Programming

1. Overview

There are two main modes of operation for the libraries. Signing and verifying. Verifying is
the simplest operation, as it (generaly) operates on a DOM <Signature> structure that has
aready been created.

Signing on the other hand can be more difficult, as there may be a requirement to create the
DOM structure necessary for the signature prior to the actual signing operation.

The rest of this section provides a very high level overview on how to use the library for
signing and verificataion of signatures.

Two samples are provided :

e Simple HMAC Signing
e Simple DSA Validation

The code snippets are taken directly from some of the sample code provided in the
src/samples directory in the distribution. More information on the API can be found in the
API Documentation.

2. A smple HMAC Signing example

The first example is based on the simpleHMAC.cpp code in samples. It creates an XML
letter, the appends a dummy signature to the end, using an envel oped-signature transform.

2.1. Setup

The following code snippet initialises Xerces, Xalan and XSEC. Note that the enveloped
transform is implemented using an XPath expression, so it is imperitive the Xalan libraries
areinitialised.

int main (int argc, char **argv) ({

try {
XMLPl atformlhtils::Initialize();

#i f ndef XSEC_NO_XALAN
Xal anTransformer::initialize();

Page 1

programming.html#simplehmac
programming.html#simplehmac
programming.html#simplehmac
programming.html#simpledsa
programming.html#simpledsa
programming.html#simpledsa

Programming

#endi f
XSECPl atformuhils::Initialise();

}
catch (const XM.Exception &) {

cerr << "Error during initialisation of Xerces" << endl;
cerr << "Error Message = : "
<< e.get Message() << endl;

}

// Create a bl ank Docunent

DOM npl enent ati on *inpl =
DOM npl enent ati onRegi stry: : get DOM npl enent at i on(MAKE_UNI CODE_STRI N& " Core"));

/] Create a letter
DOVDocunent *doc = createlLetter(inpl);
DOMVEl enent *r oot El em = doc- >get Docunent El enent () ;

In the sample application, the call to createletter (impl) ssimply creates aletter DOM structure
with ato and from address and some text. Thisis done using standard DOM calls via Xerces.

Once the system is initialised and the DOM document is created, a DSIGSignature object is
created via the XSECProvider interface class. The signature object is then used to create a
blank signature DOM node structure which is then inserted at the end of the document.

XSECPr ovi der prov;
DSI GSi gnat ure *sig;
DOVEIl enent *si gNode;

try {

/1 Create a signature object

sig = prov.newSi gnature();
si g- >set DSI GNSPr ef i x("ds");

/1l Use it to create a blank signature DOM structure fromthe doc

si gNode = si g- >creat eBl ankSi gnat ur e(doc,
CANON_C14N_coMm
S| GNATURE_HVAC,
HASH _SHAL1) ;

The call to newSgnature creates a signature object only. No DOM nodes are created at this
point. The call to setDIGNSPrefix tells the XSEC library what namespace prefix to use for
the signature object when it starts to create DOM nodes (in this case "ds’ will be used). By
default, the library will use "dsig" as the prefix for the name space for Digital Signatures.

Page 2

Programming

Finally, the call to sig->createBlankSignature sets up both the DOM structure and the XSEC
objects for a new signature with no <Reference> elements. In this case, the signature will be
made using Commented C14n canonicalisation, and aHMAC-SHA1 signature.

The XSECProvider class still "owns' the DSIGSignature object. To delete the object, the original provider.release(sig) call
should be used. Never delete a DSIGSignature object directly.

2.2. Create a Reference and Sign

Now that the signature object is created, the signature is inserted into the document, and a
referenceis created and set for an enveloping transform.

/1 Insert the signature DOM nodes into the doc

r oot El em >appendChi | d(doc- >cr eat eText Node(MAKE_UNI CODE_STRI NG "\ n")));
r oot El em >appendChi | d(si gNode) ;

r oot El em >appendChi | d(doc- >cr eat eText Node(MAKE_UNI CODE_STRI NG "\ n")));
/] Create an envel ope reference for the text to be signed

DSI GReference * ref = sig->createReference("");
r ef - >appendEnvel opedSi gnat ur eTr ansf or m() ;

The "" parameter to createReference sets the URI attribute for the reference to be "" -
indicating the root element of the document in which the signature resides. The call to
appendEnvel opedS gnatureTransform adds a standard enevel oped-signature transform to the
Reference node.

The macro MAKE_UNICODE_STRING is defined within the library header files and is
used to transcode local code page strings.

There is no need to insert the reference object into the DOM structure. Thisis done automatically by the createReference call.

Finally we create a signing key and sign the document.

/1 Set the HVAC Key to be the string "secret”

OpenSSLCr ypt oKeyHVAC * hmacKey = new OpenSSLCrypt oKeyHVAC() ;
hmacKey- >set Key((unsi gned char *) "secret", strlen("secret"));
si g- >set Si ghi ngKey(hmacKey) ;

/1 Add a Keyl nfo el ement

Page 3

Programming

si g- >appendKeyNane(" The secret key is \"secret\"");
/1 Sign

sig->sign();

cat ch (XSECExcepti on &e)
{

cerr << "An error occured during a signature |oad\n Message:
<< e.get Msg() << endl
exit(1);

}

The first two code lines create an OpenSSL CryptoKeyHMAC object, and set the key value to
the string "secret". The OpenSSL... classes are the interface layer between XSEC and
OpenSSL. More information can be found in the APl documentation, but the main point of
note is that the XSEC library never deals directly with OpenSSL - it works via the
XSECCrypto abstract classes which are implemented in the OpenSSLCrypto code. This
would allow another person to re-implement the XSECCrypto code to use any cryptographic
provider required.

Once the key is passed to the signature it is owned by the signature. The signature object will delete the key when it is itself
deleted, or anew key ispassed in.

The call to sig->appendKeyName() is used to append a <KeyName> element into the
<KeylInfo> block. The Keylnfo block was created as part of this call.

After the call to sig->sign() the DOM structure has the correct hash and signature values. The
owner program can write, store or further manipulate the document as required. If a
document manipulation might affect the signature (in this case aimost anything would, as we
are using an enveloping transform which effectively signs everything that is not part of the
signature), then afurther call to sig->sign() will re-sign the changes.

The last part of the code does some work to output the new DOM structure. The output
should look something like the following:

<Letter>

<ToAddr ess>The address of the Recipi ent </ ToAddress>
<Fr omAddr ess>The address of the Sender </ FromAddr ess>
<Text >

To whom it nmay concern

</ Text >
<ds: Si gnature xm ns:ds="http://ww.w3. org/ 2000/ 09/ xm dsi g#" >

Page 4

Programming

<ds: Si gnedI nf 0>

<ds: Canoni cal i zati onMet hod Al gorit hnme

"http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315#W t hComment s"/ >

<ds: Si gnat ureMet hod Al gorithm="htt p://ww. w3. or g/ 2000/ 09/ xm dsi g#hmac- shal"/ >
<ds: Reference URI ="">

<ds: Tr ansf or ns>

<ds: Transform Al gorit hne

"http://ww. w3. org/ 2000/ 09/ xm dsi g#envel oped- si gnat ure"/ >

</ ds: Transf or ms>

<ds: Di gest Met hod Al gorithm="http://ww. w3. or g/ 2000/ 09/ xm dsi g#shal"/ >
<ds: Di gest Val ue>askxS/ A3BaL(Fj zZ/ tt U9c12kAd=</ ds: Di gest Val ue>

</ ds: Ref erence>

</ ds: Si gnedl nf 0>

<ds: Si ghat ur eVal ue>0YEdQYGLI HzbkR1UcJ9QbVr i RPs=

</ ds: Si gnat ur eVal ue>

<ds: Keyl nf o>

<ds: KeyNane>The secret key is "secret"</ds: KeyNane>

</ ds: Keyl nf 0>

</ ds: Si gnat ur e>

</Letter>

Note that the DigestValue and SignatureV alue elements have been filled in.

3. A simplevalidation example

The second example takes a pre-signed document and an associated certificate and verifies
the embedded signature. The document in question is a ssmple purchase order, and changes
are made to the value of the order to demonstrate a signature failing verification.

3.1. Setup

Asin the first example, Initialisation of the libraries is performed, and Xerces is used to read
in the document (which in this case is stored in a string in the source code).

In order to be able to modify the contents of the document later on, we aso quickly find the
string containing the value of the purchase order.

For the sake of brevity, the code relating to parsing the in-memory document has been
removed from the snippet below.

int main (int argc, char **argv) {

try {
XMLPlatformltils::Initialize();

#i f ndef XSEC _NO XALAN

Xal anTransformer::initialize();
#endi f

XSECPl atformltils::Initialise();

Page 5

Programming

catch (const XM.Exception &) {
cerr << "Error during |n|t|al|sat|on of Xerces" << endl;

cerr << "Error Message = :
<< DOMString(e.get Message()) << endl;

Xerces is used to parse the docunent here

DOM Docunent doc = parser->get Docunent () ;

/1 Find the Anbunt node
DOWNode *ant = doc->get Docunent El enent () ;

if (amt !'= NULL)
anmt = ant->getFirstChild();

while (amt != NULL &&
(ant - >get NodeType() != DOVNode: : ELEMENT NODE | |
I st r Equal s(ant - >get NodeName(), "Amount")))
ant = ant - >get Next Si bl i ng();

if (amt !'= NULL)
ant = ant->getFirstChild();

if (amt == NULL || ant->getNodeType() != DOWNode:: TEXT_NODE) ({

cerr << "Error finding amount in purchase order" << endl;
exit (1);

3.2. Createthe Signature and Key objects

Now that the document is in memory, an XSECProvider is created and used to create a new
DSIGSignature object. In addition, the OpenSSL interface routines are used to read in a
certificate and obtain the associated public key.
XSECPr ovi der prov;
DSl GSi gnature * sig = prov. newSi gnat ur eFr onDOM doc) ;
try {
/1 Use the OpenSSL interface objects to get a signing key

QpenSSLCrypt 0X509 * x509 = new OQpenSSLCrypt 0X509() ;
x509- >l oadX509Base64Bi n(cert, strlen(cert));

Page 6

Programming

si g- >l oad();
In this case, the signature is create with the newSgnatureFromDOM method. This tells the
library that the signature structure (although not necessarily a signed structure) already exists
in the DOM nodes. The library attempts to find the <Signature> node so that the load will
work. (The library will throw an X SECException if it cannot find the Element.)

The later call to sig->load() tells the library to read the DOM structure and create the
appropriate DSIG elements.

In this case an OpenSSL CryptoX 509 object is also created. It is used to read in the cert string
and convert to an X509 structure. This could also be done using standard calls directly to
OpenSSL, but thisis a quick shortcut.

3.3. Find a key

As we aready know the key, the following code snippet loads the key directly from the
related X509. However prior to doing this, the code demonstrates using the DSIGK eyInfo
structures to find the key name that was embedded in the certificate. In an application, this
could be used to reference the correct key to be passed in. (Maybe viaan XKMS call.)

the safeBuffer type is used extensively within the XSEC library to safely handle variable
length strings and raw buffers. The call to rawCharBuffer() ssmply returns a (char *) type
pointer to the buffer within the safeBuffer

The call to clonePublicKey() returns a copy of the public key embedded in the certificate. It
is owned by the caller, so in this case it can safely be passed to the DSIGSignature object
where it will be destroyed when another key is loaded or the object is released by the
XSECProvider.

DSl GKeyl nf oLi st * ki nfList = sig->getKeylnfoList();

/1 See if we can find a Key Nanme
saf eBuf fer knane;
DSI Keyl nfo * kinf = kinfList->getFirstKeylnfo();
while (kinf !'= NULL) ({

kname = ki nf->get KeyNane() ;

if (knane.sbStrcmp("")) {

cout << "Key Nanme ="
<< knane. rawChar Buf fer() << endl

}
ki nf = ki nf Li st - >get Next Keyl nf o() ;
}

si g- >set Si gni ngKey(x509- >cl onePubl i cKey());

3.4. Validatethe signature

Page 7

Programming

Finaly the signature is validated. In this case, we validate it three times. First with the
origina DOM structure, then with the price changed and finally with the price set back to the
origina value.

cout << "Ampunt =" << am << " ->";

if (sig->verify())
cout << "Signature Valid\n";

el se {
cout << "Incorrect Signature\n";
ant . set NodeVal ue(" $0. 50");

cout << "Ampunt = " << amt << " ->";

if (sig->verify()) {
cout << "Signhature Valid\n";

el se {

cout << "Incorrect Signature\n";
}
ant . set NodeVal ue(" $16. 50") ;

cout << "Ampunt =" << amt << " ->";

if (sig->verify()) {
cout << "Signature Valid\n";

el se {
cout << "Incorrect Signature\n";
}

When run, the program outputs the following:

Key Nanme = C=AU, ST=Vic, O=XM.-Security-C Project,
CN=Sanpl es Denp Certificate

Amount = $16.50 -> Signature Valid
Anmpbunt = $0.50 -> Incorrect Signature
Ampunt = $16.50 -> Signature Valid

Page 8

	Programming
	1 Overview
	2 A simple HMAC Signing example
	2.1 Setup
	2.2 Create a Reference and Sign

	3 A simple validation example
	3.1 Setup
	3.2 Create the Signature and Key objects
	3.3 Find a key
	3.4 Validate the signature

