UIMA References
Authors: The Apache UIMA Development Community

Version 2.1

Copyright © 2006, 2007 The Apache Software Foundation
Copyright © 2004, 2006 International Business Machines Corporation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing
incubation at the Apache Software Foundation (ASF). Incubation is required
of all newly accepted projects until a further review indicates that the
infrastructure, communications, and decision making process have stabilized
in a manner consistent with other successful ASF projects. While incubation
status is not necessarily a reflection of the completeness or stability of the
code, it does indicate that the project has yet to be fully endorsed by the ASF.

License and Disclaimer. The ASF licenses this documentation to you under
the Apache License, Version 2.0 (the "License"); you may not use this
documentation except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation
and its contents are distributed under the License on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing permissions
and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks
or service marks have been appropriately capitalized. Use of such terms in this
book should not be regarded as affecting the validity of the the trademark or
service mark.

Published February, 2007

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. JAVAAOCS ..iiiiiiiiiiiie ettt e e e e e et e e e et e e et e e e et b e e aat e aaaraaaes 1
2. Component Descriptor Referencecccccceoiviiiiiiiiiiiiiiiiiiiicieee e 3
2.1 NOAtION ..evviiiiiiicc 3
2.2, IMPOTES vviiiiiiiiiiiiiiii 4
2.3. Type System Descriptorscccceeiiiiiiiiiiiiiiiiiiiiiiicciieccic 5
2.3 1. IMPOTES v 6
2.3.2.TYPES oo 6
2.3.3. Featuresc.ccooviiiiiiiiiiiii 7
2.3.4. String SUDLYPEScceuvviiiiiiiiiiiii 8

2.4. Analysis Engine Descriptorsccccoccuiiiiiiiiiiiiiiiiiiiiicciiecc e 8
2.4.1. Primitive Analysis Engine Descriptorsc.ccccoooiiiiiiiiiiinnnnnn. 9
2.4.2. Aggregate Analysis Engine Descriptorsccccciiiiiiiiiiiinnnn. 25

2.5. Flow Controller Descriptorscccccoocuiiiiiiiiiiiiiiiiiiiiiiniiccccc e, 30
2.6. Collection Processing Component Descriptorsc.cccoeeiviiiiinieninnn. 31
2.6.1. Collection Reader Descriptorsccccvviiiiiiiiiiiiiiiiiiiiiicc, 31
2.6.2. CAS Initializer Descriptors (deprecated)ccccovvvuiiiiiiiiiininnnn. 33
2.6.3. CAS Consumer Descriptorscccccoevviiiiiiiiiiiiiiiiiiciciece, 34

2.7. Service Client Descriptorsccccoviiiiiiiiiiiiiiiiiiiiiiiiee s 35
3. CPE Descriptor Referencecccocoiiiiiiiiiiiiiiiiiiiiiiiciiccciiec s 37
3.1. CPE OVEIVIEW ..iiiiiiiiiiiiiiiiiiiiiiiiin ittt 37
3.2 NOtAtION ..eeiiiiiiiiccci 38
B3 . IMPOTLS it 39
3.4. CPE Descriptor OVEIVIEWcccceviiiiiiiiiiiiiiiiiiiiiiiiiiiencce e 40
3.5. Collection Readercccooiiiiiiiiiiiiiiiiiii 41
3.5.1. Error handling for Collection Readersccccocoiiiiiiiinn, 41

3.6. CAS PTOCESSOTS ...vvviiiiiiiiiiiiiiiiiiic ettt 41
3.6.1. Specifying an Individual CAS Processorccccoeeuiiiiiiiiiniennne. 43

3.7. CPE Operational Parametersccccooouviiiiiiiiiiiiiiiiciicccicececes 52
3.8. Resource Manager Configurationccccccoeiiiiiiiiiiiiiiiii s 56
3.9. Example CPE Descriptorcocccviiiiiiiiiiiiiiiiiiiiiiiccccci 57
4. CAS ReferenCec.eoiiiiiiiiiiiiiiicciic e 59
S B - 1 72=1 B L Yo/ TN 59
4.2. CAS OVEIVIEW ..ooiiiiiiiiiiiiiiiiiciiii e 59
4.2.1. The Type Systemcccccooviiiiiiiiiiiiiiiiicccic 59
4.2.2. Creating/Accessing/Changing dataccccoeviiiiiiiiiin, 60
4.2.3. Creating and using indexescccccccovviiiiiiiiiiiiii 61

4.3. Built-in CAS TYPES ..oviiiiiiiiiiiiiiiiiiiiiii e 62
4.4. Accessing the type SyStemcccccuiiiiiiiiiiiiiiiiiii 64
4.4.1. TypeSystemPrinter exampleccccciiiiiiiiiiiiiii, 65
4.4.2. Using CAS APIs: Feature Structurescccoccciiiiiiiiiiiiiinn, 67

UIMA References iii

iv

UIMA References

4.5. Creating feature structuresccccoeiiiiiiiiiiiiiiiii 69
4.6. Accessing or modifying Featuresccccccoovviiiiiiiiiiii 70
4.7. Indexes and Iteratorsccociiiiiiiiiiiiiiii 70
4.7.1. Built-in Indexesccccviiiiiiiii 71
4.7.2. Adding Feature Structures to the Indexesccccoeeiil 71
4.7.3. TLETAtOrS .covvvviiiiiiiiiiiiiii 71
4.7.4. Special iterators for Annotation typesccccoeeiiiiiiiiiiiiiiin 71
4.7.5. Constraints and Filtered iteratorsccccooiiiiiiiiiiiin 72
4.8. CAS APT'S JAVADIOCS ..cevvniiiiieiiieeiiie et e et e e tee et e et e e e e et e e et e e aeneeaanaeees 74
4.8.1. APIs in the CAS packagecccccevuiiiiiiiiiiiiiiiiiiiiiiiec 74
5.JCaS RELETONCE ...cceiiiiiiiiiiiieie e 77
5.1. NamMe SPACEScoiiiiiiiiiiiiiiiiccci e 78
5.2. Use of XML DeScriptionccccccoiiiuiiiiiiiiiiiiiiiiiiiiiiicciecc e 78
5.3. Mapping built-in CAS types to Java typesccccoevviiiiiiiiiiiiiiiininnnn, 79
5.4. Augmenting the generated Java Codec..coccoiiiiiiiiiii 79
5.4.1. Keeping hand-coded augmentations when regenerating 79
5.4.2. Additional Constructorsccccceeiiiiiiiiiiiiiiiiniii 80
5.4.3. Modifying generated itemsccccooviiiiiiiiiiiii 81
5.5. Merging TYPeSoooiiiiiiiiiii e 81
5.5.1. Aggregate AEs and CPEs as sources of typesc..cccoeeuviiiinnnnn. 81
5.5.2. JCasGen support for type mergingcccecceeveeviiiiieiniineeennnnn. 82
5.5.3. Type Merging impacts on Composabilityccccceeiiiiiiiiiniin, 82
5.5.4. Adding Features to DocumentAnnotationcccccoeveiiiinnnnen. 82
5.6. Using JCas within an Annotatorccccciiiiiiiiiiii 83
5.6.1. Creating new inStancescccocveiiiiiiiiiiiiiiiccciiice 84
5.6.2. Getters and Settersccceiiiiiiiiiiiiiiii 84
5.6.3. Obtaining references to Indexesc...cccooviiiiiiiin, 84
5.6.4. Updating IndeXescccccoovvmiiiiiiiiiiiiiiiiiiiiiiis 85
5.6.5. Using Iteratorscccccooiiii 86
5.6.6. Class Loaders in UIMAccooiiiiiiiiiiiiiiiiii 86
5.6.7. Issues accessing JCas objects outside of UIMA Engine Components
... 87
5.7. Setting up Classpath for JCasc.ccoooiiiiiiiiiiiiiiii, 87
6. PEAR Referencecccoooiiiiiiiiiiiiiiiiiic 89
6.1. Packaging a UIMA componentccccuveiiiiiiiiiiiiiiiiiieeniiieiceneeeenn 89
6.1.1. Creating the PEAR structurecccccoccviiiiiiiiiiiii, 89
6.1.2. Populating the PEAR structureccccccooiiiiiiiiiiiiiiiin, 91
6.1.3. Creating the installation descriptorccccciiiiiiiiiii. 92
6.1.4. Installation Descriptor: templateccccooiiiiiiiiiiiii, 93
6.1.5. Packaging the PEAR structure into one filec..c.ccooei. 99
6.2. Installing a PEAR packageccccoocviiiiiiiiiiiiiiiiiiiiicc e 99
6.2.1. Installing a PEAR file using the PEAR APIsccccovviiiiiinnnn. 99
7. XMI CAS Serialization Referencecccccooviiiiiiiiiiiiiiiiiiiiiicccccs 101
F8 T 1, 1 I - 101
7.2. Feature Structuresccccoiiiiiiiiiiiiiiiiiiic 101
UIMA References UIMA Version 2.1

UIMA References

7.3. Primitive Featuresccccooiiiiiiiiiiiiiiiiiiii 102
7.4. Reference Featuresccccociiiiiiiiiiiiiiii 103
7.5. Array and List Featurescccoccciiiiiiiiiiii 103
7.5.1. Arrays and Lists as Multi-Valued Propertiescc..o... 104
7.5.2. Arrays and Lists as First-Class Objectscccccooeviiiiiiiiinnnne. 104
7.5.3. Null Array/List Elementsccccccoviiiiiiiiiiiii, 105
7.6. Subjects of Analysis (Sofas) and VIeWsccccccoveiiiiiiniiiiiinniiiieinnnn. 106
7.7. Linking XMI docs to Ecore Type Systemc..ccccceoviiiiiiiiniiiniiienne, 106

UIMA Version 2.1 UIMA References

Chapter 1. Javadocs

The details of all the public APIs for UIMA are contained in the API JavaDocs. These are
located in the docs/api directory; the top level to open in your browser is called
api/index.html.

Eclipse supports the ability to attach the JavaDocs to your project. The Javadoc should
already be attached to the ui naj - exanpl es project, if you followed the setup instructions
in Section 3.2, “Setting up Eclipse to view Example Code” in Overview & Setup. To attach
Javadocs to your own Eclipse project, use the following instructions.

Open a project which is referring to the UIMA APIs in its class path, and open the project
properties. Then pick Java Build Path. Pick the "Libraries" tab and select one of the UIMA
library entries (if you don't have, for instance, uima-core jar in this list, it's unlikely your
code will compile). Each library entry has a small "+" sign on its left - click that to expand
the view to see the Javadoc location. If you highlight that and press edit - you can add a
reference to the Javadocs, in the following dialog;:

=

f* Javadoc URL (=.g. 'http:/fwww.zample-url.org/docy” or file: fc: fmyworkspace jmyproject/doc’)

Javadoc location path: | Browse...
Validate. ..

™ Javadocin archive

L

(0] 4 | Cancel |

Once you do this, Eclipse can show you JavaDocs for UIMA APIs as you work. To see the
JavaDoc for a UIMA API, you can hover over the API class or method, or select it and
press shift-F2, or use the menu Navigate — OpenExternalJavaDoc, or open the Javadoc
view (Window — Show View — Other - Java - Javadoc).

In a similar manner, you can attach the source for the UIMA framework. The source is, of
course, available from the Apache UIMA website (http://incubator.apache.org/uima).

Javadocs

api/index.html
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code
http://incubator.apache.org/uima

Chapter 2. Component Descriptor
Reference

This chapter is the reference guide for the UIMA SDK's Component Descriptor XML
schema. A Component Descriptor (also sometimes called a Resource Specifier in the code) is
an XML file that either (a) completely describes a component, including all information
needed to construct the component and interact with it, or (b) specifies how to connect to
and interact with an existing component that has been published as a remote service.
Component (also called Resource) is a general term for modules produced by UIMA
developers and used by UIMA applications. The types of Components are: Analysis
Engines, Collection Readers, CAS Initializersl, CAS Consumers, and Collection Processing
Engines. However, Collection Processing Engine Descriptors are significantly different in
format and are covered in a separate chapter, Chapter 3, Collection Processing Engine
Descriptor Reference [37]

Section 2.1, “Notation” [3] describes the notation used in this chapter.

Section 2.2, “Imports” [4] describes the UIMA SDK's import syntax, used to allow XML
descriptors to import information from other XML files, to allow sharing of information
between several XML descriptors.

Section 2.4, “Analysis Engine Descriptors” [8] describes the XML format for Analysis
Engine Descriptors. These are descriptors that completely describe Analysis Engines,
including all information needed to construct and interact with them.

Section 2.6, “Collection Processing Component Descriptors” [31]describes the XML format
for Collection Processing Component Descriptors. This includes Collection Iterator, CAS
Initializer, and CAS Consumer Descriptors.

Section 2.7, “Service Client Descriptors” [35]describes the XML format for Service Client
Descriptors, which specify how to connect to and interact with resources deployed as
remote services.

2.1. Notation

This chapter uses an informal notation to specify the syntax of Component Descriptors.
The formal syntax is defined by an XML schema definition, which is contained in the file
resour ceSpeci fi er Schema. xsd, located in the ui ma- core. j ar file.

'This component is deprecated and should not be use in new development.

Component Descriptor Reference 3

Imports

The notation used in this chapter is:

* An ellipsis (...) inside an element body indicates that the substructure of that element
has been omitted (to be described in another section of this chapter). An example of this
would be:

<anal ysi sengi neMet aDat a>
</ anal ysi sEngi neMet aDat a>

An ellipsis immediately after an element indicates that the element type may be may be
repeated arbitrarily many times. For example:

<par anet er >[Stri ng] </ par anet er >
<par anet er >[Stri ng] </ par anet er >

indicates that there may be arbitrarily many parameter elements in this context.

* Bracketed expressions (e.g. [St ri ng]) indicate the type of value that may be used at
that location.

* A vertical bar, asin t r ue| f al se, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

* Which elements are optional and which are required is specified in prose, not in the
syntax definition.

2.2. Imports

The UIMA SDK defines a particular syntax for XML descriptors to import information
from other XML files. When one of the following appears in an XML descriptor:

<inmport location="[URL]" /> or
<i nport nane="[Nane]" />

it indicates that information from a separate XML file is being imported. Note that imports
are allowed only in certain places in the descriptor. In the remainder of this chapter, it will
be indicated at which points imports are allowed.

If an import specifies a | ocat i on attribute, the value of that attribute specifies the URL at
which the XML file to import will be found. This can be a relative URL, which will be
resolved relative to the descriptor containing the i nport element, or an absolute URL.
Relative URLSs can be written without a protocol/scheme (e.g., “file:”), and without a host
machine name. In this case the relative URL might look something like

or g/ apache/ nyproj / MyTypeSystem xni .

An absolute URL is written with one of the following prefixes, followed by a path such as

4 Component Descriptor Reference UIMA Version 2.1

Type System Descriptors

or g/ apache/ nyproj / MyTypeSystem xni :
e file:/ — has no network address

¢ file:/// — has an empty network address
e file://some.network.address/

For more information about URLS, please read the javadoc information for the Java class
“URL".

If an import specifies a nane attribute, the value of that attribute should take the form of a
Java-style dotted name (e.g. or g. apache. nypr oj . MyTypeSyst em). An .xml file with this
name will be searched for in the classpath or datapath (described below). As in Java, the
dots in the name will be converted to file path separators. So an import specifying the
example name in this paragraph will result in a search for

or g/ apache/ nypr oj / MyTypeSyst em xni in the classpath or datapath.

The datapath works similarly to the classpath but can be set programmatically through
the resource manager API. Application developers can specify a datapath during
initialization, using the following code:

Resour ceManager resMgr = U MAFramewor k. newDef aul t Resour ceManager () ;
resMyr . set Dat aPat h(your Pat hSt ri ng) ;
Anal ysi sengi ne ae = Ul MAFr anewor k. produceAE(desc, resMgr, null);

The default datapath for the entire JVM can be set via the ui na. dat apat h Java system
property, but this feature should only be used for standalone applications that don't need
to run in the same JVM as other code that may need a different datapath.

Previous versions of UIMA also supported XInclude. That support didn't work in many
situations, and it is no longer supported. To include other files, please use <import>.

2.3. Type System Descriptors

A Type System Descriptor is used to define the types and features that can be represented
in the CAS. A Type System Descriptor can be imported into an Analysis Engine or
Collection Processing Component Descriptor.

The basic structure of a Type System Descriptor is as follows:

<t ypeSyst enDescri pti on xm ns="http://ui ma. apache. or g/ resourceSpeci fier">

<nanme> [String] </name>
<description>[String] </ description>
<version>[String] </ ver si on>

<vendor >[St ri ng] </ vendor >

<i nport s>
<inmport ...>

UIMA Version 2.1 Component Descriptor Reference 5

Imports

</inports>

<types>
<t ypeDescri pti on>

</'.[Iy.peDescri pti on>

</types>

</ typeSyst enDescri pti on>

All of the subelements are optional.

2.3.1.

Imports

The i nport s section allows this descriptor to import types from other type system
descriptors. The import syntax is described in Section 2.2, “Imports” [4]. A type system
may import any number of other type systems and then define additional types which
refer to imported types. Circular imports are allowed.

2.3.2

Types

The t ypes element contains zero or more t ypeDescri pti on elements. Each
t ypeDescri pti on has the form:

<t ypeDescri pti on>
<nanme>[TypeNane] </ nane>
<description>[String] </ descri ption>
<supert ypeNanme>[TypeNane] </ supert ypeNane>
<f eat ur es>

</ f eat ures>
</typeDescri ption>

The name element contains the name of the type. A [TypeNane] is a dot-separated list of
names, where each name consists of a letter followed by any number of letters, digits, or
underscores. TypeNanes are case sensitive. Letter and digit are as defined by Java;
therefore, any Unicode letter or digit may be used (subject to the character encoding
defined by the descriptor file's XML header). The name following the final dot is
considered to be the “short name” of the type; the preceding portion is the namespace
(analogous to the package.class syntax used in Java). Namespaces beginning with uima
are reserved and should not be used. Examples of valid type names are:

* test.TokenAnnotation

¢ org.myorg.TokenAnnotation

* com.my_company.projl23.TokenAnnotation

Component Descriptor Reference UIMA Version 2.1

Features

These would all be considered distinct types since they have different namespaces. Best
practice here is to follow the normal Java naming conventions of having namespaces be all
lowercase, with the short type names having an initial capital, but this is not mandated, so
ABC. nvt yPE is an allowed type name. While type names without namespaces (e.g.
TokenAnnot at i on alone) are allowed, but discouraged because naming conflicts can then
result when combining annotators that use different type systems.

The descri pti on element contains a textual description of the type. The super t ypeNane
element contains the name of the type from which it inherits (this can be set to the name of
another user-defined type, or it may be set to any built-in type which may be subclassed,
such as ui ma. t cas. Annot at i on for a new annotation type or ui ma. cas. TOP for a new
type that is not an annotation). All three of these elements are required.

2.3.3. Features

The f eat ur es element of a t ypeDescri pti on is required only if the type we are
specifying introduces new features. If the f eat ur es element is present, it contains zero or
more f eat ur eDescri pti on elements, each of which has the form:

<f eat ureDescri pti on>

<nane>[Nane] </ nane>

<description>[String] </ description>

<rangeTypeNane>[Nane] </ r angeTypeNane>

<el enent Type>[Nane] </ el enent Type>

<mul ti pl eRef erencesAl | oned>t rue| f al se</ nul ti pl eRef er encesAl | oned>
</ f eat ureDescri pti on>

A feature's name follows the same rules as a type short name — a letter followed by any
number of letters, digits, or underscores. Feature names are case sensitive.

The feature's r angeTypeNane specifies the type of value that the feature can take. This
may be the name of any type defined in your type system, or one of the predefined types.
All of the predefined types have names that are prefixed with ui ma. cas or ui ma. t cas, for

example:
ui ma. cas. TOP
ui ma. cas. String
ui ma. cas. Long
ui ma. cas. FSArr ay
ui ma. cas. StringLi st
ui ma. t cas. Annot at i on.

For a complete list of predefined types, see the CAS API documentation.

The el enent Type of a feature is optional, and applies only when the r angeTypeNane is
ui ma. cas. FSArray or ui ma. cas. FSLi st The el enent Type specifies what type of value
can be assigned as an element of the array or list. This must be the name of a
non-primitive type. If omitted, it defaults to ui ma. cas. TOP, meaning that any

UIMA Version 2.1 Component Descriptor Reference 7

String Subtypes

FeatureStructure can be assigned as an element the array or list. Note: depending on the
CAS Interface that you use in your code, this constraint may or may not be enforced.

The nul ti pl eRef er encesAl | owed feature is optional, and applies only when the
rangeTypeNane is an array or list type (it applies to arrays and lists of primitive as well as
non-primitive types). Setting this to false (the default) indicates that this feature has
exclusive ownership of the array or list, so changes to the array or list are localized.
Setting this to true indicates that the array or list may be shared, so changes to it may
affect other objects in the CAS. Note: there is currently no guarantee that the framework
will enforce this restriction. However, this setting may affect how the CAS is serialized.

2.3.4.

String Subtypes

There is one other special type that you can declare — a subset of the String type that
specifies a restricted set of allowed values. This is useful for features that can have only
certain String values, such as parts of speech. Here is an example of how to declare such a

type:

<typeDescri pti on>
<nane>Par t O Speech</ nane>
<descripti on>A part of speech. </description>
<supertypeName>ui ma. cas. Stri ng</ supert ypeName>
<al | owedVal ues>
<val ue>
<string>NN</string>
<descri pti on>Noun, singular or nass.</description>
</ val ue>
<val ue>
<string>NNS</string>
<descri pti on>Noun, plural.</description>
</ val ue>
<val ue>
<string>VB</string>
<descri pti on>Verb, base form </description>
</ val ue></ progran i sting>

</ al | owedVal ues>
</typeDescri ption>

2.4. Analysis Engine Descriptors

Analysis Engine (AE) descriptors completely describe Analysis Engines. There are two
basic types of Analysis Engines — Primitive and Aggregate. A Primitive Analysis Engine is a
container for a single annotator, where as an Aggregate Analysis Engine is composed of a
collection of other Analysis Engines. (For more information on this and other terminology,
see Chapter 2, UIMA Conceptual Overview in Overview & Setup).

Both Primitive and Aggregate Analysis Engines have descriptors, and the two types of
descriptors have some similarities and some differences. Section 2.4.1, “Primitive Analysis
Engine Descriptors” [9] discusses Primitive Analysis Engine descriptors. Section 2.4.2,

Component Descriptor Reference UIMA Version 2.1

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.conceptual

Primitive Analysis Engine Descriptors

“Aggregate Analysis Engine Descriptors” [25] then describes how Aggregate Analysis
Engine descriptors are different.

2.4.1. Primitive Analysis Engine Descriptors

2.4.1.1. Basic Structure

<?xm version="1.0" encodi ng="UTF-8" ?>
<anal ysi sEngi neDescri ption
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">
<f ramewor kI npl ement at i on>or g. apache. ui na. j ava</ f ranewor kil npl enent at i on>

<primtive>true</primtive>
<annot at or | npl enent ati onName> [String] </annotatorl npl enent ati onNane>

<anal ysi sengi neMet aDat a>

</ éﬁél ysi sEngi neMet abDat a>

<ext er nal Resour ceDependenci es>
</ ext er nal Resour ceDependenci es>
<r esour ceManager Confi gur ati on>
</ r ééour ceManager Confi gurati on>

</ anal ysi sengi neDescri pti on>

The document begins with a standard XML header. The recommended root tag is
<anal ysi sEngi neDescri pti on>, although <t aeDescr i pti on> is also allowed for
backwards compatibility.

Within the root element we declare that we are using the XML namespace
htt p: // ui ma. apache. or g/ r esour ceSpeci fi er. Itis required that this namespace be
used; otherwise, the descriptor will not be able to be validated for errors.

The first subelement, <f r amewor kI mpl enent at i on>, currently must have the value
or g. apache. ui ma. j ava, or or g. apache. ui ma. cpp. In future versions, there may be
other framework implementations, or perhaps implementations produced by other
vendors.

The second subelement, <pri mi ti ve>, contains the Boolean value t r ue, indicating that
this XML document describes a Primitive Analysis Engine.

The next subelement, <annot at or | npl enent at i onNane> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class
name for Java implementations, or the name of a .dll or .so file for C++ implementations.

The <anal ysi sEngi neMet aDat a> object contains descriptive information about the
analysis engine and what it does. It is described in Section 2.4.1.2, “Analysis Engine

UIMA Version 2.1 Component Descriptor Reference

Primitive Analysis Engine Descriptors

MetaData” [10]

The <ext er nal Resour ceDependenci es> and <r esour ceManager Conf i gur ati on>
elements declare the external resource files that the analysis engine relies upon. They are
optional and are described in Section 2.4.1.10, “External Resource Dependencies” [22]and
Section 2.4.1.11, “Resource Manager Configuration” [22]

2.4.1.2. Analysis Engine MetaData

<anal ysi sengi neMet aDat a>
<name> [String] </nane>
<description>[String] </ description>
<version>[String] </ versi on>
<vendor >[Stri ng] </ vendor >
<configurationParameters> ... </configurationParaneters>
<confi gurati onPar anet er Setti ngs>
</ confi gurati onPar anet er Setti ngs>
<t ypeSyst enDescription> ... </typeSystenDescription>
<typePriorities> ... </typePriorities>
<f sl ndexCol | ection> ... </fslndexCollection>
<capabilities> ... </capabilities>

<oper ati onal Properties> ... </operational Properties>

</ anal ysi sengi neMet aDat a>

The anal ysi sEngi neMet aDat a element contains four simple string fields — nane,

descri ption, version, and vendor . Only the nane field is required, but providing values
for the other fields is recommended. The nare field is just a descriptive name meant to be
read by users; it does not need to be unique across all Analysis Engines.

The other sub-elements — confi gur ati onPar anet ers,
configurationParaneterSettings,typeSystenDescription,typePriorities,

f sl ndexes, capabi | i ti es and operati onal Properti es are described in the following
sections. The only one of these that is required is capabi | i ti es; the others are optional.

2.4.1.3. Configuration Parameter Declaration

Configuration Parameters are made available to annotator implementations and
applications by the following interfaces: Annot at or Cont ext 2 (passed as an argument to
the initialize() method of a version 1 annotator), Conf i gur abl eResour ce (every Analysis
Engine implements this interface), and the Ui maCont ext (passed as an argument to the
initialize() method of a version 2 annotator) (you can get this from any resource, including

Deprecated; use UimaContext instead.

10 Component Descriptor Reference UIMA Version 2.1

Primitive Analysis Engine Descriptors

Analysis Engines, using the method get Ui maCont ext ()).

Use AnnotatorContext within version 1 annotators and UimaContext for version 2
annotators and outside of annotators (for instance, in CasConsumers, or the containing
application) to access configuration parameters.

Configuration parameters are set from the corresponding elements in the XML descriptor
for the application. If you need to programmatically change parameter settings within an
application, you can use methods in ConfigurableResource; if you do this, you need to call
reconfigure() afterwards to have the UIMA framework notify all the contained analysis
components that the parameter configuration has changed (the analysis engine's
reinitialize() methods will be called). Note that in the current implementation, only
integrated deployment components have configuration parameters passed to them;
remote components obtain their parameters from their remote startup environment. This
will likely change in the future.

There are two ways to specify the <conf i gur ati onPar anet er s> section — as a list of
configuration parameters or a list of groups. A list of parameters, which are not part of
any group, looks like this:

<confi gurati onPar anmet er s>
<confi gurati onPar anmet er >

<name>[St ri ng] </ nanme>
<description>[String] </ descri ption>
<type>String| | nt eger| Fl oat | Bool ean</t ype>
<mul ti Val ued>true| fal se</ nmul ti Val ued>
<mandat or y>t r ue| f al se</ nandat or y>
<overrides>

<par anet er >[Stri ng] </ par anet er >

<par anet er >[Stri ng] </ par anet er >

</ overrides>
</ confi gur ati onPar amet er >
<confi gurati onPar anmet er >

</ confi gur ati onPar anet er >

</ confi gurati onPar anet er s>

For each configuration parameter, the following are specified:

* name - the name by which the annotator code refers to the parameter. All parameters
declared in an analysis engine descriptor must have distinct names. (required). The
name is composed of normal Java identifier characters.

* description — a natural language description of the intent of the parameter (optional)

* type — the data type of the parameter's value — must be one of Stri ng, | nt eger, Fl oat,
or Bool ean (required).

e multiValued -t r ue if the parameter can take multiple-values (an array), f al se if the

UIMA Version 2.1 Component Descriptor Reference 11

12

Primitive Analysis Engine Descriptors

parameter takes only a single value (optional, defaults to false).

* mandatory -t r ue if a value must be provided for the parameter (optional, defaults to
false).

e overrides — this is used only in aggregate Analysis Engines, but is included here for
completeness. See Section 2.4.2.4, “Configuration Parameter Overrides” [28]for a
discussion of configuration parameter overriding in aggregate Analysis Engines.
(optional)

A list of groups looks like this:

<configurati onParaneters defaul t Goup="[String]"
searchStrat egy="none| def aul t _f al | back| | anguage_f al | back" >

<commonPar anet er s>
[zero or nore paraneters]
</ commonPar anet er s>

<configurati onG oup nanes="nanel nane2 nane3 ...">
[zero or nore paraneters]
</ confi gurati onG oup>

<configurati onG oup names="name4 nane5 ...">
[zero or nore paraneters]
</ confi gurati onG oup>

</ confi gurati onPar anet er s>

Both the <commonPar anet er s> and <conf i gur at i onG oup> elements contain zero or
more <conf i gur ati onPar anet er > elements, with the same syntax described above.

The <commonPar anet er s> element declares parameters that exist in all groups. Each
<confi gur ati onGr oup> element has a names attribute, which contains a list of group
names separated by whitespace (space or tab characters). Names consist of any number of
non-whitespace characters; however the Component Descriptor Editor tool restricts this to
be normal Java identifiers, including the period (.) and the dash (-). One configuration
group will be created for each name, and all of the groups will contain the same set of
parameters.

The def aul t Gr oup attribute specifies the name of the group to be used in the case where
an annotator does a lookup for a configuration parameter without specifying a group
name. It may also be used as a fallback if the annotator specifies a group that does not
exist — see below.

The sear chSt r at egy attribute determines the action to be taken when the context is
queried for the value of a parameter belonging to a particular configuration group, if that
group does not exist or does not contain a value for the requested parameter. There are

Component Descriptor Reference UIMA Version 2.1

Primitive Analysis Engine Descriptors

currently three possible values:

* none — there is no fallback; return null if there is no value in the exact group specified
by the user.

¢ default_fallback - if there is no value found in the specified group, look in the default
group (as defined by the def aul t attribute)

* language_fallback - this setting allows for a specific use of configuration parameter
groups where the groups names correspond to ISO language and country codes (for an
example, see below). The fallback sequence is: <l ang>_<count ry>_<r egi on> -
<l ang> <country> - <lang> - <defaul t>.

Example

<configurati onParanet ers defaul t G oup="en"
searchStrat egy="I1 anguage_f al | back" >

<commonPar anet er s>
<confi gur ati onPar anet er >
<name>Di cti onaryFi | e</ nane>
<descri pti on>Locati on of dictionary for this
| anguage</ descri pti on>
<type>String</type>
<mul ti Val ued>f al se</ mul ti Val ued>
<mandat or y>f al se</ mandat or y>
</ confi gurati onPar anet er >
</ cormonPar anet er s>

<configurati onG oup nanes="en de en-US"/>

<confi gurati onG oup names="zh">
<confi gurati onPar anmet er >
<name>DBC_St r at egy</ name>
<description>Strategy for dealing with doubl e-byte
characters. </ description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ mandat or y>
</ confi gur ati onPar anet er >
</ confi gurati onG oup>

</ confi gurati onPar anet er s>

In this example, we are declaring a Di cti onar yFi | e parameter that can have a different
value for each of the languages that our AE supports — English (general), German, U.S.
English, and Chinese. For Chinese only, we also declare a DBC_St r at egy parameter.

We are using the | anguage_f al | back search strategy, so if an annotator requests the
dictionary file for the en- GB (British English) group, we will fall back to the more general
en group.

Since we have defined en as the default group, this value will be returned if the context is
queried for the Di cti onar yFi | e parameter without specifying any group name, or if a

UIMA Version 2.1 Component Descriptor Reference 13

Primitive Analysis Engine Descriptors

nonexistent group name is specified.

2.4.1.4. Configuration Parameter Settings

If no configuration groups were declared, the <confi gur ati onPar anet er Set t i ngs>
element looks like this:

<confi gurati onPar amet er Set ti ngs>
<naneVal uePai r >
<name>[St ri ng] </ nane>
<val ue>
<string>[String]</string> |
<i nteger>[Integer]</integer> |
<fl oat>[Fl oat] </fl oat> |
<bool ean>true| f al se</ bool ean> |
<array> ... <larray>
</ val ue>
</ naneVal uePai r >

<naneVal uePai r >
</ naneVal uePai r >

</ confi gurati onPar anet er Set t i ngs>

There are zero or more naneVal uePai r elements. Each naneVal uePai r contains a name
(which refers to one of the configuration parameters) and a value for that parameter.

The val ue element contains an element that matches the type of the parameter. For
single-valued parameters, this is either <stri ng>, <i nt eger >, <f | oat >, or <bool ean>.
For multi-valued parameters, this is an <ar r ay> element, which then contains zero or
more instances of the appropriate type of primitive value, e.g.:

<array><string>One</string><string>Two</string></array>

If configuration groups were declared, then the <conf i gur at i onPar anet er Set t i ngs>
element looks like this:
<confi gurati onPar anet er Setti ngs>
<settingsFor Goup nane="[String]">
[one or nore <naneVal uePair> el ement s]
</ settingsFor G oup>
<settingsFor G oup nane="[String]">

[one or nore <naneVal uePair> el enents]
</ settingsFor G oup>

</ confi gurationPar anet er Setti ngs>

where each <set t i ngsFor G oup> element has a name that matches one of the

14 Component Descriptor Reference UIMA Version 2.1

Primitive Analysis Engine Descriptors

configuration groups declared under the <confi gur at i onPar anet er s> element and
contains the parameter settings for that group.

Example

Here are the settings that correspond to the parameter declarations in the previous
example:

<confi gurati onPar anet er Setti ngs>

<setti ngsFor G oup nane="en">
<nameVal uePai r >
<name>Di cti onar yFi | e</ nanme>
<val ue><stri ng>resour cesEngl i shdi ctionary. dat ></ stri ng></val ue>
</ nanmeVal uePai r >
</ settingsFor G oup>

<settingsFor G oup nane="en-US">
<naneVal uePai r >
<name>Di cti onar yFi | e</ nanme>
<val ue><string>resourcesEngl i sh_USdi cti onary. dat </ stri ng></val ue>
</ naneVal uePai r >
</ setti ngsFor G oup>

<setti ngsFor G oup nane="de">
<naneVal uePai r >
<name>Di cti onaryFi | e</ nane>
<val ue><stri ng>resour cesDeut schdi cti onary. dat </ stri ng></val ue>
</ naneVal uePai r >
</ settingsFor G oup>

<settingsFor G oup nane="zh">
<nameVal uePai r >
<name>Di cti onar yFi | e</ nane>
<val ue><stri ng>resour cesChi nesedi cti onary. dat </ stri ng></val ue>
</ naneVal uePai r >

<naneVal uePai r >
<name>DBC_St r at egy</ nane>
<val ue><stri ng>def aul t </ stri ng></ val ue>
</ naneVal uePai r >
</ settingsFor G oup>

</ confi gurati onPar anet er Setti ngs>

2.4.1.5. Type System Definition

<t ypeSyst enDescri pti on>

<name> [String] </nane>
<description>[String] </ description>
<versi on>[String] </ versi on>

<vendor >[St ri ng] </ vendor >

<i nport s>
<inport ...>

UIMA Version 2.1 Component Descriptor Reference

15

Primitive Analysis Engine Descriptors

</inports>

<types>
<t ypeDescri pti on>

</'.[Iy.peDescri pti on>

</types>

</ typeSyst enDescri pti on>

A typeSystenDescri pti on element defines a type system for an Analysis Engine. The
syntax for the element is described in Section 2.3, “Type System Descriptors” [5].

The recommended usage is to i nport an external type system, using the import syntax
described in Section 2.2, “Imports” [4] of this chapter. For example:

<t ypeSyst enDescri pti on>
<i nport s>
<inmport |ocation="M/SharedTypeSystem xmi ">
</inports>
</typeSyst enDescripti on>

This allows several AEs to share a single type system definition. The file
MyShar edTypeSyst em xnl would then contain the full type system information,
including the name, descri pti on, vendor, versi on, and t ypes.

2.4.1.6. Type Priority Definition

</ programisting><typePriorities>
<name> [String] </nane>
<description>[String] </ descri ption>
<versi on>[String] </ versi on>
<vendor >[St ri ng] </ vendor >

<i nport s>
<inport ...>

</i ﬁborts>
<priorityLists>
<priorityList>
<t ype>[TypeNane] </t ype>
<t ype>[TypeNane] </t ype>

</priorityList>

</priorityLists>
</[typePriorities>

16 Component Descriptor Reference UIMA Version 2.1

Primitive Analysis Engine Descriptors

The <t ypePri oriti es> element contains zero or more <pri ori t yLi st > elements; each
<priorityLi st > contains zero or more types. Like a type system, a type priorities
definition may also declare a name, description, version, and vendor, and may import
other type priorities. See Section 2.2, “Imports” [4] for the import syntax.

Type priority is used when iterating over feature structures in the CAS. For example, if the
CAS contains a Sent ence annotation and a Par agr aph annotation with the same span of
text (i.e. a one-sentence paragraph), which annotation should be returned first by an
iterator? Probably the Paragraph, since it is conceptually “bigger,” but the framework
does not know that and must be explicitly told that the Paragraph annotation has priority
over the Sentence annotation, like this:

<typePriorities>
<priorityList>
<t ype>or g. nyor g. Par agr aph</ t ype>
<t ype>or g. nyor g. Sent ence</t ype>
</priorityList>
</[typePriorities>

All of the <pri ori tyLi st > elements defined in the descriptor (and in all component
descriptors of an aggregate analysis engine descriptor) are merged to produce a single
priority list.

Subtypes of types specified here are also ordered, unless overridden by another
user-specified type ordering. For example, if you specify type A comes before type B, then
subtypes of A will come before subtypes of B, unless there is an overriding specification
which declares some subtype of B comes before some subtype of A.

If there are inconsistencies between the priority list (type A declared before type B in one
priority list, and type B declared before type A in another), the framework will throw an
exception.

User defined indexes may declare if they wish to use the type priority or not; see the next
section.

2.4.1.7. Index Definition

<f sl ndexCol | ecti on>
<name>[St ri ng] </ nanme>
<description>[String] </ description>
<version>[String] </ ver si on>
<vendor >[Stri ng] </ vendor >

<i nport s>
<inmport ...>

</inports>

<f sl ndexes>

UIMA Version 2.1 Component Descriptor Reference 17

Primitive Analysis Engine Descriptors

<f sl ndexDescri pti on>

</fs| ndexDescri pti on>

<f sl ndexDescri pti on>

</st ndexDescri pti on>
</ f sl ndexes>

</ fsl ndexCol | ecti on>

The f sl ndexCol | ect i on element declares Feature Structure Indexes, each of which defined
an index that holds feature structures of a given type. Information in the CAS is always
accessed through an index. There is a built-in default annotation index declared which can
be used to access instances of type ui ma. t cas. Annot at i on (or its subtypes), sorted based
on their begi n and end features. For all other types, there is a default, unsorted (bag)
index. If there is a need for a specialized index it must be declared in this element of the
descriptor. See Section 4.7, “Indexes and Iterators” [70]for details on FS indexes.

Like type systems and type priorities, an f s ndexCol | ecti on can declare a nane,
description, vendor, and ver si on, and may import other f sl ndexCol | ecti ons. The
import syntax is described in Section 2.2, “Imports” [4].

An f sl ndexCol | ecti on may also define zero or more f s| ndexDescri pti on elements,
each of which defines a single index. Each f sl ndexDescri pti on has the form:

<f sl ndexDescri pti on>

<l abel >[Stri ng] </ abel >
<t ypeNanme>[TypeNane] </ t ypeName>
<ki nd>sort ed| bag| set </ ki nd>

<keys>

<f sl ndexKey>

<f eat ur eNanme>[Nane] </ f eat ur eNanme>

<conpar at or >st andar d| r ever se</ conpar at or >
</ f sl ndexKey>

<f sl ndexKey>
<typePriority/>
</ f sl ndexKey>

</ keys>
</ f sl ndexDescri pti on>

The | abel element defines the name by which applications and annotators refer to this
index. The t ypeName element contains the name of the type that will be contained in this
index. This must match one of the type names defined in the <t ypeSyst enDescri pti on>.

Component Descriptor Reference UIMA Version 2.1

Primitive Analysis Engine Descriptors

There are three possible values for the <ki nd> of index. Sorted indexes enforce an
ordering of feature structures, and may contain duplicates. Bag indexes do not enforce
ordering, and also may contain duplicates. Set indexes do not enforce ordering and may
not contain duplicates. If the <ki nd>element is omitted, it will default to sorted, which is
the most common type of index.

Note: There is usually no need to explicitly declare a Bag index in your
descriptor. As of UIMA v2.1, if you do not declare any index for a type (or any of
its supertypes), a Bag index will be automatically created.

An index may define one or more keys. These keys determine the sort order of the feature
structures within a sorted index, and determine equality for set indexes. Bag indexes do
not use keys. Keys are ordered by precedence — the first key is evaluated first, and
subsequent keys are evaluated only if necessary.

Each key is represented by an f s| ndexKey element. Most f sl ndexKeys contains a

f eat ur eName and a conpar at or . The f eat ur eNane must match the name of one of the
features for the type specified in the <t ypeNane> element for this index. The comparator
defines how the features will be compared — a value of st andar d means that features will
be compared using the standard comparison for their data type (e.g. for numerical types,
smaller values precede larger values, and for string types, Unicode string comparison is
performed). A value of r ever se means that features will be compared using the reverse of
the standard comparison (e.g. for numerical types, larger values precede smaller values,
etc.). For Set indexes, the comparator direction is ignored — the keys are only used for the
equality testing.

Each key used in comparisons must refer to a feature whose range type is String, Float, or
Integer.

There is a second type of a key, one which contains only the <t ypePri ori ty/>. When this
key is used, it indicates that Feature Structures will be compared using the type priorities
declared in the <t ypePri ori t i es> section of the descriptor.

2.4.1.8. Capabilities

<capabilities>
<capability>

<i nput s>
<type al | Annot at or Feat ures="true| f al se"[TypeNane] </ type>

<f éat ur e>[TypeNane] : [Nane] </ f eat ur e>
</i ﬁbut s>

<out put s>
<type al | Annot at or Feat ures="true| fal se"[TypeNane] </t ype>

<f éat ur e>[TypeNane] : [Nane] </ f eat ur e>

UIMA Version 2.1 Component Descriptor Reference 19

20

Primitive Analysis Engine Descriptors

</ out put >

<l anguagesSupport ed>
<l anguage>[| SO Language | D] </ | anguage>

</ aﬁ'g.uagesSupported>

<i nput Sof as>
<sof aName>[nane] </ sof aNanme>

</i ﬁbut Sof as>

<out put Sof as>
<sof aName>[nane] </ sof aNanme>

</ out put Sof as>
</ capability>

<capability>

</ capabi | i ty>

</ capabilities>

The capabilities definition is used by the UIMA Framework in several ways, including
setting up the Results Specification for process calls, routing control for aggregates based
on language, and as part of the Sofa mapping function.

The capabi | i ti es element contains one or more capabi | i t y elements. In Version 2 and
onwards, only one capability set should be used (multiple sets will continue to work for a
while, but they're not logically consistently supported).

Each capabi | i ty contains i nput s, out put s, | anguagesSupported, input Sofas, and
out put Sof as. Inputs and outputs element are required (though they may be empty);
<l anguagesSuppor t ed>, <i nput Sof as>, and <out put Sof as> are optional.

Both inputs and outputs may contain a mixture of type and feature elements.

<type. .. > elements contain the name of one of the types defined in the type system or
one of the built in types. Declaring a type as an input means that this component expects
instances of this type to be in the CAS when it receives it to process. Declaring a type as an
output means that this component creates new instances of this type in the CAS.

There is an optional attribute al | Annot at or Feat ur es, which defaults to false if omitted.
The Component Descriptor Editor tool defaults this to true when a new type is added to
the list of inputs and/or outputs. When this attribute is true, it specifies that all of the
type's features are also declared as input or output. Otherwise, the features that are
required as inputs or populated as outputs must be explicitly specified in feature
elements.

Component Descriptor Reference UIMA Version 2.1

Primitive Analysis Engine Descriptors

<feature...>elements contain the “fully-qualified” feature name, which is the type
name followed by a colon, followed by the feature name, e.g.

org. myor g. TokenAnnot at i on: | enma. <f eat ur e. . . > elements in the <i nput s> section
must also have a corresponding type declared as an input. In output sections, this is not
required. If the type is not specified as an output, but a feature for that type is, this means
that existing instances of the type have the values of the specified features updated. Any
type mentioned in a <f eat ur e> element must be either specified as an input or an output
or both.

| anguage elements contain one of the ISO language identifiers, such as en for English, or
en- US for the United States dialect of English.

The list of language codes can be found here:
http://www.ics.uci.edu/pub/ietf/http/related/is0639.txt and the country codes here:
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

<i nput Sof as> and <out put Sof as> declare sofa names used by this component. All Sofa
names must be unique within a particular capability set. A Sofa name must be an input or
an output, and cannot be both. It is an error to have a Sofa name declared as an input in
one capability set, and also have it declared as an output in another capability set.

A <sof aName> is written as a simple Java-style identifier, without any periods in the
name, except that it may be written to end in “. *”. If written in this manner, it specifies a
set of Sofa names, all of which start with the base name (the part before the .*) followed by
a period and then an arbitrary Java identifier (without periods). This form is used to
specify in the descriptor that the component could generate an arbitrary number of Sofas,
the exact names and numbers of which are unknown before the component is run.

2.4.1.9. OperationalProperties

Components can specify specific operational properties that can be useful in deployment.
The following are available:

<oper ati onal Properties>
<nmodi fi esCas> true|fal se </ nodifiesCas>
<mul ti pl eDepl oynment Al | owed> true|fal se </ nultipleDepl oyment Al | owed>
<out put sNewCASes> true| fal se </out put sNewCASes>

</ oper ati onal Properties>

Modi fi esCas, if false, indicates that this component does not modify the CAS. If it is not
specified, the default value is true except for CAS Consumer components.

mul ti pl eDepl oyment Al | owed, if true, allows the component to be deployed multiple
times to increase performance throught scale-out techniques. If it is not specified, the
default value is true, except for CAS Consumer and Collection Reader components.

Note: If you wrap one or more CAS Consumers inside an aggregate as the only

UIMA Version 2.1 Component Descriptor Reference 21

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Primitive Analysis Engine Descriptors

components, you must explicitly specify in the aggregate the

mul ti pl eDepl oynent Al | owed property as false (assuming the CAS Consumer
components take the default here); otherwise the framework will complain about
inconsistent settings for these.

out put sNewCASes, if true, allows the component to create new CASes during processing,
for example to break a large artifact into smaller pieces. See Chapter 7, CAS Multiplier
Developer's Guide in UIMA Tutorial and Developers” Guides for details.

2.4.1.10. External Resource Dependencies

<ext er nal Resour ceDependenci es>
<ext er nal Resour ceDependency>
<key>[Stri ng] </ key>
<description> String] </description>
<interfaceNanme>[String] </interfaceNanme>
<optional >t rue| f al se</optional >
</ ext er nal Resour ceDependency>

<ext er nal Resour ceDependency>

</ ext er nal Resour ceDependency></ progr an i sti ng>

</ ext er nal Resour ceDependenci es>

A primitive annotator may declare zero or more <ext er nal Resour ceDependency>
elements. Each dependency has the following elements:

* key — the string by which the annotator code will attempt to access the resource. Must
be unique within this annotator.

* descri pti on —a textual description of the dependency

* i nt er f aceNanme — the fully-qualified name of the Java interface through which the
annotator will access the data. This is optional. If not specified, the annotator can only
get an InputStream to the data.

* optional —whether the resource is optional. If false, an exception will be thrown if no
resource is assigned to satisfy this dependency. Defaults to false.

2.4.1.11. Resource Manager Configuration

</ prograni i sting><resour ceManager Confi gur ati on>

<name>[St ri ng] </ nanme>
<description>[String] </ descri ption>
<version>[String] </ versi on>

<vendor >[Stri ng] </ vendor >

22 Component Descriptor Reference UIMA Version 2.1

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm

Primitive Analysis Engine Descriptors

<i nport s>
<inmport ...>

</inports>
<ext er nal Resour ces>

<ext er nal Resour ce>

<name>[St ri ng] </ nanme>

<description>[String] </ description>

<fil eResour ceSpecifier>

<fileUl>[URL]</fileUrl>

</fil eResourceSpecifier>

<i npl enent ati onName>[St ri ng] </ i npl enent ati onNane>
</ ext er nal Resour ce>

</ ext er nal Resour ces>

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>[Stri ng] </ key>
<r esour ceNane>[St ri ng] </ r esour ceNanme>
</ ext er nal Resour ceBi ndi ng>

</ ext er nal Resour ceBi ndi ngs>

</ r esour ceManager Conf i gur ati on>

This element declares external resources and binds them to annotators' external resource
dependencies.

The r esour ceManager Conf i gur at i on element may optionally contain an i npor t, which
allows resource definitions to be stored in a separate (shareable) file. See Section 2.2,
“Imports” [4] for details.

The ext er nal Resour ces element contains zero or more ext er nal Resour ce elements,
each of which consists of:

* nane - the name of the resource. This name is referred to in the bindings (see below).
Resource names need to be unique within any Aggregate Analysis Engine or Collection
Processing Engine, so the Java-like or g. myor g. myconponent . MyResour ce syntax is
recommended.

e descri pti on — English description of the resource

* Resource Specifier — Declares the location of the resource. There are different
possibilities for how this is done (see below).

* i npl enent at i onName — The fully-qualified name of the Java class that will be
instantiated from the resource data. This is optional; if not specified, the resource will be
accessible as an input stream to the raw data. If specified, the Java class must implement
the i nt er f aceName that is specified in the External Resource Dependency to which it is
bound.

UIMA Version 2.1 Component Descriptor Reference 23

Primitive Analysis Engine Descriptors

One possibility for the resource specifier is a <f i | eResour ceSpeci fi er >, as shown
above. This simply declares a URL to the resource data. This support is built on the Java
class URL and its method URL.openStream(); it supports the protocols “file”, “http” and
“jar” (for referring to files in jars) by default, and you can plug in handlers for other
protocols. The URL has to start with file: (or some other protocol). It is relative to either
the classpath or the “data path”. The data path works like the classpath but can be set
programmatically via Resour ceManager . set Dat aPat h() . Setting the Java System
property ui ma. dat apat h also works.

fil e:con apache. d. t xt is a relative path; relative paths for resources are resolved using
the classpath and/or the datapath. For the file protocol, URLs starting with file:/ or file:///
are absolute. Note that fil e:// or g/ apache/ d. t xt is NOT an absolute path starting with
“org”. The “//” indicates that what follows is a host name. Therefore if you try to use this
URL it will complain that it can't connect to the host “org”

Another option is a <f i | eLanguageResour ceSpeci f i er >, which is intended to support
resources, such as dictionaries, that depend on the language of the document being
processed. Instead of a single URL, a prefix and suffix are specified, like this:

<fil eLanguageResour ceSpeci fi er>
<fileUrl Prefix>file:FilelLanguageResource_i npl Test _data_</fileUrl Prefix>
<fileUrl Suffix> dat</fileUrl Suffix>

</fil eLanguageResour ceSpeci fi er>

The URL of the actual resource is then formed by concatenating the prefix, the language of
the document (as an ISO language code, e.g. en or en- US — see Section 2.4.1.8,
“Capabilities” [19] for more information), and the suffix.

The ext er nal Resour ceBi ndi ngs element declares which resources are bound to which
dependencies. Each ext er nal Resour ceBi ndi ng consists of:

* key —identifies the dependency. For a binding declared in a primitive analysis engine
descriptor, this must match the value of the key element of one of the
ext er nal Resour ceDependency elements. Bindings may also be specified in aggregate
analysis engine descriptors, in which case a compound key is used — see Section 2.4.2.5,
“External Resource Bindings” [29].

* resour ceNane — the name of the resource satisfying the dependency. This must match
the value of the name element of one of the ext er nal Resour ce declarations.

A given resource dependency may only be bound to one external resource; one external
resource may be bound to many dependencies — to allow resource sharing.

2.4.1.12. Environment Variable References

In several places throughout the descriptor, it is possible to reference environment

24 Component Descriptor Reference UIMA Version 2.1

Aggregate Analysis Engine Descriptors

variables. In Java, these are actually references to Java system properties. To reference
system environment variables from a Java analysis engine you must pass the environment
variables into the Java virtual machine by using the - D option on the j ava command line.

The syntax for environment variable references is

<envVar Ref >[Var i abl eNane] </ envVar Ref >, where [VariableName] is any valid Java
system property name. Environment variable references are valid in the following places:
* The value of a configuration parameter (String-valued parameters only)

* The <annot at or | npl enent at i onNane> element of a primitive AE descriptor

e The <nane> element within <anal ysi sEngi neMet aDat a>

e Within a <fi | eResour ceSpeci fi er>or<fil eLanguageResour ceSpeci fi er>

For example, if the value of a configuration parameter were specified as:

<stri ng><envVar Ref >STEMP_DI R</ envVar Ref >/ t enp. dat </ st ri ng>, and the value of
the TEMP_DI RJava System property were c: / t enp, then the configuration parameter's
value would evaluate to c: / t enp/ t enp. dat .

2.4.2. Aggregate Analysis Engine Descriptors

Aggregate Analysis Engines do not contain an annotator, but instead contain one or more
component (also called delegate) analysis engines.

Aggregate Analysis Engine Descriptors maintain most of the same structure as Primitive
Analysis Engine Descriptors. The differences are:

* An Aggregate Analysis Engine Descriptor contains the element
<primtive>fal se</prinitive>ratherthan<prinmitive>true</printive>.

* An Aggregate Analysis Engine Descriptor must not include a
<annot at or | npl enent at i onNanme> element.

* In place of the <annot at or | npl ement at i onNane>, an Aggregate Analysis Engine
Descriptor must have a <del egat eAnal ysi sEngi neSpeci fi er s> element. See
Section 2.4.2.1, “Delegate Analysis Engine Specifiers” [26]

* An Aggregate Analysis Engine Descriptor may provide a <f | owCont r ol | er > element
immediately following the <del egat eAnal ysi sEngi neSpeci fi er s>. Section 2.4.2.2,
“FlowController” [26]

¢ Under the analysisEngineMetaData element, an Aggregate Analysis Engine Descriptor
may specify an additional element -- <f | owConst r ai nt s>. See Section 2.4.2.3,
“FlowConstraints” [27] Typically only one of <f | owControl | er > and
<f | owConst r ai nt s> are specified. If both are specified, the <f | owCont r ol | er > takes
precedence, and the flow controller implementation can use the information in specified
in the <f | owConst r ai nt s> as part of its configuration input.

UIMA Version 2.1 Component Descriptor Reference 25

Aggregate Analysis Engine Descriptors

* An aggregate Analysis Engine Descriptors must not contain a
<t ypeSyst enDescri pti on> element. The Type System of the Aggregate Analysis
Engine is derived by merging the Type System of the Analysis Engines that the
aggregate contains.

* Within aggregate Analysis Engine Descriptors, <conf i gur at i onPar anet er > elements
may define <over ri des>. See Section 2.4.2.4, “Configuration Parameter Overrides” [28]

¢ External Resource Bindings can bind resources to dependencies declared by any
delegate AE within the aggregate. See Section 2.4.2.5, “External Resource Bindings” [29]

* An additional optional element, <sof aMappi ngs>, may be included.

2.4.2.1. Delegate Analysis Engine Specifiers

<del egat eAnal ysi sengi neSpeci fi ers>
<del egat eAnal ysi sengi ne key="[String]">
<anal ysi sengi neDescri pti on>. .. </anal ysi sengi neDescri pti on> |
<import .../>
</ del egat eAnal ysi sEngi ne>
<del egat eAnal ysi sengi ne key="[String]">

</ del egat eAnal ysi sEngi ne>

</ del egat eAnal ysi sEngi neSpeci fi ers>

The del egat eAnal ysi sEngi neSpeci f i er s element contains one or more
del egat eAnal ysi sEngi ne elements. Each of these must have a unique key, and must
contain either:

* A complete anal ysi sEngi neDescri pti on element describing the delegate analysis
engine OR

* Aninport element giving the name or location of the XML descriptor for the delegate
analysis engine (see Section 2.2, “Imports” [4]).

The latter is the much more common usage, and is the only form supported by the
Component Descriptor Editor tool.

2.4.2.2. FlowController

<fl owControl | er key="[String]">
<fl owControl | erDescription>...</flowControllerDescription> |
<inport .../>
</flowController>

26 Component Descriptor Reference UIMA Version 2.1

Aggregate Analysis Engine Descriptors

The optional f | owCont r ol | er element identifies the descriptor of the FlowController

component that will be used to determine the order in which delegate Analysis Engine are
called.

The key attribute is optional, but recommended; it assigns the FlowController an
identifier that can be used for configuration parameter overrides, Sofa mappings, or
external resource bindings. The key must not be the same as any of the delegate analysis
engine keys.

As with the del egat eAnal ysi sEngi ne element, the f | owControl | er element may
contain either a complete f | owCont rol | er Descri pti on or ani nport, but the import is
recommended. The Component Descriptor Editor tool only supports imports here.

2.4.2.3. FlowConstraints

If a <f 1 owCont r ol | er > is not specified, the order in which delegate Analysis Engines are
called within the aggregate Analysis Engine is specified using the <f | owConst r ai nt s>
element, which must occur immediately following the

confi gurationParanet er Set ti ngs element. If a <f | owCont r ol | er > is specified, then
the <f | owConst r ai nt s> are optional. They can be used to pass an ordering of delegate
keys to the <f | owCont rol | er >.

There are two options for flow constraints -- <f i xedFl ow> or
<capabi | i t yLanguageFl ow>. Each is discussed in a separate section below.

Fixed Flow

<fl owConst rai nt s>
<fi xedFl ow>
<node>[St ri ng] </ node>
<node>[St ri ng] </ node>

</1.‘ | ;<edFI ow>
</ fl owConstr ai nt s>

The f | owConst r ai nt s element must be included immediately following the
confi gurationPar anet er Setti ngs element.

Currently the f | owConst r ai nt s element must contain a f i xedFl owelement. Eventually,
other types of flow constraints may be possible.

The f i xedFl owelement contains one or more node elements, each of which contains an
identifier which must match the key of a delegate analysis engine specified in the
del egat eAnal ysi sEngi neSpeci fi er s element.

Capability Language Flow

<f | owConstrai nt s>

UIMA Version 2.1 Component Descriptor Reference 27

Aggregate Analysis Engine Descriptors

<capabi | i t yLanguageF| ow>
<node>[St ri ng] </ node>
<node>[Stri ng] </ node>

</ capabi | i t yLanguageF| ow>
</ fl owConst r ai nt s>

If you use <capabi | i t yLanguageFl ow>, the delegate Analysis Engines named by the
<node> elements are called in the given order, except that a delegate Analysis Engine is
skipped if any of the following are true (according to that Analysis Engine's declared
output capabilities):

¢ It cannot produce any of the aggregate Analysis Engine's output capabilities for the
language of the current document.

¢ All of the output capabilities have already been produced by an earlier Analysis Engine
in the flow.

For example, if two annotators produce or g. nyor g. TokenAnnot at i on feature structures
for the same language, these feature structures will only be produced by the first
annotator in the list.

2.4.2.4. Configuration Parameter Overrides

28

In an aggregate Analysis Engine Descriptor, each <confi gur at i onPar anet er > element
should contain an <over ri des> element, with the following syntax:

<overri des>

<par anet er >
[del egat eAnal ysi sEngi neKey] / [par anmet er Nane]
</ par anet er >

<par anet er >
[del egat eAnal ysi sEngi neKey] / [par anmet er Nane]
</ par anet er >

</ overri des>

Since aggregate Analysis Engines have no code associated with them, the only way in
which their configuration parameters can affect their processing is by overriding the
parameter values of one or more delegate analysis engines. The <overri des> element
determines which parameters, in which delegate Analysis Engines, are overridden by this
configuration parameter.

For example, consider an aggregate Analysis Engine Descriptor that contains delegate
Analysis Engines with keys annot at or 1 and annot at or 2 (as declared in the
<delegateAnalysisEngine> element — see Section 2.4.2.1, “Delegate Analysis Engine

Component Descriptor Reference UIMA Version 2.1

Aggregate Analysis Engine Descriptors

Specifiers” [26]) and also declares a configuration parameter as follows:

<confi gur ati onPar anet er >
<name>Aggr egat ePar anx/ nane>
<type>String</type>
<overri des>
<par anet er >annot at or 1/ par aml</ par anet er >
<par anet er >annot at or 2/ par an2</ par anet er >
</ overrides>
</ confi gur ati onPar amet er >

The value of the Aggr egat ePar amparameter (whether assigned in the aggregate
descriptor or at runtime by an application) will override the value of parameter par anl in
annot at or 1 and also override the value of parameter par an in annot at or 2. No other
parameters will be affected.

For historical reasons only, if an aggregate Analysis Engine descriptor declares a
configuration parameter with no explicit overrides, that parameter will override any
parameters having the same name within any delegate analysis engine. This usage is
strongly discouraged. The UIMA SDK currently supports this usage but logs a warning
message to the log file. This support may be dropped in future versions.

2.4.2.5. External Resource Bindings

Aggregate analysis engine descriptors can declare resource bindings that bind resources
to dependencies declared in any of the delegate analysis engines (or their subcomponents,
recursively) within that aggregate. This allows resource sharing. Any binding at this level
overrides (supersedes) any binding specified by a contained component or their
subcomponents, recursively.

For example, consider an aggregate Analysis Engine Descriptor that contains delegate
Analysis Engines with keys annot at or 1 and annot at or 2 (as declared in the

<del egat eAnal ysi sEngi ne> element — see Section 2.4.2.1, “Delegate Analysis Engine
Specifiers” [26]), where annot at or 1 declares a resource dependency with key
myResour ce and annot at or 2 declares a resource dependency with key someResour ce .

Within that aggregate Analysis Engine Descriptor, the following
r esour ceManager Conf i gur at i on would bind both of those dependencies to a single
external resource file.

<r esour ceManager Confi gur ati on>

<ext er nal Resour ces>
<ext er nal Resour ce>
<nanme>Exanpl eResour ce</ name>
<fil eResour ceSpecifier>
<fileUrl>file: MyResourceFile.dat</fileUrl>
</fil eResourceSpecifier>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

UIMA Version 2.1 Component Descriptor Reference 29

Flow Controller Descriptors

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>annot at or 1/ nyResour ce</ key>
<r esour ceNanme>Exanpl eResour ce</ r esour ceNanme>
</ ext er nal Resour ceBi ndi ng>
<ext er nal Resour ceBi ndi ng>
<key>annot at or 2/ soneResour ce</ key>
<r esour ceNanme>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>

</ r esour ceManager Conf i gur ati on>

The syntax for the ext er nal Resour ces declaration is exactly the same as described
previously. In the resource bindings note the use of the compound keys, e.g.

annot at or 1/ nyResour ce. This identifies the resource dependency key nmyResour ce
within the annotator with key annot at or 1. Compound resource dependencies can be
multiple levels deep to handle nested aggregate analysis engines.

2.4.2.6. Sofa Mappings

Sofa mappings are specified between Sofa names declared in this aggregate descriptor as
part of the <capabi | i t y> section, and the Sofa names declared in the delegate
components. For purposes of the mapping, all the declarations of Sofas in any of the
capability sets contained within the <capabi | i ti es> element are considered together.

<sof avappi ngs>
<sof aMappi ng>
<comnponent Key>[keyNane] </ conponent Key>
<conponent Sof aNane>[sof aNane] </ conponent Sof aNanme>
<aggr egat eSof aNanme>[sof aNane] </ aggr egat eSof aNane>
</ sof aMappi ng>

</ sof aMappi ngs>

The <componentSofaName> may be omitted in the case where the component is not
aware of Multiple Views or Sofas. In this case, the UIMA framework will arrange for the
specified <aggregateSofaName> to be the one visible to the delegate component.

The <componentKey> is the key name for the component as specified in the list of
delegate components for this aggregate.

The sofaNames used must be declared as input or output sofas in some capability set.

2.5. Flow Controller Descriptors

The basic structure of a Flow Controller Descriptor is as follows:

<?xm version="1.0" ?>

30 Component Descriptor Reference UIMA Version 2.1

Collection Processing Component Descriptors

<fl onControl | er Descri ption
xm ns="ht t p:// ui ma. apache. or g/ resour ceSpeci fier">

<f ramewor kI npl ement at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl ement ati on>
<i npl enent at i onName>[Cl assNane] </ i npl enent at i onNane>

<pr ocessi ngResour ceMet aDat a>

</ b.r.ocessi ngResour ceMet aDat a>

<ext er nal Resour ceDependenci es>

</ ext er nal Resour ceDependenci es>

<r esour ceManager Conf i gur ati on>

</ r é;sour ceManager Conf i gur ati on>

</fl owControl | erDescri ption>

The f r amewor kI npl enent at i on element must always be set to the value
org. apache. ui ma. j ava.

The i npl enent at i onNane element must contain the fully-qualified class name of the Flow
Controller implementation. This must name a class that implements the Fl owControl | er
interface.

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as
a Primitive Analysis Engine Descriptor's anal ysi sEngi neMet aDat a element, described in
Section 2.4.1.2, “Analysis Engine MetaData” [10].

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur at i on elements
are exactly the same as in Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [22].

2.6. Collection Processing Component
Descriptors

There are three types of Collection Processing Components — Collection Readers, CAS
Initializers (deprecated as of UIMA Version 2), and CAS Consumers. Each type of
component has a corresponding descriptor. The structure of these descriptors is very
similar to that of primitive Analysis Engine Descriptors.

2.6.1.

Collection Reader Descriptors

The basic structure of a Collection Reader descriptor is as follows:

UIMA Version 2.1 Component Descriptor Reference 31

32

Collection Reader Descriptors

<?xm version="1.0" ?>
<col | ecti onReader Descri pti on
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">

<f ramewor kIl npl enent at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl enent at i on>
<i npl enent at i onName>[Cl assNane] </ i npl enent at i onNane>

<pr ocessi ngResour ceMet aDat a>

</ b.r.ocessi ngResour ceMet aDat a>
<ext er nal Resour ceDependenci es>
<} .e;<t er nal Resour ceDependenci es>

<r esour ceManager Conf i gur ati on>

</ resour ceManager Conf i gur ati on>

</ col | ecti onReader Descri pti on>

The f r amewor ki nmpl enent at i on element must always be set to the value
or g. apache. ui ma. j ava.

The i npl ement at i onNane element contains the fully-qualified class name of the
Collection Reader implementation. This must name a class that implements the
Col | ecti onReader interface.

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as
a Primitive Analysis Engine Descriptor's' anal ysi sEngi neMet aDat a element:
<pr ocessi hgResour ceMet aDat a>

<name> [String] </nane>

<description>[String] </ description>

<version>[String] </ versi on>

<vendor >[St ri ng] </ vendor >

<confi gurati onPar anet er s>

</ confi gurati onPar anet er s>

<confi gurati onPar anet er Setti ngs>

</ confi gurati onPar anet er Setti ngs>

<t ypeSyst enDescri pti on>

</ typeSyst enDescri pti on>

<typePriorities>

</[typePriorities>

<f sl ndexes>

Component Descriptor Reference UIMA Version 2.1

CAS Initializer Descriptors (deprecated)

</ f sl ndexes>
<capabilities>
</ capabilities>

</ pr ocessi ngResour ceMet aDat a>

The contents of these elements are the same as that described in Section 2.4.1.2, “Analysis
Engine MetaData” [10], with the exception that the capabilities section should not declare
any inputs (because the Collection Reader is always the first component to receive the
CAS).

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur at i on elements
are exactly the same as in the Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [22].

2.6.2.

CAS Initializer Descriptors (deprecated)

The basic structure of a CAS Initializer Descriptor is as follows:

<?xm version="1.0" encodi ng="UTF-8" ?>
<caslnitializerDescription
xm ns="http://ui ma. apache. or g/ r esour ceSpeci fier">

<f ramewor kIl npl enent at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl enent ati on>
<i npl enent ati onName>[Cl assNane] </i npl ement ati onName>

<pr ocessi ngResour ceMet aDat a>

</ .p.r.ocessi ngResour ceMet aDat a>
<ext er nal Resour ceDependenci es>
</ ext er nal Resour ceDependenci es>
<r esour ceManager Conf i gur ati on>
</ r é;sour ceManager Confi gurati on>

</caslnitializerDescription>

The f r amewor kI npl enent at i on element must always be set to the value
or g. apache. ui ma. j ava.

The i npl ement at i onNane element contains the fully-qualified class name of the CAS
Initializer implementation. This must name a class that implements the Casl ni ti al i zer
interface.

UIMA Version 2.1 Component Descriptor Reference 33

CAS Consumer Descriptors

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as
a Primitive Analysis Engine Descriptor's' anal ysi sEngi neMet aDat a element, as described
in Section 2.4.1.2, “Analysis Engine MetaData” [10], with the exception of some changes to
the capabilities section. A CAS Initializer's capabilities element looks like this:

<capabilities>
<capability>
<out put s>
<type all Annot at or Features="true|fal se">[String]</type>
<type>[TypeNane] </ t ype>

<f éat ur e>[TypeNane] : [Name] </ f eat ur e>
</ out put s>
<out put Sof as>

<sof aNanme>[nane] </ sof aNanme>

</ out put Sof as>

<m meTypesSupport ed>
<m meType>[M ME Type] </ m meType>

</ m ﬁeTypesSupported>
</ capabi lity>

<capability>
</ capabi l i ty>

</ capabi | i ties>

The differences between a CAS Initializer's capabilities declaration and an Analysis
Engine's capabilities declaration are that the CAS Initializer does not declare any input
CAS types and features or input Sofas (because it is always the first to operate on a CAS),
it doesn't have a language specifier, and that the CAS Initializer may declare a set of
MIME types that it supports for its input documents. Examples include: text/plain,
text/html, and application/pdf. For a list of MIME types see
http://www.iana.org/assignments/media-types/. This information is currently only for
users' information, the framework does not use it for anything. This may change in future
versions.

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur at i on elements
are exactly the same as in the Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [22]).

2.6.3.

34

CAS Consumer Descriptors

The basic structure of a CAS Consumer Descriptor is as follows:

<?xm version="1.0" encodi ng="UTF-8" ?>

Component Descriptor Reference UIMA Version 2.1

http://www.iana.org/assignments/media-types/

Service Client Descriptors

<casConsuner Descri ption
xm ns="ht t p:// ui ma. apache. or g/ resour ceSpeci fier">

<f ramewor kI npl ement at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl ement ati on>
<i npl enent at i onName>[Cl assNane] </ i npl enent at i onNane>

<pr ocessi ngResour ceMet aDat a>

</ b.r.ocessi ngResour ceMet aDat a>

<ext er nal Resour ceDependenci es>

</ ext er nal Resour ceDependenci es>

<r esour ceManager Conf i gur ati on>

</ r esour ceManager Conf i gurati on>
</ casConsuner Descri pti on>

The f ramewor kI npl enent at i on element currently must have the value
or g. apache. ui ma. j ava, or or g. apache. ui na. cpp.

The next subelement, <annot at or | npl enent at i onNane> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class
name for Java implementations, or the name of a .dll or .so file for C++ implementations.

The f ramewor kI npl enent at i on element must always be set to the value
or g. apache. ui na. j ava.

The i npl ement at i onNane element must contain the fully-qualified class name of the CAS
Consumer implementation, or the name of a .dll or .so file for C++ implementations. For
Java, the named class must implement the CasConsumner interface.

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as
a Primitive Analysis Engine Descriptor's anal ysi sEngi neMet aDat a element, described in
Section 2.4.1.2, “Analysis Engine MetaData” [10], except that the CAS Consumer
Descriptor's capabi | i ti es element should not declare outputs or outputSofas (since CAS
Consumers do not modify the CAS).

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur ati on elements
are exactly the same as in Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [22].

2.7. Service Client Descriptors

Service Client Descriptors specify only a location of a remote service. They are therefore
much simpler in structure. In the UIMA SDK