
UIMA Tools Guide and Reference
Authors: The Apache UIMA Development Community

Version 2.1

Copyright © 2006, 2007 The Apache Software Foundation

Copyright © 2004, 2006 International Business Machines Corporation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing
incubation at the Apache Software Foundation (ASF). Incubation is required
of all newly accepted projects until a further review indicates that the
infrastructure, communications, and decision making process have stabilized
in a manner consistent with other successful ASF projects. While incubation
status is not necessarily a reflection of the completeness or stability of the
code, it does indicate that the project has yet to be fully endorsed by the ASF.

License and Disclaimer. The ASF licenses this documentation to you under
the Apache License, Version 2.0 (the "License"); you may not use this
documentation except in compliance with the License. You may obtain a copy
of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation
and its contents are distributed under the License on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing permissions
and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks
or service marks have been appropriately capitalized. Use of such terms in this
book should not be regarded as affecting the validity of the the trademark or
service mark.

Published February, 2007

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents
1. CDE User's Guide ..1

1.1. Launching the Component Descriptor Editor ..1
1.2. Creating a New AE Descriptor ..1
1.3. Pages within the Editor ...4

1.3.1. Adjusting the display of pages ..4
1.4. Overview Page ..4

1.4.1. Implementation Details ..4
1.4.2. Runtime Information ..5
1.4.3. Overall Identification Information ..5

1.5. Aggregate Page ...5
1.5.1. Adding components more than once ..7
1.5.2. Adding or Removing components in a flow7
1.5.3. Adding remote Analysis Engines ..7
1.5.4. Connecting to Remote Services ...8
1.5.5. Finding Analysis Engines by searching ...9
1.5.6. Component Engine Flow ..9

1.6. Parameters Definition Page ... 10
1.6.1. Using groups .. 12
1.6.2. Parameter declarations for Aggregates ... 14

1.7. Parameter Settings Page .. 15
1.8. Type System Page ... 16

1.8.1. Exporting ... 21
1.9. Capabilities Page ... 21

1.9.1. Sofa (and view) name mappings ... 24
1.10. Indexes Page ... 26
1.11. Resources Page .. 29

1.11.1. Binding ... 32
1.11.2. Resources with Aggregates ... 33
1.11.3. Imports and Exports ... 33

1.12. Source Page ... 33
1.12.1. Source formatting – indentation .. 34

1.13. Creating a Self-Contained Type System ... 34
1.14. Creating Other Descriptor Components ... 36

2. CPE Configurator User's Guide ... 37
2.1. Limitations of the CPE Configurator ... 37
2.2. Starting the CPE Configurator ... 37
2.3. Selecting Component Descriptors .. 38
2.4. Running a Collection Processing Engine .. 39
2.5. The File Menu ... 40
2.6. The Help Menu ... 40

UIMA Tools Guide and Reference iii

3. Document Analyzer User's Guide .. 43
3.1. Starting the Document Analyzer ... 43
3.2. Running an AE .. 43
3.3. Viewing the Analysis Results .. 44
3.4. Configuring the Annotation Viewer .. 46
3.5. Interactive Mode ... 47
3.6. View Mode ... 48

4. Annotation Viewer .. 49
5. CAS Visual Debugger .. 51

5.1. Error Handling .. 51
5.2. Preferences File ... 51
5.3. The Menus .. 52

5.3.1. The File Menu .. 52
5.3.2. The Edit Menu .. 54
5.3.3. The Run Menu .. 55
5.3.4. The tools menu ... 56

5.4. The Main Display Area ... 57
5.4.1. The Status Bar ... 60
5.4.2. Keyboard Navigation and Shortcuts ... 61

6. JCasGen User's Guide .. 63
6.1. Running stand-alone without Eclipse .. 64
6.2. Running stand-alone with Eclipse ... 64
6.3. Running within Eclipse ... 65

7. PEAR Packager User's Guide ... 67
7.1. Using the PEAR Eclipse Plugin ... 67

7.1.1. Add UIMA Nature to your project .. 67
7.1.2. Using the PEAR Generation Wizard ... 69

8. PEAR Installer User's Guide .. 75
9. PEAR Merger User's Guide .. 77

9.1. Details of the merging process ... 77
9.2. Testing and Modifying the resulting PEAR ... 78
9.3. Restrictions and Limitations .. 78

UIMA Tools Guide and Reference

iv UIMA Tools Guide and Reference UIMA Version 2.1

Chapter 1. Component Descriptor
Editor User's Guide

The Component Descriptor Editor is an Eclipse plug-in that provides a forms-based
interface for creating and editing UIMA XML descriptors. It supports most of the
descriptor formats, except the Collection Processing Engine descriptor and some remote
deployment descriptors.

1.1. Launching the Component Descriptor
Editor

Here's how to launch this tool on a descriptor contained in the examples. This presumes
you have installed the examples as described in the SDK Installation and Setup chapter.
• Expand the uimaj-examples project in the Eclipse Navigator or Package Explorer view
• Within this project, browse to the file

descriptors/tutorial/ex1/RoomNumberAnnotator.xml.
• Right-click on this file and select Open With → Component Descriptor Editor. (If this

option is not present, check to make sure you installed the plug-ins as described
Section 3.1, “Installation” in Overview & Setup. The EMF plugin is also required.).

• This should open a graphical editor and display the contents of the
RoomNumberAnnotator descriptor.

1.2. Creating a New AE Descriptor
A new AE descriptor file may be created by selecting the File → New → Other... menu.
This brings up the following dialog:

CDE User's Guide 1

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.installation

If the user then selects UIMA and Analysis Engine Descriptor File, and clicks the Next >
button, the following dialog is displayed. We will cover creating other kinds of
components later in the documentation.

After entering the appropriate parent folder and file name, and clicking Finish, an initial

Creating a New AE Descriptor

2 CDE User's Guide UIMA Version 2.1

AE descriptor file is created with the given name, and the descriptor is opened up within
the Component Descriptor Editor.

At this point, the display inside the Component Descriptor Editor is the same whether one
started by creating a new AE descriptor, as in the preceding paragraph, or one merely
opened a previously created AE descriptor from, say, the Package Explorer view. We
show a previously created AE in the figure below:

To see all the information shown in the main editor pane with less scrolling, double click
the title tab to toggle between the “full screen” and normal views.

It is possible to set the Component Descriptor Editor as the default editor for all .xml files
by going to Window → Preferences, and then selecting File Associations on the left, and
*.xml on the right, and finally by clicking on Component Descriptor Editor, the Default
button and then OK. If AE and Type System descriptors are not the primary .xml files you
work with within the Eclipse environment, we recommend not setting the Component
Descriptor Editor as your default editor for all .xml files. To open an .xml file using the
Component Descriptor Editor, if the Component Descriptor Editor is not set as your
default editor, right click on the file in the Package Explorer, or other navigational view,
and select Open With → Component Descriptor Editor. This choice is remembered by
Eclipse for subsequent open operations.

Pages within the Editor

UIMA Version 2.1 CDE User's Guide 3

1.3. Pages within the Editor
The Component Descriptor Editor follows a standard Eclipse paradigm for these kinds of
editors. There are several pages in the editor; each one can be selected, one at a time, by
clicking on the bottom tabs. The last page contains the actual XML source file being
edited, and is displayed as plain text.

The same set of tabs appear at the bottom of each page in the Component Descriptor
Editor. The Component Descriptor Editor uses this “multi-page editor” paradigm to give
the user a view of conceptually distinct portions of the Descriptor metadata in separate
pages. At any point in time the user may click on the Source tab to view the actual XML
source. The Component Descriptor Editor is, in a way, just a fancy GUI for editing the
XML. The tabs provide quick access to the following pages: Overview, Aggregate,
Parameters, Parameter Settings, Type System, Capabilities, Indexes, Resources, and
Source. We discuss each of these pages in turn.

1.3.1. Adjusting the display of pages
Most pages in the editor have a “sash” bar. This is a light gray bar which separates
sub-sections of the page. This bar can be dragged with the mouse to adjust how the
display area is split between the two sash panes. You can also change the orientation of
the Sash so it splits vertically, instead of horizontally, by clicking on the small icons at the
top right of the page that look like this:

All of the sections on a page have subtitles, with an indicator to the left which you can
click to collapse or expand that particular section. Collapsing sections can sometimes be
useful to free up screen area for other sections.

1.4. Overview Page
Normally, the first page displayed in the Component Descriptor Editor is the Overview
page (the name of the page is shown in the GUI panel at the top left). If there is an error
reading and parsing the source, the Source page is shown instead, giving you the
opportunity to correct the problem. For many components, the Overview page contains
three sections: Implementation Details, Runtime Information and overall Identification
Information.

1.4.1. Implementation Details
In the Implementation Details section you specify the Implementation Language and
Engine Type. There are two kinds of Engines: Aggregate, and non-Aggregate (also called
Primitive). An Aggregate engine is one which is composed of additional component

Adjusting the display of pages

4 CDE User's Guide UIMA Version 2.1

engines and contains no code, itself. Several of the pages in the Component Descriptor
Editor have different formats, depending on the engine type.

1.4.2. Runtime Information
Runtime information is only applicable for primitive engines and is disabled for
aggregates and other kinds of descriptors. This is where you specify the class name of the
annotator implementation, if you are doing a Java implementation, or the C++ shared
object or dll name, if you are doing a C++ implementation. Most Analysis Engines will
specify that they update the CAS, and that they may be replicated (for performance
reasons) when deployed. If a particular Analysis Engine must see every CAS (for instance,
if it is counting the number of CASes), then uncheck the “multiple deployment allowed”
box. If the Analysis Engine doesn't update the CAS, uncheck the “updates the CAS” box.
(Most CAS Consumers do not update the CAS, and this parameter defaults to unchecked
for new CAS Consumer descriptors).

Analysis engines are written using the CAS Multiplier APIs (see Chapter 7, CAS
Multiplier Developer's Guide in UIMA Tutorial and Developers' Guides) can create
additional CASes for analysis. To specify that they do this, check the “returns new
artifacts”.

1.4.3. Overall Identification Information
The Name should be a human-readable name that describes this component. The Version,
Vendor, and Description fields are optional, and are arbitrary strings.

1.5. Aggregate Page
For primitive Analysis Engines, Flow Controllers or Collection Processing components,
the Aggregate page is not used. For aggregate engines, the page looks like this:

On the left we see a list of component engines, and on the right information about the
flow. If you hover the mouse over an item in the list of component engines, that engine's

Runtime Information

UIMA Version 2.1 CDE User's Guide 5

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm

description meta data will be shown. If you right-click on one of these items, you get an
option to open that delegate descriptor in another editor instance. Any changes you make,
however, won't be seen until you close and reopen the editor on the importing file.

Engines can be added to the list on the left by clicking the Add button at the bottom of the
Component Engine section. This brings up the following dialog:

This dialog lets you select a descriptor from your workspace, or browse the file system to
select a descriptor.

You can specify that the import should be by Name (the name is looked up using both the
Project's class path, and DataPath), or by location. If it is by name, it may contain part of
the path within the name. For instance, if the file name picked is
c:/project/subproject/src/com/company/prod/xyz.xml, and the class path includes
c:/project/subproject/src, the name in the descriptor will be

Aggregate Page

6 CDE User's Guide UIMA Version 2.1

com.company.prod.xyz”. If it is by location, the file reference is converted to a relative
reference if possible, in the descriptor.

The final selection at the bottom tells whether or not the selected engine(s) should
automatically be added to the end of the flow section (the right section on the Aggregate
page). The OK button does not become activated until a descriptor file is selected.

To remove an analysis engine from the component engine list simply select an engine and
click the Remove button, or press the delete key. If the engine is already in the flow list
you will be warned that deletion will also delete the specified engine from this list.

1.5.1. Adding components more than once
Components may be added to the left panel more than once. Each of these components
will be given a key which is unique. A typical reason this might be done is to use a
component in a flow several times, but have each use be associated with different
configuration parameters (different configuration parameters can be associated with each
instance).

1.5.2. Adding or Removing components in a flow
The button in-between the Component Engines and the Flow List, labeled >>, adds a
chosen engine to the flow list and the button labeled << removes an engine from the flow
list. To add an engine to the flow list you must first select an engine from the left hand list,
and then press the >> button. Engines may appear any number of times in the flow list. To
remove an engine from the flow list, select an engine from the right hand list and press the
<< button.

1.5.3. Adding remote Analysis Engines
There are two ways to add remote engines: add an existing descriptor, which specifies a
remote engine (just as if you were adding a non-remote engine) or use the Add Remote
button which will create a remote descriptor, save it, and then import it, all in one
operation. The Add Remote button enables you to easily specify the information needed
to create a Service Client descriptor for a remote AE - one that runs on a different
computer connected over the network. The Service Client descriptor is described in
Section 2.7, “Service Client Descriptors” in UIMA References. The Add Remote button
creates this descriptor, saves it as a file in the workspace, and imports it into the
aggregate.

Of course, if you already have a Service Client descriptor, you can add it to the set of
delegates, just like adding other kinds of analysis engines.

After clicking on Add Remote, the following dialog is displayed:

Adding components more than once

UIMA Version 2.1 CDE User's Guide 7

../references/references.pdf#ugr.ref.xml.component_descriptor.service_client

To define a remote service you specify the Service Kind, Protocol Service Type, URI and
Key. You can also specify a Timeout in milliseconds, used by the SOAP service, and a
VNS Host and Port used by the Vinci Service. Just like when one adds an engine from the
file system, you have the option of adding the engine to the end of the flow. The
Component Descriptor Editor currently only supports Vinci and SOAP services using this
dialog.

Remote engines are added to the descriptor using the <import ... > syntax. The information
you specify here is saved in the Eclipse project as a file, using a generated name,
<key-name>.xml, where <key-name> is the name you listed as the Key. Because of this, the
key-name must be a valid file name. If you want a different name, you can change the
path information in the dialog box.

1.5.4. Connecting to Remote Services
If you are using the Vinci protocol, it requires that you specify the location of the Vinci
Name Server (an IP address and a Port number). You can specify these in the service
descriptor, or globally, for your Eclipse workspace, using the Eclipse menu item: Window

Connecting to Remote Services

8 CDE User's Guide UIMA Version 2.1

→ Preferences... → UIMA Preferences. If the remote service is available (up and running),
additional operations become possible. For instance, hovering the mouse over the remote
descriptor will show the description metadata from the remote service.

1.5.5. Finding Analysis Engines by searching
The next button that appears between the component engine list and the flow list is the
Find AE button. When this button is pressed the following dialog is displayed, which
allows one to search for AEs by name, by input or output types, or by a combination of
these criteria. This function searches the existing Eclipse workspace for matching *.xml
descriptor source files; it does not look inside Jar files.

The search automatically adds a “match any characters” - style (*) wildcard at the
beginning and end of anything entered. Thus, if person is specified for an output type, a
“*person*” search is performed. Such a search would match such things as
“my.namespace.person” and “person.governmentOfficial.” One can search in all projects
or one particular project. The search does an implicit and on all fields which are left
non-blank.

1.5.6. Component Engine Flow
The UIMA SDK currently supports three kinds of sequencing flows: Fixed,
CapabilityLanguageFlow (see the section called “Capability Language Flow” in UIMA
References), and user-defined. The first two require specification of a linear flow sequence;
this linear flow sequence can also be read by a user-defined flow controller (what use is
made of it is up to the user-defined flow controller). The Component Engine Flow section
allows specification of these items.

Finding Analysis Engines by searching

UIMA Version 2.1 CDE User's Guide 9

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.aggregate.flow_constraints.capability_language_flow

The pull-down labeled Flow Kind picks between the three flow models. When the
user-defined flow is selected, the Browse and Search buttons become enabled to let you
pick the flow controller XML descriptor to import.

The key name value is set automatically from the XML descriptor being imported, and
enables parameters to be overridden for that descriptor (see following sections).

The Up and Down buttons to the right in the Flow section are activated when an engine in
the flow is selected. The Up button moves the selected engine up one place in the
execution order, and down moves the selected engine down one place in the execution
order. Remember that engines can appear multiple times in the flow (or not at all).

1.6. Parameters Definition Page
There are two pages for parameters: the first one is where parameters are defined, and the
second one is where the parameter settings are configured. The first page is the Parameter
Definition page and has two alternatives, depending on whether or not the descriptor is
an Aggregate or not. We start with a description of parameter definitions for Primitive
engines, CAS Consumers, Collection Readers, CAS Initializers, and Flow Controllers.
Here is an example:

Parameters Definition Page

10 CDE User's Guide UIMA Version 2.1

The first checkbox at the top simplifies things if you are not using Parameter Groups (see
the following section for a discussion of groups). In this case, leave the check box
unchecked. The main area shows a list of parameter definitions. Each parameter has a
name, which must be unique for this Analysis Engine. The other three attributes specify
whether the parameter can have a single or multiple values (an array of values), whether
it is Optional or Mandatory, and what the value type it can hold (String, Integer, Float,
and Boolean).

In addition to using the buttons on the right to edit this information, you can double-click
a parameter to edit it, or remove (delete) a selected parameter by pressing the delete key.
Use the Add button to add a new parameter to the list.

Parameters have an additional description field, which you can specify when you add or
edit a parameter. To see the value of the description, hover the mouse over the item, as
shown in the picture below:

Parameters Definition Page

UIMA Version 2.1 CDE User's Guide 11

1.6.1. Using groups
The group concept for parameters arose from the observation that sets of parameters were
sometimes associated with different configuration needs. As an example, you might have
an Analysis Engine which needed different configuration based on the language of a
document.

To use groups, you check the “Use Parameter Groups” box. When you do this, you get the
ability to add groups, and to define parameters within these groups. You also get a
capability to define “Common” parameters, which are parameters which are defined for
all groups. Here is a screen shot showing some parameter groups in use:

Using groups

12 CDE User's Guide UIMA Version 2.1

You can see the “<Common>” parameters as well as two different sets of groups.

The Default Group is an optional specification of what Group to use if the parameter is
not available for the group requested.

The Search strategy specifies what to do when a parameter is not available for the group
requested. It can have the values of None, language_fallback, or default_fallback. These
are more fully described in the section Section 2.4.1.3, “Configuration Parameter
Declaration” in UIMA References .

Groups are added using the Add Group button. Once added, they can be edited or
removed, using the buttons to the right, or the standard gestures for editing
(double-clicking the item) and removing (pressing the delete key after an item is selected).
Removing a group removes all the parameter definitions in the group. If you try and
remove the “<Common>” group, it just removes the parameters in the group.

Each entry for a group in the table specifies one or more group names. For example, the
highlighted entry above, specifies two groups: “myNewGroup2” and “mg3”. The
parameter definition underneath is considered to be in both groups.

Parameter declarations for Aggregates

UIMA Version 2.1 CDE User's Guide 13

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.configuration_parameter_declaration
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.configuration_parameter_declaration

1.6.2. Parameter declarations for Aggregates
Aggregates declare parameters which always must override a parameter setting for a
component making up the aggregate. They do this using the version of this page which is
shown when the descriptor is an Aggregate; here's an example:

There is an additional panel shown (on the right) which lists all of the components by
their key names, and shows for each of them their defined parameters. To add a new
override for one or more of these parameters to the aggregate, select the component
parameter you wish to override and push the Create Override button (or, you can just
double-click the component parameter). This will automatically add a parameter of the
same name (by default – you can change the name if you like) to the aggregate, putting it
into the same group(s) (if groups are being used in the component – this is required), and
setting the properties of the parameter to match those of the component (this is required).

Note: If the name of the parameter being added already is in use in the
aggregate, and the parameters are not compatible, a new parameter name is
generated by suffixing the name with a number. If the parameters are compatible,
the selected component parameter is added to the existing aggregate parameter, as
an additional override. If you don't want this behavior, but want to have a new
name generated in this case, push the Create non-shared Override button instead,
or hold down the “shift” key when double clicking the component parameter.

In the above example, the user has just double-clicked the “TypeNames” parameter in the
“NameRecognizer” component. This added that parameter to this aggregate under the
“<Not in any group>” section – since it wasn't part of a group.

Once you have added a parameter definition to the aggregate, you can use the buttons on
the right side of the left panel to add additional overrides or remove parameters or their

Parameter declarations for Aggregates

14 CDE User's Guide UIMA Version 2.1

overrides. You can also remove groups; removing a group is like removing all the
parameter definitions in the group.

In addition to adding one parameter at a time from a component, you can also add all the
parameters for a group within a component, or all the parameters in the component, by
selecting those items.

If you double-click (or push Create Override) the “<Common>” group or a parameter in
the <Common> group in a component, a special group is created in the Aggregate
consisting of all of the groups in that component, and the overriding parameter (or
parameters) are added to that. This is done because each component can have different
groups belonging to the Common group notion; the Common group for a component is
just shorthand for all the groups in that component.

The Aggregate's specification of the default group and search strategy override any
specifications contained in the components.

1.7. Parameter Settings Page
The Parameter Settings page is rather straightforward; it is where the user defines
parameter settings for their engines. An example of such a page is given below:

For single valued attributes, the user simply types the default value into the Value box on
the right hand side. For multi-valued parameters the user should use the Add, Edit and
Remove buttons to manage the list of multiple parameter values.

Values within groups are shown with each group separately displayed, to allow
configuring different values for each group.

Parameter Settings Page

UIMA Version 2.1 CDE User's Guide 15

Values are checked for validity. For Boolean values in a list, use the words true or false.

Note: If you specify a value in a single-valued parameter, and then delete all the
characters in the value, the CDE will treat this as if you wanted to not specify any
setting for this parameter. In order to specify a 0 length string setting for a
String-valued parameter, you will have to manually edit the XML using the
“Source” tab.

1.8. Type System Page
This page declares the type system used by the annotator. For aggregates it is derived by
merging the type systems of all constituent AEs. The types used by the AE constitute the
language in which the inputs and outputs are described in the Capabilities page and also
affect the choice of indexes on the Indexes page. The Type System page looks like the
following:

Before discussing this page in detail, it is important to note that there are two settings that
affect the operation of this page. These are accessed by selecting the UIMA → Settings (or
by going to the Eclipse Window → Preferences → UIMA Preferences) and checking or
unchecking one of the following: “Auto generate .java files when defining types” and
“Display fully qualified type names.”

When the Auto generate option is checked and the development language for the AE is
Java, any time a change is made to a type and the change is saved, the corresponding .java
files are generated using the JCasGen tool. The results are stored in the primary source
directory defined for the project. The primary source directory is that listed first when you
right click on your project and select Properties → Java Build Path, click on the Source tab

Type System Page

16 CDE User's Guide UIMA Version 2.1

and look in the list box under the text that reads: “Source folder on build path.” If no
source folders are defined, you will get a warning that you have no source folders defined
and JCasGen will not be run. (For information on JCasGen see Chapter 6, JCasGen User's
Guide [63]). When JCasGen is run, you can monitor the progress of the generation by
observing the status on the Eclipse status line (normally at the bottom of the Eclipse
window). JCasGen runs on the fully-merged type system, consisting of the type
specification plus any imported type system, plus (for aggregates) the merged type
systems of all the components in an aggregate.

Warning: If the components of the aggregate have different definitions for the
same type name, the CDE will show a warning. It is possible to continue past this
warning, in which case the CDE will produce the correct Java source files
representing the merged types (that is, the type definition that contains all of the
features defined on that type by all of your components). However, it is not
recommended to use this feature (of having different definitions for the same type
name) since it can make it difficult to combine/package your annotator with
others. See Section 5.5, “Merging Types” in UIMA References for more information.

Note: In addition to running automatically, you can manually run JCasGen on
the fully merged type system by clicking the JCasGen button, or by selecting Run
JCasGen from the UIMA pulldown menu:

When “Display fully qualified type names” is left unchecked, the namespace of types is
not displayed, i.e. if a fully qualified type name is my.namespace.person, only the
abbreviated type name person will be displayed. In the Type page diagram shown above,
“Display fully qualified type names” is in fact unchecked.

To add, edit, or remove types the buttons on the top left section are used. When adding or
editing types, fully qualified type names should of course be used, regardless of whether
the “Display fully qualified type names” is unchecked. Removing or editing a type will
have a cascading effect in that the type removal/edit will effect inputs, outputs, indexes
and type priorities in the natural way.

When a type is added, this dialog is shown:

Type System Page

UIMA Version 2.1 CDE User's Guide 17

../references/references.pdf#ugr.ref.jcas.merging_types_from_other_specs

Type names should be specified using a namespace. The namespace is like a Java package
name, and serves to insure type names are unique. It also serves as the package name for
the generated JCas classes. The namespace name is the set of names up to the last period
in the string.

The supertype must be picked from an existing type. The entry field for the supertype
supports Eclipse-style content assist. To use it, put the cursor in the supertype field, and
type a letter or two of the supertype name (lower case is fine), either starting with the
name space, or just with the type name (without the name space), and hold down the
Control key and then press the spacebar. When you do this, you can see a list of suitable
matching types. You can then type more letters to narrow down your choices, or pick the
right entry with the mouse.

To see the available types and pick one, press the Browse button. This will show the
available types, and as you type letters for the type name (in lower case – capitalization is
ignored), the available types that match are narrowed. When you've typed enough to
specify the type you want, press Enter. Or you can use the list of matching type names
and pick the one you want with the mouse.

Once you've added the type, you can add features to it by highlighting the type, and
pressing the Add button.

If the type being defined is a subtype of uima.cas.String, the Add button allows you to
add allowed values for the string, instead of adding features.

Type System Page

18 CDE User's Guide UIMA Version 2.1

To edit a type or feature, you can double click the entry, or highlight the entry and press
the Edit button. To delete a type or feature, you highlight the entry to be deleted, and click
the delete button or push the delete key.

If the range of a feature is an array or one of the built-in list types, an additional
specification allows you to specify if multiple references to the object referenced by this
feature are allowed. If they are not allowed then the XMI serialization of instances of this
type use a more efficient format.

If the range of a feature is an array of Feature Structures, then it is possible to specify an
element type for the array. This information is used in the XMI serialization and also by
the JCas generation routines to generate more efficient code.

It is also possible to import type systems for inclusion in your descriptor. To do this, use
the Type Import panel's Add... button. This allows you to import a type system
descriptor.

When importing by name, the name is resolved using the class path for the Eclipse project
containing the descriptor file being edited, or by looking up this name in the UIMA
DataPath. The DataPath can be set by pushing the Set DataPath button. It will be
remembered for this Eclipse project, as a project Property, so you only have to set it once
(per project). The value of the DataPath setting is written just like a class path, and can

Type System Page

UIMA Version 2.1 CDE User's Guide 19

include directories or JAR files, just as is true for class paths.

The following dialog allows you to pick one or more files from the Eclipse workspace, or
one file (at a time) from the file system:

This is essentially the same dialog as was used to add component engines to an aggregate.
To import from a type system descriptor that is not part of your Eclipse workspace, click
the Browse the file system.... button.

Imported types are validated, and if OK, they are added to the list in the Imported Type
Systems section of the Type System page. Any types they define are merged with the
existing type system.

Imported types and features which are only defined in imports are shown in the Type
System section, but in a grayed-out font; these type cannot be edited here. To change
them, open up the imported type system descriptor, and change them there.

If you hover the mouse over an import specification, it will show more information about
the import. If you right-click, it will bring up a context menu that allows opening the
imported file in the Editor, if the imported file is part of the Eclipse workspace. Changes
you make, however, won't be seen until you close and reopen the editor on the importing

Type System Page

20 CDE User's Guide UIMA Version 2.1

file.

It is not possible to define types for an aggregate analysis engine. In this case the type
system is computed from the component AEs. The Type System information is shown in a
grayed-out font.

1.8.1. Exporting
In addition to importing type specifications, you can export as well. When you push the
Export... button, the editor will create a new importable XML descriptor for the types in
this type system, and change the existing descriptor to import that newly created one.

The base file name you type is inserted into the path in the line below automatically. You
can change the path where the generated part descriptor is stored by overtyping the lower
text box. When you click OK, the new part descriptor will be generated, and the current
descriptor will be changed to import that part.

1.9. Capabilities Page
Capabilities come in “sets”. You can have multiple sets of capabilities; each one specifies
languages supported, plus inputs and outputs of the Analysis Engine. The idea behind
having multiple sets is the concept that different inputs can result in different outputs.
Many Analysis Engines, though, will probably define just one set of capabilities. A sample

Exporting

UIMA Version 2.1 CDE User's Guide 21

Capabilities page is given below:

When defining the capabilities of a primitive analysis engine, input and output types can
be any type defined in the type system. When defining the capabilities of an aggregate the
inputs must be a subset of the union of the inputs in the constituent analysis engines and
the outputs must be a subset of the union of the outputs of the constituent analysis
engines.

To add a type, first select something in the set you wish to add the type to, and press Add
Type. The following dialog appears presenting the user with a list of types which are
candidates for additional inputs:

Capabilities Page

22 CDE User's Guide UIMA Version 2.1

Follow the instructions to mark the types as input and / or output (a type can be both). By
default, the <all features> flag is set to true. If you want to specify a subset of features of a
type, read on.

When types have features, you can specify what features are input and / or output. A type
doesn't have to be an output to have an output feature. For example, an Analysis Engine
might be passed as input a type Token, and it adds (outputs) a feature to the existing
Token types. If no new Token instances were created, it would not be an output Type, but
it would have features which are output.

To specify features as input and / or output (they can be both), select a type, and press
Add. The following dialog box appears:

To mark a feature as being input and / or output, click the mouse in the input and / or
output column for the feature. If you select <all features>, it unmarks any individual
feature you selected, since <all features> subsumes all the features.

Capabilities Page

UIMA Version 2.1 CDE User's Guide 23

The Languages part of the capability is where you specify what languages are supported
by the Analysis Engine. Supported languages should be listed using either a two letter
ISO-639 language code, or an ISO-639 language code followed by a two-letter ISO-3166
country code. Add a language by selecting Languages and pressing the Add button. The
dialog for adding languages is given below.

The Sofa part of the capability is optional; it allows defining Sofa names that this
component uses, and whether they are input (meaning they are created outside of this
component, and passed into it), or output (meaning that they are created by this
component). Note that a Sofa can be either input or output, but can't be both.

To add a Sofa name (which is synonymous with the view name), press the Add Sofa
button, and this dialog appears:

1.9.1. Sofa (and view) name mappings
Sofa names, once created, are used in Sofa Mappings. These are optional mappings, done
in an aggregate, that specify which Sofas are the same ones but with different names. The
Sofa Mappings section is minimized unless you are editing an Aggregate descriptor, and

Sofa (and view) name mappings

24 CDE User's Guide UIMA Version 2.1

have one or more Sofa names defined for the aggregate. In that case, the Sofa Mappings
section will look like this:

Here the aggregate has defined two input Sofas, named “MyInputSofa”, and
“AnotherSofa”. Any named sofas in the aggregate's capabilities will appear in the Sofa
Mapping section, listed either under Inputs or Outputs. Each name in the Mappings has 0
or more delegate (component) sofa names mapped to it. A delegate may have multiple
Sofas, as in this example, where the GovernmentOfficialRecognizer delegate has Sofas
named “so1” and “so2”.

Sofa (and view) name mappings

UIMA Version 2.1 CDE User's Guide 25

Delegate components may be written as Single-View components. In this case, they have
one implicit, default Sofa (“_InitialView”), and to map to it you use the form shown for
the “NameRecognizer” – you map to the delegate's key name in the aggregate, without
specifying a Sofa name. You can also specify the sofa name explicitly, e.g.,
NameRecognizer/_InitialView.

To add a new mapping, select the Aggregate Sofa name you wish to add the mapping for,
and press the Add button. This brings up a window like this, showing all available
delegates and their Sofas; select one or more (use the normal multi-select methods) of
these and press OK to add them.

To edit an existing mapping, select the mapping and press Edit. This will show the
existing mapping with all mapped items “selected”, and other available items unselected.
Change the items selected to match what you want, deselecting some, and perhaps
selecting others, and press OK.

1.10. Indexes Page
The Indexes page is where the user declares what indexes and type priority lists are used
by the analysis engine. Indexes are used to determine which Feature Structures of a
particular type are fetched, using an iterator in the UIMA API. An unpopulated Indexes
page is displayed below:

Indexes Page

26 CDE User's Guide UIMA Version 2.1

Both indexes and type priority lists can have imports. These imports work just like the
type system imports, described above. Both indexes and type priority lists can be exported
to new component descriptors, using the Export... button, just like the type system export
operation described above.

The built-in Annotation Index is always present. It is based on the built-in type
uima.tcas.Annotation and has keys begin (Ascending), end (Descending) and
TYPE_PRIORITY. There are no built-in type priorities, so this last sort item does not play a
role in the index unless type priorities are specified.

Type priority may be combined with other keys. Type priorities are defined in the Priority

Indexes Page

UIMA Version 2.1 CDE User's Guide 27

Lists section, using one or more priority list. A given priority list gives an ordering among
a group of types. Types that appear higher in the priority list are given higher priority, in
other words, they sort first when TYPE_PRIORITY is specified as the index key. Subtypes
of these types are also ordered in a consistent manner, unless overridden by another
specific type priority specification. To get the ordering used among all the types, all of the
type priority lists are merged. This gives a partial ordering among the types. Ties are
resolved in an unspecified fashion. The Component Descriptor Editor checks for
incompatible orderings, and informs the user if they exist, so they can be corrected.

To create a new index, use the Add Index button in the top left section. This brings up this
dialog:

Each index needs a globally unique index name. Every index indexes one CAS type
(including its subtypes). If you're using Eclipse 3.2 or later, the entry field for this has
content assist (start typing the type name and press Control – Spacebar to get help, or
press the Browse button to pick a type).

Indexes can be sorted, in which case you need to specify one or more keys to sort on. Sort
keys are selected from features whose range type is Integer, Float, or String. Some
elements will be disabled if they are not relevant. For instance, if the index kind is “bag”,
you cannot provide sort keys. The order of sort keys can be adjusted using the up and
down buttons, if necessary.

Indexes Page

28 CDE User's Guide UIMA Version 2.1

Note: There is usually no need to explicitly declare a Bag index in your
descriptor. As of UIMA v2.1, if you do not declare any index for a type (or any of
its supertypes), a Bag index will be automatically created. This index is accessed
using the getAllIndexedFS(...) method defined on the index repository.

A set index will contain no duplicates of the same type, where a duplicate is defined by
the indexing comparator. That is, if you commit two feature structures of the same type
that are equal with respect to the indexing comparator, only the first one will be entered
into the index. Note that you can still have duplicates with respect to the indexing order, if
they are of a different type. A set index is not guaranteed to be sorted. If no keys are
specified for a set index, then all instances are considered by default to be equal, so only
the first instance (for a particular type or subtype of the type being indexed) is indexed.
On the other hand, “bag” indicates that all annotation instances are indexed, including
duplicates.

The Priority Lists section of the Indexes page is used to specify Priority Lists of types.
Priority Lists are unnamed ordered sets of type names. Add a new priority list by clicking
the Add Set button. Add a type to an existing priority list by first selecting the set, and
then clicking Add. You can use the up and down buttons to adjust the order as necessary;
these buttons move the selected item up or down.

Although it is possible to import self-contained index and type priority files, the creation
of such files is not yet supported by the Component Descriptor Editor. If you create these
files using another editor, they can be imported using the corresponding Import panels,
shown on the right. Imports are specified in the same manner as they are for Type System
imports.

1.11. Resources Page
The resources page describes resource dependencies (for primitive Analysis Engines) and
external Resource specification and their bindings to the resource dependencies.

Only primitive Analysis Engines define resource dependencies. Primitive and Aggregate
Analysis Engines can define external resources and connect them (bind them) to resource
dependencies.

When an Aggregate is providing an external resource to be bound to a dependency, the
binding is specified using a possibly multi-level path, starting at the Aggregate, and
specify which component (by its key name), and then if that component is, in turn, an
Aggregate, which component (again by its key name), and so on until you reach a
primitive. The sequence of key names is made into the binding specification by joining the
parts with a “/” character. All of this is done for you by the Component Descriptor Editor.

Any external resource provided by an Aggregate will override any binding provided by
any lower level component for the same resource dependency.

Resources Page

UIMA Version 2.1 CDE User's Guide 29

There are two views of the Resources page, depending on whether the Analysis Engine is
an Aggregate or Primitive. Here's the view for a Primitive:

To declare a resource dependency, click the Add button in the right hand panel. This puts
up the dialog:

Resources Page

30 CDE User's Guide UIMA Version 2.1

The Key must be unique within the descriptor declaring it. The Interface, if present, is the
name of a Java interface the Analysis Engine uses to access the resource.

Declare actual External resource on the left side of the page. Clicking “Add” brings up this
dialog:

Resources Page

UIMA Version 2.1 CDE User's Guide 31

The Name must be unique within this Analysis Engine. The URL identifies a file resource.
If both the URL and URL suffix are used, the file resource is formed by combining the first
URL part with the language-identifier, followed by the URL suffix; see Section 2.4.1.11,
“Resource Manager Configuration” in UIMA References . URLs may be written as
“relative” URLs; in this case they are resolved by looking them up relative to the classpath
and/or datapath. A relative URL has the path part starting without an intial “/”; for
example: file:my/directory/file. An absolute URL starts with file:/ or file:/// or
file://some.network.address/. For more information about URLs, please read the javaDoc
information for the Java class “URL”.

The Implementation is optional, and if given, must be a Java class that implements the
interface specified in any Resource Dependencies this resource is bound to.

1.11.1. Binding
Once you have an external resource definition, and a Resource Dependency, you can bind
them together. To do this, you select the two things (an external resource definition, and a

Binding

32 CDE User's Guide UIMA Version 2.1

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.primitive.resource_manager_configuration
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.primitive.resource_manager_configuration

Resource Dependency) that you want to bind together, and click Bind.

1.11.2. Resources with Aggregates
When editing an Aggregate Descriptor, the Resource definitions panel will show all the
resources at the primitive level, with paths down through the components (multiple
levels, if needed) to get to the primitives. The Aggregate can define external resources,
and bind them to one or more uses by the primitives.

1.11.3. Imports and Exports
Resource definitions and their bindings can be imported, just like other imports. Existing
Resource definitions and their bindings can be exported to a new importable part, and
replaced with an import for that importable part, using the “Export...” button, just like the
similar function on the Type System page.

1.12. Source Page
The Source page is a text view of the xml content of the Analysis Engine or Type System
being configured. An example of this page is displayed below:

Changes made in the GUI are immediately reflected in the xml source, and changes made
in the xml source are immediately reflected back in the GUI. The thought here is that the
GUI view and the Source view are just two ways of looking at the same data. When the
data is in an unsaved state the file name is prefaced with an asterisk in the currently
selected file tab in the editor pane inside Eclipse (as in the example above).

You may accidentally create invalid descriptors or XML by editing directly in the Source
view. If you do this, when you try and save or when you switch to a different view, the

Resources with Aggregates

UIMA Version 2.1 CDE User's Guide 33

error will be detected and reported. In the case of saving, the file will be saved, even if it is
in an error state.

1.12.1. Source formatting – indentation
The XML is indented using an indentation amount saved as a global UIMA preference. To
change this preference, use the Eclipse menu item: Windows → Preferences → UIMA
Preferences.

1.13. Creating a Self-Contained Type System
It is also possible to use the Component Descriptor Editor to create or edit self-contained
type systems. To create a self-contained type system, select the menu item File → New →
Other and then select Type System Descriptor File. From the next page of the selection
wizard specify a Parent Folder and File name and click Finish.

Source formatting – indentation

34 CDE User's Guide UIMA Version 2.1

This will take you to a version of the Component Descriptor Editor for editing a type
system file which contains just three pages: an overview page, a type system page, and a
source page. The overview page is a bit more spartan than in the case of an AE. It looks
like the following:

Just like an AE has an associated name, version, vendor and description, the same is true
of a self-contained type system. The Type System page is identical to that in an AE
descriptor file, as is the Source page. Note that a self-contained type system can import
type systems just like the type system associated with an AE.

Creating a Self-Contained Type System

UIMA Version 2.1 CDE User's Guide 35

A type system component can also be created from an existing descriptor which contains a
type system definition section, by clicking on the Export... button on the Type System
page.

1.14. Creating Other Descriptor Components
The new wizard can create several other kinds of components: Collection Processing
Management (CPM) components, flow controllers, and importable parts (besides Type
Systems, described above, Indexes, Type Priorities, and Resource Manager Configuration
imports).

The CPM components supported by this editor include the Collection Reader, CAS
Initializer, and CAS Consumer descriptors. Each of these is basically treated just like a
primitive AE descriptor, with small changes to accommodate the different semantics. For
instance, a CAS Consumer can't declare in its capabilities section that it outputs types or
features.

Flow controllers are components that control the flow of CASes within an aggregate, an
are edited in a similar fashion as a primitive Analysis Engine.

The importable part support requires context information to enable the editor to work,
because much of the power of this editor comes from extensive checking that requires
additional information, other than what is available in just the importable part. For
instance, when you create or edit an Indexes import, the facility for adding new indexes
needs the type information, which is not present in this part when it is edited alone. To
overcome this, when you edit these descriptors, you will be asked to specify a context
descriptor, usually a descriptor which would import the part being edited, which would
have the additional information needed. Various methods are used to guess what the
context descriptor should be - and if the guess is correct, you can just press the Enter key
to confirm. The last successful context file is remembered and will be suggested as the
context file to use at the next edit session

Creating Other Descriptor Components

36 CDE User's Guide UIMA Version 2.1

1Earlier versions of UIMA supported another component, the CAS Initializer, but this component is now
deprecated in UIMA Version 2.

Chapter 2. Collection Processing
Engine Configurator User's Guide

A Collection Processing Engine (CPE) processes collections of artifacts (documents) through
the combination of the following components: a Collection Reader, Analysis Engines, and
CAS Consumers. 1

The Collection Processing Engine Configurator(CPE Configurator) is a graphical tool that
allows you to assemble and run CPEs.

For an introduction to Collection Processing Engine concepts, including developing the
components that make up a CPE, read Chapter 2, Collection Processing Engine
Developer's Guide in UIMA Tutorial and Developers' Guides . This chapter is a user's guide
for using the CPE Configurator tool, and does not describe UIMA's Collection Processing
Architecture itself.

2.1. Limitations of the CPE Configurator
The CPE Configurator only supports basic CPE configurations.

It only supports “Integrated” deployments (although it will connect to remotes if
particular CAS Processors are specified with remote service descriptors). It doesn't
support configuration of the error handling. It doesn't support Sofa Mappings; it assumes
all Single-View components are operating with the _InitialView Sofa. Multi-View
components will not have their names mapped. It sets up a fixed-sized CAS Pool.

To set these additional options, you must edit the CPE Descriptor XML file directly. See
Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for the
syntax. You may then open the CPE Descriptor in the CPE Configurator and run it. The
changes you applied to the CPE Descriptor will be respected, although you will not be
able to see them or edit them from the GUI.

2.2. Starting the CPE Configurator
The CPE Configurator tool can be run using the cpeGui shell script, which is located in
the bin directory of the UIMA SDK. If you've installed the example Eclipse project (see
Section 3.2, “Setting up Eclipse to view Example Code” in Overview & Setup, you can also

CPE Configurator User's Guide 37

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code

2There is also a fourth pane, for the CAS Initializer, but it is hidden by default. To enable it click the View →
CAS Initializer Panel menu item.

run it using the “UIMA CPE GUI” run configuration provided in that project.

Note: If you are planning to build a CPE using components other than the
examples included in the UIMA SDK, you will first need to update your
CLASSPATH environment variable to include the classes needed by these
components.

When you first start the CPE Configurator, you will see the main window shown here:

2.3. Selecting Component Descriptors
The CPE Configurator's main window is divided into three sections, one each for the
Collection Reader, Analysis Engines, and CAS Consumers.2

In each section of the CPE Configurator, you can select the component(s) you want to use
by browsing to (or typing the location of) their XML descriptors. You must select a

Selecting Component Descriptors

38 CPE Configurator User's Guide UIMA Version 2.1

Collection Reader, and at least one Analysis Engine or CAS Consumer.

When you select a descriptor, the configuration parameters that are defined in that
descriptor will then be displayed in the GUI; these can be modified to override the values
present in the descriptor.

For example, the screen shot below shows the CPE Configurator after the following
components have been chosen:

examples/descriptors/collectionReader/FileSystemCollectionReader.xml
examples/descriptors/analysis_engine/NamesAndPersonTitles_TAE.xml
examples/descriptors/cas_consumer/XmiWriterCasConsumer.xml

2.4. Running a Collection Processing Engine
After selecting each of the components and providing configuration settings, click the play
(forward arrow) button at the bottom of the screen to begin processing. A progress bar
should be displayed in the lower left corner. (Note that the progress bar will not begin to

Running a Collection Processing Engine

UIMA Version 2.1 CPE Configurator User's Guide 39

move until all components have completed their initialization, which may take several
seconds.) Once processing has begun, the pause and stop buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes
successfully, you will be presented with a performance report.

2.5. The File Menu
The CPE Configurator's File Menu has six options:

• Open CPE Descriptor

• Save CPE Descriptor

• Refresh Descriptors from File System

• Clear All

• Exit

Open CPE Descriptor will allow you to select a CPE Descriptor file from disk, and will
read in that CPE Descriptor and configure the GUI appropriately.

Save CPE Descriptor will create a CPE Descriptor file that defines the CPE you have
constructed. This CPE Descriptor will identify the components that constitute the CPE, as
well as the configuration settings you have specified for each of these components. Later,
you can use “Open CPE Descriptor” to restore the CPE Configurator to the state. Also,
CPE Descriptors can be used to easily run a CPE from a Java program – see Section 3.3.1,
“Running a CPE from a Descriptor” in UIMA Tutorial and Developers' Guides .

CPE Descriptors also allow specifying operational parameters, such as error handling
options that are not currently available for configuration through the CPE Configurator.
For more information on manually creating a CPE Descriptor, see Chapter 3, Collection
Processing Engine Descriptor Reference in UIMA References .

Refresh Descriptors from File System will reload all descriptors from disk. This is useful
if you have made a change to the descriptor outside of the CPE Configurator, and want to
refresh the display.

Clear All will reset the CPE Configurator to its initial state, with no components selected.

Exit will close the CPE Configurator. If you have unsaved changes, you will be prompted
as to whether you would like to save them to a CPE Descriptor file. If you do not save
them, they will be lost.

When you restart the CPE Configurator, it will automatically reload the last CPE
descriptor file that you were working with.

The File Menu

40 CPE Configurator User's Guide UIMA Version 2.1

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.running_a_cpe_from_a_descriptor
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.running_a_cpe_from_a_descriptor
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../references/references.pdf#ugr.ref.xml.cpe_descriptor

2.6. The Help Menu
The CPE Configurator's Help menu provides “About” information and some very simple
instructions on how to use the tool.

The Help Menu

UIMA Version 2.1 CPE Configurator User's Guide 41

Chapter 3. Document Analyzer User's
Guide

The Document Analyzer is a tool provided by the UIMA SDK for testing annotators and
AEs. It reads text files from your disk, processes them using an AE, and allows you to
view the results. The Document Analyzer is designed to work with text files and cannot
be used with Analysis Engines that process other types of data.

For an introduction to developing annotators and Analysis Engines, read Chapter 1,
Annotator and Analysis Engine Developer's Guide in UIMA Tutorial and Developers'
Guides. This chapter is a user's guide for using the Document Analyzer tool, and does not
describe the process of developing annotators and Analysis Engines.

3.1. Starting the Document Analyzer
To run the Document Analyzer, execute the documentAnalyzer script that is in the bin
directory of your UIMA SDK installation, or, if you are using the example Eclipse project,
execute the “UIMA Document Analyzer” run configuration supplied with that project.

Note that if you're planning to run an Analysis Engine other than one of the examples
included in the UIMA SDK, you'll first need to update your CLASSPATH environment
variable to include the classes needed by that Analysis Engine.

When you first run the Document Analyzer, you should see a screen that looks like this:

3.2. Running an AE

Document Analyzer User's Guide 43

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae

To run a AE, you must first configure the six fields on the main screen of the Document
Analyzer.

Input Directory: Browse to or type the path of a directory containing text files that you
want to analyze. Some sample documents are provided in the UIMA SDK under the
examples/data directory.

Output Directory: Browse to or type the path of a directory where you want output to be
written. (As we'll see later, you won't normally need to look directly at these files, but the
Document Analyzer needs to know where to write them.) The files written to this
directory will be an XML representation of the analyzed documents. If this directory
doesn't exist, it will be created. If the directory exists, any files in it will be deleted (but the
tool will ask you to confirm this before doing so). If you leave this field blank, your AE
will be run but no output will be generated.

Location of AE XML Descriptor: Browse to or type the path of the descriptor for the AE
that you want to run. There are some example descriptors provided in the UIMA SDK
under the examples/descriptors/analysis_engine and
examples/descriptors/tutorial directories.

XML Tag containing Text: This is an optional feature. If you enter a value here, it
specifies the name of an XML tag, expected to be found within the input documents, that
contains the text to be analyzed. For example, the value TEXT would cause the AE to only
analyze the portion of the document enclosed within <TEXT>...</TEXT> tags. Also, any
XML tags occuring within that text will be removed prior to analysis.

Language: Specify the language in which the documents are written. Some Analysis
Engines, but not all, require that this be set correctly in order to do their analysis. You can
select a value from the drop-down list or type your own. The value entered here must be
an ISO language identifier, the list of which can be found here:
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

Character Encoding: The character encoding of the input files. The default, UTF-8, also
works fine for ASCII text files. If you have a different encoding, enter it here. For more
information on character sets and their names, see the JavaDocs for
java.nio.charset.Charset.

Once you've filled in the appropriate values, press the “Run” button.

If an error occurs, a dialog will appear with the error message. (A stack trace will also be
printed to the console, which may help you if the error was generated by your own
annotator code.) Otherwise, an “Analysis Results” window will appear.

3.3. Viewing the Analysis Results
After a successful analysis, the “Analysis Results” window will appear.

Viewing the Analysis Results

44 Document Analyzer User's Guide UIMA Version 2.1

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

The “Results Display Format” options at the bottom of this window show the different
ways you can view your analysis – the Java Viewer, Java Viewer (JV) with User Colors,
HTML, and XML. The default, Java Viewer, is recommended.

Once you have selected your desired Results Display Format, you can double-click on one
of the files in the list to view the analysis done on that file.

For the Java viewer, the results display looks like this (for the AE descriptor
examples/descriptors/tutorial/ex4/MeetingDetectorAE.xml):

Viewing the Analysis Results

UIMA Version 2.1 Document Analyzer User's Guide 45

You can click the mouse on one of the highlighted annotations to see a list of all its
features in the frame on the right.

If there are multiple annotation types in the view, you can control which ones are selected
by using the checkboxes in the legend, the Select All button, or the Deselect All button.

If you are viewing a CAS that contains multiple subjects of analysis, then a selector will
appear at the bottom right of the Annotation Viewer window. This will allow you to
choose the Sofa that you wish to view. Note that only text Sofas containing a non-null
document are available for viewing.

3.4. Configuring the Annotation Viewer
The “JV User Colors” and the HTML viewer allow you to specify exactly which colors are
used to display each of your annotation types. For the Java Viewer, you can also specify
which types should be initially selected, and you can hide types entirely.

To configure the viewer, click the “Edit Style Map” button on the “Analysis Results”
dialog. You should see a dialog that looks like this:

Configuring the Annotation Viewer

46 Document Analyzer User's Guide UIMA Version 2.1

To change the color assigned to a type, simply click on the colored cell in the
“Background” column for the type you wish to edit. This will display a dialog that allows
you to choose the color. For the HTML viewer only, you can also change the foreground
color.

If you would like the type to be initially checked (selected) in the legend when the viewer
is first launched, check the box in the “Checked” column. If you would like the type to
never be shown in the viewer, click the box in the “Hidden” column. These settings only
affect the Java Viewer, not the HTML view.

When you are done editing, click the “Save” button. This will save your choices to a file in
the same directory as your AE descriptor. From now on, when you view analysis results
produced by this AE using the “JV User Colors” or “HTML” options, the viewer will be
configured as you have specified.

3.5. Interactive Mode
Interactive Mode allows you to analyze text that you type or cut-and-paste into the tool,
rather than requiring that the documents be stored as files.

In the main Document Analyzer window, you can invoke Interactive Mode by clicking the
“Interactive” button instead of the “Run” button. This will display a dialog that looks like
this:

Interactive Mode

UIMA Version 2.1 Document Analyzer User's Guide 47

You can type or cut-and-paste your text into this window, then choose your Results
Display Format and click the “Analyze” button. Your AE will be run on the text that you
supplied and the results will be displayed as usual.

3.6. View Mode
If you have previously run a AE and saved its analysis results, you can use the Document
Analyzer's View mode to view those results, without re-running your analysis. To do this,
on the main Document Analyzer window simply select the location of your analyzed
documents in the “Output Directory” dialog and click the “View” button. You can then
view your analysis results as described in Section Section 3.3, “Viewing the Analysis
Results” [44].

View Mode

48 Document Analyzer User's Guide UIMA Version 2.1

1An older form of a different XML format for the CAS is also provided mainly for backwards compatibility. This
form is called XCAS, and you can see examples of its use in
examples/src/org/apache/uima/examples/cpe/XCasWriterCasConsumer.java.

Chapter 4. Annotation Viewer
The Annotation Viewer is a tool for viewing analysis results that have been saved to your
disk as external XML representations of the CAS. These are saved in a particular format
called XMI. In the UIMA SDK, XML versions of CASes can be generated by:

• Running the Document Analyzer (see Chapter 3, Document Analyzer User's Guide [43],
which saves an XML representations of the CAS to the specified output directory.

• Running a Collection Processing Engine that includes the XMI Writer CAS Consumer
(examples/descriptors/cas_consumer/XmiWriterCasConsumer.xml).

• Explicitly creating XML representations of the CAS from your own application using
the org.apache.uima.cas.impl.XMISerializer class. The best way to learn how to do this
is to look at the example code for the XMI Writer CAS Consumer, located in
examples/src/org/apache/uima/examples/xmi/XmiWriterCasConsumer.java. 1

Note: The Annotation Viewer only shows CAS views where the Sofa data type
is a String.

You can run the Annotation Viewer by executing the annotationViewer shell script
located in the bin directory of the UIMA SDK or the "UIMA Annotation Viewer" Eclipse
run configuration in the uimaj-examples project. This will open the following window:

Select an input directory (which must contain XMI files), and the descriptor for the AE
that produced the Analysis (which is needed to get the type system for the analysis). Then
press the “View” button.

This will bring up a dialog where you can select a viewing format and double-click on a
document to view it. This dialog is the same as the one that is described in Section 3.3,
“Viewing the Analysis Results” [44].

Annotation Viewer 49

Chapter 5. CAS Visual Debugger
The CAS Visual Debugger is a tool to run text analysis engines in UIMA and view the
results. The tool is implemented as a stand-alone GUI tool using Java's Swing library.

This is a developer's tool. It is intended to support you in writing text analysis annotators
for UIMA (Unstructured Information Management Architecture). As a development tool,
the emphasis is not so much on pretty pictures, but rather on navigability. It is intended
to show you all the information you need, and show it to you quickly (at least on a fast
machine ;-).

The main purpose of this application is to let you browse all the data that was created
when you ran an analysis engine over some text. The display mimics the access methods
you have in the CAS API in terms of indexes, types, feature structures and feature values.

As in the CAS, there is special support for annotations. Clicking on an annotation will
select the corresponding text, and conversely, you can display all annotations that cover a
given position in the text. This will be explained in more detail in the section on the main
display area.

As usual, the graphics in this manual are for illustrative purposes and may not look 100%
like the actual version of CVD you are running. This depends on your operating system,
your version of Java, and a variety of other factors.

5.1. Error Handling
Error handling is not a strong point of this program. On encountering an error, it will
generally pop up an error dialog with a short, usually incomprehensible message. Often,
the error message will claim that there is more information available in the log file, and
sometimes, this is actually true; so do go and check the log. You can view the log file by
selecting the appropriate item in the "Tools" menu.

Figure 5.1. A sample error dialog

5.2. Preferences File

CAS Visual Debugger 51

The program will attempt to read on startup and save on exit a file called
annotViewer.pref in your home directory. This file contains information about choices
you made while running the program: directories (such as where your data files are) and
window sizes. These settings will be used the next time you use the program. There is no
user control over this process, but the file format is reasonably transparent, in case you
feel like changing it. Note, however, that the file will be overwritten every time you exit
the program.

5.3. The Menus
We give a brief description of the various menus. All menu items come with mnemonics
(e.g., Alt-F X will exit the program). In addition, some menu items have their own
keyboard accelerators that you can use anywhere in the program. For example, Ctrl-S will
save the text you've been editing.

5.3.1. The File Menu
The File menu lets you load, create and save text, load and save color settings, and import
and export the XCAS format. Here's a screenshot.

Figure 5.2. The File menu

Below is a list of the menu items, together with an explanation.

• New Text... Clears the text area. Text you type is written to an anonymous buffer. You
can use "Save Text As..." to save the text you typed to a file. Note: whenever you modify
the text, be it through typing, loading a file or using the "New Text..." menu item,
previous analysis results will be lost. Since the previous analysis is specific to the text,

The Menus

52 CAS Visual Debugger UIMA Version 2.1

modifying the text invalidates the analysis.

• Open Text File. Loads a new text file into the viewer. The next time you run an
analysis engine, it will run the text you loaded last. Depending on the annotator you're
using, the program may run slow with very large text files, so you may want to
experiment.

• Save Text File. Saves the currently open text file. If no file is currently loaded (either
because you haven't loaded a file, or you've used the "New Text..." menu item), this
menu item is disabled (and Ctrl-S will do nothing).

• Save Text As... Save the text to a file of your choosing. This can be an existing file,
which is then overwritten, or it can be a new file that you're creating.

• Change Code Page. Allows you to change the code page that is used to load and save
text files. If you're sure the text you're loading is in ASCII or one of the 8-bit extensions
such as ISO-8859-1 (ISO Latin1), there is probably nothing you need to do. Just load the
text and look at the display. If you see no funny characters or square boxes, chances are
your selected code page is compatible with your text file. Note that the code page
setting is also in effect when you save files. You can observe the effects with a hex editor
or by just looking at the file size. For example, if you save the default text This is

where the text goes. to a file on Windows using the default code page, the size of
the file will be 28 bytes. If you now change the code page to UTF-16 and save the file
again, the file size will be 58 bytes: two bytes for each character, plus two bytes for the
byte-order mark. Now switch the code page back to the default Windows code page
and reload the UTF-16 file to see the difference in the editor. By default, the code page
options include all code pages that any Java implementation must support: US-ASCII,
ISO-8859-1, UTF-8, UTF-16BE (big-endian), UTF-16LE (little endian) and UTF-16 (with
magic marker). Also included is the system code page, if it is not among the built-in
ones. Prior to Java 1.4, there is no programmatic way to determine what the complete
list of supported code pages is. Therefore, you can add your own code page in the
corresponding submenu. All this amounts to is adding a string. The new code page is
automatically selected as the current code page. The way to find out if the code page
you entered is supported in your Java implementation is to try and load a text file. If
you see an error ``Unsupported text encoding'', the code page is not supported. [Note:
as of Java 1.4, it is possible to query Java for the supported code pages and so prevent
users from trying out an unsupported code page. This was not possible in Java 1.3,
which we're still supporting with this version of Gladis.]

• Load Color Settings. Load previously saved color settings from a file (see
Tools/Customize Annotation Display). It is highly recommended that you only load
automatically generated files. Strange things may happen if you try to load the wrong
file format. On startup, the program attempts to load the last color settings file that you
loaded or saved during a previous session. If you intend to use the same color settings
as the last time you ran the program, there is therefore no need to manually load a color

The File Menu

UIMA Version 2.1 CAS Visual Debugger 53

settings file.

• Save Color Settings. Save your customized color settings (see Tools/Customize
Annotation Display). The file is a Java properties file, and as such, reasonably
transparent. What is not transparent is the encoding of the colors (integer encoding of
24-bit RGB values), so changing the file by hand is not really recommended.

• Read Type System File. Load a type system file. This allows you to load an XCAS file
without having to have access to the corresponding annotator.

• Write Type System File. Create a type system file from the currently loaded type
definitions. In addition, you can save the current CAS as a XCAS file (see below). This
allows you to later load the type system and XCAS to view the CAS without having to
rerun the annotator.

• Write XCAS File. Writes the current analysis out as an XCAS file. This menu item is
disabled until after the first time a TAE has run successfully.

• Read XCAS File. Read an XCAS file. Important: XCAS is a serialization format that
serializes a CAS without type system and index information. It is therefore impossible
to read in a stand-alone XCAS file. XCAS files can only be interpreted in the context of
an existing type system. Consequently, you need to load the TAE that was used to
create the XCAS file to be able to load it. Loading a XCAS file without loading the TAE
may produce strange errors. You may get syntax errors on loading the XCAS file, or
worse, everything may appear to go smoothly but in reality your CAS may be
corrupted.

• Exit. Exits the program. Your preferences will be saved.

5.3.2. The Edit Menu

Figure 5.3. The Edit menu

The "Edit" menu provides a standard text editing menu with Cut, Copy and Paste, as well
as unlimited Undo.

The Edit Menu

54 CAS Visual Debugger UIMA Version 2.1

Note that standard keyboard accelerators Ctrl-X, Ctrl-C, Ctrl-V and Ctrl-Z can be used for
Cut, Copy, Paste and Undo, respectively. The text area supports other standard keyboard
operations such as navigation HOME, Ctrl-HOME etc., as well as marking text with Shift-
<ArrowKey>.

5.3.3. The Run Menu

Figure 5.4. The Run menu

In the Run menu, you can load and run text analysis engines.

• Load AE. Loads and initializes a text analysis engine. Choosing this menu item will
display a file open dialog where you should choose an XML descriptor of a Text
Analysis Engine to process the current text. Even if the analysis engine runs fast, this
will take a while, since there is a lot of setup work to do when a new TAE is created. So
be patient. When you develop a new annotator, you will often need to recompile your
code. Gladis will not reload your annotator code. When you recompile your code, you
need to terminate the GUI and restart it. If you only make changes to the XML
descriptor, you don't need to restart the GUI. Simply reload the XML file.

• Run AE. Before you have (successfully) loaded a TAE, this menu item will be disabled.
After you have loaded a TAE, it will be enabled, and the name changes according to the
name of the TAE you have loaded. For example, if you've loaded "The World's Fastest
Parser", you will have a menu item called "Run The World's Fastest Parser". When you
choose the item, the TAE is run on whatever text you have currently loaded. After a
TAE has run successfully, the index window in the upper left-hand corner of the screen
should be updated and show the indexes that were created by this run. We will have
more to say about indexes and what to do with them later.

• Run AE on CAS. This allows you to run an analysis engine on the current CAS. This is
useful if you have loaded a CAS from an XCAS file, and would like to run further
analysis on it.

• Recently used. Collects a list of recently used analysis engines as a short-cut for
loading.

• Language. Some annotators do language specific processing. For example, if you run
lexical analysis, the results may be quite different depending on what the analysis

The Run Menu

UIMA Version 2.1 CAS Visual Debugger 55

engine thinks the language of the document is. With this menu item, you can manually
set the document language. Alternatively, you can use an automatic language
identification annotator. If the analysis engines you're working with are language
agnostic, there is no need to set the language.

5.3.4. The tools menu
The tools menu contains some assorted utilities, such as the log file viewer. A more
detailed description of some of the menu items follows below.

5.3.4.1. View Type System

Figure 5.5. The type system viewer

Brings up a new window that displays the type system. This menu item is disabled until
the first time you have run an analysis engine, since there is no type system to display
until then. An example is shown above.

You can view the inheritance tree on the left by expanding and collapsing nodes. When
you select a type, the features defined on that type are displayed in the table on the right.
The feature table has three columns. The first gives the name of the feature, the second
one the type of the feature (i.e., what values it takes), and the third column displays the
highest type this feature is defined on. In this example, the features "begin" and "end" are
inherited from the built-in annotation type.

In the options menu, you can configure if you want to see inherited features or not (not
yet implemented).

5.3.4.2. Show Selected Annotations

The tools menu

56 CAS Visual Debugger UIMA Version 2.1

Figure 5.6. Annotations produced by a statistical named entity tagger

To enable this menu, you must have run an analysis engine and selected the
` ÀnnotationIndex'' or one of its subnodes in the upper left hand corncer of the screen. It
will bring up a new text window with all selected annotations marked up in the text.

Figure 5.6, “ Annotations produced by a statistical named entity tagger ” [57] shows the
results of applying a statistical named entity tagger to a newspaper article. Some
annotation colors have been customized: countries are in reverse video, organizations
have a turquois background, person names are green, and occupations have a maroon
background. The default background color is yellow. This color is also used if there is
more than one annotation spanning a certain text. Clearly, this display is only useful if
you don't have any overlapping annotations, or at least not too many.

This menu item is also available as a context menu in the Index Tree area of the main
window. To use it, select the annotation index or one of its subnodes, right-click to bring
up a popup menu, and select the only item in the popup menu. The popup menu is
actually a better way to invoke the annotation display, since it changes according to the
selection in the Index Tree area, and will tell you if what you've selected can be displayed
or not.

5.4. The Main Display Area

The Main Display Area

UIMA Version 2.1 CAS Visual Debugger 57

The main display area has three sub-areas. In the upper left-hand corner is the index
display, which shows the indexes that were defined in the TAE, as well as the types of the
indexes and their subtypes. In the lower left-hand corner, the content of indexes and
sub-indexes is displayed (FS display). Clicking on any node in the index display will
show the corresponding feature structures in the FS display. You can explore those
structures by expanding the tree nodes. When you click on a node that represents an
annotation, clicking on it will cause the corresponding text span to marked in the text
display.

Figure 5.7. State of GUI after running an analysis engine

Figure 5.7, “State of GUI after running an analysis engine” [58] shows the state after
running a simple lemmatizer example from the CAS tutorial. There are two indexes in the
index display, and the annotation index has been selected. Note that the number of
structures in an index is displayed in square brackets after the index name.

Since displaying thousands of sister nodes is both confusing and slow, nodes are grouped
in powers of 10. As soon as there are no more than 100 sister nodes, they are displayed
next to each other.

In our example, a token annotation has been selected, and the corresponding token text is

The Main Display Area

58 CAS Visual Debugger UIMA Version 2.1

highlighted in the text area. We have also expanded the token node to display its
structure.

In Figure 5.7, “State of GUI after running an analysis engine” [58] , we selected an
annotation in the FS display to find the corresponding text. We can also do the reverse
and find out what annotations cover a certain point in the text. Let's go back to the named
entity recognizer for an example.

Figure 5.8. Finding annotations for a specific location in the text

We would like to know if the General Accounting Office has been correctly recognized.
So we position the cursor in the corresponding text span somewhere, then right-click to
bring up the context menu telling us which annotations exist at this point. An example is
shown in Figure 5.8, “ Finding annotations for a specific location in the text ” [59].

The Main Display Area

UIMA Version 2.1 CAS Visual Debugger 59

Figure 5.9. Selecting an annotation from the context menu will highlight that annotation in the FS
display

At this point (Figure 5.8, “ Finding annotations for a specific location in the text ” [59]),
we only know that somewhere around the text cursor position (not visible in the picture),
we discovered an organiztion. Figure 5.9, “ Selecting an annotation from the context
menu will highlight that annotation in the FS display ” [60] shows the display after the
organization node has been selected in the popup menu.

We're glad to see that, indeed, the General Accounting Office is considered to be an
organization. Note that in the FS display, the corresponding annotation node has been
selected, and the tree has been expanded to make the node visible.

NB that the annotations displayed in the popup menu come from the annotations
currently displayed in the FS display. If you didn't select the annotation index or one of
its sub-nodes, no annotations can be displayed and the popup menu will be empty.

5.4.1. The Status Bar
At the bottom of the screen, some useful information is displayed in the status bar. The
left-most area shows the most recent major event, with the time when the event

The Status Bar

60 CAS Visual Debugger UIMA Version 2.1

terminated in square brackets. The next area shows the file name of the currently loaded
XML descriptor. This area supports a tool tip that will show the full path to the file. The
right-most area shows the current cursor position, or the extent of the selection, if a
portion of the text has been selected. The numbers correspond to the character offsets that
are used for annotations.

5.4.2. Keyboard Navigation and Shortcuts
The GUI can be completely navigated and operated through the keyboard. All menus and
menu items support keyboard mnemonics, and some common operations are accessible
through keyboard accelerators.

You can move the focus between the three main areas using Tab (clockwise) and
Shift-Tab (counterclockwise). When the focus is on the text area, the Tab key will insert
the corresponding character into the text, so you will need to use Ctrl-Tab and
Ctrl-Shift-Tab instead. Alternatively, you can use the following key bindings to jump
directly to one of the areas: Ctrl-T to focus the text area, Ctrl-I for the index repository
frame and Ctrl-F for the feature structure area.

Some additional keyboard shortcuts are available only in the text area, such as Ctrl-X for
Cut, Ctrl-C for Copy, Ctrl-V for Paste and Ctrl-Z for Undo. The context menu in the
text area can be evoke through the Alt-Enter shortcut. Text can be selected using the
arrow keys while holding the Shift key.

The following table shows the supported keyboard shortcuts.

Table 5.1. Keyboard shortcuts

Shortcut Action Scope

Ctrl-O Open text file Global

Ctrl-S Save text file Global

Ctrl-L Load AE descriptor Global

Ctrl-R Run current AE Global

Ctrl-I Switch focus to index
repository

Global

Ctrl-T Switch focus to text area Global

Ctrl-F Switch focus to FS area Global

Ctrl-X Cut selection Text

Ctrl-C Copy selection Text

Ctrl-V Paste selection Text

Keyboard Navigation and Shortcuts

UIMA Version 2.1 CAS Visual Debugger 61

Shortcut Action Scope

Ctrl-Z Undo Text

Alt-Enter Show context menu Text

Keyboard Navigation and Shortcuts

62 CAS Visual Debugger UIMA Version 2.1

Chapter 6. JCasGen User's Guide
JCasGen reads a descriptor for an application (either an Analysis Engine Descriptor, or a
Type System Descriptor), creates the merged type system specification by merging all the
type system information from all the components referred to in the descriptor, and then
uses this merged type system to create Java source files for classes that enable JCas access
to the CAS. Java classes are not produced for the built-in types, since these classes are
already provided by the UIMA SDK. (An exception is the built-in type
uima.tcas.DocumentAnnotation, see the warning below.)

Warning: If the components comprising the input to the type merging process
have different definitions for the same type name, JCasGen will show a warning,
and in some environments may offer to abort the operation. If you continue past
this warning, JCasGen will produce correct Java source files representing the
merged types (that is, the type definition containing all of the features defined on
that type by all of the components). It is recommended that you do not use this
capability (of having two different definitions for the same type name, with
different feature sets) since it can make it difficult to combine/package your
annotator with others. See Section 5.5, “Merging Types” in UIMA References for
more information.

There are several versions of JCasGen. The basic version reads an XML descriptor which
contains a type system descriptor, and generates the corresponding Java Class Models for
those types. Variants exist for the Eclipse environment that allow merging the newly
generated Java source code with previously augmented versions; see Section 5.4,
“Augmenting the generated Java Code” in UIMA References for a discussion of how the
Java Class Models can be augmented by adding additional methods and fields.

Input to JCasGen needs to be mostly self-contained. In particular, any types that are
defined to depend on user-defined supertypes must have that supertype defined, if the
supertype is uima.tcas.Annotation or a subtype of it. Any features referencing ranges
which are subtypes of uima.cas.String must have those subtypes included. If this is not
followed, a warning message is given stating that the resulting generation may be
inaccurate.

JCasGen is typically invoked automatically when using the Component Descriptor Editor
(see Section 1.8, “Type System Page” [16]), but can also be run using a shell script. These
scripts can take 0, 1, or 2 arguments. The first argument is the location of the file
containing the input XML descriptor. The second argument specifies where the generated
Java source code should go. If it isn't given, JCasGen generates its output into a subfolder
called JCas (or sometimes JCasNew – see below), of the first argument's path.

If no arguments are given to JCasGen, then it launches a GUI to interact with the user and
ask for the same input. The GUI will remember the arguments you previously used.

JCasGen User's Guide 63

../references/references.pdf#ugr.ref.jcas.merging_types_from_other_specs
../references/references.pdf#ugr.ref.jcas.augmenting_generated_code
../references/references.pdf#ugr.ref.jcas.augmenting_generated_code

Here's what it looks like:

When running with automatic merging of the generated Java source with previously
augmented versions, the output location is where the merge function obtains the source
for the merge operation.

As is customary for Java, the generated class source files are placed in the appropriate
subdirectory structure according to Java conventions that correspond to the package
(name space) name.

The Java classes must be compiled and the resulting class files included in the class path
of your application; you make these classes available for other annotator writers using
your types, perhaps packaged as an xxx.jar file. If the xxx.jar file is made to contain only
the Java Class Models for the CAS types, it can be reused by any users of these types.

6.1. Running stand-alone without Eclipse
There is no capability to automatically merge the generated Java source with previous
versions, unless running with Eclipse. If run without Eclipse, no automatic merging of the
generated Java source is done with any previous versions. In this case, the output is put in
a folder called “JCasNew” unless overridden by specifying a second argument.

The distribution includes a shell script/bat file to run the stand-alone version, called
jcasgen.

6.2. Running stand-alone with Eclipse
If you have Eclipse and EMF (EMF = Eclipse Modeling Framework; both of these are

Running stand-alone without Eclipse

64 JCasGen User's Guide UIMA Version 2.1

available from http://www.eclipse.org) installed (version 3 or later) JCasGen can merge
the Java code it generates with previous versions, picking up changes you might have
inserted by hand. The output (and source of the merge input) is in a folder “JCas” under
the same path as the input XML file, unless overridden by specifying a second argument.

You must install the UIMA plug-ins into Eclipse to enable this function.

The distribution includes a shell script/bat file to run the stand-alone with Eclipse version,
called jcasgen_merge. This works by starting Eclipse in “headless” mode (no GUI) and
invoking JCasGen within Eclipse. You will need to set the ECLIPSE_HOME environment
variable or modify the jcasgen_merge shell script to specify where to find Eclipse. The
version of Eclipse needed is 3 or higher, with the EMF plug-in and the UIMA runtime
plug-in installed. A temporary workspace is used; the name/location of this is
customizable in the shell script.

Log and error messages are written to the UIMA log. This file is called uima.log, and is
located in the default working directory, which if not overridden, is the startup directory
of Eclipse.

6.3. Running within Eclipse
There are two ways to run JCasGen within Eclipse. The first way is to configure an Eclipse
external tools launcher, and use it to run the stand-alone shell scripts, with the arguments
filled in. Here's a picture of a typical launcher configuration screen (you get here by
navigating from the top menu: Run –> External Tools –> External tools...).

Running within Eclipse

UIMA Version 2.1 JCasGen User's Guide 65

http://www.eclipse.org

The second way (which is the normal way it's done) to run within Eclipse is to use the
Component Descriptor Editor (CDE) (see Chapter 1, Component Descriptor Editor User's
Guide [1]). This tool can be configured to automatically launch JCasGen whenever the
type system descriptor is modified. In this release, this operation completely regenerates
the files, even if just a small thing changed. For very large type systems, you probably
don't want to enable this all the time. The configurator tool has an option to enable/disable
this function.

Running within Eclipse

66 JCasGen User's Guide UIMA Version 2.1

Chapter 7. PEAR Packager User's
Guide

A PEAR (Processing Engine ARchive) file is a standard package for UIMA (Unstructured
Information Management Architecture) components. The PEAR package can be used for
distribution and reuse by other components or applications. It also allows applications
and tools to manage UIMA components automatically for verification, deployment,
invocation, testing, etc. Please refer to the PEAR Reference chapter for more information
about the internal structure of a PEAR file.

This chapter describes how to use the PEAR Eclipse Plugin to create PEAR files for
standard UIMA components. This plugin is installed if you followed the directions in
Chapter 3, Setting up the Eclipse IDE to work with UIMA in Overview & Setup .

7.1. Using the PEAR Eclipse Plugin
Using the PEAR Eclipse Plugin involves the following two steps:
• Add the UIMA nature to your project
• Create a PEAR file using the PEAR generation wizard

7.1.1. Add UIMA Nature to your project
First, create a project for your UIMA component:
• Create a Java project, which would contain all the files and folders needed for your

UIMA component.
• Create a source folder called “src” in your project, and make it the only source folder,

by clicking on “Properties” in your project's context menu (right-click), then select “Java
Build Path”, then add the “src” folder to the source folders list, and remove any other
folder from the list.

• Specify an output folder for your project called bin, by clicking on “Properties” in your
project's context menu (right-click), then select “Java Build Path”, and specify
“your_project_name/bin” as the default output folder.

Then, add the UIMA nature to your project by clicking on “Add UIMA Nature” in the
context menu (right-click) of your project. Click “Yes” on the “Adding UIMA custom
Nature” dialog box. Click “OK” on the confirmation dialog box.

PEAR Packager User's Guide 67

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup

Adding the UIMA nature to your project creates the PEAR structure in your project. The
PEAR structure is a structured tree of folders and files, including the following elements:

• Required Elements:

• The metadata folder which contains the PEAR installation descriptor and properties
files.

• The installation descriptor (metadata/install.xml)

• Optional Elements:

• The desc folder to contain descriptor files of analysis engines, component analysis
engines (all levels), and other component (Collection Readers, CAS Consumers, etc).

• The src folder to contain the source code

• The bin folder to contain executables, scripts, class files, dlls, shared libraries, etc.

• The lib folder to contain jar files.

• The doc folder containing documentation materials, preferably accessible through an
index.html.

Add UIMA Nature to your project

68 PEAR Packager User's Guide UIMA Version 2.1

• The data folder to contain data files (e.g. for testing).

• The conf folder to contain configuration files.

• The resources folder to contain other resources and dependencies.

• Other user-defined folders or files are allowed, but should be avoided.

For more information about the PEAR structure, please refer to the “Processing Engine
Archive” section.

Figure 7.1. The Pear Structure

7.1.2. Using the PEAR Generation Wizard
Before using the PEAR Generation Wizard, add all the files needed to run your

Using the PEAR Generation Wizard

UIMA Version 2.1 PEAR Packager User's Guide 69

component including descriptors, jars, external libraries, resources, and component
analysis engines (in the case of an aggregate analysis engine), etc. Do not add Jars for the
UIMA framework, however. Doing so will cause class loading problems at run time.

If you're using a Java IDE like Eclipse, instead of using the output folder (usually bin as
the source of your classes, it's recommended that you generate a Jar file containing these
classes.

Then, click on “Generate PEAR file” from the context menu (right-click) of your project, to
open the PEAR Generation wizard, and follow the instructions on the wizard to generate
the PEAR file.

7.1.2.1. The Component Information page

The first page of the PEAR generation wizard is the component information page. Specify
in this page a component ID for your PEAR and select the main Analysis Engine
descriptor. The descriptor must be specified using a pathname relative to the project's root
(e.g. “desc/MyAE.xml”). The component id is a string that uniquely identifies the
component. It should use the JAVA naming convention (e.g.
org.apache.uima.mycomponent).

Optionally, you can include specific Collection Iterator, CAS Initializer (deprecated as of
Version 2.1), or CAS Consumers. In this case, specify the corresponding descriptors in this
page.

Using the PEAR Generation Wizard

70 PEAR Packager User's Guide UIMA Version 2.1

Figure 7.2. The Component Information Page

7.1.2.2. The Installation Environment page

The installation environment page is used to specify the following:
• Preferred operating system
• Required JDK version, if applicable.
• Required Environment variable settings. This is where you specify special ClassPath

paths. You do not need to specify this for any Jars in the lib directory; those are
automatically put into the generated ClassPath. Nor should you include paths to the
UIMA Framework itself, here. Doing so may cause class loading problems.

ClassPath segments are written here using a semicolon ";" as the separator; during
PEAR installation, these will be adjusted to be the correct character for the target
Operating System.

Path names should be specified using macros (see below), instead of hard-coded absolute
paths that might work locally, but probably won't if the PEAR is deployed in a different
machine and environment.

Macros are variables such as $main_root, used to represent a string such as the full path of
a certain directory.

Using the PEAR Generation Wizard

UIMA Version 2.1 PEAR Packager User's Guide 71

These macros should be defined in the PEAR.properties file using the local values. The
tools and applications that use and deploy PEAR files should replace these macros (in the
files included in the conf and desc folders) with the corresponding values in the local
environment as part of the deployment process.

Currently, there are two types of macros:

• $main_root, which represents the local absolute path of the main component root
directory after deployment.

• $component_id$root, which represents the local absolute path to the root directory of the
component which has component_id as component ID. This component could be, for
instance, a delegate component.

Figure 7.3. The Installation Environment Page

7.1.2.3. The PEAR file content page

The last page of the wizard is the “PEAR file Export” page, which allows the user to select
the files to include in the PEAR file. The metadata folder and all its content is mandatory.
Make sure you include all the files needed to run your component including descriptors,
jars, external libraries, resources, and component analysis engines (in the case of an
aggregate analysis engine), etc. It's recommended to generate a jar file from your code as
an alternative to building the project and making sure the output folder (bin) contains the
required class files.

Using the PEAR Generation Wizard

72 PEAR Packager User's Guide UIMA Version 2.1

Eclipse compiles your class files into some output directory, often named "bin" when you
take the usual defaults in Eclipse. The recommended practice is to take all these files and
put them into a Jar file, perhaps using the Eclipse Export wizard. You would place that Jar
file into the PEAR lib directory.

Note: If you are relying on the class files generated in the output folder (usually
called bin) to run your code, then make sure the project is built properly, and all
the required class files are generated without errors, and then put the output
folder (e.g. $main_root/bin) in the classpath using the option to set environment
variables, by setting the CLASSPATH variable to include this folder (see the
“Installation Environment” page. Beware that using a Java output folder named
"bin" in this case is a poor practice, because the PEAR installation tools will
presume this folder contains binary executable files, and will adds this folder to
the PATH environment variable.

Figure 7.4. The PEAR File Export Page

Using the PEAR Generation Wizard

UIMA Version 2.1 PEAR Packager User's Guide 73

Chapter 8. PEAR Installer User's Guide
PEAR (Processing Engine ARchive) is a new standard for packaging UIMA compliant
components. This standard defines several service elements that should be included in the
archive package to enable automated installation of the encapsulated UIMA component.
The major PEAR service element is an XML Installation Descriptor that specifies
installation platform, component attributes, custom installation procedures and
environment variables.

The installation of a UIMA compliant component includes 2 steps: (1) installation of the
component code and resources in a local file system, and (2) verification of the
serviceability of the installed component. Installation of the component code and
resources involves extracting component files from the archive (PEAR) package in a
designated directory and localizing file references in component descriptors and other
configuration files. Verification of the component serviceability is accomplished with the
help of standard UIMA mechanisms for instantiating analysis engines.

PEAR Installer is a simple GUI based Java application that helps installing UIMA
compliant components (analysis engines) from PEAR packages in a local file system. To

PEAR Installer User's Guide 75

install a desired UIMA component the user needs to select the appropriate PEAR file in a
local file system and specify the installation directory (optional). During the component
installation the user can read messages printed by the installation program in the message
area of the application window. If the installation fails, appropriate error message is
printed to help identifying and fixing the problem.

After the desired UIMA component is successfully installed, the PEAR Installer allows
testing this component in the CAS Visual Debugger (CVD) application, which is provided
with the UIMA package. The CVD application will load your UIMA component using its
XML descriptor file. If the component is loaded successfully, you'll be able to run it either
with sample documents provided in the <UIMA_HOME>/examples/data directory, or with
any other sample documents. See Chapter 5, CAS Visual Debugger [51] for more
information about the CVD application. Running your component in the CVD application
helps to make sure the component will run in other UIMA applications. If the CVD
application fails to load or run your component, or throws an exception, you can find
more information about the problem in the uima.log file in the current working directory.
The log file can be viewed with the CVD.

PEAR Installer creates a file named setenv.txt file in the <component_root>/metadata
directory. This file contains environment variables required to run your component in any
UIMA application. For instance, if you want to run your component in the Collection
Processing Engine Configurator GUI application, you need to add the environment
variables settings from the component's setenv.txt file to the cpeGui.bat (cpeGui.sh)

script file in the <UIMA_HOME>/bin directory.

76 PEAR Installer User's Guide UIMA Version 2.1

Chapter 9. PEAR Merger User's Guide
The PEAR Merger utility takes two or more PEAR files and merges their contents, creating
a new PEAR which has, in turn, a new Aggregate analysis engine whose delegates are the
components from the original files being merged. It does this by (1) copying the contents
of the input components into the output component, placing each component into a
separate subdirectory, (2) generating a UIMA descriptor for the output Aggregate analysis
engine and (3) creating an output PEAR file that encapsulates the output Aggregate.

The merge logic is quite simple, and is intended to work for simple cases. More complex
merging needs to be done by hand. Please see the Restrictions and Limitations section,
below.

This is a command-line utility; there are shell scripts (.bat for Windows, and .sh for Unix)
to run it.

runPearMerger 1st_input_pear_file ... nth_input_pear_file -n
output_analysis_engine_name [-f output_pear_file]

The first group of parameters are the input PEAR files. No duplicates are allowed here.
The -n parameter is the name of the generated Aggregate Analysis Engine. The optional
-f parameter specifies the name of the output file. If it is omitted, the output is written to
output_analysis_engine_name.pear in the current working directory.

During the running of this tool, work files are written to a temporary directory created in
the user's home directory.

9.1. Details of the merging process
The PEARs are merged using the following steps:

1. A temporary working directory, is created for the output aggregate component.

2. Each input PEAR file is extracted into a separate 'input_component_name' folder under
the working directory.

3. The extracted files are processed to adjust the '$main_root' macros. This operation
differs from the PEAR installation operation, because it does not replace the macros
with absolute paths.

4. The output PEAR directory structure, 'metadata' and 'desc' folders under the working
directory, are created.

5. The UIMA AE descriptor for the output aggregate component is built in the 'desc'
folder. This aggregate descriptor refers to the input delegate components, specifying

PEAR Merger User's Guide 77

'fixed flow' based on the original order of the input components in the command line.
The aggregate descriptor's 'capabilities' and 'operational properties' sections are built
based on the input components' specifications.

6. A new PEAR installation descriptor is created in the 'metadata' folder, referencing the
new output aggregate descriptor built in the previous step.

7. The content of the temporary output working directory is zipped to created the output
PEAR, and then the temporary working directory is deleted.

The PEAR merger utility logs all the operations both to standard console output and to a
log file, pm.log, which is created in the current working directory.

9.2. Testing and Modifying the resulting
PEAR

The output PEAR file can be installed and tested using the PEAR Installer. The output
aggregate component can also be tested by using the CVD or DocAnalyzer tools.

The PEAR Installer creates Eclipse project files (.classpath and .project) in the root
directory of the installer PEAR, so the installed component can be imported into the
Eclipse IDE as an external project. Once the component is in the Eclipse IDE, developers
may use the Component Descriptor Editor and the PEAR Packager to modify the output
aggregate descriptor and re-package the component.

9.3. Restrictions and Limitations
The PEAR Merger utility only does basic merging operations, and is limited as follows.
You can overcome these by editing the resulting PEAR file or the resulting Aggregate
Descriptor.

1. The Merge operation specifies Fixed Flow sequencing for the Aggregate.

2. The merged aggregate does not define any parameters, so the delegate parameters
cannot be overridden.

3. No External Resource definitions are generated for the aggregate.

4. No Sofa Mappings are generated for the aggregate.

5. Name collisions are not checked for. Possible name collisions could occur in the
fully-qualified class names of the implementing Java classes, the names of JAR files, the
names of descriptor files, and the names of resource bindings or resource file paths.

6. The input and output capabilities are generated based on merging the capabilities from

Testing and Modifying the resulting PEAR

78 PEAR Merger User's Guide UIMA Version 2.1

the components (removing duplicates). Capability sets are ignored - only the first of the
set is used in this process, and only one set is created for the generated Aggregate.
There is no support for merging Sofa specifications.

7. No Indexes or Type Priorities are created for the generated Aggregate. No checking is
done to see if the Indexes or Type Priorities of the components conflict or are
inconsistent.

8. You can only merge Analysis Engines and CAS Consumers.

9. Although PEAR file installation descriptors that are being merged can have specific
XML elements describing Collection Reader and CAS Consumer descriptors, these
elements are ignored during the merge, in the sense that the installation descriptor that
is created by the merge does not set these elements. The merge process does not use
these elements; the output PEAR's new aggregate only references the merged
components' main PEAR descriptor element, as identified by the PEAR element:

<SUBMITTED_COMPONENT>
<DESC>the_component.xml</DESC>...

</SUBMITTED_COMPONENT>

Restrictions and Limitations

UIMA Version 2.1 PEAR Merger User's Guide 79

	UIMA Tools Guide and Reference
	Table of Contents
	Chapter 1. Component Descriptor Editor User's Guide
	1.1. Launching the Component Descriptor Editor
	1.2. Creating a New AE Descriptor
	1.3. Pages within the Editor
	1.3.1. Adjusting the display of pages

	1.4. Overview Page
	1.4.1. Implementation Details
	1.4.2. Runtime Information
	1.4.3. Overall Identification Information

	1.5. Aggregate Page
	1.5.1. Adding components more than once
	1.5.2. Adding or Removing components in a flow
	1.5.3. Adding remote Analysis Engines
	1.5.4. Connecting to Remote Services
	1.5.5. Finding Analysis Engines by searching
	1.5.6. Component Engine Flow

	1.6. Parameters Definition Page
	1.6.1. Using groups
	1.6.2. Parameter declarations for Aggregates

	1.7. Parameter Settings Page
	1.8. Type System Page
	1.8.1. Exporting

	1.9. Capabilities Page
	1.9.1. Sofa (and view) name mappings

	1.10. Indexes Page
	1.11. Resources Page
	1.11.1. Binding
	1.11.2. Resources with Aggregates
	1.11.3. Imports and Exports

	1.12. Source Page
	1.12.1. Source formatting – indentation

	1.13. Creating a Self-Contained Type System
	1.14. Creating Other Descriptor Components

	Chapter 2. Collection Processing Engine Configurator User's Guide
	2.1. Limitations of the CPE Configurator
	2.2. Starting the CPE Configurator
	2.3. Selecting Component Descriptors
	2.4. Running a Collection Processing Engine
	2.5. The File Menu
	2.6. The Help Menu

	Chapter 3. Document Analyzer User's Guide
	3.1. Starting the Document Analyzer
	3.2. Running an AE
	3.3. Viewing the Analysis Results
	3.4. Configuring the Annotation Viewer
	3.5. Interactive Mode
	3.6. View Mode

	Chapter 4. Annotation Viewer
	Chapter 5. CAS Visual Debugger
	5.1. Error Handling
	5.2. Preferences File
	5.3. The Menus
	5.3.1. The File Menu
	5.3.2. The Edit Menu
	5.3.3. The Run Menu
	5.3.4. The tools menu
	5.3.4.1. View Type System
	5.3.4.2. Show Selected Annotations

	5.4. The Main Display Area
	5.4.1. The Status Bar
	5.4.2. Keyboard Navigation and Shortcuts

	Chapter 6. JCasGen User's Guide
	6.1. Running stand-alone without Eclipse
	6.2. Running stand-alone with Eclipse
	6.3. Running within Eclipse

	Chapter 7. PEAR Packager User's Guide
	7.1. Using the PEAR Eclipse Plugin
	7.1.1. Add UIMA Nature to your project
	7.1.2. Using the PEAR Generation Wizard
	7.1.2.1. The Component Information page
	7.1.2.2. The Installation Environment page
	7.1.2.3. The PEAR file content page

	Chapter 8. PEAR Installer User's Guide
	Chapter 9. PEAR Merger User's Guide
	9.1. Details of the merging process
	9.2. Testing and Modifying the resulting PEAR
	9.3. Restrictions and Limitations

