
HPSF HOW-TO

by Rainer Klute

1. How To Use the HPSF API

This HOW-TO is organized in four sections. You should read them sequentially because the
later sections build upon the earlier ones.

1. The first section explains how to read the most important standard properties of a
Microsoft Office document. Standard properties are things like title, author, creation date
etc. It is quite likely that you will find here what you need and don't have to read the
other sections.

2. The second section goes a small step further and focusses on reading additional
standard properties. It also talks about exceptions that may be thrown when dealing
with HPSF and shows how you can read properties of embedded objects.

3. The third section explains how to write standard properties. HPSF provides some
high-level classes and methods which make writing of standard properties easy. They are
based on the low-level writing functions explained in the fifth section.

4. The fourth section tells how to read non-standard properties. Non-standard properties
are application-specific triples consisting of an ID, a type, and a value.

5. The fifth section tells you how to write property set streams using HPSF's low-level
methods. You have to understand the fourth section before you should think about
low-level writing properties. Check the Javadoc API documentation to find out about the
details!

Note:
Please note: HPSF's writing functionality is not present in POI releases up to and including 2.5. In order to write properties
you have to download a later POI release (when available) or retrieve the POI development version from the Subversion
repository.

1.1. Reading Standard Properties

Note:
This section explains how to read the most important standard properties of a Microsoft Office document. Standard properties
are things like title, author, creation date etc. This section introduces the summary information stream which is used to keep
these properties. Chances are that you will find here what you need and don't have to read the other sections.

Page 1
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

http://jakarta.apache.org/site/cvsindex.html
http://jakarta.apache.org/site/cvsindex.html

The first thing you should understand is that a Microsoft Office file is not one large bunch of
bytes but has an internal filesystem structure with files and directories. You can access these
files and directories using the POI filesystem (POIFS) provides. A file or document in a POI
filesystem is also called a stream - The properties of, say, an Excel document are stored
apart of the actual spreadsheet data in separate streams. The good new is that this separation
makes the properties independent of the concrete Microsoft Office file. In the following text
we will always say "POI filesystem" instead of "Microsoft Office file" because a POI
filesystem is not necessarily created by or for a Microsoft Office application, because it is
shorter, and because we want to avoid the name of That Redmond Company.

The following example shows how to read the "title" property. Reading other properties is
similar. Consider the API documentation of the class
org.apache.poi.hpsf.SummaryInformation to learn which methods are
available.

The standard properties this section focusses on can be found in a document called
\005SummaryInformation located in the root of the POI filesystem. The notation \005 in the
document's name means the character with a decimal value of 5. In order to read the "title"
property, an application has to perform the following steps:

1. Open the document \005SummaryInformation located in the root of the POI filesystem.
2. Create an instance of the class SummaryInformation from that document.
3. Call the SummaryInformation instance's getTitle() method.

Sounds easy, doesn't it? Here are the steps in detail.

1.1.1. Open the document \005SummaryInformation in the root of the POI filesystem

An application that wants to open a document in a POI filesystem (POIFS) proceeds as
shown by the following code fragment. The full source code of the sample application is
available in the examples section of the POI source tree as ReadTitle.java.

import java.io.*;
import org.apache.poi.hpsf.*;
import org.apache.poi.poifs.eventfilesystem.*;

// ...

public static void main(String[] args)
throws IOException

{
final String filename = args[0];
POIFSReader r = new POIFSReader();
r.registerListener(new MyPOIFSReaderListener(),

"\005SummaryInformation");
r.read(new FileInputStream(filename));

HPSF HOW-TO

Page 2
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

../poifs/index.html

}

The first interesting statement is
POIFSReader r = new POIFSReader();

It creates a org.apache.poi.poifs.eventfilesystem.POIFSReader instance
which we shall need to read the POI filesystem. Before the application actually opens the
POI filesystem we have to tell the POIFSReader which documents we are interested in. In
this case the application should do something with the document \005SummaryInformation.

r.registerListener(new MyPOIFSReaderListener(),
"\005SummaryInformation");

This method call registers a
org.apache.poi.poifs.eventfilesystem.POIFSReaderListener with the
POIFSReader. The POIFSReaderListener interface specifies the method
processPOIFSReaderEvent() which processes a document. The class
MyPOIFSReaderListener implements the POIFSReaderListener and thus the
processPOIFSReaderEvent() method. The eventing POI filesystem calls this method
when it finds the \005SummaryInformation document. In the sample application
MyPOIFSReaderListener is a static class in the ReadTitle.java source file.

Now everything is prepared and reading the POI filesystem can start:
r.read(new FileInputStream(filename));

The following source code fragment shows the MyPOIFSReaderListener class and how
it retrieves the title.

static class MyPOIFSReaderListener implements POIFSReaderListener
{

public void processPOIFSReaderEvent(POIFSReaderEvent event)
{

SummaryInformation si = null;
try
{

si = (SummaryInformation)
PropertySetFactory.create(event.getStream());

}
catch (Exception ex)
{

throw new RuntimeException
("Property set stream \"" +
event.getPath() + event.getName() + "\": " + ex);

}
final String title = si.getTitle();
if (title != null)

System.out.println("Title: \"" + title + "\"");
else

System.out.println("Document has no title.");
}

HPSF HOW-TO

Page 3
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

}

The line
SummaryInformation si = null;

declares a SummaryInformation variable and initializes it with null. We need an
instance of this class to access the title. The instance is created in a try block:
si = (SummaryInformation)

PropertySetFactory.create(event.getStream());

The expression event.getStream() returns the input stream containing the bytes of the
property set stream named \005SummaryInformation. This stream is passed into the create
method of the factory class org.apache.poi.hpsf.PropertySetFactory which
returns a org.apache.poi.hpsf.PropertySet instance. It is more or less safe to
cast this result to SummaryInformation, a convenience class with methods like
getTitle(), getAuthor() etc.

The PropertySetFactory.create() method may throw all sorts of exceptions. We'll
deal with them in the next sections. For now we just catch all exceptions and throw a
RuntimeException containing the message text of the origin exception.

If all goes well, the sample application retrieves the title and prints it to the standard output.
As you can see you must be prepared for the case that the POI filesystem does not have a
title.
final String title = si.getTitle();
if (title != null)

System.out.println("Title: \"" + title + "\"");
else

System.out.println("Document has no title.");

Please note that a POI filesystem does not necessarily contain the \005SummaryInformation
stream. The documents created by the Microsoft Office suite have one, as far as I know.
However, an Excel spreadsheet exported from StarOffice 5.2 won't have a
\005SummaryInformation stream. In this case the applications won't throw an exception but
simply does not call the processPOIFSReaderEvent method. You have been warned!

1.2. Additional Standard Properties, Exceptions And Embedded Objects

Note:
This section focusses on reading additional standard properties which are kept in the document summary information
stream. It also talks about exceptions that may be thrown when dealing with HPSF and shows how you can read properties of
embedded objects.

A couple of additional standard properties are not contained in the
\005SummaryInformation stream explained above. Examples for such properties are a

HPSF HOW-TO

Page 4
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

document's category or the number of multimedia clips in a PowerPoint presentation.
Microsoft has invented an additional stream named \005DocumentSummaryInformation to
hold these properties. With two minor exceptions you can proceed exactly as described above
to read the properties stored in \005DocumentSummaryInformation:

• Instead of \005SummaryInformation use \005DocumentSummaryInformation as the
stream's name.

• Replace all occurrences of the class SummaryInformation by
DocumentSummaryInformation.

And of course you cannot call getTitle() because
DocumentSummaryInformation has different query methods, e.g. getCategory.
See the Javadoc API documentation for the details.

In the previous section the application simply caught all exceptions and was in no way
interested in any details. However, a real application will likely want to know what went
wrong and act appropriately. Besides any I/O exceptions there are three HPSF resp. POI
specific exceptions you should know about:

NoPropertySetStreamException:
This exception is thrown if the application tries to create a PropertySet
instance from a stream that is not a property set stream.
(SummaryInformation and DocumentSummaryInformation are subclasses
of PropertySet.) A faulty property set stream counts as not being a property
set stream at all. An application should be prepared to deal with this case even if
it opens streams named \005SummaryInformation or
\005DocumentSummaryInformation. These are just names. A stream's name by
itself does not ensure that the stream contains the expected contents and that
this contents is correct.
UnexpectedPropertySetTypeException
This exception is thrown if a certain type of property set is expected somewhere
(e.g. a SummaryInformation or DocumentSummaryInformation) but the
provided property set is not of that type.
MarkUnsupportedException
This exception is thrown if an input stream that is to be parsed into a property set
does not support the InputStream.mark(int) operation. The POI filesystem
uses the DocumentInputStream class which does support this operation, so
you are safe here. However, if you read a property set stream from another kind
of input stream things may be different.

Many Microsoft Office documents contain embedded objects, for example an Excel sheet
within a Word document. Embedded objects may have property sets of their own. An
application can open these property set streams as described above. The only difference is

HPSF HOW-TO

Page 5
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

that they are not located in the POI filesystem's root but in a nested directory instead. Just
register a POIFSReaderListener for the property set streams you are interested in. For
example, the POIBrowser application in the contrib section tries to open each and every
document in a POI filesystem as a property set stream. If this operation was successful it
displays the properties.

1.3. Writing Standard Properties

Note:
This section explains how to write standard properties. HPSF provides some high-level classes and methods which make
writing of standard properties easy. They are based on the low-level writing functions explained in another section.

As explained above, standard properties are located in the summary information and
document summary information streams of typical POI filesystems. You have already
learned about the classes SummaryInformation and
DocumentSummaryInformation and their get...() methods for reading standard
properties. These classes also provide set...() methods for writing properties.

After setting properties in SummaryInformation or
DocumentSummaryInformation you have to write them to a disk file. The following
sample program shows how you can

1. read a disk file into a POI filesystem,
2. read the document summary information from the POI filesystem,
3. set a property to a new value,
4. write the modified document summary information back to the POI filesystem, and
5. write the POI filesystem to a disk file.

The complete source code of this program is available as
ModifyDocumentSummaryInformation.java in the examples section of the POI source tree.

Note:
Dealing with the summary information stream is analogous to handling the document summary information and therefore does
not need to be explained here in detailed. See the HPSF API documentation to learn about the set...() methods of the class
SummaryInformation.

The first step is to read the POI filesystem into memory:
InputStream is = new FileInputStream(poiFilesystem);
POIFSFileSystem poifs = new POIFSFileSystem(is);
is.close();

The code snippet above assumes that the variable poiFilesystem holds the name of a
disk file. It reads the file from an input stream and creates a POIFSFileSystem object in

HPSF HOW-TO

Page 6
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

memory. After having read the file, the input stream should be closed as shown.

In order to read the document summary information stream the application must open the
element \005DocumentSummaryInformation in the POI filesystem's root directory. However,
the POI filesystem does not necessarily contain a document summary information stream,
and the application should be able to deal with that situation. The following code does so by
creating a new DocumentSummaryInformation if there is none in the POI filesystem:
DirectoryEntry dir = poifs.getRoot();
DocumentSummaryInformation dsi;
try
{

DocumentEntry dsiEntry = (DocumentEntry)
dir.getEntry(DocumentSummaryInformation.DEFAULT_STREAM_NAME);

DocumentInputStream dis = new DocumentInputStream(dsiEntry);
PropertySet ps = new PropertySet(dis);
dis.close();
dsi = new DocumentSummaryInformation(ps);

}
catch (FileNotFoundException ex)
{

/* There is no document summary information. We have to create a
* new one. */
dsi = PropertySetFactory.newDocumentSummaryInformation();

}

In the source code above the statement
DirectoryEntry dir = poifs.getRoot();

gets hold of the POI filesystem's root directory as a DirectoryEntry. The getEntry()
method of this class is used to access a file or directory entry in a directory. However, if the
file to be opened does not exist, a FileNotFoundException will be thrown. Therefore
opening the document summary information entry should be done in a try block:

DocumentEntry dsiEntry = (DocumentEntry)
dir.getEntry(DocumentSummaryInformation.DEFAULT_STREAM_NAME);

DocumentSummaryInformation.DEFAULT_STREAM_NAME represents the string
"\005DocumentSummaryInformation", i.e. the standard name of a document summary
information stream. If this stream exists, the getEntry() method returns a
DocumentEntry. To read the DocumentEntry's contents, create a
DocumentInputStream:

DocumentInputStream dis = new DocumentInputStream(dsiEntry);

Up to this point we have used POI's POIFS component. Now HPSF enters the stage. A
property set is created from the input stream's data:

PropertySet ps = new PropertySet(dis);
dis.close();
dsi = new DocumentSummaryInformation(ps);

HPSF HOW-TO

Page 7
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

../poifs/index.html

If the data really constitutes a property set, a PropertySet object is created. Otherwise a
NoPropertySetStreamException is thrown. After having read the data from the
input stream the latter should be closed.

Since we know - or at least hope - that the stream named
"\005DocumentSummaryInformation" is not just any property set but really contains the
document summary information, we try to create a new
DocumentSummaryInformation from the property set. If the stream is not document
summary information stream the sample application fails with a
UnexpectedPropertySetTypeException.

If the POI document does not contain a document summary information stream, we can
create a new one in the catch clause. The PropertySetFactory's method
newDocumentSummaryInformation() establishes a new and empty
DocumentSummaryInformation instance:

dsi = PropertySetFactory.newDocumentSummaryInformation();

Whether we read the document summary information from the POI filesystem or created it
from scratch, in either case we now have a DocumentSummaryInformation instance
we can write to. Writing is quite simple, as the following line of code shows:
dsi.setCategory("POI example");

This statement sets the "category" property to "POI example". Any former "category" value
will be lost. If there hasn't been a "category" property yet, a new one will be created.

DocumentSummaryInformation of course has methods to set the other standard
properties, too - look into the API documentation to see all of them.

Once all properties are set as needed, they should be stored into the file on disk. The first step
is to write the DocumentSummaryInformation into the POI filesystem:
dsi.write(dir, DocumentSummaryInformation.DEFAULT_STREAM_NAME);

The DocumentSummaryInformation's write() method takes two parameters: The
first is the DirectoryEntry in the POI filesystem, the second is the name of the stream to
create in the directory. If this stream already exists, it will be overwritten.

Note:
If you not only modified the document summary information but also the summary information you have to write both of them
to the POI filesystem.

Still the POI filesystem is a data structure in memory only and must be written to a disk file
to make it permanent. The following lines write back the POI filesystem to the file it was
read from before. Please note that in production-quality code you should never write directly
to the origin file, because in case of an error everything would be lost. Here it is done this

HPSF HOW-TO

Page 8
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

way to keep the example short.
OutputStream out = new FileOutputStream(poiFilesystem);
poifs.writeFilesystem(out);
out.close();

1.3.1. User-Defined Properties

If you compare the source code excerpts above with the file containing the full source code,
you will notice that I left out some following lines of code. The are dealing with the special
topic of custom properties.
DocumentSummaryInformation dsi = ...
...
CustomProperties customProperties = dsi.getCustomProperties();
if (customProperties == null)

customProperties = new CustomProperties();

/* Insert some custom properties into the container. */
customProperties.put("Key 1", "Value 1");
customProperties.put("Schlüssel 2", "Wert 2");
customProperties.put("Sample Number", new Integer(12345));
customProperties.put("Sample Boolean", new Boolean(true));
customProperties.put("Sample Date", new Date());

/* Read a custom property. */
Object value = customProperties.get("Sample Number");

/* Write the custom properties back to the document summary
* information. */
dsi.setCustomProperties(customProperties);

Custom properties are properties the user can define himself. Using for example Microsoft
Word he can define these extra properties and give each of them a name, a type and a value.
The custom properties are stored in the document information summary along with the
standard properties.

The source code example shows how to retrieve the custom properties as a whole from a
DocumentSummaryInformation instance using the getCustomProperties()
method. The result is a CustomProperties instance or null if no user-defined
properties exist.

Since CustomProperties implements the Map interface you can read and write
properties with the usual Map methods. However, CustomProperties poses some
restrictions on the types of keys and values.

• The key is a string.
• The value is one of String, Boolean, Long, Integer, Short, or

java.util.Date.

HPSF HOW-TO

Page 9
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

The CustomProperties class has been designed for easy access using just keys and
values. The underlying Microsoft-specific custom properties data structure is more
complicated. However, it does not provide noteworthy additional benefits. It is possible to
have multiple properties with the same name or properties without a name at all. When
reading custom properties from a document summary information stream, the
CustomProperties class ignores properties without a name and keeps only the "last"
(whatever that means) of those properties having the same name. You can find out whether a
CustomProperties instance dropped any properties with the isPure() method.

You can read and write the full spectrum of custom properties with HPSF's low-level
methods. They are explained in the next section.

1.4. Reading Non-Standard Properties

Note:
This section tells how to read non-standard properties. Non-standard properties are application-specific ID/type/value triples.

1.4.1. Overview

Now comes the real hardcode stuff. As mentioned above, SummaryInformation and
DocumentSummaryInformation are just special cases of the general concept of a
property set. This concept says that a property set consists of properties and that each
property is an entity with an ID, a type, and a value.

Okay, that was still rather easy. However, to make things more complicated, Microsoft in its
infinite wisdom decided that a property set shalt be broken into one or more sections. Each
section holds a bunch of properties. But since that's still not complicated enough, a section
may have an optional dictionary that maps property IDs to property names - we'll explain
later what that means.

The procedure to get to the properties is the following:

1. Use the PropertySetFactory class to create a PropertySet object from a
property set stream. If you don't know whether an input stream is a property set stream,
just try to call PropertySetFactory.create(java.io.InputStream):
You'll either get a PropertySet instance returned or an exception is thrown.

2. Call the PropertySet's method getSections() to get the sections contained in the
property set. Each section is an instance of the Section class.

3. Each section has a format ID. The format ID of the first section in a property set
determines the property set's type. For example, the first (and only) section of the
summary information property set has a format ID of

HPSF HOW-TO

Page 10
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

F29F85E0-4FF9-1068-AB-91-08-00-2B-27-B3-D9. You can get the format
ID with Section.getFormatID().

4. The properties contained in a Section can be retrieved with
Section.getProperties(). The result is an array of Property instances.

5. A property has a name, a type, and a value. The Property class has methods to retrieve
them.

1.4.2. A Sample Application

Let's have a look at a sample Java application that dumps all property set streams contained
in a POI file system. The full source code of this program can be found as
ReadCustomPropertySets.java in the examples area of the POI source code tree. Here are the
key sections:
import java.io.*;
import java.util.*;
import org.apache.poi.hpsf.*;
import org.apache.poi.poifs.eventfilesystem.*;
import org.apache.poi.util.HexDump;

The most important package the application needs is org.apache.poi.hpsf.*. This
package contains the HPSF classes. Most classes named below are from the HPSF package.
Of course we also need the POIFS event file system's classes and java.io.* since we are
dealing with POI I/O. From the java.util package we use the List and Iterator
class. The class org.apache.poi.util.HexDump provides a methods to dump byte
arrays as nicely formatted strings.
public static void main(String[] args)

throws IOException
{

final String filename = args[0];
POIFSReader r = new POIFSReader();

/* Register a listener for *all* documents. */
r.registerListener(new MyPOIFSReaderListener());
r.read(new FileInputStream(filename));

}

The POIFSReader is set up in a way that the listener MyPOIFSReaderListener is
called on every file in the POI file system.

1.4.3. The Property Set

The listener class tries to create a PropertySet from each stream using the
PropertySetFactory.create() method:
static class MyPOIFSReaderListener implements POIFSReaderListener
{

public void processPOIFSReaderEvent(POIFSReaderEvent event)

HPSF HOW-TO

Page 11
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

{
PropertySet ps = null;
try
{

ps = PropertySetFactory.create(event.getStream());
}
catch (NoPropertySetStreamException ex)
{

out("No property set stream: \"" + event.getPath() +
event.getName() + "\"");

return;
}
catch (Exception ex)
{

throw new RuntimeException
("Property set stream \"" +
event.getPath() + event.getName() + "\": " + ex);

}

/* Print the name of the property set stream: */
out("Property set stream \"" + event.getPath() +

event.getName() + "\":");

Creating the PropertySet is done in a try block, because not each stream in the POI file
system contains a property set. If it is some other file, the
PropertySetFactory.create() throws a NoPropertySetStreamException,
which is caught and logged. Then the program continues with the next stream. However, all
other types of exceptions cause the program to terminate by throwing a runtime exception. If
all went well, we can print the name of the property set stream.

1.4.4. The Sections

The next step is to print the number of sections followed by the sections themselves:
/* Print the number of sections: */
final long sectionCount = ps.getSectionCount();
out(" No. of sections: " + sectionCount);

/* Print the list of sections: */
List sections = ps.getSections();
int nr = 0;
for (Iterator i = sections.iterator(); i.hasNext();)
{

/* Print a single section: */
Section sec = (Section) i.next();

// See below for the complete loop body.
}

The PropertySet's method getSectionCount() returns the number of sections.

To retrieve the sections, use the getSections() method. This method returns a

HPSF HOW-TO

Page 12
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

java.util.List containing instances of the Section class in their proper order.

The sample code shows a loop that retrieves the Section objects one by one and prints
some information about each one. Here is the complete body of the loop:
/* Print a single section: */
Section sec = (Section) i.next();
out(" Section " + nr++ + ":");
String s = hex(sec.getFormatID().getBytes());
s = s.substring(0, s.length() - 1);
out(" Format ID: " + s);

/* Print the number of properties in this section. */
int propertyCount = sec.getPropertyCount();
out(" No. of properties: " + propertyCount);

/* Print the properties: */
Property[] properties = sec.getProperties();
for (int i2 = 0; i2 < properties.length; i2++)
{

/* Print a single property: */
Property p = properties[i2];
int id = p.getID();
long type = p.getType();
Object value = p.getValue();
out(" Property ID: " + id + ", type: " + type +

", value: " + value);
}

1.4.5. The Section's Format ID

The first method called on the Section instance is getFormatID(). As explained
above, the format ID of the first section in a property set determines the type of the property
set. Its type is ClassID which is essentially a sequence of 16 bytes. A real application using
its own type of a custom property set should have defined a unique format ID and, when
reading a property set stream, should check the format ID is equal to that unique format ID.
The sample program just prints the format ID it finds in a section:
String s = hex(sec.getFormatID().getBytes());
s = s.substring(0, s.length() - 1);
out(" Format ID: " + s);

As you can see, the getFormatID() method returns a ClassID object. An array
containing the bytes can be retrieved with ClassID.getBytes(). In order to get a nicely
formatted printout, the sample program uses the hex() helper method which in turn uses the
POI utility class HexDump in the org.apache.poi.util package. Another helper
method is out() which just saves typing System.out.println().

1.4.6. The Properties

HPSF HOW-TO

Page 13
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

Before getting the properties, it is possible to find out how many properties are available in
the section via the Section.getPropertyCount(). The sample application uses this
method to print the number of properties to the standard output:
int propertyCount = sec.getPropertyCount();
out(" No. of properties: " + propertyCount);

Now its time to get to the properties themselves. You can retrieve a section's properties with
the method Section.getProperties():
Property[] properties = sec.getProperties();

As you can see the result is an array of Property objects. This class has three methods to
retrieve a property's ID, its type, and its value. The following code snippet shows how to call
them:
for (int i2 = 0; i2 < properties.length; i2++)
{

/* Print a single property: */
Property p = properties[i2];
int id = p.getID();
long type = p.getType();
Object value = p.getValue();
out(" Property ID: " + id + ", type: " + type +

", value: " + value);
}

1.4.7. Sample Output

The output of the sample program might look like the following. It shows the summary
information and the document summary information property sets of a Microsoft Word
document. However, unlike the first and second section of this HOW-TO the application
does not have any code which is specific to the SummaryInformation and
DocumentSummaryInformation classes.
Property set stream "/SummaryInformation":

No. of sections: 1
Section 0:

Format ID: 00000000 F2 9F 85 E0 4F F9 10 68 AB 91 08 00 2B 27 B3 D9O..h....+'..
No. of properties: 17
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 30, value: Titel
Property ID: 3, type: 30, value: Thema
Property ID: 4, type: 30, value: Rainer Klute (Autor)
Property ID: 5, type: 30, value: Test (Stichwörter)
Property ID: 6, type: 30, value: This is a document for testing HPSF
Property ID: 7, type: 30, value: Normal.dot
Property ID: 8, type: 30, value: Unknown User
Property ID: 9, type: 30, value: 3
Property ID: 18, type: 30, value: Microsoft Word 9.0
Property ID: 12, type: 64, value: Mon Jan 01 00:59:25 CET 1601
Property ID: 13, type: 64, value: Thu Jul 18 16:22:00 CEST 2002

HPSF HOW-TO

Page 14
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

Property ID: 14, type: 3, value: 1
Property ID: 15, type: 3, value: 20
Property ID: 16, type: 3, value: 93
Property ID: 19, type: 3, value: 0
Property ID: 17, type: 71, value: [B@13582d

Property set stream "/DocumentSummaryInformation":
No. of sections: 2
Section 0:

Format ID: 00000000 D5 CD D5 02 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE+,..
No. of properties: 14
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 30, value: Test
Property ID: 14, type: 30, value: Rainer Klute (Manager)
Property ID: 15, type: 30, value: Rainer Klute IT-Consulting GmbH
Property ID: 5, type: 3, value: 3
Property ID: 6, type: 3, value: 2
Property ID: 17, type: 3, value: 111
Property ID: 23, type: 3, value: 592636
Property ID: 11, type: 11, value: false
Property ID: 16, type: 11, value: false
Property ID: 19, type: 11, value: false
Property ID: 22, type: 11, value: false
Property ID: 13, type: 4126, value: [B@56a499
Property ID: 12, type: 4108, value: [B@506411

Section 1:
Format ID: 00000000 D5 CD D5 05 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE+,..
No. of properties: 7
Property ID: 0, type: 0, value: {6=Test-JaNein, 5=Test-Zahl, 4=Test-Datum, 3=Test-Text, 2=_PID_LINKBASE}
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 65, value: [B@c9ba38
Property ID: 3, type: 30, value: This is some text.
Property ID: 4, type: 64, value: Wed Jul 17 00:00:00 CEST 2002
Property ID: 5, type: 3, value: 27
Property ID: 6, type: 11, value: true

No property set stream: "/WordDocument"
No property set stream: "/CompObj"
No property set stream: "/1Table"

There are some interesting items to note:

• The first property set (summary information) consists of a single section, the second
property set (document summary information) consists of two sections.

• Each section type (identified by its format ID) has its own domain of property ID. For
example, in the second property set the properties with ID 2 have different meanings in
the two section. By the way, the format IDs of these sections are not equal, but you have
to look hard to find the difference.

• The properties are not in any particular order in the section, although they slightly tend to
be sorted by their IDs.

1.4.8. Property IDs

Properties in the same section are distinguished by their IDs. This is similar to variables in a

HPSF HOW-TO

Page 15
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

programming language like Java, which are distinguished by their names. But unlike variable
names, property IDs are simple integral numbers. There is another similarity, however. Just
like a Java variable has a certain scope (e.g. a member variables in a class), a property ID
also has its scope of validity: the section.

Two property IDs in sections with different section format IDs don't have the same meaning
even though their IDs might be equal. For example, ID 4 in the first (and only) section of a
summary information property set denotes the document's author, while ID 4 in the first
section of the document summary information property set means the document's byte count.
The sample output above does not show a property with an ID of 4 in the first section of the
document summary information property set. That means that the document does not have a
byte count. However, there is a property with an ID of 4 in the second section: This is a
user-defined property ID - we'll get to that topic in a minute.

So, how can you find out what the meaning of a certain property ID in the summary
information and the document summary information property set is? The standard property
sets as such don't have any hints about the meanings of their property IDs. For example,
the summary information property set does not tell you that the property ID 4 stands for the
document's author. This is external knowledge. Microsoft defined standard meanings for
some of the property IDs in the summary information and the document summary
information property sets. As a help to the Java and POI programmer, the class
PropertyIDMap in the org.apache.poi.hpsf.wellknown package defines
constants for the "well-known" property IDs. For example, there is the definition
public final static int PID_AUTHOR = 4;

These definitions allow you to use symbolic names instead of numbers.

In order to provide support for the other way, too, - i.e. to map property IDs to property
names - the class PropertyIDMap defines two static methods:
getSummaryInformationProperties() and
getDocumentSummaryInformationProperties(). Both return
java.util.Map objects which map property IDs to strings. Such a string gives a hint
about the property's meaning. For example,
PropertyIDMap.getSummaryInformationProperties().get(4) returns the
string "PID_AUTHOR". An application could use this string as a key to a localized string
which is displayed to the user, e.g. "Author" in English or "Verfasser" in German. HPSF
might provide such language-dependend ("localized") mappings in a later release.

Usually you won't have to deal with those two maps. Instead you should call the
Section.getPIDString(int) method. It returns the string associated with the
specified property ID in the context of the Section object.

Above you learned that property IDs have a meaning in the scope of a section only.

HPSF HOW-TO

Page 16
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

However, there are two exceptions to the rule: The property IDs 0 and 1 have a fixed
meaning in all sections:

Property ID Meaning

0 The property's value is a dictionary, i.e. a
mapping from property IDs to strings.

1 The property's value is the number of a
codepage, i.e. a mapping from character codes
to characters. All strings in the section
containing this property must be interpreted
using this codepage. Typical property values are
1252 (8-bit "western" characters, ISO-8859-1),
1200 (16-bit Unicode characters, UFT-16), or
65001 (8-bit Unicode characters, UFT-8).

1.4.9. Property types

A property is nothing without its value. It is stored in a property set stream as a sequence of
bytes. You must know the property's type in order to properly interpret those bytes and
reasonably handle the value. A property's type is one of the so-called Microsoft-defined
"variant types". When you call Property.getType() you'll get a long value which
denoting the property's variant type. The class Variant in the org.apache.poi.hpsf
package holds most of those long values as named constants. For example, the constant
VT_I4 = 3 means a signed integer value of four bytes. Examples of other types are
VT_LPSTR = 30 meaning a null-terminated string of 8-bit characters, VT_LPWSTR =
31 which means a null-terminated Unicode string, or VT_BOOL = 11 denoting a boolean
value.

In most cases you won't need a property's type because HPSF does all the work for you.

1.4.10. Property values

When an application wants to retrieve a property's value and calls
Property.getValue(), HPSF has to interpret the bytes making out the value according
to the property's type. The type determines how many bytes the value consists of and what to
do with them. For example, if the type is VT_I4, HPSF knows that the value is four bytes
long and that these bytes comprise a signed integer value in the little-endian format. This is
quite different from e.g. a type of VT_LPWSTR. In this case HPSF has to scan the value
bytes for a Unicode null character and collect everything from the beginning to that null
character as a Unicode string.

The good new is that HPSF does another job for you, too: It maps the variant type to an

HPSF HOW-TO

Page 17
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

adequate Java type.

Variant type: Java type:

VT_I2 java.lang.Integer

VT_I4 java.lang.Long

VT_FILETIME java.util.Date

VT_LPSTR java.lang.String

VT_LPWSTR java.lang.String

VT_CF byte[]

VT_BOOL java.lang.Boolean

The bad news is that there are still a couple of variant types HPSF does not yet support. If it
encounters one of these types it returns the property's value as a byte array and leaves it to be
interpreted by the application.

An application retrieves a property's value by calling the Property.getValue()
method. This method's return type is the abstract Object class. The getValue() method
looks up the property's variant type, reads the property's value bytes, creates an instance of an
adequate Java type, assigns it the property's value and returns it. Primitive types like int or
long will be returned as the corresponding class, e.g. Integer or Long.

1.4.11. Dictionaries

The property with ID 0 has a very special meaning: It is a dictionary mapping property IDs
to property names. We have seen already that the meanings of standard properties in the
summary information and the document summary information property sets have been
defined by Microsoft. The advantage is that the labels of properties like "Author" or "Title"
don't have to be stored in the property set. However, a user can define custom fields in, say,
Microsoft Word. For each field the user has to specify a name, a type, and a value.

The names of the custom-defined fields (i.e. the property names) are stored in the document
summary information second section's dictionary. The dictionary is a map which associates
property IDs with property names.

The method Section.getPIDString(int) not only returns with the well-known
property names of the summary information and document summary information property
sets, but with self-defined properties, too. It should also work with self-defined properties in
self-defined sections.

HPSF HOW-TO

Page 18
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

1.4.12. Codepage support

The property with ID 1 holds the number of the codepage which was used to encode the
strings in this section. If this property is not available in a section, the platform's default
character encoding will be used. This works fine as long as the document being read has been
written on a platform with the same default character encoding. However, if you receive a
document from another region of the world and the codepage is undefined, you are in
trouble.

HPSF's codepage support is only as good as the character encoding support of the Java
Virtual Machine (JVM) the application runs on. If HPSF encounters a codepage number it
assumes that the JVM has a character encoding with a corresponding name. For example, if
the codepage is 1252, HPSF uses the character encoding "cp1252" to read or write strings. If
the JVM does not have that character encoding installed or if the codepage number is illegal,
an UnsupportedEncodingException will be thrown. This works quite well with Java 2
Standard Edition (J2SE) versions since 1.4. However, under J2SE 1.3 or lower you are out of
luck. You should install a newer J2SE version to process codepages with HPSF.

There are some exceptions to the rule saying that a character encoding's name is derived from
the codepage number by prepending the string "cp" to it. In these cases the codepage number
is mapped to a well-known character encoding name. Here are a few examples:

Codepage 932
is mapped to the character encoding "SJIS".
Codepage 1200
is mapped to the character encoding "UTF-16".
Codepage 65001
is mapped to the character encoding "UTF-8".

More of these mappings between codepage and character encoding name are hard-coded in
the classes org.apache.poi.hpsf.Constants and
org.apache.poi.hpsf.VariantSupport. Probably there will be a need to add
more mappings. The HPSF author will appreciate any hints.

1.5. Writing Properties

Note:
This section describes how to write properties.

1.5.1. Overview of Writing Properties

HPSF HOW-TO

Page 19
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

Writing properties is possible at a high level and at a low level:

• Most users will want to create or change entries in the summary information or document
summary information streams.

• On the low level, there are no convenience classes or methods. You have to deal with
things like property IDs and variant types to write properties. Therefore you should have
read section 3 to understand the description of the low-level writing functions.

HPSF's writing capabilities come with the classes MutablePropertySet,
MutableSection, MutableProperty, and some helper classes. The "mutable" classes
extend their respective superclasses PropertySet, Section, and Property and
provide "set" and "write" methods, following the Decorator pattern.

1.5.2. Low-Level Writing: An Overview

When you are going to write a property set stream your application has to perform the
following steps:

1. Create a MutablePropertySet instance.
2. Get hold of a MutableSection. You can either retrieve the one that is always present

in a new MutablePropertySet, or you have to create a new MutableSection
and add it to the MutablePropertySet.

3. Set any Section fields as you like.
4. Create as many MutableProperty objects as you need. Set each property's ID, type,

and value. Add the MutableProperty objects to the MutableSection.
5. Create further MutableSections if you need them.
6. Eventually retrieve the property set as a byte stream using

MutablePropertySet.toInputStream() and write it to a POIFS document.

1.5.3. Low-level Writing Functions In Details

Writing properties is introduced by an artificial but simple example: a program creating a
new document (aka POI file system) which contains only a single document: a summary
information property set stream. The latter will hold the document's title only. This is
artificial in that it does not contain any Word, Excel or other kind of useful application
document data. A document containing just a property set is without any practical use.
However, it is perfectly fine for an example because it make it very simple and easy to
understand, and you will get used to writing properties in real applications quickly.

The application expects the name of the POI file system to be written on the command line.
The title property it writes is "Sample title".

Here's the application's source code. You can also find it in the "examples" section of the POI
source code distribution. Explanations are following below.

HPSF HOW-TO

Page 20
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

http://en.wikipedia.org/wiki/Decorator_pattern

package org.apache.poi.hpsf.examples;

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;

import org.apache.poi.hpsf.MutableProperty;
import org.apache.poi.hpsf.MutablePropertySet;
import org.apache.poi.hpsf.MutableSection;
import org.apache.poi.hpsf.SummaryInformation;
import org.apache.poi.hpsf.Variant;
import org.apache.poi.hpsf.WritingNotSupportedException;
import org.apache.poi.hpsf.wellknown.PropertyIDMap;
import org.apache.poi.hpsf.wellknown.SectionIDMap;
import org.apache.poi.poifs.filesystem.POIFSFileSystem;

/**
* <p>This class is a simple sample application showing how to create a property
* set and write it to disk.</p>
*
* @author Rainer Klute
* @since 2003-09-12
*/
public class WriteTitle
{

/**
* <p>Runs the example program.</p>
*
* @param args Command-line arguments. The first and only command-line
* argument is the name of the POI file system to create.
* @throws IOException if any I/O exception occurs.
* @throws WritingNotSupportedException if HPSF does not (yet) support
* writing a certain property type.
*/
public static void main(final String[] args)
throws WritingNotSupportedException, IOException
{

/* Check whether we have exactly one command-line argument. */
if (args.length != 1)
{

System.err.println("Usage: " + WriteTitle.class.getName() +
"destinationPOIFS");

System.exit(1);
}

final String fileName = args[0];

/* Create a mutable property set. Initially it contains a single section
* with no properties. */
final MutablePropertySet mps = new MutablePropertySet();

/* Retrieve the section the property set already contains. */
final MutableSection ms = (MutableSection) mps.getSections().get(0);

HPSF HOW-TO

Page 21
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

/* Turn the property set into a summary information property. This is
* done by setting the format ID of its first section to
* SectionIDMap.SUMMARY_INFORMATION_ID. */
ms.setFormatID(SectionIDMap.SUMMARY_INFORMATION_ID);

/* Create an empty property. */
final MutableProperty p = new MutableProperty();

/* Fill the property with appropriate settings so that it specifies the
* document's title. */
p.setID(PropertyIDMap.PID_TITLE);
p.setType(Variant.VT_LPWSTR);
p.setValue("Sample title");

/* Place the property into the section. */
ms.setProperty(p);

/* Create the POI file system the property set is to be written to. */
final POIFSFileSystem poiFs = new POIFSFileSystem();

/* For writing the property set into a POI file system it has to be
* handed over to the POIFS.createDocument() method as an input stream
* which produces the bytes making out the property set stream. */
final InputStream is = mps.toInputStream();

/* Create the summary information property set in the POI file
* system. It is given the default name most (if not all) summary
* information property sets have. */
poiFs.createDocument(is, SummaryInformation.DEFAULT_STREAM_NAME);

/* Write the whole POI file system to a disk file. */
poiFs.writeFilesystem(new FileOutputStream(fileName));

}

}

The application first checks that there is exactly one single argument on the command line:
the name of the file to write. If this single argument is present, the application stores it in the
fileName variable. It will be used in the end when the POI file system is written to a disk
file.
if (args.length != 1)
{

System.err.println("Usage: " + WriteTitle.class.getName() +
"destinationPOIFS");

System.exit(1);
}
final String fileName = args[0];

Let's create a property set now. We cannot use the PropertySet class, because it is
read-only. It does not have a constructor creating an empty property set, and it does not have
any methods to modify its contents, i.e. to write sections containing properties into it.

HPSF HOW-TO

Page 22
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

The class to use is MutablePropertySet. It is a subclass of PropertySet. The
sample application calls its no-args constructor in order to establish an empty property set:
final MutablePropertySet mps = new MutablePropertySet();

As said, we have an empty property set now. Later we will put some contents into it.

By the way, the MutablePropertySet class has another constructor taking a
PropertySet as parameter. It creates a mutable deep copy of the property set given to it.

The MutablePropertySet created by the no-args constructor is not really empty: It
contains a single section without properties. We can either retrieve that section and fill it with
properties or we can replace it by another section. We can also add further sections to the
property set. The sample application decides to retrieve the section being already there:
final MutableSection ms = (MutableSection) mps.getSections().get(0);

The getSections() method returns the property set's sections as a list, i.e. an instance of
java.util.List. Calling get(0) returns the list's first (or zeroth, if you prefer)
element. The Section returned is a MutableSection: a subclass of Section you can
modify.

The alternative to retrieving the MutableSection being already there would have been to
create an new MutableSection like this:
MutableSection s = new MutableSection();

There is also a constructor which takes a Section as parameter and creates a mutable deep
copy of it.

The MutableSection the sample application retrieved from the
MutablePropertySet is still empty. It contains no properties and does not have a format
ID. As you have read above the format ID of the first section in a property set determines the
property set's type. Since our property set should become a SummaryInformation property set
we have to set the format ID of its first (and only) section to
F29F85E0-4FF9-1068-AB-91-08-00-2B-27-B3-D9. However, you won't have to
remember that ID: HPSF has it defined as the well-known constant
SectionIDMap.SUMMARY_INFORMATION_ID. The sample application writes it to the
section using the setFormatID(byte[]) method:
ms.setFormatID(SectionIDMap.SUMMARY_INFORMATION_ID);

Now it is time to create a property. As you might expect there is a subclass of Property
called MutableProperty with a no-args constructor:
final MutableProperty p = new MutableProperty();

A MutableProperty object must have an ID, a type, and a value (see above for details).
The class provides methods to set these attributes:
p.setID(PropertyIDMap.PID_TITLE);

HPSF HOW-TO

Page 23
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

p.setType(Variant.VT_LPWSTR);
p.setValue("Sample title");

The MutableProperty class has a constructor which you can use to pass in all three
attributes in a single call. See the Javadoc API documentation for details!

The sample property set is complete now. We have a MutablePropertySet containing a
MutableSection containing a MutableProperty. Of course we could have added
more sections to the property set and more properties to the sections but we wanted to keep
things simple.

The property set has to be written to a POI file system. The following statement creates it.
final POIFSFileSystem poiFs = new POIFSFileSystem();

Writing the property set includes the step of converting it into a sequence of bytes. The
MutablePropertySet class has the method toInputStream() for this purpose. It
returns the bytes making out the property set stream as an InputStream:
final InputStream is = mps.toInputStream();

If you'd read from this input stream you'd receive all the property set's bytes. However, it is
very likely that you'll never do that. Instead you'll pass the input stream to the
POIFSFileSystem.createDocument() method, like this:
poiFs.createDocument(is, SummaryInformation.DEFAULT_STREAM_NAME);

Besides the InputStream createDocument() takes a second parameter: the name of
the document to be created. For a SummaryInformation property set stream the default name
is available as the constant SummaryInformation.DEFAULT_STREAM_NAME.

The last step is to write the POI file system to a disk file:
poiFs.writeFilesystem(new FileOutputStream(fileName));

1.6. Further Reading

There are still some aspects of HSPF left which are not covered by this HOW-TO. You
should dig into the Javadoc API documentation to learn further details. Since you've
struggled through this document up to this point, you are well prepared.

HPSF HOW-TO

Page 24
Copyright © 2002-2006 The Apache Software Foundation All rights reserved.

	1 How To Use the HPSF API
	1.1 Reading Standard Properties
	1.1.1 Open the document \005SummaryInformation in the root of the
 POI filesystem

	1.2 Additional Standard Properties, Exceptions And Embedded
 Objects
	1.3 Writing Standard Properties
	1.3.1 User-Defined Properties

	1.4 Reading Non-Standard Properties
	1.4.1 Overview
	1.4.2 A Sample Application
	1.4.3 The Property Set
	1.4.4 The Sections
	1.4.5 The Section's Format ID
	1.4.6 The Properties
	1.4.7 Sample Output
	1.4.8 Property IDs
	1.4.9 Property types
	1.4.10 Property values
	1.4.11 Dictionaries
	1.4.12 Codepage support

	1.5 Writing Properties
	1.5.1 Overview of Writing Properties
	1.5.2 Low-Level Writing: An Overview
	1.5.3 Low-level Writing Functions In Details

	1.6 Further Reading

