| || APACHE .
PORTALS

Jetspeed 2 Enterprise Portal v.2.1.2

Project Documentation

Apache Software Foundation 15 July 2007

TABLE OF CONTENTS i

Table of Contents

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

TABLE OF CONTENTS

Essentials

FeatUNES . . 1
Getting Started 5
Jetspeed for DeVeIOPErS oo 8
Building

From SOUICE . . . 10
From Maven Plugin 20
From EClipSeo 28

Get Jetspeed-2.1.2

DOWNIOAd 29
ReleasSe NOLESo 31
Documentation

Documentation GUITESot e e 34
Jetspeed Tutorial o 36
Jetspeed-2 APl . . .o 37
Jetspeed-2 PlUgin 38

About Jetspeed-2

For Jetspeed-1 USErSt e e e e 44
Jetspeed-1 Migration Guideline 48
SUPPOIING PrOJECES . . . oo 68
WO USES 27 . o e 69
Portlets CommUNILY o 71
HOW t0 Help? . o 72
Support

Mailing LISto 74
Bug Database 75
KT L 76
QuUAlity TeStNG . . .ot 77
Translation

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

TABLE OF CONTENTS

JAPANE S . . .

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©1999 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

11

1.1 FEATURES 1

Features

Features

The Apache Portals Jetspeed Team is pleased to present the Jetspeed-2 Open Source Enterprise Portal.
This open source project has matured past several releases, and has been fully-compliant with the Portlet
Specification 1.0 (JSR-168) since version 2.0. Jetspeed-2 passes the TCK (Test Compatibility Kit) suite
and is fully CERTIFIED to the Java Portlet Standard.

Standardized

* Fully compliant with Java Portlet API Standard 1.0 (JSR 168)

* Passed JSR-168 TCK Compatibility Test Suite

* J2EE Security based on JAAS Standard, JAAS DB Portal Security Policy
* LDAP Support for User Authentication

Portal Engine Features

* The Jetspeed Portal - Server-Side Parallel JSR-168 Portlet Rendering Engine

* The Jetspeed Desktop - Web 2.0 Client-Side JSR-168 Portlet Rendering Engine
* Full Support for JSR-168 Portlet Caching and per portlet cache configuration

* Portlet Timeout Tracking with mimimal render time limits

* Portlet Service Manager for automated removal of slow or dead portlets.

Customization Features

* Portal Page Customizer

* Desktop Page Customizer

* Nested Fragment Customization

* Drag and drop moving of portlets

* Resizing of desktop portlet windows

* DPortlet Selector with Portlet Categorizations, Full-Text Search of Portlets

* Customizable Themes (Skins)

Security

* DPortlet-level Security checks based on Security Constraints or Security Permissions

* Declarative Security Constraints and JAAS Database Security Policy

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.1 FEATURES

* Fully swappable Security Constraint or Security Permission support
* Jetspeed SSO (Single Sign-on)

* Delegation of Security

Distributed Cluster Support

* Jetspeed Distributed Cluster - support for distributed deployments of the portal on multiple
application server platforms

* Distributed Cache for portal components including preferences, registry and portlet entities.

* Distributed invalidation of portlet cache

Foundation Component Architecture

* Spring-based Components and Scalable Architecture
* Configurable Pipeline Request Processor

* Auto Deployment of Portlet Applications

* Jetspeed Component Java API

* Jetspeed AJAX XML API

PSML: Extended Portlet Site Markup Language

¢ Database Persistent

* Content Management Facilities

* Security Constraints

* Full security maintenance using LDAP is now supported for many LDAP providers

Portal Core Features

* Runtime Portlet API Standard Role-based Security

* Portal Content Management and Navigations: Pages, Menus, Folders, Links
* PSML Folder CMS Navigations, Menus, Links

* Rules-based Profiler for page and resource location

* Role-based Aggregation of Visible Pages

* Integrates with most popular databases including Derby, MySQL, MS SQL, Postgres, Oracle, DB2
* Client independent capability engine (html, xhtml, wml,vml)

* Internationalization: Localized Portal Resources in 12 Languages

* Statistics Logging Engine

* Portlet Registry

* Full Text Search of Portlet Resources with Lucene

* User Registration

* Forgotten Password

* Rich Login and Password Configuration Management

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.1 FEATURES 3

Custom Portlet Modes and Window States - a "print" PortletMode and "solo" WindowState ate now
standard supported

Administrative Portlets

User, Role, Group, Password, and Profile Management
Portal Site Manager

Remote Portal Application Deployer (RPAD) - hot deploy portlet applications from remote locations
on the Web

JSR 168 Generic User Attributes Editor

JSR 168 Preferences Editor

SSO Manager

Permission Management (JAAS Security)
Security Constraints Management

Portlet Application and Lifecycle Management
Profiler Administration

Statistics Reports

Portlet Out of Service Manager

Web Framework Support and Sample Portlets

Bridges to other Web Frameworks: JSF, Struts, PHP, Perl, Velocity

Sample Portlets:
e RSS, IFrame, Calendar XSLT, Struts Petstore, Bookmark, Database Browser

* Integration with Display Tags, Spring MVC

Data Migration Features

XML Import/Export Utility for all Jetspeed database data to support data migration over versions
All initial portal data seeded with XML
XML Schemas for all XML content

Portal Design Features

Deployment Jetspeed Portlet and Page Skins (Decorators) CSS Components
Configurable CSS Page Layouts
Easy to Use Velocity Macro Language for Skin and Layout Components

Development Tools

Automated Maven-1 Build
Automated Maven-2 Build

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.1 FEATURES

* Jetspeed-2 Maven Plugin for Custom Portal Development

* Maven-2 Profiles and Archetypes

* AutoDeployment of Portlet Applications, Portal Resources

* Deployment Tools

* Plugin Goals integrated with Auto Deployment Feature

* XML Schemas for PSML, jetspeed-portlet.xml, and Jetspeed XML (seed data)

Other Features

¢ Installation choice of either Demo Portal or Minimal Starter Portal

* In-depth Jetspeed 2 Tutorial

Application Servers Supported

* Tomecat 5.0.x

* Tomcat 5.5.x

. Jetty

* Websphere 5.1, 6.0
* Geronimo

* JBoss

* Weblogic

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.2

1.2 GETTING STARTED

Getting Started

Requirements

It is expected that the user is familiar with both the Apache Maven project management tool and the
Apache Ant scripting utility.

* Ant 1.5 or higher

Maven 1.0.2

* Java 1.4.2_02 or higher

Servlet 2.4 Engine:
* Tomcat 5.5.x

« Jerty
* Websphere 6.0
* Geronimo

* JBoss

* Weblogic

1. Get Maven Ready

If you have not already done so, download and install Maven .

2. What Database do you want

Jetspeed's security model requires a database to authorize users and to retain the user information.

Jetspeed security should work with any JDBC 2.0 compliant driver. The following databases are tested:

L]

Derby

HSQLDB - Hypersonic SQL
MySQL

Oracle

POstgres

DB2

Sybase

SQL Server

Jetspeed is distributed with the Derby database configured as the default.

The database configuration will be setup during the installation process. If you are not going to use the

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://maven.apache.org
http://ant.apache.org
http://ant.apache.org/bindownload.cgi
http://maven.apache.org/start/download.html
http://maven.apache.org/maven-1.x

1.2 GETTING STARTED

default Derby database, you need to select another database during installation.

3 Servlet Engines

In theory, Jetspeed 2 portals can be run under any servlet container supporting the 2.4 specification or
greater. Successful Jetspeed 2 portal applications have been deployed using:
* Tomecat 5.5.8 or higher

- Jety
* Websphere

¢ Geronimo

* JBoss

Tomcat Configuration

Jetspeed 2 can use the Tomcat Manager application for managing portlet applications with the Portlet
Application Lifecycle Manager Portlet (PALM). To be able to do so it needs a configured Tomcat user
with the predefined 'managet’ role in the ${org.apache.jetspeed.server.home} /conf/tomcat-users.xml.

A minimal example tomcat-users.xml can look like:

<t ontat - user s>
<rol e rol ename="manager"/ >
<user username="j 2depl oyer" password="xxxxx" rol es="manager"/>
</toncat - user s>

The attribute values for username and password must correspond to the specified values for
${org. apache. j et speed. servi ces. aut odepl oynent . user} and
${org. apache. j et speed. servi ces. aut odepl oyment . user} as described above.

Tomcat 5.5.9 on Windows

To have redeployment and undeployment working propetly when using Tomcat 5.5.9 on Windows you
have to set the global Context attribute "antiJ ARLocking" to true.

In ${org.apache.jetspeed.server.home} \conf\context.xml use:

<Cont ext anti JARLocki ng="true">

</ Cont ext >

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.2 GETTING STARTED

Jetty - A Quick Test Environment or a Production Servlet Container

Jetty can be used for a production deployment but it is most commonly used to quickly test
customizations without interfering with the production servlet container. It does not require any special
configuration.

4. Installing Jetspeed from Source or Binary Distributions

Depending on what you want to do, you have the choice of installing Jetspeed from a binary release or
from the sources. If you want to modify the core functionality of Jetspeed or contribute to the
development of Jetspeed, you need to work with the sources. If you are only interested in building your
own custom enterprise portal, you can start with a binary release of Jetspeed. Most people should start
with the binary distribution.

5. Jetspeed build

Your installation instructions will depend on whether you are building from source or building from a
binary distribution or installing with Jetspeed-2 installer .

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

13

1.3 JETSPEED FOR DEVELOPERS 8

Jetspeed for Developers

Jetspeed For Developers

When developing with Jetspeed, you may be creating portlet applications, or building and creating
extensions to the Jetspeed portal. If you ar going to be creating portlet applications, check out this fine
e-book for an overall guide to writing portlets:

* Portlets and Apache Portals Book

Here are a few links to get you started developing with the Jetspeed portal itself:

* Getting Started

* Building the Core Jetspeed from Source
Custom Building with Maven Plugins

Jetspeed 2.1 can be built with either Maven-1 or Maven-2. You can actually build your own portal
without the Jetspeed source. You will want to customize your Jetspeed build, overriding the skins and
themes, adding your own portlet applications and perhaps overriding key components of the portal. To
do so, we provide two custom build frameworks: one with Maven-1, the second with Maven-2. With the
custom build, you can easily build and create your own Jetspeed powered portal without ever building
Jetspeed itself. Many developers still prefer Maven-1. If you are new to Maven, then maybe its best to go
with the new version (2).

* Building a Custom Portal with the Maven-1 Plugin

* Jetspeed Tutorial - Building a Custom Portal with the Maven-2 Plugin
* Maven-1 Plugin Documentation

* Maven-2 Plugin Documentation

Jetspeed is built from the command line with Maven. However, you can still develop, compile, debug,
remote debug, all from within Eclipse. Eclipse is a good tool for developing portlet applications as well as
Jetspeed extensions.

* Developing with Eclipse

To get the binary installation of an official Jetspeed release, go here:
* Getting the Binary Installer

You can checkout from the SVN HEAD from here:
* Checking out the Source Code from Subversion

Get your Javadocs here:

* Portlet API Docs
* Jetspeed API Docs

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://www.manning.com/hepper/
http://portals.apache.org/jetspeed-2/getting-started.html
http://portals.apache.org/jetspeed-2/getting-started-source.html
http://portals.apache.org/jetspeed-2/getting-started-binary.html
http://portals.apache.org/tutorials/jetspeed-2/
http://portals.apache.org/jetspeed-2/j2-maven-plugin.html
http://wiki.apache.org/portals/Jetspeed2/Maven2BuildSupport
http://portals.apache.org/jetspeed-2/jetspeed-eclipse.html
http://portals.apache.org/jetspeed-2/download.html
http://svn.apache.org/repos/asf/portals/jetspeed-2/trunk/
http://www.bluesunrise.com/portlet-api/index.html
http://portals.apache.org/jetspeed-2/multiproject/jetspeed-api/apidocs/index.html

1.3 JETSPEED FOR DEVELOPERS

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.1

2.1 FROM SOURCE 10

From Source

1. Naming Conventions and Basic Assumptions

Source Basic Assumptions

* Unless otherwise specified, you should be running all maven build commands from within the
Jetspeed directory (if you are just building Jetspeed) or from within your custom portal directory.

* You must use "/" as a file seperator on both *nix and windows, e.g. ¢:/windows, and /home.

Naming Conventions
Below is a listing of common conventions used within this document.

Variables ate represented as ${ some_variable }. This may signify a setting in Jetspeed or may represent a
setting within your environment. Properties files are also capable of specifying variables within them.

For example, $ {org.apache.jetspeed.server.home} references either a property defined further up in the
properties file, a variable that has been defined somehwere within the build process or defined in another
build file within Jetspeed.

* ${USER_HOME} : This is the uset's home directory. For Windows systems, this generally
c:\Documents and Settings\$ {usetName} where ${userName} is the name you use to log into
windows.
${USER.HOME} is synonymous with ${USER_HOME} within this document.

* ${CATALINA HOME} : This is the location of yout tomcat installation, e.g. ¢:/ fomcat .

Source Subversion (SVN)

Subversion (SVN) is used in the Jetspeed project to manage the source files. SVN is very similar to CVS.
For those user's on Windows system who prefer non-command line access we suggest using
TortoiseSVN which plugs into your Windows Explorer view. For those using the Eclipse IDE, the
Subclipse plugin is available for SVN access.

Maven Setup

We will not go into the specifics of Maven as that is beyond the scope of this document. However, here
are a few bits of standard maven jargon we feel is important for you to know.

You will see mention of a maven repository in this document. When you install Maven the .maven/
directory is created in your ${USER_HOME) directory.
Under .maven/ you will see a repository directory. This is were Maven stores all the jars that it downloads

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://subversion.tigris.org
http://tortoisesvn.tigris.org
http://subclipse.tigris.org

2.1 FROM SOURCE 11

when you run your builds. This is also were Maven puts your jars and wars that you build. They will be
stored in a directory structure that has the format of

${groupld}/${projectld} /jars/${projectld}-{$version} jar for jar files and

${groupld}/${projectld} /wars/${projectld}.war for war files. The ${groupld}, ${projectld} and
${version} variables are discussed later on in this document. Jar and war files will also be created in your
project in the /zarget directory.

2. Jetspeed build and maven-plugin Properties
You need to set a few properties.

Creating your own custom portal is very easy with the maven plugin provided by Jetspeed 2. And, it is
used when you build jetspeed from source as well. In fact, the jetspeed-2 build procedure is just one
example of a custom portal configuration and setup.

The Jetspeed 2 maven-plugin defines default values for most of the properties you can set, but not all.
When you download or checkout the jetspeed-2 source tree, you'll see it contains a project.properties file
in the root folder overriding and setting some of these properties.

As said before: not all properties are provided with a default value: you must specify a few yourself. And
you'll most likely want to override some others.

Set or override the build or maven-plugin properties in your ${ USER_HOME} / bui | d. properti es
file.

Required Portal Configuration Properties

Property Description Default value

or g. apache. j et speed. portal . hore The folder where the maven-plugin will no default
(re)create or update your custom portal
maven project configuration (with goal
j 2:portal.conf.project). This will be
where you will be performing all of your future
custom portal development.
Example: / home/ nyportal /

org. apache. j et speed. portal . groupl d The (maven) short name of your portal project no default
group.
This value is used for the maven repository
folder in which the project artifacts (like the
portal war file) is stored.
Example: nyproj ects

org. apache. j et speed. portal . artifact | Bhe (maven) short name of your portal no default
project.
This value is used for the portal war file and
the (portal) web application context name.
Example: myport al

or g. apache. j et speed. portal . nanme The (maven) full name of your portal project. no default
This value is used by maven for generating
JavaDoc titles.
Example: My Test Port al

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.1 FROM

Property

SOURCE

Description

12

Default value

org. apache. j et speed. port al . cur r ent VeTisé oarrent version of your portal project.

This value is used by maven as name postfix
for the generated artifacts.
Example: 1. 0

no default

Optional Portal Configuration Properties

The following properties all specify a subfolder of the ${ or g. apache. j et speed. portal . hore}

location as defined above.

Property

Description

Default value

org. apache

org. apache

org.

apache

org.

apache

org. apache

.jetspeed. portal .

.jetspeed. portal .

.j etspeed. portal .

.j et speed. portal

.j et speed. portal

conf.dir

sql.dir

db. dir

The folder where the maven-plugin will
generate and copy application server specific
configuration files as a tomcat application
context descriptor.

This folder and its contents is created or
updated by plugin goal
j2:portal.conf.tontat .

The folder where the maven-plugin will
generate and copy portal and database
server specific sgl DDL and DML scripts.
This folder and its contents is always
(re)created by plugin goal
j2:portal.conf.sql .

The folder where the maven-plugin will create
its build-in HSQLDB database(s).

This folder and its contents is created or
updated by plugin goal
j2:start.production. server or
j2:start.test.server .

. webapp. di The folder where the maven-plugin will copy

the standard jetspeed web application
resources.

This folder and its contents is created or
updated by plugin goal

j 2: portal . copy. webapp .

. target . di The folder where the maven-plugin will

generate and copy runtime portal
configuration files.

These configuration files contain values
derived from build/plugin properties for the
portal and OJB.

This folder and its contents is created or
updated by plugin goal
j2:portal.conf.jetspeed and goal
j2:portal.conf.ojb.

target/portal-conf

target/portal-sql

target/portal-db

target/${org.apache.jetspeed.portal.artifactid}

target/${org.apache.jetspeed.portal.artifactid}

Required Application Server Properties

Note: The maven-plugin currently only supports the Tomeat Server 5.0.x or 5.5.x

©1999 APACHE SOFTWARE FOUNDATION -

ALL RIGHTS RESERVED

2.1 FROM SOURCE

13

Property Description Default value
org. apache. j et speed. server. honme The root folder of your Tomcat server no default
installation.
Example: ${ CATALI NA_HOVE}/ .
org. apache. j et speed. server.shared The location of the shared jars in your Tomcat no default

or g. apache

org. apache

org. apache

org. apache

.j et speed.

. j et speed.

.j et speed.

. j et speed.

installation.
Example:

${org. apache. j et speed. server. hone}/shared/ i b/

depl oy. war . di r The location of web applications in your
Tomcat installation.
Example:

no default

${ or g. apache. j et speed. server. hone}/ webapps/

servi ces. aut odeph dymesdt .useewith the manager role.
Used to access the Tomcat Manager
application from within the portal, explained
below.

servi ces. aut odepT oy passwaalssitbe domcat user above.
Used to access the Tomcat Manager
application from within the portal, explained
below.

cat al i na. ver si onTejrajor version of the Tomcat server you
are using: 5 or 5.5
Example: 5. 5

no default

no default

no default

Optional Database Server Properties

Jetspeed-2 and its maven-plugin uses, as well as provides, by default a HSQLDB database.

If you want to use a different database you will need to override the following properties:

Property

Description

Default value

org. apache. j et speed. pr oduct i on. dat abBise typef efulataln@seeyou are using. Used for

org. apache
org. apache

org. apache

or g. apache

org. apache

. j et speed.
. j et speed.

. j et speed.

. j et speed.

.j et speed.

sql script generation with Torque.
Currently supported databases (with
corresponding Torque target database
name):

hsql (hypersonic)

oracle (oracle)

mysql (mysql)

postgres (postresql)

mssql (mssql)

product i on. dat ab&isejdioc connection url
product i on. dat abBise datdase user name to connect with.

product i on. dat abise dpedssenuser its password to connect
with.

product i on. dat abBisejdici drser class name

producti on. j dbc. Adavarctasspath style path to the jdbc driver
classes or jar(s) needed for connecting to the
database.
Example:

hsql

jdbc:hsqgldb:hsql://127.0.0.1:9001
sa

empty

org.hsgldb.jdbcDriver

empty

/1iblojdbcl4.jar;/1ib/nls_charsetl2.jar

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

2.1 FROM SOURCE 14

Example: A minimal custom portal configuration

Make sure you have define at least the required properties as described above in your
${ USER_HOVE}/ bui | d. properti es . A minimal custom portal configuration using the default
HSQLDB database can be something like:

required portal configuration properties

or g. apache. j et speed. portal . honme / hone/ nyportal/
or g. apache. j et speed. portal . groupld nyproj ects

org. apache. jetspeed. portal .artifactld = nyportal

or g. apache. j et speed. portal . nane My Test Portal
org. apache. j et speed. portal . currentVersion = 1.0

required application server properties

or g. apache. j et speed. server. hone = ${ CATALI NA_HOME}/
or g. apache. j et speed. server. shar ed =

${org. apache. j et speed. server. hone}/shared/|i b/

org. apache. j et speed. depl oy. war. dir =

${ org. apache. j et speed. server. hone}/ webapps/

or g. apache. j et speed. servi ces. aut odepl oynent . user = j 2depl oyer
or g. apache. j et speed. servi ces. aut odepl oynment . password = XXXXX
org. apache. j et speed. cat al i na. ver si on. maj or = 5.5

Note: If you're going to build the defanit Jetspeed 2 portal directly from the source only the
or g. apache. j et speed. port al . hone property is required from the set of required portal confignration
properties.

4. Creating a new Portal Application

Now we're going to configure, setup and build a new custom portal application using the Jetspeed-2
maven-plugin.

4.1 Set the maven remote repository lookup configuration

To be able to setup a Jetspeed 2 based portal the maven remote repository lookup needs to be configured
propetly in your ${ USER_HOME} / bui | d. properti es:

maven. repo.renpte = http://ww. bl uesunri se. conl maven/,
http://ww.ibiblio.org/ mven/, \
http://dist.codehaus.org/, http://cvs.apache.org/repository

Note: the order in which these repositories must be specified is significant!

4.2 Install the Jetspeed 2 maven-plugin

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.1 FROM SOURCE 15

The first time, and when you want to upgrade to a newer version of Jetspeed 2, you need to install the
maven-plugin as follows:

maven -Dartifact|d=nmaven-j et speed2-pl ugi n - Dgr oupl d=or g. apache. portal s. j et speed- 2
-Dversi on=2. 1. 2 pl ugi n: downl oad

Note: you can set the version flag to the specific version you want to install, 2.1.2 is just an example here.

4.3 Generate a new portal project

Once you have the maven-plugin installed and set properties as needed, generate a default portal
configuration using the plugin as follows:

maven j 2: portal . genapp

This maven goal actually executes several subgoals which are further described in the maven-plugin documentation itsel.

4.4 Further customization of the portal

This section doesn't specify anything to do. After the portal project is generated you can adapt and
customize it to your taste by overriding and merging your own configurations and extensions.

You can regenerate or update (part of) your portal project with the j 2: port al . genapp goal as
described in the previous section or use its subgoals directly.

4.5 Build the portal
Once your portal configuration and setup is ready, you can build and install the portal application in your

local maven repository (as needed for deployment) using the following standard maven goal from your
custom portal project directory (in ${org.apache.jetspeed.portal home}):

maven war:install

You are now ready to deploy the new portal application. For this, skip the following section on building
the Jetspeed 2 portal from source and continue with the deployment section.

5. Build Jetspeed 2 from source

Build the Jetspeed 2 portal directly from the source is somewhat easier to do but should only be done if

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.1 FROM SOURCE 16

you don't want to create a new, customizable portal.

5.1 Setup the Jetspeed 2 source and build properties

The Jetspeed 2 source contains a pr oj ect . properti es file which provides all of the required portal
configuration settings as described above .

You should NOt define any of those properties in your ${ USER_HOVE} / bui | d. properties .
Instead, you must set a or g. apache. j et speed. pr oj ect . hone property, specifying the location
where you expanded the downloaded source or checked out the source from subversion, like:

required Jetspeed 2 portal configuration property for building fromthe source
or g. apache. j et speed. proj ect. home = /hone/ apache/j et speed- 2/

Note: you still need to specify the required application server properties as described above .

The Jetspeed 2 project.properties uses this property to define the required or g. apache. portal . hone

org. apache. j et speed. portal . home = ${org. apache. j et speed. proj ect . hone}

So, they are the same when you build the Jetspeed 2 portal from the source.

When you are going to deploy the portal as described further below, you'll see references to the
or g. apache. j et speed. port al . home which you can translate with the root folder of your Jetspeed
2 source.

If you want to run the testcases when building the Jetspeed 2 sources and don't want to use the default
HSQLDB test database, you need to override the default test database properties, similar to the
production database properties as described above :

e org. apache. et speed. t est. dat abase. def aul t. nane
e org. apache. et speed. t est. dat abase. ur|l

* org.apache. et speed. t est. dat abase. user

e org. apache. j et speed. t est. dat abase. passwor d

* org. apache. et speed. t est. dat abase. dri ver

e org. apache. et speed. test. dat abase. dri vers. path
Note: dne to ontstanding issue |S2-320 you currently MUSE use bard coded values for the test database properties.

Initialize the maven-plugin

Instead of downloading and installing the Jetspeed 2 maven-plugin, you are going to build and install it
directly from the source. You will need to repeat this every time you update to a newer version of

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://issues.apache.org/jira/browse/JS2-320

2.1 FROM SOURCE 17

Jetspeed 2 or change its project configuration, the plugin itself or the resources used by the plugin.

Build and install the maven-plugin as follows from the root directory of the Jetspeed-2 source:

cd ${org. apache. j et speed. proj ect. hone}
maven init MavenPl ugi n

Optional: start the HSQLDB test database first

If you are going to run the testcases and are using the default HSQLDB database configuration, you will
need to start the test database before building Jetspeed 2 in a separate console:

cd ${org. apache. j et speed. proj ect . hone}
maven j 2:start.test.server

After the build is finished you can stop the database and close this console witha Ctr | - C.

Build the Jetspeed 2 portal and demo portlet applications

For a full build and installation of the portal and the demo portlet applications in your local maven
repository run:

cd ${org. apache. j et speed. proj ect. hone}
maven al |l Cl ean allBuild

But, if you also want to run the testcases during the build run the following instead:

cd ${org. apache. | et speed. proj ect. hone}
maven - Dmaven.test. skip=false allC ean allBuild

You are now ready to deploy the Jetspeed 2 Portal.

6. Deploy and Run

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.1 FROM SOURCE 18

Optional: start the HSQLDB production database first
If you are using the default HSQLDB database you need to start it before deploying the portal.

To start the HSQLDB production database run the following in a separate console:

cd ${org. apache. j et speed. portal . hone}
maven j 2:start. production. server

You need to have this database running during the deployment and while running the application server.
Afterwards you can stop the database and close this console witha Ctr| - C.

Note: this is required when using the j 2: qui ckSt art goal as described below. The Jetspeed 2
maven-plugin provides other (sub)goals which you can use without (re)creating a production database
and/or inserting default portal configuration data. See the Plugin documentation for further information
about the available goals.

Deploy
We currently only cover deploying to Tomcat 5 or Tomcat 5.5.
Information about deployment to other application servers can be found at the The Jetspeed 2 Wiki .

To deploy a default Jetspeed 2 portal, including the demo portlet applications, run the following in a
Separate console:

cd ${org. apache. | et speed. portal . hone}
maven j 2: qui ckStart

Note: the maven-plugin documentation described other goals you can use to customize the deployment to your taste.
Run

The final step is starting up your Tomcat server and the portal will automatically install any deployed
portlet applications.

Then you can access the portal with your browser at:

http://1ocal host: 8080/ et speed

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://wiki.apache.org/portals/Jetspeed2
http://localhost:8080/jetspeed

2.1 FROM SOURCE 19

ot replace "jetspeed" in the above utl with the name of you own portal application (
${org. apache. j et speed. portal .artifactld}).

Default installed user accounts

With the default Jetspeed 2 portal deployment, several example user accounts are inserted into the portal
database with which you can logon to the portal:

username password roles

admi n admi n adm n, manager, user
nanager nanager nanager, user

j et speed j et speed manager

user user user

t ontat t ontat

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.2

2.2 FROM MAVEN PLUGIN 20

From Maven Plugin

1. Some Basic Information

Basic Assumptions

* Unless otherwise specified, you should be running all maven build commands from within the
Jetspeed directory (if you are just building Jetspeed) or from within your custom portal directory.

* You must use "/" as a file seperator on both *nix and windows, e.g. ¢:/windows, and /home.

Maven

We will not go into the specifics of Maven as that is beyond the scope of this document. If you have
never used Maven, you need to read "What is Maven" just to get a sense of the role of Maven in a
software development project. If your project involves more than one or two people, you may want to
look into Maven in more detail since it does simplify and standardize many of the project management
issues that are commonly encountered.

Here are a few bits of standard maven jargon we feel is important for you to know.

You will see mention of a maven repository in this document. When you install Maven the .maven/
ditectory is created in your ${USER_HOME) directory.

Under .maven/ you will see a repository directory. This is were Maven stores all of the jars that it
downloads when you run your builds. This is also were Maven puts your jars and wars that you build. Jar
files will be stored in a directory structure that has the format of

${groupld}/${projectld} /jars/${projectld}-{$version}.jar. The portal war file is stored as
${groupld}/${projectld} /wars/${projectld}.war. The ${groupld}, ${projectld} and ${version}
variables are discussed later on in this document. Jar and war files will also be created in your project in
the /target directory.

Variables

Variables ate represented as ${ some_variable }. Variable names are case sensitive. Vatiables are defined in
several places in a Maven project and according to the Maven Setup section of the on-line Maven User's
Guide, the properties files in Maven are processed in the following order:

* ${project.home} /project.propetrties - Properties that ate common to the entire project
* ${project.home} /build.properties - Properties that describe the current release
* ${user.home} /build.properties - Properties that are patticular to you

The usage of these files is quite different from the way they are used in a project that develops from the
sources since the project in that case is the Jetspeed project rather than your own portal. In that case, the
user's build.properties is used much more intensively used to override Jetspeed's parameters.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://maven.apache.org/what-is-maven.html
http://maven.apache.org
http://maven.apache.org/reference/user-guide.html##Maven_Setup

2.2 FROM MAVEN PLUGIN 21

Maven processes this sequence of properties files, overriding any previously defined properties with
newer definitions. The last definition wins! In this sequence, your ${user.home} /build.properties has the
final say in the list of properties files processed.

This list of properties files that Maven processes is called the "standard properties file set".

In addition, System properties are processed after the standard properties files. So, a property specified
on the command line using the -Dproperty=value convention will override any previous definition of
that property.

For example, ${org.apache.jetspeed.server.home} references either:
* aproperty defined earlier in the standard properties file set,
* a property specified on the command line of the Maven invokation,
* avariable that has been defined somehwere within the build process or

* avariable defined in another build file within Jetspeed.

Installation dependent locations

The documentation refers to some common locations by the following names:

* ${USER_HOME]} : This is the uset's home directory. For Windows systems, this generally
c:\Documents and Settings\${usetName} whete ${userName} is the name you use to log into
windows.
${user.home} is synonymous with ${USER_HOME} within this document.

* ${CATALINA_HOME]} : This refers to the location of your tomcat installation, e.g. ¢/ fomcat .

These are not used in the Jetspeed configuration but are merely shorthand notations to make the
documentation more concise and precise.

Subversion (SVN)

Subversion (SVN) is used in the Jetspeed project to manage the source files. SVN is very similar to CVS.
For those user's on Windows system who prefer non-command line access we suggest using
TortoiseSVN which plugs into your Windows Explorer view. For those using the Eclipse IDE, the
Subclipse plugin is available for SVN access.

2. Overview of the Jetspeed build Process

Setting up a custom portal development project using the binary distribution is a fairly simple process. At
the end, you will you have a directory structure and set of files that will simplify building and deploying
your own custom portal.

If you want to setup a Jetspeed portal application using Eclipse as your IDE, you should continue reading
this page for background material but refer to Building a Jetspeed Enterprise Portal with Eclipse for the
actual instructions on using Eclipse for Jetspeed 2 portal development.

Creating your own custom portal is very easy with the maven plugin provided by Jetspeed 2. The steps
are:

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://subversion.tigris.org
http://tortoisesvn.tigris.org
http://subclipse.tigris.org

2.2 FROM MAVEN PLUGIN 22

* Download and install the Jetspeed plugin

* Use the plugin to download and generate the Jetspeed binary distribution.

* Customize the properties files to reflect your database installation and local environment.
* Prepare the Application Server

* Build the portal

* Start the Database Server(if required)

* Initialize the Database

* Deploy the default portal using your database

* Test the default portal

* Customize the default portal to include your logo and Portal name

* Generate, deploy and test your custom Portal

The Jetspeed 2 maven-plugin defines default values for most of the properties you can set, but not all. As
you customize the portal, you will override others.

3. Installation Steps

3.1 Download the Jetspeed Plugin

3.1.1 Set the maven remote repository lookup configuration

Now we're going to configure yout ${user.home}build.properties file to give Maven the information that
it needs to download the Jetspeed-2 maven-plugin. The base directory where you are going to build your
portal needs to be specified to Maven as well as the the maven remote repository need to be configured

propetly in your ${ USER_HOME} / bui | d. properti es :

basedir = c:/nyportal

maven. repo.renote = http://ww. bl uesunri se. conl maven/,
http://ww.ibiblio.org/ maven/, \

http://dist.codehaus.org/, http://cvs.apache.org/repository

Note: the order in which the repositories are specified is significant!

3.1.2 Install the Jetspeed 2 maven-plugin

The first time, and when you want to upgrade to a newer version of Jetspeed 2, you need to install the
maven-plugin as follows:

maven -Dartifact!| d=nmaven-j et speed2-pl ugi n - Dgr oupl d=or g. apache. portal s. | et speed- 2
-Dversion=2.1.2 plugin: downl oad

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.2 FROM MAVEN PLUGIN 23

Note: you must set the version fo the specific version you want to install, "2.1.2" is just an example.

3.2 Download the default Jetspeed portal project

Once you have the maven-plugin installed and set properties as needed, generate a default portal
configuration using the plugin as follows:

maven j 2: portal . genapp

This maven goal actually executes several subgoals which are further described in the maven-plugin documentation itself.

3.3 Customize the properties files

You can fill in as much of the project information in the project.xml file as you want. This will depend on
how you intend to use Maven as a project management tool and is beyond the scope of this document.
The information in the project.xml file distributed with Jetspeed reflects the Jetspeed development
project.

You can now customize the properties files to reflect your database installation and local environment.

The ${ basedi r} proj ect. properti es file provided by the Jetspeed developers includes all of the
variables that are common to all portals based on Jetspeed. You should not have to change these.

The project properties are described in the Maven Properties Reference documentation. We have already
filled in the value for basedir and maven.repo.remote in previous steps. You can fill in as much of the
project information in the ${ basedi r } pr oj ect. xm file as you want. This will depend on how you
intend to use Maven as a project management tool and is beyond the scope of this document. The Maven
site has all of the information that you need to use Maven successfully.

The configuration of your specific properties needs to be done before we can build the portal. Review the
definition of the configuration properties described in Basic Configuration Parameters .

In the case of a binary build, the basic configuration properties can be placed in
${ basedi r}buil d. properties.A minimal custom portal configuration using the default Derby
database can be something like:

required portal configuration properties
or g. apache. j et speed. portal . hone

org. apache. j et speed. portal . groupld

org. apache. jetspeed. portal .artifactld nyportal

org. apache. j et speed. portal . nane My Test Portal
org. apache. j et speed. portal . currentVersion = 1.0

/ hone/ nyportal/
nyproj ects

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://maven.apache.org/maven-1.x/reference/properties.html
http://maven.apache.org/maven-1.x
http://maven.apache.org/maven-1.x

2.2 FROM MAVEN PLUGIN 24

If you are not using the Derby database that comes pre-configured in the

${ basedi r} proj ect. properti es file, you also need to define the database parameters in the

${ basedi r} bui | d. properti es file. Refer to the Database Configuration section for a description
of the variables required.

3.4 Prepare the Application Server

Before running the portal, we need to prepare the Application server to run a Jetspeed portal. This
consists of telling Jetspeed where the application server expects files to be placed and what authentication
values are required to request service from the Application Server's management tools. There may also be
modifications to the server configuration so be sure to read the Application server configuration
documentation .

Verify that you made the Application Server changes suggested in the overview of the Getting Started
documentation.

A minimal custom portal configuration using the Tomcat 5.5 Application Server could be something like:

required portal configuration properties

or g. apache. j et speed. portal . hone = / hone/ nyportal/
org. apache. j et speed. portal . groupld = nyprojects

org. apache. jetspeed. portal .artifactld = nyportal

or g. apache. j et speed. portal . nane = My Test Portal

org. apache. j etspeed. portal .currentVersion = 1.0

required application server properties

or g. apache. j et speed. server. hone = ${ CATALI NA_HOME}/
or g. apache. j et speed. server. shared =

${org. apache. j et speed. server. hone}/shared/|i b/

org. apache. j et speed. depl oy. war. di r =

${org. apache. j et speed. server. hone}/ webapps/

or g. apache. j et speed. servi ces. aut odepl oynent . user = j 2depl oyer
org. apache. j et speed. servi ces. aut odepl oynment . password = XXXXX
or g. apache. j et speed. cat al i na. ver si on. maj or = 5.5

3.5 Build the portal

Once your portal configuration and setup is ready, you can build and install the portal application in your
local maven repository (as needed for deployment) using the following standard maven goal from your
custom portal project directory (in ${org.apache.jetspeed.portal home}):

maven war:install

You are now ready to deploy the new portal application. For this, skip the following section on building

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.2 FROM MAVEN PLUGIN 25

the Jetspeed 2 portal from source and continue with the deployment section.

3.6 Start the Database Server

You need to make sure that your database server is running. If you are not using the default Derby
database, you need to make sure that it is running and that the user that will own the Jetspeed tables is
setup and ready for use. Refer to the Database Configuration section for more information.

You need to have this database running during the deployment and while running the application server.

Note: this is required when using the j 2: qui ckSt art goal as described below. The Jetspeed 2
maven-plugin provides other (sub)goals which you can use without (re)creating a production database
and/or inserting default portal configuration data. See the Plugin documentation for further information
about the available goals.

3.7 Initialize the Database

The database's tables and initial data needs to be loaded prior to Jetspeed being deployed. The
maven-plugin includes a number of goals that can be used to manage the database. The easiest way to
load the tables and deploy the application is to run the j2:quickstart goal.

cd ${org. apache.j et speed. portal . hone}
maven j 2: qui ckStart

This can only be run once without a bit of a cleanup afterwards since it defines the tables and loads the
data as part of starting the application. If you have an error and you want to run it again, you must make
sure that the tables and data are cleaned out either by manually dropping the tables in the database or by
using the j2:db.drop.production Maven goal.

The j2:quickstart currently only covers deploying to Tomcat 5 or Tomcat 5.5 application servers.
Information about deployment to other application servers can be found at the The Jetspeed 2 Wiki .

To deploy a default Jetspeed 2 portal, including the demo portlet applications, run the following in a
separate console:

cd ${org. apache. j et speed. portal . home}
maven j 2: qui ckStart

Note: the maven-plugin documentation described other goals you can use to initialige the database.

3.8 Deploy the default portal using your database

The j2:quickstart task does this for you. If you have used another Maven goal to initialize the database,

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://wiki.apache.org/portals/Jetspeed2

2.2 FROM MAVEN PLUGIN 26

then you can deploy the portal by using:

cd ${org. apache. j et speed. portal . home}
maven j 2: ful | Depl oy

The j2:fullDeploy goal currently only covers deploying to Tomcat 5 or Tomcat 5.5 application servers.

Information about deployment to other application servers can be found at the The Jetspeed 2 Wiki .

3.9 Test the default portal

The final step in getting the default portal running is starting up your Tomcat server. The portal will
automatically install any deployed portlet applications.

Then you can access the portal with your browser at:

http://1ocal host: 8080/ et speed

or replace "jetspeed" in the above url with the name of your own portal application (
${org. apache. j et speed. portal .artifactld}).

If you see a running Jetspeed portal, we have succeeded in getting the software installed and working.

With the default Jetspeed 2 portal deployment, several example user accounts are inserted into the portal
database with which you can logon to the portal:

username password roles

adm n adm n adm n, manager, user
manager manager manager, user

j et speed j et speed manager

user user user

t oncat t oncat

3.10 Customize the default portal to include your logo and Portal name
Now that the default portal is working we can try a small customization to test out the customization

process. We are going to change the logo and portal name.

3.10.1 Creating your customization area

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://wiki.apache.org/portals/Jetspeed2
http://localhost:8080/jetspeed

2.2 FROM MAVEN PLUGIN 27

The first step is to create a directory to hold your customized files. This will help you to preserve your
changes when you install new versions of jetspeed. Create a directory in the top level of the portal home.

cd ${org. apache. j et speed. portal . honme}
nkdi r custom zed

Make a copy of the build.properties file that you have already modified.

You may also want to make a directory to hold the original files before you modify them. This is not
strictly requirred since you can always reload the distribution. However it might be handy to keep a copy
for reference or to quickly get back to the state before you made changes.

3.10.2 Making some simple cuistomizations
We are going to change the logo and the portal name to test customization. You can make you own logo
to replace the Jetspeed logo. Take a look at the ${basedir} /stc/webapp/images/logo.png to get the size

and to verify the background colour. Make your own logo or copy the testlogo.png file to your
${ basedi r}/ cust om zed directory

3.11 Generate, deploy and test your custom Portal

cd ${org. apache. j et speed. portal . home}
maven j 2: ful | Depl oy

You can access the revised portal with your browser at:

http://1ocal host: 8080/ et speed

or replace "jetspeed" in the above url with the name of your own portal application (
${org. apache. jetspeed. portal .artifactld}).

You should see the new name and the new logo on the front page.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://localhost:8080/jetspeed

2.3

2.3 FROM ECLIPSE 28

From Eclipse

Developing with Eclipse

The Eclipse Classpath

Compiling, debugging, external dependencies, source code completion, searching, auto imports, all rely
on a propetly configured classpath. When you first create a project, a .classpath file is created in the
projects root directory. With the Jetspeed soutce, we provide you with a ready-to-use Eclipse .classpath
file. We have already configured the relative source directories for you. Eclipse provides a .classpath GUI
editor from the Project->Properties menu option.

JAR files and the Maven repository

Jetspeed requires quite a few JAR files to be able to compile. The .classpath file that comes with Jetspeed
is setup to get its JAR files out of a local Maven repository. You can see all the JAR file dependencies
from Eclipse. Go to Project->Properties->Java Build Path->Libraries. Notice all the JAR files are
configured as VARIABLE library entries. Take one example:

MAVEN_REPQ commons- | ang/ j ar s/ commons- | ang-2. 0. j ar

The Vatiable is portion is MAVEN_REPO. The Extension portion is
/commons-lang/jars/commons-lang-2.0.jar Eclipse locates the JAR dependency from a Variable location
root. In order for this classpath to work correctly, the variable root is dependent on a Maven-1 local
repository file structure.

To configure the MAVEN_REPO variable, go to Window->Preferences->Java->Build Path->Classpath
Variables, click on New, and define a new vatiable named MAVEN_REPO, pointing it out the root of
your local Maven-1 repository, usually someplace like your $$HOME/.maven/repository

Debugging with Eclipse

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

3.1 DOWNLOAD 29

31 Download

Download Jetspeed-2 Distribution

Jetspeed-2 is distributed in several formats for your convenience and distributed under the Apache
License, version 2.0 .

Jetspeed-2.1.2 Installer Distribution

Distribution Mirrors Checksum Signature
Jetspeed-2 Standard with only jetspeed-2.1.2-installer.jar here here

the required Administrative

Portlets

Jetspeed-2 Demo With lots of Jetspeed-2.1.2-demo-installer.jar here here

demo Portlets: RSS, JSF,
JPetstore and many more

Both the installers support the following databases for Jetspeed: Derby (default), DB2, MySQL, MSSQL,
Oracle, PostgreSQL, SapDB, as well as manual (do it yourself) configuration of other databases.

Furthermore, through a provided Ant script after installation, reinitializing or switching to another
database is a simple one step operation.

Complete instructions for getting started using the installer is available here .

Jetspeed-2.1.2 Source Distribution

Mirrors Checksum Signature
jetspeed-2.1.2-src.tar.bz2 here here here
jetspeed-2.1.2-src.tar.gz here here here
jetspeed-2.1.2-src.zip here here here

Jetspeed-2.1.2 Full Distribution (binaries, src and generated website)

Mirrors Checksum Signature

jetspeed-2.1.2.tar.bz2 here here here

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/binaries/jetspeed-2.1.2-installer.jar
http://www.apache.org/dist/portals/jetspeed-2/binaries/jetspeed-2.1.2-installer.jar.md5
http://www.apache.org/dist/portals/jetspeed-2/binaries/jetspeed-2.1.2-installer.jar.asc
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/binaries/jetspeed-2.1.2-demo-installer.jar
http://www.apache.org/dist/portals/jetspeed-2/binaries/jetspeed-2.1.2-demo-installer.jar.md5
http://www.apache.org/dist/portals/jetspeed-2/binaries/jetspeed-2.1.2-demo-installer.jar.asc
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.tar.bz2
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.tar.bz2.md5
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.tar.bz2.asc
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.tar.gz
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.tar.gz.md5
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.tar.gz.asc
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.zip
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.zip.md5
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2-src.zip.asc
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.bz2
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.bz2.md5
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.bz2.asc
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.gz
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.gz.md5
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.gz.asc

3.1 DOWNLOAD

30

Mirrors Checksum Signature
jetspeed-2.1.2.tar.gz here here here
jetspeed-2.1.2.zip here here here

System Requirements

The list of systems requirements for Jetspeed-2 is available here .

Migrating Guide

Important information for migrating existing Jetspeed-2.0 and Jetspeed-2.1 installations to Jetspeed-2.1.2

is provided in the migration guide .

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.gz
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.gz.md5
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.tar.gz.asc
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.zip
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.zip.md5
http://www.apache.org/dyn/closer.cgi/portals/jetspeed-2/sources/jetspeed-2.1.2.zip.asc

3.2

3.2 RELEASE NOTES 31

Release Notes

Release Notes - Jetspeed 2 - Version 2.1.2

The list below outlines the issues that are addressed with release 2.1.2 For a full list of features, see the
features list .

And the release notes of the previous major release 2.1 are available here: release notes 2.1 .

Bug
* [JS2-282] - Error when session expires and portlet window is maximized
[JS2-471] - Document Derby as the default database
[JS2-484] - UsetDetailsPortlet doesn't "see" newly added roles until after logging out and in again
[JS2-502] - cannot disable user
[JS2-512] - Profiler admin portlet can not display other language except English.
[JS2-525] - Roles and Groups appear in the User Details portlet when having been deleted
[JS2-566] - Tapestry portlet's header doesn't display in jetspeed
* [JS2-580] - localization SSO Details portlet
[JS2-657] - Installer fails with firewall
[JS2-660] - Request attribute not available in jsp when using the JetspeedPowerTool
[JS2-661] - Error in the antinstall-config script
[JS2-665] - Duplicate Objects creation
[JS2-667] - Portlet Selector is not returning to the correct page after navigation
[JS2-668] - Adding Portlets to multiple layouts always adds to the top level layout
[

J52-669 | - Site Manager Admin portlet does not allow copying of a resource into the same folder
where it exists

* [JS2-670] - Fragment Security Constraints only check View Mode
* [JS2-674] - Site component fails on profile navigations for subsites

* [JS2-675] - Site Manager Admin portlet: cannot view pages located via profiling rules with
navigations or controls

* [JS2-681] - Login portlet doesn't run in Tomcat ROOT context
* [JS2-682] - Jetspeed thread waiting to lock for infinity time

* [JS2-687] - jetspeed deployment engine removes WEB-INF/tld/portlet.tld from portlet app web
archive

* [JS2-688] - Unable to use Jetspeed services

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

https://issues.apache.org/jira/browse/JS2-282
https://issues.apache.org/jira/browse/JS2-471
https://issues.apache.org/jira/browse/JS2-484
https://issues.apache.org/jira/browse/JS2-502
https://issues.apache.org/jira/browse/JS2-512
https://issues.apache.org/jira/browse/JS2-525
https://issues.apache.org/jira/browse/JS2-566
https://issues.apache.org/jira/browse/JS2-580
https://issues.apache.org/jira/browse/JS2-657
https://issues.apache.org/jira/browse/JS2-660
https://issues.apache.org/jira/browse/JS2-661
https://issues.apache.org/jira/browse/JS2-665
https://issues.apache.org/jira/browse/JS2-667
https://issues.apache.org/jira/browse/JS2-668
https://issues.apache.org/jira/browse/JS2-669
https://issues.apache.org/jira/browse/JS2-670
https://issues.apache.org/jira/browse/JS2-674
https://issues.apache.org/jira/browse/JS2-675
https://issues.apache.org/jira/browse/JS2-681
https://issues.apache.org/jira/browse/JS2-682
https://issues.apache.org/jira/browse/JS2-687
https://issues.apache.org/jira/browse/JS2-688

3.2 RELEASE NOTES

[JS2-689] - Spring Bean Factory creation of Prototype (non-singleton) beans causes serious

performance degradation under load

J52-690] - Caching issue with Print Mode

to startup when no network is available
152-725
182-727
152-731

Dociumentation mismatch

Appy Findbugs patches

782735
782737
7S2-745

Jetty-6 ConcurrentModificationException on logout

[1-

[1-

[1-

[JS2-733] - Desktop: non-movable portlets are deletable
[I-

[] - Desktop doesn't work on IE 6.0

[I-

File System Page Manager does not accept folders with dots

Improvement

JS2-584] - enable adding Velocity context objects without recompilation
J52-672
J52-673
J52-680
J52-683

[|
[1-
[] - Set sql.src.path value in the project.properties

[1-

[1-

[JS2-685] - Add functionality to AJAX API to information about users
[5]-

[1-

[1-

[1-

[1-

Folder configuration form at a page edit area

Folder/Page customizer improvement

152-695
J$2-700
J52-701
152-702
152707

The Desktop does NOT support the no-action layouts
Display loading in progress message from desktop
Package and compress the Jetspeed Desktop Javascript
Optimize desktop menu loading

When creating a new user, give option to create inside a subsite

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

DESKTOP_ATTRIBUTE should be DESKTOP_CONTEXT_ATTRIBUTE

Add createProperty API to the Preferences Provider component

32

[

[JS2-692] - Fragment ids are not automatically created, causing runtime errors

[JS2-693] - Portal Site Manager etror in java script for button "view"

[JS2-694] - actionResponse.sendRedirect("some psml page.psml") fails on the desktop

[JS2-696] - Creating actionURLs on the desktop with javascript: tags in them fails

[JS2-697 | - Maximized mode ovetlaps as popup on desktop

[JS2-698] - Minimized mode functions only in un-tiled state on desktop

[JS2-699] - When going back from view mode to edit mode, icon is not always updated on desktop
[JS2-703] - Remove Print Mode Window Decoration on Desktop

[JS2-705] - Desktop window dragging mouse position offset bug

[JS2-714] - Filter Admin users from delegated-security portlets

[JS2-717] - MenuElement interface does not support getUsl method

[JS2-718] - forgot pass portlet: password reset link does not work

[JS2-719] - Default ehcache configuration is setup for distributed operation which will fail the portal

https://issues.apache.org/jira/browse/JS2-689
https://issues.apache.org/jira/browse/JS2-690
https://issues.apache.org/jira/browse/JS2-692
https://issues.apache.org/jira/browse/JS2-693
https://issues.apache.org/jira/browse/JS2-694
https://issues.apache.org/jira/browse/JS2-696
https://issues.apache.org/jira/browse/JS2-697
https://issues.apache.org/jira/browse/JS2-698
https://issues.apache.org/jira/browse/JS2-699
https://issues.apache.org/jira/browse/JS2-703
https://issues.apache.org/jira/browse/JS2-705
https://issues.apache.org/jira/browse/JS2-714
https://issues.apache.org/jira/browse/JS2-717
https://issues.apache.org/jira/browse/JS2-718
https://issues.apache.org/jira/browse/JS2-719
https://issues.apache.org/jira/browse/JS2-725
https://issues.apache.org/jira/browse/JS2-727
https://issues.apache.org/jira/browse/JS2-731
https://issues.apache.org/jira/browse/JS2-733
https://issues.apache.org/jira/browse/JS2-735
https://issues.apache.org/jira/browse/JS2-737
https://issues.apache.org/jira/browse/JS2-745
https://issues.apache.org/jira/browse/JS2-584
https://issues.apache.org/jira/browse/JS2-672
https://issues.apache.org/jira/browse/JS2-673
https://issues.apache.org/jira/browse/JS2-680
https://issues.apache.org/jira/browse/JS2-683
https://issues.apache.org/jira/browse/JS2-685
https://issues.apache.org/jira/browse/JS2-695
https://issues.apache.org/jira/browse/JS2-700
https://issues.apache.org/jira/browse/JS2-701
https://issues.apache.org/jira/browse/JS2-702
https://issues.apache.org/jira/browse/JS2-707

3.2 RELEASE NOTES 33

JS2-709] - Update to latest dependencies
JS2-711] - Support JSP decorators as well as Velocity
JS2-712] - Create new servlet session upon login (configurable)

JS2-713] - Put a hard-limit on session time-out for portal sessions

]S2-723] - Option to configure DB PSML from the installer
J52-739] - Improve Algorithms for Resource Validation and Template Localization
]52-740] - Allow overriding the default Spring assembly without having to modify it

7S2-741

[|

[]

[]

[]

* [JS2-721] - Ability to determine if a Menu Option has a default page or not

[|

[]

[]

[] - More GroovyPortlet demos using the new Portals Bridges GroovyPortlet
[]

JS2-747] - A valve creating template pages when a user logs on first.

New Feature

[JS2-317] - Virtual Portal Implementation

[JS2-691]

[JS2-716] - PSML and XML Import / Export Admin Portlet
[]

[]

- Allow user to customize all his pages and portlets (in user home folder) at once

JS2-724] - Audit logs for administrative actions

JS82-728] - Provide a Portals Bridges common.PortletResourceURLFactory implementation for
Jetspeed

[JS2-729] - Preliminary Portlet API 2.0 ResourceURL support allowing full response control like for
cookies and compressed output streams

[JS2-7321] - A GroovyPortlet demo using the new Portals Bridges GroovyPortlet
[JS2-743] - Maximize on Edit

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

https://issues.apache.org/jira/browse/JS2-709
https://issues.apache.org/jira/browse/JS2-711
https://issues.apache.org/jira/browse/JS2-712
https://issues.apache.org/jira/browse/JS2-713
https://issues.apache.org/jira/browse/JS2-721
https://issues.apache.org/jira/browse/JS2-723
https://issues.apache.org/jira/browse/JS2-739
https://issues.apache.org/jira/browse/JS2-740
https://issues.apache.org/jira/browse/JS2-741
https://issues.apache.org/jira/browse/JS2-747
https://issues.apache.org/jira/browse/JS2-317
https://issues.apache.org/jira/browse/JS2-691
https://issues.apache.org/jira/browse/JS2-716
https://issues.apache.org/jira/browse/JS2-724
https://issues.apache.org/jira/browse/JS2-728
https://issues.apache.org/jira/browse/JS2-729
https://issues.apache.org/jira/browse/JS2-732
https://issues.apache.org/jira/browse/JS2-743

41

4.1 DOCUMENTATION GUIDES 34

Documentation Guides

Documentation Guides

Getting Started

* Getting started guide
* Getting started with Jetspeed-2 source guide
* Getting started with Jetspeed-2 binaries guide

* Getting started with Jetspeed-2 installer

Guides to Portal Concepts
* Guide to Jetspeed-2 pipeline
* Guide to decorators

* Guide to layouts

Configuration Guides
* Guide to configuration properties
* Guide to database configuration
* Guide to application servers configuration
* Guide to configuring Jetspeed-2 security
* Guide to using Jetspeed-2 single sign-on
* Guide to using NTLM Authentication
* Guide to defining user attributes (PLT.17 user information configuration)
* Guide to using profilers
* Guide to Aggregation
* Guide to Subsites

* Guide to Migration to 2.1.2

Portal Development Guides

* Guide to portal design
¢ Guide to PSML
* Guide to declarative security through PSML

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

4.1 DOCUMENTATION GUIDES 35

* Guide to declarative menus in PSML

* Guide to working with a Jetspeed-2 site

* Guide to localization with Jetspeed-2

* Guide to Jetspeed-2 AJAX API

* Guide to a very simple portlet with Jetspeed-2

* Guide to a very simple velocity portlet with Jetspeed-2
* Guide to a very simple jsf portlet with Jetspeed-2

* Guide to portlet bridges

* Guide to Profiling IP Addresses

Jetspeed-2 Development Guide

* Guide to Jetspeed-2 development
* Guide to helping with Jetpseed-2
* Tomcat SSO and Cross Context Webapps Guide

Guides to Jetspeed-2 Tools

* Guide to Jetspeed-2 Power Tools
* Guide to Jetspeed-2 Portlet Application Deployment
* Guide to Jetspeed-2 Maven Plugin

Components Guides

* Guide to Jetspeed-2 component architecture

* Guide to Jetspeed-2 directory structure

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

4.2 JETSPEED TUTORIAL 36

a2 Jetspeed Tutorial

http://portals.apache.org/tutorials/jetspeed-2/

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/tutorials/jetspeed-2/

4.3 JETSPEED-2 API 37

43 Jetspeed-2 API

http://portals.apache.org/jetspeed-2/multiproject/jetspeed-api/apidocs/index.html

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/jetspeed-2/multiproject/jetspeed-api/apidocs/index.html

4.4

4.4 JETSPEED-2 PLUGIN 38

Jetspeed-2 Plugin

Plugin Overview

Adding functionality to Maven is done through the Maven plugin mechanism. Maven comes shipped
with numerous plugins and provides an extensible framework for writing custom plugins. Details on
custom Maven plugins can be found in the Writing a Plugin section of Maven's web site.

Jetspeed 2 has developed a custom Maven plugin that centralizes most common build goals required to
build a Jetspeed 2 based portal application. This provides many benefits:

* Better reusability of common build goals. Developers creating a new portal application can leverage
the Jetspeed 2 Maven plugin for common build operations.

* The ability to quickly get started with a portal application. With the goal j 2: por t al . genapp a new
portal application can be created. The developer of the new application can reuse the Jetspeed 2
Maven plugin goals for common build operations for quickStart, portlet deployment, etc.

* Preparation for future migration to Maven 2 (M2). With M2, custom goals are encapsulated in
plugins, maven.xml is deprecated. By centralizing most of the Jetspeed 2 build goals to the Jetspeed 2
Maven plugin, migration to M2 should be much easier.

Portal Application creation and configuration Goals

Creating a new Portal Application

Goal Description

j 2: portal . genapp Generates or updates a custom portal application. Checkout the
Getting Started document for basic usage of this goal.

j 2: portal . genapp. m ni mal Works similar to j 2: por t al . genapp. However, it will only copy the
following directories/files from WEB- | NF/ pages.
» /WEB-INF/pages/Administrative/** (all contents)

* /WEB-INF/pages/page.security

Configuring and updating a Portal Application

The j 2: portal . genapp goal above is actually no more than a wrapper around several (sub)goals
which can also be used individually to update and configure your portal application:

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://maven.apache.org/using/developing-plugins.html

4.4 JETSPEED-2 PLUGIN

Goal

39

Description

j 2: portal . copy. webapp

j 2: portal . copy.webapp. m ni nal

j 2:portal.conf.project

j 2:portal.conf.sql

j2:portal.conf.ojb

j2:portal.conf.|dap

j2:portal.conf.jetspeed

j2:portal.conf.tontat

Copies the (static) Jetspeed 2 portal web resource from the plugin to
the ${ or g. apache. j et speed. por t al . webapp. di r} folder.
Running this goal again will not clear out previous resources but will
overwrite existing resources.

If you need to upgrade to a newer version of the Jetspeed 2 portal
you should clear out these resources yourself first. By default, the
target folder is configured within the maven default target folder and
running the cl ear goal will do exactly that.

Similarto j 2: port al . copy. webapp However, it will only copy the
following directories/files from WEB- | NF/ pages.
* /WEB-INF/pages/Administrative/** (all contents)

» /WEB-INF/pages/page.security

Creates a new maven or updates an existing portal project
configuration in the
${org. apache. j et speed. portal . hore. di r} folder.
It creates a hiearchy of 5 maven project files:

» project-info.xnl

e core-build.xm extends project-info.xnl

* j et speed-conponents. xm extends core-build. xm

e full-portal.xm extends jetspeed-conponents. xm

e project.xm extends full-portal.xm
Of the above files, the first and the last (project-info.xml and
project.xml) may be modified to provide additional project information
and configuration and will not be updated by this goal again. Only the
other 3 files will be rewritten by this goal. If you need to upgrade to a
newer version of the Jetspeed 2 portal your own customization will be
preserved.
Additionally, you can add your own maven.xml and/or
project.properties or build.properties to further customize your portal.
These also will be preserverd when you run this goal again.

Generates the portal sql schema DDL for the configured database(s)
under the ${ or g. apache. j et speed. portal . sql . dir}, as well
as copies over statically defined common and selected database
specific sql DML and DDL (possibly overriding generated DDL).

The content of the sql target folder is cleared out first when this goal is
run.

Copies the OJB configuration, filtered for the currently selected
production database to the

${org. apache. j et speed. portal . target.dir} folder.

As default, the above target folder is configured under the default
maven war target folder. The maven cl ear goal will also remove this
filtered OJB configuration.

Copies the LDAP configuration, to the
${org. apache. j et speed. portal . target.dir} folder.

Copies the filtered j et speed. properti es portal configuration to
the ${ or g. apache. j et speed. portal . target. dir} folder.

As default, the above target folder is configured under the default
maven war target folder. The maven cl ear goal will also remove this
filtered j et speed. properti es file.

Copies a filtered Tomcat context descriptor, containing current
database connection configuration to the

${org. apache. j et speed. portal . conf.dir} folder.

Based on the

${org. apache. j et speed. cat al i na. maj or. ver si on} setting,
a Tomcat 5.0.x or 5.5.x type template context descriptor will be used.
The filtered Tomcat context descriptor will be copied to the Tomcat
server by the j 2: portal . depl oy goal.

If you need to change the Tomcat major version and/or database
connection configuration, you need to run this goal again before
(re)deploying your portal.

As default, the above target folder is configured under the default
maven target folder. The maven cl ear goal will remove this filtered
context descriptor file.

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

4.4 JETSPEED-2 PLUGIN 40

Portal Application Deployment Goals

Quickstart deployment goals

Several goals are available for quickly deploying the Portal Application together with a predefined set of
Portlet Applications and optionally with creating and seeding the portal database.

Goal Description

j2:doStart A generic goal for deploying the portal application and setting up the
required dependencies for the configured Tomcat Server (shared
libraries, portal application context, etc.).
This goal requires the plugin property depl oy Type to be set. The
default value is " j 2: f ul | Depl oy" (see below).
If plugin property r ecr eat eDB is set, goal j 2: db. recreat e is
invoked.
All existing Jetspeed 2 standard and demo portlet applications are
removed through goal j 2: r enove. war s.
The shared dependecies are copied to the Tomcat Server with goal
j 2: copy. shar ed. deps.
And finally, the set depl oy Type plugin property value is used to run
a specific deploy goal.

j 2:quickStart Invokes j 2: doSt art with depl oyType="j 2: ful | Depl oy" and
recreat eDB=true.

j 2: nodbQui ckSt art Invokes j 2: doSt ar t with depl oyType="j 2: nodbf ul | Depl oy"
and r ecr eat eDB=f al se.

j2:basicStart Invokes j 2: doSt art with depl oyType="j 2: basi cDepl oy" and
recr eat eDB=t r ue.

j 2: nodbBasi cSt art Invokes j 2: doSt art with depl oy Type="j 2: nodbBasi cDepl oy"
and r ecr eat eDB=f al se.

j2:mnStart Invokes j 2: doSt art with depl oy Type="j 2: mi nDepl oy" and
recreateDB=true.

j 2: nodbM nSt ar t Invokes j 2: doSt art with depl oyType="j 2: nodbM nDepl oy"
and r ecr eat eDB=f al se.

Deployment supporting Goals

Goal Description

j2:remove.wars Removes the portal, all standard and demo portlet applications (see
j 2: ful | Depl oy below) and their context descriptors (if any) from
the Tomcat Server.

j 2: catal i na. base. shared Copies all base jars necessary for the common portlet container.
j 2:catalina.shared Copies all jars necessary for common container
j 2: copy. shar ed. deps Wrapper goal invoking j 2: cat al i na. base. shar ed and

j2: catalina. shared.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

4.4 JETSPEED-2 PLUGIN 41

Goal Description

j 2: portal . depl oy Deploys the portal application only and its dependencies to the
Tomcat Server, but no portlet applications.
First, it removes the current portal installation with goal
j 2:renpve. wars.
Then it copies and expands the build portal war from the local maven
repository to the application server.
And it copies a Tomcat context descriptor for the portal (see also goal
j2:portal.conf.tontat).
Finally, it installs the shared dependencies with goal
j 2: copy. shared. deps.

Standard and Demo Portlet Application deployment goals

Goal Description

j 2: depl oy Generic goal to deploy a portlet application identified by property
${ maven. war . fi nal . nane}.
The portlet application is searched for in the Jetspeed2 group of the
local maven repository. When searching portlets in the repository, this
goal searches for the portlet application given the Jetspeed 2 version
number configured in the plugin. The name of the file searched in the
repository following the convention
${maven. war . fi nal . nane} - ${j et speed. versi on}. war and
is deployed as ${ maven. war . f i nal . narme} . war .

j 2: pam | ayout depl oy Deploys Jetspeed local layout portlet application.

j 2: pam adm ndepl oy Deploys Jetspeed Administration portlet application.

j 2: pam t sdepl oy Deploys Pluto Test Suite portlet application.

j 2: pam st rut sdepl oy Deploys the struts mailreader demo portlet application.

j 2: pam j pet st or edepl oy Deploys the iBatis JPetstore based demo portlet application.

j 2: pam j sf depl oy Deploys the JSF demo portlet application which uses Jetspeed

generic JSF portlet bridge.

j 2: pam j sf nyf acesdepl oy Deploys the JSF demo portlet application which uses MyFaces native
JSF portlet bridge.

j 2: pam phpdepl oy Deploys the Jetspeed PHP bridge demo portlet application.

j 2: pam per | depl oy Deploys the Jetspeed Perl bridge demo portlet application.

j 2: pam r ssdepl oy Deploys the RSS feed demo portlet application.

j 2: nodbM nDepl oy Deploys the portal using the j 2: por t al . depl oy goal and only the

layout and admin portlets using j 2: pam | ayout depl oy and
j 2: pam admi ndepl oy.

j 2: m nDepl oy The same functionality as j 2: nodbM nDepl oy and additionaly
seeds the portal database using the j 2: db. enti ti es goal.

j 2: nodbf ul | Depl oy The same functionality as j 2: nodbM nDepl oy but additional
deploys all other demo portlet applications (see full list above).

j 2: ful |l Depl oy The same functionality as j 2: nodbFul | Depl oy and additionaly
seeds the portal database using the j 2: db. enti ti es goal.

Database Management Goals

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

4.4 JETSPEED-2 PLUGIN

Goal

42

Description

j2:start.production.server

j2:start.test.server

j2:db.create. test

j 2: db. create. production

j2:db.recreate

j2:db.drop.test
j 2: db. drop. production

j2:db.entities

Starts the HSQLDB production database for usage by the portal. This
goal is optional to those who use the default embedded Derby
database.

Starts the HSQLDB test database to be used for the testcases during
the build of Jetspeed 2. This goal is optional for those who use the
default embedded Derby database for testing Jetspeed 2.

Creates the test database tables. If using the HSQLDB database, it
should be started first with goal j 2: start.test. server.

Existing portal tables are dropped first. The first time, this will lead to
"table does not exist" error messages but they can be (and are)
ignored.

Creates the production database tables. If using the HSQLDB
database, it should be started first with goal
j2:start.production. server.

Existing portal tables are dropped first. The first time, this will lead to
"table does not exist" kind of error messages but they can (and are)
ignored.

Recreates the production database using the
j 2:db. creat e. product i on goal but first (re)generates the sql
scripts using j 2: portal . conf.sql .

Drops the test database portal tables.
Drops the production database portal tables.

Populates the users information for the default PSML configuration
configured with Jetspeed 2.

LDAP Management Goals

Goal

Description

j2:start.|dap. server

Starts the default Apache Directory Server and load the default
apacheds-server.xml configuration.

Auxillary Jetspeed Components Deployment Goals

Generic set of goals for redeploying a specific Jetspeed component.

Goal

Description

j2:jar.depl oy

j2:jar.deploy.shared

j 2: depl oyDecor at i ons

j 2: depl oyTenpl at es

Deploys a Jetspeed core component from the local maven repository
to the deployment directory.

Deploys a Jetspeed core component shared library from the local
maven repository to the Tomcat shared library directory.

Deploys all decoration files from the WEB-INF/decorations directory to
the deployed portal.

Deploys all template files from the WEB-INF/templates directory to the
deployed portal.

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

http://svn.apache.org/viewcvs.cgi/portals/jetspeed-2/trunk/etc/apacheds/apacheds-server.xml?view=markup

4.4 JETSPEED-2 PLUGIN

©1999 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

43

51

5.1 FOR JETSPEED-1 USERS 44

For Jetspeed-1 Users

For Jetspeed-1 Users

Jetspeed-2 is a new project, written from groundup and does not have any dependencies on Jetspeed-1.
Jetspeed-2 is based on industry standards, designed for high-volume enterprise portals applications. The
foremost difference is Jetspeeds Component Oriented Architecture, all assembled together with Spring.
Components replace Turbine services with a standardized component model. Deployment of new portlet
applications, which was completely missing in Jetspeed-1, is implemented to the Portlet API specification.
Turbines file-based configuration for properties are replaced managed components. Jetspeed-2 is fully
decoupled from the legacy projects that were intertwined in the Jetspeed-1 architecture.

Whats New in Jetspeed-2

* 1. Fully Compliant with Java Portlet API Standard

* 2. Separation of Portlet Applications From Portal

* 3. Live Deployment Model for Portlet Applications and Portal Layouts
* 4. Spring Component Based Architecture

* 5. Multi-threaded Portlet Aggregation Engine

* 0. Scalable Architecture

* 7. Pipeline-based Request Processing

* 8. JAAS Security

* 9. Bridges Integration with Struts, JSF, PHP, Perl, Velocity

* 19. CMS-based Site Navigations

Whats the same in Jetspeed-2
Not much.

In fact Jetspeed-2 does not re-use any of the code in Jetspeed-1. Some concepts are continued in
Jetspeed-2, but with new design and implementations. The table below shows some of the concepts
continued in Jetspeed-2 from Jetspeed-1. Note that even though the concepts are continued, they are
have changed, in some cases significantly:

* 1. PSML - Portlet Structured Markup Language. Defines the layout of portlets on a page. While the
purpose is still the same, the XML format has changed. Porting is possible, requires a migration tool.
PSML now fits into an overall Jetspeed Navigation Site as a page-type resource. No PSML porting
tool is currently available. However, an XSLT transform could be a good choice.

* 2. Portal Wide Security Policy and Constraints - Jetspeed-2 has two kinds of security mechanisms:

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.1 FOR JETSPEED-1 USERS 45

JAAS-based security policies, and declarative security constraints much like Jetspeed-1 constraints.
Where as Jetspeed-1 constraints were limited to PSML, Jetspeed-2 declarative security constraints are
also applied to folders and links.

* 3. Portlets - Portlets now must adhere to the new Portlet API. No porting tool is currently available.
The Jetspeed-1 Portlet API will not be continued in Jetspeed-2.

* 4. Turbine Services are out (Fulcrum). Jetspeed-2 is based on Spring components.

* 5. Registries - The Jetspeed-1 Registries are discontinued in Jetspeed-2. All portlets are now stored in
a Registry database in Jetspeed-2. No porting tool is available. Recommend converting your portlets
to JSR-168 portlets, packaging all portlets in a portlet application, and deploying as standard WAR
file. Other registries are all deprecated.

* 6.]JSP and Velocity Templates - Templates can be re-used to some extend. Any references to Rundata
or any other Turbine or Jetspeed-1 tools or tags must be converted.

» 7. Controls and Controllers - These concepts have changed, and are now called decorators and
layouts. The Turbine module concept, which backed controls and controllers, is no longer supported.
Layouts and decorators are now only implemented as portlets, or as just plain markup. Layouts and
templates can be deployed to the portal as a deployable unit.

* 8. Jetspeed Configurations and Jetspeed Component Assemblies replace Property Files. Component
(services) should be assembled, not defined in property files. Many of the features in Jetspeed-1 were
represented as read-only properties in the Jetspeed-1 static property files. Jetspeed-2 components can
be configured with JMX.

Turbine Gone

Jetspeed-1 is tightly coupled to the Turbine MVC-2 framework, and this coupling permeates many areas
of the Jetspeed APL. Jetspeed-2 does not rely on Turbine as the MVC-2 controller. Instead, we follow the
separation of concerns pattern, and concentrates on doing one thing and doing it well. That is,
implementing a portal. Where as Jetspeed-1 coupled MVC Controller, portal engine, and portlet container
all into one deeply coupled servlet, Jetspeed-2 separates these concerns cleatly in its architecture. The
portal engine is Jetspeed-2. It is the MVC for page aggregation, leveraging the dispatching nature of the
servlet architecture, and delegating the actual rendering of portlets to portlet application frameworks.
These portlet applications can in turn have their own MVC frameworks, such as Struts portlet
applications, JSF portlet applications, or Turbine portlet application frameworks.

RunData No More

Most notably missing from Portlet API portlets is the RunData class. The Jetspeed-1 API uses the
RunData class ubiquitously, serving as a wrapper for both the servlet request and response. Other
dependencies on Turbine include Portlet Actions, Portlet Aggregation Engine (ECS), the Service
Architecture, Configuration and Turbine Modules. None of these exist in the newer version.

Jetspeed-1 Jetspeed-2
Run Data Portlet API: Portlet Request and Portlet Response
Portlet Aggregation Engine (ECS) Jetspeed-2 Multi-threaded Portlet Container Engine

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.1 FOR JETSPEED-1 USERS 46

Jetspeed-1 Jetspeed-2

Turbine Service Architecture Jetspeed-2 Components
Property Configuration Files Spring Configurations, JIMX
Turbine Modules (Actions) Portlet API Actions

Pluto is the Portlet Container

The Jetspeed-2 portal does not implement the Portlet container. Pluto implements the JSR 168 interface
contract for portlets running inside our portal. The Pluto container handles all communication with
portlets for the portal.

Aggregating, Isnt It?

The aggregation engine and the Jetspeed-1 Portlet API are both coupled to a deprecated Jakarta package
ECS (Element Construction Set). ECS generates HTML with Java code, storing the content in temporary
Java objects before sending the HTML out to the servlet output stream. This wasteful use of Java objects
leads to fragmentation on memoty, accelerated garbage collection, and paging in high volume sites. The
servlet API clearly provides a content stream for streaming out portlet content. Jetspeed-2 models its
aggregation engine upon the Portlet APIs streams and readers, analogous to the stream-based Servlet API
for rendering content.

State and Life Cycle

The Portlet API clearly defines the lifecycle of a portlet, the event sequences for actions, and how the
container can cache content from a portlet. The Portlet Lifecycle was not clearly defined in Jetspeed-1.
The portlet API clearly states that only one instance of a portlet will reside in memory inside a container.
The state of the portlet is directly related to the servlet state for the current user session. While this may
seem obvious, portlet state and lifetime was not clearly defined in Jetspeed-1.

Actions

In version 1, actions were coupled to Turbine and not propetly integrated into the Portlet class. In fact,
actions were separate objects from portlets. In the Portlet API, actions are methods on the portlet.
Action event handling and sequencing is clearly defined in the specification.

Standard Deployment

Jetspeed-1 does not have a standardized method of deploying portlets and their supporting files,
commonly referred to as portlet applications. In order to import an application, one must package
registry files, class and jar files, PSML and templates so that they match the Jetspeed web application
format.

In Jetspeed-2, the Portlet API defines a standard deployment descriptor for deploying Portal Applications

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/pluto

5.1 FOR JETSPEED-1 USERS 47

into Jetspeed. Portal applications must be deployed to the portal. Analogous to the servlets packaged in a
web-application (WAR) deployment model, portals support portlets packaged in a portal-application
deployment model. The Portal Application archive follows the same format as the WAR format defined
in the Servlet specification with an additional Portlet deployment descriptor file. The clear advantage in
Jetspeed-2 is the ability to deploy live portlet applications to the setver in a standardized format.

Resources and Deployment

Jetspeed-1 resources such as portal templates, images, skins, controllers, controls, are all merged into the
single Jetspeed web application with no deployment model. For example, to override the default skin or
top banner, the resource files are copied into the portal directory, property files updated to point to the
new resources, and the server must be restarted. This made for the process of tailoring Jetspeed-1 portals
to real production portals a process of property and file merging. In fact Jetspeed-1 now has a Maven
plug-in to manage production portals separately from the core Jetspeed-1 portal. The need for this kind
of tool covers up the fact that Jetspeed-1 is missing a good deployment model for portal resources,
requiring difficult portal maintenance procedures.

For a Jetspeed-2 production portal, portal resources are packaged in a Jetspeed-specific archive format.
Thus portal resources (top banners, skins, images, style sheets) can all be deployed to dynamically tailor
the portal at runtime.

the Standard

JSR168 is the Portlet specification enables interoperability between Portlets and Portals. The specification
defines a set of APIs that addresses standardization of portlet ageregation, personalization, presentation
and security. The goals of J[SR168 are to:

* Define common Portal metaphor

* Define a standard Portlet Java API

* Ensure interoperability and portability
* Enable multiple markups support

* Ensure compatibility with other technologies

The Jetspeed-2 Portlet Server supports the JSR 168 standard. This is an important initiative, introducing
true portlet portability.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2

5.2 JETSPEED-1 MIGRATION GUIDELINE 48

Jetspeed-1 Migration Guideline

Overview

This migration guide will help you migrate from Jetspeed version 1 to Jetspeed version 2. Note that there
are currently no migration tools, nor are the plans to create a migration tool to convert portal resources
from version 1 to version 2. This document provides only guidelines for migration.

With the development of the new portal standard (The Portlet API), the common portlet metaphor has
changed quite drastically from the Turbine-based origins in version 1. The programming API is
completely changed. There are no longer XREG files, but instead standard deployment descriptors. The
are also new concepts introduced by the portlet standard such as portlet applications, portlet preferences,
user attributes and init parameters that have no direct mapping from version 1. Creating a migration tool
would be a large undertaking. The Jetspeed development team is not prepared to make this investment.
By following the guidelines provided here, you can easily migrate your Jetspeed 1.x applications to
Jetspeed 2. For an overview of architectural differences, see the document For Jetspeed-1 Users

Migration Table

The table below gives you an idea of how to migrate. We will cover each subject in more detail further on
in this document.

1.x Feature 2.x Feature Description

J1 Portlet Java Code Portlet API Standard Code Rewrite the java code to the new
specification. Involves replacing Turbine
action with standard processAction, and
replacing Rundata with
PortletRequest/Response

XREG Portlet Registry portlet.xml deployment descriptor There are pretty big differences here. Migrate
<portlet-entry> to <portlet> entries,
<parameter> to <preference> or <init-param>

J1 PSML J2 PSML Migrate Tabs to Folders and Pages, migrate
to new tag syntax

XREG Security Registry Security Constraints Migrate J1 security constraint format to J2
security constraint format

J1 Controllers J2 Layouts Controllers are deprecated. Recommend
using the new Jetspeed-2 Layout portlets. If
porting necessary, HTML portions of VM code
may port, but not context model variables

J1 Controls J2 Portlet Decorators Controls are deprecated. Recommend using
the new Jetspeed-2 Portlet Decorators. If
porting necessary, HTML portions of VM code
will port, but not context model variables

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 49

1.x Feature 2.x Feature Description

J1 Layouts, Screens, Navigations J2 Page (Layout) Decorators All deprecated. Recommend using the new
Jetspeed-2 Page (Layout) Decorators as a
starting point to writing your own page
decorators. HTML portions of VM code will
port, but not context model variables

Portlet Applications

One of the most important differences in writing Jetspeed-2/Portlet API portlets is that you must
package your portlet code separate from the Jetspeed portal. In Jetspeed-1, all the user code, the portlet
business logic, is packaged in one big war file mixed in with the Jetspeed-1 implementation. The Portlet
API cleatly abolishes this practice of mixing the portal implementation with your portlets. Jetspeed-2 is
packaged as a single web application itself. When you write your portlets for Jetspeed-2, you will need to
write and package your own portlets. The portlet classes and deployment descriptors must all be
packaged into a single war file, known as a portlet application. A portlet application contains one or more
portlets, along with a deployment descriptor, the portlet.xml. A portlet application is an extension of a
web application. The portlet.xml holds the definitions of one or more portlets and is analogous to the
xreg files used in Jetspeed-1.

Java Code

In this section we demonstrate how to convert a Jetspeed-1 portlet to a JSR-168 Java Standard Portlet.
This involves the following steps:

* Converting the Portlet Init Java Code
* Converting the Portlet getContent Java Code
* Converting a Turbine Action

Jetspeed-1 portlet implementations are normally separated between two different Java source files.

¢ The Portlet Source Code
¢ The Turbine Action Source Code

The Portlet Source Code handles the View part of the MVC pattern. The getContent method is the
standard method in Jetspeed-1 to call to render the content of a portlet. The corresponding methods in
Jetspeed-2 and in the Portlet API, the doView, doEdit, doHelp. In the Portlet API terminology, this
phase of portlet processing is known as the render phase. During the render phase, the portlet should
not perform any business logic or other manipulation on the Model. All model manipulation should be
left to the action phase

The Turbine Action performs the action phase of the portlet processing. During the action phase of the
Portlet API standard, rendering of all other portlets is blocked until the action completes. This is also true
in the Jetspeed-1/Turbine model.

Creating a new Portlet Class

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 50

The best place to get started in migrated your portlet is to create a new JSR-168 standard portlet. Simply
create a new Java class inheriting from the GenericPortlet interface provided by the Portlet API. You can
also use one of the frameworks or bridges available from Apache Portals or Spring MVC. The example
below writes directly to the Portlet API. The code below can be used a skeleton for writing a portlet.

inmport java.io.|OException;

inmport javax.portlet. GenericPortlet;
inmport javax.portlet.PortletConfig;
inmport javax.portlet.PortletException;
import javax.portlet.Render Request;
inmport javax.portlet.Render Response;
inmport javax.portlet.ActionRequest;
inmport javax.portlet.Acti onResponse;

public class Hell oWwrld extends GenericPortl et

{
public void init(PortletConfig config)
throws Portl et Exception
{
}
public void doEdit(Render Request request, Render Response response)
throws Portl et Exception, | CException
{
}
public void doHel p(Render Request request, Render Response response)
throws Portl et Exception, | CException
{
}
public void doVi ewm(Render Request request, Render Response response)
throws Portl et Exception, | CException
{
}
public void processAction(ActionRequest request, ActionResponse acti onResponse)
throws Portl et Exception, | CException
{
}
}

To find out more about Portals Bridges and other Frameworks, explore these links:
* Portals Bridges
» JSF Bridge
» Struts Bridge
* Velocity Bridge
* Spring Portlet MVC

Converting the Portlet Init Java Code

The Portlet Source code handles the Init phase of a portlet lifecycle. The init phase is very similar in both
the Java Portlet API and in Jetspeed 1. Here we have an example of the init method of a Jetspeed-1
portlet:

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://portals.apache.org/bridges/
http://portals.apache.org/bridges/multiproject/portals-bridges-jsf/index.html
http://portals.apache.org/bridges/multiproject/portals-bridges-struts/index.html
http://portals.apache.org/bridges/multiproject/portals-bridges-velocity/index.html
http://www.springframework.org/docs/reference/portlet.html

5.2 JETSPEED-1 MIGRATION GUIDELINE 51

public void init() throws PortletException

{
}

The equivalent method in the Portlet API (Jetspeed-2) would be, note the difference being the
PortletConfig parameter (although the exception classes are named the same, they are entirely different
classes, one from Jetspeed-1, the other from the Portlet API):

public void init(PortletConfig config)
throws Portl et Exception

{
}

In Jetspeed-1, you would normally access Turbine Services with static acccessors, for example:

Jet speedSecurity. addUser (user);

In Jetspeed-2, Jetspeed Services the standard way to access Jetspeed Services is to get a handle in the init
phase, for example:

private UserManager user Manager;

public void init(PortletConfig config)
throws Portl et Exception

{
user Manager =
(User Manager) get Port | et Context (). getAttribute(ComonPortl et Servi ces. CPS_USER MANAGER_ COVPONENT) ;

if (null == userManager)

{

throw new Portl et Exception("Failed to find the User Manager on portlet
initialization");
}
}

Converting the Portlet getContent Java Code

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 52

In Jetspeed-1, the getContent method renders the content of your portlet. The render phase of
Jetspeed-1 is implemented by the getContent method of your Portlet as defined by the Jetspeed-1 Portlet
interface.

public ConcreteEl ement get Content (RunData rundata);

The only parameter passed in to the getContent method is a RunData parameter. RunData is a part of
the Turbine web framework . RunData is basically a wrapper around the Servlet request and response,

along with other Turbine-specific information. When writing portlets for Jetspeed-2, you write to the
Portlet APL

public void doVi ew(Render Request request, Render Response response)
throws Portl et Exception, | CException

{
response. set Cont ent Type(“"text/htm ");

The doView method is the Portlet API equivalent of the getContent method of the Jetspeed-1 API. The
Portlet API has the concept of portlet modes. There are three default portlet modes view, edit, and
help. For each of these modes, there are three methods you can override in your portlet: doView,
doEdit and doHelp. Notice that where the Jetspeed-1 API has one RunData parameter, the Portlet API
is more like the Servlet API, with two parameters, the RenderRequest and RenderResponse. One of
the biggest parts of migrating your app will be to convert RunData references to RenderRequests and
RenderResponses. Before starting, we recommend taking a training course on the Portlet APL, or learning
the API yourself by reading the Portlet specification as well as any articles or books on the subject. A
good book to get started on the Portlet API is Portlets and Apache Portals .

When rendering content, Jetspeed 1 makes use of a HIML construction kit called ECS. All rendering
goes through Turbine and ECS. The return type of the getContent method is a ConcreteElement,
which is defined in the ECS API. Here is the typical way to generate output from a portlet in Jetspeed-1:

String helloString = "Hello World. This is the portlet output in view node.";
return new org. apache. jetspeed. util.Jetspeedd earEl enent (hel | 0String);

When rendering content in Jetspeed-2, the Portlet API uses a streaming interface:

response. set Cont ent Type("text/htm ");
String helloString = "Hello World. This is the portlet output in view node.";

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://jakarta.apache.org/turbine/
http://www.manning.com/hepper/

5.2 JETSPEED-1 MIGRATION GUIDELINE

53

// using Java witers
response.getWiter().println(helloString);

R ...

/1 using Java streani ng
response. get Port| et Qut put Strean{).wite(helloString.getBytes());

Of course you can use JSPs or Velocity with either Jetspeed-1 or Jetspeed-2. With Jetspeed-1, the
common practice is to make use of the Jetspeed-1 GenericMVCPortlet or one of its derivitives, the
VelocityPortlet or the JspPortlet. Both the VelocityPortlet and JspPortlet are really just
GenericMVCPortlets. Here is the xreg example of a WeatherPortlet which extends the
GenericMVCPortlet by setting its parent to Velocity

<portlet-entry nane="Weat herPortlet" hidden="fal se" type="ref" parent="Vel ocity"
application="fal se">

<paraneter name="tenplate" val ue="weather" hidden="true"/>
</portlet-entry>

The template parameter is named weather. Since this is a Velocity MVC portlet, Jetspeed-1 knows to
look under the WEB-INF/templates/vm/portlets /html directory to find weathet.vin. The MVC
portlet will automatically handle the details of dispatching to this Velocity template to render your portlet.
Here is the actual contents of the velocity template. Note that we don't have to write any portlet Java
code in this case, but only the actual template.

#if (!$weather_city_info)

${| 10n. WEATHER PLEASE_CUSTOM ZE_YO VM

#el se

<a href="http://ww. wunder ground. conl ${weat her _city_info}.htm"
target="_bl ank"><i ng

src="http://banners. wnder ground. conf banner/ ${weat her _styl e}/ | anguage/ ww/ ${weat her _city_info}.gif"
alt="Click for ${weather_city_info} Forecast" border="0">
#end

With Jetspeed-2 and the Portlet API, we can make use of the Velocity Bridge or the JSP Bridge to
delegate to portlets. The simplest case is just dispatching the call yourself to the JSP or Velocity servlet.
Here is an example of dispatching to a JSP from the doView:

protected voi d doVi ewm{ Render Request request, Render Response response) throws
Port| et Exception, | OException

{

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 54

Portl et Cont ext context = getPortl et Context();
Resour ceBundl e resource =

get Portl et Config().get ResourceBundl e(request. getLocal e());
request.setAttribute("vi ewMessage",

resource. get String("preference. | abel . MyModel sView'));
Port| et Request Di spatcher rd =

cont ext . get Request Di spat cher ("/VEB- | NF/ deno/ pr ef erence/ pref-view. j sp");
rd.include(request, response);

}

And here is an example of the WeatherPortlet extending the Velocity Bridge, and making use of the
Portlet API User Preferences feature, note that we do not directly create a dispatcher here, but the
framework will do that automatically:

i mport org.apache. portal s. bri dges. vel ocity. GenericVel ocityPortlet;

public class WeatherPortlet extends GenericVel ocityPortl et

{

public void doVi ew(Render Request request, Render Response response)
throws Portl et Exception, | CException
{

Cont ext context = super. get Cont ext (request);

String citylnfo = (String) request.getPortletSession().getAttribute(
WEATHER_CI TY_I NFO) ;

Portl et Preferences prefs = request. getPreferences();
String city = prefs. getVal ue(WEATHER_CI TY, "Bakersfield");
String state = prefs. getVal ue(WEATHER_STATE, "CA");

String station = prefs. getVal ue(WEATHER_STATI ON, nul |);
citylnfo = getCtylnfo(city, state, station);

cont ext. put (WEATHER CI TY_I NFO, citylnfo);

String style = prefs. getVal ue(WEATHER_STYLE, "i nfobox");
cont ext . put (VEATHER_STYLE, style);

response. set Property("david", "taylor");

super. doVi ew(request, response);

And here is the Velocity template to render the portlet content:

#if (!$weather_city_info)
Pl ease configure your Weather settings.

#el se
<a href="http://ww. wunder ground. conl ${weat her _city_info}.htm"
target =" _bl ank" ><i ng

src="http://banners. wnder gr ound. conl banner/ $! weat her _styl e/ | anguage/ ww/ ${weat her _citly_i nfo}.gif"

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 55

alt="Click for $weather_city_info Forecast" border="0">
#end

Converting a Turbine Action

The Portlet API defines several phases of execution during the processing of a portlet page. The action
phase is designed to be executed before the render phase of a portlet. There can only be one action phase
targeting only one portlet. Once the action phase completes, then the render phase for all portlets on a
page can be executed. Thus the action phase is said to be a blocking phase, meaning that it must complete
before the render phase for each portlet on the page can commence. Actions are usually some kind of
user interaction that manipulates the Mode/ of the MVC framework, such as a user submitting a form and
updating the model, or adding or deleting a record. The concept of actions ports fairly well from Turbine
and Jetspeed-1 to Jetspeed-2 and the Portlet API. Whereas Turbine has the concept of one class per
action, the Portlet API has an entry point for all actions to come through as a method on your portlet.
Frameworks such as the Spring MVC framework provide better abstractions for modeling one method
per action.

Lets again look at the WeatherPortlet with Jetspeed-1. First the xreg defines the actions:

<par anet er nanme="action" val ue="portlets.WatherAction" hidden="true"/>

We must then implement the action class which are usually placed in the Jetspeed-1 webapp class loader
space. Here is the code for the WeatherAction, which extends a Jetspeed-1 framework class
VelocityPortletAction:

public class Weat her Action extends Vel ocityPortletAction

{

protected void buil dNormal Context(Vel ocityPortlet portlet,
Cont ext context,
RunDat a rundata)

String citylnfo = Portl et ConfigState. getParaneter(portlet, rundata,
WEATHER_CI TY_I NFO, nul I);
/1if (citylnfo == null)
/14
String city = portlet.getPortletConfig().getlnitParaneter(WEATHER CI TY);
String state =
portlet.getPortletConfig().getlnitParaneter(WEATHER _STATE) ;
String station =
portlet.getPortletConfig().getlnitParamneter(WEATHER_STATI ON) ;
citylnfo = getCitylnfo(city, state, station);
11}
cont ext. put (WEATHER CI TY_I NFO, citylnfo);
//PortletConfigState.setlnstanceParaneter(portlet, rundata,

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 56

WEATHER_CI TY_I NFO, citylnfo);

String style = PortletConfigState. getParaneter(portlet, rundata,
WEATHER_STYLE, "i nfobox");
cont ext . put (WVEATHER_STYLE, styl e);

}

In Jetspeed-1 there is some really bad architecture interfering with easily writing portlets. Here in our
action, we are actually implementing the View portion of our code by populating the Velocity context
with context.put statements. Please beware that all code implemented in the buildNormalContext
method should be ported to the doView method of the Portlet APL. Note how the actual portlet must be
passed in as the first parameter to the buildNormalContext method.

The actual action code implemented as do.. methods on your action class will need to be ported to the
processAction method on the Portlet APIL.

public void dolnsert(RunData rundata, Context context)
t hrows Exception

{

The doInsert method is linked by Turbine to an action in the Velocity template with the eventSubmit_
prefix:

<i nput type="subnit" nane="event Submt_dol nsert"
val ue="${110n. USER_FORM ADD USER VM "/ >

Here is the equivalent in the Portlet API (Jetspeed-2):

public void processAction(ActionRequest actionRequest, ActionResponse
acti onResponse)
throws Portl et Exception, | CException

The Portlet API provides two parameters to the processAction method: the ActionRequest and
ActionResponse.

Request Parameters, Portlet Modes, Window States

Request parameters are accessed via RunData in Jetspeed-1:

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 57

String nane = rundata. get Paraneters().getString("usernane");

With the Portlet API, portlet request parameters are accessed via the ActionRequest:

String nane = actionRequest. get Paraneter ("usernane");

With the Portlet API, you can check the Portlet Mode or Window State:

if (actionRequest.getPortletMde() == PortletMde. EDIT)

{
if (!'request.get WndowState().equal s(WndowState. M N M ZED))

{

The basic Portlet API does not have a way to map actions to methods as in Jetspeed-1. If you would like
this kind of behavior, we recommend using the Spring MVC Portlet framework Here we demonstrate
using portlet request parameters per form to map to specific actions:

String action =
acti onRequest . get Par anet er (Securi t yResour ces. PORTLET_ACTI QN) ;

if (action !'= null && action.equal s("renove. user"))
{
renmoveUser (acti onRequest, acti onResponse);
}
else if (action != null && action.equal s("add. new. user"))
{

Port | et Messagi ng. cancel (acti onRequest, SecurityResources. TOPI C_USERS,
Securit yResour ces. MESSAGE_SELECTED) ;

}
else if (action != null && action.equal s("add. user"))
{
addUser (acti onRequest) ;
}

Persisting State: The Portlet Session

The Portlet API provides built-in support for persistence of Portlet state in the session. The Portlet

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://www.springframework.org/docs/reference/portlet.html

5.2 JETSPEED-1 MIGRATION GUIDELINE 58

Session is similar to the setTemp methods in Turbine/Jetspeed-1, or the session support built into the
Servlet API. The Session is for persisting state associated with the current user session. There are two
kinds of session state supported by the Portlet API:

* Application Session State: the session variable is shared by all portlets in a portlet application
* Portlet Session State: the session variable is specific to the one portlet instance window

Here is how we would get and set session information in Jetspeed-1, using the Turbine RunData APL.
Note that for both Jetspeed-1 and Jetspeed-2, the object put in the session must be serializable:

rundat a. get User () . set Tenp(ACCOUNT_I NFO, account | nfo);

Account I nfo accountlnfo =
(Account | nf 0) rundat a. get User () . get Tenp(ACCOUNT_I NFO) ;

In here is the equivalent in Jetspeed-2 using the Portlet API:

Account I nfo accountlnfo = (Accountl nfo)
actionRequest. get Portl et Session().getAttri bute(ACCOUNT_I NFO,
Port | et Sessi on. PORTLET_SCOPE) ;
-- Or --
Account I nfo accountlnfo = (Accountl nfo)
acti onRequest. get Port| et Session().getAttribute(ACCOUNT_I NFO,
Port| et Sessi on. APPLI CATI ON_SCOPE) ;

-- the setters --
Portl et Sessi on session = actionRequest.getPortl et Session();
sessi on. set Attri but e(ACCOUNT_I NFO, account | nfo,
Port| et Sessi on. PORTLET_SCOPE) ;
- - Or - -
sessi on. set Attri but e(ACCOUNT_I NFO, account I nfo,
Port| et Sessi on. APPLI CATI ON_SCOPE) ;

Persisting State: User Preferences

The Portlet API provides a second persistence mechanism: User Preferences. User Preferences are fields
of information stored on a per user/per portlet window basis. The equivalent in Jetspeed-1 is Portlet
Instance data, which is stored in the Jetspeed-1 Portlet Registry as name/value pair parameter XML
elements. Looking at the XREG file in Jetspeed-1, we have:

<paraneter name="weather_city_info" val ue="US/| N Bl oom ngton"
hi dden="true"/>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 59

The Portlet API allows you to define default values for preferences in the portlet.xml deployment
descriptor. The usetr-specific values ate stored in the Jetspeed Preferences database. Here is an example of
the default value for a preference as it would be defined in the deployment descriptor:

<pref erence>
<nanme>weat her _ci t y</ nane>
<val ue>Cakl and</ val ue>

</ pref erence>

Jetspeed-1 provides the PortletInstance interface on every portlet for accessing preference-like
information. Whereas the preference information is per-user and per-instance in Jetspeed-2, in Jetspeed-1
preference information accessed via the PortletInstance interface is only per-instance(per PortletWindow)
specific. These values are stored in the PSML file associated with the PortletWindow. Please note that the
values can still be #ser-specific when you are using the default mechanism for locating pages, which is by
user. This means that in Jetspeed-1 preferences (or parameters) are made user-specific by the nature of
how pages are retrieved. Since a page is located under a user home directory, then the preference is
naturally per user.

With Jetspeed-1, here we can retrieve PortletInstance data:

/1 where "this" is a Jetspeed-1 Portlet object
Portl etlnstance instance = this.getlnstance(rundata);
String value = instance.getAttribute("favoriteColor", "blue");
-- Or --
this.getAttribute("favoriteColor", "blue", rundata);

-- we can set preference data the sane way in Jetspeed-1
Portl etlnstance instance = this.getlnstance(rundata);

instance.setAttribute("favoriteColor", "red");
-- Or --
this.setAttribute("favoriteColor", "red", rundata);

With the Portlet API in Jetspeed-2, we can use the Portlet Preferences in a more direct manner.
Remember that the store() method must always be called after all modifications to the prefs during a
request:

Portl et Preferences prefs = acti onRequest. get Preferences();
String color = prefs.getAttribute("favoriteColor", "blue");

prefs.setAttribute("favoriteColor", "red");
prefs.store();

/1 note that you can also retrieve nultivalues for prefs

String values[] = actionRequest. getPreferences().getVal ues("stocks",
def aul t Val ues) ;

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 60

// or retrieve all preferences as a Map
Map all Prefs = actionRequest. get Preferences().get Map();

Registries
The Jetspeed-1 Registries hold the following information:

* Portlet Definitions

* Security Definitions

* Web Clients and Media Type Registries
» Skins Definitions

* Controller Definitions

¢ Control Definitions

This section will guide you through how to migrate each of these registries from Jetspeed-1 to Jetspeed-2

Portlet Definitions

Jetpeed-1 requires that all portlets are defined in an XML file known as an XREG file (XML Registry).
Jetspeed-2 stores its portlet registry in the database. In Jetspeed-1, the XML registry is on the file system
under the jetspeed webapp under WEB-INF/conf. There can be one or more portlet registry entries. All
portlets are defined with the element type portlet-entry.

Migrating your Jetspeed-1 portlet registries to Jetspeed-2 registries requires writing a new Portlet API
standard portlet.xml definition file. We do not provide an XSLT transform to do this for you. Whereas
the portlet.xml is defined by the Java Standard Portlet API, Jetspeed allows for additional information to
be defined specific to the Jetspeed portal: the jetspeed-portlet.xml can hold Jetspeed-specific
deployment configurations. Some of the XREG elements map to the portlet.xml, whereas others will
map to the jetspeed-portlet.xml as noted in the tables below. The table below describes how to map each
XML attribute of the portlet-entry element to its equivalent in the Portlet API portlet.xml or
jetspeed-portlet.xml. Note that we are mapping in this table from XML attributes to XML elements in
the portlet.xml or jetspeed-portlet.xml:

J1 Attribute J2 Element

name portlet-name The name of the portlet. This name is unique
to each portlet application, but not unique
system-wide.

hidden No equivalent in the Portlet API, not
applicable.

type No equivalent in the Portlet API, not
applicable.

parent No equivalent in the Portlet API, not
applicable.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE

J1 Attribute

J2 Element

61

application

No equivalent in the Portlet API, not
applicable.

Continuing with the Portlet XREG conversion, lets now look at how to convert the XML elements of
the portlet-entry element. The table below describes how to map each XML element to its equivalent in

the Portlet API portlet.xml:

J1 Element J2 Element

classname portlet-class The implementing Java class. This class will
need to be ported at the source level.

media-type supports, supports/mime-type, Media types supported by the portlet must be

meta-info/title
meta-info/description

category

security-ref

parameter

parameter@name
parameter@value
parameter/meta-info/description

parameter

parameter@name
parameter@value

parameter@hidden

supports/portlet-mode

title
description

portlet-info/keywords

jetspeed-portlet.xml: js:security-constraint-ref

init-param

init-param/name
init-param/value
init-param/description

portlet-preferences/preference

portlet-preferences/preference/name
portlet-preferences/preference/value

portlet-preferences/preference/read-only

mapped to one or more supports elements,
with subelements of mime-type and
portlet-mode pairs.

The title of the Portlet.
The description of the portlet

Where there are multiple categories
elements, keywords are comma-separated. In
Jetspeed-2, you can configure categories in
the Portlet-Selector administrative portlet
based on keywords.

If you port your Security constraints
definitions, you can keep the same security
definition names. Just note that security
constraint definitions are referenced from the
jetspeed-portlet.xml, not portlet.xml

Parameters in Jetspeed-1 should normally
map to init-params in the Portlet API. These
are read only values that can only be
changed by the administrator

The name of the init parameter
The value of the init parameter
The description of the init parameter

As well as migrating to init-params,
parameters may also be migrated as default
preferences. Note that preferences can
optionally be read-only.

The name of the preference
The value of the preference

Optionally you map want to map hidden
values to read-only (true/false)

Security Definitions

Jetspeed-1 supports a Security Constraint XML definition language that is very similiar to the XML
security constraint definitions in Jetspeed-2. Jetpeed-1 requires that all security definitions are defined in

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 62

an XML file known as an XREG file (XML Registry). Jetspeed-2 stores its security registry either in an
XML file or in the database. In Jetspeed-1, the XML registry is on the file system under the jetspeed
webapp under WEB-INF/conf. There can be one or more security registry entries. All security
constraints are defined with the element type security-entry.

Migrating your Jetspeed-1 security constraints registries to Jetspeed-2 registries requires writing a new
page.security XML definition file. We do not provide an XSLT transform to do this for you. The table
below describes how to map each XML attribute of the security-entry element to its equivalent in the
Portlet API portlet.xml or jetspeed-portlet.xml. Note that we are mapping in this table from XML
attributes to XML elements in the portlet.xml or jetspeed-portlet.xml:

J1 Attribute J2 Attribute

security-entry@name security-constraints-def@name The name of the security constraint definition.
This name is unique to the entire
page.security file.

meta-info/title No equivalent in Jetspeed-2, not applicable.
meta-info/description No equivalent in Jetspeed-2, not applicable.

access security-constraint Jetspeed-1 security-entries contain 0..n
access elements, Jetspeed-2
security-constraint-defs contain 0..n
security-constraint elements.

access@action security-constraint/permissions Actions in Jetspeed-1 are called Permissions
in Jetspeed-2. Both versions support
wildcarding with the * character.
« Jetspeed-1 default actions are view,
customize, maximize, minimize, info,
close.

« Jetspeed-2 default permissions are view,
edit, help, print

access/allow-if@role security-constraint/roles Jetspeed-1 constrains by role through allow-if
elements with a role attribute. Jetspeed-2
constrains by role with the roles element and
a comma-separated list of one or more roles

access/allow-if@group security-constraint/groups Jetspeed-1 constrains by group through
allow-if elements with a group attribute.
Jetspeed-2 constrains by group with the
groups element and a comma-separated list
of one or more groups

access/allow-if@user security-constraint/users Jetspeed-1 constrains by user through
allow-if elements with a user attribute.
Jetspeed-2 constrains by user with the users
element and a comma-separated list of one
or more users, or the wildcard * to specify all
users.

access/allow-if-owner security-constraints/owner You can set the constraint to be only
accessible by the owner of the page. In
Jetspeed-1, this is implied by the location of
the page. With Jetspeed-2 you must explicity
name the owner in the element text of the
owner element.

Web Clients and Media Type Registries

The Web Clients and Media Type registries are already ported to Jetspeed-2 and a part of the core system.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 63

Jetspeed-2 stores these registries in the database. However these tables can be populated using seed data
as described in the section below on seed data.

Skins

The Skin registries are not directly portable to Jetspeed-2. Jetspeed-2 has moved towards a more standard
CSS based skinning approach. There are two basic skinning techniques which can be combined:

* 1. Portlet API Standard Skins - see PLT.C of the portlet specification. A standard set of CSS styles are
defined for global skinning of portlet content.

* 2.]Jetspeed Decorators - Decorators can define their own skins which can then be leveraged by
portlets by accessing these styles. The default decorators in Jetspeed also define the PLT.C styles as
well

Controllers

Controllers are deprecated in Jetspeed-2. There is no direct mapping for converting the Java code.
Instead you will need to rewrite a new Layout portlet, or more likely simply use one of the existing
Layout Portlets that come with Jetspeed, which are quite flexible. The default layout portlets in Jetspeed
support multi-column grids, nesting portlets, and complete customization using the Portlet Customizer.

Controls

Controls are deprecated in Jetspeed-2. There is no direct mapping for converting the Java code. Instead
you will need to rewrite a new Portlet decorator, or more likely simply use one of the existing Portlet
decorators that come with Jetspeed, which are quite flexible.

PSML

The Jetspeed Sitemap

The Jetspeed Sitemap defines the navigational space of all pages in the portal. Both versions 1 and 2 have
similiar hiearchical file system-like site maps. Both contain a root folder /, which in turn contains a tree
of subfolders, where each subfolder can contain pages or more subfolders.

Site Resources

In Jetspeed-2, there is a well-defined portal resources that do not always have equivalents in Jetspeed-1:

2.x 1.x File

Page Page A .psml file.

Folder - A folder.metadata file, one per folder, N/A in
Jetspeed-1

Link - A .link file, N/A in Jetspeed-1

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 64

2.X 1.x File

Menus are defined in folder.metadata, N/A in

Menu
Jetspeed-1

Reserved Directories

There are reserved directories available in both versions. The naming is a little different. Any directory
starting with an underscore (_) in Jetspeed-2 is considered a control directory and can be used by the

profiler (see below) to locate special directories based on runtime criteria such as the user name or the
roles of the user. Jetspeed-1 has a hard-coded set of reserved (control) directories that ate hard-coded

into the profiling rules.

1.x 2.X

user _user Holds all user folders
role _role Holds all role folders
group _group Holds all group folders
{language} _lanaguage Content per language
{country} _country Content per country code

Where the J1 directory names are actually the names of the reserved directory, such as {mediatype}
would be actually html or {language} would be en.]2 requires specifing control directories (_) such as
_mediatype/html, or _language/en

Profiling

The Profiling algorithm discovers the correct page to display during a request. J1 has only two
hard-coded algorithm for finding pages:

* J1 user/mediatype/language/country fallback

* J1 rollback
Note that these settings are system wide and must be changed on a per portal basis. J1 expects an explicit

container order of mediatype / language / country

J2 has a profiling rules engine that takes dynamic runtime user information, and using profiling rules
discovers the rules based on the algorithm defined in the rules. In J2 profiling rules are defined on a per
user basis, although there is a system-wide default profiling rule.

Differences in PSML Page

Jetpeed-1 requires that all portlets are defined in an XML file known as an XREG file (XML Registry).
Jetspeed-2 stores its portlet registry in the database. In Jetspeed-1, PSML files can be stored under the
jetspeed webapp under WEB-INF/psml. Or, Jetspeed-1 supports storing PSML files in the database. In

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 65

Jetspeed-2, PSML files can be stored under the jetspeed webapp under WEB-INF/pages or
WEB-INF/min-pages. Or, Jetspeed-2 supports storing PSML files in the database.

Migrating your Jetspeed-1 PSML files to Jetspeed-2 PSML files requires porting the files manually, or
writing a database conversion utility or XSLT transform. We do not provide an XSLT transform to do
this for you. The table below describes how to map each XML element or attribute from Jetspeed-1 to
Jetspeed-2:

J1 Element J2 Element

portlets page The outermost container of all content found
on a PSML page.

portlets@id page@id System wide unique identifier for this page.
metainfo/title title The Page Title.

security-ref security-constraints/security-constraints-ref The security constraint reference (0..1 in
Jetspeed-1, 0..n in Jetspeed-2)

control defaults/portlet-decorator Requires porting your controls to J2 portlet
decorators, or at least mapping the names to
existing decorators in Jetspeed-2. Or you can
use a global portlet decorator and ignore this
optional setting.

controller defaults/layout-decorator Requires porting your Turbine controllers,
screens navigations to J2 layout(page)
decorators, or at least mapping the names to
existing page decorators in Jetspeed-2. Or
you can use a global portlet decorator and
ignore this optional setting.

portlets/portletsl/... page/fragment/..., type="layout" Sub-containers of fragments or portlets. In
Jetspeed-2, fragments can be either
containers or portlet definitions. Only
fragments with the type of layout can be a
container holding more fragments and
containers.

portlets/portlets/controller page/fragment@type=layout@name={layout-nar@etrollers roughly map to fragments of type
= layout, named by the name attribute. Note
that layouts are implemented as portlets and
must be specified as PA::portlet-name.

portlets/entry page/fragment/fragment@type="portlet" A portlet window on a page.

entry@id fragment@id The system-wide unique ID of the portlet
window.

entry@parent fragment@name The portlet registry reference. In Jetspeed-2
the name of the portlet must be specified as
PA::portlet-name

entry/layout/property@name="column"@value={fralyment/property @name="column"@value={colliheproperty containing the column position

entry/layout/property@name="row"@value={rowfragment/property@name="row"@value={row} The property containing the row position

Menus vs Tabs

There is a big difference with the navigational aspects, or menus, between Jetspeed-1 and Jetspeed-2.
Jetspeed-1 restricts menus navigation to navigation amongst Zabs. Tabs are defined within a PSML page.
Tabs are simply subcontainers in the PSML page, defined by the portlets element. Whereas Jetspeed-1

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE 66

does support navigation to other pages, the Tabbing Menus do not directly support it without writing a
specific portlet to act as an external link.

Jetspeed-2 menu navigations map directly onto the Portal Site. Thus menu tabs represent portal
resources. Menus in Jetspeed-2 can point to folders, pages or links. This more naturally allows the user to
navigate over the entire portal site.

When migrating PSML files from Jetspeed-1 to Jetspeed-2, depending on whether you use advanced
Jetspeed-1 controllers such as Card or Tab controllers, you may find that the pages do not port to
Jetspeed-2 very well. In consideration of the lack of migration tools, this leaves two immediate options:

* Rewrite your PSML files to better map to the Jetspeed-2 site constructs, folders and multiple pages.

* Enhance Jetspeed-2 to support card and tab controller behavior

XML API - Seed Data

Jetspeed-2 defines an XML API for populating the initial "Seed" data for your portal. Populating your
seed data via the XML API provides an alternative to populating database data with database-specific and
hard to read SQL scripts. Additionally, the XML API can be used for importing and exporting data, or
backing up and restoring from your Jetspeed-2 database.

The XML API also provides a migration path over the maintenance cycle of your Jetspeed portal. The
XML API was first implemented in version 2.1. To migrate your data from version 2.1 to 2.2, (if there are
any database schema changes), the XML API can be used to migrate (by exporting and importing) across
versions.

As of 2.1, the Jetspeed API supports the following elements:

Element Description

MimeTypes Mime Types supported by the portal such as text/html, text/xhtml....
MediaTypes Mediat Types supported by the portal such as html, xml, wml...
Capabilities General capabilities of web clients that access the portal

Clients Supported Web Clients by the portal

Roles Define all roles defined to the initial configuration of the portal
Groups Define all groups defined to the initial configuration of the portal
Users Define all initial users defined to the initial configuration of the portal,

minimally admin and guest(anon) users

Permissions Define initial J2EE security policy for this portal. Note that permissions
are turned off by default.

ProfilingRules Define all the profiling rules in the initial portal such as role fallback,
user-role-fallback, j1-emulation, default-j2, subsites and more

XML Schemas

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

5.2 JETSPEED-1 MIGRATION GUIDELINE

Reference for Jetspeed-2 XML schemas:

Jetspeed-2 Folder Metadata
Jetspeed-2 Seed Data
Jetspeed-2 Security Constraints
Jetspeed-2 Links

Jetspeed-2 Extended Portlet Descriptor

67

http://portals.apache.org/jetspeed-2/2.1/schemas/folder-metadata.xsd
http://portals.apache.org/jetspeed-2/2.1/schemas/j2-seed.xsd
http://portals.apache.org/jetspeed-2/2.1/schemas/page-security.xsd
http://portals.apache.org/jetspeed-2/2.1/schemas/link.xsd

http://portals.apache.org/jetspeed-2/2.1/schemas/jetspeed-portlet.xsd

Where to Get Started?

The best place to get started is to create your own custom portal. This process is defined online at

Apache. The Jetspeed Tutorial will take you through the initial steps of setting up your own (custom)
Jetspeed portal, including setting up XML seed data, PSML, custom decorations and portlet applications.

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

http://portals.apache.org/jetspeed-2/2.1/schemas/folder-metadata.xsd
http://portals.apache.org/jetspeed-2/2.1/schemas/j2-seed.xsd
http://portals.apache.org/jetspeed-2/2.1/schemas/page-security.xsd
http://portals.apache.org/jetspeed-2/2.1/schemas/link.xsd
http://portals.apache.org/jetspeed-2/2.1/schemas/jetspeed-portlet.xsd
http://portals.apache.org/tutorials/jetspeed-2/

5.3 SUPPORTING PROJECTS 68

53 Supporting Projects

Supporting Projects

Project Description

Derby provides Jetspeed-2 default embedded database engine.

Apache Directory Server provides Jetspeed-2 default embedded
Hﬂﬂthi Directory Project LDAP engine.
VIR T TN

e OJB provides Jetspeed-2 default persistence layer. Jetspeed-2 uses
. b 0JB's PersistenceBroker API.

Pluto provides Jetspeed-2 portlet container. Pluto is the Reference
ACHE Implementation of the Java Portlet Specfication.

The Spring Framework provides Jetspeed-2 default component
framework.

Sprifg Eramework

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://db.apache.org/derby/
http://db.apache.org/derby/
http://directory.apache.org/subprojects/apacheds/index.html
http://directory.apache.org/subprojects/apacheds/index.html
http://lucene.apache.org/
http://lucene.apache.org/
http://db.apache.org/ojb/
http://db.apache.org/ojb/
http://portals.apache.org/pluto/
http://portals.apache.org/pluto/
http://www.springframework.org
http://www.springframework.org

5.4 WHO USES J27?

54 Who Uses J2?

Who Uses Jetspeed-2?

Company/Project

69

Description

[FPLIED

BlueSunrise

CARDINIS

O ChikPe

L]

CONVERGYS

Qutthinking Outdoirg

.. GROUNDWORK

BFEN SOURCE SOLUTIOMS

APPLIED Co.,Ltd. is a Japanese company providing services to
develop IT business applications and Web sites, having many
customized J1 and J2 based actual results.

BlueSunrise provides services to help companies implement
Jetspeed-2 solutions.

CARDINIS Solutions S.p.A. is leader in providing solutions for the
governance of innovation and companies, leveraging on enterprise
project portofilo management and strategy management. Cardinis
Suite, the flagship product of CARDINIS Solutions, is based on
international standards and methodologies, and on from-the-field
experiences from our consulting activities and a continuous synergy
with leading analysts and universities. It deploys technologies that
enable communication and information sharing, through a
collaborative platform for project, program, portfolio and demand
management. To satisfy our clients' requests about capability of
accessing critical information about projects and other business
initiatives, we decided to adopt Jetspeed?2 as the portal reference,
providing custom portlets that respond to specific needs.

Chikpea provides a self-service portal, where Business can register
as a Service Provider to serve their own customers to manage Sales
and Services. It allows the Business to represent its own self-service
website to capture sales and service requests, as well as provides
complete solution to manage those requests.

Convergys uses Jetspeed-2 as a B2B Business Intelligence Portal to
expose reports from third party enterprise OLAP engines such as
Cognos and MicroStrategy.

GroundWork 's open source IT infrastructure monitoring solution
delivers enterprise-class availability and performance for a fraction of
the cost of commercial alternatives.

Hippo is a Dutch open-source Content Management Software
provider developing the Hippo Portal which integrates Hippo CMS
with Jetspeed-2.

Hippo Portal will provide a complete Content Repository based Portal
Site Management and Delivery solution available under the ASF 2.0
license.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://www.appliedjapan.com/
http://www.appliedjapan.com/
http://www.bluesunrise.com
http://www.bluesunrise.com
http://www.cardinis.com/
http://www.cardinis.com/
http://www.chikpea.com/
http://www.chikpea.com/
http://www.convergys.com/
http://www.convergys.com/
http://www.itgroundwork.com/
http://www.itgroundwork.com/
http://www.hippo.nl/en/index.html

5.4 WHO USES J27?

Company/Project

70

Description

Open Xava

Wemov

WfMOpen

The Jahia 5.0 line of products includes a Corporate Portal Server
based on Jetspeed-2. 100% Java based, the full Jahia source code is
available under a collaborative and community source license
(contribute or pay paradigm).

N2SM provides solutions and services to construct IT business, such
as Company Internal Portal and EC site.

OpenXava generates JSR-168 portlets deployables in Jetspeed-2. It
also generates all .psml, .ds, page.metadata to deploy an OpenXava
application automatically in Jetspeed-2. OpenXava distribution is
bundled with Jetspeed-2 installation and its web site is powered by
Jetspeed-2.

PortalU is the German Environmental Information Portal! It offers a
comfortable and central access to over 1.000.000 web-pages and
database entries from public agencies in Germany. We also guide you
directly to up-to-date environmental news, upcoming and past
environmental events, environmental monitoring data, and interesting
background information on many environmental topics.

R.O.S.A. Creation. Technology. Intelligence. AG deploys collaborative
portals using Jetspeed-2 and provides services in portal development.

UGS provides portals for its global sales partners using Jetspeed 2.

The german company wemove digital solutions creates portal
solutions for various customers. The current project "PortalU" uses
Jetspeed? to provide an interface to a powerful search-engine for
enviromental data.

In its 1.4 version, WIMOpen provides resource management for the
workflow engines (BPE) and uses Jetspeed-2 as a container for the
engine's administrative portlets.

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

http://www.jahia.net
http://www.jahia.net
http://www.n2sm.net/
http://www.n2sm.net/
http://www.openxava.org
http://www.portalu.de/
http://www.portalu.de/
http://www.rosa.com
http://www.rosa.com
http://www.ugs.com
http://www.ugs.com
http://wemove.com
http://www.wemove.com/
http://www.portalu.de/
http://wfmopen.sf.net
http://wfmopen.sf.net

5.5 PORTLETS COMMUNITY

55 Portlets Community

Portlets Community

Project

71

Description

Gems provides a collection of JSR-168 portlets. The list of available
portlets include:

» E-Mail Portlet

» Calendar Portlet
 Blog Portlet

* RSS Feed Portlet
Calculator Portlet

* Image Viewer Portlet
« Horoscope Portlet

PAL provides a useful JSR-168 portlets, such as File Manager, Blog,
Yahoo! Japan Search portlets.

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

https://gems.dev.java.net/
https://gems.dev.java.net/
http://sourceforge.jp/projects/pal/

5.6

5.6 HOW TO HELP? 72

How to Help?

How to Help?

Simple Things | Can Do to Help

There are many ways to help with Jetspeed-2 as with most open source projects:
* Subscribe to the user mailing list and help answer questions from the community. In open source a
thriving community makes the project successful. Don't be shy to ask basic questions, we have all
been there.

* Report bugs and issues that you encounter in Jetspeed-2 bug tracking system . Prior to reporting a
bug, make sute to discuss the issue on the user mailing list or even the developer mailing list .

* When you encounter an issue, you may be compelled to fix it. We encourage this as this makes for a
vibrant community. Once you have a fix, submit a patch on the reporting issue.

Why Should | Get Involved?
There are many reasons why you want to help, just a few strong points:
* If you help others solve there issues, they will most likely help you when you run into some problems.

* By contributing patches, you can influence the prioritization of functionality and get your changes
incorporated.

* By reporting issues, you help Jetspeed-2 become a stronger project and improve its quality overall.

* You will meet and get to know great people as well as share and learn best practices which will help
you on your project.

We are looking forward to have you part of our community!

How do | Join the Project?

Projects at Apache operate under a meritocracy . To become a committer, you first need to demonstrate
your committment. The best way to do so is to start contributing patch, participate in the community and
make your interest known. It takes time and willingness to help and contribute! This may seem a bit
intimidating at first, but the community will always help people who show interest and committment.

Here are some useful links for other resources for help.
* Portals project coding standards .
» Portals project documentation standards .
* How does the Apache Software Foundation work ?

* Portals mailing lists statistics . This can be helpful to help you decide which mailing list to subscribe

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://issues.apache.org/jira/secure/BrowseProject.jspa?id=10492
http://www.apache.org/foundation/how-it-works.html#meritocracy
http://portals.apache.org/development/code-standards.html
http://portals.apache.org/development/documentation.html
http://www.apache.org/foundation/how-it-works.html
http://people.apache.org/~coar/mlists.html#portals.apache.org

5.6 HOW TO HELP?

to.

©1999 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

73

6.1 MAILING LIST 74

Mailing List

Mailing Lists

These are the mailing lists that have been established for this project. For each list, there is a subscribe,
unsubscribe, and an archive link.

List Name Subscribe Unsubscribe Archive
Jetspeed 2 User List Subscribe Unsubscribe Archive
Jetspeed 2 Developer List Subscribe Unsubscribe Archive

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

mailto:jetspeed-user-subscribe@portals.apache.org
mailto:jetspeed-user-unsubscribe@portals.apache.org
http://mail-archives.apache.org/mod_mbox/portals-jetspeed-user/
mailto:jetspeed-dev-subscribe@portals.apache.org
mailto:jetspeed-dev-unsubscribe@portals.apache.org
http://mail-archives.apache.org/mod_mbox/portals-jetspeed-dev/

6.2 BUG DATABASE 75

62 Bug Database

Issue Tracking

http:/ /issues.apache.org/jira/secure/BrowseProject.jspa?id=10492

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://issues.apache.org/jira/secure/BrowseProject.jspa?id=10492

6.3 WIKI 76

63 WiKIi

http://wiki.apache.org/portals/Jetspeed?2

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://wiki.apache.org/portals/Jetspeed2

6.4

6.4 QUALITY TESTING 77

Quality Testing

Jetspeed Build and Quality Testing

SpikeSource runs nightly builds of Jetspeed-2 on a set of Linux platforms (Suse, Fedora, Redhat...). The
builds run an entire Jetspeed-2 build and all unit tests. Additionally, code coverage tests are run. The
results of these tests are available at the SpikeSource website.

Jetspeed-2 Build Results
Jetspeed-2 is built nightly. Unit tests and code coverage results are found here:

Jetspeed-2 Nightly Build Results

Jetspeed-2 Build Results: REST
Jetspeed-2 is built nightly. Unit tests and code coverage results in REST format are found here:

Jetspeed-2 Nightly Build Results - REST

Open Source Build Results
Find the results of Jetspeed-2 and other open source builds here:

Open Source Build Results

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://www.spikesource.com
http://www.spikesource.com/spikewatch/index.jsp?show=stat&show-test=true&component=jetspeed&platform=8
http://webgate.spikesource.com/spikewatch/ws/spikewatch.jsp?method=get-component-test-summary&partnerid=2&platform-id=&component-name=jetspeed&component-version=
http://www.spikesource.com/spikewatch/index.jsp

7.1 JAPANESE 78

71 Japanese

http://jetspeed-japan.sourceforge.jp/jetspeed-2-trans/ja/index.html

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://jetspeed-japan.sourceforge.jp/jetspeed-2-trans/ja/index.html

