Axiom Developer Guide

Axiom Developer Guide
1.2.15

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this
work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS |S' BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. Working with the AXiOm SOUICE COURcceuuuniiiiii ettt 1
Importing the Axiom source code iNt0 ECliPSEovvvveiiiiiii e 1

I 1o [P PP PP PTPPPPTP 1

Uit tESE OrgaNiZaHIONcevtieiiiii ettt et e e e e e e 1

Testing Axiom with different SLAX implementationsSooevvvviiniiiiinneiii e, 1

A B L= o | o RSP TUP PP 3
General design prinCipleS @and QOIScoeuuuuiiiiiii et 3
OSGi integration and separation between APl and implementationc.coeeveviiiiiiinneennnn. 3
Fg117oTo (8 oi (oo R TP U PP UPPPTTRSPPPN 3
REQUITEIMENTS ...ttt ettt ettt e e e et e nb e e e enanns 3

Analysis of the Geronimo JAXB bUNAIESuiiiiiiiiiieiiii e 6

NEW BDSITECE APIS ... 7

Common implementation ClaSSESuiiiiiiiiei e 8

Li f ecycl eManager design (AXiOM 1.3) ..coeeuuiiiiiiiie e 9
Issues with the Li f ecycl eManager APIin AXiomM 1.2.Xccooviiiiiiiinneiiiiineeeceiennn. 9

Cleanup strategy for temporary fileScoouiiiiiiiii e 10

3. REIBASE PIOCESS ...ttt ettt et et 12
REIEASE PIrEPAIGLIONu ittt ettt 12
PrEIEOUISITES ...ttt ettt ettt et e e 14
REIBASE ...ttt e et 14
POSE-TEIEASE @CHIOMNS ...ttt ettt e et 17
REFEIENCES ...t e et et e e e e 17

AL APPENTIX ettt et e e et e e e et eaeaba e aee 18
Installing IBM'S JDK 0N DEDIAN LINUX ...covvniiiiiiiieiiiii e e 18

List of Figures

3.1. Package dependencies for r944680
3.2. Package dependencies for r939984

Chapter 1. Working with the Axiom
source code

Importing the Axiom source code into Eclipse

In order to import the Axiom source code into Eclipse with the Maven Eclipse plugin, use the following
command:

nmvn - Dski pTest s=true -Ddownl oadSour ces=true install eclipse:eclipse

Testing

Unit test organization

Historically, al unit tests were placed in the axi om t est s project. One specific problem with thisis
that since all tests are in a common Maven module which depends on both axi om i npl and axi om
dom it is not rare to see DOOM tests that accidentally use the LLOM implementation (which is the
default). The project descriptioninaxi om t est s/ pom xmi indicates that it was the intention to split
the axi om t est s project into several parts and make them part of axi om api , axi om i npl and
axi om dom This reorganization is not complete yet®. For new test cases (or when refactoring existing
tests), the following guidelines should be applied:

1.

Teststhat validatethecodeinaxi om api andthat do not require an Axiom implementation to execute
should be placedinaxi om api . Thisprimarily appliesto teststhat validate utility classesinaxi omt

api .

. The code of unit tests that apply to all Axiom implementations and that check conformance to the

specifications of the Axiom API should be added to axi om api and executed in axi om i npl and
axi om dom Currently, the recommended way isto create a base classin axi om api (with suffix
Test Base) and to create subclasses in axi om i npl and axi om dom This makes sure that the
DOOM tests never accidentally use LLOM (because axi om i npl isnot a dependency of axi om

dom.

. Teststhat check integration with other libraries should beplacedinaxi om i nt egr at i on. Notethat

thisis the only module that requires Java 1.5 (so that e.g. integration with JAXB2 can be tested).

. Testsrelated to codeinaxi om api and requiring an Axiom implementation to execute, but that don't

fall into category 2 should stay inaxi om t est s.

Testing Axiom with different StAX implementations

The following StAX implementations are available to test compatibility with Axiom;

Woodstox

Thisisthe StAX implementation that Axiom uses by default.

Sun Java Streaming XML Parser (SISXP)

Thisimplementation is available as Maven artifact com sun. xnl . st r eam sj sxp: 1. 0. 1.

1See AXIOM-311 [https://issues.apache.org/jira/lbrowse/AXIOM-311].

https://issues.apache.org/jira/browse/AXIOM-311
https://issues.apache.org/jira/browse/AXIOM-311

Working with the Axiom source code

StAX Reference Implementation
The reference implementation was written by BEA and is available as Maven artifact
st ax: st ax: 1. 2. 0. The homepage is http://stax.codehaus.org/Home. Note that the JAR doesn't
contain the necessary files to enable service discovery. Geronimo's implementation of the StAX API
library will not be able to locate the reference implementation unless the following system properties
are set:

javax.xm . stream XM.| nput Fact ory=com bea. xm . st ream MXPar ser Fact ory
javax.xm . stream XM.CQut put Fact or y=com bea. xn . st r eam XM.Cut put Fact or yBase

XL XP-J
“XL XML Processor for Java’ isIBM'simplementation of StAX 1.0 and ispart of IBM's JRE/JDK V6.
Note that due to an agreement between IBM and Sun, IBM's Java implementation for the Windows
platform is not available as a separate download, but only bundled with another IBM product, e.g.
WebSphere Application Server for Devel opers|http://www.ibm.com/devel operworks/downl oads/ws/
wasdevel opers/].

On the other hand, the JDK for Linux can be downloaded as a separate package from the
developerWorks site [https://www.ibm.com/devel operworks/javaljdk/linux/download.html]. There
areversionsfor 32-bit x86 (“xSeries’) and 64-bit AMD. They are available as RPMs and tarballs. To
install the JDK properly on a Debian based system (including Ubuntu), follow the instructions given
in the section called “Installing IBM's JDK on Debian Linux”.

http://stax.codehaus.org/Home
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
https://www.ibm.com/developerworks/java/jdk/linux/download.html
https://www.ibm.com/developerworks/java/jdk/linux/download.html

Chapter 2. Design

General design principles and goals

Consistent serialization. Axiom supports multiple methods and APIs to serialize an object model

to XML or to transform it to another (non Axiom) representation. This includes serialization to byte or
character streams, transformation to StAX in push mode (i.e. writing to an XMLSt r eamW i t er) or pull
mode (i.e. reading from an XML St r eanReader), aswell astransformation to SAX. The representations
produced by these different methods should be consistent with each other. If a given use case can be
implemented using more than one of these methods, then the end result should be the same, whichever
method is chosen.

AXIOM-430 [https://issues.apache.org/jiralbrowse/AXIOM-430] provides an example where this
principle was not respected.

It should be noted that this principle can obviously only be respected within the limitsimposed by agiven
API. E.g. if agiven API haslimited support for DTDs, then a DOCT YPE declaration may be skipped when
that APl is used.

OSGi integration and separation between API
and implementation

Introduction

This section addresses two related architectural questions:

e OSGi support was originally introduced in Axiom 1.2.9, but the implementation had a couple of flaws.
This section discusses the rationale behind the new OSGi support introduced in Axiom 1.2.13.

» Axiom is designed as a set of abstract APIs for which two implementations are provided: LLOM and
DOOM. It is important to make a clear distinction between what is part of the public APl and what
should be considered implementation classes that must not be used by application code directly. This
asoimpliesthat Axiom must provide the necessary APIsto allow application code to access all features
without the need to access implementation classes directly. This section in particular discusses the
question how application code can request factories that support DOM without the need to refer directly
to DOOM.

Thesetwo questionsare closely related because OSGi allowsto enforce the distinction between public API
and implementation classes by carefully selecting the packages exported by the different bundles: only
classes belonging to the public API should be exported, while implementation classes should be private
to the bundles containing them. Thisin turn has implications for the packaging of these artifacts.

Requirements

Requirement 1. The Axiom artifacts SHOULD be usable both as norma JAR files and as OSGi
bundles.

0000000(: The aternative would be to produce two sets of artifacts during the build. This should be
/ avoided in order to keep the build process as simple as possible. It should also be noted that
l | the Geronimo Spec artifacts also meet this requirement.

https://issues.apache.org/jira/browse/AXIOM-430
https://issues.apache.org/jira/browse/AXIOM-430

Design

Requirement 2. All APIs defined by the axi om api module, and in particular the
OVAbst ract Fact or y API MUST continue to work as expected in an OSGi environment, so that code
in downstream projects doesn't need to be rewritten.

00000000, This requirement was aready satisfied by the OSGi support introduced in Axiom 1.2.9.
It therefore also ensures that the transition to the new OSGi support in Axiom 1.2.13 is
l | transparent for applications that already use Axiom in an OSGi container.

Requirement 3. OMAbstract Fact ory MUST select the same implementation regardless of
the type of container (OSGi or non OSGi). The only exception is related to the usage of system
properties to specify the default OMMet aFact or y implementation: in an OSGi environment, selecting
an implementation class using a system property is not meaningful.

Requirement 4. Only classes belonging to the public API should be exported by the OSGi bundles.
Implementation classes should not be exported. In particular, the bundles for the LLOM and DOOM
implementations MUST NOT export any packages. Thisisrequired to keep aclean separation between the
public API and implementation specific classes and to make sure that the implementati ons can be modified
without the risk of breaking existing code. An exception MAY be made for factory classes related to
foreign APIs, such asthe Docurrent Bui | der Fact or y implementation for an Axiom implementation
supporting DOM.

00000000, When the Axiom artifacts are used as normal JAR filesin a Maven build, this requirement
/ implies that they should be used in scoper unt i ne.
e

Although this requirement is easy to implement for the Axiom project, it requires changes
to downstreams project to make this actually work:

» Asexplained in AXIS2-4902 [https://issues.apache.org/jira/browse/ AX1S2-4902], there
used to be many places in Axis2 that still referred directly to Axiom implementation
classes. The same was true for Rampart and Sandesha?. This has now been fixed and all
three projectsuse axi om i npl and axi om domas dependenciesin scoper unt i ne.

» Abdera extends the LLOM implementation. Probably, some nmaven- shade- pl ugi n
magic will be required here to create Abdera OSGi bundles that work properly with the
Axiom bundles.

e For Spring Web Services this issue is addressed by SWS-822 [https//
jira.springsource.org/browse/SWS-822].

Requirement 5. It MUST be possible to use a non standard (third party) Axiom implementation as

a drop-in replacement for the standard LLOM and DOOM implementation, i.e. the axi om i npl and
axi om dombundles. It MUST be possibleto replaceaxi om i npl (resp. axi om don) by any Axiom
implementation that supportsthe full Axiom API (resp. that supports DOM in addition to the Axiom API),
without the need to change any application code.

00000000 This requirement has several important implications:

=4

[| * It restricts the allowable exceptions to Requirement 4.

It implies that there must be an API that allows application code to select an Axiom
implementation based on its capabilities (e.g. DOM support) without introducing a hard
dependency on a particular Axiom implementation.

* In accordance with Requirement 2 and Requirement 3 this requirement not only applies
to an OSGi environment, but extends to non OSGi environments as well.

4

https://issues.apache.org/jira/browse/AXIS2-4902
https://issues.apache.org/jira/browse/AXIS2-4902
https://jira.springsource.org/browse/SWS-822
https://jira.springsource.org/browse/SWS-822
https://jira.springsource.org/browse/SWS-822

Design

Requirement 6. The OSGi integration SHOULD remove the necessity for downstreams projects to
produce their own custom OSGi bundles for Axiom. There SHOULD be one and only one set of OSGi
bundles for Axiom, namely the ones released by the Axiom project.

0000000(: Currently there are at least two projects that create their own modified Axiom bundles:

=

L | » Apache Geronimo has a custom Axiom bundle to support the Axis2 integration.

e ServiceMix aso has a custom bundles for Axiom. However, this bundle only seem
to exist to support their own custom Abdera bundle, which is basically an incorrect
repackaging of the original Abdera code. See SMX4-877 [https://issues.apache.org/jiral
browse/SM X4-877] for more details.

Note that this requirement can't be satisfied directly by Axiom. It requires that the above
mentioned projects (Geronimo, Axis2 and Abdera) use Axiom in away that is compatible
with itsdesign, and in particular with Requirement 4. Neverthel ess, Axiom must provide the
necessary APIs and features to meet the needs of these projects.

Requirement 7. The Axiom OSGi integration SHOULD NOT rely on any particular OSGi framework
such as Felix SCR (Declarative Services). When deployed in an OSGi environment, Axiom should have
the same runtime dependencies asin anon OSGi environment (i.e. StAX, Activation and JavaMail).

0000000(- Axiom 1.2.12 relies on Felix SCR. Although there is no real issue with that, getting rid of

/ this extra dependency is seen as a nice to have. One of the reasons for using Felix SCR was

l | to avoid introducing OSGi specific codeinto Axiom. However, thereis no issue with having
such code, provided that Requirement 8 is satisfied.

Requirement 8. Inanon OSGi environment, Axiom MUST NOT haveany OSGi related dependencies.
That meansthat the OSGi integration must be written in such away that no OSGi specific classes are ever
loaded in anon OSGi environment.

Requirement 9. The OSGi integration MUST follow established best practices. [t SHOULD beinspired
by what has been done to add OSGi integration to APIs that have a similar structure as Axiom.

00000000, Axiom is designed around an abstract APl and allows for the existence of multiple
/ independent implementations. A factory (OMAbst ract Fact ory) is used to locate
l | and instantiate the desired implementation. This is similar to APIs such as JAXP
(Docurnent Bui | der Fact ory, etc.) and JAXB (JAXBCont ext). These APIshave been
successfully "OSGi-fied" e.g. by the Apache Geronimo project. Instead of reinventing the

wheel, we should leverage that work and adapt it to Axiom's specific requirements.

It should be noted that because of theway the Axiom API isdesigned and taking into account
Requirement 2, it is not possible to make Axiom entirely compatible with OSGi paradigms
(the same is true for JAXB). In an OSGi-only world, each Axiom implementation would
simply exposeitself asan OSGi service (of type OMVet aFact or y e.g.) and code depending
on Axiom would bind to one (or more) of these services depending on its needs. That is not
possible because it would conflict with Requirement 2.

Non-Requirement 1. APIs such as JAXP and JAXB have been designed from the start for inclusion
into the JRE. They need to support scenarios where an application bundles its own implementation
(e.g. an application may package a version of Apache Xerces, which would then be instantiated
by the newl nst ance method in Docunent Bui | der Fact ory). That implies that the selected
implementation depends on the thread context classloader. It is assumed that there is no such requirement
for Axiom, which meansthat in anon OSGi environment, the Axiom implementations are always loaded
from the same class loader asthe axi om api JAR.

https://issues.apache.org/jira/browse/SMX4-877
https://issues.apache.org/jira/browse/SMX4-877
https://issues.apache.org/jira/browse/SMX4-877

Design

00000000, This (non-)requirement is actually not directly relevant for the OSGi support, but it

/ nevertheless has some importance because of Requirement 3 (which implies that the

l | OSGi support needs to be designed in parallel with the implementation discovery strategy
applicablein anon OSGi environment).

Analysis of the Geronimo JAXB bundles

As noted in Requirement 9 the Apache Geronimo has successfully added OSGi support
to the JAXB APl which has a dtructure similar to the Axiom API. This section
briefly describes how this works. The anadysis refers to the following Geronimo
artifacts: or g. apache. ger oni no. specs: geroni no-j axb_2.2 spec:1.0.1 (caled the
"APl bundle" hereafter), or g. apache. geroni no. bundl es:jaxb-inpl:2.2.3-1_1 (the
"implementation bundle"), or g. apache. ger oni no. specs: geroni nb-o0sgi -l ocator: 1.0
(the "locator bundle") and or g. apache. ger oni no. specs: geroni nb-osgi -registry: 1.0
(the "registry bundle"):

e The implementation bundle retains the META- | NF/ ser vi ces/
j avax. xm . bi nd. JAXBCont ext resource from the origina artifact
(com sun. xnl . bi nd: j axb-i npl). In anon OSGi environment, that resource will be used to
discover the implementation, following the standard JDK 1.3 service discovery agorithm will (as
required by the JAXB specification). Thisisthe equivalent of our Requirement 1.

» The manifest of the implementation bundle has an attribute SPI - Pr ovi der: t r ue that indicates
that it contains provider implementations that are discovered using the JDK 1.3 service discovery.

» Theregistry bundle createsaBundl eTr acker that looksfor the SPI - Pr ovi der attributein active
bundles. For each bundle that has this attribute set to t r ue, it will scan the content of META- | NF/
servi ces and add the discovered services to aregistry (Note that the registry bundle supports other
ways to declare SPI providers, but thisis not really relevant for the present discussion).

* The Cont ext Fi nder class (the interface of which is defined by the JAXB specification and that is
used by the newl nst ance method in JAXBCont ext) in the API bundle delegates the discovery of
the SPI implementation to a static method of the Pr ovi der Locat or class defined by the locator
bundle (which is not specific to JAXB and is used by other API bundles as well). Thisis true both in
an OSGi environment and in anon OSGi environment.

The build is configured (using aPr i vat e- Package instruction) such that the classes of the locator
bundle are actually included into the API bundle, thus avoiding an additional dependency.

e TheProvi der Locat or classand related code provided by the locator bundleisdesigned such that in
anon OSGi environment, it will simply use JDK 1.3 servicediscovery to locate the SPI implementation,
without ever loading any OSGi specific class. On the other hand, in an OSGi environment, it will query
the registry maintained by the registry bundle to locate the provider. The reference to the registry is
injected into the Pr ovi der Locat or classusing abundle activator.

* Finally, it should also be noted that the API bundle is configured with si ngl et on=t r ue. Thereis
indeed no meaningful way how providers could be matched with different versions of the same API
bundle.

This is an example of a particularly elegant way to satisfy Requirement 1, Requirement 2 and
Requirement 3, especially because it relies on the same metadata (the META- | NF/ ser vi ces/
j avax. xm . bi nd. JAXBCont ext resources) in OSGi and nhon OSGi environments.

Obviously, Axiom could reuse the registry and locator bundles developed by Geronimo. This however
would contradict Requirement 7. In addition, for Axiom there is no requirement to strictly follow the JDK

Design

1.3 service discovery agorithm. Therefore Axiom should reuse the pattern developed by Geronimo, but
not the actual implementation.

New abstract APIs

Application code rarely uses DOOM as the default Axiom implementation. Several downstream projects
(e.g. the Axis2/Rampart combination) use both the default (LLOM) implementation and DOOM. They
select the implementation based on the particular context. As of Axiom 1.2.12, the only way to create
an object model instance with the DOOM implementation is to use the DOOMAbst r act Fact ory AP
or to instantiate one of the factory classes (OVDOVMet aFact or y, OVDOMFact ory or one of the
subclasses of DOVSQAPFact or y). All these classes are part of the axi om domartifact. Thisis clearly
in contradiction with Requirement 4 and Requirement 5.

To overcome this problem the Axiom APl must be enhanced to make it possible to select an Axiom
implementati on based on capabilities/features requested by the application code. E.g. inthe case of DOOM,
the application code would request afactory that implementsthe DOM API. It isthen up to the Axiom API
classes to locate an appropriate implementation, which may be DOOM or another drop-in replacement,
as per Requirement 5.

If multiple Axiom implementations are available (on the class path in non OSGi environment or deployed
asbundlesin an OSGi environment), then the Axiom APl must also be able to sel ect an appropriate default
implementation if no specific featureis requested by the application code. This can be easily implemented
by defining a specia feature called "default” that would be declared by any Axiom implementation that
is suitable as a default implementation.

00000000 DOOM is generally not considered suitable as a default implementation because it doesn't

/ implement the complete Axiom API (e.g. it doesn't support OMSour cedEl enent). In

l | addition, in earlier versions of Axiom, the factory classes for DOOM were not stateless (see
AXIOM-412 [https://issues.apache.org/jiralbrowse/AXIOM-412)).

Finally, to make the selection algorithm deterministic, there should also be aconcept of priority: if multiple
Axiom implementations are found for the same feature, then the Axiom APl would select the one with
the highest priority.

Thisleads to the following design:

1. Every Axiom implementation declares a set of features that it supports. A feature is simply identified
by a string. Two features are predefined by the Axiom API:

» def aul t : indicates that the implementation is a complete implementation of the Axiom APl and
may be used as a default implementation.

» dom indicates that the implementation supports DOM in addition to the Axiom API.
For every featureit declares, the Axiom implementation specifiesapriority, which isapositive integer.

2. Therelevant Axiom APIs are enhanced so that they take an optional argument specifying the feature
requested by the application code. If no explicit feature isrequested, then Axiomwill usethedef aul t
feature.

3. To determine the OMMEt aFact ory to be used, Axiom locates the implementations declaring the
requested feature and selects the one that has the highest priority for that feature.

A remaining question is how the implementation declares the feature/priority information. There are two
options:

https://issues.apache.org/jira/browse/AXIOM-412
https://issues.apache.org/jira/browse/AXIOM-412

Design

» Addamethodto OMVet aFact or y that allowsthe Axiom API to query thefeature/priority information
from the implementation (i.e. the features and priorities are hardcoded in the implementation).

* Let the implementation provide this information declaratively in its metadata (either in the manifest
or in a separate resource with a well defined name). Note that in a non OSGi environment, such a
metadata resource must be used anyway to enable the Axiom API to locate the OVMVet aFact ory
implementations. Therefore this would be a natural place to declare the features as well.

The second option has the advantage to make it easier for users to debug and tweak the implementation
discovery process (e.g. there may be aneed to customize the features and priorities declared by the different
implementations to ensure that the right implementation is chosen in a particular use case).

Thisleadsto the following design decision: the features and priorities (together with the class name of the
Owet aFact or y implementation) will be defined in an XML descriptor with resource name META-

I NF/ axi om xnml . The format of that descriptor must take into account that a single JAR may contain
several Axiom implementations (e.g. if the JAR is an uber-JAR repackaged from the standard Axiom
JARS).

Common implementation classes

Obviously the LLOM and DOOM implementations share some amount of common code. Historically,
implementation classes reusable between LLOM and DOOM were placed in axi om api . This however
tends to blur the distinction between the public APl and implementation classes. Starting with Axiom
1.2.13 such classes are placed into aseparate module called axi om conmmon- i npl . However, axi om

conmon- i mpl cannot simply be a dependency of axi om i npl and axi om dom The reason is
that in an OSGi environment, the axi om comon- i npl bundle would have to export these shared
classes, which isin contradiction with Requirement 4. Therefore the code from axi om comon- i npl

needs to be packaged into axi om i npl and axi om domby the build process so that the axi om

common- i npl artifactisnot required at runtime. Requirement 1 forbids using embedded JARsto achieve
this. Instead maven- shade- pl ugi n isused to include the classes from axi om conmon- i npl into
axi omi npl and axi om dom (and to modify the POMs to remove the dependencies on axi om

comon-i mpl).

This raises the question whether maven- shade- pl ugi n should be configured to simply copy the
classes or to relocate them (i.e. to change their package names). There are a couple of argumentsin favor
of relocating them:

» According to Requirement 1, the Axiom artifacts should be usable both as normal JARs and as OSGi
bundles. Obviously the expectation is that from the point of view of application code, they should work
in the same in OSGi and non OSGi environments. Relocation is required if one wantsto strictly satisfy
this requirement even if different versions of axi om i npl and axi om domare mixed. Since the
container creates separate class loaders for the axi om i npl and axi om dombundles, it is always
possible to do that in an OSGi environment: even if the shared classesincluded in axi om i npl and
axi om domare not relocated, but have the same names, thiswill not result in conflicts. Thesituationis
different in anon OSGi environment where the classesin axi om i npl and axi om domare loaded
by the same class loader. If the shared classes are not relocated, then there may be a conflict if the
versions don't match.

However, in practiceit isunlikely that there are valid use case where onewould useaxi om i mpl and
axi om domartifacts from different Axiom versions.

» Relocation allows to preserve compatibility when duplicate code from axi om i npl and axi om
domis merged and moved to axi om conmon- i npl . The OMNanespacel npl , OVNavi gat or
and OVSt AXW apper classesfromaxi om i npl andtheNanespacel npl ,DOVNavi gat or and
DOVBt AXW apper classesfrom axi om domthat existed in earlier versions of Axiom are examples

Design

of this. Theclassesinaxi om domwereamost identical to thecorresponding classesinaxi om i npl .
These classes have been merged and moved to axi omr comrmon- i npl . Relocation then allows them
to retain their original name (including the origina package name) intheaxi om i npl and axi ont
domartifacts.

However, thisis only a concern if one wants to preserve compatibility with existing code that directly
uses these implementation specific classes (which is something that is strongly discouraged). One
examplewherethiswas relevant was the SAAJimplementation in Axis2 which used to be very strongly
coupled to the DOOM implementation. This however has been fixed now.

Using relocation also has some serious disadvantages:

» Stack traces may contain class names that don't match class names in the Axiom source code, making
debugging harder.

» Axiom now uses JaCoCo to produce code coverage reports. However these reports are incomplete
if relocation is used. This doesn't affect test cases executed in the axi om i npl and axi om dom
modules (because they are executed with the original classes), but tests in separate modules (such as
integration tests). There are actually two issues:

 For the relocated classes, JaCoCo is unable to find the corresponding source code. This means that
the reported code coverage is inaccurate for classesin axi om common-i npl .

» Relocation not only modifiesthe classesinaxi om conmon- i npl , but asotheclassesinaxi ont
i mpl and axi om dom that use them. JaCoCo detects this [https://github.com/jacoco/jacoco/
issues/51] and excludes the data from the coverage analysis. This means that the reported code
coverage will also be inaccurate for classesinaxi omt i npl and axi om dom

In Axiom 1.2.14 rel ocation was used, but thishas been changed in Axiom 1.2.15 because the disadvantages
outweigh the advantages.

Li f ecycl eManager design (Axiom 1.3)

ThelLi f ecycl eManager API isused by the MIME handling code in Axiom to manage the temporary
filesthat are used to buffer the content of attachment parts. TheLi f ecycl eManager implementationis
responsibleto track the temorary filesthat have been created and to ensure that they are deleted when they
areno longer used. In Axiom 1.2.x, this APl has multiple issues and aredesign is required for Axiom 1.3.

Issues with the Li f ecycl eManager APl in Axiom 1.2.x

1. Temporary files that are not cleaned up explicitly by application code will only be removed when the
JVM stops (Li f ecycl eManager | npl registers a shutdown hook and maintains a list of files that
need to be deleted when the VM exits). This means that temporary files may pile up, causing the file
system to fill.

2. Li fecycl eManager aso hasamethod del et eOnTi el nt er val that deletes afile after some
specified time interval. However, the implementation creates a new thread for each invocation of that
method, which is generally not acceptable in high performance use cases.

3. One of the stated design goals (see AXIOM-192 [https://issues.apache.org/jira/lbrowse/AXI0OM-192])
of theLi f ecycl eManager APl wastowrapthefilesinFi | eAccessor objectsto “keep track of
activity that occurs on the files’. However, as pointed out in AXIOM-185 [https://issues.apache.org/
jiralbrowse/AXIOM-185], since Fi | eAccessor hasamethod that returns the corresponding Fi | e
object, this goal has not been reached.

https://github.com/jacoco/jacoco/issues/51
https://github.com/jacoco/jacoco/issues/51
https://github.com/jacoco/jacoco/issues/51
https://issues.apache.org/jira/browse/AXIOM-192
https://issues.apache.org/jira/browse/AXIOM-192
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185

Design

4. As noted in AXIOM-382 [https.//issues.apache.org/jira/lbrowse/AXIOM-382], the fact that
Li f ecycl eManager | mpl registers a shutdown hook which is never unregistered causes a class
loader leak in J2EE environments.

5. In an attempt to work around the issues related to Li f ecycl eManager (in particular the first
item above), AXIOM-185 [https.//issues.apache.org/jiralbrowse/AXIOM-185] introduced another
class called At t achnment CachelMbni t or that implements a timer based mechanism to clean up
temporary files. However, this change causes other issues:

» The existence of this APl has a negative impact on Axiom's architectural integrity because it
has functionality that overlaps with Li f ecycl eManager . This means that we now have two
completely separate APIs that are expected to serve the same purpose, but none of them addresses
the problem properly.

« Attachment CachelMbni t or automatically createsatimer, but thereisno way to stop that timer.
This means that this API can only be used if Axiom is integrated into the container, but not when
it is deployed with an application.

Fortunately, that change was only meant as a workaround to solve a particular
issue in WebSphere (see APAR PK91497 [http://www-01.ibm.com/support/docview.wss?
rs=180& uid=swgl1PK91497]), and once the Li f ecycl eManager API is redesigned to solve that
issue, At t achnent CacheMoni t or no longer has areason to exist.

6. Li f ecycl eManager isan abstract APl (interface), but refersto Fi | eAccessor which is placed
inani nmpl package.

7. Fi | eAccessor usestheMessagi ngExcept i on classfrom JavaMail, although Axiom no longer
relies on this API to parse or create MIME messages.

Cleanup strategy for temporary files

As pointed out in the previous section, one of the primary problems with the Li f ecycl eManager

APl in Axiom 1.2.x is that temporary files that are not cleaned up explicitly by application code (e.g.
using the pur geDat aSour ce method defined by Dat aHandl er Ext) are only removed when the
JVM exits. A timer based strategy that deletes temporary file after a given time interval (as proposed by
At t achnment CachelMoni t or) is not reliable because in some use cases, application code may keep a
reference to the attachment part for along time before accessing it again.

Theonly reliable strategy isto take advantage of finalization, i.e. to rely on the garbage collector to trigger
the deletion of temporary files that are no longer used. For this to work the design of the API (and its
default implementation) must satisfy the following two conditions:

1. All accessto the underlying file must be strictly encapsulated, so that thefileis only accessible aslong
asthereisastrong reference to the object that encapsulates the file access. Thisis necessary to ensure
that the file can be safely deleted once there is no longer a strong reference and the object is garbage
collected.

2. Javaguaranteesthat thefinalizer isinvoked before theinstanceisgarbage collected. However, instances
are not necessarily garbage collected before the VM exits, and in that case the finalizer is never
invoked. Therefore, the implementation must delete all existing temporary files when the VM exits.
The API design should also takeinto account that some implementationsof thelLi f ecycl eManager
APl may want to trigger this cleanup before the VM exits, e.g. when the J2EE application in which
Axiom is deployed is stopped.

The first condition can be satisfied by redesigning the Fi | eAccessor such that it never leaks
the name of the file it represents (neither as a String nor a Fil e object). This in turn

10

https://issues.apache.org/jira/browse/AXIOM-382
https://issues.apache.org/jira/browse/AXIOM-382
https://issues.apache.org/jira/browse/AXIOM-185
https://issues.apache.org/jira/browse/AXIOM-185
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497
http://www-01.ibm.com/support/docview.wss?rs=180&uid=swg1PK91497

Design

means that the CachedFi | eDat aSour ce class must be removed from the Axiom API. In
addition, the get | nput St r eam method defined by Fi | eAccessor must no longer return a
simple Fi | el nput St r eam instance, but must use a wrapper that keeps a strong reference to the
Fi | eAccessor, sothat theFi | eAccessor can't be garbage collected while the input stream is till
in use.

To satisfy the second condition, one may want to use Fi | e#del et eOnExi t . However, this method
causes a native memory leak, especially when used with temporary files, which are expected to
have unique names (see bug 4513817 [http://bugs.sun.com/bugdatabase/view bug.do?bug_id=4513817]).
Therefore this can only be implemented using a shutdown hook. However, a shutdown hook will cause
a class loader lesk if it is used improperly, e.g. if it is registered by an application deployed into a
J2EE container and not unregistered when that application is stopped. For this particular case, it is
possible to create a special Li f ecycl eManager implementation, but for this to work, the lifecycle
of this type of Li f ecycl eManager must be bound to the lifecycle of the application, e.g. using a
Ser vl et Cont ext Li st ener . Thisis not always possible and this approach is therefore not suitable
for the default Li f ecycl eManager implementation.

To avoid the class loader leak, the default Li f ecycl eManager implementation should register the
shutdown hook when thefirst temporary fileis registered and automatically unregister the shutdown hook
again when there are no more temporary files. Thisimpliesthat the shutdown hook isrepeatedly registered
and unregistered. However, since these are relatively cheap operati ons', this should not be a concern.

An additional complication isthat when the shutdown hook is executed, the temporary files may till bein
use. This contrasts with the finalizer case where encapsulation guarantees that the file is no longer in use.
This situation doesn't cause an issue on Unix platforms (whereit is possible to delete afile while it is still
open), but needs to be handled properly on Windows. This can only be achieved if the Fi | eAccessor
keeps track of created streams, so that it can forcibly close the underlying Fi | el nput St r eamobjects.

ISince the JRE typically uses an | dent i t yHashMap to store shutdown hooks, the only overhead is caused by Java 2 security checks and
synchronization.

11

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817

Chapter 3. Release process

Release preparation

The following items should be checked before starting the release process:

* Check the dependencies between Javapackagesintheaxi om api module. The org.apache.axiom.util
package (including its subpackages) is specified to contain utility classes that don't depend
on higher level APIs. More precisely, org.apache.axiom.util should only have dependencies on
org.apache.axiom.ext, but not e.g. on org.apache.axiom.om. SonarJ [http://www.hello2morrow.com/
products/sonarj] can be used to check these dependencies. The following figure shows the expected
structure:

Figure 3.1. Package dependencies for r 944680

[£] X, Logical structure of system 'Axiom’
[E] =% My Project
[H} org.apache.axiom
{1 injection
{1 attachments

— {1} -injection
{1 qttachments
o B
\\
#®

i soap
i om
1 mime mime
= Bt util
[Ht stax
i1 debug {4 debug
1 xop i1 xop
i1 dialect = 1} dialect
{1 <types in 'stax'> == (1} <types in 'stax'>
i1 wrapper = {1 wrapper
i} namespace == [{} namespace
4 blob 4} blob
{1 base64 \ ’ I;— {1 base64
1 activation {1 activation
5 B ext
1 activation {1 activation
it io i io
{1 stax “' t stax

g External

In contrast, the following figure shows an earlier trunk version of axi om api with incorrect layering
and cyclic dependencies involving org.apache.axiom.util:

12

http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj
http://www.hello2morrow.com/products/sonarj

Release process

Figure 3.2. Package dependencies for r939984

[£] X, Logical structure of system 'Axiom’
[E] =% My Project
[H} org.apache.axiom
{1 injection
1 mime
= Bt util
[Ht stax
i1 debug
4 xop
i1 dialect
{1 <types in 'stax'>
i1 wrapper
i} namespace
{1 base64
1 activation

F [F E

41 blob

{1 attachments

1 soap

i om

B ext

i io

1 stax.datahandler
g External & External

0 = = [

(N

' {1 stax.datahandler

The check can also be done using jdepend-maven-plugin [http://mojo.codehaus.org/jdepend-maven-
plugin/]. To do this, execute the following command in the axi om api module:

nm/n j depend: generate

Thenopent arget/sitel/jdepend-report. htm and go thethe "Cycles' section. The report
should not show any package cycles involving org.apache.axiom.mime, org.apache.axiom.util and
org.apache.axiom.ext.

Check that the generated Javadoc contains the appropriate set of packages, i.e. only the public API. This
excludes classes from axi om i npl and axi om domaswell as classes related to unit tests.

Check that all dependencies and plugins are available from standard repositories. To do this, clean the
local repository and execute mvn clean install followed by mvn site.

Check that the set of licensefilesinthel egal directory iscomplete and accurate (by checking that in
the binary distribution, thereis alicensefile for every third party JAR inthel i b folder).

Check that the Maven site conforms to the latest version of the Apache Project Branding Guidelines
[http://apache.org/foundation/marks/pmcs].

Check that the apache- r el ease profile can be executed properly. To do this, issue the following
command:

m/n clean install -Papache-rel ease -Dski pTests=true
Y ou may also execute adry run of the release process:
m/n rel ease: prepare -DdryRun=true

After this, you need to clean up using the following command:

13

http://mojo.codehaus.org/jdepend-maven-plugin/
http://mojo.codehaus.org/jdepend-maven-plugin/
http://mojo.codehaus.org/jdepend-maven-plugin/
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs

Release process

mvn rel ease: cl ean

» Check that the Maven site can be generated and deployed successfully, and that it has the expected
content.

 Prepare the release note. This should include a description of the major changes in the rel ease as well
asalist of resolved JIRA issues. Note that both i ndex. apt and RELEASE- NOTE. t xt need to be
updated.

* Add an entry for the release to the downl oad. xm . vmfile and change the links for older releases
so that they point to ar chi ve. apache. or g (Since the Axiom project doesn't use branches and
produces releases directly from the trunk, there should only be a single mirrored release).

Prerequisites

The following things are required to perform the actual release:

» A PGP key that conforms to the requirement for Apache release signing [http://www.apache.org/dev/
release-signing.html]. To maketherelease process easier, the passphrase for the code signing key should
be configured in ${ user . hone}/ . n2/ setti ngs. xnl :

<settings>

<profil es>
<profil e>
<i d>apache-rel ease</i d>
<properties>
<gpg. passphrase><!-- KEY PASSPHRASE - -></gpg. passphrase>
</ properties>
</profile>
</profil es>

</ settings>

» The release process uses a Nexus staging repository. Every committer should have access to the
corresponding staging profile in Nexus. To validate this, logintor eposi t ory. apache. or g and
check that you can seetheor g. apache. ws staging profile. The credentials used to deploy to Nexus
should be added to set ti ngs. xm :

<servers>
<server>
<i d>apache. rel eases. https</i d>
<user nane><!-- ASF usernane --></usernanme>
<passwor d><!-- ASF LDAP password --></password>
</ server>

</.sé.rver s>
Release

In order to prepare the rel ease artifacts for vote, execute the following steps:

1. Updatetherelease datein downl oad. xm . vmandi ndex. apt .

14

http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html

Release process

Temporarily disable the Jenkins build(s) for Axiom, in order to avoid accidental deployment of the
release candidate to the local repository of a Jenkins executor if the rel ease process fails somewhere
in the middle and/or a Jenkins build starts at the wrong moment.

Start the release process with the following command:
mvn rel ease: prepare

When asked for the "SCM release tag or label”, override the default value (axi om x. y. z) by
entering atag intheformx. y. z, which is compatible with the tag names used for previous rel eases.

The above command will create atag in Subversion and increment the version number of the trunk
to the next development version. It will also createar el ease. properti es filethat will be used
in the next step.

Perform the release using the following command:
mvn rel ease: perform
Thiswill upload the release artifacts to the Nexus staging repository.

Log in to the Nexus repository (https://repository.apache.org/ and close the staging repository. The
name of the staging profile is or g. apache. ws. See http://maven.apache.org/devel opers/rel ease/
apache-rel ease.ntml for amore thorough description of this step.

Execute the target/checkout/etc/dist.py script to upload the source and binary
distributions to the development area of the https:.//dist.apache.org/repos/dist/ repository.

If not yet done, export your public key and append it to https://dist.apache.org/repos/dist/rel ease/ws/
axiom/KEY S. The command to export a public key is asfollows:

gpg --arnor --export key id

Delete https://svn.apache.org/repos/asf/webservices/website/axiom-staging/ if it exists. Create anew
staging area for the site:

svn copy \
https://svn. apache. or g/ repos/ asf/ webservi ces/ websi t e/ axi om \
htt ps://svn. apache. or g/ repos/ asf/ webser vi ces/ websi t e/ axi om st agi ng

This step can be skipped if the staging area already exists and isin a state where it can
@ cleanly be merged.

Stage the site as described here [http://ws.apache.org/
dev.html#Republishing_the site for_a subproject]. Note that the commands must be executed in the
t ar get / checkout directory.

Start the release vote by sending a mail to dev@ws. apache. or g. The mail should mention the
following things:

» Thelist of issues solved in the release (by linking to the relevant JIRA view).
» Thelocation of the Nexus staging repository.

e The link to the source and binary distributions: htt ps:// di st. apache. org/ repos/
di st/ dev/ws/ axi omf ver si on.

15

https://repository.apache.org/
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html
https://dist.apache.org/repos/dist/
https://dist.apache.org/repos/dist/release/ws/axiom/KEYS
https://dist.apache.org/repos/dist/release/ws/axiom/KEYS
https://svn.apache.org/repos/asf/webservices/website/axiom-staging/
http://ws.apache.org/dev.html#Republishing_the_site_for_a_subproject
http://ws.apache.org/dev.html#Republishing_the_site_for_a_subproject
http://ws.apache.org/dev.html#Republishing_the_site_for_a_subproject

Release process

« A link to the preview of the Maven site: http://ws.apache.org/axiom-staging/.
10. Reenable the Jenkins build(s).
If the vote passes, execute the following steps:

1. Promote the artifacts in the staging repository. See http://maven.apache.org/developers/rel ease/
apache-release.html for detailed instructions for this step.

2. Publish the distributions:

svn nv https://dist.apache. org/repos/dist/dev/ws/axiomversion \
https://dist.apache. org/ repos/dist/rel ease/ ws/ axi om

ver si on isthereleaseversion, e.g. 1. 2. 9.
3. Publishthe site:

svn nerge \
htt ps://svn. apache. org/ repos/ asf/webservi ces/ websi t e/ axi omt st agi ng \
htt ps://svn. apache. org/ repos/ asf/webservi ces/ websi t e/ axi om

It may take severa hours before all the updates have been synchronized to the relevant ASF systems.
Before proceeding, check that

 the Maven artifacts for the release are available from the Maven central repository;
 the Maven site has been synchronized to http://ws.apache.org/axion;
« the binary and source distributions can be downloaded from http://ws.apache.org/axiom/downl oad.cgi.

Once everything is in place, send announcements to users@ws. apache.org and
announce@pache. or g. Since the two lists have different conventions, audiences and moderation
policies, to send the announcement separately to the two lists.

Sample announcement:

Apache Axiom Team is pleased to announce the release of Axiom x.y.z. Thereleaseis
available for download at:

http://ws.apache.org/axiom/download.cgi

Apache Axiom is a StAX-based, XML Infoset compliant object model which supports
on-demand building of the object tree. It supports a novel "pull-through" model which
allows one to turn off the tree building and directly access the underlying pull event
stream. It also has built in support for XML Optimized Packaging (XOP) and MTOM,
the combination of which allows XML to carry binary data efficiently and in a
transparent manner. The combination of these is an easy to use APl with a very high
performant architecture!

Developed as part of Apache Axis2, Apache Axiom is the core of Apache Axis2.
However, it is a pure standalone XML Infoset model with novel features and can be
used independently of Apache Axis2.

Highlightsin thisrelease:

16

http://ws.apache.org/axiom-staging/
http://maven.apache.org/developers/release/apache-release.html
http://maven.apache.org/developers/release/apache-release.html
http://ws.apache.org/axiom/
http://ws.apache.org/axiom/download.cgi

Release process

Resolved JRA issues:

* [WSCOMMONS-513] Behavior of insertSiblingAfter and insertSiblingBefore is not
well defined for orphan nodes

* [WSCOMMONS-488] The sequence of events produced by OMStAXWrapper with
inlineM TOM=false is inconsi stent

For users@ws. apache. org, the subject (“Axiom Xx.y.z released’) should be prefixed with
“[ANN][Axiom]”, while for announce@pache. org “[ANN]” is enough. Note that mail to
announce@pache. or g must be sent from an apache. or g address.

Post-release actions

» Update the DOAPfile (seeet ¢/ axi om r df) and add a new entry for the release.
* Update the status of the release version in the AXIOM project in JRA.

» Remove archived releases from https://dist.apache.org/repos/dist/rel ease/ws/axiom/.
 Deélete https://svn.apache.org/repos/asf/webservices/website/axiom-staging/.

00000000 This step is optional. The staging area may be reused during the next release. It may also
/ be used to publish a snapshot version of the site.

—_—

References

The following documents are useful when preparing and executing the release:

» ASF Source Header and Copyright Notice Policy [http://www.apache.org/legal/src-headers.html]
» Apache Project Branding Guidelines [http://apache.org/foundation/marks/pmcs]

» DOAP Files [http://projects.apache.org/doap.html]

* Publishing Releases [http://www.apache.org/dev/rel ease-publishing.html]

17

https://dist.apache.org/repos/dist/release/ws/axiom/
https://svn.apache.org/repos/asf/webservices/website/axiom-staging/
http://www.apache.org/legal/src-headers.html
http://www.apache.org/legal/src-headers.html
http://apache.org/foundation/marks/pmcs
http://apache.org/foundation/marks/pmcs
http://projects.apache.org/doap.html
http://projects.apache.org/doap.html
http://www.apache.org/dev/release-publishing.html
http://www.apache.org/dev/release-publishing.html

Appendix A. Appendix

Installing IBM's JDK on Debian Linux

1

Make surethat f aker oot andj ava- package areinstalled:
apt-get install fakeroot java-package

Download the . t gz version of the JDK from http://www.ibm.com/devel operworks/javaljdk/linux/
download.html.

Edit / usr/ shar e/ j ava- package/i bm j 2sdk. sh and (if necessary) add an entry for the
particular version of the IBM JDK downloaded in the previous step.

Build a Debian package from the tarball:
$ fakeroot nake-jpkg xxxx.tgz

Install the Debian package.

18

http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www.ibm.com/developerworks/java/jdk/linux/download.html

