HPSF HOW-TO

by Rainer Klute

1. How To Usethe HPSF API

This HOW-TO is organized in four sections. Y ou should read them sequentially because the
later sections build upon the earlier ones.

1. Thefirst section explains how to read the most important standard properties of a
Microsoft Office document. Standard properties are things like title, author, creation date
etc. It isquitelikely that you will find here what you need and don't have to read the
other sections.

2. The second section goes a small step further and focusses on reading additional
standard properties. It also talks about exceptions that may be thrown when dealing
with HPSF and shows how you can read properties of embedded objects.

3. Thethird section explains how to write standard properties. HPSF provides some
high-level classes and methods which make writing of standard properties easy. They are
based on the low-level writing functions explained in the fifth section.

4. Thefourth section tells how to read non-standard properties. Non-standard properties
are application-specific triples consisting of an ID, atype, and avalue.

5. Thefifth section tells you how to write property set streams using HPSF's low-level
methods. Y ou have to understand the fourth section before you should think about
low-level writing properties. Check the Javadoc API documentation to find out about the
details!

Please note: HPSF's writing functionality is not present in POI releases up to and including 2.5. In order to write properties
you have to download a 3.0.x POI release, or retrieve the POl devel opment version from the Subversion repository.

1.1. Reading Standard Properties

This section explains how to read the most important standard properties of a Microsoft Office document. Standard properties
are things like title, author, creation date etc. This section introduces the summary information stream which is used to keep
these properties. Chances are that you will find here what you need and don't have to read the other sections.

Page 1

../subversion.html

HPSF HOW-TO

The first thing you should understand is that a Microsoft Office file is not one large bunch of
bytes but has an internal filesystem structure with files and directories. Y ou can access these
files and directories using the POI filesystem (POIFS) provides. A file or document in a POI
filesystem is also called a stream - The properties of, say, an Excel document are stored
apart of the actual spreadsheet data in separate streams. The good new is that this separation
makes the properties independent of the concrete Microsoft Office file. In the following text
we will always say "POI filesystem" instead of "Microsoft Office file" because a POI
filesystem is not necessarily created by or for a Microsoft Office application, because it is
shorter, and because we want to avoid the name of That Redmond Company.

The following example shows how to read the "title" property. Reading other properties is
similar. Consider the APl documentation of the class
or g. apache. poi . hpsf. Summaryl nformati on to learn which methods are
available.

The standard properties this section focusses on can be found in a document called
\0O5Summarylnformation located in the root of the POI filesystem. The notation \005 in the
document's name means the character with a decimal value of 5. In order to read the "title"
property, an application has to perform the following steps:

1. Open the document \OO5Summaryl nformation located in the root of the POI filesystem.
2. Create an instance of the class Summar yl nf or mat i on from that document.
3. Cadll the Summar yl nf or mat i on instance'sget Ti t | e() method.

Sounds easy, doesn't it? Here are the steps in detail.

1.1.1. Open the document \OO5Summar yl nfor mation in theroot of the POI filesystem

An application that wants to open a document in a POI filesystem (POIFS) proceeds as
shown by the following code fragment. The full source code of the sample application is
available in the examples section of the POI source tree as ReadTitle.java.

i mport java.io.?*;
i mport org. apache. poi . hpsf.*;
i mport org.apache. poi . poifs.eventfil esystem *;

...

public static void main(String[] args)
throws | CExcepti on
{

final String filenane = args[O0];

PO FSReader r = new PO FSReader () ;

r.regi sterlListener(new M/PO FSReader Li st ener (),
"\ 005Sunmar yl nf or mati on") ;

r.read(new Fil el nput Strean(fil enane));

Page 2

../poifs/index.html

HPSF HOW-TO

}
Thefirst interesting statement is
PO FSReader r = new PO FSReader () ;

It creates a or g. apache. poi . poi fs. eventfil esystem PO FSReader instance
which we shall need to read the POI filesystem. Before the application actually opens the
POI filesystem we have to tell the PO FSReader which documents we are interested in. In
this case the application should do something with the document \OO5Summaryl nfor mation.

r.registerlListener(new MyPO FSReader Li st ener (),
"\ 005Sunmar yl nf or mati on") ;

This method cal registers a
or g. apache. poi . poi fs. eventfil esystem PO FSReader Li st ener with the
PO FSReader. The PO FSReader Li stener interface specifies the method
processPO FSReader Event () which processes a document. The class
MyPO FSReader Li st ener implements the PO FSReader Li st ener and thus the
processPO FSReader Event () method. The eventing POI filesystem calls this method
when it finds the \00O5Summarylnformation document. In the sample application
MyPO FSReader Li st ener isadtatic classin the ReadTitle,java sourcefile.

Now everything is prepared and reading the POI filesystem can start:
r.read(new Fil el nput Stream(fil enane));

The following source code fragment shows the MyPO FSReader Li st ener classand how
it retrievesthetitle.

static class MyPO FSReader Li st ener i npl enents PO FSReader Li st ener

public void processPO FSReader Event (PO FSReader Event event)
{

Sunmar yl nf ormation si = null;
try
{

si = (Summaryl nf ormati on)
PropertySet Factory. create(event. getStrean());

}
catch (Exception ex)

t hrow new Runti neExcepti on
("Property set stream\"" +
event.getPath() + event.getNanme() + "\": " + ex);

| String title = si.getTitle();

title '= null)

Systemout.printIn("Title: \"" + title + "\"");
el se

System out. println("Docunment has no title.");

1.
fina
if (

Page 3

HPSF HOW-TO

}
Theline

Summar yl nformation si = null;

declares a Summar yl nf or mat i on variable and initializes it with nul | . We need an
instance of this classto accessthetitle. Theinstanceiscreated inat ry block:

si = (Summaryl nf or mati on)
PropertySet Factory. create(event.getStrean());

The expression event . get St r ean() returns the input stream containing the bytes of the
property set stream named \OO5Summarylnformation. This stream is passed into the cr eat e
method of the factory class or g. apache. poi . hpsf. PropertySet Fact ory which
returns a or g. apache. poi . hpsf. PropertySet instance. It is more or less safe to
cast this result to Sunmaryl nf or mati on, a convenience class with methods like
getTitle(),get Aut hor () etc.

The PropertySet Fact ory. creat e() method may throw all sorts of exceptions. Well
deal with them in the next sections. For now we just catch all exceptions and throw a
Runt i meExcept i on containing the message text of the origin exception.

If all goes well, the sample application retrieves the title and prints it to the standard output.
As you can see you must be prepared for the case that the POI filesystem does not have a
title.
final String title = si.getTitle();
if (title !'= null)

I Systemout.printin("Title: \"" + title + "\"");
el se

System out. println("Docunent has no title.");

Please note that a POI filesystem does not necessarily contain the \OO5Summaryl nformation
stream. The documents created by the Microsoft Office suite have one, as far as | know.
However, an Excel spreadsheet exported from StarOffice 52 won't have a
\0O5Summarylnformation stream. In this case the applications won't throw an exception but
simply does not call the pr ocessPO FSReader Event method. Y ou have been warned!

1.2. Additional Standard Properties, Exceptions And Embedded Objects

This section focusses on reading additional standard properties which are kept in the document summary information
stream. It also talks about exceptions that may be thrown when dealing with HPSF and shows how you can read properties of
embedded objects.

A couple of additional standard properties ae not contaned in the
\0O5Summarylnformation stream explained above. Examples for such properties are a

Page 4

HPSF HOW-TO

document's category or the number of multimedia clips in a PowerPoint presentation.
Microsoft has invented an additional stream named \005DocumentSummarylnformation to
hold these properties. With two minor exceptions you can proceed exactly as described above
to read the properties stored in \OO5DocumentSummarylnfor mation:

« Instead of \OO5Summarylnformation use \OO5DocumentSummaryl nformation as the
stream's name.

* Replace al occurrences of the class Summrar yI nf or mat i on by
Docunent Sumrar yl nf or mat i on.

And of course you cannot call getTitle() because
Docunent Summar yl nf or mat i on has different query methods, e.g. get Cat egory.
See the Javadoc API documentation for the details.

In the previous section the application simply caught all exceptions and was in no way
interested in any details. However, a real application will likely want to know what went
wrong and act appropriately. Besides any I/O exceptions there are three HPSF resp. POI
specific exceptions you should know about:

NoPr opertySet St r eanExcepti on:

This exception is thrown if the application tries to create a Pr oper t ySet
instance from a stream that is not a property set stream.

(Summar yl nf or mat i on and Docunent Sunmar yl nf or mat i on are subclasses
of Propert ySet .) A faulty property set stream counts as not being a property
set stream at all. An application should be prepared to deal with this case even if
it opens streams named \0OO5SummaryInformation or
\005DocumentSummarylnformation. These are just names. A stream's name by
itself does not ensure that the stream contains the expected contents and that
this contents is correct.

Unexpect edPr opert ySet TypeExcepti on

This exception is thrown if a certain type of property set is expected somewhere
(e.g. a Sunmar yl nf or mat i on or Docunment Sunmar yl nf or mat i on) but the
provided property set is not of that type.

Mar kUnsupport edExcepti on

This exception is thrown if an input stream that is to be parsed into a property set
does not support the | nput St ream mar k(i nt) operation. The POI filesystem
uses the Docunent | nput St r eamclass which does support this operation, so
you are safe here. However, if you read a property set stream from another kind
of input stream things may be different.

Many Microsoft Office documents contain embedded objects, for example an Excel sheet
within a Word document. Embedded objects may have property sets of their own. An
application can open these property set streams as described above. The only difference is

Page 5

HPSF HOW-TO

that they are not located in the POI filesystem's root but in a nested directory instead. Just
register a PO FSReader Li st ener for the property set streams you are interested in. For
example, the POIBrowser application in the contrib section tries to open each and every
document in a POI filesystem as a property set stream. If this operation was successful it
displays the properties.

1.3. Writing Standard Properties

This section explains how to write standard properties. HPSF provides some high-level classes and methods which make
writing of standard properties easy. They are based on the low-level writing functions explained in another section.

As explained above, standard properties are located in the summary information and
document summary information streams of typical POI filesystems. You have already
learned about the classes Sunmmar yl nf or mati on and
Docunent Summar yl nf or mat i on and their get ... () methods for reading standard
properties. These classes aso provideset . . . () methods for writing properties.

After setting properties in Sunmmar yl nf or mat i on or
Docunent Sunmar yl nf or mat i on you have to write them to a disk file. The following
sample program shows how you can

read adisk fileinto aPOI filesystem,

read the document summary information from the POI filesystem,

set a property to anew value,

write the modified document summary information back to the POI filesystem, and
write the POI filesystem to adisk file.

The complete source code of this program is avalable as
ModifyDocumentSummaryl nformation.java in the examples section of the POI source tree.

S

Dealing with the summary information stream is analogous to handling the document summary information and therefore does
not need to be explained here in detailed. See the HPSF API documentation to learn about the set . . . () methods of the class
Surmmar yl nf or mati on.

Thefirst step isto read the POI filesystem into memory:

Input Streamis = new Fil el nput Stream poi Fi | esystem;

PO FSFi | eSystem poifs = new PO FSFi | eSysten(is);

is.close();

The code snippet above assumes that the variable poi Fi | esyst emholds the name of a
disk file. It reads the file from an input stream and creates a PO FSFi | eSyst emobject in

Page 6

HPSF HOW-TO

memory. After having read the file, the input stream should be closed as shown.

In order to read the document summary information stream the application must open the
element \OO5DocumentSummarylnformation in the POI filesystem's root directory. However,
the POI filesystem does not necessarily contain a document summary information stream,
and the application should be able to deal with that situation. The following code does so by
creating anew Docunent Summar yI nf or mat i on if thereis nonein the POI filesystem:

DirectoryEntry dir = poifs.getRoot();
Docurent Sunmar yl nf or mati on dsi ;
try

{
Docurment Entry dsi Entry = (Docunent Entry)

di r. get Ent ry(Docunment Surmar yl nf or mat i on. DEFAULT _STREAM NAME)
Docurent I nput Stream di s = new Docunent | nput St r ean(dsi Entry);
PropertySet ps = new PropertySet (dis);

di s. cl ose();

dsi = new Docunent Summar yl nf or mati on(ps);
}
catch (Fil eNot FoundExcepti on ex)
{
/* There is no docunent summary infornation. We have to create a
* new one. */
dsi = PropertySet Fact ory. newDocunent Sunmar yl nf or mati on() ;
}

In the source code above the statement

DirectoryEntry dir = poifs.getRoot();

gets hold of the POI filesystem'sroot directory asaDi r ect or yEntry. Theget Entry()
method of this classis used to access afile or directory entry in a directory. However, if the
file to be opened does not exist, a Fi | eNot FoundExcept i on will be thrown. Therefore
opening the document summary information entry should be donein at r y block:

Docunent Entry dsi Entry = (Docunent Entry)
di r. get Ent r y(Docunent Summar yl nf or nat i on. DEFAULT _STREAM NAME)

Docunent Summar yl nf or mat i on. DEFAULT_STREAM NAME represents the string
"\005DocumentSummarylnformation”, i.e. the standard name of a document summary
information stream. If this stream exists, the getEntry() method returns a
Docunent Entry. To read the DocunentEntry's contents, create a
Docunent | nput St r eam

Docunent | nput Stream di s = new Docunent | nput St rean{ dsi Entry);
Up to this point we have used POI's POIES component. Now HPSF enters the stage. A
property set is created from the input stream's data:

PropertySet ps = new PropertySet (dis);
di s.cl ose();
dsi = new Docunent Sunmar yl nf or mat i on(ps) ;

Page 7

../poifs/index.html

HPSF HOW-TO

If the data really constitutes a property set, a Pr opert ySet object is created. Otherwise a
NoPr opert ySet St r eanExcept i on is thrown. After having read the data from the
input stream the latter should be closed.

Since we know - or a least hope - that the stream named
"\005DocumentSummarylnformation™ is not just any property set but really contains the
document summary information, we try to create a new

Docunent Summar yl nf or mat i on from the property set. If the stream is not document
summary information stream the sample application fals with a
Unexpect edPr opert ySet TypeExcepti on.

If the POI document does not contain a document summary information stream, we can
create a new one in the catch clause. The PropertySet Factory's method
newDocunent Summar yl nf or mati on() establishes a new and empty
Docunent Summar yl nf or mat i on instance:

dsi = PropertySet Fact ory. newbDocurment Sunmar yl nf or mati on() ;

Whether we read the document summary information from the POI filesystem or created it
from scratch, in either case we now have a Docunent Sunmar yl nf or mat i on instance
we can write to. Writing is quite simple, as the following line of code shows:

dsi . set Cat egory(" PO exanple");

This statement sets the "category” property to "POI example®. Any former "category" value
will belost. If there hasn't been a"category” property yet, a new one will be created.

Docunent Summar yl nf or mat i on of course has methods to set the other standard
properties, too - look into the API documentation to see all of them.

Once all properties are set as needed, they should be stored into the file on disk. Thefirst step
isto write the Docunent Sunmar yl nf or mat i on into the POI filesystem:

dsi.wite(dir, Docurment Sunmaryl nformati on. DEFAULT STREAM NAME) ;

The Docunent Summar yl nf ormati on'swite() method takes two parameters. The
firstistheDi r ect or yEnt ry inthe POI filesystem, the second is the name of the stream to
create in the directory. If this stream already exists, it will be overwritten.

If you not only modified the document summary information but also the summary information you have to write both of them
to the POl filesystem.

Still the POI filesystem is a data structure in memory only and must be written to a disk file
to make it permanent. The following lines write back the POI filesystem to the file it was
read from before. Please note that in production-quality code you should never write directly
to the origin file, because in case of an error everything would be lost. Here it is done this

Page 8

HPSF HOW-TO

way to keep the example short.

Qut put Stream out = new Fi | eQut put St rean{ poi Fi | esystem
poifs.witeFilesysten{out);
out . cl ose();

1.3.1. User-Defined Properties

If you compare the source code excerpts above with the file containing the full source code,
you will notice that | left out some following lines of code. The are dealing with the special
topic of custom properties.

Docurent Sunmar yl nf ormati on dsi = ...

CﬁétonProperties custonProperties = dsi.getCustonProperties();
i f (custonProperties == null)
cust onProperti es = new CustonProperties();

/* Insert some custom properties into the container. */
custonProperties. put("Key 1", "Value 1");
custonProperties. put ("Schl issel 2", "Wert 2");

cust onProperties. put ("Sanpl e Nunber”, new | nteger(12345));
cust onProperti es. put (" Sanpl e Bool ean", new Bool ean(true));
cust onProperties. put ("Sanple Date", new Date());

/* Read a custom property. */
oj ect val ue = custonProperties. get("Sanpl e Nunber");

/* Wite the custom properties back to the docunent sunmary

* information. */

dsi . set Cust onProperti es(custonProperties);

Custom properties are properties the user can define himself. Using for example Microsoft
Word he can define these extra properties and give each of them a name, atype and avalue.
The custom properties are stored in the document information summary along with the
standard properties.

The source code example shows how to retrieve the custom properties as a whole from a
Docunent Summar yl nf or mati on instance using the get Cust onProperties()

method. The result is a Cust onProperties instance or nul |l if no user-defined
properties exist.

Since Cust onProperties implements the Map interface you can read and write
properties with the usual Map methods. However, Cust onProperti es poses some
restrictions on the types of keys and values.
e Thekeyisastring.
« Thevalueisoneof Stri ng, Bool ean, Long, | nt eger, Short,or

java. util . Date.

Page 9

HPSF HOW-TO

The Cust onProperti es class has been designed for easy access using just keys and
values. The underlying Microsoft-specific custom properties data structure is more
complicated. However, it does not provide noteworthy additional benefits. It is possible to
have multiple properties with the same name or properties without a name at all. When
reading custom properties from a document summary information stream, the
Cust onPr operti es class ignores properties without a name and keeps only the "last"
(whatever that means) of those properties having the same name. Y ou can find out whether a
Cust onPr operti es instance dropped any properties with thei sPur e() method.

You can read and write the full spectrum of custom properties with HPSF's low-level
methods. They are explained in the next section.

1.4. Reading Non-Standard Properties

This section tells how to read non-standard properties. Non-standard properties are application-specific | D/type/value triples.

1.4.1. Overview

Now comes the rea hardcode stuff. As mentioned above, Summrar yl nf or mat i on and
Docunent Summar yl nf or mat i on are just specia cases of the general concept of a
property set. This concept says that a property set consists of properties and that each
property isan entity with an 1D, atype, and avalue.

Okay, that was still rather easy. However, to make things more complicated, Microsoft in its
infinite wisdom decided that a property set shalt be broken into one or more sections. Each
section holds a bunch of properties. But since that's still not complicated enough, a section
may have an optiona dictionary that maps property 1Ds to property names - we'll explain
later what that means.

The procedure to get to the properties is the following:

1. UsethePr opertySet Fact ory classto createaPr opert ySet object froma
property set stream. If you don't know whether an input stream is a property set stream,
justtry tocall PropertySet Factory. create(java.io. | nputStrean):
You'l either get aPr opert ySet instance returned or an exception is thrown.

2. Cdl thePr opert ySet 'smethod get Sect i ons() to get the sections contained in the
property set. Each section is an instance of the Sect i on class.

3. Each section hasaformat ID. The format ID of the first section in a property set
determines the property set's type. For example, the first (and only) section of the
summary information property set has aformat ID of

Page 10

HPSF HOW-TO

F29F85E0- 4FF9- 1068- AB- 91- 08- 00- 2B- 27- B3- D9. Y ou can get the format
ID with Sect i on. get Format | D() .

4. The properties contained inaSect i on can be retrieved with
Section. get Properties().Theresultisanarray of Property instances.

5. A property has aname, atype, and avalue. The Pr oper t y class has methods to retrieve
them.

1.4.2. A Sample Application

Let's have alook at a sample Java application that dumps all property set streams contained
in a POl file syssem. The full source code of this program can be found as
ReadCustomPropertySets.java in the examples area of the POI source code tree. Here are the
key sections:

i mport java.io.*;

i mport java.util.*;

i mport org. apache. poi . hpsf.*;

i mport org.apache. poi . poifs.eventfil esystem *;

i nport org.apache. poi . util.HexDunp;

The most important package the application needs is or g. apache. poi . hpsf. *. This
package contains the HPSF classes. Most classes named below are from the HPSF package.
Of course we also need the POIFS event file system's classesand j ava. i 0. * since we are
dealing with POI I/O. From the j ava. uti | package we use the Li st and | t er at or
class. The class or g. apache. poi . uti | . HexDunp provides a methods to dump byte
arrays as nicely formatted strings.

public static void main(String[] args)
throws | CExcepti on
{

final String filenane = args[O0];
PO FSReader r = new PO FSReader () ;

/* Register a listener for *all* docunents. */

r.regi sterlistener(new M/PO FSReader Li stener());
r.read(new Fil el nput Strean(fil enane));

The PO FSReader is set up in a way that the listener MyPO FSReader Li st ener is
called on every filein the POI file system.

1.4.3. The Property Set

The listener class tries to create a PropertySet from each stream using the
PropertySet Fact ory. creat e() method:

static class MyPO FSReader Li st ener inpl enents PO FSReader Li st ener
public void processPO FSReader Event (PO FSReader Event event)

Page 11

HPSF HOW-TO

PropertySet ps = null;
try

{
ps = PropertySet Factory. create(event.getStream));

}
cat ch (NoPropertySet StreanExcepti on ex)

out ("No property set stream \"" + event.getPath() +
event. get Nan'e() b DY@ u) :
return;

catch (Exception ex)

t hrow new Runti meExcepti on
("Property set stream\"" +
event.getPath() + event.getNane() + "\": " + ex);

}

/[* Print the name of the property set stream */
out ("Property set stream\"" + event.getPath() +
event.getName() + "\":");

Creating the Pr opert ySet isdoneinat ry block, because not each stream in the POI file
system contains a property set. If it is some other file, the
PropertySet Factory. creat e() throws a NoPropertySet St reantExcepti on,
which is caught and logged. Then the program continues with the next stream. However, all
other types of exceptions cause the program to terminate by throwing a runtime exception. If
all went well, we can print the name of the property set stream.

1.4.4. The Sections

The next step isto print the number of sections followed by the sections themselves:

/* Print the nunmber of sections: */
final long sectionCount = ps.getSectionCount();
out (" No. of sections: " + sectionCount);

/[* Print the list of sections: */

Li st sections = ps.get Sections();

int nr = 0;

for (lterator i = sections.iterator(); i.hasNext();)

/* Print a single section: */
Section sec = (Section) i.next();

/1 See bel ow for the conplete | oop body.
}

The Pr oper t ySet 'smethod get Sect i onCount () returnsthe number of sections.

To retrieve the sections, use the get Secti ons() method. This method returns a

Page 12

HPSF HOW-TO

java. util.List containing instances of the Sect i on classin their proper order.

The sample code shows a loop that retrieves the Sect i on objects one by one and prints
some information about each one. Here is the complete body of the loop:

/[* Print a single section: */

Section sec (Section) i.next();

out (" Sect|on "t onr++ + "),

Strlng S hex(sec. getFornatIEX) get Bytes());

s = s. substrlng(o s.length() - 1);
out (" Format ID. " + s);

/[* Print the number of properties in this section. */
int propertyCount = sec.getPropertyCount();
out (" No. of properties: " + propertyCount);

/* Print the properties: */
Property[] properties = sec.getProperties(
i

)
for (int i2 =0; i2 < properties.|ength; 2++)
{

/* Print a single property: */

Property p = properties[i?2];

int id = p.getlX);

| ong type = p. getType();

nj ect val ue = p. get Val ue();

out (" Property ID. " +id + ", type: " + type +
", value: " + value);

}
1.45. The Section'sFormat 1D

The first method called on the Secti on instance is get Format 1 D() . As explained
above, the format ID of the first section in a property set determines the type of the property
set. ItstypeisCl ass| Dwhich isessentialy a sequence of 16 bytes. A real application using
its own type of a custom property set should have defined a unique format 1D and, when
reading a property set stream, should check the format ID is equal to that unique format ID.
The sample program just prints the format ID it finds in a section:

String s = hex(sec.getFormat| D().getBytes());
s = s.substring(0, s.length() - 1);

out (" Format ID: " + s);

As you can see, the get Format | () method returns a Cl assl D object. An array
containing the bytes can be retrieved with Cl assl| D. get Byt es() . In order to get anicely
formatted printout, the sample program uses the hex () helper method which in turn uses the
POI utility class HexDunp in the or g. apache. poi . uti| package. Another helper
method isout () which just savestyping Syst em out. println().

1.4.6. The Properties

Page 13

HPSF HOW-TO

Before getting the properties, it is possible to find out how many properties are available in
the section viathe Sect i on. get Pr opert yCount (). The sample application uses this
method to print the number of properties to the standard output:

i nt propertyCount = sec. get PropertyCount();

out (" No. of properties: " + propertyCount);

Now its time to get to the properties themselves. Y ou can retrieve a section's properties with
the method Sect i on. get Properties():

Property[] properties = sec.getProperties();

As you can see the result is an array of Property objects. This class has three methods to
retrieve a property's ID, its type, and its value. The following code snippet shows how to call
them:

for (int i2 =0; i2 < properties.length; i2++)
{

/[* Print a single property: */

Property p = properties[i?2];

int id = p.getlD);

long type = p.getType();

oj ect val ue = p. get Val ue();

out (" Property ID: " +id + ", type:
", value: " + value);

+ type +
}
1.4.7. Sample Output

The output of the sample program might look like the following. It shows the summary
information and the document summary information property sets of a Microsoft Word
document. However, unlike the first and second section of this HOW-TO the application
does not have any code which is specific to the Summaryl nf ormati on and
Docunent Summar yl nf or mat i on classes.

Property set stream "/ Summaryl nfornmation":

No. of sections: 1
Section O:

Format | D: 00000000 F2 9F 85 EO 4F F9 10 68 AB 91 08 00 2B 27 B3 D9

No. of properties: 17

Property ID 1, type: 2, value: 1252

Property ID: 2, type: 30, value: Tite

Property ID. 3, type: 30, value: Thena

Property ID: 4, type: 30, value: Rainer Kl ute (Autor)

Property ID: 5, type: 30, value: Test (Stichwodrter)

Property ID: 6, type: 30, value: This is a docunent for testing HPSF
Property ID: 7, type: 30, value: Normal.dot

Property ID: 8, type: 30, value: Unknown User

Property ID: 9, type: 30, value: 3

Property ID: 18, type: 30, value: Mcrosoft Wrd 9.0

Property ID: 12, type: 64, value: Mn Jan 01 00:59:25 CET 1601
Property I D 13, type: 64, value: Thu Jul 18 16:22:00 CEST 2002

Page 14

HPSF HOW-TO

Property ID: 14,
Property 1D 15,
Property ID: 16,
Property ID: 19,
Property 1D 17,

No. of sections: 2

Section O:
Format | D: 00000000 D5 CD D5 02 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE +
No. of properties: 14
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 30, value: Test
Property ID: 14, type: 30, value: Rainer Klute (Manager)
Property ID: 15, type: 30, value: Rainer Klute |IT-Consulting GrH
Property ID: 5, type: 3, value: 3
Property ID:. 6, type: 3, value: 2
Property ID. 17, type: 3, value: 111
Property ID: 23, type: 3, value: 592636
Property ID: 11, type: 11, value: false
Property ID: 16, type: 11, value: false
Property ID: 19, type: 11, value: false
Property ID: 22, type: 11, value: false
Property I D 13, type: 4126, value: [B@®6a499
Property ID: 12, type: 4108, value: [B@06411
Section 1:

Format | D. 00000000 D5 CD D5 05 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE +
No. of properties: 7
Property ID: 0, type: 0, value: {6=Test-JaNein, 5=Test-Zahl, 4=Test-Datum 3=Test
Property ID 1, type: 2, value: 1252
Property ID: 2, type: 65, value: [B@9ba38
Property ID: 3, type: 30, value: This is sonme text.
Property ID: 4, type: 64, value: Wed Jul 17 00: 00: 00 CEST 2002
Property ID: 5, type: 3, value: 27
Property ID: 6, type: 11, value: true

No property set stream "/VbrdDocunent"

No property set stream "/ ConpCbj"

No property set stream "/1Table"

t ype:
t ype:
t ype:
t ype:
t ype:

, Vval ue:
, Vval ue:
, Vval ue:

val ue:
71 val ue:

Wwww

There are some interesting items to note:

« Thefirst property set (summary information) consists of a single section, the second
property set (document summary information) consists of two sections.

« Each section type (identified by its format 1D) has its own domain of property ID. For
example, in the second property set the propertieswith ID 2 have different meaningsin
the two section. By the way, the format IDs of these sections are not equal, but you have
to look hard to find the difference.

« The properties are not in any particular order in the section, although they dlightly tend to

be sorted by their IDs.

1.4.8. Property IDs

1
20
93
0

[B@l3582d
Property set stream' /DocunentSunnarylnfornatlon

Properties in the same section are distinguished by their IDs. Thisis similar to variablesin a

Page 15

HPSF HOW-TO

programming language like Java, which are distinguished by their names. But unlike variable
names, property 1Ds are ssimple integral numbers. There is another similarity, however. Just
like a Java variable has a certain scope (e.g. a member variables in a class), a property 1D
also has its scope of validity: the section.

Two property IDs in sections with different section format IDs don't have the same meaning
even though their IDs might be equal. For example, ID 4 in the first (and only) section of a
summary information property set denotes the document's author, while ID 4 in the first
section of the document summary information property set means the document's byte count.
The sample output above does not show a property with an ID of 4 in the first section of the
document summary information property set. That means that the document does not have a
byte count. However, there is a property with an ID of 4 in the second section: This is a
user-defined property ID - we'll get to that topic in aminute.

So, how can you find out what the meaning of a certain property ID in the summary
information and the document summary information property set is? The standard property
sets as such don't have any hints about the meanings of their property IDs. For example,
the summary information property set does not tell you that the property ID 4 stands for the
document's author. This is external knowledge. Microsoft defined standard meanings for
some of the property IDs in the summary information and the document summary
information property sets. As a help to the Java and POl programmer, the class
Propertyl DMap in the org. apache. poi. hpsf.wel | known package defines
constants for the "well-known" property IDs. For example, there is the definition

public final static int PID_AUTHOR = 4;

These definitions allow you to use symbolic names instead of numbers.

In order to provide support for the other way, too, - i.e. to map property IDs to property

names - the class PropertylDVap defines two static methods:
get Sunmar yl nf or mati onProperties() and
get Docunment Sunmar yl nf or mat i onProperties(). Both return
j ava. util . Map objects which map property IDs to strings. Such a string gives a hint
about the property's meaning. For example,

Propertyl DMap. get Summar yl nf or mati onProperties().get(4) returns the
string "PID_AUTHOR". An application could use this string as a key to a localized string
which is displayed to the user, e.g. "Author” in English or "Verfasser" in German. HPSF
might provide such language-dependend ("localized") mappingsin alater release.

Usually you won't have to deal with those two maps. Instead you should call the
Section.getPIDString(int) method. It returns the string associated with the
specified property 1D in the context of the Sect i on object.

Above you learned that property IDs have a meaning in the scope of a section only.

Page 16

HPSF HOW-TO

However, there are two exceptions to the rule: The property IDs 0 and 1 have a fixed
meaning in all sections:

Property ID Meaning

0 The property's value is a dictionary, i.e. a
mapping from property IDs to strings.

1 The property's value is the number of a
codepage, i.e. a mapping from character codes
to characters. All strings in the section
containing this property must be interpreted
using this codepage. Typical property values are
1252 (8-bit "western" characters, 1SO-8859-1),
1200 (16-bit Unicode characters, UFT-16), or
65001 (8-bit Unicode characters, UFT-8).

1.4.9. Property types

A property is nothing without its value. It is stored in a property set stream as a sequence of
bytes. You must know the property's type in order to properly interpret those bytes and
reasonably handle the value. A property's type is one of the so-called Microsoft-defined
"variant types'. When you call Property. get Type() you'll get al ong value which
denoting the property's variant type. The class Var i ant intheor g. apache. poi . hpsf
package holds most of those | ong values as named constants. For example, the constant
VT |4 = 3 means a signed integer value of four bytes. Examples of other types are
VT_LPSTR = 30 meaning a null-terminated string of 8-bit characters, VT_LPWSTR =
31 which means a null-terminated Unicode string, or VT_BOOL = 11 denoting a boolean
value.

In most cases you won't need a property's type because HPSF does al the work for you.

1.4.10. Property values

When an application wants to retrieve a property's vaue and cals
Property. get Val ue(), HPSF has to interpret the bytes making out the value according
to the property's type. The type determines how many bytes the value consists of and what to
do with them. For example, if the type is VT_| 4, HPSF knows that the value is four bytes
long and that these bytes comprise a signed integer value in the little-endian format. Thisis
quite different from e.g. a type of VT_LPWSTR. In this case HPSF has to scan the value
bytes for a Unicode null character and collect everything from the beginning to that null
character as a Unicode string.

The good new is that HPSF does another job for you, too: It maps the variant type to an

Page 17

adequate Javatype.
Variant type: Java type:
VT_I12 java.lang.Integer
VT 14 java.lang.Long
VT_FILETIME java.util.Date
VT _LPSTR java.lang.String
VT_LPWSTR java.lang.String
VT _CF byte[]
VT_BOOL java.lang.Boolean

HPSF HOW-TO

The bad news is that there are still a couple of variant types HPSF does not yet support. If it
encounters one of these types it returns the property's value as a byte array and leavesit to be
interpreted by the application.

An application retrieves a property's value by caling the Property. get Val ue()
method. This method's return type is the abstract bj ect class. The get Val ue() method
looks up the property's variant type, reads the property's value bytes, creates an instance of an
adequate Java type, assigns it the property's value and returns it. Primitive types like i nt or
| ong will be returned as the corresponding class, e.g. | nt eger or Long.

1.4.11. Dictionaries

The property with ID 0 has a very special meaning: It is adictionary mapping property IDs
to property names. We have seen already that the meanings of standard properties in the
summary information and the document summary information property sets have been
defined by Microsoft. The advantage is that the labels of properties like "Author” or "Title"
don't have to be stored in the property set. However, a user can define custom fields in, say,
Microsoft Word. For each field the user has to specify a name, atype, and avalue.

The names of the custom-defined fields (i.e. the property names) are stored in the document
summary information second section's dictionary. The dictionary is a map which associates
property |Ds with property names.

The method Secti on. getPIDString(int) not only returns with the well-known
property names of the summary information and document summary information property
sets, but with self-defined properties, too. It should also work with self-defined propertiesin
self-defined sections.

Page 18

HPSF HOW-TO

1.4.12. Codepage support

The property with ID 1 holds the number of the codepage which was used to encode the
strings in this section. If this property is not available in a section, the platform's default
character encoding will be used. Thisworks fine as long as the document being read has been
written on a platform with the same default character encoding. However, if you receive a
document from another region of the world and the codepage is undefined, you are in
trouble.

HPSF's codepage support is only as good as the character encoding support of the Java
Virtua Machine (JVM) the application runs on. If HPSF encounters a codepage number it
assumes that the VM has a character encoding with a corresponding name. For example, if
the codepage is 1252, HPSF uses the character encoding "cpl252" to read or write strings. If
the VM does not have that character encoding installed or if the codepage number isillegal,
an UnsupportedEncodingException will be thrown. This works quite well with Java 2
Standard Edition (J2SE) versions since 1.4. However, under J2SE 1.3 or lower you are out of
luck. Y ou should install a newer J2SE version to process codepages with HPSF.

There are some exceptions to the rule saying that a character encoding's name is derived from
the codepage number by prepending the string "cp" to it. In these cases the codepage number
is mapped to a well-known character encoding name. Here are afew examples:

Codepage 932

is mapped to the character encoding "SJIS".
Codepage 1200

is mapped to the character encoding "UTF-16".
Codepage 65001

is mapped to the character encoding "UTF-8".

More of these mappings between codepage and character encoding name are hard-coded in
the classes or g. apache. poi . hpsf. Const ant s and
or g. apache. poi . hpsf. Vari ant Support. Probably there will be a need to add
more mappings. The HPSF author will appreciate any hints.

1.5. Writing Properties

This section describes how to write properties.

1.5.1. Overview of Writing Properties

Page 19

HPSF HOW-TO

Writing propertiesis possible at a high level and at alow level:

« Most userswill want to create or change entries in the summary information or document
summary information streams.

e Onthelow level, there are no convenience classes or methods. Y ou have to deal with
things like property IDs and variant types to write properties. Therefore you should have
read section 3 to understand the description of the low-level writing functions.

HPSF's writing capabilities come with the classes Mt abl ePropertySet,
Mut abl eSect i on, Mut abl ePr opert y, and some helper classes. The "mutable’ classes
extend their respective superclasses PropertySet, Section, and Property and
provide "set" and "write" methods, following the Decorator pattern.

1.5.2. Low-Level Writing: An Overview

When you are going to write a property set stream your application has to perform the
following steps:

1. CreateaMut abl ePropert ySet instance.

2. Get hold of aMut abl eSect i on. You can either retrieve the one that is always present
inanew Mut abl ePr opert ySet, or you have to create anew Mut abl eSect i on
and add it to the Mut abl ePr opert ySet.

3. Setany Sect i on fieldsasyou like.

4. Create as many Mut abl ePr opert y objects asyou need. Set each property's ID, type,
and value. Add the Mut abl ePr oper t y objectsto the Mut abl eSect i on.

5. Create further Mut abl eSect i onsif you need them.

6. Eventually retrieve the property set as a byte stream using
Mut abl ePropertySet . t ol nput St rean() andwriteit to a POIFS document.

1.5.3. Low-level Writing Functions In Details

Writing properties is introduced by an artificial but simple example: a program creating a
new document (aka POI file system) which contains only a single document: a summary
information property set stream. The latter will hold the document's title only. This is
artificial in that it does not contain any Word, Excel or other kind of useful application
document data. A document containing just a property set is without any practical use.
However, it is perfectly fine for an example because it make it very simple and easy to
understand, and you will get used to writing propertiesin real applications quickly.

The application expects the name of the POI file system to be written on the command line.
Thetitle property it writesis"Sampletitle".

Here's the application's source code. Y ou can aso find it in the "examples' section of the POI
source code distribution. Explanations are following below.

Page 20

http://en.wikipedia.org/wiki/Decorator_pattern

HPSF HOW-TO

package org. apache. poi . hpsf. exanpl es;

i mport java.io.FileQutputStream
i mport java.io.| OException;
i mport java.io. |l nputStream

i mport org.apache. poi . hpsf. Mut abl eProperty;

i mport org.apache. poi . hpsf. Mut abl ePropertySet ;

i mport org. apache. poi . hpsf. Miut abl eSecti on

i mport org.apache. poi . hpsf. Summaryl nf or mat i on;

i mport org. apache. poi . hpsf. Vari ant;

i mport org.apache. poi . hpsf. Wi tingNot SupportedException
i mport org. apache. poi . hpsf.wel | known. Pr opertyl DVap

i mport org.apache. poi . hpsf.wel | known. Secti onl DVap

i mport org.apache. poi.poifs.filesystem PO FSFi | eSystem

/**
* <p>This class is a sinple sanple application showing howto create a property
* set and wite it to disk.</p>
*
* @ut hor Rainer Klute
* @ince 2003-09-12
*/

public class WiteTitle
{

/
<p>Runs the exanpl e program </ p>

*
*
*
* @aram args Command-|ine argunments. The first and only conmmand-|ine
* argunent is the nane of the PO file systemto create.

* @hrows | OException if any I/ O exception occurs.

* @hrows WitingNot SupportedException if HPSF does not (yet) support
* witing a certain property type.

*

u

h

/

public static void main(final String[] args)

throws Wi tingNot Support edExcepti on, | OException

{
/* Check whether we have exactly one comand-|ine argunment. */
if (args.length != 1)

Systemerr.println("Usage: " + WiteTitle.class.getNanme() +
"destinati onPO FS");
Systemexit(1);

final String fileNane = args[O0];

/* Create a nmutable property set. Initially it contains a single section
* with no properties. */

final Mitabl ePropertySet nps = new Mut abl ePropertySet ();

/* Retrieve the section the property set already contains. */
final MitableSection ms = (Mitabl eSection) nps. get Sections().get(0);

Page 21

HPSF HOW-TO

~
*

Turn the property set into a summary information property. This is
done by setting the format ID of its first section to
Sect i onl DMap. SUMVARY_| NFORMATI ON_I D. */

. set Format | D(Sect i onl DVap. SUMVARY | NFORVATI ON I D) ;

ax-x-

/[* Create an enpty property. */
final Mitabl eProperty p = new Mitabl eProperty();

/[* Fill the property with appropriate settings so that it specifies the

* docunent's title. */
p. set | D(Propertyl Dvap. PI D_TI TLE) ;
p. set Type(Vari ant. VT_LPWSTR) ;
p. set Val ue("Sanple title");

/* Place the property into the section. */
ns. set Property(p);

[* Create the PO file systemthe property set is to be witten to.
final PO FSFil eSystem poi Fs = new PO FSFi | eSysten() ;

/[* For witing the property set into a PO file systemit has to be

* handed over to the PO FS. createDocunent () nmethod as an i nput stream

* whi ch produces the bytes naking out the property set stream */
final InputStreamis = nps.tolnputStream);

/* Create the sunmary information property set in the PO file

* system It is given the default nane nost (if not all) summary
* information property sets have. */

poi Fs. creat eDocunent (i s, Sunmaryl nformati on. DEFAULT STREAM NAME) ;

/[* Wite the whole PO file systemto a disk file. */
poi Fs. writeFi | esysten(new Fil eCut put Strean{(fil eNane));

}

The application first checks that there is exactly one single argument on the command line:
the name of the file to write. If this single argument is present, the application storesit in the
fil eNanme variable. It will be used in the end when the POI file system is written to a disk
file.

if (args.length = 1)
Systemerr.println("Usage: " + WiteTitle.class.getNanme() +
"destinati onPA FS") ;
Systemexit(1);
}
final String fileNane = args[O0];
Let's create a property set now. We cannot use the PropertySet class, because it is

read-only. It does not have a constructor creating an empty property set, and it does not have
any methods to modify its contents, i.e. to write sections containing propertiesinto it.

Page 22

HPSF HOW-TO

The class to use is Mut abl ePropertySet. It is a subclass of PropertySet. The
sample application callsits no-args constructor in order to establish an empty property set:

final Mitabl ePropertySet nps = new Mt abl ePropertySet ();
As said, we have an empty property set now. Later we will put some contents into it.

By the way, the Mut abl ePropertySet class has another constructor taking a
PropertySet asparameter. It creates a mutable deep copy of the property set given toit.

The Mut abl ePr opert ySet created by the no-args constructor is not really empty: It
contains a single section without properties. We can either retrieve that section and fill it with
properties or we can replace it by another section. We can also add further sections to the
property set. The sample application decides to retrieve the section being already there:

final Mitabl eSection ms = (Mitabl eSection) nps.get Sections().get(0);

Theget Sect i ons() method returns the property set's sections as alist, i.e. an instance of
java.util.List. Caling get (0) returns the list's first (or zeroth, if you prefer)
element. The Sect i on returned isaMut abl eSect i on: asubclass of Sect i on you can
modify.

The aternative to retrieving the Mut abl eSect i on being already there would have been to
create an new Mut abl eSect i on likethis:

Mut abl eSecti on s = new Mt abl eSecti on();

There is also a constructor which takes a Sect i on as parameter and creates a mutable deep
copy of it.

The Mut abl eSecti on the sample application retrieved from the
Mut abl ePr opert ySet isstill empty. It contains no properties and does not have a format
ID. Asyou have read above the format ID of the first section in a property set determines the
property set's type. Since our property set should become a Summarylnformation property set
we have to set the format ID of its first (and only) section to
F29F85E0- 4FF9- 1068- AB- 91- 08- 00- 2B- 27- B3- D9. However, you won't have to
remember that ID: HPSF has it defined as the well-known constant
Sect i onl DVap. SUMMARY_| NFORMVATI ON_I D. The sample application writes it to the
section using the set For mat | D(byt e[]) method:

ns. set For mat | D(Sect i onl DMap. SUMMARY _| NFORMVATI ON I D) ;

Now it is time to create a property. As you might expect there is a subclass of Pr operty
called Mut abl ePr oper t y with ano-args constructor:

final Mitabl eProperty p = new Mit abl eProperty();

A Mut abl ePr operty object must have an ID, atype, and a value (see above for details).
The class provides methods to set these attributes:

p. set | D(Propertyl Dvap. PI D_TI TLE) ;

Page 23

HPSF HOW-TO

p. set Type(Vari ant. VT _LPWSTR) ;
p. set Val ue("Sanple title");

The Mut abl ePr operty class has a constructor which you can use to pass in al three
attributes in asingle call. See the Javadoc APl documentation for details!

The sample property set is complete now. We have a Mut abl ePr opert ySet containing a
Mut abl eSect i on containing a Mut abl ePr operty. Of course we could have added
more sections to the property set and more properties to the sections but we wanted to keep
things simple.

The property set has to be written to a POI file system. The following statement creates it.

final PO FSFil eSystem poi Fs = new PO FSFi | eSysten() ;

Writing the property set includes the step of converting it into a sequence of bytes. The
Mut abl ePr opertySet class has the method t ol nput St r ean() for this purpose. It
returns the bytes making out the property set stream asan | nput St r eam

final InputStreamis = nps.tolnputStream);

If you'd read from this input stream you'd receive all the property set's bytes. However, it is
very likely that you'll never do that. Instead you'll pass the input stream to the
PO FSFi | eSyst em cr eat eDocunent () method, like this:

poi Fs. creat eDocunent (i s, Sunmaryl nformati on. DEFAULT STREAM NAME) ;

Besides the | nput St r eamcr eat eDocunent () takes a second parameter: the name of
the document to be created. For a Summarylnformation property set stream the default name
isavailable asthe constant Summar yI nf or mat i on. DEFAULT_STREAM NAME.

The last step isto write the POI file system to adisk file:
poi Fs. wi teFil esysten(new Fil eCut put Strean(fil eNane));

1.6. Further Reading

There are still some aspects of HSPF left which are not covered by this HOW-TO. You
should dig into the Javadoc APl documentation to learn further details. Since you've
struggled through this document up to this point, you are well prepared.

Page 24

	1 How To Use the HPSF API
	1.1 Reading Standard Properties
	1.1.1 Open the document \005SummaryInformation in the root of the
 POI filesystem

	1.2 Additional Standard Properties, Exceptions And Embedded
 Objects
	1.3 Writing Standard Properties
	1.3.1 User-Defined Properties

	1.4 Reading Non-Standard Properties
	1.4.1 Overview
	1.4.2 A Sample Application
	1.4.3 The Property Set
	1.4.4 The Sections
	1.4.5 The Section's Format ID
	1.4.6 The Properties
	1.4.7 Sample Output
	1.4.8 Property IDs
	1.4.9 Property types
	1.4.10 Property values
	1.4.11 Dictionaries
	1.4.12 Codepage support

	1.5 Writing Properties
	1.5.1 Overview of Writing Properties
	1.5.2 Low-Level Writing: An Overview
	1.5.3 Low-level Writing Functions In Details

	1.6 Further Reading

