UIMA Version 3 User's Guide

Written and maintained by the Apache
UIMA™ Development Community

Version 3.0.0-alpha02

Copyright © 2006, 2017 The Apache Software Foundation
Copyright © 2004, 2006 | nternational Business Machines Corporation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date March, 2017

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

@Y= VT 1
L1 WS NBW o 1
1.2, JaVAa B IS TEQUITEHcoeiiiiiiiiiiiiiiii e 4

2. Backwards CompatiDilityeeiiiiiiiiiiii e 5
2.1. JCas and NON-JCas APIScooiiiiiiii 5
2.2, Serfdization TOMMS ..o 5

2.2.1. Delta CAS Version 2 Binary deserialization not supportedcccoeevvvvnnnnn. 5
2.3. APIsfor creating and modifying Feature StruCtUreSovvveeviveeeiiiiiee e 5
A o N = U o] o 0] P 6
2.5, LOSHING() <o eeeeeeeeeeee e 6
2.6. Logging configuration is somewhat differentcccoooeeiiiiiiiiiin e 7
2.7. TYpe SYSteM SNAING ...oeeeiieeeiee e e e e e e 7
2.8. Some checks Moved t0 NBLIVE JAVAeveeiiiiiiiiiiiiieiiieieieeeeeeeee e eeeeeeees 7
2.9. Some class hierarchies have been modifiedooooviviiiiiiiii e, 7

3 NEW/EXIENAEd APIS ... 9
3.1. JCas additional static fieldSccoviiiiiiiiii 9
N = V7= R S AT 0105 o = o TSP 9

3.2.1. Built-in UIMA Arrays and Lists integration with Java8...........cccccoooveevrnennns 9
3.3. UIMA FSIterators improVEMENESiiiieeieeeiiiiiie s e e e eeeeestiis s s e e e e s eeeasnn s s e e eeeeeannnns 9
G T Y S ot AN = 10
3.5. New custom Java objects in the CAS frameworkccoovvvviiiiiiinieeeiicec e 10
3.6. BUIt-IN [ISIS @NA @TAYS «.eevvveiiiei e e e e e e 10

3.6.1. Built-in lists and arrays have common super classes/ interfaces.................... 10
3.7. Annotation comparator MELhOUScoieeiiiiiiiiii e 11
3.8. REOIrganiZeEd APIS ... oo 11
e RO 10 T= ol 0= o L= 11

A, SEIECE TrAMEBWOTK ... et e e e e e e e e e e et e e e e et s e e e eataeaaens 13
4.1. Select's use of the builder Patterneeiii i 13
4.2. SOUrces Of FEAtUre SIIUCLUIESccoee i 13

4.2.1. Use of Type in SElection Of SOUMCESccvuviiiiiiiieeieeiiiicis e 15
4.2.2. Sources and geNEriC tYPING «...eeeveeerernnieeeeeieeeitieas s e e e reeeeeinan e e e e eeeeeernnnnns 15
4.3. Selection and Orderingccoviiiiiiiiii e e e e e e e e e eaaaae 16
4.3.1. BOOIEAN PIrOPEITIES ...ttt e aeaeeees 17
4.3.2. Configuration fOr @ny SOUICEcccevieeiiiiisieeeeeeeeeiiin e e e e e e eeerern e e eeeeeees 17
4.3.3. Configuration for any iINAEXccoveuuiiiiiiiieeiececee e e e 17
4.3.4. Configuration for sort-ordered iNEXESccvvvvviiiiiiiiiiiiiiiiiiiiiiiiiieeee 18
4.3.5. Bounded sub-selection within an Annotation INdexccceeeeeeieiiiiieiennns 18
4.3.6. Variations in Bounded sub-selection within an Annotation Index 19
4.3.7. Defaults for bounded SElECESuuvuiuiiiiiiiiiiiiiiiiiiiiiiiiae 20
4.3.8. FOIOWING OF PreCediNgcuuuuiiieieiiiiiiiiiin et e et eeaeeeees 20
4.4. Terminal FOrmM aCtionSoooiiiiiiiii 20
R L (= = (0] £ PP 21
A.4.2. AIrayS NG LiSES covvuriiiiiiiie it e e aeae 21
443, SINGIE TTEBMS ... e et e e e 22
AAA, SITEAIMSeiiieeeeeeeeit e e e e e ettt e e e e e e e e e e b a e e e e e e eees bbb s e e e e e eeesbrnnaaeaaeaeas 22

07 NI = Y= @ o] = o 23
5.1, TUtOrial €XaMPIE ..o e e e e e e eean 23
5.2. SeMi-bBUIE-IN UIMA TYPES coeviiiiiii e et e ettt e e e e e e s e e e e e e e aaanaa e s 26

I B YN - Y = PPN 26
5.2 2, INTEGEIATTAYLISE ©evveniii et e e e e e e e e eaeees 26
B.2.3. FSHASNSEAL ...ttt 26

UIMA Version 3 User's Guide iii

UIMA Version 3 User's Guide

LT BT o o T o = 1= S 27

L 1o o 1 oo [T 29
6.1. LOgging LEVEIS .coooeiiiiiiii 29

6.2, CONLEXE DELA ... eeeeeeeeiiiei e e e e e e e e e e e e e e e eenne 29

6.3. Markers used in UIMA Java Core 10ggingcccovvuuruiiiieeeeeeeiiiissseeeeeeeeniinnnseeees 30

6.4. Defaults and Configurationooooiiii i 30
6.4.1. Throttling logging from ANNOLALOIScoveeeiieeiiiiiee e 31
AT = g To (o Y RPN 33
7.1. Migrating: the big PICtUreoooiiiiiiiiiiiiie 33

7.2 HOW TO MIQIAEE ..o 33

7.3. Migrating JCas ClaSSESuuuuiieeeiiieeiiiiiie s e e e ettt e e e e e et s e e e e e e eeeantneeeaeeeennes 33
7.3.1. Running the migration t00]ccuuuiiiiiiieeii e 34

7.3.2. Understanding the rePOrtSocevuieiiiiieeeieeeiie et 35

I T - 1 o] =P 37

7.4. Consuming V3 Maven artifaCtSuvveiiiiiiiiieeei e 38

8. PEAR SUPPOIT ...ttt ettt ettt e et e et e e et e e e 39
8.1, JCAS ISSUBS ...tttk 39

8.2. CUStOM JAVA ODJECLS ... eeieieeiiiiiee e e e e e e e e e e e e e e e e e e eeaenaaas 40

Q. MIGIatioN @IS ... 41
0.1, PropertieS Table ...cooeeeiiiiie e aaaaeae 41

UIMA Version 3 User's Guide UIMA Version 3.0.0-alpha02

Chapter 1. Overview of UIMA Version 3

UIMA Version 3 adds significant new functionality for the Java SDK, while remaining backward
compatible with Version 2. Much of this new function is enabled by a shift in the internal details of
how Feature Structures are represented. In Version 3, these are represented internally as ordinary
Java objects, and subject to garbage collection.

In contrast, version 2 stored Feature Structure datain special internal arrays of
i nt s and other datatypes. Any Java object representation of Feature Structuresin
version 2 was merely forwarding references to these internal data representations.

If JCasis being used in an application, the JCas classes must be migrated, but this can often be
done automatically. In Version 3, the JCas classes ending in"_Type" are no longer used, and the
main JCas class definitions are much simplified.

If an application doesn't use JCas classes, then nothing need be done for
migration. Otherwise, the JCas classes can be migrated in severa ways.

generating during build
If the project is built by Maven, it's possible the JCas classes are built from
the type descriptions, using UIMA's Maven JCasGen plugin. If so, you can
just rebuild the project; the JCasGen plugin for V3 generates the new JCas
classes.

running the migration utility
Thisisthe recommended way if you can't regenerate the classes from the type
descriptions.

This does the work of migrating and produces new versions of the JCas
classes, which need to replace the existing ones. It allows complex existing
JCas classes to migrated, perhaps with developer assistance as heeded. Once
done, the application has no migration startup cost.

The migration tool is capable of using existing source or compiled JCas
classes as input, and can migrate classes contained within Jars or PEARS.

regenerating the JCas classes using the JCasGen tool
The JCasGen tool (available as a Eclipse or Maven plugin, or a stand-alone
application) generates Version 3 JCas classes from the XML descriptors.

Thisis perfectly adequate for migrating non-customized JCas classes. When
run from the UIMA Eclipse plugin for editing XML component descriptors,

it will attempt to merge customizations with generated code. However, its
approach is not as comprehensive as the migration tool, which parses the Java
source code.

Migration of JCas classesisthefirst step needed to start using UIMA version 3. See the later
chapter on migration for details on using the migration tool.

1.1. What's new in UIMA Java SDK version 3

The major improvementsin version 3 include:

Overview 1

What's new

Support for arbitrary Java objects, transportablein the CAS
Support is added to allow users to define additional UIMA Types whose JCas implementation
may include Java objects, with serialization and deserialization performed using normal CAS
transportable data. A following chapter on Custom Java Objects describes this new facility.

New UIMA semi-built-in types, built using the custom Java object support
The new support that allows custom serialization of arbitrary Java objects so they can be
transported in the CAS (above) is used to implement several new semi-built-in UIMA types.

FSArrayList
aJavaArrayList of Feature Structures. The JCas class implementsthe List API.

Integer ArrayList
avariable length int array. Supports OfInt iterators.

FSHashSet
a Java HashSet containing Feature Structures. This JCas class implements the Set API.

Select framework for accessing Feature Structures
A new select framework provides a concise way to work with Feature Structure data stored
in the CAS or other collections. It is integrated with the Java 8 stream framework, while
providing additional capabilities supported by UIMA, such as the ability to move both
forwards and backwards while iterating, moving to specific positions, and doing various kinds
of specialized Annotation selection such as working with Annotations spanned by another
annotation.

This user's guide has a chapter devoted to this new framework.

Elimination of ConcurrentM odificationException while iterating over UIMA indexes
The index and iteration mechanisms are improved; it is now allowed to modify the indexes
while iterating over them (the iteration will be unaffected by the modification).

Note that the automatic index corruption avoidance introduced in more recent versions of
UIMA could be automatically removing Feature Structures from indexes and adding them
back, if the user was updating some Feature of a Feature Structure that was part of an index
specification for inclusion or ordering purposes.

In version 2, you would accomplish this using a two pass scheme: Pass 1
would iterate and merely collect the Feature Structures to be updated into
aJava collection of some kind. Pass 2 would use a plain Javaiterator over
that collection and modify the Feature Structures and/or the UIMA indexes.
Thisisno longer needed in version 3; UIMA iterators use a copy-on-write
technique to alow index updating, while doing whatever minimal copying is
needed to continue iteration over the original index.

L ogging updated
The UIMA logger is afacade that can be hooked up at deploy time to one of several logging
backends. It has been extended to implement all of the Logger API calls provided in the SLF4j
Logger interface, and has been changed to use SLF4j asits back-end. SLF4j, in turn, requires
alogging back-end which it determines by examining what's available in the classpath, at
deploy time. This design allows UIMA to be more easily embedded in other systems which
have their own logging frameworks.

Modern loggers support MDC/NDC and Markers; these are supported now via the slf4j facade.
UIMA itself is extended to use these to provide contexts around logging.

Overview UIMA Version 3.0.0-alpha02

What's new

See the following chapter on logging for details.

Automatic gar bage collection of unreferenced Feature Structures
This allows creating of temporary Feature Structures, and automatically reclaiming space
resources when they are no longer needed. In version 2, space was reclaimed only when a CAS
was reset at the end of processing.

better performance
Theinterna design details have been extensively reworked to align with recent trends in
computer hardware over the last 10-15 years. In particular, space and time tradeoffs are
adjusted in favor of using more memory for better |ocality-of-reference, which improves
performance. In addition, the many internal a gorithms (such as managing Feature Structure
indexes) have been improved.

Type system implementations are reused where possible, reducing the footprint in many
scaled-out cases.

Backwar ds compatible
Version 3 isintended to be binary backwards compatible - the goal is that you should be
able to run existing applications without recompiling them, except for the need to migrate or
regenerate any User supplied JCas Classes. Utilities are provided to help do the necessary JCas
migration mostly automatically.

Integration with Java 8
Version 3 requires Java 8 as the minimum level. Some of version 3's new facilities, such asthe
sel ect framework for accessing Feature Structures from CASs or other collections, integrate
with the new Java 8 language constructs, such as St r eans and Spl i t er at or s.

Just to give asmall taste of the kinds of things Java 8 integration provides, here's an example of
using the new sel ect framework, where the task is to compute
* aSet of al the found types
¢ inaUIMA index
¢ under some top-most type "MyType"
¢ occurring as Annotations within a particular bounding Annotation
« that are nonOverlapping

Here is the Java code using the new sel ect framework together with Java 8 streaming functions:

Set <Type> foundTypes =
nyl ndex. sel ect (MyType. cl ass)
. cover edBy(nyBoundi ngAnnot at i on)
. nonOver | appi ng()
.map(fs -> fs.getType())
.col lect(Collectors.toCol |l ection(TreeSet::new));

Another example: to collect, by category, the average length of the annotations having that
category. Here we assume that My Ty pe isan Annot at i on and that it has afeature called
cat egor y which returns a String denoting the category:

Map<String, Doubl e> freqByCategory =
nmyl ndex. sel ect (MyType. cl ass)
.col l ect(Collectors
. groupi ngBy(MyType: : get Cat egory,
Col | ectors. aver agi ngDoubl e(f ->
(doubl e) (f.getEnd() - f.getBegin()))));

UIMA Version 3.0.0-apha02 Overview 3

Java8isrequired

1.2. Java 8 is required

The UIMA Java SDK Version 3 requires Java 8 or later.

4 Overview UIMA Version 3.0.0-alpha02

Chapter 2. Backwards Compatibility

Because users have made substantial investment in developing applications using the UIMA
framework, agoal isto protect thisinvestment, by enabling Annotators and applications devel oped
under previous versions to be able to be used in subsequent versions of the framework.

To thisend, version 3 is designed to be backwards compatible, except for needing a new set of JCas
classes (if these were previously being used). The creation of this new set of JCas classes is mostly
automated viaamigration tool that handles converting the existing JCas classes, described in a later
chapter.

2.1. JCas and non-JCas APIs

The JCas class changes include no longer needing or using the Xyz_Type sister classes for each
main JCas class. User code is unlikely to access these sister classes. The JCas API method to access
this sister class now throws a UnsupportedOperation exception.

New internal-use methods and fields have been added to the JCas classes. The names for these have
been carefully designed to reduce the likelihood of collision with previously existing user code
names; the usual technique is to start the names with aleading underscore character. Users should
consider these methods as internal use and subject to change with new rel eases.

The non-JCas Java cover classes for the built-in UIMA types remain, for backwards compatibility.
So, if you have code that casts a Feature Structure instance to Annotationimpl (a now deprecated
version 2 non-JCas Java cover class), that will continue to work.

2.2. Serialization forms

The backwards compatibility extends to the serialized forms, so that it should be possible to have a
UIMA-AS services working with aclient, where the client is a version 3 instance, but the server is
still aversion 2 (or vice versa).

2.2.1. Delta CAS Version 2 Binary deserialization not
supported

The binary seriaization forms, including Compressed Binary Form 4, build an internal model of
thev2 CASin order to be able to deserialize v2 generated versions. For delta CAS, this model
cannot be accurately built, because version 3 excludes from the model al unreachable Feature
Structures, so in most cases it won't match the version 2 layout.

Version 3 will throw an exception if delta CAS deserialization of aversion 2 delta CASis
attempted.

2.3. APIs for creating and modifying Feature
Structures

There are 3 sets of APIsfor creating and modifying Feature Structures; all are supported in V3.
» Using the JCas classes
» Using the normal CAS interface with Type and Feature objects
» Using thelow level CAS interface with int codes for Types and Features

Backwards Compatibility 5

PEAR support

Version 3retains al 3 sets, to enable backward compatibility.

The low level CAS interface was originally provided to enable a extra-high-performance (but
without compile-time type safety checks) mode. In Version 3, thismode is actually somewhat
dlower than the others, and no longer has any advantages.

Using the low level CAS interface also sometimes blocks one of the new features of Version 3 -
namely, automatic garbage collection of unreachable Feature Structures. Thisis because creating
a Feature Structure using the low level API creates the Java object for that Feature Structure, but
returns an "int" handle to it. In order to be able to find the Feature Structure, given that int handle,
an entry is made in an internal map. This map holds a reference to this Feature Structure, which
prevents it from being garbage collected (until of coursse, the CASisreset).

The normal CAS APIs alow writing Annotators where the type system is unknown at compile
time; these are fully supported.

2.4. PEAR support

Pears are supported in Version 3. If they use JCas, their JCas classes need to be migrated.

When a PEAR contains a JCas class definition different from the surrounding non-PEAR context,
each Feature Structure instance within that PEAR has a lazily-created "dua" representation using
the PEAR's JCas class definition. The UIMA framework things storing references to Feature
Structures are modified to store the non-PEAR version of the Feature Structure, but to return
(when in a particular PEAR component in the pipeline) the dual version. Theintent isthat this be
"invisible" to the PEAR's annotators. Both of these representations share the same underlying CAS
data, so modifications to one are seen in the other.

If auser builds code that holds onto Feature Structure references, outside of annotators
(e.g., asashared External Resource), and sets and references these from both outside
and inside one (or more) PEARS, they should adopt a strategy of storing the non-
PEAR form. To get the non-PEAR form from a Feature Structure, use the method
nyFeat ur eStruct ure. _maybeGet BaseFor Pear Fs() .

Similarly, if code running in an Annotator within a PEAR wants to work

with a Feature Structure extracted from non-UIMA managed data outside of
annotators (e.g., such as a shared External Resource) where the form stored

is the non-PEAR form, you can convert to the PEAR form using the method
nmyFeat ureSt ruct ure. __maybeGet Pear Fs() . This method checks to see

if the processing context of the pipelineis currently within a PEAR, and if that
PEAR has adifferent definition for that JCas class, and if s, it returns that version
of the Feature Structure.

The new Java Object support does not support multiple, different JCas class definitions for the
same UIMA Type, inside and outside of the PEAR context. If thisis detected, a runtime exception
isthrown.

The workaround for thisis to manually merge any JCas class definitions for the same class.

2.5. toString()

The formatting of various UIMA artifacts, including Feature Structures, has changed somewhat,
to be more informative. This may impact situations such as testing, where the exact string
representations are being compared.

6 Backwards Compatibility UIMA Version 3.0.0-alpha02

Logging configuration is somewhat different

2.6. Logging configuration is somewhat different

The default logging configuration in v2 was to use Java Util Logging (the logger built into Java).
For v3, the default is to use SLF4J which, in turn, picks a back-end logger, depending on what it
findsin the class path.

This change was done to permit easier integration of UIMA asalibrary running within other
frameworks.

The technique for (optionally) reporting the class and method (and sometimes, line number) was
changed to conform to current logger conventions - whereby the loggers themselves obtain this
information from the call stack. The V2 calls which pass in the sourceClass and sourceMethod
information have this information ignored, but replaced with what the loggers obtain from the stack
track. In some cases, where the callers in V2 were not actually passing in the correct class/method
information, thiswill result in adifferent log record.

For more details, please see the logging chapter.

2.7. Type System sharing

Type System definitions are shared when they are equal. After type systems have been built up
from type definitions, and are committed, a check is made to seeif an identical type system aready
exists. Thisis often the case when a UIMA application is scaling up by adding multiple pipelines,
all using the same type system.

If anidentical type system is aready created, then the commit operation returns the already created
one, and the one just built is discarded. Normally, thisis not an issue. However, some application
code (for example, test cases) may construct type systems programmatically, and aong the way
save references to defined types and features. These references can then become invalid when the
type system is created and perhaps replaced with an already existing one.

Application code may code around this by re-acquiring references to type and feature objects, if the
type system instance object returned from conmi t isnot identical (==) to the one being committed.

2.8. Some checks moved to native Java

In the interest of performance, some duplicate checks, such as whether an array index iswithin
bounds, have been removed from UIMA when they are aready being checked by the underlying
Javaruntime. This has affected some of the internal APIs, such asthe JCasscheckAr r ayBounds
which was removed because it was no longer being used.

2.9. Some class hierarchies have been modified

The various JCas Classes implementing the built-ins for arrays have some additional interfaces
added, grouping them into CormonPri mi ti veArr ay or ConmonAr r ay. These changes are
internal, and should not affect users.

UIMA Version 3.0.0-apha02 Backwards Compatibility 7

Chapter 3. New and Extended APIs

3.1. JCas additional static fields

(Alsoin UIMA Version 2 after release 2.10.0) Static final string fields are declared for each JCas
cover class and for each feature that is part of that UIMA type. The fields look like this example,
taken from the Sofaclass:

public final static String _TypeNane = "org. apache. ui na.j cas. cas. Sof a";
public final static String _Feat Nane_sof aNum = "sof aNuni';

public final static String _Feat Nane_sofal D = "sofal D';

public final static String _Feat Nane_m meType = "m neType";

public final static String _FeatNane_sofaArray = "sofaArray";

public final static String _Feat Nane_sofaString = "sofaString";

public final static String _Feat Name_sof aURI = "sof aURI ";

Each string has a generated name corresponding to the name of the type or the feature, and a string
value constant which of the type or feature name. These can be useful in Java Annotations.

3.2. Java 8 integrations

Several of the the JCas cover classes provide additional integrations with Java 8 facilities.

3.2.1. Built-in UIMA Arrays and Lists integration with Java

8

Theiterator() methodsfor | nt eger Li st | ntegerArraylList, IntegerArray,

Doubl eArray, andLongArray returnanOf I nt / O Doubl e / O Long instances. These are a
subtype of I t er at or with an additional methods nextint / nextLong / nextDouble which avoid the
boxing of the normal iterator.

The built-in collection types support ast r ean() method returning a Stream or atype-specialized
sub interface of Stream for primitives (IntStream, LongStream, DoubleStream) over the objectsin
the collection.

The new sel ect framework supports stream operations; see the "select" chapter for details.

The UIMA Logger implementation has been extended with both the SLF4J logger APIs and the
Log4j APIswhich support Java 8's Suppl i er Functional Interfaces.

3.3. UIMA FSilterators improvements

To enable more seamless integration with popular Javaidioms, the UIMA iterators for iterating
over UIMA Indexes (the FSlterator interface) now implements the Java Listlterator Interface.

The iterators over indexes no longer throw concurrent modification exceptionsif theindex is
modified whileit is being iterated over. Instead, the iterators use a lazily-created copy-on-write
approach that, when some portion of the index is updated, prior to the update, copies the original
state of that portion, and continues to iterate over that. While thisis helpful if you are explicitly
modifying the indexes in aloop, it can be especially helpful when modifying Feature Structures
as you iterate, because the UIMA support for detecting and avoiding possible index corruption if

New/Extended APIs 9

New Select API

you modify some feature being used by some index as akey, is automatically (under the covers)
temporarily removing the Feature Structure from indexes, doing the modification, and then adding
it back.

Similarly to version 2, iterator methods noveToFi r st, noveTolLast, and
noveTo(a_positioning_Feature_ Structure) "reset" theiterator to be ableto "see" the
current state of the indexes. This corresponds to resetting the concurrent modification detection
sensing in version 2, when these methods are used.

Note that the phrase Concurrent Modification is being used here in a single threading context, to
mean that within a single thread, while an iterator is active, some modifications are being done to
the indexes. UIMA does not support multi-threaded write access to the CAS; it does support multi-
threaded read access to a set of CAS Views, concurrent with one thread having write access (to
different views).

3.4. New Select API

A versatile new Select framework for accessing and acting on Feature Structures selected from the
CAS or from Indexes or from other collection objects is documented in a separate chapter. This
APl isintegrated with Java 8's Stream facility.

3.5. New custom Java objects in the CAS
framework

Thereisanew framework that supports allowing you to add your own custom Java objects as
objects transportable in the CAS. The following chapter describes this facility, and some new semi-
built-in types that make use of it.

3.6. Built-in lists and arrays

A new set of static methods on UIMA built-in listsand arrays, cr eat e(j cas, array_sour ce)
is available; these take a Java array of items, and creates a corresponding UIMA built-in list or
array populated with items from the array_source.

For lists, new static methods get Enpt yLi st (JCas j cas) on each of the 4 kinds of built-in lists
(FS, Integer, Float, and String) retrieve a shared, common instance of the EmptyXxxList for a CAS.

For lists, anew push(i t en) APl on an existing list node creates a new non-empty node, sets
itshead toi t emand itstail to the existing list node. This allows easy construction of alistin
backwards order. Thereisaso apushNode() which just creates and links in a new node to the
front of the list. And finally, there'sacr eat eNonEnpt yNode() , which just creates a node of the
same type, in the same CAS, without linking it.

3.6.1. Built-in lists and arrays have common super
classes / interfaces

Some methods common to multiple implements were moved to the super classes, some classes
were made abstract (to prevent them from being instantiated, which would be an error). For arrays,
anew method common to all arrays, copyVal uesFr on() copiesvaluesfrom arrays of the same

type.

10

New/Extended APls UIMA Version 3.0.0-alpha02

Annotation comparator methods

3.7. Annotation comparator methods

The built-in type Annotation has 4 new methods to allow comparing two annotations.

Thefirst method (conpar eAnnot at i on) uses the standard annotation comparator (two

keys: begin (ascending) and end (descending)); types can be different. A second method
(conpar eAnnot at i on(ot her, |inear_type_order)) addsa3rd comparison, used if the
Annotations compare equal), which uses alinear_type order to compare the two types. Another
two methods extend these two methods with an additional key - the Annotation’'s ID, used only
if the previous comparsions are all equal. All of these return the standard Java compare result
allowing discrimination between equal, >, and <.

Here'sa summary, by compare arguments:

begin, end
compares using just the begin and end values, the types can be arbitrary

begin, end, type-order
adds ordering of the types based on the global linear type order

begin, end, fs.id()
like thefirst, but adds a compare of theidsif all else equa

begin, end, type-order, fs.id()
like the second, but adds a compare of theidsif all else equal

3.8. Reorganized APIs

Some APIs were reorganized. Some of the reorganizations include altering the super class and
implements hierarchies, making some classes abstract, making use of Java8's new def aul t
mechanisms to supply default implementations in interfaces, and moving methods to more common
places. Users of the non-internal UIMA APIs should not be affected by these reorganizations.

As an example, version 2 had two different Java objects representing particular Feature Structures,
such as"Annotation". One was used (or g. apache. ui na. j cas. t cas. Annot at i on) if the
JCas was enabled; the other (or g. apache. ui na. cas. i npl . Annot at i onl npl)otherwise. In
version 3, there's only one implementation; the other (Annotationlmpl) is converted to an interface.
Annotation now "implements Annotationimpl.

3.9. Other changes

The utility classor g. apache. ui ma. util . FileUtils hasanew methodwriteToFil e(path,
st ring), which efficiently writes astring using UTF-8 encoding to pat h.

Many error messages were changed or added, causing changes to localization classes. For coding
efficiency, some of the structure of theinternal error reporting calls was changed to make use of
Java's variable number of arguments syntax.

UIMA Version 3.0.0-apha02 New/Extended APls 11

Chapter 4. The select framework for working
with CAS data

The select framework provides a concise way to work with Feature Structure data stored in the
CAS. It isintegrated with the Java 8 stream framework, and provides additional capabilities
supported by the underlying UIMA framework, including the ability to move both forwards and
backwards while iterating, moving to specific positions, and doing various kinds of specialized
Annotation selection such as working with Annotations spanned by another annotation (think of a
Paragraph annotation, and the Sentences or Tokens within that).

There are 3 main parts to this framework:

* The source
 what to select, ordering
e what to do
Selection Terminal
Sources E—

and ordering e

Figure 4.1. Select - the big picture

These are described in code using a builder pattern to specify the many options and parameters.
Some of the very common parameters are also available as positional arguments in some contexts.
Most of the variations are defaulted so that in the common use cases, they may be omitted.

4.1. Select's use of the builder pattern

The various options and specifications are specified using the builder pattern. Each specification
has a name, which is a Java method name, sometimes having further parameters. These methods
return an instance of SelectFSs; thisinstance is updated by each builder method.

A common approach is to chain these methods together. When thisis done, each subsequent
method updates the SelectFSs instance. This means that the last method in case there are multiple
method calls specifying the same specification is the one that is used.

For example,

a_cas.select().typePriority(true).typePriority(false).typePriority(true)

would configure the select to be using typePriority (described later).

Some parameters are specified as positional parameters, for example, aUIMA Type, or astarting
position or shift-offset.

4.2. Sources of Feature Structures

Feature Structures are kept in the CAS, and may be accessed using UIMA Indexes. Note that not
all Feature Structuresin the CAS arein the UIMA indexes; only those that the user had "added to

Select framework 13

Sources of Feature Structures

the indexes" are. Feature Structures not in the indexes are not included when using the CAS as the
source for the select framework.

Feature Structures may, additionally, be kept in FSAr r ays, FSLi st s, and many additional
collection-style objects that implement Sel ect Vi aCopyToAr r ay interface. Thisinterfaceis
implemented by the new semi-built-in types FSAr r ayLi st and FSHashSet ; user-defined JCas
classes for user types may aso choose to implement this. All of these sources may be used with
sel ect.

Selection Terminal
Sources | and
ordering action
s
CAS Type:
\) - (omitted) xx.select()
B - Class xx.select(Token.class)
Index -uima_Type xx.select(token)
- JCas.type xx.select(Token.type)
FSArray - “name” xx.select(“pkg.Token")
Collections FSArrayList
(semi) FSList
built-in FSHashSe
I .
User-defined JCas
collections -

Figure 4.2. select method with type

For CAS sources, if Views are being used, there is a separate set of indexes per CAS view. When
there are multiple views, only one view's set of indexed Feature Structures is accessed - the view
implied by the CAS being used. Note that there is away to specify aggregating over al views; see
al | Vi ews described |ater.

For CAS sources, users may specify all Feature Structuresin aview, or restrict thisin two ways:
 gpecifying an index: Users may define their own indexes, in additional to the built in ones,
and then specify which index to use.
» gpecifying atype: Only Feature Structures of this type (or its subtypes) are included.

It is possible to specify both of these, using the form ny I ndex. sel ect (nyType) ; inthat case the
type must be the type or a subtype of the index's top most type.

If noindex is specified, the default is
» tousedl Feature Structuresin aCAS View, or
 touseall Feature Structuresin the view's Annotationindex, if the selection and ordering
specifications require an Annotationlndex.

Note that the non-CAS collection sources (e.g. the FSArray and FSList sources are considered
ordered, but non-sorted, and therefore cannot be used for an operations which require a sorted
order.

14

Select framework UIMA Version 3.0.0-alpha02

Use of Type in selection of sources

There are 4 kinds of sources of Feature Structures supported:
* aCASview: al the FSs that were added to the indexes for this view.
» an Index over a CASview. Note that the Annotationlndex is often implied by other sel ect
specifications, so it is often not necessary to supply this.
 Feature Structures from a (semi) built-in UIMA Collection instance, such as instances of the
typesFSArray, FSArraylist, FSHashSet, etc.

» Feature Structures from a user-defined UIMA Collection instance.

UIMA Collection sources have somewhat limited configurability, because they are considered non-
sorted, and therefore cannot be used for an operations which require a sorted order, such asthe
various bounding selections (e.g. cover edBy) or positioning operations (e.g. st art At).

Each of these sources has anew API method, sel ect (. . .), whichinitiates the select
specification. The select method can take an optional parameter, specifying the UIMA type to
return. If supplied, the type must must be the type or subtype of the index (if one is specified or
implied); it servesto further restrict the types selected beyond whatever the index (if specified) has
asitstop-most type.

4.2.1.

Use of Type in selection of sources

The optional type argument for sel ect (.. .) specifiesaUIMA type. Thisrestricts the Feature
Structures to just those of the specified type or any of its subtypes. If omitted, if anindex isused as
asource, its type specification is used; otherwise al types are included.

Type specifications may be specified in multiple ways. The best practice, if you have a JCas cover
class defined for the type, isto use the form MyJCasd ass. cl ass. This has the advantage of
setting the expected generic type of the select to that Javatype.

The type may also be specified by using the actual UIMA type instance (useful if not using the
JCas), using afully qualified type name as a string, or using the JCas class static t ype field.

4.2.2. Sources and generic typing

The select method results in a generically typed object, which is used to have subsequent operations
make use of the generic type, which may reduce the need for casting.

The generic type can come from arguments or from where avalue is being assigned, if that target
has a generic type. Thislatter sourceisonly partially available in Java, as it does not propagate past
thefirst object in achain of cals; this becomes a problem when using sel ect with generically
typed index variables.

Thereis also astatic version of the sel ect method which takes a generically typed index as an
argument.

UIMA Version 3.0.0-apha02 Select framework 15

Selection and Ordering

/1 this works
/1 the generic type for Token is passed as an argunent to sel ect
FSI t er at or <Token> token_it = cas. sel ect (Token.class).fslterator();

FSI ndex<Token> token_index = ... ; // generically typed

// this next fails because the

/| Token generic type fromthe index variable being assi gned

/1 doesn't get passed to the select()

FSl t er at or <Token> token_iterator = token_index.select().fslterator();

/1 You can overcone this in two ways
/1 pass in the type as an argunent to sel ect
/1 using the JCas cover type
FSIt er at or <Token> token_iterator =
t oken_i ndex. sel ect (Token. cl ass).fslterator();

/1 You can also use the static form of select
/1 to avoid repeating the type information
FSIt er at or <Token> token_iterator =

Sel ect FSs. sel ect (token_i ndex).fslterator();

/! Finally, you can also explicitly set the generic type
/1 that select() should use, like a special kind of type cast, like this:
FSIt er at or <Token> token_ iterator =

t oken_i ndex. <Token>sel ect().fslterator();

Note: the static sel ect method may be statically imported into code that uses it, to avoid
repeatedly qualifying thiswith its class, Sel ect FSs.

Any specification of an index may be further restricted to just a subType (including that subtype's
subtypes, if any) of that index's type. For example, an Annotationlndex may be specialized to just
Sentences (and their subtypes):

FSI t er at or <Token> token_iterator =
annot ati on_i ndex. sel ect (Token. cl ass).fslterator();

4.3. Selection and Ordering

There are four sets of sub-selection and ordering specifications, grouped by what they apply to:
« all sources
* Indexesor FSArrays or FSLists
* Ordered Indexes
» The Annotation Index

With some exceptions, configuration items to the left also apply to items on theright.

When the same configuration item is specified multiple times, the last one specified is the one that
is used.

16

Select framework UIMA Version 3.0.0-alpha02

Boolean properties

Selection Terminal
B . Form action
and ordering

Any index / A s S —
nnotationindex - Annotationindex Annotationindex
i Ordered Index o
collection subselect - variations follow / preceed
limit — ;
— unordered coveredBy typePriority following
nullOk covering ositionUsesType recedin,
startAt P P P &

at — nonOverlapping

between includeAnnotationsWithEndBeyondBounds
backwards

allviews useAnnotationEquals

Figure 4.3. Selection and Ordering

4.3.1. Boolean properties

Many configuration items specify aboolean property. These are named so the default (if you don't
specify them) is generally what is desired, and the specification of the method with null parameter
switches the property to the other (non-default) value.

For example, normally, when working with bounded limits within Annotation Indexes, type
priorities are ignored when computing the bound positions. Specifying typePriority() saysto use
type priorities.

Additionally, the boolean configuration methods have an optional form where they take a boolean
value; true sets the property. So, for example typePriority(true) is equivalent to typePriority(), and
typePriority(false) is equiva ent to omitting this configuration.

4.3.2. Configuration for any source
limit
alimit to the number of Feature Structures that will be produced or iterated over.
nullOk

changes the behavior for some termina_form actions, which would otherwise throw an
exception if anull result happened.

4.3.3. Configuration for any index

allViews
Normally, only Feature Structures belonging to the particular CAS view areincluded in the
selection. If you want, instead, to include Feature Structures from all views, you can specify
al |l Views().

When thisis specified, it acts as an aggregation of the underlying selections, one per view in
the CAS. The ordering among the views is arbitrary; the ordering within each view is the same

UIMA Version 3.0.0-apha02 Select framework 17

Configuration for sort-ordered indexes

asif this setting wasn't in force. Because of thisimplementation, the items in the selection may
not be unique -- Feature Structures in the underlying selections that are in multiple views will
appear multiple times.

4.3.4. Configuration for sort-ordered indexes

When an index is sort-ordered, there are additional capabilities that can be configured, in particular
positioning to particular Feature Structures, and running various iterations backwards.

order NotNeeded
relaxes any iteration by allowing it to proceed in an unordered manner. Specifying this may
improve performance in some cases. When thisis specified, the current implementation
skips the work of keeping multiple iterators for atype and all of its subtypesin the proper
synchronization.

StartAt
position the starting point of any iteration. st ar t At (xxx) takestwo forms, each of which has,
inturn 2 subforms. The form using begi n, end isonly valid for Annotation Indexes.

start At (fs); /1l fs specifies a feature structure
/1 indicating the starting position

startAt(fs, shifted); // same as above, but after positioning,

/1 shift to the right or left by the shift

/1 anmpbunt which can be positive or negative
/1 the next two forns are only valid for Annotationlndex sources
start At (begin, end); // start at the position indicated by begin/end
start At (begin, end, shifted) // same as above,

/1 but with a subsequent shift.
/'l which can be positive or negative

backwards
specifies a backwards order (from last to first position) for subsequent operations

4.3.5.

Bounded sub-selection within an Annotation Index

When selecting Annotations, frequently you may want to select only those which have arelation
to abounding Annotation. A commonly done selection isto select al Annotations (of a particular
type) within the span of another, bounding Annotation, such as al Tokens within aSent ence.

There are four varieties of sub-selection within an annotation index. They al are based on a
bounding Annotation (except the bet ween which is based on two bounding Annotations).

The bounding Annotations are specified using either a Annotation (or a subtype), or by specifying
the begin and end offsets that would be for the bounding Annotation.

Leaving aside bet ween as a specia case, the bounding Annotation'sbegi n and end (and
sometimes, itst ype) is used to specify where an iteration would start, where it would end, and
possibly, which Annotations within those bounds would be filtered out. There are many variations
possible; these are described in the next section.

The returned Annotations exclude the one(s) which are equal to the bounding FS. There are
several variations of how thisequal test is done, discussed in the next section.

18

Select framework UIMA Version 3.0.0-alpha02

Variations in Bounded sub-selection within an Annotation Index

coveredBy
iterates over Annotations within the bound

covering
iterates over Annotations that span (or are equal to) the bound.

at
iterates over Annotations that have the same span (i.e., begin and end) as the bound.

between
uses two Annotations, and returns Annotations that are in between the two bounds. If the
bounds are backwards, then they are automatically used in reverse order. The meaning of
between is that an included Annotation's begin has to be >= the earlier bound's end, and the
Annotation's end has to be <= the later bound's begi n.

4.3.6. Variations in Bounded sub-selection within an
Annotation Index

There are five variations you can specify. Two affect how the starting bound position is set;
the other three affect skipping of some Annotations while iterating. The defaults (summarized
following) are designed to fit the popular use cases.

typePriority
The default isto ignore type priorities when setting the starting position, and just use the
begin / end position to locate the left-most equal spot. If you want to respect type priorities,
specify this variant.

positionUsesType
When type priorities are not being used, Annotations with the same begin and end and type
will be together in the index. The starting position, when there are many Annotations which
might compare equal, isthe left-most (earliest) one of these. In this comparison for equality,
by default, thet ype of the bounding Annotation isignored; only its begin and end values are
used. If you want to include the type of the bounding Annotation in the equal comparison, set
thisto true.

nonOverlapping
Normally, all Annotations satisfying the bounds are returned. If thisis set, annotations whose
begi n position is not >= the previous annotation's (going forwards) end position are skipped.
Thisisaso called unambiguous iteration. If the iterator is run backwards, it isfirst run
forwards to locate all the items that would be in the forward iteration following the rules; and
then those are traversed backwards. This variant isignored for cover i ng selection.

includeAnnotationsWithEndBeyondBounds
The Subiterator strict configuration is equivalent to the opposite of this. This only applied to
the cover edBy selection; if specified, then any Annotations whose end position is> the end
position of the bounding Annotation are included; normally they are skipped.

useAnnotationEquals
While doing bounded iteration, if the Annotation being returned isidentical (has the same
_id()) with the bounding Annotation, it is always skipped.

When this variant is specified, in addition to that, any Annotation which has the same begin,
end, and (maybe) typeis also skipped. The posi ti onUsesType setting is used to specify
in this variant whether or not the type is included when doing the equals test. Note that
typePriority impliespositi onUsesType.

UIMA Version 3.0.0-apha02 Select framework 19

Defaults for bounded selects

4.3.7. Defaults for bounded selects

The ordinary core UIMA Subiterator implementation defaults to using type order as part of the
bounds determination. uimaFI T, in contrast, doesn't use type order, and sets bounds according to
the begin and end positions.

Thissel ect implementation mostly follows the uimaFI T approach by default, but provides the
above configuration settings to flexibly alter this to the user's preferences. For reference, here are
the default settings, with some comparisons to the defaults for Subi t er at or s:

typePriority
default: type priorites are not used when determining bounds in bounded selects. Subiterators,
in contrast, use type priorities.

positionUsesType
default: the type of the bounding Annotation isignored when determining bounds in bounded
selects; only its begin and end position are used

nonOverlapping
default: false; no Annotations are skipped because they overlap. This corresponds to the
"ambiguous’ mode in Subiterators.

includeAnnotationsWithEndBeyondBounds
default: (only appliesto cover edBy selections; The default isto skip Annotations whose end
position lies outside of the bounds; this corresponds to Subiterator's "strict" option.

useAnnotationEquals
default: only the single Annotation with the same _id() is skipped when doing sub selecting.
Use this setting to expand the set of skipped Annotations to include all those equal to the
bound's begin and end (and maybe, type, if positionUsesType or typePriority specified).

4.3.8. Following or Preceding

For an Annotation Index, you can specify all Feature Structures following or preceding a position.
The position can be specified either as a Feature Structure, or by using begin and end values. The
arguments are identical to those of the st ar t At specification, but are interpreted differently.

following
Position the iterator according to the argument, get that Annotation'send value, and then move
the iterator forwards until the Annotation at that position has its begin value >= to the saved
end value.

preceding
Position the iterator according to the argument, save that Annotation's begi n value, and
then move it backwards until the Annotation's (at that position) end valueis <= to the saved
begi nvalue.

The pr ecedi ng iteration skips annotations whose end values are > the saved begi n.

4.4. Terminal Form actions

After the sources and selection and ordering options have been specified, one terminal form action
may be specified. This can be an getting an iterator, array or list, or asingle value with various

20 Select framework UIMA Version 3.0.0-alpha02

Iterators

extra checks, or a Java stream. Specifying any stream operation (except limit) converts the object to
astream; from that point on, any stream operation may be used.

Selection Terminal
ordering Form actions

{ Iterators } {Arrays and} {Single items} Streams

Lists
(iterable) asArray get L Any/all
stream
lstharator asList single methods
iterator singleOrNull
spliterator

Figure 4.4. Select Terminal Form Actions

4.4.1. lterators

(Iterable)
The Sel ect FSs object directly implements| t er abl e, so it may be used in the extended Java
f or loop.

fslterator
returns a configured fslterator or sublterator. Thisiterator implementsLi st | t er at or aswell
(which, in turn, implements Javal t er at or). Modifications to the list using add or set are
not supported.

iterator
Thisisjust the plain Javaiterator, for convenience.

spliterator
This returns a spliterator, which can be marginally more efficient to use than a normal iterator.
It is configured to be sequential (not parallel), and has other characteristics set according to the
sources and selection/ordering configuration.

4.4.2. Arrays and Lists

asArray
This takes 1 argument, the class of the returned array type, which must be the type or subtype
of the select.

asList
Returns a Javalist, configured from the sources and selection and ordering specifications.

UIMA Version 3.0.0-apha02 Select framework 21

Single Items

4.4.3. Single Items

These methods return just a single item, according to the previously specified select configuration.
Variations may throw exceptions on empty or more than one item situations.

These have no-argument forms as well as argument formsidentical to st art At (see above). When
arguments are specified, they adjust the item returned by positioning within the index according to
the arguments.

Note: Positioning arguments with a Annotation or begin and end require an Annotation
Index. Positioning using a Feature Structure, by contrast, only require that the index being
use be sorted.

get
If no argument is specified, then returns the first item, or null. If nullOk(false) is configured,
then if the result is null, an exception will be thrown.

If any positioning arguments are specified, then this returns the item at that position unless
thereis noitem at that position, in which case it throws an exception unlessnul | Ok is set.

single
returns the item at the position, but throws exceptions if there are more than oneitemin the
selection, or if there are no itemsin the selection.

singleOr Null
returns the item at the position, but throws an exception if there are more than one item in the
selection.

4.4.4. Streams

any stream method
Select supports all the stream methods. The first occurance of a stream method converts the
select into astream, using spl i t er at or , and from then on, it behaves just like a stream
object.

For example, here's a somewhat contrived example: you could do the following to collect the
set of types appearing within some bounding annotation, when considered in nonOverlapping

style:

Set <Type> foundTypes =
/1 items of MyType or subtypes
nyl ndex. sel ect (MyType. cl ass)
. cover edBy(nyBoundi ngAnnot at i on)
. nonOver | appi ng()
.map(fs -> fs.get Type())
.col l ect(Collectors.toCol |l ection(TreeSet::new);

Or, to collect by category a set of frequency values:

Map<Cat egory, Integer> freqByCategory =
nyl ndex. sel ect (MyType. cl ass)
.col l ect(Coll ectors
. groupi ngBy(MyType: : get Cat egory,
Col | ect ors. sunm ngl nt (MyType: : getFreq)));

22

Select framework UIMA Version 3.0.0-alpha02

Chapter 5. Defining CAS-transported custom
Java objects

One of the goals of v3 isto support more of the Java collection framework within the CAS, to
enabl e users to conveniently build more complex models that could be transported by the CAS. For
example, a user might want to store a Java " Set" object, representing a set of Feature Structures. Or
auser might want to use an adjustable array, like Java's ArrayList.

With the current version 2 implementation of JCas, users already may add arbitrary Java objects to
their JCas class definitions as fiel ds, but these do not get transported with the CAS (for instance,
during serialization). Furthermore, in version 2, the actual JCas instance you get when accessing

a Feature Structure in some edge cases may be a fresh instance, losing any previously computed
value held as a Javafield. In contrast, each Feature Structure in a CAS is represented as the same
unique Java Object (because that's the only way a Feature Structure is stored).

Version 3 has anew a capability that enables converting arbitrary Java objects that might be part

of a JCas class definition, into "ordinary" CAS vaues that can be transported with the CAS. Thisis
done using a set of conventions which the framework follows, and which developers writing these
classes make use of; they include two kinds of marker Javainterfaces, and 2 methods that are called
when serializing and deserializing.

The marker interfaces identify those JCas classes which need these extra methods
called. The extra methods are methods implemented by the creator of these JCas
classes, which marshal/unmarshal CAS feature data to/from the Java Object this
classis supporting.

Storing the Java Object data as the value of anormal CAS Feature means that they get
"transported” in a portable way with the CAS - they can be saved to external storage and read back
in later, or sent to remote services, etc.

5.1. Tutorial example

Here's atutorial example on how to design and implement your own special Java object. For this
example, we'll imagine we need to implement a map from FeatureStructures to FeatureStructures.

CAS Java Objects 23

Tutorial example

* Decide on Java Object
Step 1 * Can be standard Java library class like a
P ConcurrentSkipListSet
* Can be custom user-defined class
Step 2 * Decide on CAS representation for the data in this object
Step 3 * Define the UIMA type with features for the CAS
P representation of the data
Step 4 * Run JCasGen to get the initial prototype for this class
* Mark the JCas class with a special interface
* Modify the JCas class: add an additional field representing
Step 5 the new Java Object
* Write 2 methods to transfer data to/from the object and
the CAS data
(optional) * Support Select
P * Implement SelectViaCopyToArray

Figure5.1. Creating a custom Java CAS-stored Object

Step 1 is deciding on the Java Object implementation to use. We can define a special class, but in
this case, welll just use the ordinary Java HashMap<TOP, TOP> for this.

Step 2 is deciding on the CAS Feature Structure representation of this. For this example, let's
design thisto represent the serialized form of the hashmap as 2 FSArrays, one for the keys, and one
for the values. We could also use just one array and intermingle the keys and values. It's up to the
designer of this new JCas class to decide how to do this.

Step 3is defining the UIMA Type for this. Let's call it FS2FSmap. It will have 2 Features: an
FSArray for the keys, and another FSArray for the values. Let's name those features "keys' and
"values'. Notice that there's no mention of the Java object in the UIMA Type definition.

Step 4 isto run JCasGen on this classto get an initial version of the class. Of course, it will be
missing the Java HashMap, but we'll add that in the next step.

Step 5: modify 3 aspects of the generated JCas class.

1. Mark the class with one of two interfaces:
e U naSerializable
e Ui naSerializabl eFSs

These identify this JCas class a heeding the calls to marshal/unmarshal the data to/from the
Java Object and the normal CAS data features. Use the second form if the dataincludes
any Feature Structure references. In our example, the data does include Feature Structure
references, soweaddi npl enent's Ui maSeri al i zabl eFSs to our JCas class.

2. Add the Java Object as afield to the class

CAS Java Objects UIMA Version 3.0.0-alpha02

Tutorial example

We'll define anew field:

final private Map<TOP, TOP> fs2fsMap = new HashMap<>();

3. Implement two methods to marshal/unmarshal the Java Object datato the CAS Data
Features

Now, we need to add the code that transl ates between the two UIMA Features "keys"

and "values' and the map, and vice-versa. We put this code into two methods, called
_init_fromcas_dataand_save_to_cas_dat a. These are special methods that are
part of this new framework extension; they are called by the framework at critical times
during deserialization and serialization. Their purpose is to encapsulate all that is needed to
convert from transportable normal CAS data, and the Java Object(s).

Inthisexample, the i nit _from cas_dat a method would iterate over the two
Features, together, and add each key value pair to the Java Object. Likewise, the
_save_t o_cas_dat a would first create two FSArray objects for the keys and values, and
then iterate over the hash map and extract these and set them into the key and value arrays.

public void _init_fromcas_data() {
FSArray keys = getKeys();
FSArray val ues = getVal ues();
fs2f sMap. cl ear () ;

for (int i = keys.size() - 1; i >=0; i--) {
f s2f sMap. put (keys. get (i), values.get(i));
}
}
public void _save to_cas_data() {
int i =0;

FSArray keys = new FSArray(this, fs2fsMap.size());
FSArray val ues = new FSArray(this, fs2fsMap.size());
for (Entry<TOP, TOP> entry : fs2fsMap.entrySet()) ({

keys.set (i, entry.getKey());

val ues. set (i, entry.getVal ues());

i ++;

}
set Keys(keys) ;
set Val ues(val ues) ;

Beyond this simple implementation, various optimization can be done. One typical oneis
to treat the use case where no updates were done as a special case (but one which might
occur frequently), and in that case having the _save to _cas data operation do nothing,
since the original CAS dataiis still valid.

One additiona "boilerplate’ method is required for all of these classes:
public FeatureStructurelnpl C _superdone() {return clone();}

For custom types which hold collections of Feature Structures, you can have those participate in the
Sel ect framework, by implementing the optional Interface Sel ect Vi aCopyToArr ay.

For more examples, please see the implementations of the semi-built-in classes described in the
following section.

UIMA Version 3.0.0-apha02 CAS Java Objects 25

semi-built-in UIMA Types

5.2. Additional semi-built-in UIMA Types for some
common Java Objects

Some additional semi-built-in UIMA types are defined in Version 3 using this new mechanism.
They work fully in Java, and are serialized or transported to non-Java frameworks as ordinary CAS
objects.

Semi-built-in means that the JCas cover classes for these are defined as part of the core Java
classes, but the types themselves are not "built-in". They may be added to any tyupe system by
importing them by name using the import statement:

<i nport name="org.apache. ui ma. sem builtins"/>

If you have a Java project whose classpath includes uimaj-core, and you run the Component
Descriptor Editor Eclipse plugin tool on a descriptor which includes a type system, you can
configure thisimport by selecting the Add on the Import type system subpanel, and import by
name, and selecting org.apache.uima.semibuiltins. (Note: thiswill not show up if your project
doesn't include uimaj-core on its build path.)

5.2.1.

FSArrayList

Thisislike the current FSArray, except that it implements the List APl and supports adding to the
array, with automatic resizing, like an ArrayList in Java. It isimplemented internally using a Java
ArrayList.

The CASdataform isheld in aplain FSArray feature.

Theequal s() method istrueif both FSArrayList objects have the same size, and contents are
equal item by item. The list of supported operations includes al of the operations of the Java

Li st interface. This object also includesthe sel ect methods, so it can be used as a source for the
sel ect framework.

5.2.2.

IntegerArrayList

Thisislike the current IntegerArray, except that it implements the List APl and supports adding to
the array, with automatic resizing, like an ArrayList in Java.

The CAS dataformisheld in aplain IntegerArray feature.

Theequal s() method istrueif both IntegerArrayList objects have the same size, and contents
areequal item by item. Thelist of supported operations includes a subset of the operations of

the JavalLi st interface, where certain values are changed to Java primitivei nt s. To support the

I t er abl e interface, thereisaversion of i t er at or () wherethe result is "boxed" into an Integer.
For efficiency, there's also a method intListlterator, which returns an instance of IntListlterator,
which permits iterating forwards and backwards, without boxing.

5.2.3.

FSHashSet

This type stores Feature Structuresin a HashSet, using whatever is defined as the Feature
Structuresequal s and hashcode.

26

CAS Java Objects UIMA Version 3.0.0-alpha02

Design for reuse

Y ou may customize the particular equals and hashcode by creating a wrapper
classthat is a subclass of the type of interest which forwards to the underlying
Feature Structure, but has its own definition of equal s and hashcode.

The CAS dataform isheld in an FSArray consisting of the members of the set.

5.3. Design for reuse

Whileit is possible to have a single custom JCas class implement multiple Java Objects, thisis
typically not agood design practice, asit reduces reusability. It is usually better to implement one

custom Java object per JCas class, with an associated UIMA type, and have that as the reusable
entity.

UIMA Version 3.0.0-apha02 CAS Java Objects 27

Chapter 6. Logging

V3 retains the existing V2 logging facade, for backwards compatibility. It has been augmented
by the methods available in the SLF4j Logger API, plusthe Java 8 enabled APIs from the Log4j
implementation that support the Suppl i er Functional Interface.

The implementation of this facade in V2 was the built-in-to-Javalogging framework. For V3, this
is changed to be the SLF4j facade. Thisis an open source, standard facade which allows deferring
until deployment time, the specific logging back end to use.

If, at initialization time, SLF4J gets configured to use a back end which is either the built-in Java
logger, or Log4j-2, then the UIMA logger implementation is switched to UIMA's implementation
of those APIs (bypassing SLF4j, for efficiency).

The SLF4j and other documentation (e.g., https.//logging.apache.org/logdj/2.x/10g4j-df4j-impl/
index.html for log4j-2) describe how to connect various logging back ends to SLF4j, by putting
logging back-end implementations into the classpath at run time. For example, to use the back end
logger built into Java, you would includethe sl f 4j - j dk14 Jar. This Jar isincluded in the UIMA
binary distribution, so that out-of-the-box, logging is available and configured the same as it was
for V2.

The Eclipse UIMA Runtime plugin bundle excludes the dlf4j api Jar and back ends, but will *hook
up" the needed implementations from other bundles.

6.1. Logging Levels

There are 2 logging level schemes, and there is a mapping between them. Either of them may be
used when using the UIMA logger. One of the schemesisthe original UIMA v2 level set, whichis
the same as the built-in-to-java logger levels. The other is the scheme adopted by SLF4J and many
of its back ends.

Log statements are "filtered" according to the logging configuration, by Level, and sometimes
by additional indicators, such as Markers. Levelswork in ahierarchy. A given level of filtering
passes that level and al higher levels. Some levels have two names, due to the way the different
logger back-ends name things. Most levels are also used as method names on the logger, to indicate
logging for that level. For example, you could say aLogger . | og(Level . | NFO, nessage)
but you can also say aLogger . i nf o(message)). The level ordering, highest to lowest, and the
associated method names are as follows:

» SEVERE or ERROR; error(...)

* WARN or WARNING; warn(...)
INFO; info(...)
CONFIG; info(UIMA_MARKER_CONFIG, ...)
FINE or DEBUG; debug(...)
FINER or TRACE; trace(...)
FINEST; trace(UIMA_MARKER_FINEST, ...)

The CONFIG and FINEST levels are merged with other levels, but distinguished by having
Mar ker s. If thefiltering is configured to pass CONFIG level, then it will passthe higher levels
(i.e., the INFO/WARN/ERROR or their aternative names WARNING/SEVERE) levels as well.

6.2. Context Data

Note: Not (yet) implemented; for planning purposes only.

Logging 29

https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/index.html
https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/index.html

Markers used in UIMA Java core logging

Context datais kept in SLF4j MDC and/or NDC maps, there is a separate map per thread. Some of
thisinformation is always updated, other is only recorded if the logger for the class has alevel set
to Tracing. The following table lists the keys and the values recorded in the contexts; these can be
retrieved by the logging layouts and included in log messages.

Because the keys for context data are global, the ones UIMA usesinternally are prefixed with

"uima ".
Key Name Description
uima_annotator the name of the annotator.
uima_root_context The root context corresponds to the pipeline being run. This could be be
nested.

6.3. Markers used in UIMA Java core logging

Note: Not (yet) implemented; for planning pur poses only.

Markers are used to group log calls associated with specific kinds of things together, so they can be
enabled/disabled as a group. The Marker can also be included in atrace record. The following table
lists the keys and a description of which logging they are associated with.

Marker Name Description of logging

Markersused to classify CONFIG and FINEST

org.apache.uima.config configuration log record

org.apache.uima.finest sub category of trace, corresponds to FINEST

Markers used to classify some tracing logging

uima_annotator for tracing when annotators are entered, exited
uima_flow_controller for tracing when flow controllers are computing
uima_feature_structure for tracing Feature Structure Creation and updating
uima_index for tracing when indexes are added to or removed from
uima_index_copy_on_write for tracing when an index part is copied, due to it being
updated while an iterator might be iterating.
uima_index_auto_rmv_add for tracing when index corruption avoidance done
uima_serialization deserialization for tracing when serialization or deserialization is done

6.4. Defaults and Configuration

By default, UIMA is configured so that the UIMA logger is hooked up to the SLF4j facade, which
may or may not have alogging back-end. If it doesn't, then any use of the UIMA logger will
produce one warning message stating that SLF4j has no back-end logger configured, and so no
logging will be done.

30 Logging UIMA Version 3.0.0-alpha02

Throttling logging from Annotators

When UIMA isrun as an embedded library in other applications, sif4j will use those other
application's logging frameworks.

Each logging back-end has its own way of being configured; please consult the proper back-end
documentation for details.

For backwards compatibility, the binary distribution of UIMA includes the sIf4j back-end which
hooks to the standard built-in Javalogging framework, so out-of-the-box, UIMA should be
configured and log by default as V2 did.

6.4.1. Throttling logging from Annotators

Sometimes, in production, you may find annotators are logging excessively, and you

wish to throttle this. But you may not have access to logging settings to control this,

perhaps because UIMA isrunning as a library component within another framework.

For this specia case, you can limit logging done by Annotators by passing an additional

parameter to the UIMA Framework's produceAnalysisEngine API, using the key name

Anal ysi sEngi ne. PARAM THROTTLE_EXCESSI VE_ANNOTATOR_LOGG NG and setting the value
to an Integer object equa to the the limit. Using 0 will suppress al logging. Any positive number
allows that many log records to be logged, per level. A limit of 10 would allow 10 Errors, 10
Warnings, etc. The limit is enforced separately, per logger instance.

Note: This only worksif the logger used by Annotators is obtained from the Annotator
base implementation class viathe get Logger () method.

UIMA Version 3.0.0-apha02 Logging 31

Chapter 7. Migrating to UIMA Version 3
7.1. Migrating: the big picture

Although UIMA V3 is designed to be backwards compatible with UIMA V2, there are some
migration steps needed. These fall into two broad use cases:

« if you have an existing UIMA pipeline/ application you wish to upgrade to use V3

« if you are"consuming" the Maven artifacts for the core SDK, as part of another project

7.2. How to migrate an existing UIMA pipeline to V3

UIMA V3 isdesigned to be binary compatible with existing UIMA V2 pipelines, so compiled and/
or JAR-ed up classes representing a V2 pipeline should run with UIMA v3, with two changes:
» Java8isrequired. (If you're already using Java 8, nothing need be done.)
» Any defined JCas cover classes must be migrated or regenerated, and used instead. (If you
do not define any JCas classes or don't use JCas in your pipeline, then nothing need be
done.)

Some Maven projects use the JCasGen maven plugin; these projects JCasGen maven plugin, if
switched to UIMA V3, automatically generate the V3 versions. For proper operation, please run
maven clean install; the clean operation ought to remove the previously generated JCas class,
including the UIMA V2 xxx_Type classes, which are not used, won't compilein V3 and need to be
deleted.

Y ou can use any of the methods of invoking JCasGen to generate the new V3 versions. If using the
Eclipse plugins (i.e., pushing the JCas Gen) button in the configuration editor, etc.), the V3 version
of the plugin must be the one installed into Eclipse.

If you have the source or class files, you can aso migrate those using the migration tool described
in this section. This approach is useful when you've customized the JCas class, and wish to
preserve those customizations, while converting the v2 style to the v3 style.

7.3. Migrating JCas classes

If you have customized JCasGen classes, these can be migrated by running the migration tool,
which is available as a stand-alone command line tool (r unV3mni gr at eJCas. sh or ...bat),or
as Eclipse launch configurations.

Thistool isrun against a directory tree, and scans all the filesin the tree, looking for JCas cover
classes. It can process either sourcefiles, or, if those are not available, compiled classfiles (it runs
adecompiler on these). It can process these inside directories, aswell asinside Jar or PEAR files
within those directories.

If you run thistool using a Java 8 JDK (as opposed to a Java JRE), the JDK's java compiler will be
used to create compiled versions of the migrated classes, and create copies of JARs and/or PEARS
with these in them.

The results of the migration include the migrated class files and a set of logs, summarized in the
console output, detailing anything that might need inspection to verify the migration was done
correctly.

Migrating to V3 33

Running the migration tool

If al is OK, the migration will say that it "finished with no unusual conditions”, at
the end.

To complete the migration, update your UIMA application to use these classes in place of the
version 2 JCas classes.

The migration tool is able to scan multiple directory trees, looking for existing Java source (.java)
or class (.class) files, even inside Jars and PEAR archives. If compiled classfiles are used as
input, a Java decompiler is used to decompile these to source. For PEARs and Jars, it replaces the
migrated and compiled classes in copies of the PEARS and Jars.

The actual migration step is a source-to-source transformation, done using a Java parse of the
source files. The partsin the source which are version 2 specific with the equivaent version 3 code.
Only those parts which need updating are modified; other code and comments which are part of the
source file are left unchanged. Thisisintended to preserve any user customization that may have
been done. Detailed reports detailing any issues encountered are written to log files.

Note: The compilation step (done after the source-to-source transformation) requires that a
Java compiler is available (which will be the case if you're running with a Java JDK, not a
JRE).

Note: After running thetooal, it isimportant to examining the console output and logs. Y ou
can confirm that the migration completed without any unusual conditions, or, if something
unusual was encountered, you can take corrective action.

7.3.1. Running the migration tool

Thetool can be run as a stand-alone command, using the launcher scriptsr unv3ami gr at eJCas;
there are two versions of this— one for windows (ending it ".bat") and one for linux / mac (ending
in".sh"). If you run this without any arguments, it will show a brief help for the arguments.

There are also a pair of Eclipse launch configurations (one for source files, the other for compiled
classes), which are available if you have the uimaj-examples project (included in the binary
distribution of UIMA) in your Eclipse workspace.

7.3.1.1. Using Eclipse to run the migration tool

There are two Eclipse launch configurations; one works with source code, the other with compiled
classes or Jars or PEARs. The launch configurations are named:

* UIMA Run V3 migrate JCas from sources roots

* UIMA Run V3 migrate JCas from classes roots
When running from classes roots, the classes must not have compile errors, and may contain Jars
and PEARs. Both launchers write their output to atemporary directory, whose nameis printed
in the Eclipse console log. This temporary directory may be defaulted, or specified as one of the
arguments.

To use the Eclipse launcher for source code,
« First select the eclipse project containing the source code to transform; this project's "build
path" will also supply the classpath used during migration.
* run the migrate-from-sources launcher.
Thiswill scan the directory tree of the project, looking for source files which are JCas files, and
migrate them. No existing files are modified; everything is written to the output directory (by
default, automatically assigned in temp space).

34 Migrating to V3 UIMA Version 3.0.0-alpha02

Understanding the reports

To use the launcher for compiled code,

* First select the eclipse project that provides the classpath that the compiled code used when
it was being built. Thisis required for proper "decompiling" of the classes and recompiling
the transformed results.

» Thelauncher will additionally prompt you for another directory which the migration tool
will use asthe top of atreeto scan for compiled Java JCas classes to be migrated.

7.3.1.2. Running from the command line

Command line: Specifying input sources
Input is specified using these arguments:

" -sour cesRoots"
alist of one or more directories, separated by the a path separator character (*;" for Windows,
":" for others).

Migrates each candidate source file found in any of the file tree roots, skipping over non-JCas
classes.

" -classesRoots"
alist of one or more directories containing class files or Jars or PEARS, separated by the a path
separator character (*;" for Windows, ":" for others).

Decompiles, then migrates each candidate class file found in any of the file tree roots (skipping
over non-JCas classes).

Command line: Specifying a classpath for the migration

A classpath is required for the proper operation of the decompiling and compiling steps of the
migration. Thisis provided using the argument - ni gr at eCl asspat h. The Eclipse launcher
"UIMA run V3 migrate JCas from classes roots" sets this argument using the selected Eclipse
project's classpath. When migrating within a PEAR, the migration tool automatically adds the
PEAR classes to the classpath.

7.3.1.3. Handling duplicate definitions

Sometimes, a classpath or directory tree may contain multiple instances of the same JCas class.
These might be identical, or they might be different versions. The migration utility detects this, and
migrates all non-identical instances, using a convention to store them in the output directory in a
manner where different versions can be conveniently compared using tooling such as Eclipse'sfile
compare.

When there are non-identical duplicate definitions, the user must manually
compare these and decide which version to use.

7.3.2. Understanding the reports

The output directory contains alogs directory with additional information. A summary is also
written to System.out.

Each file translated has both av2 source and av3 source. When theinput is".class’ files, the v2
source is the result of the decompilation step, prior to any migration.

UIMA Version 3.0.0-apha02 Migrating to V3 35

Understanding the reports

These are arranged in parallel directories, allowing Eclipse's multi-file directory
"compare" to work on both directory collections and conveniently show for all the
migrated files the change details.

In the case of non-identical duplicates, an increasing integer starting with 1 isinserted into the
output directory tree for each migrated class.

The overall directory output directory tree looks like:

Directory structure, starting at -outputDirectory
convert ed/
v2/
x/ylzljavapath/.../d assnane. j ava
x/yl z/javapath/.../Cl assnane.j ava

v3/
x/ylzljavapath/.../Cl assnane.java
x/ 'yl zljavapath/.../C assnane.java

1/ << for non identical duplicates
x/ylzljavapath/.../C assnane. j ava
x/ylz/javapath/.../C assnane. | ava

2/ << for non identical duplicates
x/ylzljavapath/.../Cl assnane.j ava
x/ylzljavapath/.../d assnane. j ava

v3-cl asses/

not - convert ed/
| ogs/
processed. t xt
failed.txt
ski ppedBui | ti ns. t xt
NonJCasFi | es. t xt
wor kar oundDi r . t xt
del et edCheckModi fi ed. t xt
manual | nspecti on. t xt
pear sFi | eUpdat es. t xt
j arsFi | eUpdat es. t xt
pear s/
Xyz_convert ed_pear. pear

jars/

The converted subtree holds all the sources and migrated versions that were successfully migrated.
The not-converted subtree hold the sources that failed in some way the migration. The logs contain
many kinds of entries for different issues encountered:

processed.txt
List of successfully processed classes

failed.txt
List of classesthat failed to migrate

36 Migrating to V3 UIMA Version 3.0.0-alpha02

Examples

skippedBuiltins.txt
List of classes representing built-ins that were skipped. These need manual inspection to see
how to merge with new v3 built-ins.

NonJCasFiles.txt
List of filesthat were thought to be JCas classes but upon further analysis appear to not be.
These need manual inspection to confirm.

deletedCheckM odified.txt
List of classwhere aversion 2 if statement doing the "featOKTst" was apparently modified.
In the migrated code, this statement was deleted, perhaps incorrectly. These need manual
inspection to confirm.

manuall nspection.txt
List of fileswhere the migration found a get or set method, where the version 2 code was
accessing a casFeatCode with the feature name not matching. These need manual inspection.

wor karoundDir .txt
When running conversions on awindows system for files from alinux system, sometimes there
isaclash caused by the fact that Windows doesn't recognize upper vs lower casein file names.
When this happens, an entry is logged here, and the conflicting name is suffixed witha"_c".

jarsFileUpdates.txt
List of Jar files and classes which were replace in them.

pear skileUpdates.txt
List of Pear files and classes which were replace in them.

7.3.3. Examples

Run the command line tool:

cd $U MA_HOVE

bi n/ runV3m gr at eJCas. sh
-m grat eCl asspath /hone/ ne/ nyproj/xyz.jar:$U MA HOVE/ | i b/ ui ma-core.jar
-cl assesRoots / hone/ ne/ nyproj/xyz.jar:/hone/ me/ myproj/target/cl asses

-outputDirectory /tenp/ m gratejcas

Run the Eclipse launcher:

First, make sure you've installed the V3 UIMA pluginsinto Eclipse!

Startup an Ecli pse wor kspace containing the project
with JCas source files to be m grated.

Sel ect the Java project with the JCas sources to be migrated.
Eclipse -> nenu -> Run -> Run configurations

Use the search box to find
"U MA run V3 migrate JCas from sources" |auncher.

Please read the console output summarization to see where the output went, and about any
conditions found during migration which need manual inspection and fixup.

UIMA Version 3.0.0-apha02 Migrating to V3 37

Consuming V3 Maven artifacts

7.4. Consuming V3 Maven artifacts

Projects may have tests which write to the UIMA log. Because V 3 switched to SLF4J as the default
logger, unless SLF4J can find an adapter to some back-end logger, it will issue a message and
substitute a"NO-OP" back-end logger. If your test cases depend on having the V2 default logger
(which was the one built into Java), you need to add a "test" dependency on the SLF4J-to-JDK 14

adapter to your POM. Here's the xml for that:

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-jdkld</artifactld>
<version>1.7.24</version> <!-- or sonme version you need -->
<scope>t est </ scope>

</ dependency>

38 Migrating to V3 UIMA Version 3.0.0-alpha02

Chapter 8. PEAR support

PEARSs continue to be supported in Version 3, with the same capabilities asin version 2. Here'sa
brief review.

PEARSs are both a packaging facility, and an isolation facility. The packaging facility allows
putting together into one PEAR file al the parts needed for a particular (reusable) UIMA pipeline,
including annotators and other data resources, and a classpath to use. PEARSs are loaded using
specia class loaders that load first from whatever classpath is specified by the PEAR; this serves
to isolate dependencies and insure that the PEAR makes use of whatever versions of classesit
depends on (and specifiesin its classpath).

PEARSs establish a boundary within a UIMA pipeline — annotator code is running either inside
aPEAR, or not. Note that PEARs cannot be nested. The CAS, flowing through apipeline, is
dynamically updated with the current PEAR context (if any).

8.1. JCas issues

JCas classes defining Javaimplementations for UIMA Types may be defined within a PEAR.
These are loaded using the isolating Classloader, just like all the other PEAR resources. As aresult,
this may cause someissuesif the same JCas classis a so defined outside the PEAR boundary, and
loaded with the normal UIMA classloader. The result of having the same JCas class both on the
PEAR classloader and outside that classloader will be that Java will have both classes |oaded, and
code within the PEAR will be linked with one of them, and code outside the PEAR will be linked
with the other.

Sometimes, thisis exactly what you might want. For example, you might have in the pear, a special
JCas definition of a UIMA type "Token" which the PEAR uses, while you might have another
JCas definition for that same UIMA type outside of the PEAR. Note that UIMA will always merge
Type definitions from inside and outside of PEARS, when it sets up apipeline - it merges all type
definitions found for the whole pipeline.

A consequence of having two loaded class definitions in two contexts for the same UIMA type
means that the classes have the same names, but are different (because of different loading
classloaders), and assigning one to the other in Javawill produce a ClassCast exception.

Othertimes, you may not want different classes. For instance, the class definitions might be
identical, and you want to create some "Token" annotations within the PEAR, and have them used
by JCas references outside of the PEAR.

In this case, the simplest thing to do isto install the PEAR, but then update its classpath so it no
longer includes the JCas classes that came with the PEAR. When classes are not found with the
specia PEAR class loader, that loader delegates to its parent, which isthe normal UIMA class
loader. This action will cause the PEAR to use the identically same JCas class within the PEAR
asisused outside of the PEAR, and no Class Cast Exception issues will arise. Thisisthe most
efficient way to run with PEARSs that use JCas classes where you want to share results inside and
outside of PEARSs.

Version 3 has special support for the case where there are different definitions of JCas classes
for the same UIMA type, inside and outside the PEAR. It does this using what are called PEAR
Trampolines. When there are multiple JCas definitions, the one defined outside of the PEAR is
the one stored internally in UIMA's indexes and types that have references to Feature Structures.
Accessing the Feature Structures checks (by asking the CAS) to seeif itsin a particular PEAR

PEAR support 39

Custom Java Objects

context (there may be several in one pipeline), and if so, atrampoline instance of the Feature
Structure is created / used / accessed. The trampoline instance sharesinternally the CAS data

with the base instance, but is a separate instance of the PEAR's JCas class definition. This allows
seamless access both inside and outside of the PEAR context to the particular JCas class definition
needed.

8.2. Custom Java Objects

Custom Java Objects may store references to Feature Structures. If it is desired to create these
inside a PEAR, and yet have the references work outside a PEAR, the implementor of these must
insure that the actual stored JCas class for a Feature Structure is the base version, not the PEAR
version, and also insure that any references are properly converted (while within a PEAR context).

Refer to the implementation of FSHashSet and FSAr r ayLi st to see what needs to be done to
make these " Pear aware".

40 PEAR support UIMA Version 3.0.0-alpha02

Chapter 9. Migration aids

To aid migration, some features of UIMA V3 which might cause migration difficulties can be
disabled. Users may initialy want to disable these, and get their pipelines working, and then over
time, re-enable these while fixing any issues that may come up, one feature at atime.

Global VM properties for UIMA V3 that control these are described in the table below.

9.1. Properties Table

This table describes the various VM defined properties; specify these on the Java command line
using -Dxxxxxx, where the xxxxxXx is one of the properties starting with ui ma. from the table

below.
Title Property Name & Description
Disable Type System | uima.disable typesystem_consolidation
consolidation

Default: equal Type Systems are consolidated.

When type systems are committed, the resulting Type System (Java
object) is considered read-only, and is compared to aready existing
Type Systems. Existing type systems, if found, are reused. Besides
saving storage, this can sometimes improve locality of reference, and
therefore, performance. Setting this property disables this consolidation.

Enable finding al
Feature Structures by
their int ID

uimaenable id_to feature structure map for_all fss
Default: normally created Feature Structures are not kept in a map.

Inversion 3, normally, Feature Structures are not added to the map used
by the Low Level CAS API to map from int ids to Feature Structures.
This has the benefit that no longer referenced Feature Structures may be
garbaged collected. This behavior may be overridden by this property.

Trading off runtime checksfor speed

Disabling runtime
feature validation

uima.uimadisable runtime feature validation

Once code is running correctly, you may remove this check for
performance reasons by setting this property.

Disabling runtime
feature value
validation

uimadisable runtime feature value validation

Default: features being set into FS features which are FSs are checked
for proper type subsumption.

Once code is running correctly, you may remove this check for
performance reasons by setting this property.

Migration aids 41

	UIMA Version 3 User's Guide
	Table of Contents
	Chapter 1. Overview of UIMA Version 3
	1.1. What's new in UIMA Java SDK version 3
	1.2. Java 8 is required

	Chapter 2. Backwards Compatibility
	2.1. JCas and non-JCas APIs
	2.2. Serialization forms
	2.2.1. Delta CAS Version 2 Binary deserialization not supported

	2.3. APIs for creating and modifying Feature Structures
	2.4. PEAR support
	2.5. toString()
	2.6. Logging configuration is somewhat different
	2.7. Type System sharing
	2.8. Some checks moved to native Java
	2.9. Some class hierarchies have been modified

	Chapter 3. New and Extended APIs
	3.1. JCas additional static fields
	3.2. Java 8 integrations
	3.2.1. Built-in UIMA Arrays and Lists integration with Java 8

	3.3. UIMA FSIterators improvements
	3.4. New Select API
	3.5. New custom Java objects in the CAS framework
	3.6. Built-in lists and arrays
	3.6.1. Built-in lists and arrays have common super classes / interfaces

	3.7. Annotation comparator methods
	3.8. Reorganized APIs
	3.9. Other changes

	Chapter 4. The select framework for working with CAS data
	4.1. Select's use of the builder pattern
	4.2. Sources of Feature Structures
	4.2.1. Use of Type in selection of sources
	4.2.2. Sources and generic typing

	4.3. Selection and Ordering
	4.3.1. Boolean properties
	4.3.2. Configuration for any source
	4.3.3. Configuration for any index
	4.3.4. Configuration for sort-ordered indexes
	4.3.5. Bounded sub-selection within an Annotation Index
	4.3.6. Variations in Bounded sub-selection within an Annotation Index
	4.3.7. Defaults for bounded selects
	4.3.8. Following or Preceding

	4.4. Terminal Form actions
	4.4.1. Iterators
	4.4.2. Arrays and Lists
	4.4.3. Single Items
	4.4.4. Streams

	Chapter 5. Defining CAS-transported custom Java objects
	5.1. Tutorial example
	5.2. Additional semi-built-in UIMA Types for some common Java Objects
	5.2.1. FSArrayList
	5.2.2. IntegerArrayList
	5.2.3. FSHashSet

	5.3. Design for reuse

	Chapter 6. Logging
	6.1. Logging Levels
	6.2. Context Data
	6.3. Markers used in UIMA Java core logging
	6.4. Defaults and Configuration
	6.4.1. Throttling logging from Annotators

	Chapter 7. Migrating to UIMA Version 3
	7.1. Migrating: the big picture
	7.2. How to migrate an existing UIMA pipeline to V3
	7.3. Migrating JCas classes
	7.3.1. Running the migration tool
	7.3.1.1. Using Eclipse to run the migration tool
	7.3.1.2. Running from the command line
	Command line: Specifying input sources
	Command line: Specifying a classpath for the migration

	7.3.1.3. Handling duplicate definitions

	7.3.2. Understanding the reports
	7.3.3. Examples

	7.4. Consuming V3 Maven artifacts

	Chapter 8. PEAR support
	8.1. JCas issues
	8.2. Custom Java Objects

	Chapter 9. Migration aids
	9.1. Properties Table

