| | APACHE S

Jetspeed-2 Security Components
v.2.1.2

Project Documentation

Apache Software Foundation 15 July 2007

TABLE OF CONTENTS i

Table of Contents

Jetspeed-2 Security Documentation

OVBIVIBW . . o o 1
ArChiteCture OVEIVIEW oot e e e e e e e 3
AUTNENTICAION . . . o 5
Login Moduleo 7
Authentication SPI 9
Credentials Management 11
AULNONIZALION . . . o 19
JAAS AUhOrIZatioN 20
PermissionManager OVEIVIEWttt 23
Authorization/Security Mapping SPI 25
Hierarchy Management 27
High Level Security SErviCeso 30
Security Services Configuration 32
LDAP Configuration 38
Misc.
TASKS .« o 55

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©1999 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

11

1.1 OVERVIEW 1

Overview

Overview

Jetspeed 2 security architecture provides a comprehensive suite of security services that can be used to
protect a wide ranging type of portal resources. The security service implementation is fairly independent
of the other portal services and can be reused outside of the portal application. At its core, Jetspeed 2
security services rely entirely on JAAS to provide authentication and authorization services to the portal:

* Authentication setvices are implemented through the use of JAAS login modules.
* Authorization services are implemented through the use of custom JAAS policies.

Both authentication and authorization services have been implemented with the goal of providing a direct
plugin to the underlying application server security framework. Jetspeed 2 can leverage the underlying
application server login module as well as through the use of JACC, the application server policy
management capabilities available in J2EE 1.4 (see API Specifications).

Jetspeed 2 Security Services

JAAS defines the contract for authentication and authorization but does not specify any guidelines for the
management of the security resources. Jetspeed 2 provide a modular set of components aims at providing
management functionality for the portal security components.

Leveraging Jetspeed 2 component, architecture, the security services provide a set of loosely coupled
components providing specialized services:

* UserManager: Service providing user management capabilities.
* GroupManager: Service providing group management capabilities.
* RoleManager: Service providing role management capabilities.

* PermissionManager: Service providing permission management capabilities.

A Modular and Pluggable Architecture

Jetspeed 2 security components are assembled using Dependency Injection . By default, Jetspeed uses the
Spring Framework as its default loC container.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2ee/javaacc/
http://martinfowler.com/articles/injection.html
http://www.springframework.org

1.1 OVERVIEW 2

% Security AP Jetspeed 2 security services are founded on a set of modular and

% Securitg.rlmplementaticl

% Security SP I

extensible security modules exposed through an SPI model. The SPI model provides the ability to modify
the behavior of the Jetspeed coarsed security services (UserManager, RoleManager, GroupManager)
through the modification and configuration of specialized handlers. For instance, Jetspeed security
services can be configured to retrieve user security principals through the default Jetspeed store or
through an LDAP store or both.

A SecurityProvider exposes the configured SPI handlers to the security services. Jetspeed
component assembly (based on Spring) architecture provides an easy way to reconfigure the security
services to satisfy the needs of a specific implementation.

Role Based Access Control

Role based access control (RBAC) in Jetspeed 2 support multiple hierarchy resolution strategies as
defined in The Uses of Hierarchy in Access Control . See Hierarchy Management Overview for more

information.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.2

1.2 ARCHITECTURE OVERVIEW 3

Architecture Overview

Architecture Overview

Jetspeed 2 security leverages J2EE authentication and authorization standards for both authentication
and authorization through the implementation of a default Logi nModul e and a default authorization
Pol i cy.

Authentication establishes the identity of the user and populates the Subj ect with all the user principals.
In a portal context, the populated Subj ect is added to the session in the

org. apache. j et speed. security. SecurityVal ve implementation. The Subj ect principals are
then used to authorize the user's access to a given resource. It leverages JAAS authorization by checking
the uset's permission with the AccessController . More details on authotization ate provided in the JAAS
authorization section of this documentation.

The following diagram describes the high level security architecture:

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/java/security/AccessController.html

1.2 ARCHITECTURE OVERVIEW 4

JAAS API
LoginModule Policy
b i
I I
© security-atnxml : J2 JAAS Implementation : ' security-atzxml
...................... | !
DefaultLoginModule RdbmsPolicy

J2 Security Coarsed Services | i aiana o

Eis
1
! |
|
|
1

1
UserManager —
PermissionManager
RoleManager
GroupManager
T
i
|
: 2 r =] | security-providers.xml -
! . security-spi-*xml
. . e — ——
SecurityProvider : , .
=== === I | | SecurityPalicies
I ' I -~
I ! I l
1 Ll : 1
AuthenticationProvider SecurityMappingHandier |: AuthorizationProvidar
T T 4 1
I I L
UserSecurityHandler CredentialHandler HierarchyResolver GroupSecurityHandler

RoleSecurityHandler

Configuration files for each component areas are specified. For more information, go to the
documentation section on configuration .

Jetspeed security architecture is fully JAAS compliant. Developers can replace Jetspeed security
architecture with their own Logi nModul e and Pol i cy implementation. Jetspeed implementation
provides management programming and user interfaces as well as an SPI model to facilitate its extension.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3 AUTHENTICATION 5

Authentication

Authentication Architecture Overview

For authentication, Jetspeed 2 leverages Java LoginModule architecture. It provides a
DefaultLoginModule implementation and a flexible architecture to be able to authenticate user against
multiple user repositories and provide user management capabilities across those repository. A

User Manager provides a set of coarsed services for authenticating and managing users. The class
diagram below illustrates how the User Manager provides authentication to the

Def aul t Logi nModul e and leverages the Authentication SPI to interact with various implementation
and user stores.

| DefauliLoginModule | *™m2° T
T @ org.apache. jetspeed. security.UserManager

| .

|
| importy o |
| simport ‘ 3 UserManagerimpl I
| | | wimports | |
. U | | wimports
winterfaces | |
0 org.apache.jetspeed.security.User . e
<imports | ainfarfaces
| | @ org.apache.jetspeed.security.SecurityProvider
| |
I | importx
e e
sinterfaces

@ org.apache jetspeed.security.AuthenticationProviderProxy

The various components described above fulfill the following functions:

Component Description

Def aul t Logi nModul e Jetspeed 2 default LoginModule implementation which leverages the
aut hent i cat e() method of the User Manager to provide
authentication against the various Aut hent i cati onPr ovi der
implementation currently configured.

User Manager Coarsed service providing authentication and user management. The
User Manager code> leverages the various
Aut hent i cati onProvi der implementations exposed to it through
the Aut hent i cati onPr ovi der Pr oxy through the
Securi tyProvider.

Securi tyProvi der Provides access to the security providers exposing SPI
implementation to the coarsed security services.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/javax/security/auth/spi/LoginModule.html

1.3 AUTHENTICATION 6

Component Description

A proxy to the various Aut hent i cat i onProvi der implementations.
The Aut hent i cat i onProvi der Proxy is responsible of invoking
the correct Aut hent i cat i onProvi der to authenticate or manage a
specific user against a specific data store.

Aut henti cat i onProvi der Proxy

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3.1 LOGIN MODULE 7

131 Login Module

Login Module Overview

For authentication purpose, Jetspeed 2 provide a default login module implementation. Login modules
provide a standard way to expose authentication services for java application. More information about
login modules can be found in the JDK LoginModule interface documentation.

Login Module Configuration

Configuration is central to JAAS authentication. By default, Jetspeed 2 is configured to use its

Def aul t Logi nMbdul e implementation. The configuration file (login.conf) for the login module ship
with the | et speed2- security-{version}.jar component and provide the following
configuration:

Jet speed {
org. apache. j et speed. security.inpl.Defaul tLogi nMddul e required;

b

In order to override this configuration, you can place your own login.conf file in your web application
class path under WEB-INF/classes. The location of the login.conf file is configured in the
security-providers. xm as described below. For more information on how to configure the
security providers, see the configuration section .

<I-- Security: Default Authentication Provider -->
<bean i d="org. apache. j et speed. security. Aut henti cati onProvi der"
cl ass="org. apache. j et speed. security.inpl.AuthenticationProviderlnpl"
>
<constructor-arg i ndex="0"><val ue>Def aul t Aut henti cat or </ val ue></ construct or - ar g>
<constructor-arg index="1"><val ue>The defaul t
aut henti cat or </ val ue></ construct or - ar g>
<constructor-arg index="2"><val ue>l ogi n. conf </ val ue></ const ruct or - ar g>
<constructor-arg index="3">
<ref bean="org. apache.jetspeed. security. spi.Credential Handl er"/>
</ constructor-arg>
<constructor-arg index="4">
<ref bean="org. apache.j et speed. security. spi.UserSecurityHandl er"/>
</ constructor-arg>
</ bean>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/javax/security/auth/spi/LoginModule.html

1.3.1 LOGIN MODULE

The Aut hent i cati onProvi der configures the Logi nModul e to be used by the application by
setting the System property j ava. security. auth. | ogi n. confi g to the | ogi n. conf specified in

the component configuration.

Login Module Implementation

The Def aul t Logi nModul e implementation is illustrated by the class diagram below:

The roles of the classes used to implement the DefaultLoginModule are:

Class

Description

org. apache. j et speed. security.inpl. Defaul t Logi nModul e

or g. apache. j et speed. security. Logi nMdul ePr oxy

org. apache. j et speed. security. User

org. apache. j et speed. security. User Manager

The j avax. security. aut h. spi . Logi nMbdul e implementation.
The Def aul t Logi nMbdul e authentication decision is encapsulated
behind the User Manager interface which leverages the SPI
implementation to decide which authenticator should be used in order
to authenticate a user against a specific system of record. For more
information on how to implement your own authenticator, see the
authentication SPI documentation .

A utility component used to expose the User Manager to the
Def aul t Logi nMbdul e.

The User is an interface that holds the
javax. security. auth. Subj ect and his/her
java. util.prefs. Preferences. The User Manager upon user
authentication populates the user subject with all user
java. security. Principal . Jetspeed 2 implements 3 types of
principals:

« UserPrincipal: The principal holding the user unique identifier for

the application.

» RolePrincipal: The principal representing a role for the system.
» GroupPrincipal: The principal representing a group for the system.

The interface exposing all user operations. This interfaces fronts the
aggregates various SPI to provide developers with the ability to map
users to their specific system of record.

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

1.3.2 AUTHENTICATION SPI 9

132 Authentication SPI

Authentication SPI Overview

The authentication SPI provides the implementation for managing user principals and their credentials
and provides the undetlying User Manager coarsed service implementation.

The authentication SPI also provides a mechanism for managing users across multiple datastore. The
class diagram below describes how the authentication SPI relates to the User Manager .

siniartaces
D org.apache jetspeed. security. AuthenticationProviderProxy

i

| @ AuthenticationProviderProxyimp! |

simpas
T
winterfaces
1] org.apache. jetspeed security AuthenticationProvider

1 At | ARTPOTE
LY L
winarfaces anteriaces
D org.apache.jetspred security.spi.UserSecurityHandier D org.apache.jetspeed. security.spi.CredentialHandler
] b
r

—|___

@ org.apache jetspeed.security.splimpl DefaultUserSecurityHandler I I e org,npar.he.immm.sacumw;pLimpl.de:mdnnHNHandm I

|
|
|
I
3 org.apache jetspeed security.splimpl LdapUserSecurityHandler]

Authentication SPI Components

The authentication SPI implements the following components:

Component Description

Aut hent i cati onProvi der Proxy A proxy to the various Aut hent i cati onProvi der implementations.
The Aut hent i cati onProvi der Pr oxy is responsible of invoking
the correct Aut hent i cati onProvi der to authenticate or manage a
specific user against a specific data store.

Aut henti cati onProvi der Exposes a specific authentication and user management services
implementation. Jetspeed 2 provides 2 implementations: RDBMS and
LDAP. Multiple authentication providers can be provided through
configuration. For more information, see the security providers
configuration.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3.2 AUTHENTICATION SPI

Component

Description

10

Credenti al Handl er

User Securi t yHandl er

See security-spi-atn.xml configuration.

See security-spi-atn.xml configuration.

©1999 APACHE SOFTWARE FOUNDATION

ALL RIGHTS RESERVED

133

1.3.3 CREDENTIALS MANAGEMENT 11

Credentials Management

Credentials Management Overview

DefaultCredentialHandler Features

With the Jetspeed Def aul t Cr edent i al Handl er special management of password credentials can
easily be configured. Through the provided Passwor dCr edent i al Provi der and
I nt er nal Passwor dCr edent i al | nt er cept or components custom logic can be plugged in for:

* providing a custom Passwor dCr edent i al implementation

* password encoding
If an Cr edent i al Passwor dEncoder is available from the Passwor dCr edent i al Provi der
passwords will be encoded with it before they are persisted. The provided
MessageDi gest Credent i al Passwor dEncoder uses MessageDi gest hash algorithms for the
password encryption, and can for example be configured to use SHA- 1 and Base64.

* enforcing password value rules
If an Credent i al Passwor dVal i dat or is available from the
Passwor dCr edent i al Provi der, passwords will be validated with it before they are persisted.
The Def aul t Cr edent i al Passwor dVal i dat or for example enforces non-emtpy password. And
with the Si npl eCr edent i al Passwor dVal i dat or a minimum length and a minum number of
numeric characters can be enforced.

* intercepting | nt er nal Credenti al lifecycle events
If the Def aul t Cr edent i al Handl er is provided with an
I nt er nal Passwor dCr edent i al | nt er cept or, it will invoke this interceptor (or an arbirary set
if I nt er nal Passwor dCr edent i al | nt er cept or SPr oxy is used) on:

* after loading a credential from the persistent store
* after authenticating a user
* before a new credential is saved to the persistent store

* before a new password is save for the credential

Jetspeed already provides a basic set of interceptors, ready to be used:
* Val i dat ePasswor dOnLoadl nt er cept or
This interceptor can be used to validate (pre)set passwords in the persistent store and force a
required change by the user if invalid. It uses the configured
Credenti al Passwor dVal i dat or of the Passwor dCr edent i al Provi der, the same as
used when a password is changed.

* EncodePasswor dOnFi r st Loadl nt er cept or
This interceptor can be used if passwords needs to be preset in the persistent store or migrated
unencoded from a different store. With this interceptor, these cleartext password will

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/java/security/MessageDigest.html

1.3.3 CREDENTIALS MANAGEMENT 12

automatically be encoded the first time they are loaded from the database, using the
Credent i al Passwor dEncoder from the Passwor dCr edent i al Provi der

* Passwor dExpi rati onl nterceptor
This interceptor can be used to enforce a maximum lifespan for passwords. It manages the
expi ration_date andi s_expi r ed members of the | nt er nal Credent i al and sets the
expired flag when on authentication of a user its (valid) password is expired. The authentication
will then fail.
Note: A Jetspeed pipeline Valve, the Passwor dCr edent i al Val vel npl can be used to
request or even enforce users to change their password in time to prevent a password expiration
(described further below).

* MaxPasswor dAut henti cati onFai | uresl nt er cept or
This interceptor can be used to prevent password hacking by enforcing a maximum number of
invalid password attempts in a row. Once this number of authentication failures is reached, the
credential will be disabled. On a successful authentication though, this count will automatically be
reset to zero again by the Def aul t Cr edent i al Handl er.

* Passwor dHi st oryl nt er cept or
This interceptor can be used to enforce usage of unique new passwords in respect to a certain
number of previous used passwords. When a new password is set, the current password is saved
in a FIFO stack of used passwords. When a user itself changes its password, it must be different
from all the onces thus saved, otherwise a Passwor dAl r eadyUsedExcept i on will be thrown.
But setting a new password through the administrative interface still allows any password (when
otherwise valid) to be set.

The Def aul t Cr edent i al Handl er only supports one interceptor to be configured. But, with the
I nt er nal Passwor dCr edent i al | nt er cept or sProxy , a list of interceptors can be configured
which then will be invoked sequentially.

Jetspeed comes out of the box with several of these interceptors configured, and its very easy to
change and extend.See the security-spi-atn.xml section in the Security Services Configuration
document for a description of the default configuration. Also provided there is an example how to
setup the interceptors to restore the "old" (and much more restrict) configuration provided with the
2.0-M3 release and earlier.

Credentials Management Implementation

The class diagram below describes the components used for the Def aul t Cr edent i al Handl er
implementation.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3.3 CREDENTIALS MANAGEMENT

@ DefaultCredentialHandler sinterfaces
D org.apache.jetspeed security.spi.PasswordCredentialProvider

& DefauliCredentialHandler)

@ authenticate() L © creata()

o gelPrivateCredentials() @ create()

@ gelPublicCredentials) @ getEncoder()

® selPasswordl) © getPasswordCredentialClass()

@ selPasswordEnabled() © getalidator(), .

@ setPasswordUpdateRequired() |
I . I uirrlpomI
\L'Im"' | ||'l1'lpdﬂl

ainterfaces I
[1] org.apache. jetspeed.security.spi.nternalPasswordC redentiallntercepFor

aferauthenticated))
afterLoad()

1
T
[

beforeCreate() : simports
|

o0 o0

beforeSetPasswond()

I
I
I
I
I
I
I
I
I
I
1

L

wintarfaces
(1] org.apache.jetsp-eed.sel:urltgr.spi.CredentlalPassword]Encndar
1

@ encode() |

e

winterfaces
(1] org.apache.jetspeed. security.spi.CredentialPasswordValidator

@ vakdate()

The O]B mappings for the default credentials implementation are described in
security_repository.xm:

* Internal Credenti al : Maps to the SECURITY_CREDENTIAL table.

The following database schema is used to stored credentials and their associations to principals.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3.3 CREDENTIALS MANAGEMENT 14

security_credential

PK credential id
PK,FK1 | principal id

column_value

security_principal type
classname
PK | principal _id update required

< is_encoded
classname is_enabled
full_path auth_failures
creation_date is_expired
modified_date creation_date

modified date
prev_auth_date
last auth date

expiration date

User interaction

Although the Def aul t Cr edent i al Handl er provides fine-grained management of credentials, it
cannot provide direct feedback to the user like presenting a warning that the current password is soon to
be expired. But, special request processing pipeline valves provided with jetspeed allow to do just that.

The configuration for these valves can be found and set in the pi pel i nes. xm spring configuration
file.

LoginValidationValvelmpl

The Logi nVal i dati onVal vel npl provides feedback to the user about the cause of an failed login
attempt.

It retrieves the User Pri nci pal and its current Passwor dCr edent i al for the specified user name,
and (if found) determines an specific error code based on its state. This error code is communicated back
to through the session so an appropriate error message can be presented to the user.

The following possible error codes can be returned (all defined in the Logi nConst ant s interface):

1. ERROR_UNKNOWN_USER

2. ERROR_INVALID_PASSWORD

3. ERROR_USER_DISABLED

4. ERROR_FINAL_LOGIN_ATTEMPT

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3.3 CREDENTIALS MANAGEMENT 15

5. ERROR_CREDENTIAIL_DISABLED
6. ERROR_CREDENTIAL_EXPIRED

Of the above error codes, the ERROR_FI NAL_LOG N_ATTEMPT will only be reported if the valve is
configured with the same maxNumber OF Aut hent i cati onFai | ur es value as used for the related
MaxPasswor dAut hent i cat i onFai | ur esl nt er cept or described above:

<bean i d="Iogi nVal i dati onVal ve"
cl ass="org. apache. j et speed. security.inpl.Logi nValidationVal vel npl"
init-nethod="initialize">
<!l-- maxNunmber O Aut henti cati onFai | ures
This val ue should be in sync with the value for
org. apache. j et speed. security. spi.inpl.MaxPasswor dAut henti cati onFai | uresl nt erceptor
(if used) to make sense.
Any value < 2 will suppress the Logi nConststants. ERROR FI NAL_LOG N_ATTEMPT
error code when only one |last attenpt is possible before the credential
wi Il be disabled after the next authentication failure.
-->
<constructor-arg index="0"><val ue>3</val ue></ constructor - ar g>
</ bean>

PasswordCredentialValvelmpl

The Passwor dCr edent i al Val vel npl is meant to be used together with a special Portlet on a special
Portal Page (PSML) to automatically request or even require a user to change its password.

This valve evaluates Passwor dCr edent i al . i sUpdat eRequi r ed() and optionally the
expirationDat e, | ast Aut henti cati onDat e and pr evi ousAut henti cat i onDat e fields to
determine if a user is required or just be asked to change its password.

This valve can optionally be configured with a list of expi r at i onWar ni ngDays numbers in its
constructor:

<bean i d="passwordCredenti al Val ve"
cl ass="org. apache. j et speed. security.inpl.PasswordCredenti al Val vel npl "
init-nethod="initialize">
<constructor - ar g>
<l-- expirationWarni ngbDays -->
<list>
<val ue>2</val ue>
<val ue>3</val ue>
<val ue>7</ val ue>
</list>
</ constructor-arg>
</ bean>

These numbers each represent a day before the current expi r at i onDat e of the password credential
when a user should be warned its password is soon to expire and be asked to change it. The
| ast Aut henti cati onDat e and the pr evi ousAut hent i cat i onDat e are used to determine when

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3.3 CREDENTIALS MANAGEMENT 16

this should happen. It will be done only once for each configured expi r at i onWar ni ngDay. If a user
logs on for the first time (after several days) with the above example configuration, 6 days before the
password expires, he or she will be warned about it. And again when 3 or 2 days are left.

When a user logs on the last day before the password expires or when updat eRequi red istrue, the
user will be required to change the password, regardless if expirationWarningDays are configured or not.

To be able to automatically provide the user with this information and allow or require the password to
be changed directly after login, a special Pr of i | eLocat or SECURI TY_LOCATCOR s used. The
PagePr of i | er Val ve (which should be configed affer this valve in the pipeline) will then use this
enforced locator to be used to find the related portal page to present to the user.

For this to work, a " securi t y" Profiler rule must have been setup like the default one provided by
Jetspeed:

Profiler Admin Y
Rules Rule Id: Isecurity
1 Rule Title: |The security profiling rule needed for credential change requirements.
role-fallback Rule Cl) - - - —
ath ule L1ass: |Drg.apache.]etspeed.pruflIer.ruIes.lmpl.StandardPerlIlngRule ;I
role-group Save | Mew | Remove |
aroup-fallback
security Rule Criteria :
12 Name | Value | Resolver Type | Drderl

subsite-role-fallback-home
subsite2-role-fallback-home
Wew Criteria

page /my-account.psmlhard.coded 0O

As can seen from the above image, the default page which will be presented to the user is the
/ my-account . psm located in the root.

This default page contains only one portlet, the ChangePasswor dPor t | et from the security Portlet
Application.

The ChangePasswor dPor t | et works together with the Passwor dCr edent i al Val vel npl as it
checks for the PASSWORD CREDENTI AL_DAYS_VALI D_REQUEST_ATTR_KEY request parameter
which will be set by this valve with the number of days the password is still valid. For a required
password change this will be set to Integer(0).

The default ny- account . psm page contains oz/y the ChangePasswor dPor t | et to make sure a user
which is required to change the password cannot interact with the portal any other way then after the
password is changed.

Although the user might be attempted to select a link to a different page (from a portal menu for
exampl), this valve will make sure only the configured "security" locator page is returned if it is required.
But, once the password is changed the then targeted page in the utl will be navigated to automatically.

Managing Password Expiration

If the Passwor dExpi rat i onl nt er cept or is used, password expiration for a certain user can be
directly managed through the User Det ai | Port | et provided with the securi ty portlet application.

If enabled, this portlet can display the current expiration date of a password and also allows to change its

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3.3 CREDENTIALS MANAGEMENT 17

value:

User Detail Information [&]

Principal :

Password

value | T change required at next logon
Last Logon ¥ enabled
Expiras January 1, 8099 12:00:00 AM CET & actjve 0 expired © Extend Extend Unlimited

Update |

Add Mew Lser | Remove User |

As you can see, through the radio group, the password expiration date can be changed to:

Action Expires
Expired today
Extend today + maxLi f eSpanl nDays as configured for the

PasswordExpirationinterceptor

Extend Unlimited January 1, 8099 (the maximum value allowed for java.sql.Date)

This feature can be enabled through the edit/preferences page of the User Det ai | sPort| et :

User Detail Information [x] E||

User Detail Preferences

Show User Tab [
Show Attributes Tab ¥
Show Password Tab 72
Show Password Expiration I~
Show Role Tab ¥
Show Group Tab v
Show Profile Tab I~
Show Passward on User Tab [

Define default "Change Password Required on First Login" for new User [

Define default Role for new User O

Define default Profile for new User H

Default "Change Password Required on First Login" i

Default Role for new User m

Default Profile for new User Irg|e_fa||back L!

Save |

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.3.3 CREDENTIALS MANAGEMENT 18

Note: when a new password value is specified selected password expiration action Expi r ed will be
ignored!

Setting default 'Change Password required on First Login’

Through the same User Det ai | sPort | et preferences as show above, the default updat eRequi r ed
property of a password credential for a new user can be configured too.

And, if you always need the same setting for all users, you can even suppress the selection box normally
displayed on the Add User dialog.

With the preferences set as in the example shown above, the Add User dialog will look like this:

User Detail Information E||

Mew User Name: |

Password: |

Add User I

A user added with the example preferences set, will have the updat eRequi r ed property set to true, the
User role assigned and use the r ol e-f al | back profiling rule.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

14

1.4 AUTHORIZATION 19

Authorization

Authorization Overview

For auhorization, Jetspeed 2 implements its own java.security.Policy using a relation database store to
manage associations between principals and permissions.

h - N - - simport winterfaces
€ java.security.Policy <] @ RdbmsPolicy é‘ @ org.apache.jetspeed.security. PermissionManager

The Per mi ssi onManager provides access to the permissions associated to given principals.

* The JAAS Authorization provides an overview of the authorization aspect of JAAS.

* The PermissionManager Overview documents the Per mi ssi onManager implementation.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/java/security/Policy.html

141

1.4.1 JAAS AUTHORIZATION 20

JAAS Authorization

Overview of JAAS Authorization

A good overview of JAAS authorization is provided on Sun's web site . At a high level, JAAS
authorization leverages:

¢ Permission that associates actions to resources.

* Principal that represents an entity in the system. In Jetspeed 2, 3 principals are used to represent
users, roles and groups.

* DPolicy that associates principals to permissions.

Jetspeed 2 provides a custom policy implemention that allow the portal to secure resources as follow:

grant principal o.a.j.security.UserPrincipal "theUserPrincipal" {
permi ssion o.a.j.security.PagePerm ssion "nypage", "view';

permission o.a.j.security.PortletPerni ssion "nyportlet"”,
"view, edit, mnimze, maxi m ze";
permi ssion o.a.j.security. TabPerm ssion "nytab", "view';

H

grant principal o.a.j.security.RolePrincipal "theRolePrincipal" {
permi ssion o.a.j.security.PagePerm ssion "nypage", "view';
permission o.a.j.security.PortletPernission "nyportlet"”,
"view, edit, mnimze, maxi m ze";
permission o.a.j.security. TabPerm ssion "nytab", "view';

b

grant principal o.a.j.security.GoupPrincipal "theG oupPrincipal" {
perm ssion o.a.j.security.PagePerm ssion "nypage", "view';
permission o.a.j.security.PortletPerm ssion "nyportlet"”,
"view, edit, mnimze, maxi m ze";
permi ssion o.a.j.security. TabPerm ssion "nmytab", "view';

b

The custom security policy provides a j ava. securi ty. Pol i cy implementation that stores the
association between principals and permissions in a relational database as opposed to leveraging the
default JDK policy. In the case of Sun's JDK| the default policy is sun.security.provider.PolicyFile a file
based policy.

In the code sample above, the User Pri nci pal identify with the Pri nci pal . get Nane()
"theUsetPrincipal" has permission to "view" the page called "mypage", to "view,edit,minimize,maximize"
the portlet portlet called "myportlet”

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc2.html
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Permission.html
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Principal.html
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Policy.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html#DefaultImpl

1.4.1 JAAS AUTHORIZATION 21

The AccessController validates a Subj ect permissions. For instance, a page permission check would
perform the following check:

PagePer m ssi on perni ssion = new PagePerm ssi on(path, actions);
AccessControl | er. checkPer ni ssi on(perm ssion);

Jetspeed JAAS Policy

The RdbrrsPol i cy implements j ava. security. Pol i cy . It leverages the Per mi ssi onManager to
get the permissions associated with a given Subj ect principals.

pns. get Per mi ssi ons(user. getPrincipals());

The class diagram below illustrate the association between the RdbnsPol i cy and the
Per m ssi onManager .

A good article on custom policies implementation is available on IBM web site .

sintarfaces

) org.apache jetspeed.security. PermissionManager

& java.security.Policy
® RdbmsPolicy © addPemission()

o Policyl) o getPermissions()
& getPermissions() | & RdbmsPolicyy | MO) o getPermissions()
0 geiPemissions() o getPermissions(@ graniParmission()
@ implies() @ refresh() @ permissionExists()
& refresh() @ removaPemission()

@ removePemnissions()

@ revokePermission()

To get more detail about the implementation of the Per m ssi onManager , see PermissionManager
Overview .

Note: The current RdbrsPol i cy manages the policies to apply. It applies RdbnsPol i cy in
conjunction with the default policy configured in the runtime environment. Jetspeed 2 should explore
providing JACC adapters for its custom policy for specific application servers.

Authorization Provider and Policy Configuration

The Aut hori zat i onProvi der configures the authorization policies to be used by Jetspeed 2 and
keeps the list of such policies in the Securi t yPol i ci es singleton. The RdbnmsPol i cy when getting
the permissions for access control will execute its policy as well as all the policies configured in
SecurityPolicies.If the Aut horizati onProvi der was constructed with useDef aul t Pol i cy

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/java/security/AccessController.html
http://www-106.ibm.com/developerworks/library/j-jaas/?n-j-442
http://java.sun.com/j2ee/javaacc/index.html

1.4.1 JAAS AUTHORIZATION 22

set to true, the default JDK or application server policy will be applied when getting the permissions.

Note: The RonsPol i cy permission check is concerned about the principals associated to the Subj ect,
therefore where performing an access control check, the check should be performed with the following
call: doAsPri vi | eged(theSubj ect, anAction, null). By passinga null

AccessCont ol Cont ext, the caller is essentially saying: "I don't care who called me, the only important
thing is whether I have permission when associated with the given subject”.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.4.2

1.4.2 PERMISSIONMANAGER OVERVIEW 23

PermissionManager Overview

PermissionManager Overview

The Per mi ssi onManager is used by the RdbrmsPol i cy to get the permissions for a given user
principals as presented in the Jetspeed JAAS Policy section of the documentation.

The Per m ssi onManager manages the association between permissions and principals. Each
permission or principal maps to a generic object model and reflexion is used to instantiate the proper
permission or principal type. The class diagram below represents the interfaces representing a generic
permission (I nt er nal Per mi ssi on) and a generic principal (I nt er nal Pri nci pal) and their relation
to the Per m ssi onManager .

sintarfacas
(1] org.apache.jetspeed.security.PermissionManager

addPermission()
getPermissions()
getPermissions()
grantPermission()
permissionExistsi)
remave Permission()
removePemissions()
revokePermission{)

o0 O O0OO0O®

| D PermissionManagerimpl I

I |

il H #iMmporns
i $
sinterfaces winterfaces

(1] org.apache.jetspeed.security.om.InternalPrincipal o org.apache.jetspeed.security.om.InternalPermission
@ getClassname() & equals()
@ getCreation Date() @ getActions()
@ getFullPathi) @ getClassname()
@ getMaodified Date() @ getCreationDate()
@ getPermissions() @ getModfiedDate()
@ getPrincipalld() @ getMame()
@ isEnabled() @ getPermissionld()
© isMappingOniy() @ getPrincpals()
O seiClassname(} @ selActions()
@ setCreationDate() @ seiClassname()
@ setEnabled() @ setCreationDate()
@ setFullPath() @ seiMedifiedDate()
@ setbappingOniy() @ seibame()
o seiModifiedDate) @ selPermissionld(}

Each I nt er nal Per m ssi on maps to one or more | nt er nal Pri nci pal and, each
I nt er nal Princi pal can have one or more | nt er nal Per m ssi on.

©1999 APACHE SOFTWARE FOUNDATION

* ALL RIGHTS RESERVED

1.4.2 PERMISSIONMANAGER OVERVIEW

24

0 SQOOORQCPSTROQOOO QR

aiiaachy

1] org.apache jetspeed secunty.om. internalPrincipal

geiClassname()
pelCreationDated)
gelFullPani)
geiMadhadDalal)
GEP TSNS}
geIPrincipalic)
IsEnabled))
isMappingOnty(}
setClassname()
setCreationDatal)
s#iEnabled)
saiFuliFathi)
seiMappingOnly(}
setbodifiedDate()
setPermissions])
setPrrpalled

=1~ | @ InternalPrincipalimpl |

1.n

| @ imernaipermissionimpt | -

Schema and OJB Mapping

oGSOSR OOOE OO

waals(]
gethctions(y
gebClassnams()
getCreationDate()
getMoasisdOatel}
i ama
gatPemissianid(}
getPancipals])
s&tActions()
astCizssname)
saiCreatonDatal)
seienfadDae)
setbame(}
selPemission|d()
selPrincipals(y

sineacas
1] orf.apache, jelspesd security.om. ntermal Permission

The O]B mappings for the security component are described in security_repository. xm :
* I nternal Principal : Maps to the SECURI TY_PRI NCI PAL table.

* Internal Permi ssi on: Maps to the SECURI TY_PERM SSI ON table.

* Associations between | nt er nal Pri nci pal and | nt er nal Per ni ssi on are maintained through
the indirection table PRI NCl PAL_PERM SSI ON.

<cl ass-descri ptor

cl ass="org. apache. j et speed. security.ominpl.Internal Principallnpl"

proxy="dynam c"

t abl e=" SECURI TY_PRI NCI PAL"
>...</class-descriptor>

<cl ass-descri ptor

cl ass="org. apache. j et speed. security.ominpl.|nternal Perm ssionl npl"

proxy="dynam c"

t abl e=" SECURI TY_PERM SSI ON'
>...</class-descriptor>

The relational schema maintaining principal to permission associations is provided below:

security_permission

PK

permission id

security_principal_permission

classname
name

actions
creation_date
modified_date

PK,FK2
PK,FK1

principal id
permission_id

©1999 APACHE SOFTWARE FOUNDATION

* ALL RIGHTS RESERVED

security_principal

PK

principal _id

classname
full_path
creation_date
maodified_date

1.4.3

1.4.3 AUTHORIZATION/SECURITY MAPPING SPI 25

Authorization/Security Mapping SPI

Authorization/Security Mapping SPI Overview

The authorization SPI provides the implementation to support Jetspeed 2 users, roles and groups
associations and the roles/groups hierarchy policy. It provides the undetlying mechanism to support the
implementation of the Rol eManager and Gr oupManager .

As described in the security overview , Jetspeed support hierarchical role based access control with
configurable hierarchy policies.

First, let's have a look at a class diagram of the authorization SPI:

EinsEmtacer
O org.apache jetspeed security.s pi. SecurityMappingHandier
& groupHisrarchyResolver
& roledisrarchyResolver
@ getGroupHiemchyResaler]
& gatGroupPrncpals}
@ gatGroupPrincipalsinRioke()
@ gotRcleHemancty Resche)
& gatclePrincipats() sinlesfaces
@ getRckePrincipatsinGroup() D org.apache. jetspeed security.spi.Securityficcess
@ gutliserPrincipalsinGaoupl)
@ getUssPrincpalsinRobe() o gelntemalGroupPrincipall)
@ remove RolaPrincipal() @ gentemalGroupPrincpalal)
& RokaPrincipalinroupd) o geSatsmalFelePrnspal])
@ removellsarPrincipalinGroun() @ gelntamalFolePrincpals()
@ selRolnPinapall @ getnemalllserPrincipall)
@ selRolaPrincpalinGroupd) @ petnbamalllserPring pall)
@ ssilsorPrincipainGroug(} @ getntamalllserPringpats])
@ EEnownLsed)
h @ removalrternalGroupPrincpali)
J @ removalmemalfcle Principat])
@ DefaultSecurityMappingHandler I— — — tempon: —x @ removalntermallsadPrincipal])
| . @ satilemalkGroupPrincipaid)
g, e o setiriermalRolePrincipa)
r—— @ sstinternallserPrincpal])

o org.apache jetspeed securily HisrarchyRes olver

& resohve(}
@ reschChildren()

A

I
@ org.apache |etspeed securityimpl.GeneralizationHlerarchyResoher

@ resclve()

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.4.3 AUTHORIZATION/SECURITY MAPPING SPI

26

eintorfaces 71 | @ DefaultRoleSecurityHandler |
@ org.apache jetspeed.security.spi.RoleSecurityHandler |
@ getRolePrincigal() | simport
@ getRolePrincipals() ‘l'mﬁ
@ remaveRalePrincpal() - " e -
he, . spi. A
o e e @ org.apache jetspeed security spi. SecurityAccess
sinterfaces <=7 -| @ DefaultGroupSecurityHandier |
D org.apache jetspeed.security.spi.GroupSecurityHandler
@ getGraupPrincipal) simgarts
@ gelGroupPrincipaisd) 1
@ removeGnupPiindgal() cinbarfaces
@ setGroupPrincipal() 0 org.apache. jetspeed security.spi. SecurityAccess

Authorization SPI Components

The authorization SPI implements the following components:

Component Description
org.apache.jetspeed.security.spi.SecurityMappingHandler See security-spi-atz.xml configuration.

‘orgapache jetspeed securty HierarchyResolver See herarchy management.
‘org.apache jetspeed securiy spi RoleSecuriyHandier See securty-spiatzxml configuration.
‘org.apache jetspecd securiy spi GroupSecuryHandler See securty-spiatzxml configuration.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.4.4 HIERARCHY MANAGEMENT 27

144 Hierarchy Management

Hierarchy Management Overview

Two hierarchy resolution strategies are supported for authorization decisions:
* Hierarchy resolution by Generalization: This is the default hierarchy resolution in Jetspeed. If a
hierarchy uses a generalization strategy, each role is more general than the previous one. For instance,
if a user has the role [roleA.roleB.roleC] then user . get Subj ect (). get Pri nci pal s() returns:

e /role/roleA
e /role/roleA/roleB
e /role/roleA/roleB/roleC
* Hierarchy resolution by Aggregation: If a hierarchy uses a aggregation strategy, the higher role is

responsible for a superset of the activities of the lower role. For instance, if the following roles are
available:

¢ roleA
¢ roleA.roleB

* roleA.roleB.roleC
If a user has the role [roleA] then, user . get Subj ect (). get Pri nci pal s() returns:
* /role/roleA

e /role/roleA/roleB
e /role/roleA/roleB/roleC

As described in the authorization SPI section , the Secur i t yMappi ngHandl er is configured with a
specific hierarchy strategy for group and role hierarchy management. See the authorization SPI
configuration for a configuration example.

Leveraging Preferences to Manage Hierarchies

The default hierarchy management implementation resolves the hierarchy strategy by leveraging Jetspeed
2's java.util.prefs.Preferences implementation. The Pr ef er ences implementation provides the
underlying structure in Jetspeed to store user attributes, and roles and groups definitions. The

Pr ef er ences model provides a hierarchy model that is leveraged to store the base roles and groups
hierarchy upon which various resolving strategies can be applied (resolution by generalization or
aggregation).

See Jetspeed 2 Preferences implementation section for more information.

How does this work?

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/java/util/prefs/Preferences.html

1.4.4 HIERARCHY MANAGEMENT 28

The Securi t yMappi ngHandl er implementation resolves the mappings between roles and groups.
Let's say that we want to find out the roles mapping to a specific group name. To do so, the

Secur i t yMappi ngHandl er implements a get Rol ePri nci pal sl nG oup(String

groupFul | Pat hNanme) method. In this method, the group name is mapped to a specific

Pr ef er ences node. According to a given hierarchy resolution strategy (see overview section), being in
[group A] may mean belonging to a set of groups; the HierarchyResolver is used to do so as illustrated
below:

public Set getRol ePrincipal slnGoup(String groupFul | Pat hNane)

{
Pref erences preferences = Preferences. userRoot (). node(
GroupPri nci pal | npl . get Ful | Pat hFr onPri nci pal Name(gr oupFul | Pat hNane)) ;
String[] fullPaths = groupH erarchyResol ver.resol ve(preferences);
}

The resulting groups are then used to find all associated roles.

As a result of this implementation, the name of a role principal (Pri nci pal getName()) in the security
layer should match the full path of that user preferences root in the preferences layer (Pr ef er ence
absolutePath() ; e.g: / r ol e/ t heRol ePri nci pal).

Group and roles hierarchy are stored in the Pr ef er ences layer as follow (the output of exportNode()
for Jetspeed's RBMS Preferences implementation):

<preferences EXTERNAL_XM._VERSI ON="1. 0" >
<root type="user">
<map />
<node nane="groupl">
<map />
<node name="groupi dl.1">
<map />
<node name="groupidl.1.1">
<map />
</ node>
</ node>
</ node>

<node nane="rol el">
<map />
<node nanme="rol eidl.1">
<map />
<node nanme="rol eidl.1.1">
<map />
</ node>
</ node>
</ node>
</root >

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://java.sun.com/j2se/1.4.2/docs/api/java/security/Principal.html#getName()
http://java.sun.com/j2se/1.4.2/docs/api/java/util/prefs/Preferences.html#absolutePath()
http://java.sun.com/j2se/1.4.2/docs/api/java/util/prefs/Preferences.html#exportNode(java.io.OutputStream)

1.4.4 HIERARCHY MANAGEMENT 29

This structure would define the following group and role hierarchy:

e /groupl/groupidl.1/groupidl.1.1

* /rolel/roleidl. 1/roleidl. 1.1
Additionally, in this model, the map element can define groups or roles custom properties. For instance, a
role could have a rule custom property (or a pointer to a rule) that allow rule based role definition tied to
some rule engine (Drools for instance) and is validated when the isInRole method is invoked. For groups,

a portal could use group to describe organization and have custom property such as address, city, etc.
associated with the organization/group.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

15

1.5 HIGH LEVEL SECURITY SERVICES

High Level Security Services

High Level Security Services Overview

Jetspeed 2 provides the four following high level security services:
* User Manager : Service providing user management capabilities.

* GroupManager : Service providing group management capabilities.
* Rol eManager : Service providing role management capabilities.

* Perm ssi onManager : Setrvice providing permission management capabilities.

Using High Level Security Services in Portlets

In order to access Jetspeed high level security services in your portlets, Jetspeed provide a custom
extension to the port | et. xm metadata. All Jetspeed custom metadata is located in the

j et speed-portlet.xm configuration file in the WEB- | NF folder of the portlet application. The
custom j S: Ser Vi ces tag provides the ability to expose portal services to a portlet through the
javax. portlet.Portl et Cont ext.

Jetspeed portal services are configured in the spring assembly file located in the portal
VEB- | NF/ assemnbl y/ j et speed- ser vi ces configuration file. The UserManager for instance is
configured as follow:

<l-- Portlet Services -->
<bean i d="Portal Servi ces"
cl ass="org. apache. j et speed. servi ces. Jet speedPort| et Servi ces" >
<constructor-arg>

<n’ap>
<entry key="User Manager">
<ref bean="org. apache.jetspeed. security. User Manager"/ >
</entry>
</ map>
</ constructor-arg>
</ bean>

The User Manager services is then available to be loaded in a specific portlet Port | et Cont ext .
Portlet developers need to specify the portal services they would like to use. The following example
shows how to expose the portal User Manager to a portlet application:

<j s:services>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.5 HIGH LEVEL SECURITY SERVICES 31

<j s:servi ce name=' User Manager' />
</js:services>

Once a portal service is loaded in the portlet context, the portlet implementation (which typically extends
javax. portlet. CGenericPortl et) can access the service as follow:

Portl et Context context = getPortletContext();
user Manager = (User Manager)
context.getAttribute(ComonPortl et Servi ces. CPS_USER MANAGER COVPONENT) ;

where ConmonPor t | et Ser vi ces. CPS_USER_MANAGER_COVPONENT = "cps: User Manager"

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.6

1.6 SECURITY SERVICES CONFIGURATION 32

Security Services Configuration

Default configuration

Jetspeed 2 default security services configuration leverages a relational database as its default persitent
datastore for security information. Jetspeed 2 security service provider interface provides a mechanism to
replace the default datastore configured.

3 files are involved when configuring Jetspeed 2 security SPI. All the SPI configuration files are located
under §{jetspeed-source-home}} | portal/ sre/ webapp/ WEB-INF/ assembly/ .

security-atn.xml

This configuration file provides the login module configuration. Not everyone needs this, as some
application may decide to use another login module other than the one provided.

security-atz.xml

This configuration file configures the authorization policy, in J2's case RdbmsPolicy .

security-managers.xml

This configuration file configures all the managers for security purpose.

security-providers.xml
This configuration file configures the various providers and weaves the SPI together.

* Aut henti cati onProvi der Proxy : Configures the list of Aut henti cati onProvi der and the
default authenticator.

<bean i d="org. apache. j et speed. security. Aut henti cati onProvi der Proxy"
cl ass="org. apache. j et speed. security.inpl.Authenticati onProviderProxyl npl ">
<constructor-arg >

<list>
<ref bean="org. apache. j et speed. security. Aut henti cati onProvi der"/>
</list>

</ constructor-arg>
<constructor - ar g><val ue>Def aul t Aut hent i cat or </ val ue></ const ruct or - ar g>
</ bean>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.6 SECURITY SERVICES CONFIGURATION 33

* Aut henti cati onProvi der : Configures the authentication providers for the current portal
implementation. The example below configures the default authenticator that uses the RDBMS to

manage/store user information.

<bean i d="org. apache. j et speed. security. Aut henti cati onProvi der"

cl ass="org. apache. j et speed. security.inpl.Authenticati onProviderlnpl">
<constructor-arg

i ndex="0"><val ue>Def aul t Aut hent i cat or </ val ue></ construct or - ar g>
<constructor-arg index="1"><val ue>The defaul t

aut henti cat or </ val ue></ construct or - ar g>
<constructor-arg index="2"><val ue>l ogi n. conf </ val ue></ const ruct or - arg>

<constructor-arg i ndex="3">
<ref bean="org. apache. j et speed. security. spi.Credential Handl er"/>

</ constructor-arg>

<constructor-arg index="4">
<ref bean="org. apache.j et speed. security. spi.UserSecurityHandl er"/>

</ constructor-arg>
</ bean>

* Aut hori zati onProvi der : Configures the policies and instantiates the Securi t yPol i ci es
that are used for enforcing permissions. By default, Jetspeed 2 does not load any other security
policies that may have been configured. In order to use default policies, set useDef aul t Pol i cy to

true

<bean i d="org. apache. j et speed. security. Aut hori zati onProvi der"
cl ass="org. apache. j et speed. security.inpl.AuthorizationProviderlnpl">

<constructor-arg i ndex="0">
<ref bean="org. apache. j et speed. security.inpl.RdbnsPolicy"/>
</ constructor-arg>

<!-- Does not use the default policy as a default behavior -->
<constructor-arg index="1"><val ue>f al se</val ue></constructor-arg>
</ bean>

security-spi.xml

This configuration file contains configuration that are common to the authentication and authorization
SPIs.

Bean Description

org.apache.jetspeed.security.spi.SecurityAccess Used internally by the default OJB based SPI. Provide access to
common action/methods for the various SPI implementations. The
SecurityAccess bean is used by both the Authentication and
Authorization SPIs.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.6 SECURITY SERVICES CONFIGURATION 34

security-spi-atn.xml

This configuration file contains all the configurations for configuring the authentication SPI.

Bean Description

org.apache.jetspeed.security.spi.CredentialHandler The CredentialHandler encapsulates the operations involving
manipulation of credentials. The default implementation provides
support for password protection as defined by the
PasswordCredentialProvider ; as well as lifecycle management of
credentials through InternalPasswordCredentiallnterceptor which can
be configured to manages parameters such as maximum number of
authentication failures, maximum life span of a credential in days and
how much history to retain for a given credential.

org.apache.jetspeed.security.spi.UserSecurityHandler The UserSecurityHandler encapuslated all the operations around the
user principals.

The following simple Cr edent i al Handl er configuration is currently provided by default with
Jetspeed:

<l-- require a non-enpty password -->
<bean i d="org. apache. j et speed. security. spi.Credenti al PasswordVal i dator"
cl ass="org. apache. j et speed. security.spi.inpl.DefaultCredential PasswordVal i dator"/>

<l-- MessageDi gest encode passwords using SHA-1 -->

<bean i d="org. apache. j et speed. security. spi.Credenti al Passwor dEncoder"

cl ass="org. apache. j et speed. security. spi.inpl.MssageD gest Credenti al Passwor dEncoder " >
<constructor-arg index="0"><val ue>SHA- 1</ val ue></ construct or - ar g>

</ bean>

<l-- allow nultiple Internal PasswordCredential Interceptors to be used for
Def aul t Credenti al Handl er -->
<bean i d="org. apache. j et speed. security. spi.|nternal PasswordCredential I nterceptor”
cl ass="org. apache. j et speed. security.spi.inpl.I|nternal PasswordCredenti al | nt ercept or sProxy">
<constructor-arg index="0">
<list>

<l-- enforce an invalid preset password value in the persisent store is
required to be changed -->

<bean
cl ass="org. apache. j et speed. security.spi.inpl.ValidatePasswordOnLoadl nterceptor"/>

<l-- ensure preset cleartext passwords in the persistent store wll be
encoded on first use -->
<bean
cl ass="org. apache. j et speed. security. spi.inpl.EncodePasswor dOnFi r st Loadl nterceptor"/>
</list>
</ constructor-arg>

</ bean>

<bean i d="org. apache. j et speed. security. spi.PasswordCredenti al Provi der"
cl ass="org. apache. j et speed. security. spi.inpl.Defaul t Passwor dCr edenti al Provi der">
<constructor-arg i ndex="0">
<ref bean="org. apache. jetspeed. security.spi.Credential PasswordVal i dator"/>
</ constructor-arg>
<constructor-arg index="1">
<ref bean="org. apache.jetspeed. security.spi.Credential Passwor dEncoder"/ >
</ constructor-arg>
</ bean>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.6 SECURITY SERVICES CONFIGURATION 35

<bean i d="org. apache. j et speed. security. spi.Credential Handl er"
cl ass="org. apache. j et speed. security.spi.inpl.DefaultCredential Handl er" >
<constructor-arg index="0">
<ref bean="org. apache.j etspeed. security. spi.SecurityAccess"/>
</ constructor-arg>
<constructor-arg index="1">
<ref bean="org. apache.jetspeed. security. spi.PasswordCredential Provider"/>
</ constructor-arg>
<constructor-arg index="2">
<ref
bean="or g. apache. j et speed. security. spi .| nternal PasswordCredential | nterceptor"/>
</ constructor-arg>
</ bean>

The above configuration requires not much more than that a password should not be empty and
MessageDigest encode it using SHA-1.

Before the 2.0-M4 release, Jetspeed came configured with a much stricter configuration, but for first time
users of the Portal this was a bit overwelming and also quite difficult to configure differently.

With the 2.0-M4 release, the previously provided, and rather complex,
I nt er nal Passwor dCr edent i al | nt er cept or implementations are split up in single atomic
interceptors which can much easier be configured indepedently.

An overview of the new interceptors and how related request processing pipeline valves can be
configured to provide feedback to the user is provided in the Credentials Management document.

Since the "old" (pre 2.0-M4) interceptors are no longer provided with Jetspeed, the example below shows
how to "restore" the old setup using the new interceptots:

<l-- require a password of minimumlength 6 and at |east two nuneric characters -->
<bean i d="org. apache. j et speed. security. spi.Credenti al PasswordVal i dat or"
cl ass="org. apache. j et speed. security.spi.inpl.SinpleCredential PasswordVal i dat or">
<constructor-arg index="0"><val ue>6</val ue></ constructor - ar g>
<constructor-arg index="1"><val ue>2</val ue></constructor-arg>
</ bean>

<l-- allow multiple Internal PasswordCredential Interceptors to be used for
Def aul t Credent i al Handl er -->
<bean i d="org. apache. j et speed. security. spi.|nternal PasswordCredential I nterceptor”
cl ass="org. apache. j et speed. security.spi.inpl.|nternal PasswordCredenti al | nt er cept or sProxy">
<constructor-arg index="0">
<list>

<l-- enforce an invalid preset password value in the persisent store is
required to be changed -->

<bean
cl ass="org. apache. j et speed. security. spi.inpl. ValidatePasswordOnLoadl nterceptor"/>

<l-- ensure preset cleartext passwords in the persistent store wll be
encoded on first use -->
<bean

cl ass="org. apache. j et speed. security. spi.inpl.EncodePasswor dOnFi r st Loadl nt erceptor"/>

<l-- renmenber the |last 3 passwords used and require a new password to be

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.6 SECURITY SERVICES CONFIGURATION 36

different fromthose -->
<bean
cl ass="org. apache. j et speed. security. spi.inpl.PasswordH storylnterceptor">
<constructor-arg index="0"><val ue>3</val ue></constructor-arg>
</ bean>

<I-- Autonamtically expire a password after 60 days -->
<bean
cl ass="org. apache. j et speed. security. spi.inpl.PasswordExpirationlnterceptor">
<constructor-arg i ndex="0"><val ue>60</ val ue></ construct or - ar g>

</ bean>

<I-- Autonmtically disable a password after 3 invalid authentication
attenpts in a row -->

<bean

cl ass="org. apache. j et speed. security. spi.inpl.MaxPasswor dAut henti cati onFai |l uresl nterceptor">
<constructor-arg index="0"><val ue>3</val ue></constructor-arg>
</ bean>
</list>
</ constructor-arg>
</ bean>

And, make sure something like the following configuration is set for the security related valves in
pipelines.xml:

<bean i d="passwor dCredenti al Val ve"
cl ass="org. apache. j et speed. security.inpl.PasswordCredenti al Val vel npl "
init-nethod="initialize">
<constructor-arg>
<!-- expirationWarningDays -->
<list>
<val ue>2</val ue>
<val ue>3</val ue>
<val ue>7</val ue>
</list>
</ constructor-arg>
</ bean>

<bean i d="Iogi nVal i dati onVal ve"
cl ass="org. apache. j et speed. security.inpl.LoginValidationVal vel npl"
init-nethod="initialize">
<!I'-- maxNunber Of Aut henti cati onFai | ures
Thi s val ue should be in sync with the value for
or g. apache. j et speed. security. spi.inpl.MaxPasswor dAut henti cati onFai |l uresl nterceptor
(if used) to make sense.
Any value < 2 will suppress the Logi nConststants. ERROR_FI NAL_LOG N_ATTEMPT
error code when only one last attenpt is possible before the credential
wi |l be disabled after the next authentication failure
-->

<constructor-arg i ndex="0"><val ue>3</val ue></constructor-arg>
</ bean>

Also, make sure the above valves are configured in the j et speed- pi pel i ne bean.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.6 SECURITY SERVICES CONFIGURATION 37

See the User Interaction section in the Credentials Management document for a description of these
valves and their relation to the interceptors configuration.

security-spi-atz.xml

This configuration file contains all the configurations for configuring the authorization SPL

Bean Description

org.apache.jetspeed.security.spi.RoleSecurityHandler The RoleSecurityHandler encapsulates all the operations around the
role principals.

org.apache.jetspeed.security.spi.GroupSecurityHandler The GroupSecurityHandler encapsulates all the operations around the
group principals.

org.apache.jetspeed.security.spi.SecurityMappingHandler The SecurityMappingHandler encapsulates all the operations
involving mapping between principals. It contains the logic managing
hierarchy resolution for hierarchical principals (roles or groups). The
default hierarchy resolution provided is a hierarchy by generalization
(see overview for definitions). A contructor-arg can be added to the
SecurityMappingHandler to change the hierarchy resolution strategy.
Jetspeed 2 also support a hierarchy resolution by aggregation.

A sample Secur i t yMappi ngHandl er configuration could be:

<l-- Security SPI: SecurityMppingHandl er -->
<bean i d="org. apache. j et speed. security. spi. SecurityMppi ngHandl er"
cl ass="org. apache. j et speed. security. spi.inpl.Defaul tSecurityMppi ngHandl er">
<constructor-arg >
<ref bean="org. apache.jetspeed. security.spi.SecurityAccess"/>
</ constructor-arg>

<l-- Default role hierarchy strategy is by generalization.
Add contructor-arg to change the strategy. -->
<I-- Default group hierarchy strategy is by generalization.
Add contructor-arg to change the strategy. -->
</ bean>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7

1.7 LDAP CONFIGURATION 38

LDAP Configuration

LDAP Configuration

This document attempts to document the configuration of the LDAP security module in Jetspeed. Out
of the box, Jetspeed searches for user, group & role information in a relational database. However, it can

also search this information in an LDAP directory.

Jetspeed stores its LDAP configuration in a Spring XML file called security-spi-ldap.xml

This XML file describes an object (used internally by Jetspeed) that contains LDAP configuration
parameters. These configuration parameters are passed onto the object through constructor arguments:

<l-- The LDAP initial context factory. -->

<constructor-arg i ndex="0">

<val ue>com sun. j ndi . | dap. LdapC xFact or y</ val ue>

</ constructor-arg>

Each constructor argument contains an index to specify the correct order. The file defines the following

arguments:

Index Name Example

0 Initial context factory com.sun.jndi.ldap.LdapCtxFactory
1 LDAP server host localhost

2 LDAP server port 389

3 Root context o=sevenSeas

4 The LDAP server root dn uid=admin,o=sevenSeas

5 The LDAP server root password secret

6 The roles filter (objectclass=groupOfUniqueNames))
7 The groups filter (objectClass=groupOfNames)

8 The user filter (objectclass=inetorgperson)

9 roleMembershipAttributes uniqueMember

10 userRoleMembershipAttributes

11 groupMembershipAttributes member

12 userGroupMembershipAttributes

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

http://svn.apache.org/viewcvs.cgi/portals/jetspeed-2/trunk/components/security/etc/security-spi-ldap.xml?content-type=text/plain&view=co

1.7 LDAP CONFIGURATION

39

Index Name Example

13 groupMembershipForRoleAttributes uniqgueMember

14 roleGroupMembershipForRoleAttributes

15 defaultSearchBase

16 roleFilterBase ou=Roles,ou=0rgUnitl

17 groupFilterBase ou=Groups,ou=0rgUnitl
18 userFilterBase ou=People,ou=0rgUnitl
19 roleObjectClasses top,groupOfUniqueNames
20 groupObjectClasses top,groupOfNames

21 userObjectClasses top,person,organizationalPerson,inetorgperson
22 roleldAttribute cn

23 groupldAttribute cn

24 userldAttribute uid

25 UidAttribute uid

26 MemberShipSearchScope 1

27 roleUidAttribute cn

28 groupUidAttribute cn

29 userUidAttribute uid

30 roleObjectRequiredAttributeClasses uniqgueMember

31 groupObjectRequiredAttributeClasses member

32 userAttributes sn={u},cn={u}

33 roleAttributes sn={u}

34 groupAttributes sn={u}

35 userPasswordAttribute passWord

36 knownAttributes cn,sn,o,uid,ou,objectClass,userPassword,member,uniqueMember,men

Configuring Jetspeed 2 to Use LDAP

Configuring jetspeed for LDAP usage is simply a matter of having the proper configuration files in place.
These configuration files are to be placed in the WEB- | NF/ assenbl y folder of the expanded jetspeed

WAR.

The following files need to be copied into that directory if you want to connect Jetspeed2 to an LDAP

server.

o security-spi-ldap.scml : Provides the configuration information for LDAP binding, explained in detail

below.

©1999 APACHE SOFTWARE FOUNDATION

« ALL RIGHTS RESERVED

http://svn.apache.org/viewcvs.cgi/portals/jetspeed-2/trunk/components/security/etc/security-spi-ldap.xml?content-type=text/plain&view=co

1.7 LDAP CONFIGURATION 40

o security-spi-ldap-atn.xml : Provides the SPI configuration for authentication. It replaces the default
implementations of the CredentialHandler and UserSecurityHandler with an LDAP specific
implementation.

o security-spi-ldap-atz.xml : Provides the SPI configuration for authorization. It replaces the default
implementations of the RoleSecurityHandler, GroupSecurityHandler and SecurityMappingHandler with an
LDAP specific implementation.

The default authentication and authorization SPI configurations (the files called
security-spi-atn. xm andsecurity-spi-atz.xm)need to be removed from that assembly
directory.

In the Jetspeed source tree the examples ldap configuration files can be found in:

${j et speed- sour ce- hone}/ conponent s/ security/etc/

If your application is deployed in Tomcat, the target assembly directory is located at:

${tontat - hone}/ webapps/ j et speed/ VEB- | NF/ assenbl y/

Furthermore, the source tree of the Jetspeed security component provides several tests using different
configurations as well as 1diff sample data for testing the ApacheDS, OpenLDAP, Domino and sunDS
LDARP servers. These are located at:

${| et speed- sour ce- hone}/ conponent s/ security/src/test/JETSPEED | NF/ di rectory/ confi g/

We'll discuss the security-spi-ldap.xml file in detail below.

LDAP Connection properties

One of the first Jetspeed needs to know is how it to connect to the directory store.
This is done by providing the following properties:
i nitial ContextFactory
The initial context factory
<constructor-arg index="0">

<val ue>com sun. j ndi . | dap. LdapCt xFact or y</ val ue>
</ constructor-arg>

| dapSer ver Nane

The name of the LDAP server

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

http://svn.apache.org/viewcvs.cgi/portals/jetspeed-2/trunk/components/security/etc/security-spi-ldap-atn.xml?content-type=text/plain&view=co
http://svn.apache.org/viewcvs.cgi/portals/jetspeed-2/trunk/components/security/etc/security-spi-ldap-atz.xml?content-type=text/plain&view=co

1.7 LDAP CONFIGURATION

<constructor-arg index="1">
<val ue>| ocal host </ val ue>
</ constructor-arg>

| dapSer ver Port
The port of the LDAP server
<constructor-arg index="2">

<val ue>389</ val ue>
</ constructor-arg>

r oot Cont ext

The root context of the LDAP server

<constructor-arg index="3">
<val ue>o=sevenSeas</ val ue>
</ constructor-arg>

r oot Dn

The username

<constructor-arg i ndex="4">
<val ue>ui d=adm n, ou=syst enx/ val ue>
</ constructor-arg>

r oot Passwor d

The password

<constructor-arg index="5">
<val ue>secr et </ val ue>
</ constructor-arg>

Validate the connection using an LDAP browser:

LDAP Object Filters

A directory service can store any type of object anywhere. As Jetspeed needs to work with roles, groups
and users that are defined within the directory, it needs some help in finding them.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 42

The following 3 properties define how Jetspeed will lookup Roles, Groups and Users from the directory
store.

¢ RoleFilter
* GroupFilter
e UserFilter

Property values must be valid objectClassses that are defined in the LDAP schema.

Most LDAP vendors usually expose their schema through an LDIF file that defines every attribute and
objectclass available in the directory store.

A configuration based on Lotus Domino might look like this

Rol eFi | t er =(& obj ect cl ass=gr oupOf Uni queNanes) (! (obj ect G ass=dom noG oup)))
GroupFi | t er =(obj ect cl ass=dom noG oup)
User Fi |l t er=(obj ect cl ass=dom noPer son)

Domino uses the dominoGroup objectClass to define a group, dominoPerson to define a user, and
groupOfUniqueNames to define a role. Since group also has the groupOfUniqueNames as an object
class, we need to define a filter for the roles, so that it will only pick up roles. If we had defined the
RoleFilter as being (objectclass=groupOfUniqueNames), then the filter would have also picked up the
groups.

Rol eFil ter

This property tells Jetspeed that roles can be recognized by looking for an objectClass attribute with
value groupOfUniqueNames.

<constructor-arg index="6">
<val ue>=(obj ect cl ass=gr oupO Uni queNanes) </ val ue>
</ constructor-arg>

G oupFil ter

This property tells Jetspeed that groups can be recognized by looking for an objectClass attribute with
value groupOfNames.

<constructor-arg index="7">
<val ue>=(obj ect cl ass=gr oupO Uni queNanes) </ val ue>
</ constructor-arg>

UserFilter

This property tells Jetspeed that users can be recognized by looking for an objectClass attribute with
value organizationalPerson.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 43

<constructor-arg index="8">
<val ue>=(obj ect cl ass= organi zat i onal Per son) </ val ue>
</ constructor-arg>

Alongside these filters, we can also define a filter base for each of those objects (roles, groups and users).

Group/Role membership

In LDAP there are basically 2 ways to define group & role membership (the fact that a user belongs to a
group or a role):

* The user object has an attribute that specifies the groups he is a member of. This is usually done
through a memberOf attribute. Microsoft Active Directory and Sun Directory Server use the
memberOf and nsrole attribute on the user object.

* The group/role object contains the group membership information via a multi-valued attribute. No
attributes are put on the user to specify membership. Each group/role object has a member list that
contains the users belonging to the group

Jetspeed supports both models.
The primary tasks concerning membership of an LDAP are

* Determining if a user is part of a particular group/role
* Obtain a list of users belonging to a particular group/role

The 2 models we just covered have an impact on how these tasks are performed

* Attributes on user object
* Determining if a user is part of a particular group/role:

* lookup the membership attribute (ex: memberOf) on the user object for a particular
group/role

* Obtain a list of users belonging to a particular group/role:

* iterate over the all users, and check their memberOf attribute values for the group

* Attributes on group/role object
* To determine if a user is part of a particular group:

* search the member list on the group for the user

* To determine the users belonging to a particular group:

* iterate over the member list on the group

We'll now discuss in detail how group/role membership can be configured.

Role membership

As already discussed, Jetspeed supports 2 models when it comes to Role membership:

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 44

1. Putting the attributes on the user

2. Putting the attributes on the role

Jetspeed requires that 1 of 2 properties is set with a value to determine the model:

* RoleMembershipAttributes
* UserRoleMembershipAttributes
Rol eMerber shi pAttri but es

In order to store role membership on the role, we’ll set the RoleMembershipAttributes attribute by
specifying the attribute on the role object that contains the membership information. We don’t provide a
value for the UserRoleMembershipAttributes property.

<constructor-arg index="9">
<val ue>nmenber </ val ue>
</ constructor-arg>

This will make sure that the member attribute is set on the role object, as can be seen in the following
screenshot. In the next example, the RoleMembershipAttribute will be blank, so the attributes will be on
the user level.

In the screenshot below, we have a Role object defined by
cn=Role3,ou=Roles,ou=0rgUnitl,o=sevenSeas

The role contains a member attribute, listing all users belonging to that role.
A role with 2 members

The value of the member attribute is the fully qualified DN of the user (including the root context). As
you can see, the user doesn't contain any attributes with regards to role membership.

A user

When this attribute is set, Jetspeed will determine the roles for a particular user by performing the
following query:

(& nmenber =cn=user 1, ou=peopl e, ou=or guni t 1, o=sevenSeas) (obj ect cl ass=gr oupOX Nanes))

This search filter will return any number of Roles in the directory. The next step for Jetspeed is to
identifiy these roles internally. In order to uniquely identify a role, it will use the RoleIdAttribute.

In the example above, cn=Rolel would have been amongst the searchresult. Jetspeed will use the
RoleldAttribute to pickup the role name.

User Rol eMenber shi pAttri butes

In order to store role membership on the user, we’ll set the UserRoleMembershipAttributes attribute
by specifying the attribute on the user object that contains the membership information. We don’t
provide a value for the RoleMembershipAttributes property.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 45

<constructor-arg index="10">
<val ue>menber Of </ val ue>
</ constructor-arg>

This will make sure that for each role the user belongs to, the memberOf attribute is set on the user
object, as can be seen in the following screenshot:

User belonging to 4 different roles

The value of the memberOf attribute is the fully qualified DN of the role (including the root context). It
is 2 multi valued attribute, so a user can have zero or more memberOf attribute values.

As you can see, the user belongs to a role defined by
cn=rolel,ou=Roles,OrgUnitl,o=sevenSeas.

In order to resolve role membership, Jetspeed will search the directory for roles by using the following
filter:

define the filters needed to search for rol es/groups/users
Rol eFi | t er =(obj ect cl ass=gr oupOf Uni queNanes)

As you can see in the screenshot, cn=rolel,0=sevenSeas corresponds to an object representing a role.

Notice the empty uniqueMember attribute. Most LDAP schemas force you to have a uniqueMember
attribute on a groupOfUniqueNames object. Since Jetspeed needs to be able to create roles (that are
empty upon creation), an empty uniqueMember attribute needs to be set. This is configurable by
Jetspeed through the RequiredAttributeClasses property.

A role without any members

Group membership
As already discussed, Jetspeed supports 2 models when it comes to Group membership:
1. Putting the attributes on the user
2. Putting the attributes on the group
Jetspeed requires that 1 of 2 properties is set with a value to determine the model:
* GroupMembershipAttributes
* UserGroupMembershipAttributes
GroupMenber shi pAttri butes

In order to store group membership on the group, we'll set the GroupMembershipAttributes attribute
by specifying the attribute on the group object that contains the membership information. We don’t
provide a value for the UserGroupMembershipAttributes property.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 46

<constructor-arg i ndex="11">
<val ue>uni queMenber </ val ue>
</ constructor-arg>

This will make sure that the uniqueMember attribute is set on the group object, as can be seen in the
following screenshot. In the previous example, the GroupMembershipAttributes was blank, so instead
the UserGroupMembershipAttributes was used on the user level:

The value of the uniquemember attribute is the fully qualified DN of the user (including the root
context). As you can see, the user doesn’t contain any attributes with regards to group membership.
User G- oupMenber shi pAttri butes

In order to store group membership on the user, we’ll set the UserGroupMembershipAttributes
attribute by specifying the attribute on the user object that contains the membership information. We
don’t provide a value for the GroupMembershipAttributes property.

<constructor-arg index="12">
<val ue>menber O </ val ue>
</ constructor-arg>

This will make sure that the memberOf attribute is set on the user object, as can be seen in the following
screenshot.

Only one of those parameters can be filled in. If the GroupMemberShipAttributes is set, Jetspeed
assumes that the attribute to determine group membership is on the group object.

User belonging to 2 different roles

The value of the memberOf attribute is the fully qualified DN of the role (including the root context). It
is 2 multi valued attribute, so a user can have zero or more memberOf attribute values. In the screenshot
above, we can see that user] belongs to 2 roles.

As you can see, the role is defined in cn=rolel,o=sevenSeas. (notice the empty uniqueMember
attribute).

Role definition

Group membership (roles)
Besides storing users in a group, Jetspeed also supports storing roles into groups.

Again, just like with the basic group membership for users, Jetspeed supports 2 models when it comes to
Group membership for roles:

1. Putting the attributes on the role

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 47

2. Putting the attributes on the group

Jetspeed requires that 1 of 2 properties is set with a value to determine the model:

* GroupMembershipForRoleAttributes
* RoleGroupMembershipForRoleAttributes
GroupMenber shi pFor Rol eAttri but es

In order to store group membership on the group, we’ll set the GroupMembershipAttributes attribute by
specifying the attribute on the group object that contains the membership information. We don’t provide
a value for the UserGroupMembershipAttributes property.

<constructor-arg index="13">
<val ue>uni queMenber </ val ue>
</ constructor-arg>

This will make sure that the uniqueMember attribute is set on the group object, as can be seen in the
following screenshot. In the previous example, the GroupMembershipAttributes was blank, so instead
the UserGroupMembershipAttributes was used on the user level.

The value of the uniquemember attribute is the fully qualified DN of the user (including the root
context). As you can see, the user doesn’t contain any attributes with regards to group membership.
Rol eGr oupMenber shi pFor Rol eAttri but es

In order to store group membership on the user, we’ll set the UserGroupMembershipAttributes
attribute by specifying the attribute on the user object that contains the membership information. We
don’t provide a value for the GroupMembershipAttributes property.

<constructor-arg index="14">
<val ue>menber O </ val ue>
</ constructor-arg>

This will make sure that the memberOf attribute is set on the user object, as can be seen in the following
screenshot.

The value of the uniquemember attribute is the fully qualified DN of the user (including the root
context). As you can see, the user doesn’t contain any attributes with regards to group membership.

Only one of those parameters can be filled in. If the GroupMemberShipAttributes is set, Jetspeed
assumes that the attribute to determine group membership is on the group object.
User belonging to 2 different roles

The value of the memberOf attribute is the fully qualified DN of the role (including the root context). It
is 2 multi valued attribute, so a user can have zero or more memberOf attribute values. In the screenshot

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 48

above, we can see that user] belongs to 2 roles.

As you can see, the role is defined in cn=rolel,o=sevenSeas. (notice the empty uniqueMember
attribute).

Role definition

DefaultSearchBase

Jetspeed allows you to define a default search base that will be used to search the directory

<constructor-arg i ndex="15">
<val ue></val ue>
</ constructor-arg>

LDAP Object Filter base
Jetspeed allows you to define the search base that will be applied to queries for roles, groups and users.
Roles, groups and user are typically stored in well-defined containers within the LDAP structure.

* Roles can be stored in ou=Roles,ou=0OrgUnitl
* Groups can be stored in ou=Groups,ou=0OrgUnitl
* Users can be stored in ou=People,ou=OrgUnitl

This allows you to have the following structure in your LDAP schema. Notice how there are many
organizational units within the o=sevenSeas schema. Jetspeed will limit its search scope on the LDAP to
the property values defined above. This means that only roles, groups and people within OrgUnit1 will be
used by Jetspeed.

So, together with the object filers (RoleFilter, GroupFilter, UserFilter), Jetspeed will be able to locate the

roles, groups and users within the directory.

Using these properties, Jetspeed will also create roles, groups and users using the provided ObjectClasses.

Rol eFi | t er Base

Using the property value below, Jetspeed will search for roles in the ou=Roles,ou=0OrgUnit subtree.
<constructor-arg index="16">

<val ue>ou=Rol es, ou=Or gUni t 1</ val ue>
</ constructor-arg>

G oupFi | t er Base

Using the property value above, Jetspeed will search for groups in the ou=Groups,ou=OrgUnit subtree.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 49

<constructor-arg index="17">
<val ue>ou=G oups, ou=Or gUni t 1</ val ue>
</ constructor-arg>

User Fi | t er Base

Using the property value above, Jetspeed will search for users in the ou=People,ou=OrgUnit subtree.

<constructor-arg index="18">
<val ue>ou=Peopl e, ou=Or gUni t 1</ val ue>
</ constructor-arg>

LDAP Object classes

Jetspeed allows you to define the ObjectClasses that are needed to create roles, groups and users through
the following properties

* RoleObjectClasses
* GroupObjectClasses
* UserObjectClasses

Through the administrative interface, Jetspeed allows an administrator to create roles, groups and users.
Each directory server has its own way of defining a role, group or user. Some of the LDAP vendors use
proprietary ObjectClasses to define these objects (for example Domino LDAP server uses an
dominoGroup objectClass to define a group).

Using these properties, Jetspeed will create roles, groups and users using the provided ObjectClasses.

Rol eCbj ect Cl asses

<constructor-arg i ndex="19">
<val ue>t op, gr oupOf Nanes</ val ue>
</ constructor-arg>

Using the settings above, roles will be created like this

Notice how all of the objectClasses defined by the RoleObjectClasses attribute have been created in the
LDAP

Groupnj ect Cl asses

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 50

<constructor-arg i ndex="20">
<val ue>t op, gr oupOF Uni queNanes</ val ue>
</ constructor-arg>

Using the settings above, groups will be created like this

Notice how all of the objectClasses defined by the GroupObjectClasses attribute have been created in the
LDAP

User Cbj ect Cl asses

<constructor-arg index="21">
<val ue>t op, gr oupOf Uni queNanes</ val ue>
</ constructor-arg>

Using the settings above users will be created like this

Notice how all of the objectClasses defined by the UserObjectClasses attribute have been created in the
LDAP

Naming Attributes

¢ RoleldAttribute
* GroupldAttribute
e UserldAttribute

The attributes above allow you to define the naming attribute for roles / groups and users. When an
object is created in the directory, a naming attribute needs to be specified. The naming attribute is the
attribute that uniquely defines the object within its subdirectory.

In the screenshot below, you can see that the admin user in OrgUnitl /People is defined by cn=admin.
cn is the naming attribute for the user object, as no 2 admin users can exist in the OrgUnitl/People

subdirectory

By changing the property, you can control the way Jetspeed creates user objects.

Rol el dAttri bute

<constructor-arg index="22">
<val ue>cn</val ue>
</ constructor-arg>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 51

Groupl dAttri bute

<constructor-arg index="23">
<val ue>cn</val ue>
</ constructor-arg>

User | dAttri bute

<constructor-arg index="24">
<val ue>ui d</ val ue>
</ constructor-arg>

In the screenshot below, users have the uid attribute as their naming attribute

Userld Attribute

When Jetspeed attempts to find a user, it does so based on the userld provided by the user in the login
screen. This userld needs to be defined on the object through a specific attribute. Most LDAP servers
have a uid attribute that defines the username of the user in the LDAP.

When Jetspeed builds a userPrincipal internally, it will use the attribute corresponding to the value of the
userUidAttribute.

user Ui dAttri bute

<constructor-arg index="25">
<val ue>cn</val ue>
</ constructor-arg>

This property is used in conjunction with the UidAttribute

User | dAttri but e=cn
Ui dAttri bute=uid

membershipSearchScope

Jetspeed allows you to customize the search scope when it comes to membership

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 52

<constructor-arg index="26">
<val ue>cn</val ue>
</ constructor-arg>

RequiredAttributeClasses

Some ObjectClasses force you to add specific attributes on the object before storing it in the directory.
Jetspeed allows you to specify these attributes for roles and groups through the following properties

* roleObjectRequiredAttributeClasses
* roleObjectRequiredAttributeClasses

For example, most LDAP schemas force you to have a uniqueMember attribute on a
groupOfUniqueNames object.

Since Jetspeed needs to be able to create empty roles through the administrative console, an empty
uniqueMember attribute needs to be set upon role creation.

This is handled internally by Jetspeed and can be customized by setting the
groupObjectRequiredAttributeClasses property.

rol eCbj ect Requi redAttri buted asses

The following property specifies that if a role is created, an empty member attribute will be created on
the role object in order to comply with the LDAP schema.

<constructor-arg index="30">
<val ue>nmenber </ val ue>
</ constructor-arg>

gr oupChj ect Requi redAttri but eC asses

The following property specifies that if a group is created, an empty uniqueMember attribute will be
created on the group object in order to comply with the LDAP schema.

<constructor-arg index="31">
<val ue>uni queMenber </ val ue>
</ constructor-arg>

LDAP Object attributes

Jetspeed has an administrative console that allows an administrator to create groups, roles and users in
the directory. The Jetspeed LDAP configuration has 3 properties that can manipulate the creation of

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 53

those objects

* userAttributes

* roleAttributes

* groupAttributes
Each property accepts a comma separated list of attributes. Placeholders can be used in the attribute
value.

userAttri butes

For example, the following userAttributes value will make sure that when Jetspeed creates a user in the
directory, the sn, cn and uid attribute will be created containing the username of the user.

<constructor-arg index="32">
<val ue>sn={u}, cn={u} </ val ue>
</ constructor-arg>

roleAttri butes

For example, the following roleAttributes value will make sure that when Jetspeed creates a user in the
directory, the cn attribute will be created containing the username of the user.

<constructor-arg i ndex="33">
<val ue>cn={u} </ val ue>
</ constructor-arg>

groupAttri butes

For example, the following groupAttributes value will make sure that when Jetspeed creates a user in the
directory, the cn attribute will be created containing the username of the user.

<constructor-arg index="34">
<val ue>cn={u} </ val ue>
</ constructor-arg>

LDAP Password attributes

During runtime, Jetspeed needs to read the password that is associated with a user. Jetspeed needs to
know the attribute on the user object that contains the password. The userPasswordAttribute property
defines the LDAP attribute that contains the password of the user

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

1.7 LDAP CONFIGURATION 54

<constructor-arg i ndex="35">
<val ue>cn={u} </ val ue>
</ constructor-arg>

Known Attributes

When Jetspeed performs LDAP queries, we need to specify the set of attributes that we want to return.
This is done by specifying a comma separated value of LDAP attributes in the knowAttributes property

<constructor-arg index="36">
<val ue>cn, sn, o, ui d, ou, obj ect C ass, user Passwor d, menber, uni queMenber, menber O </ val ue>
</ constructor-arg>

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

2.1 TASKS 55

Tasks
Currently this is just a listing of tasks.

¢ Remove unused classes.

©1999 APACHE SOFTWARE FOUNDATION « ALL RIGHTS RESERVED

