UIMA Tools Guide and Reference
Authors: The Apache UIMA Development Community

Version 2.1

Copyright © 2006, 2007 The Apache Software Foundation
Copyright © 2004, 2006 International Business Machines Corporation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing
incubation at the Apache Software Foundation (ASF). Incubation is required
of all newly accepted projects until a further review indicates that the
infrastructure, communications, and decision making process have stabilized
in a manner consistent with other successful ASF projects. While incubation
status is not necessarily a reflection of the completeness or stability of the
code, it does indicate that the project has yet to be fully endorsed by the ASF.

License and Disclaimer. The ASF licenses this documentation to you under
the Apache License, Version 2.0 (the "License"); you may not use this
documentation except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation
and its contents are distributed under the License on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing permissions
and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks
or service marks have been appropriately capitalized. Use of such terms in this
book should not be regarded as affecting the validity of the the trademark or
service mark.

Published February, 2007

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. CDE User's GUIAEc.ooiiuiiiiiiiiiiiiicciicccceccec e 1
1.1. Launching the Component Descriptor Editorcccccccovniiiiiniin, 1
1.2. Creating a New AE Descriptorcccviiiiiiiiiiiiiiiiiic 1
1.3. Pages within the Eitorccccccoiiiiii 4

1.3.1. Adjusting the display of pagesccccccoovviiiiiiiiiiiiiiiiiiis 4
1.4. Overview Pageccoooiiiiiiiiiiiiii 4
1.4.1. Implementation Detailsc.cccooiiiiiiiiiiii 4
1.4.2. Runtime Informationccccoviiiiiiiiii 5
1.4.3. Overall Identification Informationccccciiiiiiiiiiiiiiin, 5
1.5. Aggregate Pagecccoooviiiiiiiiiiiii 5
1.5.1. Adding components more than oncecccoecveiiiiiiiiiiiiiinnnn, 7
1.5.2. Adding or Removing components in a flowcccccciiiiiinn, 7
1.5.3. Adding remote Analysis Enginescccccociiiiiiiiiiiiinn, 7
1.5.4. Connecting to Remote Servicesc..cccoviiiiiiiiiiiiiiiiiici, 8
1.5.5. Finding Analysis Engines by searchingcccccccovvviiiiiiiin, 9
1.5.6. Component Engine FIOWcccooeiiiiiiiiiiii, 9
1.6. Parameters Definition Pagecccccccooviiiiii 10
1.6.1. USING SrOUPS .evvvvvviiiiiiiiiiiiiiiiiiiic it 12
1.6.2. Parameter declarations for Aggregatesc..cccoeeiiiiiiiiiniinn, 14
1.7. Parameter Settings Pageccccociiiiiiiiiiiiiiii 15
1.8. Type System Pagec...cooooiiiiiiiiiiiiiii 16
1.8. 1. EXPOItING ..oovviiiiiiiiiiiiiiiiiiiiieiie i 21
1.9. Capabilities Pagecccooviviiiiiiiiiiiiii 21
1.9.1. Sofa (and view) name mappingsccccceevveiiiiiiiiiiiiiiiieiiee, 24
1.10. Indexes Pagecccccooiiiiiiiiiiiiiiiiiiii 26
1.11. Resources Pagecooouviiiiiiiiiiiiiiiiiiiic 29
1111 Binding .ooovveiiiiiiiiiiiiiiiccii 32
1.11.2. Resources with Aggregatesccccoeiviiiiiiiiiiiiiiiic, 33
1.11.3. Imports and EXportscccocvviiiiiiiiiiiiii, 33
1.12. S0UTCE PaGe ...oovviiiiiiiiiiiiiiiiiiii 33
1.12.1. Source formatting — indentationccccoeiiiii 34
1.13. Creating a Self-Contained Type Systemccccoooiiiiiiiiiiiiiiiininnnn. 34
1.14. Creating Other Descriptor Componentscccceeeiviiiiiiiiiiiiniiinnnnn. 36

2. CPE Configurator User's Guideccccccooiiiiiiiiiiiiiiiiiiiccs 37
2.1. Limitations of the CPE Configuratorccccoeiiiiiiiiiiiiii, 37
2.2. Starting the CPE Configuratorcccooeviiiiiiiiiiiiiiiies 37
2.3. Selecting Component Descriptorsccccvviiiiiiiiiiiiiiiiiiiiiecies 38
2.4. Running a Collection Processing Engineccccociiiiiiiiiiiininn. 39
2.5. The File Menuc.ccoooiiiiiiiiiiiiic 40
2.6. The Help Menuccooiiiiiiiiiiiiiiiiiicic 40

UIMA Tools Guide and Reference

UIMA Tools Guide and Reference

3. Document Analyzer User's Guideccoceiiiiiiiiiiiiiiiiii 43
3.1. Starting the Document Analyzercccccceiiiiiiiiiiiiiiiiiii s 43
32.Running an AE ... 43
3.3. Viewing the Analysis Resultsc.ccccciiiiiiiiiiiiii 44
3.4. Configuring the Annotation Viewerccccoceiiiiiiiiiiiiiniiii 46
3.5. Interactive Modecccccoiiiiiiiiiiiiii 47
3.6. View Modecccciiiiiiiiiiiiiiii 48

4. ANNotation VIEWETccccoiiiiiiiiiiiiiiic i 49

5. CAS Visual Debuggercccccuiiiiiiiiiiiiiiiiiiiii 51
5.1. Error Handlingccooiiiiiiiiiiiiiiiiiic i 51
5.2. Preferences Fileccccccoiiiiiiiiiiiiiii 51
5.3. The MENUScccvviiiiiiiiiiiiiiiccic e 52

5.3.1. The File Menuccccccoiiiiiiiiiiiiiiii 52
53.2. The Edit Menuccccoiiiiiiiiiiiii 54
5.3.3. The RUN MeNUcocouiiiiiiiiiiiiiiiiiiiiicccc 55
5.3.4. The toOls MENUccooviiiiiiiiiiiiiiiii 56
5.4. The Main Display Areacccccceiiiiiiiiiiiiiiiiiiiiiiic i 57
5.4.1. The Status Barcccccviiiiiiiiiiii i, 60
5.4.2. Keyboard Navigation and Shortcutscccccociiiiiiiii. 61

6. JCasSGEN USEI'S GUIAE ...uuuiiiiiiieeiiiiie e e et e e et e e e e e et e e e et e e e eaaanns 63
6.1. Running stand-alone without Eclipsec..ccccccciinni 64
6.2. Running stand-alone with Eclipsecccccoccoiiiiiii, 64
6.3. Running within Eclipsecccccccciiiiiiiiis 65

7. PEAR Packager User's Guidecccoouiiiiiiiiiiiiiiiiiic 67
7.1. Using the PEAR Eclipse Plugincccccooiiiiiiiiiiiis 67

7.1.1. Add UIMA Nature to your projectccccceeevvuvreiiuerinieeennecennnn. 67
7.1.2. Using the PEAR Generation Wizardc.ccccoeviiiin. 69

8. PEAR Installer User's Guidecccociiiiiiiiiiiiiiiiiiiii i 75

9. PEAR Merger User's GUIdecccocuiiiiiiiiiiiiiiiiiiiiiccciccccce i 77
9.1. Details of the merging processccccevuviiiiiiiiiiiiiiiiiiii e 77
9.2. Testing and Modifying the resulting PEARccccciiii, 78
9.3. Restrictions and Limitationscccccoiiiiiiii 78

iv UIMA Tools Guide and Reference UIMA Version 2.1

Chapter 1. Component Descriptor
Editor User's Guide

The Component Descriptor Editor is an Eclipse plug-in that provides a forms-based
interface for creating and editing UIMA XML descriptors. It supports most of the
descriptor formats, except the Collection Processing Engine descriptor and some remote
deployment descriptors.

1.1. Launching the Component Descriptor
Editor

Here's how to launch this tool on a descriptor contained in the examples. This presumes
you have installed the examples as described in the SDK Installation and Setup chapter.
¢ Expand the uimaj-examples project in the Eclipse Navigator or Package Explorer view
* Within this project, browse to the file
descriptors/tutorial/ex1/RoomNumberAnnotator.xml.

* Right-click on this file and select Open With — Component Descriptor Editor. (If this
option is not present, check to make sure you installed the plug-ins as described
Section 3.1, “Installation” in Overview & Setup. The EMF plugin is also required.).

¢ This should open a graphical editor and display the contents of the
RoomNumberAnnotator descriptor.

1.2. Creating a New AE Descriptor

A new AE descriptor file may be created by selecting the File —~ New — Other... menu.
This brings up the following dialog:

CDE User's Guide

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.installation

Creating a New AE Descriptor

Select a wizard <

Wizards:

S UIMA B'].
B Analysis Engine Descriptor File i
b % Type System Descriptor File
[=]-[= Collection Processing Components
E{" Cas Consumer Descriptor File
Ef' Cas Initializer Descriptor File
Ef" Collection Reader Descriptor File
[=- (== Importable Parts
E{" External Resource and Bindings (Resource Manager Configuration) Descriptor File
Ef" Flow Controller Descriptaor File
Index Collection Descriptor File
Type Priorities Descriptor File E_;i

{_I 11 "

<= Back Mext = Firish I Cancel |

If the user then selects UIMA and Analysis Engine Descriptor File, and clicks the Next >
button, the following dialog is displayed. We will cover creating other kinds of
components later in the documentation.

Analysis Engine (AE) Descriptor File
Create a new AE Descriptar File

Parent Folder: |test Browse... I

File name: IEIE Descriptor xmi

< Back [ewts Einish Cancel

After entering the appropriate parent folder and file name, and clicking Finish, an initial

CDE User's Guide UIMA Version 2.1

Pages within the Editor

AE descriptor file is created with the given name, and the descriptor is opened up within
the Component Descriptor Editor.

At this point, the display inside the Component Descriptor Editor is the same whether one
started by creating a new AE descriptor, as in the preceding paragraph, or one merely
opened a previously created AE descriptor from, say, the Package Explorer view. We
show a previously created AE in the figure below:

B RegExannotator.xml 52 ==
|RegExAnnotator, xmi

Overview

IO
CLL]

.....

.....

Implementation Language ¢ C/C++ 8 Java
Engine Type) Primitive O Aggregate

 Runtime Information

This section describes information about how to run this component
updates the CAS

multiple deployment allowed
D returns new artifacts

Mame of the Java dass file com.ibm.uima.examples. cas. RegExAnnotator

= (Owverall Identification Information

This section specifies the basic identification information for this descriptor
Mame RegEx Annotator

Version

Vendor

Description: | Matches regular expressions in document text,

Civerview . Aggregate Parameters . Parameter Settings . Type System Capaﬁiliﬁes - Indexes . Resources Source

To see all the information shown in the main editor pane with less scrolling, double click
the title tab to toggle between the “full screen” and normal views.

It is possible to set the Component Descriptor Editor as the default editor for all .xml files
by going to Window — Preferences, and then selecting File Associations on the left, and
*xml on the right, and finally by clicking on Component Descriptor Editor, the Default
button and then OK. If AE and Type System descriptors are not the primary .xml files you
work with within the Eclipse environment, we recommend not setting the Component
Descriptor Editor as your default editor for all .xml files. To open an .xml file using the
Component Descriptor Editor, if the Component Descriptor Editor is not set as your
default editor, right click on the file in the Package Explorer, or other navigational view,
and select Open With — Component Descriptor Editor. This choice is remembered by
Eclipse for subsequent open operations.

UIMA Version 2.1 CDE User's Guide 3

Adjusting the display of pages

1.3. Pages within the Editor

The Component Descriptor Editor follows a standard Eclipse paradigm for these kinds of
editors. There are several pages in the editor; each one can be selected, one at a time, by
clicking on the bottom tabs. The last page contains the actual XML source file being
edited, and is displayed as plain text.

The same set of tabs appear at the bottom of each page in the Component Descriptor
Editor. The Component Descriptor Editor uses this “multi-page editor” paradigm to give
the user a view of conceptually distinct portions of the Descriptor metadata in separate
pages. At any point in time the user may click on the Source tab to view the actual XML
source. The Component Descriptor Editor is, in a way, just a fancy GUI for editing the
XML. The tabs provide quick access to the following pages: Overview, Aggregate,
Parameters, Parameter Settings, Type System, Capabilities, Indexes, Resources, and
Source. We discuss each of these pages in turn.

1.3.1.

Adjusting the display of pages

Most pages in the editor have a “sash” bar. This is a light gray bar which separates
sub-sections of the page. This bar can be dragged with the mouse to adjust how the
display area is split between the two sash panes. You can also change the orientation of
the Sash so it splits vertically, instead of horizontally, by clicking on the small icons at the
top right of the page that look like this:

L1 :
o - el
1

All of the sections on a page have subtitles, with an indicator to the left which you can
click to collapse or expand that particular section. Collapsing sections can sometimes be
useful to free up screen area for other sections.

1.4. Overview Page

Normally, the first page displayed in the Component Descriptor Editor is the Overview
page (the name of the page is shown in the GUI panel at the top left). If there is an error
reading and parsing the source, the Source page is shown instead, giving you the
opportunity to correct the problem. For many components, the Overview page contains
three sections: Implementation Details, Runtime Information and overall Identification
Information.

1.4.1.

Implementation Details

In the Implementation Details section you specify the Implementation Language and
Engine Type. There are two kinds of Engines: Aggregate, and non-Aggregate (also called
Primitive). An Aggregate engine is one which is composed of additional component

CDE User's Guide UIMA Version 2.1

Runtime Information

engines and contains no code, itself. Several of the pages in the Component Descriptor
Editor have different formats, depending on the engine type.

1.4.2. Runtime Information

Runtime information is only applicable for primitive engines and is disabled for
aggregates and other kinds of descriptors. This is where you specify the class name of the
annotator implementation, if you are doing a Java implementation, or the C++ shared
object or dll name, if you are doing a C++ implementation. Most Analysis Engines will
specify that they update the CAS, and that they may be replicated (for performance
reasons) when deployed. If a particular Analysis Engine must see every CAS (for instance,
if it is counting the number of CASes), then uncheck the “multiple deployment allowed”
box. If the Analysis Engine doesn't update the CAS, uncheck the “updates the CAS” box.
(Most CAS Consumers do not update the CAS, and this parameter defaults to unchecked
for new CAS Consumer descriptors).

Analysis engines are written using the CAS Multiplier APIs (see Chapter 7, CAS
Multiplier Developer's Guide in UIMA Tutorial and Developers” Guides) can create
additional CASes for analysis. To specify that they do this, check the “returns new
artifacts”.

1.4.3. Overall Identification Information

The Name should be a human-readable name that describes this component. The Version,
Vendor, and Description fields are optional, and are arbitrary strings.

1.5. Aggregate Page

For primitive Analysis Engines, Flow Controllers or Collection Processing components,
the Aggregate page is not used. For aggregate engines, the page looks like this:

[NamesAndPersorTitles TAE.wml £
MamesAndfersonTites TAE.aml
Aggregate Delegates and Flows

! Component Engines ~ Component Engine Flow
The following engines are induded in this aggregate. Choose a flow type and describe the execution order of
t YOur ENGINes,
Delegate | Ky Hame | The tabls shows the delegates usng ther key names.

Ei?:f‘soﬂ'!'l:’»cﬁ\nnot.sIu:'_'-'.'-t"m-‘wlrn:sml','. xml PersonTiteAnnotator Flanw Kingl: | Foced Flow =

[y simpieniamenecopnizer RegEx TAExml NameRecogrizer |:| :]
B Momesecoprizer]
[} persontivleannotater |:|

Overview | Aggregate | Paramelers Parsmeber Settings Type System | Capabiities | Indexes | Resources | Source

On the left we see a list of component engines, and on the right information about the
flow. If you hover the mouse over an item in the list of component engines, that engine's

UIMA Version 2.1 CDE User's Guide 5

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm

Aggregate Page

description meta data will be shown. If you right-click on one of these items, you get an
option to open that delegate descriptor in another editor instance. Any changes you make,
however, won't be seen until you close and reopen the editor on the importing file.

Engines can be added to the list on the left by clicking the Add button at the bottom of the
Component Engine section. This brings up the following dialog;:

L[

Select one or more component engines from the workspace:

= uimaj-examples s
{Classpath p |
project

bin

data

deploy

descriptors
MixedAggregate, xml
analysis_engine
Cas_Consumer

cas_multiplier

rollertion nrocessingennine

+|-[

+

o e B e

QR

[Bru:uwse the file system...

() Import by Name
{:} Import By Location

Add selected AEs to end of flow

Cancel

This dialog lets you select a descriptor from your workspace, or browse the file system to
select a descriptor.

You can specify that the import should be by Name (the name is looked up using both the
Project's class path, and DataPath), or by location. If it is by name, it may contain part of
the path within the name. For instance, if the file name picked is

c:/ proj ect/subproject/src/con conpany/ prod/ xyz. xm , and the class path includes
c:/ proj ect/subproject/src, the name in the descriptor will be

CDE User's Guide UIMA Version 2.1

Adding components more than once

com conpany. prod. xyz”. If it is by location, the file reference is converted to a relative
reference if possible, in the descriptor.

The final selection at the bottom tells whether or not the selected engine(s) should
automatically be added to the end of the flow section (the right section on the Aggregate
page). The OK button does not become activated until a descriptor file is selected.

To remove an analysis engine from the component engine list simply select an engine and
click the Remove button, or press the delete key. If the engine is already in the flow list
you will be warned that deletion will also delete the specified engine from this list.

1.5.1. Adding components more than once

Components may be added to the left panel more than once. Each of these components
will be given a key which is unique. A typical reason this might be done is to use a
component in a flow several times, but have each use be associated with different
configuration parameters (different configuration parameters can be associated with each
instance).

1.5.2. Adding or Removing components in a flow

The button in-between the Component Engines and the Flow List, labeled >>, adds a
chosen engine to the flow list and the button labeled << removes an engine from the flow
list. To add an engine to the flow list you must first select an engine from the left hand list,
and then press the >> button. Engines may appear any number of times in the flow list. To
remove an engine from the flow list, select an engine from the right hand list and press the
<< button.

1.5.3. Adding remote Analysis Engines

There are two ways to add remote engines: add an existing descriptor, which specifies a
remote engine (just as if you were adding a non-remote engine) or use the Add Remote
button which will create a remote descriptor, save it, and then import it, all in one
operation. The Add Remote button enables you to easily specify the information needed
to create a Service Client descriptor for a remote AE - one that runs on a different
computer connected over the network. The Service Client descriptor is described in
Section 2.7, “Service Client Descriptors” in UIMA References. The Add Remote button
creates this descriptor, saves it as a file in the workspace, and imports it into the
aggregate.

Of course, if you already have a Service Client descriptor, you can add it to the set of
delegates, just like adding other kinds of analysis engines.

After clicking on Add Remote, the following dialog is displayed:

UIMA Version 2.1 CDE User's Guide 7

../references/references.pdf#ugr.ref.xml.component_descriptor.service_client

Connecting to Remote Services

il in the information about the remote service and press 0K
Service kind: Analysis Engine or Cas Consumer:

| AnslysisEngine -
Protocol Service Type:

[vina -
URI:

Key (a short mnemonic for thes service):

|
Where the generated remote descriptor file wil be stored:
C:fafEdlipse (3. 1.2/15_runtime test /descriptors fanalysis_sngine .xmi

Timeout, in miliseconds. This is ignored for the Vind protocol. Specify 0 to wait forever. If not specified, a default tmeout is used.

e

For the Vind protocol, you can eptionally spedify the Host/Port for the Vind Name Service
VNS HOST |
VNS PORT |

[V Add to end of fiow

" Import by Mame
f* Import By Location

| | lCmcr_f[

To define a remote service you specify the Service Kind, Protocol Service Type, URI and
Key. You can also specify a Timeout in milliseconds, used by the SOAP service, and a
VNS Host and Port used by the Vinci Service. Just like when one adds an engine from the
file system, you have the option of adding the engine to the end of the flow. The
Component Descriptor Editor currently only supports Vinci and SOAP services using this
dialog.

Remote engines are added to the descriptor using the <import ... > syntax. The information
you specify here is saved in the Eclipse project as a file, using a generated name,
<key-name>.xml, where <key-name> is the name you listed as the Key. Because of this, the
key-name must be a valid file name. If you want a different name, you can change the
path information in the dialog box.

1.5.4.

Connecting to Remote Services

If you are using the Vinci protocol, it requires that you specify the location of the Vinci
Name Server (an IP address and a Port number). You can specify these in the service
descriptor, or globally, for your Eclipse workspace, using the Eclipse menu item: Window

CDE User's Guide UIMA Version 2.1

Finding Analysis Engines by searching

— Preferences... — UIMA Preferences. If the remote service is available (up and running),
additional operations become possible. For instance, hovering the mouse over the remote
descriptor will show the description metadata from the remote service.

1.5.5. Finding Analysis Engines by searching

The next button that appears between the component engine list and the flow list is the
Find AE button. When this button is pressed the following dialog is displayed, which
allows one to search for AEs by name, by input or output types, or by a combination of
these criteria. This function searches the existing Eclipse workspace for matching *.xml
descriptor source files; it does not look inside Jar files.

P

— I Find an Analysis Engine (AE), CAS Consumer, or Remote Service Descriptor %

Specify @ name pattern andjor additional constraints, and then push the Search button

Descriptor file name pattern {e.q. ab®cde):

l

Descriptor must specify the input type:

Descriptor must specify the output type:

l

Look in:

] All projects -

Search

The search automatically adds a “match any characters” - style (*) wildcard at the
beginning and end of anything entered. Thus, if person is specified for an output type, a
“*person*”
“my.namespace.person” and “person.governmentOfficial.” One can search in all projects
or one particular project. The search does an implicit and on all fields which are left

non-blank.

search is performed. Such a search would match such things as

1.5.6. Component Engine Flow

The UIMA SDK currently supports three kinds of sequencing flows: Fixed,
CapabilityLanguageFlow (see the section called “Capability Language Flow” in UIMA
References), and user-defined. The first two require specification of a linear flow sequence;
this linear flow sequence can also be read by a user-defined flow controller (what use is
made of it is up to the user-defined flow controller). The Component Engine Flow section
allows specification of these items.

UIMA Version 2.1 CDE User's Guide 9

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.aggregate.flow_constraints.capability_language_flow

Parameters Definition Page

The pull-down labeled Flow Kind picks between the three flow models. When the
user-defined flow is selected, the Browse and Search buttons become enabled to let you
pick the flow controller XML descriptor to import.

+ Component Engine Flow

Choose a flow type and describe the execution erder of your engines.
The table shows the delegates using their key names.

Flaw Kind: User-defined Flow |-

Flow Controller: .. flow_controller fwhiteboardFlowController, xml
Key MName: WhiteboardFlowController

By NameRecognizer I:I
@Persunﬂﬂe.ﬁ.nnntamr -

The key name value is set automatically from the XML descriptor being imported, and
enables parameters to be overridden for that descriptor (see following sections).

The Up and Down buttons to the right in the Flow section are activated when an engine in
the flow is selected. The Up button moves the selected engine up one place in the
execution order, and down moves the selected engine down one place in the execution
order. Remember that engines can appear multiple times in the flow (or not at all).

1.6. Parameters Definition Page

10

There are two pages for parameters: the first one is where parameters are defined, and the
second one is where the parameter settings are configured. The first page is the Parameter
Definition page and has two alternatives, depending on whether or not the descriptor is
an Aggregate or not. We start with a description of parameter definitions for Primitive
engines, CAS Consumers, Collection Readers, CAS Initializers, and Flow Controllers.
Here is an example:

CDE User's Guide UIMA Version 2.1

Parameters Definition Page

B GovemmentOfficialRecognizer RegBx TAEaml 52 &

[EE=

Configuration Parameters

This section shows all configuration parameters defined far this engine.
[Use Parameter Groups

[=I- =Mat in amy group

Mutti Opt String Mame: Pattems e

Multti Opt Sting Mame: TypeMames e

Multi Opt String Mame: ContainingAnnetation Types

Single Opt Boolean MName: Annotate EntireContainingAnnotation Edit
Remaove

Mot Used

Chverview | Aggregate | Paremeters | Paramet... | Type Sy... | Capabil... | Indexes | Resources | Source |

The first checkbox at the top simplifies things if you are not using Parameter Groups (see
the following section for a discussion of groups). In this case, leave the check box
unchecked. The main area shows a list of parameter definitions. Each parameter has a
name, which must be unique for this Analysis Engine. The other three attributes specify
whether the parameter can have a single or multiple values (an array of values), whether
it is Optional or Mandatory, and what the value type it can hold (String, Integer, Float,
and Boolean).

In addition to using the buttons on the right to edit this information, you can double-click
a parameter to edit it, or remove (delete) a selected parameter by pressing the delete key.
Use the Add button to add a new parameter to the list.

Parameters have an additional description field, which you can specify when you add or
edit a parameter. To see the value of the description, hover the mouse over the item, as
shown in the picture below:

UIMA Version 2.1 CDE User's Guide 11

Using groups

@ GovemmentOficialRecognizer_RegBe TAE xml &3

.....

.....

This section shows all configuration parameters defined for this engine.
[Use Parameter Groups

= =Mot in amy group:
Multi Opt String MName: Pattems
Multi Opt String Mame: TypeMames
Multi Opt String MName: ContainingAnnotation Types

[Ess
:I‘ e

Add

Sirl Names of CAS Types to create for the pattems found. The indexes of
this amay comespond to the indexes of the Pattems or PattemFiles
amays. f a match is found for Pattems]i], it will result in an

i 1
Not Uslonnetation of type TypeNames(il

Edit

Crveriiew 5 Aggregate | F_‘E_nmmgtgrs':; Paramet... Type Sy... Capabil...- Indexes | Resources | 1

i

1.6.1. Using groups

The group concept for parameters arose from the observation that sets of parameters were
sometimes associated with different configuration needs. As an example, you might have
an Analysis Engine which needed different configuration based on the language of a

document.

To use groups, you check the “Use Parameter Groups” box. When you do this, you get the
ability to add groups, and to define parameters within these groups. You also get a
capability to define “Common” parameters, which are parameters which are defined for

all groups. Here is a screen shot showing some parameter groups in use:

12 CDE User's Guide UIMA Version 2.1

Parameter declarations for Aggregates

| B GovemmentOfficialRecognizer RegEx TAExml 52 | 2 “secorfiguration2xml 52 |

Configuration Parameters

This section shows all configuration parameters defined for this engine.
Ise Parameter Groups

Default Group | |

SearchStrateqy |NDI'IE -

: “Mat in ary group: Aad

=|- <Common:
Single Req Integer Name: myMNewFPamZ AddGroup
Multi Feg Boolean MName:x

=|- GROLIP Mames: myMewGroup Edit
Multi Opt Float Mame: s7

- GROUP Mames: myMNewGroup2 mg3 Remove

Single Opt Integer Name: parameterinGroup2

.....

.....

Overview ﬁggregate'Pammeters F‘ammet....'i'ﬁ:ue .S'_.r....lf.:apabil... Indexeséiﬁ-

You can see the “<Common>" parameters as well as two different sets of groups.

The Default Group is an optional specification of what Group to use if the parameter is
not available for the group requested.

The Search strategy specifies what to do when a parameter is not available for the group
requested. It can have the values of None, language_fallback, or default_fallback. These
are more fully described in the section Section 2.4.1.3, “Configuration Parameter
Declaration” in UIMA References .

Groups are added using the Add Group button. Once added, they can be edited or
removed, using the buttons to the right, or the standard gestures for editing
(double-clicking the item) and removing (pressing the delete key after an item is selected).
Removing a group removes all the parameter definitions in the group. If you try and
remove the “<Common>" group, it just removes the parameters in the group.

Each entry for a group in the table specifies one or more group names. For example, the
highlighted entry above, specifies two groups: “myNewGroup2” and “mg3”. The
parameter definition underneath is considered to be in both groups.

UIMA Version 2.1 CDE User's Guide 13

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.configuration_parameter_declaration
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.configuration_parameter_declaration

Parameter declarations for Aggregates

1.6.2. Parameter declarations for Aggregates

14

Aggregates declare parameters which always must override a parameter setting for a
component making up the aggregate. They do this using the version of this page which is
shown when the descriptor is an Aggregate; here's an example:

[Nomos/ndGovermentOficids_TAExw -3

Configuration Parametiers Delegate Component Parameters
This saction shows sl corfigurahon parameters defined for this engine This saction shows o delagate componerts by thas Kay names, and what
B parameters they have

Dioublscick & paramater of & group I you want to specy ovemdes for thess
Defalt Group | | parameters in this aggregate. this wil add 2 defaul Configuration Parameter in
Saaech Strategy [W Telhack :I, thes Aggregate for thal parameter, and set the cvemdes

= Delegate Hay Name: GovemnmertDficalFecognier

= Mot in any group> I:l =1 chal in any proups
= Multi Opt Stong Name: Paltems Muti Cpl Sting Name: Pattems

Crvamdes: GovemmantOficisRecogrizer Pattems I:l Mot Ot Strg Hame: Typehlames
= Muli Qpt Song Hame: TypeHames

Mui Opt Stang Mame: Contaring Annotation Types

Crvemides: Hame Rscogrizer Typehamas |:| Single Opt Boclean Mame: ArnctateErtreCortanngirnolaton
<pemmgn = Delagate Key Nama: MameHecogrizer
= «Hot in any group>»

Mubi Opd Sting Name: Paitems

[P Oct Sting Hame: Typatiames|

Muti Opt Steng Hame: Contairing Annotstion Types

Sngle Opt Boolean Name: Arnotate EntireContsning Annotation

= =1 [Crmate Crenmida [| Craats ron-shared Ovamide

Chverview Agoregate | Farsmaters | Farameter Seftings | Type System | Capabities | Indees | Resources | Source |

There is an additional panel shown (on the right) which lists all of the components by
their key names, and shows for each of them their defined parameters. To add a new
override for one or more of these parameters to the aggregate, select the component
parameter you wish to override and push the Create Override button (or, you can just
double-click the component parameter). This will automatically add a parameter of the
same name (by default — you can change the name if you like) to the aggregate, putting it
into the same group(s) (if groups are being used in the component — this is required), and
setting the properties of the parameter to match those of the component (this is required).

Note: If the name of the parameter being added already is in use in the
aggregate, and the parameters are not compatible, a new parameter name is
generated by suffixing the name with a number. If the parameters are compatible,
the selected component parameter is added to the existing aggregate parameter, as
an additional override. If you don't want this behavior, but want to have a new
name generated in this case, push the Create non-shared Override button instead,
or hold down the “shift” key when double clicking the component parameter.

In the above example, the user has just double-clicked the “TypeNames” parameter in the
“NameRecognizer” component. This added that parameter to this aggregate under the
“<Not in any group>" section — since it wasn't part of a group.

Once you have added a parameter definition to the aggregate, you can use the buttons on
the right side of the left panel to add additional overrides or remove parameters or their

CDE User's Guide UIMA Version 2.1

Parameter Settings Page

overrides. You can also remove groups; removing a group is like removing all the
parameter definitions in the group.

In addition to adding one parameter at a time from a component, you can also add all the
parameters for a group within a component, or all the parameters in the component, by
selecting those items.

If you double-click (or push Create Override) the “<Common>" group or a parameter in
the <Common> group in a component, a special group is created in the Aggregate
consisting of all of the groups in that component, and the overriding parameter (or
parameters) are added to that. This is done because each component can have different
groups belonging to the Common group notion; the Common group for a component is
just shorthand for all the groups in that component.

The Aggregate's specification of the default group and search strategy override any
specifications contained in the components.

1.7. Parameter Settings Page

The Parameter Settings page is rather straightforward; it is where the user defines
parameter settings for their engines. An example of such a page is given below:

: HFMT&HM&NM X O
Configuration Parameters Values
This section list &l corfiguration parameters, ether as plain Specity the value of the selected configuration
parameters, or as part of one or more groups. Select one to parameter.

show, or set the value in the right hand panel.

LT/
= <Mot in any group Value
Multi Reg Sting Mame: Chvilian Titles
Vice Presidart
;!--'Iuhj Req Strng Name: Wit ary Tithas President
iMuli Reg Sking Mame: Govemment Titles! Vics Pres.
Single Opt Sting Name: ContainingAnnotation Typ Fres. D
 Govemor
Value list: Lt. Govemor E
e []
Lt. Gov.
Senator
&l s Sen [Pemn]

Overview Fggregata'F'nn&tm Parameter Seftings | Type System'Capabﬂm Indexes | Resources | Source

For single valued attributes, the user simply types the default value into the Value box on
the right hand side. For multi-valued parameters the user should use the Add, Edit and
Remove buttons to manage the list of multiple parameter values.

Values within groups are shown with each group separately displayed, to allow
configuring different values for each group.

UIMA Version 2.1 CDE User's Guide 15

Type System Page

Values are checked for validity. For Boolean values in a list, use the words true or f al se.

Note: If you specify a value in a single-valued parameter, and then delete all the
characters in the value, the CDE will treat this as if you wanted to not specify any
setting for this parameter. In order to specify a 0 length string setting for a
String-valued parameter, you will have to manually edit the XML using the
“Source” tab.

1.8. Type System Page

16

This page declares the type system used by the annotator. For aggregates it is derived by
merging the type systems of all constituent AEs. The types used by the AE constitute the
language in which the inputs and outputs are described in the Capabilities page and also
affect the choice of indexes on the Indexes page. The Type System page looks like the
following;:

2 PerserTitesnnotator WithinbamesOnly.seml 00 ==

[PersonTitleAnnotator_WithinhamesOnly. xmil
Type System Definition

¥ Types (or Classes) = Imported Type Systems
The following types (dasses) are defined in this analysis engine descriptor. The following type systems are
The grayed out items are mported or merged from other descriptors, and cannot be included as part of this one.
edited here. {To edit them, edit their source files). [aad] |- ;
Type Mame or Feature Name | SuperType or Rangs | |Eleme1'1tT'y'pe| AddT
-m-e
=) PersonTitle Annotation - |SetDa1aPau1
. Kdem . ;:Esmﬂ Hekind Add... Kind | focation I
—! PersonTitexin ing - .
Allowed Value: Civilian
Alloveed Value: Military T
Allowed Value: Government
MName Annotation Export...

Dvmw'ﬁ.ggeqahe Parameters | Parameter Settings | Type System Capaﬁ:ri.lities'{fﬂexts Resources | Source |

Before discussing this page in detail, it is important to note that there are two settings that
affect the operation of this page. These are accessed by selecting the UIMA - Settings (or

by going to the Eclipse Window - Preferences — UIMA Preferences) and checking or
unchecking one of the following: “Auto generate .java files when defining types” and
“Display fully qualified type names.”

When the Auto generate option is checked and the development language for the AE is

Java, any time a change is made to a type and the change is saved, the corresponding .java

files are generated using the JCasGen tool. The results are stored in the primary source

directory defined for the project. The primary source directory is that listed first when you
right click on your project and select Properties — Java Build Path, click on the Source tab

CDE User's Guide UIMA Version 2.1

Type System Page

and look in the list box under the text that reads: “Source folder on build path.” If no
source folders are defined, you will get a warning that you have no source folders defined
and JCasGen will not be run. (For information on JCasGen see Chapter 6, JCasGen User's
Guide [63). When JCasGen is run, you can monitor the progress of the generation by
observing the status on the Eclipse status line (normally at the bottom of the Eclipse
window). JCasGen runs on the fully-merged type system, consisting of the type
specification plus any imported type system, plus (for aggregates) the merged type
systems of all the components in an aggregate.

Warning: If the components of the aggregate have different definitions for the
same type name, the CDE will show a warning. It is possible to continue past this
warning, in which case the CDE will produce the correct Java source files
representing the merged types (that is, the type definition that contains all of the
features defined on that type by all of your components). However, it is not
recommended to use this feature (of having different definitions for the same type
name) since it can make it difficult to combine/package your annotator with
others. See Section 5.5, “Merging Types” in UIMA References for more information.

Note: In addition to running automatically, you can manually run JCasGen on
the fully merged type system by clicking the JCasGen button, or by selecting Run
JCasGen from the UIMA pulldown menu:

i TAE xml - Eclipse Platform
2 Bun UIMA Window Help
Run JCasGen "

Settings k| v Auto generate JCAS source java files when changing types
2 NamesAndPersonTitles_TA v Display fully qualfied type names

IR

When “Display fully qualified type names” is left unchecked, the namespace of types is
not displayed, i.e. if a fully qualified type name is my.namespace.person, only the
abbreviated type name person will be displayed. In the Type page diagram shown above,
“Display fully qualified type names” is in fact unchecked.

To add, edit, or remove types the buttons on the top left section are used. When adding or
editing types, fully qualified type names should of course be used, regardless of whether
the “Display fully qualified type names” is unchecked. Removing or editing a type will
have a cascading effect in that the type removal/edit will effect inputs, outputs, indexes
and type priorities in the natural way.

When a type is added, this dialog is shown:

UIMA Version 2.1 CDE User's Guide 17

../references/references.pdf#ugr.ref.jcas.merging_types_from_other_specs

18

Type System Page

P 1

— Add a Type

Lise this panel to spedfy a type.
Type names must be globally unique, unless you are intentionally redefining
another type.

Type Name]smne. typename. you.Choose

Supertype: | uima.tcas. Annotation Browse I

Description:

oK Cancel

Type names should be specified using a namespace. The namespace is like a Java package
name, and serves to insure type names are unique. It also serves as the package name for
the generated JCas classes. The namespace name is the set of names up to the last period
in the string.

The supertype must be picked from an existing type. The entry field for the supertype
supports Eclipse-style content assist. To use it, put the cursor in the supertype field, and
type a letter or two of the supertype name (lower case is fine), either starting with the
name space, or just with the type name (without the name space), and hold down the
Control key and then press the spacebar. When you do this, you can see a list of suitable
matching types. You can then type more letters to narrow down your choices, or pick the
right entry with the mouse.

To see the available types and pick one, press the Browse button. This will show the
available types, and as you type letters for the type name (in lower case — capitalization is
ignored), the available types that match are narrowed. When you've typed enough to
specify the type you want, press Enter. Or you can use the list of matching type names
and pick the one you want with the mouse.

Once you've added the type, you can add features to it by highlighting the type, and
pressing the Add button.

If the type being defined is a subtype of uima.cas.String, the Add button allows you to
add allowed values for the string, instead of adding features.

CDE User's Guide UIMA Version 2.1

Type System Page

To edit a type or feature, you can double click the entry, or highlight the entry and press
the Edit button. To delete a type or feature, you highlight the entry to be deleted, and click
the delete button or push the delete key.

If the range of a feature is an array or one of the built-in list types, an additional
specification allows you to specify if multiple references to the object referenced by this
feature are allowed. If they are not allowed then the XMI serialization of instances of this
type use a more efficient format.

If the range of a feature is an array of Feature Structures, then it is possible to specify an
element type for the array. This information is used in the XMI serialization and also by
the JCas generation routines to generate more efficient code.

=

"~ Add a Feature

Use this panel to add or edit a feature
The feature name must be unigue within this type

Feature Name |ar'ra1fExamD|e

Range Type: |uima.cas.FSArray Browse

References: | Not Specified - defaults to multiple references not allowed |«

Element Type: | example.PersonTitle Browse

OK Cancel

It is also possible to import type systems for inclusion in your descriptor. To do this, use
the Type Import panel's Add. .. button. This allows you to import a type system
descriptor.

When importing by name, the name is resolved using the class path for the Eclipse project
containing the descriptor file being edited, or by looking up this name in the UIMA
DataPath. The DataPath can be set by pushing the Set DataPath button. It will be
remembered for this Eclipse project, as a project Property, so you only have to set it once
(per project). The value of the DataPath setting is written just like a class path, and can

UIMA Version 2.1 CDE User's Guide 19

20

Type System Page

include directories or JAR files, just as is true for class paths.

The following dialog allows you to pick one or more files from the Eclipse workspace, or
one file (at a time) from the file system:

-

= Import File(s) Selection

|Uze this panel to select a file in the Workspace

= uimaj-examples -~

.dasspath D |

Jproject

bin

data

deploy

descriptors

MixedAgaregate. xml

—I- analysis_engine
GovernmentOfficialRecognizer_ReqEx_TAE.xml
MamesAndGovernmentOffidals_TAE. xml
MamesAndPersonTites_TAE.xml sl

+

+

+

OR

[Bruwse the file system...

(") Import by Name
(%) Import By Location

Cancel

This is essentially the same dialog as was used to add component engines to an aggregate.
To import from a type system descriptor that is not part of your Eclipse workspace, click
the Browse the file system.... button.

Imported types are validated, and if OK, they are added to the list in the Imported Type
Systems section of the Type System page. Any types they define are merged with the
existing type system.

Imported types and features which are only defined in imports are shown in the Type
System section, but in a grayed-out font; these type cannot be edited here. To change
them, open up the imported type system descriptor, and change them there.

If you hover the mouse over an import specification, it will show more information about
the import. If you right-click, it will bring up a context menu that allows opening the
imported file in the Editor, if the imported file is part of the Eclipse workspace. Changes
you make, however, won't be seen until you close and reopen the editor on the importing

CDE User's Guide UIMA Version 2.1

Exporting

file.

It is not possible to define types for an aggregate analysis engine. In this case the type
system is computed from the component AEs. The Type System information is shown in a
grayed-out font.

1.8.1. Exporting

In addition to importing type specifications, you can export as well. When you push the
Export... button, the editor will create a new importable XML descriptor for the types in
this type system, and change the existing descriptor to import that newly created one.

P

—) Export an importable part
Spedfy a base file name, and perhaps alter the path where it should be stored,
and press QK

Base file name (without path or following ™. xmi"™;

| myTypes

Where the generated part descriptor file will be stored:

C:/Edipse fworkspace fexamples /descriptors/analysis_engine fmyTypes.xmi

" Import by Name
{+ Import By Location

OK Cancel

The base file name you type is inserted into the path in the line below automatically. You
can change the path where the generated part descriptor is stored by overtyping the lower
text box. When you click OK, the new part descriptor will be generated, and the current
descriptor will be changed to import that part.

1.9. Capabilities Page

Capabilities come in “sets”. You can have multiple sets of capabilities; each one specifies
languages supported, plus inputs and outputs of the Analysis Engine. The idea behind
having multiple sets is the concept that different inputs can result in different outputs.
Many Analysis Engines, though, will probably define just one set of capabilities. A sample

UIMA Version 2.1 CDE User's Guide 21

22

Capabilities Page

Capabilities page is given below:

Person Title Annctatorxml
Capabilities: Inputs and Outputs SIS

+ Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in
termns of the Types and Features.

= | Name | input | Outpst | Name Space | (7253 Capabiny st
—! Languages Add Language
en
Sofas Add Type
= Type: PersonTitle Cutput example
Kind Output il
Remove

b Sofa Mappings (Only used in aggregate Descriptors)

Overview | Aggregate | Parameters | Parameter Settings | Type S}ﬁﬁﬁ-fﬂauabdltm?"i'-dm"“g [

When defining the capabilities of a primitive analysis engine, input and output types can
be any type defined in the type system. When defining the capabilities of an aggregate the
inputs must be a subset of the union of the inputs in the constituent analysis engines and
the outputs must be a subset of the union of the outputs of the constituent analysis
engines.

To add a type, first select something in the set you wish to add the type to, and press Add

Type. The following dialog appears presenting the user with a list of types which are
candidates for additional inputs:

CDE User's Guide UIMA Version 2.1

Capabilities Page

.'H&l‘ﬁpmtnnwrh &

Mark one or more types as Input and/or Output by clicking the mouse in the
comesponding input and/or output column, and press OK

Type Name |km|(h.npﬁ|TrpeNmmpam|
‘Annotation uima tcas :
Documernt Annotation uima tcas

Person Title Kind example

Cancel

Follow the instructions to mark the types as input and / or output (a type can be both). By
default, the <all features> flag is set to true. If you want to specify a subset of features of a

type, read on.

When types have features, you can specify what features are input and / or output. A type
doesn't have to be an output to have an output feature. For example, an Analysis Engine
might be passed as input a type Token, and it adds (outputs) a feature to the existing
Token types. If no new Token instances were created, it would not be an output Type, but
it would have features which are output.

To specify features as input and / or output (they can be both), select a type, and press
Add. The following dialog box appears:

& Specify features input and / or output &

Designate by mouse chcking one or more features in the Input and/or Output
column, to designate as Input and/or Output press "OK"

_Featuewml_remj Muj

sofa

begin

end

Kind Yes

OK Cancel

To mark a feature as being input and / or output, click the mouse in the input and / or
output column for the feature. If you select <all features>, it unmarks any individual
feature you selected, since <all features> subsumes all the features.

UIMA Version 2.1 CDE User's Guide 23

Sofa (and view) name mappings

The Languages part of the capability is where you specify what languages are supported
by the Analysis Engine. Supported languages should be listed using either a two letter
ISO-639 language code, or an ISO-639 language code followed by a two-letter ISO-3166
country code. Add a language by selecting Languages and pressing the Add button. The

dialog for adding languages is given below.

Eﬂddlarm

1SO-3186 country code (Examples: fr or fr-CA)

Enter a two letter 1S0-635 language code, followed optionally by a twodetter

|

Cancel

The Sofa part of the capability is optional; it allows defining Sofa

names that this

component uses, and whether they are input (meaning they are created outside of this

component, and passed into it), or output (meaning that they are

created by this

component). Note that a Sofa can be either input or output, but can't be both.

To add a Sofa name (which is synonymous with the view name),
button, and this dialog appears:

press the Add Sofa

=

| Add a Sofa

%]

Uise this panel to specify a Sofa Name.

name spaces {no dots in the name).

Type the name in the box below, and specify if & is an input Sofa
fcreated outside of this component), or an output Sofa (created by this
component).

Sofa names must be unique within a Capabilty Set, and are simple names without

Sofa Name [mrm: NewSofaName

input / Output: ™ Input ¢ Output

oK

1.9.1. Sofa (and view) name mappings

Sofa names, once created, are used in Sofa Mappings. These are optional mappings, done
in an aggregate, that specify which Sofas are the same ones but with different names. The
Sofa Mappings section is minimized unless you are editing an Aggregate descriptor, and

24 CDE User's Guide

UIMA Version 2.1

Sofa (and view) name mappings

have one or more Sofa names defined for the aggregate. In that case, the Sofa Mappings
section will look like this:

& NamesAndGovemmentOficials_TAExml 3 =l
NamesAndGovemmentOfficials_TAE xmi

Capabilities: Inputs and Outputs =

+ Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in
temms of the Types and Features.

— jlh"ﬂ IMIWP'-‘I[“'HSPE Add Capabilty Set
=/ Languages Add Language
en
fr Add Ty‘p&
(=] Sofas
M*_dnpd Snfa lnpq.rt Add Sofa
Type: Guvawwiﬁfmaﬂ Output example
Type: Name Output example Edit...
< u o E=EEE
~ Sofa Mappings
This saction shows all defined Sofas for an Aggregate and their mappings to the component
Sofas.

Add Aggregate Sofa Names using the Capabilties section: Select an Aggregate Sofa Name
and Add/Edit mappings for that Sofa in this section.

= Imputs A
= AnotherSofa
GovemmentOfficial Recognizer/so2 et
=1 MylnputSofa
GovemmentOfficial Recognizer/so 1 AEneye
NameRecognizer
Outputs

Ovenview | Hgg'egate|Fm]qu5dtngs TweSydmlCapabﬂms Indexes | 2

Here the aggregate has defined two input Sofas, named “MyInputSofa”, and
“AnotherSofa”. Any named sofas in the aggregate's capabilities will appear in the Sofa
Mapping section, listed either under Inputs or Outputs. Each name in the Mappings has 0
or more delegate (component) sofa names mapped to it. A delegate may have multiple
Sofas, as in this example, where the GovernmentOfficialRecognizer delegate has Sofas
named “sol” and “s02”.

UIMA Version 2.1 CDE User's Guide 25

Indexes Page

Delegate components may be written as Single-View components. In this case, they have
one implicit, default Sofa (“_InitialView”), and to map to it you use the form shown for
the “NameRecognizer” — you map to the delegate's key name in the aggregate, without
specifying a Sofa name. You can also specify the sofa name explicitly, e.g.,
NameRecognizer/_Initial View.

To add a new mapping, select the Aggregate Sofa name you wish to add the mapping for,
and press the Add button. This brings up a window like this, showing all available
delegates and their Sofas; select one or more (use the normal multi-select methods) of
these and press OK to add them.

| Assign Components and their sofas to an Aggregate Sofa Name

Change the selection as needed to reflect bindings.

Select all the delegate sofas from the list below which should be associated with the aggregate sofa name “Mylnput Sofa”.
Hold down the Shift or Control keys to select multiple tems.

GovemmentOfficialRecognizer/so] |
GovemmentOfficial Recognizer/so2
NameRecognizer

| OK I Cancel

To edit an existing mapping, select the mapping and press Edit. This will show the
existing mapping with all mapped items “selected”, and other available items unselected.
Change the items selected to match what you want, deselecting some, and perhaps
selecting others, and press OK.

1.10. Indexes Page

The Indexes page is where the user declares what indexes and type priority lists are used
by the analysis engine. Indexes are used to determine which Feature Structures of a
particular type are fetched, using an iterator in the UIMA API. An unpopulated Indexes
page is displayed below:

26 CDE User's Guide UIMA Version 2.1

Indexes Page

Aggregate PNEMHS?PHMEWSEWEWD& System | Capabilities | Indexes |Resources | 5

(= PersonTitieAnnotator_WithinNamesOnly.xml ©2 | =
Indexes g
~ Indexes ! Index Imports
The following indexes are defined on the type system for this The following index
engine. definitions are induded as
f this one,
Name | Type |0d | raaTe pixte
= Annotation Index (Built-n) Annotation sorted I Add... ” ‘
begin Standard Add Key e
end Reverse —
TYPE PRIORITY Standard [s I Kind | Location/Name |
<l i (| N —
~ Priority Lists Imports
This section shows the defined Pricirity Lists The following type priority
imports are induded as part
Add Set of the type priorities:
Set DataPath I

Both indexes and type priority lists can have imports. These imports work just like the
type system imports, described above. Both indexes and type priority lists can be exported
to new component descriptors, using the Export... button, just like the type system export

operation described above.

The built-in Annotation Index is always present. It is based on the built-in type

ui ma. t cas. Annot ati on and has keys begin (Ascending), end (Descending) and
TYPE_PRIORITY. There are no built-in type priorities, so this last sort item does not play a
role in the index unless type priorities are specified.

Type priority may be combined with other keys. Type priorities are defined in the Priority

UIMA Version 2.1

CDE User's Guide

27

28

Indexes Page

Lists section, using one or more priority list. A given priority list gives an ordering among
a group of types. Types that appear higher in the priority list are given higher priority, in
other words, they sort first when TYPE_PRIORITY is specified as the index key. Subtypes
of these types are also ordered in a consistent manner, unless overridden by another
specific type priority specification. To get the ordering used among all the types, all of the
type priority lists are merged. This gives a partial ordering among the types. Ties are
resolved in an unspecified fashion. The Component Descriptor Editor checks for
incompatible orderings, and informs the user if they exist, so they can be corrected.

To create a new index, use the Add Index button in the top left section. This brings up this
dialog;:

. Add an index
Add or Edit an index: specification
The Index name must be globally unique.
Index Mame: Je:t.ample.indeﬂ
Index Kind: JE'I'ITE':' hdl
CAS Type ﬁuima.tcas.f-‘-nnntatinn Browse
Feature Name j Sorting Direction Add
begin Standard
end Standard
Sort Keys:
| { E 1| >
QK Cancel

Each index needs a globally unique index name. Every index indexes one CAS type
(including its subtypes). If you're using Eclipse 3.2 or later, the entry field for this has
content assist (start typing the type name and press Control — Spacebar to get help, or
press the Browse button to pick a type).

Indexes can be sorted, in which case you need to specify one or more keys to sort on. Sort
keys are selected from features whose range type is Integer, Float, or String. Some
elements will be disabled if they are not relevant. For instance, if the index kind is “bag”,
you cannot provide sort keys. The order of sort keys can be adjusted using the up and
down buttons, if necessary.

CDE User's Guide UIMA Version 2.1

Resources Page

Note: There is usually no need to explicitly declare a Bag index in your
descriptor. As of UIMA v2.1, if you do not declare any index for a type (or any of
its supertypes), a Bag index will be automatically created. This index is accessed
using the get Al | | ndexedFS(. . .) method defined on the index repository.

A set index will contain no duplicates of the same type, where a duplicate is defined by
the indexing comparator. That is, if you commit two feature structures of the same type
that are equal with respect to the indexing comparator, only the first one will be entered
into the index. Note that you can still have duplicates with respect to the indexing order, if
they are of a different type. A set index is not guaranteed to be sorted. If no keys are
specified for a set index, then all instances are considered by default to be equal, so only
the first instance (for a particular type or subtype of the type being indexed) is indexed.
On the other hand, “bag” indicates that all annotation instances are indexed, including
duplicates.

The Priority Lists section of the Indexes page is used to specify Priority Lists of types.
Priority Lists are unnamed ordered sets of type names. Add a new priority list by clicking
the Add Set button. Add a type to an existing priority list by first selecting the set, and
then clicking Add. You can use the up and down buttons to adjust the order as necessary;
these buttons move the selected item up or down.

Although it is possible to import self-contained index and type priority files, the creation
of such files is not yet supported by the Component Descriptor Editor. If you create these
files using another editor, they can be imported using the corresponding Import panels,
shown on the right. Imports are specified in the same manner as they are for Type System
imports.

1.11. Resources Page

The resources page describes resource dependencies (for primitive Analysis Engines) and
external Resource specification and their bindings to the resource dependencies.

Only primitive Analysis Engines define resource dependencies. Primitive and Aggregate
Analysis Engines can define external resources and connect them (bind them) to resource
dependencies.

When an Aggregate is providing an external resource to be bound to a dependency, the
binding is specified using a possibly multi-level path, starting at the Aggregate, and
specify which component (by its key name), and then if that component is, in turn, an
Aggregate, which component (again by its key name), and so on until you reach a
primitive. The sequence of key names is made into the binding specification by joining the
parts with a “/” character. All of this is done for you by the Component Descriptor Editor.

Any external resource provided by an Aggregate will override any binding provided by
any lower level component for the same resource dependency.

UIMA Version 2.1 CDE User's Guide 29

30

Resources Page

There are two views of the Resources page, depending on whether the Analysis Engine is
an Aggregate or Primitive. Here's the view for a Primitive:

B PersorTitieAnnotator WithinMNamesOnly.xml 52 =B
fPersnn‘ﬁtle.ﬁ.nnDtab::-r_WiminNamesDnIy.xml

Resources

I LL]
11
[ET=
IV15

+ Resources Needs, Definitions and + Resource Dependencies

Bindings e e
i Primitives declare what resources they need, A
Specify External Resources; Bind them to primitive can only bind to one external resource.
dependencies on the right panel by selecting the

corresponding dependency and dicking Bind, Bound J Optional? I Keys J Interf

Bindings
The following definitions are induded:
[me|[]

Set DataPath

Kind] Location/Mame |

,{ l i | [>
| Aggregate F‘ararneters” Parameter Setings - Type System : Capal:uiliﬁes“ Indexes- | Rgs__qu_r;gs_ ”1

To declare a resource dependency, click the Add button in the right hand panel. This puts
up the dialog:

CDE User's Guide UIMA Version 2.1

Resources Page

Add an Bxtemal Resource Dependency

The only required field is the key name,
which must be unigue within this primitive Analysis Engine descriptor.

Key |

Drescription:

Irterface

™ Check this box if this resource is optional

[} l Cancel

The Key must be unique within the descriptor declaring it. The Interface, if present, is the
name of a Java interface the Analysis Engine uses to access the resource.

Declare actual External resource on the left side of the page. Clicking “Add” brings up this
dialog:

UIMA Version 2.1 CDE User's Guide 31

Binding

EMdeltmﬂHEﬂnn:eDeﬁrlhm .

Define and name an extemal rezource

The first LURL field is used to identify the esdemal resource.

ff both LURL fields are used, they form a name by concatenating the first with the
document language and then with the second (suffod) URL.

The (optional) Implementation specifies a Java class which implements the
interface used by the Analysis Engine to access the resource.

Name: |

Description:

URL:

URL Suffix

Implementation

Cancel

The Name must be unique within this Analysis Engine. The URL identifies a file resource.
If both the URL and URL suffix are used, the file resource is formed by combining the first
URL part with the language-identifier, followed by the URL suffix; see Section 2.4.1.11,
“Resource Manager Configuration” in UIMA References . URLs may be written as
“relative” URLSs; in this case they are resolved by looking them up relative to the classpath
and/or datapath. A relative URL has the path part starting without an intial “/”; for
example: file:my/directory/file. An absolute URL starts with file:/ or file:/// or
tile://some.network.address/. For more information about URLS, please read the javaDoc
information for the Java class “URL”.

The Implementation is optional, and if given, must be a Java class that implements the
interface specified in any Resource Dependencies this resource is bound to.

1.11.1. Binding

Once you have an external resource definition, and a Resource Dependency, you can bind
them together. To do this, you select the two things (an external resource definition, and a

32 CDE User's Guide UIMA Version 2.1

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.primitive.resource_manager_configuration
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.primitive.resource_manager_configuration

Resources with Aggregates

Resource Dependency) that you want to bind together, and click Bind.

1.11.2. Resources with Aggregates

When editing an Aggregate Descriptor, the Resource definitions panel will show all the
resources at the primitive level, with paths down through the components (multiple
levels, if needed) to get to the primitives. The Aggregate can define external resources,
and bind them to one or more uses by the primitives.

1.11.3. Imports and Exports

Resource definitions and their bindings can be imported, just like other imports. Existing
Resource definitions and their bindings can be exported to a new importable part, and
replaced with an import for that importable part, using the “Export...” button, just like the
similar function on the Type System page.

1.12. Source Page

The Source page is a text view of the xml content of the Analysis Engine or Type System
being configured. An example of this page is displayed below:

2 NemesAndGovemmentOficials TAEml ¢2 =8
{NamesAndGovemmentOfficials_TAE xmi

~
<taeDescription xmlns="hctcp://uima.watson,ibm,com/resourceSpecifier™>
<frameworkinplemsntationscom.ibm.uims.javad/frameworkIimplemencacions
<primitive>falass/primitive>
<delegareinalyaisEngineSpecifiers>
<delegateAnalysisEngine keys"GovernmentOfficialRecognizer™>
<import location="GovernmentQfficialRecognizer RegEx TAE.xml"/>
</delegaceAnalysisEngine>
<delegateAnalysisEngine key="HameRecognizer™>»
<import locacion="3impleliamaRe nizer RegEx TAE.Xxml"™/ >
</delegateAnal ysisEngine>
</delegatehnalyzisEngineSpecifiers>
<analysisEngineMecaData>
<name>Aggregate TAE - Name Recognizer and Government Official Recognizer</
<description>Detects Names and Government Officials</deacription> W
% >

ey i = e s e sy o - po—

Changes made in the GUI are immediately reflected in the xml source, and changes made
in the xml source are immediately reflected back in the GUI. The thought here is that the
GUI view and the Source view are just two ways of looking at the same data. When the
data is in an unsaved state the file name is prefaced with an asterisk in the currently
selected file tab in the editor pane inside Eclipse (as in the example above).

You may accidentally create invalid descriptors or XML by editing directly in the Source
view. If you do this, when you try and save or when you switch to a different view, the

UIMA Version 2.1 CDE User's Guide 33

Source formatting — indentation

error will be detected and reported. In the case of saving, the file will be saved, even if it is
in an error state.

1.12.1. Source formatting — indentation

The XML is indented using an indentation amount saved as a global UIMA preference. To
change this preference, use the Eclipse menu item: Windows - Preferences — UIMA
Preferences.

1.13. Creating a Self-Contained Type System

It is also possible to use the Component Descriptor Editor to create or edit self-contained
type systems. To create a self-contained type system, select the menu item File -~ New -
Other and then select Type System Descriptor File. From the next page of the selection
wizard specify a Parent Folder and File name and click Finish.

.f"h"ﬂ'

Select a wizard

Wizards:

= Eclipse Modeling Framewaork

= Example EMF Model Creation Wizards

= Java

= Java Emitter Templates

= Plug-in Development

= Simple

= UIMA
Ef Anatysis Engine Descriptor File
% Type System Descriptar File

+- 7= Examples

e R N R By R

Cancel

1=
2
W

34 CDE User's Guide UIMA Version 2.1

Creating a Self-Contained Type System

E MHew Type System Descriptor File

Type System Descriptor File

Create a new Type System Descrptor file

Parent Folder:]!-"test,-"descﬁptnrsfanah'sis_engine

File name:]t'_.'pe SystemDescriptorxml

< Back

Einizh

Cancel

This will take you to a version of the Component Descriptor Editor for editing a type
system file which contains just three pages: an overview page, a type system page, and a
source page. The overview page is a bit more spartan than in the case of an AE. It looks

Overview

+ Owverall Identification Information

R
[TT]

This section specifies the basic identfication information for this

descriptor

Mame hypesystem
Yersion 1.0
Wendor

Description: A sample description would go here |

:_DVEWiE'-\f_E-T‘,’pE Sﬁtem Source ,

==

i
Ila=l

Just like an AE has an associated name, version, vendor and description, the same is true
of a self-contained type system. The Type System page is identical to that in an AE
descriptor file, as is the Source page. Note that a self-contained type system can import
type systems just like the type system associated with an AE.

UIMA Version 2.1

CDE User's Guide

35

Creating Other Descriptor Components

A type system component can also be created from an existing descriptor which contains a
type system definition section, by clicking on the Export... button on the Type System

page.

1.14. Creating Other Descriptor Components

36

The new wizard can create several other kinds of components: Collection Processing
Management (CPM) components, flow controllers, and importable parts (besides Type
Systems, described above, Indexes, Type Priorities, and Resource Manager Configuration
imports).

The CPM components supported by this editor include the Collection Reader, CAS
Initializer, and CAS Consumer descriptors. Each of these is basically treated just like a
primitive AE descriptor, with small changes to accommodate the different semantics. For
instance, a CAS Consumer can't declare in its capabilities section that it outputs types or
features.

Flow controllers are components that control the flow of CASes within an aggregate, an
are edited in a similar fashion as a primitive Analysis Engine.

The importable part support requires context information to enable the editor to work,
because much of the power of this editor comes from extensive checking that requires
additional information, other than what is available in just the importable part. For
instance, when you create or edit an Indexes import, the facility for adding new indexes
needs the type information, which is not present in this part when it is edited alone. To
overcome this, when you edit these descriptors, you will be asked to specify a context
descriptor, usually a descriptor which would import the part being edited, which would
have the additional information needed. Various methods are used to guess what the
context descriptor should be - and if the guess is correct, you can just press the Enter key
to confirm. The last successful context file is remembered and will be suggested as the
context file to use at the next edit session

CDE User's Guide UIMA Version 2.1

Chapter 2. Collection Processing
Engine Configurator User's Guide

A Collection Processing Engine (CPE) processes collections of artifacts (documents) through
the combination of the following components: a Collection Reader, Analysis Engines, and
CAS Consumers. !

The Collection Processing Engine Configurator(CPE Configurator) is a graphical tool that
allows you to assemble and run CPEs.

For an introduction to Collection Processing Engine concepts, including developing the
components that make up a CPE, read Chapter 2, Collection Processing Engine
Developer's Guide in UIMA Tutorial and Developers” Guides. This chapter is a user's guide
for using the CPE Configurator tool, and does not describe UIMA's Collection Processing
Architecture itself.

2.1. Limitations of the CPE Configurator

The CPE Configurator only supports basic CPE configurations.

It only supports “Integrated” deployments (although it will connect to remotes if
particular CAS Processors are specified with remote service descriptors). It doesn't
support configuration of the error handling. It doesn't support Sofa Mappings; it assumes
all Single-View components are operating with the _InitialView Sofa. Multi-View
components will not have their names mapped. It sets up a fixed-sized CAS Pool.

To set these additional options, you must edit the CPE Descriptor XML file directly. See
Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for the
syntax. You may then open the CPE Descriptor in the CPE Configurator and run it. The
changes you applied to the CPE Descriptor will be respected, although you will not be
able to see them or edit them from the GUL

2.2. Starting the CPE Configurator

The CPE Configurator tool can be run using the cpeGui shell script, which is located in
the bi n directory of the UIMA SDK. If you've installed the example Eclipse project (see
Section 3.2, “Setting up Eclipse to view Example Code” in Overview & Setup, you can also

'Earlier versions of UIMA supported another component, the CAS Initializer, but this component is now
deprecated in UIMA Version 2.

CPE Configurator User's Guide 37

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code

Selecting Component Descriptors

run it using the “UIMA CPE GUI” run configuration provided in that project.

Note: If you are planning to build a CPE using components other than the
examples included in the UIMA SDK, you will first need to update your
CLASSPATH environment variable to include the classes needed by these
components.

When you first start the CPE Configurator, you will see the main window shown here:

[ﬁ Collection Processing Engine Configurator Ei[@ ﬁ
_FIE Yiew Help

ﬁ Unstructured Information Management Architecture

Descrpter:

A Apache monbatar Praject,

Calection Reader

Anahesis Engnes

(o) = ()

CAS Consumers

)

) @aea‘

alzed

2.3. Selecting Component Descriptors

38

The CPE Configurator's main window is divided into three sections, one each for the
Collection Reader, Analysis Engines, and CAS Consumers.”

In each section of the CPE Configurator, you can select the component(s) you want to use
by browsing to (or typing the location of) their XML descriptors. You must select a

*There is also a fourth pane, for the CAS Initializer, but it is hidden by default. To enable it click the Vi ew -
CAS Initializer Panel menuitem.

CPE Configurator User's Guide UIMA Version 2.1

Running a Collection Processing Engine

Collection Reader, and at least one Analysis Engine or CAS Consumer.

When you select a descriptor, the configuration parameters that are defined in that
descriptor will then be displayed in the GUI; these can be modified to override the values
present in the descriptor.

For example, the screen shot below shows the CPE Configurator after the following
components have been chosen:

exanpl es/ descriptors/col |l ecti onReader/Fi | eSyst enCol | ecti onReader . xni
exanpl es/ descri pt or s/ anal ysi s_engi ne/ NanesAndPer sonTi t| es_TAE. xm
exanpl es/ descri pt ors/ cas_consuner/ Xm Wi t er CasConsuner . xm

- Collection Precessing Engine Configurator E]__J@
Fie Wiew Help o

1;31 Unstructured Information Management Architecture

. A Aveche mewbetor Project.

Colection Reader

Deserptor | ARksystemalectionReadsr. s
Input Directoryt | C:y)apache-inal exarples)dats

Encading:

Language:

Anelysis Engines

[Add... ” £]l ¥ |

E Agorenate TAE - Mame Recoonizer and Person Tithe Annotator

CAS Consumers

[#de. |[=z || == |

[3¢] Hmi Weriter CAS Carsumer

Quiput Directorys Cripampiyimal=m_autpus Browsa, .

I @uu o

rikiakzed

2.4. Running a Collection Processing Engine

After selecting each of the components and providing configuration settings, click the play
(forward arrow) button at the bottom of the screen to begin processing. A progress bar
should be displayed in the lower left corner. (Note that the progress bar will not begin to

UIMA Version 2.1 CPE Configurator User's Guide 39

The File Menu

move until all components have completed their initialization, which may take several
seconds.) Once processing has begun, the pause and stop buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes
successfully, you will be presented with a performance report.

2.5. The File Menu

40

The CPE Configurator's File Menu has six options:

* Open CPE Descriptor

Save CPE Descriptor

Refresh Descriptors from File System

Clear All

Exit

Open CPE Descriptor will allow you to select a CPE Descriptor file from disk, and will
read in that CPE Descriptor and configure the GUI appropriately.

Save CPE Descriptor will create a CPE Descriptor file that defines the CPE you have
constructed. This CPE Descriptor will identify the components that constitute the CPE, as
well as the configuration settings you have specified for each of these components. Later,
you can use “Open CPE Descriptor” to restore the CPE Configurator to the state. Also,
CPE Descriptors can be used to easily run a CPE from a Java program — see Section 3.3.1,
“Running a CPE from a Descriptor” in UIMA Tutorial and Developers” Guides .

CPE Descriptors also allow specifying operational parameters, such as error handling
options that are not currently available for configuration through the CPE Configurator.
For more information on manually creating a CPE Descriptor, see Chapter 3, Collection
Processing Engine Descriptor Reference in UIMA References .

Refresh Descriptors from File System will reload all descriptors