
Introduction to MINA

A Multipurpose
Infrastructure

for Network
Applications

April 2005, Trustin Lee, ASF



Contents

v Overview
v How to Program
v Filter Mechanism
v Proof of Productivity
v Architecture Review
v Conclusion



Overview



What is MINA?

v A network application framework

v Feature-rich
v Extensible
v Designed for agile client/server programming

v Client- or server-less unit testing
v Very high reusability and maintainability

v Yet scalable / high performance



Architecture: I/O Layer

v MINA abstracts all low-level I/O via abstract API.
v IoHandlers get notified when I/O events occur.
v You communicate by reading and writing data buffers.



Architecture: Protocol Layer

I/O
 Layer

P
rotocol Layer

v Built upon I/O layer
v Good when you implement complex protocols
v You communicate by sending and receiving message objects..



MINA Abstract API

v Single API for various transport types

v Highly extensible

v Unit-test your server using mock objects.
⇒ no real clients anymore!



MINA Abstract API (Cont’d)

v Once a protocol implemented, it works for:
v NIO sockets
v TCP/IP 
v UDP/IP

v In-VM pipe
v Coming soon:
v Non-NIO sockets
v Serial port
v Parallel port
v Multicast (when Mustang is ready)



How to Program



What MINA Does For You

v You NEVER need to program...

v Stream I/O

v NIO

v Thread management

v Buffer management

because it does ALL of them for you!
Then what do you have to do?



What You Should Do

v The first way to implement your protocol:

v Using I/O Layer: IoHandler
v You communicate by reading and writing data buffers.



What You Should Do (Cont’d)

cd io

<<interface>>
IoHandler

~ sessionCreated(IoSession) : void
~ sessionOpened(IoSession) : void
~ sessionClosed(IoSession) : void
~ sessionIdle(IoSession, IdleStatus) : void
~ exceptionCaught(IoSession, Throwable) : void
~ dataRead(IoSession, ByteBuffer) : void
~ dataWritten(IoSession, Object) : void



What You Should Do (Cont’d)

v The second way to implement your protocol:
v Using Protocol Layer: ProtocolProvider
v You communicate by exchanging objects (POJO).

v Your codec performs transformations between
data buffers and message objects.

v Reusable
v Pluggable (thanks to polymorphism)

v You take full advantage of OOP for message objects

v Inheritance



What You Should Do (Cont’d)

cd protocol

<<interface>>
ProtocolHandler

~ sessionCreated(ProtocolSession) : void
~ sessionOpened(ProtocolSession) : void
~ sessionClosed(ProtocolSession) : void
~ sessionIdle(ProtocolSession, IdleStatus) : void
~ exceptionCaught(ProtocolSession, Throwable) : void
~ messageReceived(ProtocolSession, Object) : void
~ messageSent(ProtocolSession, Object) : void

<<interface>>
ProtocolProvider

~ getCodecFactory() : ProtocolCodecFactory
~ getHandler() : ProtocolHandler

<<interface>>
ProtocolCodecFactory

~ newEncoder() : ProtocolEncoder
~ newDecoder() : ProtocolDecoder

ProtocolDecoderProtocolEncoder



Filter Mechanism



Architecture (with Filters)

I/O
 Layer

Protocol Layer



What is Filter

v A reusable event interceptor
v Similar to Servlet filters

v Can be added and removed “on-the-fly”

v Works in both coarse- and fine-grained way:
v Per Server Port
v Per Individual Session



Filter Use Cases

v Implemented filters:
v Thread pool (= customizable thread model!)
v SSL
v Client blacklisting

v Coming soon:
v Logging, Profiling, StartTLS, Peak Point Control, 

Traffic throttling, Firewall, and many more ...
v Any contributions are welcome!



Filter Use Cases (Cont’d)

v Customizable thread models

v MINA runs in single thread mode by default
⇒ Good for low-latency apps

v Add a ThreadPoolFilter to make MINA  
multi-threaded
⇒ Good for high-scalability apps



Proof of Productivity



Comparison

*) A Core Java Tech Tips example
v 100% CPU consumption while socket buffer is full. 

(doesn’t register for OP_WRITE)
v No SSL support (never trivial)

Very goodPoorMaintainability

All reusable:
Filters, Codecs, Handlers

PoorReusability

Echo server 50 lines (45%)109 lines*
MINAPlain NIO



More Complex Protocols

v Even echo server is hard to maintain.
v Writing complex protocols with plain NIO is the 

beginning of your nightmare.

v MINA Protocol Layer is your cozy pillow.

v Known implementations:

v Kerberos
v IMAPv4
v NTP

v LDAP
v SMTP
v DNS



Architecture Review



Architecture Review

I/O
 Layer

Protocol Layer



Conclusion



Conclusion

MINA is
a flexible and extensible

network application framework
that boosts developer productivity.



How to Contribute

v MINA is a subproject of
the Apache Directory Project

v Homepage:
http://directory.apache.org/subprojects/network

v Mailing List:
dev@directory.apache.org (Use ‘[mina]’ prefix)


