
POIFS File System Internals

by Marc Johnson

1. POIFS File System Internals

1.1. Introduction

POIFS file systems are essentially normal files stored on a Java-compatible platform's native
file system. They are typically identified by names ending in a four character extension
noting what type of data they contain. For example, a file ending in ".xls" would likely
contain spreadsheet data, and a file ending in ".doc" would probably contain a word
processing document. POIFS file systems are called "file system", because they contain
multiple embedded files in a manner similar to traditional file systems. Along functional
lines, it would be more accurate to call these POIFS archives. For the remainder of this
document it is referred to as a file system in order to avoid confusion with the "files" it
contains.

POIFS file systems are compatible with those document formats used by a well-known
software company's popular office productivity suite and programs outputting compatible
data. Because the POIFS file system does not provide compression, encryption or any other
worthwhile feature, its not a good choice unless you require interoperability with these
programs.

The POIFS file system does not encode the documents themselves. For example, if you had a
word processor file with the extension ".doc", you would actually have a POIFS file system
with a document file archived inside of that file system.

1.2. Document Conventions

This document utilizes the numeric types as described by the Java Language Specification,
which can be found at http://java.sun.com. In short:

• A byte is an 8 bit signed integer ranging from -128 to 127.
• A short is a 16 bit signed integer ranging from -32768 to 32767
• An int is a 32 bit signed integer ranging from -2147483648 to 2147483647
• A long is a 64 bit signed integer ranging from -9.22E18 to 9.22E18.

Page 1
Copyright © 2003 The Apache Software Foundation. All rights reserved.

http://java.sun.com

The Java Language Specification spells out a number of other types that are not referred to
by this document.

Where this document makes references to "endian conversion" it is referring to the byte order
of stored numbers. Numbers in "little-endian order" are stored with the least significant byte
first. In order to properly read a short, for example, you'd read two bytes and then shift the
second byte 8 bits to the left before performing an or operation to it against the first byte.
The following code illustrates this method:

public int getShort (byte[] rec)
{

return ((rec[1] << 8) | (rec[0] & 0x00ff));
}

1.3. File System Walkthrough

This is a walkthrough of a POIFS file system and how it is put together. It is not intended to
give a concise description but to give a "big picture" of the general structure and how it's
interpreted.

A POIFS file system begins with a header. This header identifies locations in the file by
function and provides a sanity check identifying a file as a POIFS file system.

The first 64 bits of the header compose a magic number identifier. This identifier tells the
client software that this is indeed a POIFS file system and that it should be treated as such.
This is a "sanity check" to make sure this is a POIFS file system and not some other format.
The header also contains an array of block numbers. These block numbers refer to blocks in
the file. When these blocks are read together they form the Block Allocation Table. The
header also contains a pointer to the first element in the property table, also known as the
root element, and a pointer to the small Block Allocation Table (SBAT).

The block allocation table or BAT, along with the property table, specify which blocks in the
file system belong to which files. After the header block, the file system is divided into
identically sized blocks of data, numbered from 0 to however many blocks there are in the
file system. For each file in the file system, its entry in the property table includes the index
of the first block in the array of blocks. Each block's index into the array of blocks is also its
index into the BAT, and the integer value stored at that index in the BAT gives the index of
the next block in the array (and thus the index of the next BAT value). A special value is
stored in the BAT to indicate "end of file".

The property table is essentially the directory storage for the file system. It consists of the
name of the file or directory, its start block in both the file system and BAT, and its actual
size. The first property in the property table is the root element. It has two purposes: to be a

POIFS File System Internals

Page 2
Copyright © 2003 The Apache Software Foundation. All rights reserved.

directory entry (the root of the directory tree, to be specific), and to hold the start block for
the small block data.

Small block data is a special file that contains the data for small files (less than 4K bytes). It
subdivides its blocks into smaller blocks and there is a special small block allocation table
that, like the main BAT for larger files, is used to map a small file to its small blocks.

1.4. Header Block

The POIFS file system begins with a header block. The first 64 bits of the header form a long
file type id or magic number identifier of 0xE11AB1A1E011CFD0L. This is basically a
sanity check. If this isn't the first thing in the header (and consequently the file system) then
this is not a POIFS file system and should be read with some other library.

It's important to know the most important parts of the header. These are discussed in the rest
of this section.

1.4.1. BATs

At offset 0x2C is an int specifying the number of elements in the BAT array. The array at
0x4C an array of ints. This array contains the indices of every block in the Block Allocation
Table.

1.4.2. XBATs

Very large POIFS archives may have more blocks than can be addressed by the BAT blocks
enumerated in the header block. How large? Well, the BAT array in the header can contain
up to 109 BAT block indices; each BAT block references up to 128 blocks, and each block is
512 bytes, so we're talking about 109 * 128 * 512 = 6.8MB. That's a pretty respectable
document! But, you could have much more data than that, and in today's world of cheap
gigabyte drives, why not? So, the BAT may be extended in that event. The integer value at
offset 0x44 of the header is the index of the first extended BAT (XBAT) block. At offset 0x48
of the header, there is an int value that specifies how many XBAT blocks there are. The
XBAT blocks begin at the specified index into the array of blocks making up the POIFS file
system, and continue in sequence for the specified count of XBAT blocks.

Each XBAT block contains the indices of up to 128 BAT blocks, so the document size can be
expanded by another 8MB for each XBAT block. The BAT blocks indexed by an XBAT
block are appended to the end of the list of BAT blocks enumerated in the header block. Thus
the BAT blocks enumerated in the header block are BAT blocks 0 through 108, the BAT
blocks enumerated in the first XBAT block are BAT blocks 109 through 236, the BAT
blocks enumerated in the second XBAT block are BAT blocks 237 through 364, and so on.

POIFS File System Internals

Page 3
Copyright © 2003 The Apache Software Foundation. All rights reserved.

Through the use of XBAT blocks, the limit on the overall document size is that imposed by
the 4-byte block indices; if the indices are unsigned ints, the maximum file size is 2 terabytes,
1 terabyte if the indices are treated as signed ints. Either way, I have yet to see a disk drive
large enough to accommodate such a file on the shelves at the local office supply stores.

1.4.3. SBATs

If a file contained in a POIFS archive is smaller than 4096 bytes, it is stored in small blocks.
Small blocks are 64 bytes in length and are contained within big blocks, up to 8 to a big
block. As the main BAT is used to navigate the array of big blocks, so the small block
allocation table is used to navigate the array of small blocks. The SBAT's start block index is
found at offset 0x3C of the header block, and remaining blocks constituting the SBAT are
found by walking the main BAT as if it were an ordinary file in the POIFS file system (this
process is described below).

1.4.4. Property Table Start Index

An integer at address 0x30 specifies the start index of the property table. This integer is
specified as a "block index". The Property Table is stored, as is almost everything in a POIFS
file system, in big blocks and walked via the BAT. The Property Table is described below.

1.5. Property Table

The property table is essentially nothing more than the directory system. Properties are 128
byte records contained within the 512 byte blocks. The first property is always the Root
Entry. The following applies to individual properties within a property table:

• At offset 0x00 in the property is the "name". This is stored as an uncompressed 16 bit
unicode string. In short every other byte corresponds to an "ASCII" character. The size of
this string is stored at offset 0x40 (string size) as a short.

• At offset 0x42 is the property type (byte). The type is 1 for directory, 2 for file or 5 for
the Root Entry.

• At offset 0x43 is the node color (byte). The color is either 1, (black), or 0, (red).
Properties are apparently meant to be arranged in a red-black binary tree, subject to the
following rules:
1. The root of the tree is always black
2. Two consecutive nodes cannot both be red
3. A property is less than another property if its name length is less than the other

property's name length
4. If two properties have the same name length, the sort order is determined by the sort

order of the properties' names.

POIFS File System Internals

Page 4
Copyright © 2003 The Apache Software Foundation. All rights reserved.

• At offset 0x44 is the index (int) of the previous property.
• At offset 0x48 is the index (int) of the next property.
• At offset 0x4C is the index (int) of the first directory entry. This is used by directory

entries.
• At offset 0x74 is an integer giving the start block for the file described by this property.

This index corresponds to an index in the array of indices that is the Block Allocation
Table (or the Small Block Allocation Table) as well as the index of the first block in the
file. This is used by files and the root entry.

• At offset 0x78 is an integer giving the total actual size of the file pointed at by this
property. If the file size is less than 4096, the file is stored in small blocks and the SBAT
is used to walk the small blocks making up the file. If the file size is 4096 or larger, the
file is stored in big blocks and the main BAT is used to walk the big blocks making up
the file. The exception to this rule is the Root Entry, which, regardless of its size, is
always stored in big blocks and the main BAT is used to walk the big blocks making up
this special file.

1.6. Root Entry

The Root Entry in the Property Table contains the information necessary to read and write
small files, which are files less than 4096 bytes long. The start block field of the Root Entry
is the start index of the Small Block Array, which is read like any other file in the POIFS file
system. Since the SBAT cannot be used without the Small Block Array, the Root Entry
MUST be read or written using the Block Allocation Table. The blocks making up the Small
Block Array are divided into 64-byte small blocks, up to the size indicated in the Root Entry
(which should always be a multiple of 64).

1.7. Walking the Nodes of the Property Table

The individual properties form a directory tree, with the Root Entry as the directory tree's
root, as shown in the accompanying drawing. Note the numbers in parentheses in each node;
they represent the node's index in the array of properties. The NEXT_PROP,
PREVIOUS_PROP, and CHILD_PROP fields hold these indices, and are used to navigate
the tree.

POIFS File System Internals

Page 5
Copyright © 2003 The Apache Software Foundation. All rights reserved.

property set

Each directory entry (i.e., a property whose type is directory or root entry) uses its
CHILD_PROP field to point to one of its subordinate (child) properties. It doesn't seem to
matter which of its children it points to. Thus in the previous drawing, the Root Entry's
CHILD_PROP field may contain 1, 4, or the index of one of its other children. Similarly, the
directory node (index 1) may have, in its CHILD_PROP field, 2, 3, or the index of one of its
other children.

The children of a given directory property point to each other in a similar fashion by using
their NEXT_PROP and PREVIOUS_PROP fields.

Unused NEXT_PROP, PREVIOUS_PROP, and CHILD_PROP fields contain the marker
value of -1. All file properties have a value of -1 for their CHILD_PROP fields for example.

1.8. Block Allocation Table

POIFS File System Internals

Page 6
Copyright © 2003 The Apache Software Foundation. All rights reserved.

The BAT blocks are pointed at by the bat array contained in the header and supplemented, if
necessary, by the XBAT blocks. These blocks form a large table of integers. These integers
are block numbers. The Block Allocation Table holds chains of integers. These chains are
terminated with -2. The elements in these chains refer to blocks in the files. The starting
block of a file is NOT specified in the BAT. It is specified by the property for a given file.
The elements in this BAT are both the block number (within the file minus the header) and
the number of the next BAT element in the chain. This can be thought of as a linked list of
blocks. The BAT array contains the links from one block to the next, including the end of
chain marker.

Here's an example: Let's assume that the BAT begins as follows:

BAT[0] = 2

BAT[1] = 5

BAT[2] = 3

BAT[3] = 4

BAT[4] = 6

BAT[5] = -2

BAT[6] = 7

BAT[7] = -2

...

Now, if we have a file whose Property Table entry says it begins with index 0, we walk the
BAT array and see that the file consists of blocks 0 (because the start block is 0), 2 (because
BAT[0] is 2), 3 (BAT[2] is 3), 4 (BAT[3] is 4), 6 (BAT[4] is 6), and 7 (BAT[6] is 7). It
ends at block 7 because BAT[7] is -2, which is the end of chain marker.

Similarly, a file beginning at index 1 consists of blocks 1 and 5.

Other special numbers in a BAT array are:

• -1, which indicates an unused block
• -3, which indicates a "special" block, such as a block used to make up the Small Block

Array, the Property Table, the main BAT, or the SBAT

1.9. File System Structures

The following outlines the basic file system structures.

POIFS File System Internals

Page 7
Copyright © 2003 The Apache Software Foundation. All rights reserved.

1.9.1. Header (block 1) -- 512 (0x200) bytes

Field Description Offset Length Default value or
const

FILETYPE Magic number
identifying this as
a POIFS file
system.

0x0000 Long 0xE11AB1A1E011CFD0

UK1 Unknown
constant

0x0008 Integer 0

UK2 Unknown
Constant

0x000C Integer 0

UK3 Unknown
Constant

0x0014 Integer 0

UK4 Unknown
Constant
(revision?)

0x0018 Short 0x003B

UK5 Unknown
Constant
(version?)

0x001A Short 0x0003

UK6 Unknown
Constant

0x001C Short -2

LOG_2_BIG_BLOCK_SIZELog, base 2, of
the big block size

0x001E Short 9 (2 ^ 9 = 512
bytes)

LOG_2_SMALL_BLOCK_SIZELog, base 2, of
the small block
size

0x0020 Integer 6 (2 ^ 6 = 64
bytes)

UK7 Unknown
Constant

0x0024 Integer 0

UK8 Unknown
Constant

0x0028 Integer 0

BAT_COUNT Number of
elements in the
BAT array

0x002C Integer required

PROPERTIES_STARTBlock index of the
first block of the

0x0030 Integer required

POIFS File System Internals

Page 8
Copyright © 2003 The Apache Software Foundation. All rights reserved.

property table

UK9 Unknown
Constant

0x0034 Integer 0

UK10 Unknown
Constant

0x0038 Integer 0x00001000

SBAT_START Block index of
first big block
containing the
small block
allocation table
(SBAT)

0x003C Integer -2

SBAT_Block_Count Number of big
blocks holding the
SBAT

0x0040 Integer 1

XBAT_START Block index of the
first block in the
Extended Block
Allocation Table
(XBAT)

0x0044 Integer -2

XBAT_COUNT Number of
elements in the
Extended Block
Allocation Table
(to be added to
the BAT)

0x0048 Integer 0

BAT_ARRAY Array of block
indices
constituting the
Block Allocation
Table (BAT)

0x004C, 0x0050,
0x0054 ...
0x01FC

Integer[] -1 for unused
elements, at least
first element must
be filled.

N/A Header block
data not
otherwise
described in this
table

N/A N/A -1

1.9.2. Block Allocation Table Block -- 512 (0x200) bytes

Field Description Offset Length Default value or
const

POIFS File System Internals

Page 9
Copyright © 2003 The Apache Software Foundation. All rights reserved.

BAT_ELEMENT Any given
element in the
BAT block

0x0000, 0x0004,
0x0008, ...
0x01FC

Integer -1 = unused
-2 = end of chain
-3 = special (e.g.,
BAT block)
All other values
point to the next
element in the
chain and the
next index of a
block composing
the file.

1.9.3. Property Block -- 512 (0x200) byte block

Field Description Offset Length Default value or
const

Properties[] This block
contains the
properties.

0x0000, 0x0080,
0x0100, 0x0180

128 bytes All unused space
is set to -1.

1.9.4. Property -- 128 (0x80) byte block

Field Description Offset Length Default value or
const

NAME A unicode
null-terminated
uncompressed
16bit string (lose
the high bytes)
containing the
name of the
property.

0x00, 0x02, 0x04,
... 0x3E

Short[] 0x0000 for
unused elements,
field required, 32
(0x40) element
max

NAME_SIZE Number of
characters in the
NAME field

0x40 Short Required

PROPERTY_TYPE Property type
(directory, file, or
root)

0x42 Byte 1 (directory), 2
(file), or 5 (root
entry)

NODE_COLOR Node color 0x43 Byte 0 (red) or 1
(black)

PREVIOUS_PROP Previous property
index

0x44 Integer -1

POIFS File System Internals

Page 10
Copyright © 2003 The Apache Software Foundation. All rights reserved.

NEXT_PROP Next property
index

0x48 Integer -1

CHILD_PROP First child
property index

0x4c Integer -1

SECONDS_1 Seconds
component of the
created
timestamp?

0x64 Integer 0

DAYS_1 Days component
of the created
timestamp?

0x68 Integer 0

SECONDS_2 Seconds
component of the
modified
timestamp?

0x6C Integer 0

DAYS_2 Days component
of the modified
timestamp?

0x70 Integer 0

START_BLOCK Starting block of
the file, used as
the first block in
the file and the
pointer to the next
block from the
BAT

0x74 Integer Required

SIZE Actual size of the
file this property
points to. (used to
truncate the
blocks to the real
size).

0x78 Integer 0

POIFS File System Internals

Page 11
Copyright © 2003 The Apache Software Foundation. All rights reserved.

	1 POIFS File System Internals
	1.1 Introduction
	1.2 Document Conventions
	1.3 File System Walkthrough
	1.4 Header Block
	1.4.1 BATs
	1.4.2 XBATs
	1.4.3 SBATs
	1.4.4 Property Table Start Index

	1.5 Property Table
	1.6 Root Entry
	1.7 Walking the Nodes of the Property Table
	1.8 Block Allocation Table
	1.9 File System Structures
	1.9.1 Header (block 1) -- 512 (0x200) bytes
	1.9.2 Block Allocation Table Block -- 512 (0x200) bytes
	1.9.3 Property Block -- 512 (0x200) byte block
	1.9.4 Property -- 128 (0x80) byte block

