [3] building: Yorktown
H & [1] Covered Text: 20-043
® & [7] SubAnnotations: Expand to show

1.8. Introduction to Analysis Engine
Descriptor XML Syntax

This section is an introduction to the syntax used for Analysis Engine Descriptors. Most
users do not need to understand these details; they can use the Component Descriptor
Editor Eclipse plugin to edit Analysis Engine Descriptors rather than editing the XML
directly.

This section walks through the actual XML descriptor for the RoomNumberAnnotator
example introduced in section Section 1.1, “Getting Started” [2]. The discussion is divided
into several logical sections of the descriptor.

The full specification for Analysis Engine Descriptors is defined in Chapter 2, Component
Descriptor Reference in UIMA References .

1.8.1. Header and Annotator Class Identification

<?xm version="1.0" encodi ng="UTF-8" ?>
<I-- Descriptor for the exanpl e RoomNunber Annotator. -->
<anal ysi sEngi neDescri ption xm ns="http://ui ma. apache. or g/ resourceSpecifier">
<f ramewor kIl npl enent at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl enent at i on>
<primtive>true</primtive>
<annot at or | npl enent at i onNanme>
org. apache. ui ma.tutorial . ex1l. RoomNunber Annot at or
</ annot at or | npl ement at i onNanme>

UIMA Version 2.1 Annotator & AE Developer's Guide 45

../references/references.pdf#ugr.ref.xml.component_descriptor
../references/references.pdf#ugr.ref.xml.component_descriptor

Simple Metadata Attributes

The document begins with a standard XML header and a comment. The root element of
the document is named <anal ysi sEngi neDescri pti on>, and must specify the XML
namespace http://ui ma. apache. or g/ resour ceSpeci fi er.

The first subelement, <f r amewor kI npl enent at i on>, must contain the value

or g. apache. ui ma. j ava. The second subelement, <pri ni ti ve>, contains the Boolean
value true, indicating that this XML document describes a Primitive Analysis Engine. A
Primitive Analysis Engine is comprised of a single annotator. It is also possible to
construct XML descriptors for non-primitive or Aggregate Analysis Engines; this is covered
later.

The next element, <annot at or | npl enent at i onNane>, contains the fully-qualified class
name of our annotator class. This is how the UIMA framework determines which
annotator class to instantiate.

1.8.2. Simple Metadata Attributes

<anal ysi sengi neMet aDat a>
<name>Room Nunber Annot at or </ nane>
<descri pti on>An exanpl e annotator that searches for room nunbers in
the | BM WAt son research buil di ngs. </ descri ption>
<ver si on>1. 0</ ver si on>
<vendor >The Apache Software Foundati on</vendor ></para>

Here are shown four simple metadata fields — name, description, version, and vendor.
Providing values for these fields is optional, but recommended.

1.8.3. Type System Definition

<t ypeSyst enDescri pti on>
<i nport s>
<inmport |ocation="Tutorial TypeSystem xm "/>
</inports>
</ typeSyst enDescri pti on>

This section of the XML descriptor defines which types the annotator works with. The
recommended way to do this is to import the type system definition from a separate file, as
shown here. The location specified here should be a relative path, and it will be resolved
relative to the location of the aggregate descriptor. It is also possible to define types
directly in the Analysis Engine descriptor, but these types will not be easily shareable by
others.

1.8.4. Capabilities

46

<capabilities>
<capability>

Annotator & AE Developer's Guide UIMA Version 2.1

Configuration Parameters (Optional)

<inputs />
<out put s>
<t ype>or g. apache. ui ma. tut ori al . RoomNunber </ t ype>
<f eat ur e>or g. apache. ui ma. t ut ori al . RoomNunber : bui | di ng</ f eat ur e>
</ out put s>
</ capabi lity>
</ capabilities>

The last section of the descriptor describes the Capabilities of the annotator — the
Types/Features it consumes (input) and the Types/Features that it produces (output).
These must be the names of types and features that exist in the ANALYSIS ENGINE
descriptor's type system definition.

Our annotator outputs only one Type, RoomNumber and one feature,
RoomNumber:building. The fully-qualified names (including namespace) are needed.

The building feature is listed separately here, but clearly specifying every feature for a
complex type would be cumbersome. Therefore, a shortcut syntax exists. The <outputs>
section above could be replaced with the equivalent section:

<out put s>
<type al | Annot at or Feat ures ="true">
org. apache. ui ma. tut ori al . RoomNunber
</type>
</ out put s>

1.8.5. Configuration Parameters (Optional)

1.8.5.1. Configuration Parameter Declarations

<confi gurati onPar anet er s>
<confi gur ati onPar anet er >
<name>Pat t er ns</ nane>
<descri ption>Li st of room nunber regul ar expression patterns.
</ descri pti on>
<type>String</type>
<mul ti Val ued>t rue</ nul ti Val ued>
<mandat or y>t r ue</ mandat or y>
</ confi gur ati onPar anmet er >
<confi gurati onPar anmet er >
<nanme>Locat i ons</ name>
<descri ption>Li st of |ocations corresponding to the room nunber
expressi ons specified by the Patterns paraneter.
</ descri ption>
<type>String</type>
<mul ti Val ued>t rue</ mul ti Val ued>
<mandat or y>t r ue</ mandat or y>
</ confi gur ati onPar anet er >
</ confi gurati onPar anet er s>

The <confi gur at i onPar anet er s> element contains the definitions of the configuration

UIMA Version 2.1 Annotator & AE Developer's Guide 47

Configuration Parameters (Optional)

parameters that our annotator accepts. We have declared two parameters. For each
configuration parameter, the following are specified:

* name - the name that the annotator code uses to refer to the parameter
¢ description — a natural language description of the intent of the parameter

* type — the data type of the parameter's value — must be one of String, Integer, Float, or
Boolean.

* multiValued - true if the parameter can take multiple-values (an array), false if the
parameter takes only a single value.

* mandatory - true if a value must be provided for the parameter

Both of our parameters are mandatory and accept an array of Strings as their value.

1.8.5.2. Configuration Parameter Settings

<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<name>Pat t er ns</ nanme>
<val ue>
<array>
<string>b[0-4]d-[0-2]ddb</string>
<string>b[GL-4] [NS] - [A- Z] ddb</ st ri ng>
<string>bJ[12]-[A-Z] ddb</stri ng>
</ array>
</ val ue>
</ naneVal uePai r >
<naneVal uePai r >
<nanme>Locat i ons</ name>
<val ue>
<array>
<string>Watson - Yorktown</string>
<string>Watson - Hawt horne |</string>
<string>Watson - Hawt horne II</string>
</ array>
</ val ue>
</ naneVal uePai r >
</ confi gurati onPar anet er Setti ngs>

1.8.5.3. Aggregate Analysis Engine Descriptor

<?xm version="1.0" encodi ng="UTF-8" ?>

<anal ysi sEngi neDescri pti on xm ns="http://ui ma. apache. or g/ resourceSpecifier">
<f ramewor kIl npl enent at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl ement ati on>
<primtive>fal se</primtive>

<del egat eAnal ysi sEngi neSpeci fi ers>
<del egat eAnal ysi sEngi ne key="RoomN\unber " >
<inport | ocation="../ex2/ Room\unber Annot at or. xm "/ >
</ del egat eAnal ysi sEngi ne>
<del egat eAnal ysi seEngi ne key="Dat eTi ne" >
<inmport |ocation="Tutorial DateTi ne.xm" />

48 Annotator & AE Developer's Guide UIMA Version 2.1

Configuration Parameters (Optional)

</ del egat eAnal ysi seEngi ne>
</ del egat eAnal ysi sEngi neSpeci fi er s>

The first difference between this descriptor and an individual annotator's descriptor is
that the <pri mi ti ve> element contains the value f al se. This indicates that this Analysis
Engine (AE) is an aggregate AE rather than a primitive AE.

Then, instead of a single annotator class name, we have a list of

del egat eAnal ysi sEngi neSpeci fi ers. Each specifies one of the components that
constitute our Aggregate . We refer to each component by the relative path from this XML
descriptor to the component AE's XML descriptor.

This list of component AEs does not imply an ordering of them in the execution pipeline.
Ordering is done by another section of the descriptor:

<anal ysi sengi neMet aDat a>
<nanme>Aggr egate AE - Room Number and DateTi me Annot at or s</ nanme>
<descri pti on>Det ects Room Nunbers, Dates, and Ti mes</description>
<f| onConst r ai nt s>
<fi xedFl ow>
<node>RoomNunber </ node>
<node>Dat eTi ne</ node>
</ fi xedFl ow>
</ fl owConst r ai nt s>

Here, a fixedFlow is adequate, and we specify the exact ordering in which the AEs will be
executed. In this case, it doesn't really matter, since the RoomNumber and DateTime
annotators do not have any dependencies on one another.

Finally, the descriptor has a capabilities section, which has exactly the same syntax as a
primitive AE's capabilities section:

<capabilities>
<capability>
<inputs />
<out put s>
<type al | Annot at or Feat ures="true" >
org. apache. ui ma. tut ori al . RoomNunber
</type>
<type al | Annot at or Feat ures="true" >
or g. apache. ui ma. tut ori al . Dat eAnnot
</type>
<type al | Annot at or Feat ures="t rue" >
or g. apache. ui ma. tutorial . Ti meAnnot
</type>
</ out put s>
<l anguagesSupport ed>
<l anguage>en</ | anguage>
</ | anguagesSupport ed>
</ capability>
</ capabilities>

UIMA Version 2.1 Annotator & AE Developer's Guide 49

50

Configuration Parameters (Optional)

Annotator & AE Developer's Guide

UIMA Version 2.1

Chapter 2. Collection Processing
Engine Developer's Guide

The UIMA Analysis Engine interface provides support for developing and integrating
algorithms that analyze unstructured data. Analysis Engines are designed to operate on a
per-document basis. Their interface handles one CAS at a time. UIMA provides additional
support for applying analysis engines to collections of unstructured data with its Collection
Processing Architecture. The Collection Processing Architecture defines additional
components for reading raw data formats from data collections, preparing the data for
processing by Analysis Engines, executing the analysis, extracting analysis results, and
deploying the overall flow in a variety of local and distributed configurations.

The functionality defined in the Collection Processing Architecture is implemented by a
Collection Processing Engine (CPE). A CPE includes an Analysis Engine and adds a
Collection Reader, a CAS Initializer (deprecated as of version 2), and CAS Consumers. The
part of the UIMA Framework that supports the execution of CPEs is called the Collection
Processing Manager, or CPM.

A Collection Reader provides the interface to the raw input data and knows how to iterate
over the data collection. Collection Readers are discussed in Section 2.4.1, “Developing
Collection Readers” [60] The CAS Initializer ! prepares an individual data item for
analysis and loads it into the CAS. CAS Initializers are discussed in Section 2.4.2,
“Developing CAS Initializers” [66] A CAS Consumer extracts analysis results from the
CAS and may also perform collection level processing, or analysis over a collection of CASes.
CAS Consumers are discussed in Section 2.4.3, “Developing CAS Consumers” [67]

Analysis Engines and CAS Consumers are both instances of CAS Processors. A Collection
Processing Engine (CPE) may contain multiple CAS Processors. An Analysis Engine
contained in a CPE may itself be a Primitive or an Aggregate (composed of other Analysis
Engines). Aggregates may contain Cas Consumers. While Collection Readers and CAS
Initializers always run in the same JVM as the CPM, a CAS Processor may be deployed in
a variety of local and distributed modes, providing a number of options for scalability and
robustness. The different deployment options are covered in detail in Section 2.5,
“Deploying a CPE” [70]

Each of the components in a CPE has an interface specified by the UIMA Collection
Processing Architecture and is described by a declarative XML descriptor file. Similarly,
the CPE itself has a well defined component interface and is described by a declarative
XML descriptor file.

'CAS Initializers are deprecated in favor of a more general mechanism, multiple subjects of analysis.

CPE Developer's Guide 51

CPE Concepts

A user creates a CPE by assembling the components mentioned above. The UIMA SDK
provides a graphical tool, called the CPE Configurator, for assisting in the assembly of
CPEs. Use of this tool is summarized in Section 2.2.1, “Using the CPE Configurator” [53]
and more details can be found in Chapter 2, Collection Processing Engine Configurator
User's Guide in UIMA Tools Guide and Reference. Alternatively, a CPE can be assembled by
writing an XML CPE descriptor. Details on the CPE descriptor, including its syntax and
content, can be found in the Chapter 3, Collection Processing Engine Descriptor Reference
in UIMA References. The individual components have associated XML descriptors, each of
which can be created and / or edited using the Component Description Editor in UIMA
Tools Guide and Reference.

A CPE is executed by a UIMA infrastructure component called the Collection Processing
Manager (CPM). The CPM provides a number of services and deployment options that
cover instantiation and execution of CPEs, error recovery, and local and distributed
deployment of the CPE components.

2.1. CPE Concepts

52

Figure 2.1, “CPE Components” [52]illustrates the data flow that occurs between the
different types of components that make up a CPE.

Entity : .
. Entity + CAS Analysis
& Meta data (adds to CAS)
Entity + CAS
*Manages Processing J J l
*Monitors Status CAS Consumer CAS Consumer CAS Consumer
«Collects Statistics (builds aggregate (builds aggregate (builds aggregate

data structure) data structure)

A

data structure)

Search
Engine
Index

Glossary

Glossary Extractor ez

(Kinds of CAS Consumers)

Figure 2.1. CPE Components

The components of a CPE are:

CPE Developer's Guide UIMA Version 2.1

../tools/tools.pdf#ugr.tools.cpe
../tools/tools.pdf#ugr.tools.cpe
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../tools/tools.pdf#ugr.tools.cde

CPE Configurator and CAS viewer

* Collection Reader — interfaces to a collection of data items (e.g., documents) to be
analyzed. Collection Readers return CASes that contain the documents to analyze,
possibly along with additional metadata.

* Analysis Engine — takes a CAS, analyzes its contents, and produces an enriched CAS.
Analysis Engines can be recursively composed of other Analysis Engines (called an
Aggregate Analysis Engine). Aggregates may also contain CAS Consumers.

* CAS Consumer — consume the enriched CAS that was produced by the sequence of
Analysis Engines before it, and produce an application-specific data structure, such as a
search engine index or database.

A fourth type of component, the CAS Initializer, may be used by a Collection Reader to
populate a CAS from a document. However, as of UIMA version 2 CAS Initializers are
now deprecated in favor of a more general mechsanism, multiple Subjects of Analysis.

The Collection Processing Manager orchestrates the data flow within a CPE, monitors
status, optionally manages the life-cycle of internal components and collects statistics.

CASes are not saved in a persistent way by the framework. If you want to save CASes,
then you have to save each CAS as it comes through (for example) using a CAS Consumer
you write to do this, in whatever format you like. The UIMA SDK supplies an example
CAS Consumer to save CASes to XML files, either in the standard XMI format or in an
older format called XCAS. It also supplies an example CAS Consumer to extract
information from CASes and store the results into a relational Database, using Java's JDBC
APIs.

2.2. CPE Configurator and CAS viewer
2.2.1. Using the CPE Configurator

A CPE can be assembled by writing an XML CPE descriptor. Details on the CPE
descriptor, including its syntax and content, can be found in Chapter 3, Collection
Processing Engine Descriptor Reference in UIMA References. Rather than edit raw XML,
you may develop a CPE Descriptor using the CPE Configurator tool. The CPE
Configurator tool is described briefly in this section, and in more detail in Chapter 2,
Collection Processing Engine Configurator User's Guide in UIMA Tools Guide and

Reference.

The CPE Configurator tool can be run from Eclipse (see Section 2.2.2, “Running the CPE
Configurator from Eclipse” [58] or using the cpeGui shell script (cpeGui . bat on
Windows, cpeQui . sh on Unix), which is located in the bi n directory of the UIMA SDK
installation. Executing this batch file will display the window shown here:

UIMA Version 2.1 CPE Developer's Guide 53

../references/references.pdf#ugr.ref.xml.cpe_descriptor
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../tools/tools.pdf#ugr.tools.cpe
../tools/tools.pdf#ugr.tools.cpe

Using the CPE Configurator

R oo ton Processing Enming Cantigurator SoEd

Unstructured Information Management Architecture

File Wlew Help

S i |

An Spache fncubator Praject,

Calection Reader

Anahesis Engnes

() =) (2]

CAS Consumers

(e =) (2]

— @aa‘

alzed

The window is divided into three sections, one each for the Collection Reader, Analysis
Engines, and CAS Consumers.” In each section, you select the component(s) you want to
include in the CPE by browsing to their XML descriptors. The configuration parameters
present in the XML descriptors will then be displayed in the GUI; these can be modified to
override the values present in the descriptor. For example, the screen shot below shows
the CPE Configurator after the following components have been chosen:

Col | ecti on Reader:
%J MA_HOVE% exanpl es/ descri ptors/col | ecti on_reader/
Fi | eSyst entCol | ect i onReader . xm

Anal ysi s Engi ne:
%JI MA_HOVEY4 exanpl es/ descri pt or s/ anal ysi s_engi ne/
NarmesAndPer sonTi t| es_TAE. xmi

CAS Consuner:
%Jl MA_HOVEY exanpl es/ descri pt ors/ cas_consumner/
Xm Wit erCasConsumner. xm

*There is also a fourth pane, for the CAS Initializer, but it is hidden by default. To enable it click the Vi ew -
CAS Initializer Panel menuitem.

CPE Developer's Guide UIMA Version 2.1

Using the CPE Configurator

4 Collection Processing Engine Configurator [B]=) %

Fie Miew Help
Descrptor: | RleSystemalectionReadzr.

Input Cirectory | 4 spache-uinal examplasidata
Encoding:

Language:

Unstructured Information Management Architecture

A Aveche mewbetor Project.

Colection Rieadar

Anzlysis Engines

[Add... ” £]l ¥ |

[3] Agoregate TAE - Name Recoonizer and Persan Titke Annotator |

CAS Consumers

[Laod.. |[<< J[2=]

[i Writer CAS Corsumer
Oubpuk Directony! :\pamphuima)ar_output

— (D) n| m

ritizbzed

For the File System Collection Reader, ensure that the Input Directory is set to

9%Jl MA_HOVE% exanpl es\ dat a°. The other parameters may be left blank. For the External
CAS Writer CAS Consumer, ensure that the Output Directory is set to

%J MA_HOMVE% exanpl es\ dat a\ pr ocessed.

After selecting each of the components and providing configuration settings, click the play
(forward arrow) button at the bottom of the screen to begin processing. A progress bar
should be displayed in the lower left corner. (Note that the progress bar will not begin to
move until all components have completed their initialization, which may take several
seconds.) Once processing has begun, the pause and stop buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes
successfully, you will be presented with a performance report.

Using the File menu, you can select Save CPE Descri ptor to create an .xml descriptor
file that defines the CPE you have constructed. Later, you can use Qpen CPE Descri pt or
to restore the CPE Configurator to the saved state. Also, CPE descriptors can be used to

3Replace YJl MA_HOVEYwith the path to where you installed UIMA.

UIMA Version 2.1 CPE Developer's Guide 55

56

Using the CPE Configurator

run a CPE from a Java program — see section Section 2.3, “Running a CPE from Your Own
Java Application” [59] CPE Descriptors allow specifying operational parameters, such as
error handling options, that are not currently available for configuration through the CPE
Configurator. For more information on manually creating a CPE Descriptor, see the
Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References.

The CPE configured above runs a simple name and title annotator on the sample data
provided with the UIMA SDK and stores the results using the XMI Writer CAS
Consumer. To view the results, start the External CAS Annotation Viewer by running the
annot at i onVi ewer batch file (annot ati onVi ewer . bat on Windows,

annot at i onVi ewer . sh on Unix), which is located in the bi n directory of the UIMA SDK
installation. Executing this batch file will display the window shown here:

F.ﬁ Annotation Viewer g@%ﬂ

Filz Help

1;1':‘_\ Unstructured Information Management Architecture
lI |
. An Apache meubator Praject.

Input Directory: | Cilkempluimalcmi_oukput Browse,

TypesSystem or AE Descripbar File: | \analysis_engine\MamesandPersonTitles_TAE xml | | Browse, .,

Ensure that the Input Directory is the same as the Output Directory specified for the XMI
Writer CAS Consumer in the CPE configured above (e.g.,

%)l MA_HOVE% exanpl es\ dat a\ pr ocessed) and that the TAE Descriptor File is set to the
Analysis Engine used in the CPE configured above (e.g.,

exanpl es\ descri ptors\anal ysi s_engi ne\ NanesAndPer sonTi t | es_TAE. xm).

Click the View button to display the Analyzed Documents window:

CPE Developer's Guide UIMA Version 2.1

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Using the CPE Configurator

ﬁ’AnaEy‘zed Documents m
These are the Analyzed Documents.

celect viewer type and double-click file to open.

|2 IEM LifeSciences txt

[# Mew |BM_Fellows. tut

[# SeminarChallengesinSpeschRecognition. txt

[#] TrainablelnformationExtractionSysterns. txt
LIMASummerSchoal2003. txt

LA, Seminars. txt

[#] WatsonConferenceRooms txt

Results Display Format: (9 Java Wiewer (O HTML () XML

Close

Double click on any document in the list to view the analyzed document. Double clicking

the first document, IBM_LifeSciences.txt, will bring up the following window:

1

X]

s, "Lif0 scionces 15 one of the emerging markets a1 the heart of IBW's growdh sirategy,” sasd John M. & Glick In Text 1o See Annotation Detad
Thompson, IBM sensor vice president & group executive, Software, "This ewestment is the first of a 1 Marne (John M, Thampson®)
rumber of steps we will be taking lo advance BM's Ife sciences infiatves " In his role as newly . h‘“ﬁ"l= a4

appoirted [BM Coporation vice chairman, effective September 1, Mr. Thompson will be responsible for e end= 110

inteqrating and accelerating [BM's efiods o explod Ife sciences and other emerging growih areas

IBM estirates the market for IT solutions for life sciences will skymocket fiom $3.5 billion today 1o
maofe than $9 bilon by 2003, Drving demand is the explosive growth in genomic, proteomic and
pharnaceutical research For example, the Human Genome Database i approxsmately thiee
terabytes of data, or the egquivalent of 150 malloon pages of infoermatoon. The volurme of Ife sciences
data is doubling ey s mordhs

“All af s gnnnllt data & worlhless without the infarmation I!nthnl:lugr thal can help scoendists
manage and anakyze d 10 unlock the pathways that will lead to néw Cures for many of today's
diseazes,” sand D Carling Kowag, wice pressdent of IBM's new Life Scisnces unit. "IEM can help
speed this process by enabling moee efficient imerpratation of data and shanng of knowledge. The
potardial for change based on innovation in life sciences is bigger than the change caused by the
dagital circuit.”

Among the Be sciences indistives already underway at IBM are

- DiscoweryLink® — For the first time, researchers uzing this combanation of innovative meddlewane and
inegration sensces can join logethes information from many sources to sobve complex medical

research problems. DiscoveryLink crestes a “vitual databasa® that pemmds data to be accessed and
exlracted from multiple dala sources wsed in research and developrment projects. Thig T solution can el

igind R S— —
[JDocumentann. . [v]Mame [+] PersanTitle

SelectAll || Deselect Al

oy

UIMA Version 2.1 CPE Developer's Guide

57

Running the CPE Configurator from Eclipse

This window shows the analysis results for the document. Clicking on any highlighted
annotation causes the details for that annotation to be displayed in the right-hand pane.
Here the annotation spanning “John M. Thompson” has been clicked.

Congratulations! You have successfully configured a CPE, saved its descriptor, run the
CPE, and viewed the analysis results.

2.2.2.

58

Running the CPE Configurator from Eclipse

If you have followed the instructions in Chapter 3, Setting up the Eclipse IDE to work
with UIMA in Overview & Setup and imported the example Eclipse project, then you
should already have a Run configuration for the CPE Configurator tool (called Ul MA CPE
QUI) configured to run in the example project. Simply run that configuration to start the
CPE Configurator.

If you haven't followed the Eclipse setup instructions and wish to run the CPE
Configurator tool from Eclipse, you will need to do the following. As installed, this
Eclipse launch configuration is associated with the “uimaj-examples” project. If you've not
already done so, you may wish to import that project into your Eclipse workspace. It's
located in %UIMA_HOME%/docs/examples. Doing this will supply the Eclipse launcher
with all the class files it needs to run the CPE configurator. If you don't do this, please
manually add the JAR files for UIMA to the launch configuration.

Also, you need to add any projects or JAR files for any UIMA components you will be
running to the launch class path.

Note: A simpler alternative may be to change the CPE launch configuration to
be based on your project. If you do that, it will pick up all the files in your project's
class path, which you should set up to include all the UIMA framework files. An
easy way to do this is to specify in your project's properties' build-path that the
uimaj-examples project is on the build path, because the uimaj-examples project is
set up to include all the UIMA framework classes in its classpath already.

Next, in the Eclipse menu select Run - Run..., which brings up the Run configuration
screen.

In the Main tab, set the main class to or g. apache. ui na. t ool s. cpm CpnFr ane
In the arguments tab, add the following to the VM arguments:

- Xms128M - Xnx256M
- Dui ma. hone="C: \ Program Fi | es\ Apache\ ui ma"

(or wherever you installed the UIMA SDK)

Click the Run button to launch the CPE Configurator, and use it as previously described
in this section.

CPE Developer's Guide UIMA Version 2.1

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup

Using Listeners

2.3. Running a CPE from Your Own Java
Application

The simplest way to run a CPE from a Java application is to first create a CPE descriptor as
described in the previous section. Then the CPE can be instantiated and run using the
following code:

/| parse CPE descriptor in file specified on command |ine
CpeDescripti on cpeDesc = U MAFr amewor k. get XM_Par ser () .
par seCpeDescri pti on(new XM.I nput Source(args[0]));

/linstantiate CPE
nCPE = Ul MAFr amewor k. pr oduceCol | ecti onPr ocessi ngEngi ne(cpeDesc) ;

//Create and register a Status Cal | back Li stener
MCPE. addSt at usCal | backLi st ener (new St at usCal | backLi stenerlnpl ());

/Il Start Processing
MCPE. process() ;

This will start the CPE running in a separate thread.

Note: The process() method for a CPE can only be called once. If you need to
call it again, you have to instantiate a new CPE, and call that new CPE's process
method.

2.3.1. Using Listeners

Updates of the CPM's progress, including any errors that occur, are sent to the callback
handler that is registered by the call to addSt at usCal | backLi st ener, above. The callback
handler is a class that implements the CPM's St at usCal | backLi st ener interface. It
responds to events by printing messages to the console. The source code is fairly
straightforward and is not included in this chapter — see the

or g. apache. ui ma. exanpl es. cpe. Si npl eRunCPE. j ava in the

%JI MA_HOVE% exanpl es\ sr ¢ directory for the complete code.

If you need more control over the information in the CPE descriptor, you can manually
configure it via its APL See the JavaDocs for package or g. apache. ui ma. col | ecti on for
more details.

2.4. Developing Collection Processing
Components

This section is an introduction to the process of developing Collection Readers, CAS
Initializers, and CAS Consumers. The code snippets refer to the classes that can be found

UIMA Version 2.1 CPE Developer's Guide 59

Developing Collection Readers

in %JI MA_HOVE% exanpl es\ src example project.

In the following sections, classes you write to represent components need to be public and
have public, 0-argument constructors, so that they can be instantiated by the framework.
(Although Java classes in which you do not define any constructor will, by default, have a
0-argument constructor that doesn't do anything, a class in which you have defined at
least one constructor does not get a default 0-argument constructor.)

2.4.1. Developing Collection Readers

A Collection Reader is responsible for obtaining documents from the collection and
returning each document as a CAS. Like all UIMA components, a Collection Reader
consists of two parts — the code and an XML descriptor.

A simple example of a Collection Reader is the “File System Collection Reader,” which
simply reads documents from files in a specified directory. The Java code is in the class
or g. apache. ui ma. exanpl es. cpe. Fi | eSyst enCol | ecti onReader and the XML
descriptor is YUl MA_HOVE% exanpl es/ src/ mai n/ descri ptors/ col | ecti on_reader/
Fi | eSyst enCol | ecti onReader . xmi .

2.4.1.1. Java Class for the Collection Reader

The Java class for a Collection Reader must implement the

org. apache. ui ma. col | ecti on. Col | ecti onReader interface. You may build your
Collection Reader from scratch and implement this interface, or you may extend the
convenience base class or g. apache. ui nma. col | ecti on. Col | ecti onReader _| npl Base .

The convenience base class provides default implementations for many of the methods
defined in the Col | ect i onReader interface, and provides abstract definitions for those
methods that you are required to implement in your new Collection Reader. Note that if
you extend this base class, you do not need to declare that your new Collection Reader
implements the Col | ecti onReader interface.

Tip: Eclipse tip — if you are using Eclipse, you can quickly create the boiler plate
code and stubs for all of the required methods by clicking Fi | e — New — O ass to
bring up the “New Java Class” dialogue, specifying

org. apache. ui ma. col | ecti on. Col | ecti onReader _| npl Base as the Superclass,
and checking “Inherited abstract methods” in the section “Which method stubs
would you like to create?”, as in the screenshot below:

60 CPE Developer's Guide UIMA Version 2.1

Developing Collection Readers

Sy

:’ Hew Java Class

Java Class

Create a new Java dass.

g
Source Tolder: LEmaj e xamphessre

Package: org apache uima.swemples. cpe

[]Endosing type:

Hampe: tewColechorfeader

Modifers: {=} public) defayit DITEate
[Jabsgract [[]final

Superdass; org.apache uima.colection. CollectionReader_ImpiBase
Interfaces: | Add... |

Vihidh method shbe would you Be to create?

[] public static void man{Smng[] args)
[} Constructors from superdass
Inherited abatrack methads
Do you want to add comments as configured in the properties of the current project?
[I cenerate camments
@ | o || conest |

For the rest of this section we will assume that your new Collection Reader extends the
Col | ecti onReader _| npl Base class, and we will show examples from the

or g. apache. ui ma. exanpl es. cpe. Fi | eSyst enCol | ecti onReader . If you must inherit
from a different superclass, you must ensure that your Collection Reader implements the
Col | ecti onReader interface — see the JavaDocs for Col | ecti onReader for more details.

2.4.1.2. Required Methods in the Collection Reader class

The following abstract methods must be implemented:

initialize()

UIMA Version 2.1 CPE Developer's Guide 61

Developing Collection Readers

Theinitialize() method is called by the framework when the Collection Reader is first
created. Col | ecti onReader _| npl Base actually provides a default implementation of this
method (i.e., it is not abstract), so you are not strictly required to implement this method.
However, a typical Collection Reader will implement this method to obtain parameter
values and perform various initialization steps.

In this method, the Collection Reader class can access the values of its configuration
parameters and perform other initialization logic. The example File System Collection
Reader reads its configuration parameters and then builds a list of files in the specified

input directory, as follows:

public void initialize() throws ResourcelnitializationException {
File directory = new Fil g(
(String)get Confi gPar anet er Val ue(PARAM_| NPUTDI R)) ;
nEncodi ng = (String)get Confi gParanet er Val ue(PARAM_ENCODI NG ;
mDocunent Text Xm TagName = (String) get Confi gPar anet er Val ue(PARAM XM.TAG) ;
mLanguage = (String)get Confi gParamnet er Val ue(PARAM_LANGUAGE) ;
nCurrent|ndex = 0;

/lget list of files (not subdirectories) in the specified directory
nFiles = new Arraylist();
File[] files = directory.listFiles();
for (int i =0; i <files.length; i++) {
if (!files[i].isDirectory()) {
nFiles.add(files[i]);
}

}

Note: This is the zero-argument version of the initialize method. There is also a
method on the Collection Reader interface called
initialize(ResourceSpecifier, Map) butitisnot recommended that you
override this method in your code. That method performs internal initialization
steps and then calls the zero-argumenti ni ti al i ze().

hasNext()

The hasNext () method returns whether or not there are any documents remaining to be
read from the collection. The File System Collection Reader's hasNext () method is very
simple. It just checks if there are any more files left to be read:

publ i ¢ bool ean hasNext () {
return mCurrentl ndex < nFiles.size();

}

getNext(CAS)

The get Next () method reads the next document from the collection and populates a CAS.
In the simple case, this amounts to reading the file and calling the CAS's

62 CPE Developer's Guide UIMA Version 2.1

Developing Collection Readers

set Docunent Text method. The example File System Collection Reader is slightly more
complex. It first checks for a CAS Initializer. If the CPE includes a CAS Initializer, the CAS
Initializer is used to read the document, and i ni ti al i ze() the CAS. If the CPE does not
include a CAS Initializer, the File System Collection Reader reads the document and sets
the document text in the CAS.

The File System Collection Reader also stores additional metadata about the document in
the CAS. In particular, it sets the document's language in the special built-in feature
structure ui ma. t cas. Docunent Annot ati on (see Section 4.3, “Built-in CAS Types” in
UIMA References for details about this built-in type) and creates an instance of

or g. apache. ui ma. exanpl es. Sour ceDocumnent | nf or mat i on , which stores information
about the document's source location. This information may be useful to downstream
components such as CAS Consumers. Note that the type system descriptor for this type
can be found in or g. apache. ui ma. exanpl es. Sour ceDocunent | nf or mati on. xnl , which
is located in the exanpl es/ sr ¢ directory.

The getNext() method for the File System Collection Reader looks like this:

public void getNext(CAS aCAS) throws | OException, CollectionException {
JCas j cas;
try {
jcas = aCAS. getJCas();
} catch (CASException e) {
throw new Col | ecti onException(e);

}

/] open input streamto file
File file = (File) nFiles.get(nCurrentlndex++);
Buf f eredl nput Stream fis =
new Buf f er edl nput St ream(new Fi | el nput Strean(file));
try {
byte[] contents = new byte[(int) file.length()];
fis.read(contents);
String text;
if (mEncoding !'= null) {
text = new String(contents, nmEncoding);
} else {
text = new String(contents);
}

/1 put docunent in CAS
j cas. set Docunent Text (t ext);
} finally {
if (fis !=null)
fis.close();
}

/] set language if it was explicitly specified
/las a configuration paraneter
if (mLanguage !'= null) {
((Docunent Annot ati on) jcas. get Docunent Annot ati onFs()).
set Language(nLanguage) ;

// Al so store |location of source docunent in CAS.

// This information is critical if CAS Consuners wl|
/'l need to know where the original docunent contents
// are | ocated.

UIMA Version 2.1 CPE Developer's Guide 63

../references/references.pdf#ugr.ref.cas.document_annotation

Developing Collection Readers

/'l For exanple, the Semantic Search CAS | ndexer
/'l wites this information into the search index that
/1 it creates, which allows applications that use the
/1 search index to | ocate the docunments that satisfy
//their semantic queries.
Sour ceDocumnent | nf ormati on srcbDoclnfo =
new Sour ceDocunent | nf or mati on(j cas);
srcDocl nfo. set Uri (
file.getAbsoluteFile().toURL().toString());
srcDocl nfo. set Of f set | nSour ce(0);
srcDocl nf o. set Docunent Si ze((int) file.length());
srcDocl nf 0. set Last Segnent (
mCurrent| ndex == nFiles.size());
srcDocl nf 0. addTol ndexes() ;

The Collection Reader can create additional annotations in the CAS at this point, in the
same way that annotators create annotations.

getProgress()

close()

64

The Collection Reader is responsible for returning progress information; that is, how
much of the collection has been read thus far and how much remains to be read. The
framework defines progress very generally; the Collection Reader simply returns an array
of Progr ess objects, where each object contains three fields — the amount already
completed, the total amount (if known), and a unit (e.g. entities (documents), bytes, or
tiles). The method returns an array so that the Collection Reader can report progress in
multiple different units, if that information is available. The File System Collection
Reader's get Pr ogr ess() method looks like this:

public Progress[] getProgress() {
return new Progress[]{
new Progressl npl (nCurrent | ndex, nFil es. si ze(), Progress. ENTI TI ES) };

In this particular example, the total number of files in the collection is known, but the total
size of the collection is not known. As such, a Pr ogr essl npl object for
Progress. ENTI Tl ESis returned, but a Progr ess! npl object for Pr ogr ess. BYTES is not.

The close method is called when the Collection Reader is no longer needed. The Collection
Reader should then release any resources it may be holding. The
FileSystemCollectionReader does not hold resources and so has an empty implementation
of this method:

public void close() throws | OException { }

CPE Developer's Guide UIMA Version 2.1

Developing Collection Readers

Optional Methods

The following methods may be implemented:
reconfigure()

This method is called if the Collection Reader's configuration parameters change.
typeSysteminit()

If you are only setting the document text in the CAS, or if you are using the JCas
(recommended, as in the current example, you do not have to implement this method. If
you are directly using the CAS AP], this method is used in the same way as it is used for
an annotator — see Section 1.5.1, “Annotator Methods” [28] for more information.

Threading considerations

Collection readers do not have to be thread safe; they are run with a single thread per
instance, and only one instance per instance of the Collection Processing Manager (CPM)
is made.

XML Descriptor for a Collection Reader

You can use the Component Description Editor to create and / or edit the File System
Collection Reader's descriptor. Here is its descriptor (abbreviated somewhat), which is
very similar to an Analysis Engine descriptor:

<col | ecti onReader Descri pti on
xm ns="http://ui ma. apache. or g/ resour ceSpeci fier">
<f ranmewor kI npl ement at i on>or g. apache. ui nma. j ava</ f ranewor kil npl enent at i on>
<i npl enent at i onNane>
or g. apache. ui ma. exanpl es. cpe. Fi | eSyst entCol | ect i onReader
</i npl enent at i onNane>
<pr ocessi ngResour ceMet aDat a>
<name>Fi | e System Col | ecti on Reader </ nane>
<description>Reads files fromthe fil esystem </description>
<ver si on>1. 0</ ver si on>
<vendor >The Apache Software Foundati on</vendor>
<confi gurati onPar amet er s>
<confi gurati onPar anet er >
<name>| nput Di r ect or y</ nane>
<description>Directory containing input files</description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>t r ue</ mandat or y>
</ confi gur ati onPar anet er >
<confi gur ati onPar anet er >
<name>Encodi ng</ nane>
<descri pti on>Character encoding for the docunents. </description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ mandat or y>
</ confi gur ati onPar anet er >
<confi gurati onPar amet er >
<nane>Language</ nanme>

UIMA Version 2.1 CPE Developer's Guide 65

Developing CAS Initializers

<descri ption>l SO | anguage code for the documents</description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ mandat or y>
</ confi gur ati onPar anet er >
</ confi gurati onPar anet er s>
<confi gurati onPar anmet er Set ti ngs>
<nameVal uePai r >
<name>| nput Di r ect or y</ nane>
<val ue>
<string>C:./ Program Fil es/ apache/ ui na/ exanpl es/ dat a</ stri ng>
</ val ue>
</ naneVal uePai r >
</ confi gurati onPar anet er Setti ngs>

<I-- Type System of CASes returned by this Collection Reader -->

<t ypeSyst enDescri pti on>
<i nport s>
<i nport nane="org. apache. ui ma. exanpl es. Sour ceDocunent | nf or mati on"/ >
</inports>
</ typeSyst enDescri pti on>

<capabilities>
<capability>
<i nput s/ >
<out put s>
<type al | Annot at or Feat ures="true" >
or g. apache. ui ma. exanpl es. Sour ceDocunent | nf or mati on
</type>
</ out put s>
</ capability>
</ capabilities>
<oper ati onal Properties>
<nodi fi esCas>t r ue</ nodi fi esCas>
<mul ti pl eDepl oynment Al | owed>f al se</ nul ti pl eDepl oynent Al | owed>
<out put sNewCASes>t r ue</ out put sNewCASes>
</ oper ati onal Properti es>
</ pr ocessi ngResour ceMet aDat a>
</ col | ecti onReader Descri pti on>

2.4.2. Developing CAS Initializers

Note: CAS Initializers are now deprecated (as of version 2.1). For complex
initialization, please use instead the capabilities of creating additional Subjects of
Analysis (see Chapter 6, Multiple CAS Views of an Artifact [125)]

In UIMA 1.x, the CAS Initializer component was intended to be used as a plug-in to the
Collection Reader for when the task of populating the CAS from a raw document is
complex and might be reusable with other data collections.

A CAS Initializer Java class must implement the interface

org. apache. ui ma. col | ection. Caslni tializer, and will also generally extend from
the convenience base class or g. apache. ui ma. col | ection. Caslnitializer_Inpl Base.
A CAS Initializer also must have an XML descriptor, which has the exact same form as a

66 CPE Developer's Guide UIMA Version 2.1

Developing CAS Consumers

Collection Reader Descriptor except that the outer tag is <caslI ni ti al i zer Descri pti on>.

CAS Initializers have optional i ni ti al i ze(), reconfigure(),andtypeSystem nit()
methods, which perform the same functions as they do for Collection Readers. The only
required method for a CAS Initializerisi ni ti al i zeCas(bj ect, CAS). This method
takes the raw document (for example, an | nput St r eamobject from which the document
can be read) and a CAS, and populates the CAS from the document.

2.4.3. Developing CAS Consumers

Note: In version 2, there is no difference in capability between CAS Consumers
and ordinary Analysis Engines, except for the default setting of the XML
parameters for nul ti pl eDepl oyment Al | owed and nodi f i esCas. We recommend
for future work that users implement and use Analysis Engine components
instead of CAS Consumers.

A CAS Consumer receives each CAS after it has been analyzed by the Analysis Engine.
CAS Consumers typically do not update the CAS; they typically extract data from the
CAS and persist selected information to aggregate data structures such as search engine
indexes or databases.

A CAS Consumer Java class must implement the interface

org. apache. ui ma. col | ecti on. CasConsuner, and will also generally extend from the
convenience base class or g. apache. ui ma. col | ecti on. CasConsuner _| npl Base. A CAS
Consumer also must have an XML descriptor, which has the exact same form as a
Collection Reader Descriptor except that the outer tag is <casConsuner Descri pti on>.

CAS Consumers have optional i ni tial i ze(), reconfigure(),andtypeSysteninit()
methods, which perform the same functions as they do for Collection Readers and CAS
Initializers. The only required method for a CAS Consumer is pr ocessCas(CAS) , which is
where the CAS Consumer does the bulk of its work (i.e., consume the CAS).

The CasConsuner interface (as well as the version 2 Analysis Engine interfac) additionally
defines batch and collection level processing methods. The CAS Consumer or Analysis
Engine can implement the bat chPr ocessConpl et e() method to perform processing that
should occur at the end of each batch of CASes. Similarly, the CAS Consumer or Analysis
Engine can implement the col | ecti onProcessConpl et e() method to perform any
collection level processing at the end of the collection.

A very simple example of a CAS Consumer, which writes an XML representation of the
CAS to afile, is the XMI Writer CAS Consumer. The Java code is in the class

or g. apache. ui ma. exanpl es. cpe. Xm Wit er CasConsuner and the descriptor is in
%J MA_HOVEY4 exanpl es/ descri pt ors/ cas_consumner/ Xm Wit er CasConsuner. xn .

2.4.3.1. Required Methods for a CAS Consumer

When extending the convenience class

UIMA Version 2.1 CPE Developer's Guide 67

Developing CAS Consumers

or g. apache. ui ma. col | ecti on. CasConsuner _| npl Base, the following abstract methods
must be implemented:

initialize()

Theinitialize() method is called by the framework when the CAS Consumer is first
created. CasConsuner _| npl Base actually provides a default implementation of this
method (i.e., it is not abstract), so you are not strictly required to implement this method.
However, a typical CAS Consumer will implement this method to obtain parameter
values and perform various initialization steps.

In this method, the CAS Consumer can access the values of its configuration parameters
and perform other initialization logic. The example XMI Writer CAS Consumer reads its
configuration parameters and sets up the output directory:

public void initialize() throws Resourcelnitializati onException {
nmDocNum = 0;
mout putDir = new File((String) getConfigParaneterVal ue(PARAM OQUTPUTDI R)) ;
if (!'moutputDir.exists()) {
mCut put Di r. mkdi rs();
}
}

processCas()

The processCas() method is where the CAS Consumer does most of its work. In our
example, the XMI Writer CAS Consumer obtains an iterator over the document metadata
in the CAS (in the SourceDocumentInformation feature structure, which is created by the
File System Collection Reader) and extracts the URI for the current document. From this
the output filename is constructed in the output directory and a subroutine (wri t eXmi) is
called to generate the output file. The wri t eXmi subroutine uses the Xni CasSeri al i zer
class provided with the UIMA SDK to serialize the CAS to the output file (see the example
source code for details).

public void processCas(CAS aCAS) throws ResourceProcessException {
String nodel Fil eNane = nul |;

JCas j cas;
try {
jcas = aCAS. getJCas();
} catch (CASException e) {
t hr ow new Resour ceProcessException(e);

}

/1 retreive the filenane of the input file fromthe CAS
FSlterator it = jcas
. get Annot at i onl ndex(Sour ceDocunent | nf or nati on. t ype)
.iterator();
File outFile = null;
if (it.hasNext()) {
Sour ceDocunent I nfornation filelLoc =
(Sour ceDocunent | nformation) it.next();
File inFile;

68 CPE Developer's Guide UIMA Version 2.1

Deploying a CPE

try {
inFile = new File(new URL(fileLoc.getUri()).getPath());

String outFileNane = inFile.getNanme();
if (fileLoc.getOffsetlnSource() > 0) {
outFileName += ("_" + filelLoc.getOfsetlnSource());

out Fil eNanme += ".xm";
outFile = new Fil e(nQutputDir, outFileNange);
nmodel Fi | eName = nQut put Di r. get Absol ut ePath() +
"/" + inFile.getNanme() + ".ecore";
} catch (Mal fornmedURLException el) {
/1 invalid URL, use default processing bel ow
}

}
if (outFile == null) {
outFile = new Fil e(nQutputDir, "doc" + nDocNum++);

/1 serialize XCAS and wite to output file
try {
witeXm (jcas.getCas(), outFile, nodel FileNane);
} catch (1 OException e) {
t hr ow new Resour ceProcessException(e);
} catch (SAXException e) {
t hr ow new Resour ceProcessException(e);
}

Optional Methods

The following methods are optional in a CAS Consumer, though they are often used.

batchProcessComplete()

The framework calls the batchProcessComplete() method at the end of each batch of
CASes. This gives the CAS Consumer or Analysis Engine an opportunity to perform any
batch level processing. Our simple XMI Writer CAS Consumer does not perform any
batch level processing, so this method is empty. Batch size is set in the Collection
Processing Engine descriptor.

collectionProcessComplete()

The framework calls the collectionProcessComplete() method at the end of the collection
(i.e., when all objects in the collection have been processed). At this point in time, no CAS
is passed in as a parameter. This gives the CAS Consumer or Analysis Engine an
opportunity to perform collection processing over the entire set of objects in the collection.
Our simple XMI Writer CAS Consumer does not perform any collection level processing,
so this method is empty.

2.5. Deploying a CPE

The CPM provides a number of service and deployment options that cover instantiation
and execution of CPEs, error recovery, and local and distributed deployment of the CPE

UIMA Version 2.1 CPE Developer's Guide 69

70

Deploying a CPE

components. The behavior of the CPM (and correspondingly, the CPE) is controlled by
various options and parameters set in the CPE descriptor. The current version of the CPE
Configurator tool, however, supports only default error handling and deployment
options. To change these options, you must manually edit the CPE descriptor.

Eventually the CPE Configurator tool will support configuring these options and a
detailed tutorial for these settings will be provided. In the meantime, we provide only a
high-level, conceptual overview of these advanced features in the rest of this chapter, and
refer the advanced user to Chapter 3, Collection Processing Engine Descriptor Reference
in UIMA References for details on setting these options in the CPE Descriptor.

Figure 2.2, “CPE Instantiation” [70]shows a logical view of how an application uses the
UIMA framework to instantiate a CPE from a CPE descriptor. The CPE descriptor
identifies the CPE components (referencing their corresponding descriptors) and specifies
the various options for configuring the CPM and deploying the CPE components.

Collection
Reader

Analysis
Engines

CPE
Descriptor

N
CPE
Components

Z0—4H4>»0OQ—r UTTU>»

Legend

Developer APPLICATION

Figure 2.2. CPE Instantiation

There are three deployment modes for CAS Processors (Analysis Engines and CAS
Consumers) in a CPE:

1. Integrated (runs in the same Java instance as the CPM)
2. Managed (runs in a separate process on the same machine), and

3. Non-managed (runs in a separate process, perhaps on a different machine).

CPE Developer's Guide UIMA Version 2.1

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Deploying Managed CAS Processors

An integrated CAS Processor runs in the same JVM as the CPE. A managed CAS
Processor runs in a separate process from the CPE, but still on the same computer. The
CPE controls startup, shutdown, and recovery of a managed CAS Processor. A
non-managed CAS Processor runs as a service and may be on the same computer as the
CPE or on a remote computer. A non-managed CAS Processor service is started and
managed independently from the CPE.

For both managed and non-managed CAS Processors, the CAS must be transmitted
between separate processes and possibly between separate computers. This is
accomplished using Vinci, a communication protocol used by the CPM and which is
provided as a part of Apache UIMA. Vinci handles service naming and location and data
transport (see Section 3.6.2, “Deploying as a Vinci Service” [98] for more information).
Service naming and location are provided by a Vinci Naming Service, or VNS. For managed
CAS Processors, the CPE uses its own internal VNS. For non-managed CAS Processors, a
separate VNS must be running.

Note: The UIMA SDK also supports using unmanaged remote services via the
web-standard SOAP communications protocol (see Section 3.6.1, “Deploying as
SOAP Service” [96] This approach is based on a proxy implementation, where the
proxy is essentially running in an integrated mode. To use this approach with the
CPM, use the Integrated mode, with the component being an Aggregate which, in
turn, connects to a remote service.

The CPE Configurator tool currently only supports constructing CPEs that deploy CAS
Processors in integrated mode. To deploy CAS Processors in any other mode, the CPE
descriptor must be edited by hand (better tooling may be provided later). Details on the
CPE descriptor and the required settings for various CAS Processor deployment modes
can be found in Chapter 3, Collection Processing Engine Descriptor Reference in UIMA
References . In the following sections we merely summarize the various CAS Processor
deployment options.

2.5.1. Deploying Managed CAS Processors

Managed CAS Processor deployment is shown in Figure 2.3, “CPE with Managed CAS
Processors” [72] A managed CAS Processor is deployed by the CPE as a Vinci service. The
CPE manages the lifecycle of the CAS Processor including service launch, restart on
failures, and service shutdown. A managed CAS Processor runs on the same machine as
the CPE, but in a separate process. This provides the necessary fault isolation for the CPE
to protect it from non-robust CAS Processors. A fatal failure of a managed CAS Processor
does not threaten the stability of the CPE.

UIMA Version 2.1 CPE Developer's Guide 71

../references/references.pdf#ugr.ref.xml.cpe_descriptor

72

Deploying Managed CAS Processors

manage

Processor

Vinci service interface

Computer

Figure 2.3. CPE with Managed CAS Processors

The CPE communicates with managed CAS Processors using the Vinci communication
protocol. A CAS Processor is launched as a Vinci service and its pr ocess() method is
invoked remotely via a Vinci command. The CPE uses its own internal VNS to support
managed CAS processors. The VNS, by default, listens on port 9005. If this port is not
available, the VNS will increment its listen port until it finds one that is available. All
managed CAS Processors are internally configured to “talk” to the CPE managed VNS.
This internal VNS is transparent to the end user launching the CPE.

To deploy a managed CAS Processor, the CPE deployer must change the CPE descriptor.
The following is a section from the CPE descriptor that shows an example configuration
specifying a managed CAS Processor.

<casProcessor deploynent="1ocal" nane="Meeting Detector TAE">
<descri pt or >
<i ncl ude href="depl oy/ vi nci / Depl oy_Meet i ngDet ect or TAE. xm "/ >
</ descri pt or >
<runl nSepar at ePr ocess>
<exec dir="." executabl e="java">
<env key="CLASSPATH'
val ue="src; C./ Program Fi | es/ apache/ ui na/ | i b/ ui ma-core.jar;
C./ Program Fi | es/ apache/ ui ma/ i b/ ui ma-cpe.j ar;
C./ Program Fi | es/ apache/ ui ma/|i b/ ui ma- exanpl es. j ar;
C./ Program Fi | es/ apache/ ui na/ | i b/ ui ma- adapt er-vinci.jar;
C./ Program Fi | es/ apache/uima/lib/jVinci.jar"/>
<ar g>- DLOG=C: / Tenp/ servi ce. | og</ ar g>
<ar g>or g. apache. ui ma. ref erence_i npl . col | ecti on.
servi ce. vinci . Vi nci Anal ysi sengi ner Servi ce_i npl </ ar g>

CPE Developer's Guide UIMA Version 2.1

Deploying Non-managed CAS Processors

<ar g>${descriptor}</arg>

</ exec>

</ runl nSepar at ePr ocess>

<depl oynment Par anet er s/ >

<filter/>

<error Handl i ng>
<errorRat eThreshol d acti on="term nate" val ue="1/100"/>
<maxConsecuti veRestarts action="term nate" val ue="3"/>
<ti nmeout nmax="100000"/>

</ error Handl i ng>

<checkpoi nt bat ch="10000"/>

</ casProcessor >

See Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for
details and required settings.

2.5.2. Deploying Non-managed CAS Processors

Non-managed CAS Processor deployment is shown in Figure 2.4, “CPE with
non-managed CAS Processors” [73] In non-managed mode, the CPE supports connectivity
to CAS Processors running on local or remote computers using Vinci. Non-managed
processors are different from managed processors in two aspects:

1. Non-managed processors are neither started nor stopped by the CPE.

2. Non-managed processors use an independent VNS, also neither started nor stopped by
the CPE.

@« O

CAS .
Processor regi

CAS
Processor

CAS I T
Processor

CAS
Processor

Computer

interface

Vinci service H Computer

Figure 2.4. CPE with non-managed CAS Processors

UIMA Version 2.1 CPE Developer's Guide 73

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Deploying Integrated CAS Processors

While non-managed CAS Processors provide the same level of fault isolation and
robustness as managed CAS Processors, error recovery support for non-managed CAS
Processors is much more limited. In particular, the CPE cannot restart a non-managed
CAS Processor after an error.

Non-managed CAS Processors also require a separate Vinci Naming Service running on
the network. This VNS must be manually started and monitored by the end user or
application. Instructions for running a VNS can be found in Section 3.6.5.1, “Starting
VNS” [102]

To deploy a non-managed CAS Processor, the CPE deployer must change the CPE
descriptor. The following is a section from the CPE descriptor that shows an example
configuration for the non-managed CAS Processor.

<casProcessor depl oynent="renote" nanme="Meeting Detector TAE">
<descri pt or >
<i nclude href=
"descri ptors/vinci Servi ce/ Meeti ngDet ect or Vi nci Servi ce. xm "/ >
</ descri pt or >
<depl oyment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRat eThreshol d acti on="term nate" val ue="1/100"/>
<maxConsecuti veRestarts action="term nate" val ue="3"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="10000"/>
</ casProcessor >

See Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for
details and required settings.

2.5.3.

74

Deploying Integrated CAS Processors

Integrated CAS Processors are shown in Figure 2.5, “CPE with integrated CAS Processor”
[75] Here the CAS Processors run in the same JVM as the CPE, just like the Collection
Reader and CAS Initializer. This deployment method results in minimal CAS
communication and transport overhead as the CAS is shared in the same process space of
the JVM. However, a CPE running with all integrated CAS Processors is limited in
scalability by the capability of the single computer on which the CPE is running. There is
also a stability risk associated with integrated processors because a poorly written CAS
Processor can cause the JVM, and hence the entire CPE, to abort.

CPE Developer's Guide UIMA Version 2.1

../references/references.pdf#ugr.ref.xml.cpe_descriptor

Collection Processing Examples

CAS
Processor

\ W

Computer

Figure 2.5. CPE with integrated CAS Processor

The following is a section from a CPE descriptor that shows an example configuration for
the integrated CAS Processor.

<casProcessor depl oynent="i ntegrated” name="Meeting Detector TAE">
<descri ptor >
<include href="descriptors/tutorial/ex4/ Meeti ngDetectorTAE. xm "/>
</ descri pt or >
<depl oynment Par anet er s/ >
<filter/>
<error Handl i ng>
<error Rat eThreshol d acti on="term nate" val ue="100/1000"/>
<maxConsecuti veRestarts action="term nate" val ue="30"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="10000"/>
</ casProcessor>

See Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for
details and required settings.

2.6. Collection Processing Examples

The UIMA SDK includes a set of examples illustrating the three modes of deployment,

UIMA Version 2.1 CPE Developer's Guide 75

../references/references.pdf#ugr.ref.xml.cpe_descriptor

76

Collection Processing Examples

integrated, managed, and non-managed. These are in the
/ exanpl es/ descri ptors/col | ecti on_processi ng_engi ne directory. There are three
CPE descriptors that run an example annotator (the Meeting Finder) in these modes.

To