
Xerces C++ Documentation

Copyright 2001 The Apache Software Foundation. All Rights Reserved.

Table of Contents

1. Xerces C++ Parser 5

Xerces C++ Version 1.5.1 5

Applications of the Xerces Parser 5

Features 5

Platforms with Binaries 5

Other ports... 6

2. Installation 7

Window NT/98 7

UNIX 7

3. Build Instructions 9

Building on Windows and UNIX 9

Building on Other Platforms 14

Other Build Instructions 21

4. API Documentation 25

API Docs for SAX and DOM 25

5. Xerces C++ Samples 26

Building the Samples 26

Building the Samples for OS2 26

Running the Samples 27

Xerces C++ Sample 1: SAXCount 29

Xerces C++ Sample 2: SAXPrint 31

Xerces C++ Sample 3: DOMCount 34

Xerces C++ Sample 4: DOMPrint 36

Xerces C++ Sample 5: MemParse 39

Xerces C++ Sample 6: Redirect 41

Xerces C++ Sample 7: PParse 42

Xerces C++ Sample 8: StdInParse 44

Xerces C++ Sample 9: EnumVal 45

Xerces C++ Sample 10: CreateDOMDocument 47

Xerces C++ Sample 11: SAX2Count 48

Xerces C++ Sample 12: SAX2Print 50

Xerces C++ Sample 13: IDOMCount 53

Xerces C++ Sample 14: IDOMPrint 55

6. Schema 58

Disclaimer 58

Introduction 58

Limitations 58

Features/Datatypes Supported 58

Other Limitations 59

Usage 59

7. Frequently Asked Questions 61

Distributing Xerces C++ 61

Parsing with Xerces C++ 63

Xerces C++ Documentation

Other Xerces C++ Questions 70

8. Programming Guide 72

SAX1 Programming Guide 72

SAX2 Programming Guide 74

DOM Programming Guide 77

Experimental IDOM Programming Guide 80

9. Migration 85

Migrating from Xerces C++ 1.4.0 to Xerces C++ 1.5.1 85

General Improvements 85

Changes required to migrate to Xerces C++ 1.5.1 86

New features in Xerces C++ 1.5.1 86

Migration Archive 86

10. Migration Archive 87

Migrating from XML4C 2.x to Xerces C++ 1.4.0 87

General Improvements 87

Summary of changes required to migrate from XML4C 2.x to Xerces C++ 1.4.0 88

The Samples 89

Parser Classes 89

DOM Level 2 support 90

Progressive Parsing 90

Namespace support 91

Moved Classes to src/framework 91

Loadable Message Text 91

Pluggable Validators 92

Pluggable Transcoders 92

Util directory Reorganization 92

11. Releases 94

Xerces C++ Version 1.5.1: July 18, 2001 94

Xerces C++ Version 1.5.0: June 15, 2001 96

Release Archive 100

12. Releases Archive 101

Xerces C++ Version 1.4.0: January 31, 2001 101

Xerces C++ Version 1.3.0: Sept 21, 2000 104

Xerces C++ Version 1.2.0: June 22, 2000 108

Xerces C++ Version 1.1.0: Feb 28, 2000 111

Xerces C++ Version 1.0.1: December 15, 1999 112

Xerces C++ Parser Version 1.0.0: December 7, 1999 113

Xerces C++ BETA November 5, 1999 113

13. Bug Reporting 114

How to report bugs 114

Search frist 114

Write good bug report 114

14. Feedback Procedures 116

Questions or Comments 116

Xerces C++ Documentation

Acknowledgements 116

15. Y2K Compliance 119

Apache Xerces Parser Year-2000 Readiness 119

16. PDF Documentation 120

PDF Documentation 120

Appendix A: Links Reference 121

Xerces C++ Documentation

1
Xerces C++ Parser

Xerces C++ Version 1.5.1
Xerces C++ is a validating XML parser written in a portable subset of C++. Xerces C++ makes it easy to
give your application the ability to read and write XML [1] data. A shared library is provided for parsing,
generating, manipulating, and validating XML documents. Xerces C++ is faithful to the XML 1.0 [2]

recommendation and associated standards (DOM 1.0 [3] , DOM 2.0 [4] . SAX 1.0 [5] , SAX 2.0 [6] ,
Namespaces [7]). Xerces C++ 1.5.1 also provides an implementation of a subset of the Schema [8] . The
parser provides high performance, modularity, and scalability. Source code, samples and API
documentation are provided with the parser. For portability, care has been taken to make minimal use of
templates, no RTTI, no C++ namespaces and minimal use of #ifdefs.

Applications of the Xerces Parser
Xerces has rich generating and validating capabilities. The parser is used for:

· Building XML-savvy Web servers
· Building next generation of vertical applications that use XML as their data format
· On-the-fly validation for creating XML editors
· Ensuring the integrity of e-business data expressed in XML
· Building truly internationalized XML applications

Features
· Conforms to XML Spec 1.0 [2]

· Tracking of latest DOM (Level 1.0) [3] , DOM (Level 2.0) [4] , SAX/SAX2 [6] , Namespace [7]

specifications.
· Experimental Schema [8] subset support
· Source code, samples, and documentation is provided.
· Programmatic generation and validation of XML
· Pluggable catalogs, validators and encodings
· High performance
· Customizable error handling

Platforms with Binaries
· Win32 using MSVC 6.0 SP3
· Linux (RedHat 6.1) using egcs-2.91.66 and glibc-2.1.2-11
· Solaris 2.6 using Sun Workshop 4.2
· AIX 4.3 using xlC 3.6.4
· HP-UX 11 using aCC A.03.13 with pthreads

- 5-

http://www.w3.org/XML/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.megginson.com/SAX/SAX1/index.html
http://www.megginson.com/SAX/SAX1/index.html
http://www.megginson.com/SAX/index.html
http://www.megginson.com/SAX/index.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.megginson.com/SAX/index.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0/

Other ports...
· OS/390
· AS/400
· SGI IRIX
· Macintosh
· OS/2
· PTX
· and more!

Chapter 1 - Xerces C++ Parser Xerces C++ Documentation

- 6-

2
Installation

Window NT/98
Install the binary Xerces C++ release by using unzip on the file-win32.zip archive in the Windows
environment. You can use WinZip, or any other UnZip utility.

unzip xerces-c1_5_1-win32.zip

This creates a 'xerces-c1_5_1-win32' sub-directory containing the Xerces C++ distribution.

You need to add the 'xerces-c1_5_1-win32\bin' directory to your path:

To do this under Windows NT, go to the start menu, click the settings menu and select control panel.
When the control panel opens, double click on System and select the 'Environment' tab. Locate the PATH
variable under system variables and add <full_path_to_xerces-c1_5_1 >\bin to the PATH variable. To do
this under Windows 95/98 add this line to your AUTOEXEC.BAT file:

SET PATH=<full_path_to_xerces-c1_5_1>\bin;%PATH%

or run the SET PATH command in your shell window.

UNIX
Binary installation of this release is to extract the files from the compressed .tar archive (using 'tar').

cd $HOME

gunzip xerces-c1_5_1-linux.tar.gz

tar -xvf xerces-c1_5_1-linux.tar

This will create an 'xerces-c1_5_1-linux' sub-directory (in the home directory) which contains the
Xerces C++ distribution. You will need to add the xerces-c1_5_1-linux/bin directory to your PATH
environment variable:

For Bourne Shell, K Shell or Bash, type:

export PATH="$PATH:$HOME/xerces-c1_5_1-linux/bin"

For C Shell, type:

setenv PATH "$PATH:$HOME/xerces-c1_5_1-linux/bin"

If you wish to make this setting permanent, you need to change your profile by changing your setup files
which can be either .profile or .kshrc.

In addition, you will also need to set the environment variables XERCESCROOT, ICUROOT and the
library search path. (LIBPATH on AIX, LD_LIBRARY_PATH on Solaris and Linux, SHLIB_PATH on
HP-UX).

- 7-

Note: XERCESCROOT and ICUROOT are needed only if you intend to recompile the
samples or build your own applications. The library path is necessary to link the shared
libraries at runtime.

For Bourne Shell, K Shell or Bash, type:

export XERCESCROOT=<wherever you installed Xerces C++>

export ICUROOT=<wherever you installed ICU>

export LIBPATH=$XERCESCROOT/lib:$LIBPATH (on AIX)

export LD_LIBRARY_PATH=$XERCESCROOT/lib:$LD_LIBRARY_PATH (on Solaris, Linux)

export SHLIB_PATH=$XERCESCROOT/lib:$SHLIB_PATH (on HP-UX)

For C Shell, type:

setenv XERCESCROOT "<wherever you installed Xerces C++>"

setenv ICUROOT "<wherever you installed ICU>"

setenv LIBPATH "$XERCESCROOT/lib:$LIBPATH" (on AIX)

setenv LD_LIBRARY_PATH "$XERCESCROOT/lib:$LD_LIBRARY_PATH" (on Solaris, Linux)

setenv SHLIB_PATH "$XERCESCROOT/lib:$SHLIB_PATH" (on HP-UX)

Note: If you need to build the samples after installation, make sure you read and follow
the build instructions given in the FAQ.

Chapter 2 - Installation Xerces C++ Documentation

- 8-

3
Build Instructions

Building on Windows and UNIX
Building Xerces C++ on Windows NT/98
Xerces C++ comes with Microsoft Visual C++ projects and workspaces to help you build Xerces C++.
The following describes the steps you need to build Xerces C++.

Building Xerces C++ library
To build Xerces C++ from it source (using MSVC), you will need to open the workspace containing the
project. If you are building your application, you may want to add the Xerces C++ project inside your
applications's workspace.

The workspace containing the Xerces C++ project file and all other samples is:

xerces-c-src1_5_1\Projects\Win32\VC6\xerces-all\xerces-all.dsw

Once you are inside MSVC, you need to build the project marked XercesLib.

If you want to include the Xerces C++ project separately, you need to pick up:

xerces-c-src1_5_1\Projects\Win32\VC6\xerces-all\XercesLib\XercesLib.dsp

You must make sure that you are linking your application with the xerces-c_1.lib library and also make
sure that the associated DLL is somewhere in your path.

Note: If you are working on the AlphaWorks version which uses ICU, you must have the ICU
data DLL named icudata.dll available from your path setting. For finding out where you
can get ICU from and build it, look at the How to Build ICU.

Building samples
Inside the same workspace (xerces-all.dsw), you'll find several other projects. These are for the samples.
Select all the samples and right click on the selection. Then choose "Build (selection only)" to build all
the samples in one shot.

Building Xerces C++ on Windows using Visual Age C++
A few unsupported projects are also packaged with Xerces C++. Due to origins of Xerces C++ inside
IBM labs, we do have projects for IBM's Visual Age C++ compiler [9] on Windows. The following
describes the steps you need to build Xerces C++ using Visual Age C++.

Building Xerces C++ library
Requirements:

· VisualAge C++ Version 4.0 with Fixpak 1:

- 9-

http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/

Download the Fixpak [10] from the IBM VisualAge C++ Corrective Services web page.

To include the ICU library:

· ICU Build:

You should have the ICU Library [11] in the same directory as the Xerces C++ library. For example if
Xerces C++ is at the top level of the d drive, put the ICU library at the top level of d e.g.
d:/xerces-c1_5_1 d:/icu.

Instructions:
1. Change the directory to d:\xerces-c1_5_1\Projects\Win32
2. If a d:\xerces-c1_5_1\Project\Win32\VACPP40 directory does not exist, create it.
3. Copy the IBM VisualAge project file, XML4C2X.icc, to the VACPP40 directory.
4. From the VisualAge main menu enter the project file name and path.
5. When the build finishes the status bar displays this message: Last Compile completed Successfully

with warnings on date.

Note: These instructions assume that you install in drive d:\. Replace d with the appropriate
drive letter.

Building Xerces C++ on UNIX platforms
Xerces C++ uses GNU [12] tools like Autoconf [13] and GNU Make [14] to build the system. You must
first make sure you have these tools installed on your system before proceeding. If you don not have
required tools, ask your system administrator to get them for you. These tools are free under the GNU
Public Licence and may be obtained from the Free Software Foundation [12] .

Do not jump into the build directly before reading this.

Spending some time reading the following instructions will save you a lot of wasted time and
support-related e-mail communication. The Xerces C++ build instructions are a little different from
normal product builds. Specifically, there are some wrapper-scripts that have been written to make life
easier for you. You are free not to use these scripts and use Autoconf [13] and GNU Make [14] directly, but
we want to make sure you know what you are by-passing and what risks you are taking. So read the
following instructions carefully before attempting to build it yourself.

Besides having all necessary build tools, you also need to know what compilers we have tested Xerces
C++ on. The following table lists the relevant platforms and compilers.

Operating System C++, C Compilers
Redhat Linux 6.1 g++, gcc (egcs)

AIX 4.2.1 and higher xlC_r, xlc_r

Solaris 2.6 CC, cc

HP-UX 11 aCC, cc

If you are not using any of these compilers, you are taking a calculated risk by exploring new grounds.
Your effort in making Xerces C++ work on this new compiler is greatly appreciated and any problems
you face can be addressed on the Xerces-C mailing list [15] .

Differences between the UNIX platforms: The description below is generic, but as every programmer is
aware, there are minor differences within the various UNIX flavors the world has been bestowed with.
The one difference that you need to watch out in the discussion below, pertains to the system environment
variable for finding libraries. On Linux and Solaris, the environment variable name is called
LD_LIBRARY_PATH, on AIX it is LIBPATH, while on HP-UX it is SHLIB_PATH. The following
discussion assumes you are working on Linux, but it is with subtle understanding that you know how to
interpret it for the other UNIX flavors.

Chapter 3 - Build Instructions Xerces C++ Documentation

- 10-

http://www-4.ibm.com/software/ad/vacpp/service/csd.html
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://www.gnu.org
http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/make/make.html
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org

Note: If you wish to build Xerces C++ with ICU, look at the Building ICU. It tells you where you
can get ICU and how to build Xerces C++ with it.

Setting build environment variables
Before doing the build, you must first set your environment variables to pick-up the compiler and also
specify where you extracted Xerces C++ on your machine. While the first one is probably set for you by
the system administrator, just make sure you can invoke the compiler. You may do so by typing the
compiler invocation command without any parameters (e.g. xlc_r, or g++, or cc) and check if you get a
proper response back.

Next set your Xerces C++ root path as follows:

export XERCESCROOT=<full path to xerces-c-src1_5_1>

This should be the full path of the directory where you extracted Xerces C++.

Building Xerces C++ library
As mentioned earlier, you must be ready with the GNU tools like autoconf [13] and gmake [14] before you
attempt the build.

The autoconf tool is required on only one platform and produces a set of portable scripts (configure) that
you can run on all other platforms without actually having the autoconf tool installed everywhere. In all
probability the autoconf-generated script (called configure) is already in your src directory. If not,
type:

cd $XERCESCROOT/src

autoconf

This generates a shell-script called configure. It is tempting to run this script directly as is normally
the case, but wait a minute. If you are using the default compilers like gcc [16] and g++ [16] you do not
have a problem. But if you are not on the standard GNU compilers, you need to export a few more
environment variables before you can invoke configure.

Rather than make you to figure out what strange environment variables you need to use, we have
provided you with a wrapper script that does the job for you. All you need to tell the script is what your
compiler is, and what options you are going to use inside your build, and the script does everything for
you. Here is what the script takes as input:

runConfigure

runConfigure: Helper script to run "configure" for one of the

supported platforms.

Usage: runConfigure "options"

where options may be any of the following:

-p <platform> (accepts 'aix', 'linux', 'solaris',

'hp-10', 'hp-11', 'irix', 'unixware')

-c <C compiler name> (e.g. xlc_r, gcc, cc)

-x <C++ compiler name> (e.g. xlC_r, g++, CC, aCC)

-d (specifies that you want to build debug version)

-m <message loader> can be 'inmem', 'icu', 'iconv'

-n <net accessor> can be 'fileonly', 'libwww'

-t <transcoder> can be 'icu' or 'native'

-r <thread option> can be 'pthread' or 'dce' (only used on HP-11)

-l <extra linker options>

-z <extra compiler options>

Chapter 3 - Build Instructions Xerces C++ Documentation

- 11-

http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/gcc/gcc.html
http://www.gnu.org/software/gcc/gcc.html

-h (to get help on the above commands)

Note: Xerces C++ can be built as either a standalone library or as a library dependent on
International Components for Unicode (ICU). For simplicity, the following discussion only
explains standalone builds.

One of the common ways to build Xerces C++ is as follows:

runConfigure -plinux -cgcc -xg++ -minmem -nfileonly -tnative

The response will be something like this:

Generating makefiles with the following options ...

Platform: linux

C Compiler: gcc

C++ Compiler: g++

Extra compile options:

Extra link options:

Message Loader: inmem

Net Accessor: fileonly

Transcoder: native

Thread option:

Debug is OFF

creating cache ./config.cache

checking for gcc... gcc

checking whether the C compiler (gcc -O -DXML_USE_NATIVE_TRANSCODER

-DXML_USE_INMEM_MESSAGELOADER) works... yes

checking whether the C compiler (gcc -O -DXML_USE_NATIVE_TRANSCODER

-DXML_USE_INMEM_MESSAGELOADER) is a cross-compiler... no

checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking for c++... g++

checking whether the C++ compiler (g++ -O -DXML_USE_NATIVE_TRANSCODER

-DXML_USE_INMEM_MESSAGELOADER) works... yes

checking whether the C++ compiler (g++ -O -DXML_USE_NATIVE_TRANSCODER

-DXML_USE_INMEM_MESSAGELOADER) is a cross-compiler... no

checking whether we are using GNU C++... yes

checking whether g++ accepts -g... yes

checking for a BSD compatible install... /usr/bin/install -c

checking for autoconf... autoconf

checking for floor in -lm... yes

checking how to run the C preprocessor... gcc -E

checking for ANSI C header files... yes

checking for XMLByte... no

checking host system type... i686-pc-linux-gnu

updating cache ./config.cache

creating ./config.status

creating Makefile

creating util/Makefile

creating util/Transcoders/ICU/Makefile

creating util/Transcoders/Iconv/Makefile

creating util/Transcoders/Iconv390/Makefile

creating util/Transcoders/Iconv400/Makefile

Chapter 3 - Build Instructions Xerces C++ Documentation

- 12-

creating util/Platforms/Makefile

creating util/Compilers/Makefile

creating util/MsgLoaders/InMemory/Makefile

creating util/MsgLoaders/ICU/Makefile

creating util/MsgLoaders/MsgCatalog/Makefile

creating util/MsgLoaders/MsgFile/Makefile

creating validators/DTD/Makefile

creating framework/Makefile

creating dom/Makefile

creating parsers/Makefile

creating internal/Makefile

creating sax/Makefile

creating ../obj/Makefile

creating conf.h

cat: ./conf.h.in: No such file or directory

conf.h is unchanged

Having build problems? Read instructions at

http://xml.apache.org/xerces-c/build.html

Still cannot resolve it? Find out if someone else had the same problem before.

Check the mailing list archives at http://archive.covalent.net.

In future, you may also directly type the following commands to create the

Makefiles.

export TRANSCODER=NATIVE

export MESSAGELOADER=INMEM

export USELIBWWW=0

export CC=gcc

export CXX=g++

export CXXFLAGS=-O -DXML_USE_NATIVE_TRANSCODER -DXML_USE_INMEM_MESSAGELOADER

export CFLAGS=-O -DXML_USE_NATIVE_TRANSCODER -DXML_USE_INMEM_MESSAGELOADER

export LIBS= -lpthread

configure

If the result of the above commands look OK to you, go to the directory

XERCESCROOT and type "gmake" to make the Xerces C++ system.

Note: The error message concerning conf.h is NOT an indication of a problem. This code has
been inserted to make it work on AS/400, but it gives this message which appears to be an error.
The problem will be fixed in future.

So now you see what the wrapper script has actually been doing! It has invoked configure to create
the Makefiles in the individual sub-directories, but in addition to that, it has set a few environment
variables to correctly configure your compiler and compiler flags too.

Now that the Makefiles are all created, you are ready to do the actual build.

gmake

Is that it? Yes, that's all you need to build Xerces C++.

Building samples

Chapter 3 - Build Instructions Xerces C++ Documentation

- 13-

Similarly, you can build the samples by giving the same commands in the samples directory.

cd $XERCESCROOT/samples

runConfigure -plinux -cgcc -xg++

gmake

The samples get built in the bin directory. Before you run the samples, you must make sure that your
library path is set to pick up libraries from $XERCESCROOT/lib. If not, type the following to set your
library path properly.

export LD_LIBRARY_PATH=$XERCESCROOT/lib:$LD_LIBRARY_PATH

You are now set to run the sample applications.

Building Xerces C++ as a single-threaded library on Unix platforms
To build a single-threaded library on Unix platforms you have to update one or more of the following
files Makefile.incl, Makefile.in, runConfigure. The following steps guide you to create
a single-threaded library for each platform:

For Aix -

· Replace xlc_r and xlC_r libraries with xlc and xlC respectively
· Replace makeC++SharedLib_r with makeC++SharedLib
· Remove the flag -D_THREAD_SAFE
· Remove inclusion of any threaded library directories from the LIBPATH
· Remove inclusion of -lpthreads and -lpthread_compat
· Add -DAPP_NO_THREADS to define the variable under AIX specific options in Makefile.incl

For Solaris -

· Add -DAPP_NO_THREADS to define the variable under SOLARIS specific options in
Makefile.incl

· Remove compiler switch -mt
· Remove -D_REENTRANT flag from the 'compile' options
· Remove inclusion of -lpthread

For Linux -

· Add -DAPP_NO_THREADS to define the variable under LINUX specific options in
Makefile.incl

· Remove -D_REENTRANT flag from the 'compile' options
· Remove inclusion of -lpthread

For HPUX -

· Add -DAPP_NO_THREADS to define the variable under HP specific options in Makefile.incl
· Remove inclusion of -lpthread and -lcma
· Remove threading defines like -D_PTHREADS_DRAFT4 , -DXML_USE_DCE

Building on Other Platforms
Building Xerces C++ on OS/2 using Visual Age C++
OS/2 is a favourite IBM PC platforms. The only option in this platform is to use Visual Age C++
compiler [9] . Here are the steps you need to build Xerces C++ using Visual Age C++ on OS/2.

Building Xerces C++ library
Requirements:

· VisualAge C++ Version 4.0 with Fixpak 1:

Chapter 3 - Build Instructions Xerces C++ Documentation

- 14-

http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/

Download the Fixpak [10] from the IBM VisualAge C++ Corrective Services web page.

There are two ways to build Xerces C++. The "From Existing" method only requires VAC++. The "From
Scratch" method requires both Object Rexx and VAC++ installed.

The "From Existing" Method
1. In the xerces-c-src1_5_1\Projects\OS2\VACPP40 directory, find and edit the VAC++

configuration file project_options.icc.
2. Change the directory on the first line 'BASE_DIR = "..."' to match the base directory of the

Xerces C++ sources on your system. Note that the directory path must use double backslashes
"\\"!

3. Save project_options.icc
4. Start the Command Line in the VAC++ folder.
5. Navigate to the xerces-c-src1_5_1\Projects\OS2\VACPP40 directory.
6. Run build.cmd. This does a migration build.
7. When build.cmd finishes, review the file compiler.errors. This file should contain only

informational messages, almost all complaining about constant values in comparisons.
8. You should now have a xerces-c.dll and xerces-c.lib. The library file is an import

library for the DLL.

The "From Scratch" Method
1. If you are not currently running Object Rexx, run the SWITCHRX command from a command

line, answer "yes" to switching to Object Rexx, and follow the instructions to reboot. You can
switch back to "Classic Rexx" by running SWITCHRX again. But you probably won't need to
switch back since Object Rexx runs almost 100% of Classic Rexx programs.

2. In the xerces-c-src1_5_1\Projects\OS2\VACPP40 directory, run genICC.cmd. This
builds the VAC++ configuration files for the sources you have on your system.

3. Check the generated ICC files to ensure that they didn't pick up some non-OS/2 platform stuff.
This happens when new platform-specific directories are added to Xerces. If they did pick up new
non-OS/2 stuff, either edit it out of the ICC file or add them to the "ignore" array in genICC.cmd
and re-run genICC.

4. Start the Command Line in the VAC++ folder.
5. Navigate to the xerces-c-src1_5_1\Projects\OS2\VACPP40 directory.
6. Run build.cmd This does a migration build.
7. When build.cmd finishes, review the file compiler.errors. This file should contain only

informational messages, almost all complaining about constant values in comparisons.
8. You should now have a xerces-c.dll and xerces-c.lib. The library file is an import

library for the DLL.)

Packaging the Binaries

There is an Object Rexx program that will package the binaries and headers. (See step 1 of the "From
scratch" method on how to switch to Object Rexx.) The packageBinaries.cmd file is in the
xerces-c-src1_5_1\Projects\OS2\VACPP40 directory. Run packageBinaries, giving
the source and target directories like this:

packageBinaries -s x:\xerces-c-src1_5_1 -o x:\temp\xerces-c1_5_1-os2

(Match the source directory to your system; the target directory can be anything you want.)

Note: If you don't want to use the Object Rexx program, you'll need to manually copy the
"*.hpp" and "*.c" files to an include directory. (Be sure to maintain the same directory structure
that you find under xerces-c-src1_5_1.)

Building Xerces C++ on AS/400

Chapter 3 - Build Instructions Xerces C++ Documentation

- 15-

http://www-4.ibm.com/software/ad/vacpp/service/csd.html

The following addresses the requirements and build of Xerces C++ natively on the AS/400.

Building Xerces C++ library
Requirements:

· QSHELL interpreter installed (install base option 30, operating system)
· QShell Utilities, PRPQ 5799-XEH
· ILE C++ for AS/400, PRPQ 5799-GDW
· GNU facilities (the gnu facilities are currently available by request only. Send e-mail to

rchgo400@us.ibm.com [17])

Recommendations:
· There are a couple of options when building the Xerces C++ parser on AS/400. For messaging

support, you can use the in memory message option or the message file support. For code page
translation, you can use the AS/400 native Iconv400 support or ICU. If you choose ICU, follow the
instructions to build the ICU service program with the ICU download. Those instructions are not
included here.

· Currently we recommend that you take the options of MsgFile and Iconv400 (see below)

Setup Instructions:
· Make sure that you have the requirements installed on your AS/400. We highly recommend that you

read the writeup that accompanies the gnu facilities download. There are install instructions as well as
information about how modules, programs and service programs can be created in Unix-like fashion
using gnu utilities. Note that symbolic links are use in the file system to point to actual AS/400
*module, *pgm and *srvpgm objects in libraries.

· Download the tar file (unix version) to the AS/400 (using a mapped drive), and decompress and
untar the source. We have had difficulty with the tar command on AS/400. This is under
investigation. If you have trouble, we recommend the following work around:

qsh:

gunzip -d <tar file.gz>

pax -r -f <uncompressed tar file>

· Create AS400 target library. This library will be the target for the resulting modules and Xerces C++
service program. You will specify this library on the OUTPUTDIR environment variable in step 4

· Set up the following environment variables in your build process (use ADDENVVAR or WRKENVVAR
CL commands):

XERCESCROOT - <the full path to your Xerces C++ sources>

PLATFORM - 'OS400'

MAKE - '/usr/bin/gmake'

OUTPUTDIR - <identifies target as400 library for *module, *pgm and *srvpgm

objects>

ICUROOT - (optional if using ICU) <the path of your ICU includes>

· Add QCXXN, to your build process library list. This results in the resolution of CRTCPPMOD used by
the icc compiler.

· The runConfigure instruction below uses 'egrep'. This is not on the AS/400 but you can create it
by doing the following: edtf '/usr/bin/egrep' with the following source:

#!/usr/bin/sh

/usr/bin/grep -e "$@"

You may want to put the environment variables and library list setup instructions in a CL program so you
will not forget these steps during your build.

Chapter 3 - Build Instructions Xerces C++ Documentation

- 16-

mailto:rchgo400@us.ibm.com

Configure

To configure the make files for an AS/400 build do the following:

qsh

cd <full path to Xerces C++>/src

runConfigure -p os400 -x icc -c icc -m MsgFile -t Iconv400

Troubleshooting:

error: configure: error: installation or configuration problem:

C compiler cannot create executables.

If during runConfigure you see the above error message, it can mean one of two things. Either
QCXXN is not on your library list OR the runConfigure cannot create the temporary modules
CONFTest1, etc) it uses to test out the compiler options. The second reason happens because the test
modules already exist from a previous run of runConfigure. To correct the problem, do the following:

DLTMOD <your OUTPUTDIR library>/CONFT* and

DLTPGM your <OUTPUTDIR library>/CONFT*

Build

qsh

gmake -e

The above gmake will result in a service program being created in your specified library and a symbolic
link to that service program placed in <path to Xerces C++/lib>. You can either bind your XML
application programs directly to the parser's service program via the BNDSRVPGM option on the CRTPGM
or CRTSRVPGM command or you can specify a binding directory on your icc command. To specify an
archive file to bind to, use the -L, -l binding options on icc. An archive file on AS/400 is a binding
directory. To create an archive file, use qar command. (see the gnu facilities write up).

After building the Xerces C++ service program, create a binding directory by doing the following (note,
this binding directory is used when building the samples):

qsh

cd <full path to Xerces C++>/lib>

qar -cuv libxercesc1_1.a *.o

command = CRTBNDDIR BNDDIR(yourlib/libxercesc) TEXT('/yourlib/Xerces

C++/lib/libxercesc1_1.a')

command = ADDBNDDIRE BNDDIR(yourlib/libxercesc) OBJ((yourlib/LIBXERCESC *SRVPGM)

)

Troubleshooting:

If you are on a V4R3 system, you will get a bind problem 'descriptor
QlgCvtTextDescToDesc not found' using Iconv400. On V4R3 the system doesn't
automatically pick up the QSYS/QLGUSR service program for you when resolving this function. This is
not the case on V4R4. To fix this, you can either manually create the service program after creating all the
resulting modules in your <OUTPUTDIR> library or you can create a symbolic link to a binding
directory that points to the QLGUSR service program and then specify an additional -L, -l on the
EXTRA_LINK_OPTIONS in Makefile.incl. See the ln and qar function in the gnu utilities.

To build for transcoder ICU:

1. Make sure you have an ICUROOT path set up so that you can find the ICU header files (usually
/usr/local)

2. Make sure you have created a binding directory (symbolic link) in the file system so that you can

Chapter 3 - Build Instructions Xerces C++ Documentation

- 17-

bind the Xerces C++ service program to the ICU service program and specify that on the
EXTRA_LINK_OPTIONS in src/Makefile.incl (usually the default is a link in
/usr/local/lib).

Creating AS400 XML parser message file:

As specified earlier, the -m MsgFile support on the runConfigure enable the parser messages to be
pulled from an AS/400 message file. To view the source for creating the message file and the XML parser
messages, see the following stream file:

EDTF <full path to Xerces C++>/src/util/MsgLoaders/MsgFile/CrtXMLMsgs

In the prolog of CrtXMLMsgs there are instructions to create the message file:

1. Use the CPYFRMSTMF to copy the CL source to an AS/400 source physical file. Note that the target
source file needs to have record length of about 200 bytes to avoid any truncation.

2. Create the CL program to create the message file and add the various message descriptions
3. Call the CL program, providing the name of the message file (use QXMLMSG as default) and a

library (this can be any library, including any product library in which you wish to embed the xml
parser)

Note that the Xerces C++ source code for resolving parser messages is using by default message file
QXMLMSG, *LIBL. If you want to change either the message file name or explicitly qualify the library
to match your product needs, you must edit the following .cpp files prior to your build.

<full path to Xerces C++>/src/util/MsgLoaders/MsgFile/MsgLoader.cpp

<full path to Xerces C++>/src/util/Platforms/OS400/OS400PlatformUtils.cpp

Troubleshooting:

If you are using the parser and are failing to get any message text for error codes, it may be because of the
*LIBL resolution of the message file.

Building Samples on AS/400

qsh

cd <full path to Xerces C++>/samples

runConfigure -p os400 -x icc -c icc

gmake -e

Troubleshooting:

If you take a 'sed' error, while trying to make the samples. This is an AS400 anomaly having to do
with certain new line character and the sed function. A temporary work around is to use EDTF on the
configure stream file (../samples/configure) and delete the following line near the bottom:
s%@DEFS@%$DEFS%g.

Building Xerces C++ on Macintosh
The Xerces C++ Mac port has the key following attributes:

1. Built atop CoreServices APIs and a limited number of Carbon APIs; supports builds for both Mac
OS Classic, Carbon, and Mac OS X systems.

2. Has a Mac OS native transcoder that utilizes the built-in Mac OS Unicode converter
[MacOSUnicodeConverter].

3. Has a Mac OS native netaccessor that utilizes the built-in Mac OS URLAccess routines
[MacOSURLAccess].

4. Supports builds from Metroworks CodeWarrior, Apple Project Builder, and Mac OS X shell.

Using Xerces C++ with CodeWarrior

Chapter 3 - Build Instructions Xerces C++ Documentation

- 18-

Xerces C++ and CodeWarrior:

Xerces C++ may be built with CodeWarrior under Mac OS Classic or Mac OS X. Since the Xerces C++
code contains some files with very long names, and CodeWarrior does not yet support use of files with
such long names, the installation in this case is somewhat involved.

Installing Xerces C++ for use with CodeWarrior:

For compatibility with CodeWarrior, it is necessary to adjust some of the file names (and referencing
include statements). To do this, it is necessary to perform the following steps on a unix (or Mac OS X)
machine that has support for long file names (a Windows machine may also work):

· Retrieve Xerces C++ from CVS, or untar a packaged build. Note that these steps should not be
performed in a Classic Mac OS environment, as file names would then be mangled at this point!

· Xerces C++ comes with a tool that will shorten file names as appropriate, and fix up referencing
include statements. Duplicate the file Projects/MacOS/ShortenFiles.pl to the xercesc main directory
(the same directory that contains the Projects directory). Executing this perl script from this location
will create a new directory MacSrc that contains patched up versions of files from the src directory.

cd <xercescroot>

cp Projects/MacOS/ShortenFiles.pl .

perl ShortenFiles.pl

· The source files will likely not now have proper Mac OS type/creator attribution. CodeWarrior badly
wants this to be correct. So set the type/creator of these files somehow. The following should work
from Mac OS X (but if you're not going to keep building on a Mac OS X machine, you may well need
to perform this step in some other way once you get the files onto your classic machine).

find . \(-name "*.c" -or -name "*.h" -or -name "*.cpp" -or -name "*.hpp" -or \

-name "*.xml" \) -print0 | xargs -0 /Developer/Tools/SetFile -c CWIE -t TEXT

· Move the entire directory structure to your Mac OS machine.

Building Xerces C++ with CodeWarrior:
· Run CodeWarrior (tested with latest CW Pro 6.2).
· Import the project Projects/MacOS/CodeWarrior/XercesLib/XercesLib.mcp.xml, saving it back out to

the same directory as XercesLib.mcp.
· This project contains five build targets that build all combinations of classic, carbon, debug, and

release versions, with an all target that builds all of these. Build any or all of these.
· Note that the Carbon targets contain an access path for a Carbon Support folder in the compiler folder.

Up-to-date Apple headers and libraries are required. Either create a Carbon Support folder with
recent headers and libraries or, if your MacOS Support folder is up to date, point the access path to
this, or make an alias to it called "Carbon Support".

Building Xerces C++ Samples with CodeWarrior:

A CodeWarrior project is included that builds the DOMPrint sample. This may be used as an example
from which to build additional sample projects. Please read the following important notes:

· Once again, it is required that you import the .xml version of the project file, and save it back out.
· The Xerces C++ sample programs are written to assume a command line interface. To avoid making

Macintosh-specific changes to these command line programs, we have opted to instead require that
you make a small extension to your CodeWarrior runtime that supports such command line programs.
Please read and follow the usage notes in XercesSampleSupport/XercesSampleStartupFragment.c.

Building Xerces C++ with Project Builder
Projects are included to build the Xerces C++ library and DOMPrint sample under Apple's Project
Builder for Mac OS X. The following notes apply:

Chapter 3 - Build Instructions Xerces C++ Documentation

- 19-

· Since you are running under Mac OS X, and if you are not also performing CodeWarrior builds, it is
not necessary to shorten file names or set the type/creator codes as required for CodeWarrior.

· The Project Builder project builds XercesLib as the framework Xerces.framework. This framework,
however, does not currently include a correct set of public headers. Any referencing code must have
an include path directive that points into the Xerces C++ src directory.

· The DOMPrint project illustrates one such usage of the Xerces.framework.

Building Xerces C++ from the Mac OS X command line
Support for Mac OS X command line builds is now included in the standard "unix" Xerces C++ build
infrastructure.

· In general, the Mac OS X command line build follows the generic unix build instructions. You need
to set your XERCESCROOT environment variable, ./runConfigure, and make.

setenv XERCESCROOT "<directory>"

cd src

./runConfigure -p macosx -n native

make

· Similar instructions apply to build the samples and tests, though the -n flag is not used in these cases:

cd samples

./runConfigure -p macosx

make

Special usage information for Xerces C++ on the Macintosh
File Path Specification

Apart from the build instructions, above, the most important note about use of Xerces C++ on the
Macintosh is that Xerces C++ expects all filename paths to be specified in unix syntax. If running
natively under a Mac OS X system, this path will be the standard posix path as expected by the shell. The
easiest means of creating and interpreting these paths will be through the routines
XMLCreateFullPathFromFSRef and XMLParsePathToFSRef as declared in the file
MacOSPlatformUtils.hpp. FSSpec variants of these routines are also supplied.

Mac OS Version Compatibility

Xerces C++ requires that several key components of the Mac OS be relatively up to date. It should be
readily compatible with any system above Mac OS 9.0. Compatibility with earlier systems may perhaps
be achieved if you can install appropriate components.

Required components are:

· Unicode Converter and Text Encoding Converter. These provide the base transcoding service used to
support Xerces C++ transcoding requirements.

Optional components are:

· URLAccess. Provides NetAccessor support to Xerces C++ for use in fetching network referenced
entities. If URLAccess is not installed, any such references will fail; the absence of URLAccess,
however, will not in itself prevent Xerces C++ from running.

· Multiprocessing library. Provides mutual exclusion support. Once again, the routines will back down
gracefully if Multiprocessing support is not available.

· HFS+ APIs. If HFS+ APIs are available, all file access is performed using the HFS+ fork APIs to
support long file access, and to support long unicode compliant file names. In the absence of HFS+
APIs, classic HFS APIs are used instead.

Chapter 3 - Build Instructions Xerces C++ Documentation

- 20-

Other Build Instructions
Building Xerces C++ with ICU using bundled Perl scripts on Windows
As mentioned earlier, Xerces C++ may be built in stand-alone mode using native encoding support and
also using ICU where you get support over 180 different encodings. ICU stands for International
Components for Unicode and is an open source distribution from IBM. You can get ICU libraries [11]

from IBM's developerWorks site [18] or go to the ICU download page [19] directly.

Note: Important: Please remember that ICU and Xerces C++ must be built with the same
compiler, preferably with the same version. You cannot for example, build ICU with a threaded
version of the xlC compiler and build Xerces C++ with a non-threaded one.

There are two options to build Xerces C++ with ICU. One is to use the MSDEV GUI environment, and
the other is to invoke the compiler from the command line.

Using, the GUI environment, requires one to edit the project files. Here, we will describe only the second
option. It involves using the perl script 'packageBinaries.pl'.

Prerequisites:
· Perl 5.004 or higher
· Cygwin tools or MKS Toolkit
· zip.exe

Extract Xerces C++ source files from the .zip archive using WinZip, say in the root directory (an arbitrary
drive x:). It should create a directory like 'x:\xerces-c-src1_5_1'.

Extract the ICU files, using WinZip, in root directory of the disk where you have installed Xerces C++,
sources. After extraction, there should be a new directory 'x:\icu' which contains all the ICU source
files.

Start a command prompt to get a new shell window. Make sure you have perl, cygwin tools (uname, rm,
cp, ...), and zip.exe somewhere in the path. Next setup the environment for MSVC using
VCVARS32.BAT' or a similar file. Then at the prompt enter:

set XERCESCROOT=x:\xerces-c-src1_5_1

set ICUROOT=x:\icu

cd x:\xerces-c-src1_5_1\scripts

perl packageBinaries.pl -s x:\xerces-c-src1_5_1 -o x:\temp\xerces-c1_5_1-win32

-t icu

(Match the source directory to your system; the target directory can be anything you want.)

If everything is setup right and works right, then you should see a binary drop created in the target
directory specified above. This script will build both ICU and Xerces C++, copy the files (relevant to the
binary drop) to the target directory.

For a description of options available, you can enter:

perl packageBinaries.pl

Building Xerces C++ COM Wrapper on Windows
To build the COM module for use with XML on Windows platforms, you must first set up your machine
appropriately with necessary tools and software modules and then try to compile it. The end result is an
additional library that you can use along with the standard Xerces C++ for writing VB templates or for
use with IE 5.0 using JavaScript.

Setting up your machine for COM

Chapter 3 - Build Instructions Xerces C++ Documentation

- 21-

http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/developerworks/opensource/
http://oss.software.ibm.com/developerworks/opensource/
http://oss.software.ibm.com/developerworks/opensource/
http://oss.software.ibm.com/icu/download/index.html
http://oss.software.ibm.com/icu/download/index.html

To build the COM project you will need to install the MS PlatformSDK. Some of the header files we use
don't come with Visual C++ 6.0. You may download it from Microsoft's Website at
http://www.microsoft.com/msdownload/platformsdk/setuplauncher.htm or directly FTP it from
ftp://ftp.microsoft.com/developr/PlatformSDK/April2000/Msi/WinNT/x86/InstMsi.exe.

The installation is huge, but you don't need most of it. So you may do a custom install by just selecting
"Build Environment" and choosing the required components. First select the top level Platform SDK.
Then click the down arrow and make all of the components unavailable. Next open the "Build
Environment" branch and select only the following items:

· Win32 API
· Component Services
· Web Services - Internet Explorer

Important: When the installation is complete you need to update VC6's include path to include
..\platformsdk\include\atl30. You do this by choosing "Tools - > Options - > Directories".
This path should be placed second after the normal PlatformSDK include. You change the order of the
paths by clicking the up and down arrows.

Note: The order in which the directories appear on your path is important. Your first include
path should be ..\platformsdk\include. The second one should be
..\platformsdk\include\atl30.

Building COM module for Xerces C++
Once you have set up your machine, build Xerces C++ COM module by choosing the project named
'xml4com' inside the workspace. Then select your build mode to be xml4com - Win32 Release
MinDependency. Finally build the project. This will produce a DLL named xerces-com.dll which
needs to be present in your path (on local machine) before you can use it.

Testing the COM module
There are some sample test programs in the test/COMTest directory which show examples of
navigating and searching an XML tree using DOM. You need to browse the HTML files in this directory
using IE 5.0. Make sure that your build has worked properly, specially the registration of the ActiveX
controls that happens in the final step.

You may also want to check out the NIST DOM test suite at http://xw2k.sdct.itl.nist.gov/BRADY/DOM/.
You will have to modify the documents in the NIST suite to load the Xerces COM object instead of the
MSIE COM object.

Building User Documentation
The user documentation (this very page that you are reading on the browser right now), was generated
using an XML application called StyleBook. This application makes use of Xerces-J and Xalan to create
the HTML file from the XML source files. The XML source files for the documentation are part of the
Xerces C++ module. These files reside in the doc directory.

Pre-requisites for building the user documentation are:
· JDK 1.2.2 (or later).
· Xerces-J 1.0.1.bundled
· Xalan-J 0.19.2.bundled
· Stylebook 1.0-b2. bundled
· The Apache Style files (dtd's and .xsl files).bundled

Invoke a command window and setup PATH to include the JDK 1.2.2 bin directory

Next, cd to the Xerces C++ source drop root directory, and enter

Chapter 3 - Build Instructions Xerces C++ Documentation

- 22-

· Under Windows:

createDocs
· Under Unix's:

sh createDocs.bat

This should generate the .html files in the 'doc/html' directory.

I wish to port Xerces to my favourite platform. Do you have any suggestions?
All platform dependent code in Xerces has been isolated to a couple of files, which should ease the
porting effort. Here are the basic steps that should be followed to port Xerces.

1. The directory src/util/Platforms contains the platform sensitive files while
src/util/Compilers contains all development environment sensitive files. Each operating
system has a file of its own and each development environment has another one of its own too.

As an example, the Win32 platform as a Win32Defs.hpp file and the Visual C++ environment
has a VCPPDefs.hpp file. These files set up certain define tokens, typedefs, constants, etc... that
will drive the rest of the code to do the right thing for that platform and development environment.
AIX/CSet have their own AIXDefs.hpp and CSetDefs.hpp files, and so on. You should
create new versions of these files for your platform and environment and follow the comments in
them to set up your own. Probably the comments in the Win32 and Visual C++ will be the best to
follow, since that is where the main development is done.

2. Next, edit the file XercesDefs.hpp, which is where all of the fundamental stuff comes into the
system. You will see conditional sections in there where the above per-platform and
per-environment headers are brought in. Add the new ones for your platform under the appropriate
conditionals.

3. Now edit AutoSense.hpp. Here we set canonical Xerces internal #define tokens which
indicate the platform and compiler. These definitions are based on known platform and compiler
defines.

AutoSense.hpp is included in XercesDefs.hpp and the canonical platform and compiler
settings thus defined will make the particular platform and compiler headers to be the included at
compilation.

It might be a little tricky to decipher this file so be careful. If you are using say another compiler on
Win32, probably it will use similar tokens so that the platform will get picked up already using what
is already there.

4. Once this is done, you will then need to implement a version of the platform utilities for your
platform. Each operating system has a file which implements some methods of the
XMLPlatformUtils class, specific to that operating system. These are not terribly complex, so it
should not be a lot of work. The Win32 verions is called Win32PlatformUtils.cpp, the AIX
version is AIXPlatformUtils.cpp and so on. Create one for your platform, with the correct
name, and empty out all of the implementation so that just the empty shells of the methods are there
(with dummy returns where needed to make the compiler happy.) Once you've done that, you can
start to get it to build without any real implementation.

5. Once you have the system building, then start implementing your own platform utilties methods.
Follow the comments in the Win32 version as to what they do, the comments will be improved in
subsequent versions, but they should be fairly obvious now. Once you have these implementations
done, you should be able to start debugging the system using the demo programs.

Other concerns are:

· Does ICU compile on your platform? If not, then you'll need to create a transcoder implementation
that uses your local transcoding services. The Iconv transcoder should work for you, though perhaps
with some modifications.

Chapter 3 - Build Instructions Xerces C++ Documentation

- 23-

· What message loader will you use? To get started, you can use the "in memory" one, which is very
simple and easy. Then, once you get going, you may want to adapt the message catalog message
loader, or write one of your own that uses local services.

That is the work required in a nutshell!

What should I define XMLCh to be?
XMLCh should be defined to be a type suitable for holding a utf-16 encoded (16 bit) value, usually an
unsigned short.

All XML data is handled within Xerces C++ as strings of XMLCh characters. Regardless of the size of
the type chosen, the data stored in variables of type XMLCh will always be utf-16 encoded values.

Unlike XMLCh, the encoding of wchar_t is platform dependent. Sometimes it is utf-16 (AIX, Windows),
sometimes ucs-4 (Solaris, Linux), sometimes it is not based on Unicode at all (HP/UX, AS/400, system
390).

Some earlier releases of xerce-c defined XMLCh to be the same type as wchar_t on most platforms, with
the goal of making it possible to pass XMLCh strings to library or system functions that were expecting
wchar_t paramters. This approach has been abandonded because of

· Portability problems with any code that assumes that the types of XMLCh and wchar_t are compatible
· Excessive memory usage, especially in the DOM, on platforms with 32 bit wchar_t.
· utf-16 encoded XMLCh is not always compatible with ucs-4 encoded wchar_t on Solaris and Linux.

The problem occurs with Unicode characters with values greater than 64k; in ucs-4 the value is stored
as a single 32 bit quatity. With utf-16, the value will be stored as a "surrogate pair" of two 16 bit
values. Even with XMLCh equated to wchar_t, xerces will still create the utf-16 encoded surrogate
pairs, which are illegal in ucs-4 encoded wchar_t strings.

Where can I look for more help?
If you have read this page, followed the instructions, and still cannot resolve your problem(s), there is
more help. You can find out if others have solved this same problem before you, by checking the Apache
XML mailing list archives at http://archive.covalent.net [20] and the Bugzilla [21] Apache bug database.

Chapter 3 - Build Instructions Xerces C++ Documentation

- 24-

http://archive.covalent.net
http://nagoya.apache.org/bugzilla/

4
API Documentation

API Docs for SAX and DOM
Xerces C++ is packaged with the API documentation for SAX and DOM, the two most common
programming interfaces for XML. The most common framework classes have also been documented.

Xerces C++ DOM is an implementation of the Document Object Model (Core) Level 1 [3] as defined in
the W3C Recommendation of 1 October, 1998; and Document Object Model (Core) Level 2 [4] as defined
in the W3C Recommendation of 13 November, 2000. For a complete understanding of how the Xerces
C++ APIs work, we recommend you to read these documents.

Xerces C++ SAX is an implementation of the SAX 1.0/2.0 [6] specification. You are encouraged to read
this document for a better understanding of the SAX API in Xerces C++.

See the Xerces C++ API documentation. for more details.

Note: The API documentation is automatically generated using doxygen [22] and
GraphViz [23] .

- 25-

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.megginson.com/SAX/index.html
http://www.megginson.com/SAX/index.html
http://www.stack.nl/~dimitri/doxygen/
http://www.research.att.com/sw/tools/graphviz/

5
Xerces C++ Samples

Building the Samples
Xerces C++ comes packaged with ten sample applications that demonstrate salient features of the parser
using simple applications written on top of the SAX and DOM APIs provided by the parser.

Once you have set up your PATH variable, you can run the samples by opening a command window (or
your shell prompt for UNIX environments). Sample XML data files are provided in the samples/data
directory.

The installation process for the samples is same on all UNIX platforms. Note that runConfigure is just a
helper script and you are free to use ./configure with the correct parameters to make it work on any
platform-compiler combination of your choice. The script needs the following parameters:

Usage: runConfigure "options"

where options may be any of the following:

-p <platform> (accepts 'aix', 'linux', 'solaris', 'hp-10', 'hp-11')

-c <C compiler name> (e.g. gcc, xlc_r, cc or aCC)

-x <C++ compiler name> (e.g. g++, xlC_r, CC or aCC)

-d (specifies that you want to build debug version)

-h (get help on the above commands)

Note: NOTE:The code samples in this section assume that you are are working on the
Linux binary drop. If you are using some other UNIX flavor, please replace '-linux' with
the appropriate platform name in the code samples.

Building the Samples for OS2
Building the Xerces C++ samples using IBM Visual Age C++ Professional 4.0 for OS/2 (VAC++).

· In the XercesCSrcInstallDir;\samples\Projects\OS2\VACPP40 directory, find and
edit the VAC++ configuration file basedir.icc.

· All of the directories used to build the samples are defined in basedir.icc. You need to edit the
directories to match your system. Here are the directories you need to assign: SRC_DIR --
XercesCSrcInstallDir; This is where VAC++ should look to find the samples directories
containing the source files. BASE_DIR -- The install directory XercesCSrcInstallDir;.
VAC++ will store the compiled samples in the bin directory under BASE_DIR. It will also look for
the xerces-c.lib file in the lib directory under BASE_DIR. Other directories are set based on
these two. You can choose to override them if you wish.

· Save basedir.icc
· Start the Command Line in the VAC++ folder.
· Navigate to the XercesCSrcInstallDir;\samples\Projects\OS2\VACPP40 directory.

- 26-

· Run bldsamples.cmd
· When build.cmd finishes, review the file compiler.errors. This file should contain only

informational messages, almost all complaining about constant values in comparisons.
· You should now have several executable files.

Rebuilding the Configuration Files

Although it shouldn't be necessary, if you want to rebuild the VAC++ configuration files, you'll need to
have Object Rexx running on your system:

· If you are not currently running Object Rexx, run the SWITCHRX command from a command line,
answer "yes" to switching to Object Rexx, and follow the instructions to reboot. (Note: You can
switch back to "Classic Rexx" by running SWITCHRX again. But you probably won't need to switch
back since Object Rexx runs almost 100% of Classic Rexx programs.)

· In the Projects\OS2\VACPP40 directory, run genICC.cmd. This builds the VAC++ configuration files
for the samples you have on your system.

· Go to the first step above in the "Building asmples for OS/2" section.

Running the Samples
The sample applications are dependent on the Xerces C++ shared library (and could also depend on the
ICU library if you built Xerces C++ with ICU). Therefore, on Windows platforms you must make sure
that your PATH environment variable is set properly to pick up these shared libraries at runtime.

On UNIX platforms you must ensure that LIBPATH environment variable is set properly to pick up the
shared libraries at runtime. (UNIX gurus will understand here that LIBPATH actually translates to
LD_LIBRARY_PATH on Solaris and Linux, SHLIB_PATH on HP-UX and stays as LIBPATH on
AIX).

To set you LIBPATH (on AIX for example), you would type:

export LIBPATH=xerces-c1_5_1/lib:$LIBPATH

Xerces C++ Samples
· SAXCount

SAXCount counts the elements, attributes, spaces and characters in an XML file.
· SAXPrint

SAXPrint parses an XML file and prints it out.
· DOMCount

DOMCount counts the elements in a XML file.
· DOMPrint

DOMPrint parses an XML file and prints it out.
· MemParse

MemParse parses XML in a memory buffer, outputing the number of elements and attributes.
· Redirect

Redirect redirects the input stream for external entities.
· PParse

PParse demonstrates progressive parsing.
· StdInParse

StdInParse demonstrates streaming XML data from standard input.
· EnumVal

EnumVal shows how to enumerate the markup decls in a DTD Validator.
· CreateDOMDocument

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 27-

CreateDOMDocument creates a DOM tree in memory from scratch.
· SAX2Count

SAX2Count counts the elements, attributes, spaces and characters in an XML file.
· SAX2Print

SAX2Print parses an XML file and prints it out.
· IDOMCount

IDOMCount counts the elements in a XML file.
· IDOMPrint

IDOMPrint parses an XML file and prints it out.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 28-

Xerces C++ Sample 1: SAXCount

SAXCount
SAXCount is the simplest application that counts the elements and characters of a given XML file using
the (event based) SAX API.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked SAXCount.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd SAXCount

gmake

This will create the object files in the current directory and the executable named SAXCount in
'xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running SAXCount
The SAXCount sample parses an XML file and prints out a count of the number of elements in the file.
To run SAXCount, enter the following

SAXCount <XML File>

The following parameters may be set from the command line

Usage:

SAXCount [options] <XML file>

Options:

-v=xxx Validation scheme [always | never | auto*]

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

This program prints the number of elements, attributes,

white spaces and other non-white space characters in the input file.

* = Default if not provided explicitly

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration is present in the XML document

Here is a sample output from SAXCount

cd xerces-c1_5_1-linux/samples/data

SAXCount -v=always personal.xml

personal.xml: 60 ms (37 elems, 12 attrs, 134 spaces, 134 chars)

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 29-

Running SAXCount with the validating parser gives a different result because ignorable white-space is
counted separately from regular characters.

SAXCount -v=never personal.xml

personal.xml: 10 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

Note that the sum of spaces and chracters in both versions is the same.

Note: The time reported by the program may be different depending on your machine
processor.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 30-

Xerces C++ Sample 2: SAXPrint

SAXPrint
SAXPrint uses the SAX APIs to parse an XML file and print it back. Do note that the output of this
sample is not exactly the same as the input (in terms of whitespaces, first line), but the output has the
same information content as the input.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked SAXPrint.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd SAXPrint

gmake

This will create the object files in the current directory and the executable named SAXPrint in
'xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running SAXPrint
The SAXPrint sample parses an XML file and prints out the contents again in XML (some loss occurs).
To run SAXPrint, enter the following

SAXPrint <XML file>

The following parameters may be set from the command line

Usage: SAXPrint [options] file

This program prints the data returned by the various SAX

handlers for the specified input file. Options are NOT case

sensitive.

Options:

-u=xxx Handle unrepresentable chars [fail | rep | ref*]

-v=xxx Validation scheme [always | never | auto*]

-n Enable namespace processing.

-s Enable schema processing.

-x=XXX Use a particular encoding for output (LATIN1*).

-? Show this help

* = Default if not provided explicitly

The parser has intrinsic support for the following encodings:

UTF-8, USASCII, ISO8859-1, UTF-16[BL]E, UCS-4[BL]E,

WINDOWS-1252, IBM1140, IBM037

-u=fail will fail when unrepresentable characters are encountered

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 31-

-u=rep will replace with the substitution character for that codepage

-u=ref will report the character as a reference

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration is present in the XML document

Here is a sample output from SAXPrint

cd xerces-c1_5_1-linux/samples/data

SAXPrint -v=always personal.xml

<?xml version="1.0" encoding="LATIN1"?>

<personnel>

<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

<link subordinates="one.worker two.worker three.worker

four.worker five.worker"></link>

</person>

<person id="one.worker">

<name><family>Worker</family> <given>One</given></name>

<email>one@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="two.worker">

<name><family>Worker</family> <given>Two</given></name>

<email>two@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="three.worker">

<name><family>Worker</family> <given>Three</given></name>

<email>three@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="four.worker">

<name><family>Worker</family> <given>Four</given></name>

<email>four@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="five.worker">

<name><family>Worker</family> <given>Five</given></name>

<email>five@foo.com</email>

<link manager="Big.Boss"></link>

</person>

</personnel>

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 32-

Note: SAXPrint does not reproduce the original XML file. SAXPrint and DOMPrint
produce different results because of the way the two APIs store data and capture
events.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 33-

Xerces C++ Sample 3: DOMCount

DOMCount
DOMCount uses the provided DOM API to parse an XML file, constructs the DOM tree and walks
through the tree counting the elements (using just one API call).

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked DOMCount.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd DOMCount

gmake

This will create the object files in the current directory and the executable named DOMCount in '
xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running DOMCount
The DOMCount sample parses an XML file and prints out a count of the number of elements in the file.
To run DOMCount, enter the following

DOMCount <XML file>

The following parameters may be set from the command line

Usage:

DOMCount [-v -n] {XML file}

This program invokes the XML4C DOM parser, builds

the DOM tree, and then prints the number of elements

found in the input XML file.

Options:

-v=xxx Validation scheme [always | never | auto*]

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

* = Default if not provided explicitly

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration is present in the XML document

Here is a sample output from DOMCount

cd xerces-c1_5_1-linux/samples/data

DOMCount -v=always personal.xml

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 34-

personal.xml: 20 ms (37 elems)

The output of both versions should be same.

Note: The time reported by the system may be different, depending on your processor
type.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 35-

Xerces C++ Sample 4: DOMPrint

DOMPrint
DOMPrint parses an XML file, constructs the DOM tree, and walks through the tree printing each
element. It thus dumps the XML back (output same as SAXPrint).

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked DOMPrint.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd DOMPrint

gmake

This will create the object files in the current directory and the executable named DOMPrint in
'xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running DOMPrint
The DOMPrint sample parses an XML file, using either a validating or non-validating DOM parser
configuration, builds a DOM tree, and then walks the tree and outputs the contents of the nodes in a
'canonical' format. To run DOMPrint, enter the following:

DOMPrint <XML file>

The following parameters may be set from the command line

Usage: DOMPrint [options] file

This program invokes the Xerces C++ DOM parser and builds the DOM

tree. It then traverses the DOM tree and prints the contents

of the tree. Options are NOT case sensitive.

Options:

-e create entity reference nodes. Default is no expansion.

-u=xxx Handle unrepresentable chars [fail | rep | ref*]

-v=xxx Validation scheme [always | never | auto*]

-n Enable namespace processing. Default is off.

-s Enable schema processing. Default is off.

-x=XXX Use a particular encoding for output. Default is

the same encoding as the input XML file. UTF-8 if

input XML file has not XML declaration.

-? Show this help (must be the only parameter)

* = Default if not provided explicitly

The parser has intrinsic support for the following encodings:

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 36-

UTF-8, USASCII, ISO8859-1, UTF-16[BL]E, UCS-4[BL]E,

WINDOWS-1252, IBM1140, IBM037

-u=fail will fail when unrepresentable characters are encountered

-u=rep will replace with the substitution character for that codepage

-u=ref will report the character as a reference

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration is present in the XML document

Here is a sample output from DOMPrint

cd xerces-c1_5_1-linux/samples/data

DOMPrint -v personal.xml

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE personnel SYSTEM "personal.dtd">

<!-- @version: -->

<personnel>

<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

<link subordinates="one.worker two.worker three.worker

four.worker five.worker"></link>

</person>

<person id="one.worker">

<name><family>Worker</family> <given>One</given></name>

<email>one@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="two.worker">

<name><family>Worker</family> <given>Two</given></name>

<email>two@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="three.worker">

<name><family>Worker</family> <given>Three</given></name>

<email>three@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="four.worker">

<name><family>Worker</family> <given>Four</given></name>

<email>four@foo.com</email>

<link manager="Big.Boss"></link>

</person>

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 37-

<person id="five.worker">

<name><family>Worker</family> <given>Five</given></name>

<email>five@foo.com</email>

<link manager="Big.Boss"></link>

</person>

</personnel>

Note that DOMPrint does not reproduce the original XML file. DOMPrint and SAXPrint produce
different results because of the way the two APIs store data and capture events.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 38-

Xerces C++ Sample 5: MemParse

MemParse
MemParse uses the Validating SAX Parser to parse a memory buffer containing XML statements, and
reports the number of elements and attributes found.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked MemParse.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd MemParse

gmake

This will create the object files in the current directory and the executable named MemParse in
'xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running MemParse
This program uses the SAX Parser to parse a memory buffer containing XML statements, and reports the
number of elements and attributes found.

MemParse [-v]

The -v option is used to invoke the Validating SAX Parser instead. When invoked with a validating
parser:

cd xerces-c1_5_1-linux/samples/data

MemParse -v

The output is the following:

Finished parsing the memory buffer containing the following XML statements:

<?xml version='1.0' encoding='ascii'?>

<!DOCTYPE company [

<!ELEMENT company (product,category,developedAt)>

<!ELEMENT product (#PCDATA)>

<!ELEMENT category (#PCDATA)>

<!ATTLIST category idea CDATA #IMPLIED>

<!ELEMENT developedAt (#PCDATA)>

]>

<company>

<product>XML4C</product>

<category idea='great'>XML Parsing Tools</category>

<developedAt>

IBM Center for Java Technology, Silicon Valley, Cupertino, CA

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 39-

</developedAt>

</company>

Parsing took 0 ms (4 elements, 1 attributes, 16 spaces, 95 characters).

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 40-

Xerces C++ Sample 6: Redirect

Redirect
Redirect uses the SAX EntityResolver handler to redirect the input stream for external entities. It installs
an entity resolver, traps the call to the external DTD file and redirects it to another specific file which
contains the actual DTD.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked Redirect.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd Redirect

gmake

This will create the object files in the current directory and the executable named Redirect in
'xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running Redirect
This program illustrates how a XML application can use the SAX EntityResolver handler to redirect the
input stream for external entities. It installs an entity resolver, traps the call to the external DTD file and
redirects it to another specific file which contains the actual DTD.

The program then counts and reports the number of elements and attributes in the given XML file.

Redirect <XML file>

Redirect is invoked as follows:

cd xerces-c1_5_1-linux/samples/data

Redirect personal.xml

The output is the following:

cd xerces-c1_5_1-linux/samples/data

Redirect personal.xml

personal.xml: 30 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

External files required to run this sample are 'personal.xml', 'personal.dtd' and 'redirect.dtd', which are all
present in the 'samples/data' directory. Make sure that you run redirect in the samples/data directory.

The 'resolveEntity' callback in this sample looks for an external entity with system id as 'personal.dtd'.
When it is asked to resolve this particular external entity, it creates and returns a new InputSource for the
file 'redirect.dtd'.

A real-world XML application can similarly do application specific processing when encountering
external entities. For example, an application might want to redirect all references to entities outside of its
domain to local cached copies.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 41-

Xerces C++ Sample 7: PParse

PParse
PParse demonstrates progressive parsing.

In this example, the programmer doesn't have to depend upon throwing an exception to terminate the
parsing operation. Calling parseFirst() will cause the DTD to be parsed (both internal and external
subsets) and any pre-content, i.e. everything up to but not including the root element. Subsequent calls to
parseNext() will cause one more piece of markup to be parsed, and spit out from the core scanning code
to the parser. You can quit the parse any time by just not calling parseNext() anymore and breaking out of
the loop. When you call parseNext() and the end of the root element is the next piece of markup, the
parser will continue on to the end of the file and return false, to let you know that the parse is done.

Building on Windows
Load the xerces-c1_5_1win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked PParse.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd PParse

gmake

This will create the object files in the current directory and the executable named PParse in '
xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type:

gmake clean

Running PParse
The program looks for the first 16 elements of the XML file, and reports if successful.

PParse <XML file>

Usage: PParse [options] <file>

This sample program demonstrates the progressive parse capabilities of

the parser system. It allows you to do a scanFirst() call followed by

a loop which calls scanNext(). You can drop out when you've found what

ever it is you want. In our little test, our event handler looks for

16 new elements then sets a flag to indicate its found what it wants.

At that point, our progressive parse loop exits.

Options:

-v=xxx - Validation scheme [always | never | auto*]

-n - Enable namespace processing [default is off]

-s - Enable schema processing [default is off]

-? - Show this help (must be the only parameter)

* = Default if not provided explicitly

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 42-

The output is the following:

cd xerces-c1_5_1-linux/samples/data

PParse personal.xml

Got the required 16 elements.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 43-

Xerces C++ Sample 8: StdInParse

StdInParse
StdInParse demonstrates streaming XML data from standard input.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked StdInParse.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd StdInParse

gmake

This will create the object files in the current directory and the executable named StdInParse in '
xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type:

gmake clean

Running StdInParse
The StdInParse sample parses an XML file and prints out a count of the number of elements in the file.
To run StdInParse, enter the following:

StdInParse < <XML file>

The following parameters may be set from the command line

Usage:

StdInParse [options]

-v=xxx Validation scheme [always | never | auto]

-n Enable namespace processing. [default is off]

-s Enable schema processing. [default is off]

-? Show this help

* = Default if not provided explicitly

This program allows you to redirect a file into the program

to be parsed. It will count the elements, characters, and

spaces and display these stats at the end

Here is a sample output from StdInParse:

cd xerces-c1_5_1-linux/samples/data

StdInParse < personal.xml

stdin: 60 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

Note: The time reported by the program may be different depending on your machine
processor.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 44-

Xerces C++ Sample 9: EnumVal

EnumVal
EnumVal shows how to enumerate the markup decls in a DTD Validator.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked EnumVal.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd EnumVal

gmake

This will create the object files in the current directory and the executable named EnumVal in '
xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running EnumVal
This program parses a file, then shows how to enumerate the contents of the validator pools. To run
EnumVal, enter the following

EnumVal <XML file>

Here is a sample output from EnumVal

cd xerces-c1_5_1-linux/samples/data

EnumVal personal.xml

ELEMENTS:

Name: personnel

Content Model: (person)+

Name: person

Content Model: (name,email*,url*,link?)

Attributes:

Name:id, Type: ID

Name: name

Content Model: (#PCDATA|family|given)*

Name: email

Content Model: (#PCDATA)*

Name: url

Content Model: EMPTY

Attributes:

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 45-

Name:href, Type: CDATA

Name: link

Content Model: EMPTY

Attributes:

Name:subordinates, Type: IDREF(S)

Name:manager, Type: IDREF(S)

Name: family

Content Model: (#PCDATA)*

Name: given

Content Model: (#PCDATA)*

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 46-

Xerces C++ Sample 10: CreateDOMDocument

CreateDOMDocument
CreateDOMDocument, illustrates how you can create a DOM tree in memory from scratch. It then reports
the elements in the tree that was just created.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked CreateDOMDocument.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd CreateDOMDocument

gmake

This will create the object files in the current directory and the executable named CreateDOMDocument
in ' xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running CreateDOMDocument
The CreateDOMDocument sample illustrates how you can create a DOM tree in memory from scratch.
To run CreateDOMDocument, enter the following

CreateDOMDocument

Here is a sample output from CreateDOMDocument

cd xerces-c1_5_1-linux/samples/data

CreateDOMDocument

The tree just created contains: 4 elements.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 47-

Xerces C++ Sample 11: SAX2Count

SAX2Count
SAX2Count is the simplest application that counts the elements and characters of a given XML file using
the (event based) SAX2 API.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked SAX2Count.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd SAX2Count

gmake

This will create the object files in the current directory and the executable named SAX2Count in
'xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running SAX2Count
The SAX2Count sample parses an XML file and prints out a count of the number of elements in the file.
To run SAX2Count, enter the following

SAX2Count <XML File>

The following parameters may be set from the command line

Usage:

SAX2Count [options] <XML file>

Options:

-v=xxx Validation scheme [always | never | auto*]

-n Enable namespace processing. Defaults to off.

-s Disable schema processing. Defaults to on.

This program prints the number of elements, attributes,

white spaces and other non-white space characters in the input file.

* = Default if not provided explicitly

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration is present in the XML document

Here is a sample output from SAX2Count

cd xerces-c1_5_1-linux/samples/data

SAX2Count -v=always personal.xml

personal.xml: 60 ms (37 elems, 12 attrs, 134 spaces, 134 chars)

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 48-

Running SAX2Count with the validating parser gives a different result because ignorable white-space is
counted separately from regular characters.

SAX2Count -v=never personal.xml

personal.xml: 10 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

Note that the sum of spaces and chracters in both versions is the same.

Note: The time reported by the program may be different depending on your machine
processor.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 49-

Xerces C++ Sample 12: SAX2Print

SAX2Print
SAX2Print uses the SAX2 APIs to parse an XML file and print it back. Do note that the output of this
sample is not exactly the same as the input (in terms of whitespaces, first line), but the output has the
same information content as the input.

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked SAX2Print.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd SAX2Print

gmake

This will create the object files in the current directory and the executable named SAX2Print in
'xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running SAX2Print
The SAX2Print sample parses an XML file and prints out the contents again in XML (some loss occurs).
To run SAX2Print, enter the following

SAX2Print <XML file>

The following parameters may be set from the command line

Usage: SAX2Print [options] file

This program prints the data returned by the various SAX2

handlers for the specified input file. Options are NOT case

sensitive.

Options:

-u=xxx Handle unrepresentable chars [fail | rep | ref*]

-v=xxx Validation scheme [always | never | auto*]

-e Expand Namespace Alias with URI's.

-x=XXX Use a particular encoding for output (LATIN1*).

-? Show this help

* = Default if not provided explicitly

The parser has intrinsic support for the following encodings:

UTF-8, USASCII, ISO8859-1, UTF-16[BL]E, UCS-4[BL]E,

WINDOWS-1252, IBM1140, IBM037

-u=fail will fail when unrepresentable characters are encountered

-u=rep will replace with the substitution character for that codepage

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 50-

-u=ref will report the character as a reference

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration is present in the XML document

Here is a sample output from SAX2Print

cd xerces-c1_5_1-linux/samples/data

SAX2Print -v=always personal.xml

<?xml version="1.0" encoding="LATIN1"?>

<personnel>

<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

<link subordinates="one.worker two.worker three.worker

four.worker five.worker"></link>

</person>

<person id="one.worker">

<name><family>Worker</family> <given>One</given></name>

<email>one@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="two.worker">

<name><family>Worker</family> <given>Two</given></name>

<email>two@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="three.worker">

<name><family>Worker</family> <given>Three</given></name>

<email>three@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="four.worker">

<name><family>Worker</family> <given>Four</given></name>

<email>four@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="five.worker">

<name><family>Worker</family> <given>Five</given></name>

<email>five@foo.com</email>

<link manager="Big.Boss"></link>

</person>

</personnel>

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 51-

Note: SAX2Print does not reproduce the original XML file. SAX2Print and DOMPrint
produce different results because of the way the two APIs store data and capture
events.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 52-

Xerces C++ Sample 13: IDOMCount

IDOMCount
IDOMCount uses the provided IDOM API to parse an XML file, constructs the DOM tree and walks
through the tree counting the elements (using just one API call).

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked IDOMCount.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd IDOMCount

gmake

This will create the object files in the current directory and the executable named IDOMCount in '
xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running IDOMCount
The IDOMCount sample parses an XML file and prints out a count of the number of elements in the file.
To run IDOMCount, enter the following

IDOMCount <XML file>

The following parameters may be set from the command line

Usage:

IDOMCount [-v -n] {XML file}

This program invokes the XML4C IDOM parser, builds

the DOM tree, and then prints the number of elements

found in the input XML file.

Options:

-v=xxx Validation scheme [always | never | auto*]

-n Enable namespace processing. Defaults to off.

* = Default if not provided explicitly

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration is present in the XML document

Here is a sample output from IDOMCount

cd xerces-c1_5_1-linux/samples/data

IDOMCount -v=always personal.xml

personal.xml: 20 ms (37 elems)

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 53-

The output of both versions should be same.

Note: The time reported by the system may be different, depending on your processor
type.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 54-

Xerces C++ Sample 14: IDOMPrint

IDOMPrint
IDOMPrint parses an XML file, constructs the DOM tree, and walks through the tree printing each
element. It thus dumps the XML back (output same as SAXPrint).

Building on Windows
Load the xerces-c1_5_1-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++
workspace inside your MSVC IDE. Then build the project marked IDOMPrint.

Building on UNIX

cd xerces-c1_5_1-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

cd IDOMPrint

gmake

This will create the object files in the current directory and the executable named IDOMPrint in
'xerces-c1_5_1-linux/bin' directory.

To delete all the generated object files and executables, type

gmake clean

Running IDOMPrint
The IDOMPrint sample parses an XML file, using either a validating or non-validating IDOM parser
configuration, builds a DOM tree, and then walks the tree and outputs the contents of the nodes in a
'canonical' format. To run IDOMPrint, enter the following:

IDOMPrint <XML file>

The following parameters may be set from the command line

Usage: IDOMPrint [options] file

This program invokes the Xerces C++ IDOM parser and builds the DOM

tree. It then traverses the DOM tree and prints the contents

of the tree. Options are NOT case sensitive.

Options:

-e Expand entity references. Default is no expansion.

-u=xxx Handle unrepresentable chars [fail | rep | ref*]

-v=xxx Validation scheme [always | never | auto*]

-n Enable namespace processing. Default is off.

-x=XXX Use a particular encoding for output. Default is

the same encoding as the input XML file. UTF-8 if

input XML file has not XML declaration.

-? Show this help (must be the only parameter)

* = Default if not provided explicitly

The parser has intrinsic support for the following encodings:

UTF-8, USASCII, ISO8859-1, UTF-16[BL]E, UCS-4[BL]E,

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 55-

WINDOWS-1252, IBM1140, IBM037

-u=fail will fail when unrepresentable characters are encountered

-u=rep will replace with the substitution character for that codepage

-u=ref will report the character as a reference

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration is present in the XML document

Here is a sample output from IDOMPrint

cd xerces-c1_5_1-linux/samples/data

IDOMPrint -v personal.xml

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE personnel SYSTEM "personal.dtd">

<!-- @version: -->

<personnel>

<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

<link subordinates="one.worker two.worker three.worker

four.worker five.worker"></link>

</person>

<person id="one.worker">

<name><family>Worker</family> <given>One</given></name>

<email>one@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="two.worker">

<name><family>Worker</family> <given>Two</given></name>

<email>two@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="three.worker">

<name><family>Worker</family> <given>Three</given></name>

<email>three@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="four.worker">

<name><family>Worker</family> <given>Four</given></name>

<email>four@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="five.worker">

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 56-

<name><family>Worker</family> <given>Five</given></name>

<email>five@foo.com</email>

<link manager="Big.Boss"></link>

</person>

</personnel>

Note that IDOMPrint does not reproduce the original XML file. IDOMPrint and SAXPrint produce
different results because of the way the two APIs store data and capture events.

Chapter 5 - Xerces C++ Samples Xerces C++ Documentation

- 57-

6
Schema

Disclaimer
Schema is not fully supported in Xerces C++ yet. But an experimental implementation of a subset of the
W3C XML Schema language is now available for review in Xerces C++ 1.5.1. You should not consider
this implementation complete or correct. The limitations of this implementation are detailed below. Please
read this document before using Xerces C++ 1.5.1.

Introduction
The Xerces C++ 1.5.1 contains an implementation of a subset of the W3C XML Schema Language as
specified in the 2 May 2001 Recommendation for Structures [24] and Datatypes [25] . The parsers
contained in this package are able to read and validate XML documents with the grammar specified in
either DTD or XML Schema format.

We intend to update this package until it implements all the functionality of the current XML Schema
Recommendation. If you are interested in a particular unimplemented feature, or if you have any feedback
on the implementation design, we welcome your input to the Xerces-C mailing list
xerces-c-dev@xml.apache.org [15] .

Limitations
The XML Schema implementation in the Xerces C++ 1.5.1 is a subset of the features defined in the 2
May 2001 XML Schema Recommendation.

Features/Datatypes Supported
· Partial Simple type support

· Yes: atomic simple type
· No: union and list

· Partial Complex type suppport
· Yes: choice, sequence
· No: group, all

· Element and Attribute Declaration
· No: any/anyAttribute

· SubsitutionGroup
· Subset of Built-in Datatypes

· Primitive Datatypes
· Derived Datatypes

· xsi Markup
· Yes: xsi:nil

- 58-

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org

· Yes: xsi:schemaLocation and xsi:noNamespaceSchemaLocation
· No: xsi:type

Additional Experimental Features (not tested and subject to change, use as is)
· Complex type derivation support (simpleContent and complexContent).
· Element and attribute re-use using "ref".
· Include support
· Import Support
· Element declaration <any>
· Subset of Built-in Datatypes

· Derived Datatypes

Other features in the Schema recommendation such as "redefine", "identity constraints" and others which
are not mentioned above, are not supported yet. Also, particle and model group constraint checking is not
yet fully implemented. But development is continuing and we target to implement all the features of the
current XML Schema Recommendation before end of this year. Please note that the date is tentative and
subject to change.

Other Limitations
The schema must be specified by the xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute
on the root element of the document. The xsi prefix must be bound to the Schema document instance
namespace, as specified by the Recommendation. See the sample provided in the Usage section.

Usage
XML document specifies the XML Schema grammar location in the xsi:schemaLocation attribute
attached to the root / top-level element. Here is an example with no target namspace:

<?xml version="1.0" encoding="UTF-8"?>

<personnel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation='personal.xsd'>

...

</personnel>

Please see the sample file, 'samples/data/personal-schema.xml' for further detail. And review the sample
file 'samples/data/personal.xsd' for an example of an XML Schema grammar.

Here is an example how to turn on schema processing in DOMParser (default is off). Note that you must
also turn on namespace support (default is off) for schema processing.

// Instantiate the DOM parser.

DOMParser parser;

parser.setDoNamespaces(true);

parser.setDoSchema(true);

parser.parse(xmlFile);

Usage in SAXParser is similar, please refer to the sample program 'samples/SAXCount/SAXCount.cpp'
for further reference.

Here is an example how to turn on schema processing in SAX2XMLReader (default is on). Note that
namespace must be on (default is on) as well.

SAX2XMLReader* parser = XMLReaderFactory::createXMLReader();

parser->setFeature(XMLString::transcode("http://xml.org/sax/features/namespaces"),

Chapter 6 - Schema Xerces C++ Documentation

- 59-

true);

parser->setFeature(XMLString::transcode("http://apache.org/xml/features/validation/schema"),

true);

parser->parse(xmlFile);

Chapter 6 - Schema Xerces C++ Documentation

- 60-

7
Frequently Asked Questions

Distributing Xerces C++
What compilers are being used on the supported platforms?
Xerces binaries has been built on the following platforms with these compilers

Operating System Compiler
Windows NT 4.0 SP5/98 MSVC 6.0 SP3

Redhat Linux 6.1 egcs-2.91.66 and glibc-2.1.2-11

AIX 4.2.1 xlC 3.6.4

Solaris 2.6 CC Workshop 4.2

HP-UX 11.0 aCC A.03.13 with pthreads

What are the differences between Xerces-C and XML4C?
Xerces-C has intrinsic support for ASCII, UTF-8, UTF-16 (Big/Small Endian), UCS4 (Big/Small
Endian), EBCDIC code pages IBM037 and IBM1140 encodings, ISO-8859-1 (aka Latin1) and
Windows-1252. This means that it can parse input XML files in these above mentioned encodings.

However, if you wish to parse XML files in any other encodings, say in Shift-JIS, Big5 etc., then you
cannot use Xerces-C. XML4C addresses this need. It combines Xerces-C and International Components
for Unicode (ICU) [11] and provides support for over 100 different encodings.

ICU is also an open source project but is licensed under the X License [26] . XML4C is published by IBM
and can be downloaded from their Alphaworks [27] site. The license to use XML4C is simply to comply
with the Apache license (because of Xerces-C) and X License (because of ICU).

XML4C binaries are published for Solaris using SunWorkshop compiler, HPUX 10.20 and 11.0 using CC
and aCC, Redhat Linux using gcc, Windows NT using MSVC, AIX using xlC.

Which DLL's do I need to distribute with my application?
As mentioned above, there are two configurations in which Xerces-C binaries are shipped. One is from
the Apache site [28] , while the other is from IBM published at IBM's Alphaworks Site [27] .

If you are using the binaries from the Apache download site [29] site, then you only need to distribute one
file:

xerces-c_1_5_1.dll for Windows NT/95/98, or

libxerces-c1_5_1.a for AIX, or

libxerces-c1_5_1.so for Solaris/Linux, or

libxerces-c1_5_1.sl for HP-UX.

- 61-

http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://www.x.org/terms.htm
http://www.x.org/terms.htm
http://www.alphaworks.ibm.com/tech/xml4c
http://xml.apache.org/xerces-c/index.html
http://xml.apache.org/xerces-c/index.html
http://www.alphaworks.ibm.com/tech/xml4c
http://www.alphaworks.ibm.com/tech/xml4c
http://www.alphaworks.ibm.com/tech/xml4c
http://xml.apache.org/dist/xerces-c/
http://xml.apache.org/dist/xerces-c/
http://xml.apache.org/dist/xerces-c/

However, if you are using the XML4C binaries then in addition to the library file mentioned above, you
also need to ship:

1. ICU shared library file:

icuuc.dll for Windows NT/95/98, or

libicuuc.a for AIX, or

libicuuc.so for Solaris/Linux, or

libicuuc.sl for HP-UX.
2. ICU converter data shared library file:

icudata.dll for Windows NT/95/98, or

libicudata.a for AIX, or

libicudata.so for Solaris/Linux, or

libicudata.sl for HP-UX.

How do I package the sources to create a binary drop?
You have to first compile the sources inside your IDE to create the required DLLs and EXEs. Then you
need to copy over the binaries to another directory for the binary drop. A perl script has been provided to
give you a jump start. You need to install perl on your machine for the script to work. If you have
changed your source tree, you have to modify the script to suit your current directory structure. To invoke
the script, go to the \<Xerces>\scripts directory, and type:

perl packageBinaries.pl

You will get a message that somewhat looks like this (changes always happpen, we are evolving you
see!):

Usage is: packageBinaries <options>

options are: -s <source_directory>

-o <target_directory>

-c <C compiler name> (e.g. gcc or xlc_r)

-x <C++ compiler name> (e.g. g++ or xlC_r)

-m <message loader> can be 'inmem', 'icu' or 'iconv'

-n <net accessor> can be 'fileonly' or 'libwww'

-t <transcoder> can be 'icu' or 'native'

-r <thread option> can be 'pthread' or 'dce' (only used on HP-11)

-h to get help on these commands

Example: perl packageBinaries.pl -s$HOME/xerces-c_1_0_0

-o$HOME/xerces-c_1_0_0

-cgcc -xg++ -minmem

-nfileonly -tnative

Make sure that your compiler can be invoked from the command line and follow the instructions to
produce a binary drop.

I do not see binaries for my platform. When will they be available?">
The reason why you see binaries only for some specific platforms is that we have had the maximum
requests for them. Moreover, we have limited resources and hence cannot publish binaries for every
platform. If you wish to contribute your time and effort in building binaries for a specific
platform/environment then please send a mail to the Xerces-C mailing list [15] . We can definitely use
any extra help in this open source project

When will a port to my platform be available?

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 62-

mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org

We would like to see Xerces ported to as many platforms as there are. Again, due to limited resources we
cannot do all the ports. We will help you make this port happen. Here are some Porting Guidelines.

We strongly encourage you to submit the changes that are required to make it work on another platform.
We will incorporate these changes in the source code base and make them available in the future releases.

All porting changes may be sent to the Xerces-C mailing list [15] .

How can I port Xerces to my favourite platform?
Some porting information is mentioned on the build page.

What application did you used to create the documentation?
We have used an internal XML based application to create the documentation. The documentation files
are all written in XML and the application, internally codenamed StyleBook, makes use of XSL to
transform it into an HTML document that you are seeing right now. It is currently available on the
Apache [30] open source website as Cocoon [31] .

The API documentation is automatically generated using doxygen [22] and GraphViz [23] .

Can I use Xerces in my product?
Yes! Read the license agreement first and if you still have further questions, then please address them to
the Xerces-C mailing list [15] .

How do I uninstall Xerces C++?
Xerces C++ only installs itself in a single directory and does not set any registry entries. Thus, to
uninstall, you only need to remove the directory where you installed it, and all Xerces C++ related files
will be removed.

I am getting a tar checksum error on Solaris. What's the problem?
The problem is caused by a limitation in the original tar spec, which prevented it from archiving files with
long pathnames. Unfortunately, various current versions of tar use different extensions for eliminating
this restriction which are incompatible with each other (or they do not remove the restriction at all).
Rather than altering the pathnames for the Xerces C++ package, which would make them compatible with
the original tar spec but make it more difficult to know what was where, it was decided to use GNU tar
(gtar), which handles arbitrarily long pathnames and is freely available on every platform on which
Xerces C++ is supported. If you don't already have GNU tar installed on your system, you can obtain it
from the Free Software Foundation http://www.gnu.org/software/tar/tar.html [32] . For additional
background information on this problem, see the online manual GNU tar and POSIX tar [33] for the
utility.

Parsing with Xerces C++
Does Xerces C++ support Schema?
See the Schema page.

Why Xerces C++ does not support this particular Schema feature?
See supported schema features in Xerces C++ 1.5.1

Why does my application crash on AIX when I run it under a multi-threaded environment?
AIX maintains two kinds of libraries on the system, thread-safe and non-thread safe. Multi-threaded
libraries on AIX follow a different naming convention, Usually the multi-threaded library names are
followed with "_r". For example, libc.a is single threaded whereas libc_r.a is multi-threaded.

To make your multi-threaded application run on AIX, you must ensure that you do not have a "system
library path" in your LIBPATH environment variable when you run the application. The appropriate

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 63-

mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
http://xml.apache.org/
http://xml.apache.org/cocoon/index.html
http://www.stack.nl/~dimitri/doxygen/
http://www.research.att.com/sw/tools/graphviz/
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
http://www.gnu.org/software/tar/tar.html
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112

libraries (threaded or non-threaded) are automatically picked up at runtime. An application usually
crashes when you build your application for multi-threaded operation but don't point to the thread-safe
version of the system libraries. For example, LIBPATH can be simply set as:

LIBPATH=$HOME/<Xerces>/lib

Where <Xerces> points to the directory where the Xerces application resides.

If, for any reason unrelated to Xerces, you need to keep a "system library path" in your LIBPATH
environment variable, you must make sure that you have placed the thread-safe path before you specify
the normal system path. For example, you must place /lib/threads before /lib in your LIBPATH variable.
That is to say your LIBPATH may look like this:

export LIBPATH=$HOME/<Xerces>/lib:/usr/lib/threads:/usr/lib

Where /usr/lib is where your system libraries are.

I cannot run the sample applications. What is wrong?
In order to run an application built using Xerces you must set up your path and library search path
properly. In the stand-alone version from Apache, you must have the Xerces C++ runtime library
available from your path settings. On Windows this library is called xerces-c_1_5_1.dll which
must be available from your PATH settings. (Note that now there are separate debug and release dlls for
Windows. If the release dll is named xerces-c_1_5_1.dll then the debug dll is named
xerces-c_1_5_1d.dll). On UNIX platforms the library is called libxerces-c1_5_1.so (or
.a or .sl) which must be available from your LD_LIBRARY_PATH (or LIBPATH or SHLIB_PATH)
environment variable.

Thus, if you installed your binaries under $HOME/fastxmlparser, you need to point your library
path to that directory.

export LIBPATH=$LIBPATH:$HOME/fastxmlparser/lib # (AIX)

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/fastxmlparser/lib # (Solaris,

Linux)

export SHLIB_PATH=$SHLIB_PATH:$HOME/fastxmlparser/lib # (HP-UX)

If you are using the enhanced version of this parser from IBM, you will need to put in two additional
DLLs. In the Windows build these are icuuc.dll and icudata.dll which must be available from
your PATH settings. On UNIX, these libraries are called libicuuc.so and libicudata.so (or
.sl for HP-UX or .a for AIX) which must be available from your library search path.

I just built my own application using the Xerces C++ parser. Why does it crash?
In order to work with the Xerces C++ parser, you have to first initialize the XML subsystem. The most
common mistake is to forget this initialization. Before you make any calls to Xerces C++ APIs, you must
call:

XMLPlatformUtils::Initialize():

try {

XMLPlatformUtils::Initialize();

}

catch (const XMLException& toCatch) {

// Do your failure processing here

}

This initializes the Xerces system and sets its internal variables. Note that you must the include
util/PlatformUtils.hpp file for this to work.

Is Xerces C++ thread-safe?

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 64-

This is not a question that has a simple yes/no answer. Here are the rules for using Xerces C++ in a
multi-threaded environment:

Within an address space, an instance of the parser may be used without restriction from a single thread, or
an instance of the parser can be accessed from multiple threads, provided the application guarantees that
only one thread has entered a method of the parser at any one time.

When two or more parser instances exist in a process, the instances can be used concurrently, without
external synchronization. That is, in an application containing two parsers and two threads, one parser can
be running within the first thread concurrently with the second parser running within the second thread.

The same rules apply to Xerces C++ DOM documents. Multiple document instances may be concurrently
accessed from different threads, but any given document instance can only be accessed by one thread at a
time.

DOMStrings allow multiple concurrent readers. All DOMString const methods are thread safe, and can
be concurrently entered by multiple threads. Non-const DOMString methods, such as appendData(),
are not thread safe and the application must guarantee that no other methods (including const methods)
are executed concurrently with them.

The libs/dll's I downloaded keep me from using the debugger in VC6.0. I am using the 'D', debug
versions of them. "no symbolic information found" is what it says. Do I have to compile everything
from source to make it work?
Unless you have the .pdb files, all you are getting with the debug library is that it uses the debug heap
manager, so that you can compile your stuff in debug mode and not be dangerous. If you want full
symbolic info for the Xerces C++ library, you'll need the .pdb files, and to get those, you'll need to rebuild
the Xerces C++ library.

"First-chance exception in DOMPrint.exe (KERNEL32.DLL): 0xE06D7363: Microsoft C++
Exception." I am always getting this message when I am using the parser. My programs are
terminating abnormally. Even the samples are giving this exception. I am using Visual C++ 6.0 with
latest service pack installed.
Xerces C++ uses C++ exceptions internally, as part of its normal operation. By default, the MSVC
debugger will stop on each of these with the "First-chance exception ..." message.

To stop this from happening do this:

· start debugging (so the debug menu appears)
· from the debug menu select "Exceptions"
· from the box that opens select "Microsoft C++ Exception" and set it to "Stop if not handled" instead

of "stop always".

You'll still land in the debugger if your program is terminating abnormally, but it will be at your problem,
not from the internal Xerces C++ exceptions.

I am seeing memory leaks in Xerces C++. Are they real?
The Xerces C++ library allocates and caches some commonly reused items. The storage for these may be
reported as memory leaks by some heap analysis tools; to avoid the problem, call the function
XMLPlatformUtils::Terminate() before your application exits. This will free all memory that
was being held by the library.

For most applications, the use of Terminate() is optional. The system will recover all memory when
the application process shuts down. The exception to this is the use of Xerces C++ from DLLs that will be
repeatedly loaded and unloaded from within the same process. To avoid memory leaks with this kind of
use, Terminate() must be called before unloading the Xerces C++ library

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 65-

Is there a facility in Xerces C++ to validate the data contained in a DOM tree? That is, without saving
and re-parsing the source document?
No. This is a frequently requested feature, but at this time it is not possible to feed XML data from the
DOM directly back to the DTD validator. The best option for now is to generate XML source from the
DOM and feed that back into the parser.

Can I use Xerces to perform "write validation" (which is having an appropriate DTD and being able to
add elements to the DOM whilst validating against the DTD)? Is there a function that I have totally
missed that creates an XML file from a DTD, (obviously with the values missing, a skeleton, as it
were.)
The answers are: "No" and "No." Write Validation is a commonly requested feature, but Xerces C++ does
not have it yet.

The best you can do for now is to create the DOM document, write it back as XML and re-parse it.

Why does my multi-threaded application crash on Solaris?
The problem appears because the throw call on Solaris 2.6 is not multi-thread safe. Sun Microsystems
provides a patch to solve this problem. To get the latest patch for solving this problem, go to
SunSolve.sun.com [34] and get the appropriate patch for your operating system. For Intel machines
running Solaris, you need to get Patch ID 104678. For SPARC machines you need to get Patch ID
#105591.

Why does my application gives unresolved linking errors on Solaris?
On Solaris there are a few things that need to be done before you execute your application using Xerces
C++. In case you're using the binary build of Xerces C++ make sure that the OS and compiler are the
same version as the ones used to build the binary. Different OS and compiler versions might cause
unresolved linking problems or compilation errors. If the versions are different, rebuild the Xerces C++
library on your system before building your application. If you're using ICU (which is packaged with
XML4C) you need to rebuild the compatible version of ICU first.

Also check that the library path is set properly and that the correct versions of gmake and autoconf
are on your system.

Why do I get Internal Compiler Error when compiling Xerces C++ for a 64bit target with gcc?
This is a compiler problem. Try turning off optimization to bypass the problem.

How are entity reference nodes handled in DOM?
If you are using the native DOM classes, the function setExpandEntityReferences controls how
entities appear in the DOM tree. When setExpandEntityReferences is set to false (the default), an
occurrence of an entity reference in the XML document will be represented by a subtree with an
EntityReference node at the root whose children represent the entity expansion. Entity expansion will be a
DOM tree representing the structure of the entity expansion, not a text node containing the entity
expansion as text.

If setExpandEntityReferences is true, an entity reference in the XML document is represented by only the
nodes that represent the entity expansion. The DOM tree will not contain any entityReference nodes.

What kinds of URLs are currently supported in Xerces C++?
The XMLURL class provides for limited URL support. It understands the file://, http://, and
ftp:// URL types, and is capable or parsing them into their constituent components, and normalizing
them. It also supports the commonly required action of conglomerating a base and relative URL into a
single URL. In other words, it performs the limited set of functions required by an XML parser.

Another thing that URLs commonly do are to create an input stream that provides access to the entity

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 66-

http://sunsolve.sun.com

referenced. The parser, as shipped, only supports this functionality on URLs in the form file:/// and
file://localhost/, i.e. only when the URL refers to a local file.

You may enable support for HTTP and FTP URLs by implementing and installing a NetAccessor object.
When a NetAccessor object is installed, the URL class will use it to create input streams for the remote
entities referred to by such URLs.

How can I add support for URLs with HTTP/FTP protocols?
Support for the http: protocol is now included by default on all platforms.

To address the need to make remote connections to resources specified using additional protocols, ftp for
example, Xerces C++ provides the NetAccessor interface. The header file is
src/util/XMLNetAccessor.hpp. This interface allows you to plug in your own implementation
of URL networking code into the Xerces C++ parser.

Can I use Xerces C++ to parse HTML?
Yes, but only if the HTML follows the rules given in the XML specification [2] . Most HTML, however,
does not follow the XML rules, and will generate XML well-formedness errors.

I keep getting an error: "invalid UTF-8 character". What's wrong?
Most commonly, the XML encoding = declaration is either incorrect or missing. Without a
declaration, XML defaults to the use utf-8 character encoding, which is not compatible with the default
text file encoding on most systems.

The XML declaration should look something like this:

<?xml version="1.0" encoding="iso-8859-1"?>

Make sure to specify the encoding that is actually used by file. The encoding for "plain" text files depends
both on the operating system and the locale (country and language) in use.

Another common source of problems is that some characters are not allowed in XML documents,
according to the XML spec. Typical disallowed characters are control characters, even if you escape them
using the Character Reference form. See the XML spec [35] , sections 2.2 and 4.1 for details. If the parser
is generating an Invalid character (Unicode: 0x???) error, it is very likely that there's a
character in there that you can't see. You can generally use a UNIX command like "od -hc" to find it.

What encodings are supported by Xerces-C / XML4C?
Xerces-C has intrinsic support for ASCII, UTF-8, UTF-16 (Big/Small Endian), UCS4 (Big/Small
Endian), EBCDIC code pages IBM037 and IBM1140 encodings, ISO-8859-1 (aka Latin1) and
Windows-1252. This means that it can parse input XML files in these above mentioned encodings.

XML4C -- the version of Xerces-C available from IBM -- extends this set to include the encodings
listed in the table below.

Common Name Use this name in XML
8 bit Unicode UTF-8

ISO Latin 1 ISO-8859-1

ISO Latin 2 ISO-8859-2

ISO Latin 3 ISO-8859-3

ISO Latin 4 ISO-8859-4

ISO Latin Cyrillic ISO-8859-5

ISO Latin Arabic ISO-8859-6

ISO Latin Greek ISO-8859-7

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 67-

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml#charsets
http://www.w3.org/TR/REC-xml#charsets

ISO Latin Hebrew ISO-8859-8

ISO Latin 5 ISO-8859-9

EBCDIC US ebcdic-cp-us

EBCDIC with Euro symbol ibm1140

Chinese, PRC gb2312

Chinese, Big5 Big5

Cyrillic koi8-r

Japanese, Shift JIS Shift_JIS

Korean, Extended UNIX code euc-kr

Some implementations or ports of Xerces-C provide support for additional encodings. The exact set will
depend on the supplier of the parser and on the character set transcoding services in use.

What character encoding should I use when creating XML documents?
The best choice in most cases is either utf-8 or utf-16. Advantages of these encodings include:

· The best portability. These encodings are more widely supported by XML processors than any others,
meaning that your documents will have the best possible chance of being read correctly, no matter
where they end up.

· Full international character support. Both utf-8 and utf-16 cover the full Unicode character set, which
includes all of the characters from all major national, international and industry character sets.

· Efficient. utf-8 has the smaller storage requirements for documents that are primarily composed of of
characters from the Latin alphabet. utf-16 is more efficient for encoding Asian languages. But both
encodings cover all languages without loss.

The only drawback of utf-8 or utf-16 is that they are not the native text file format for most systems,
meaning that common text file editors and viewers can not be directly used.

A second choice of encoding would be any of the others listed in the table above. This works best when
the xml encoding is the same as the default system encoding on the machine where the XML document is
being prepared, because the document will then display correctly as a plain text file. For UNIX systems in
countries speaking Western European languages, the encoding will usually be iso-8859-1.

The versions of Xerces distributed by IBM, both C and Java (known respectively as XML4C and
XML4J), include all of the encodings listed in the above table, on all platforms.

A word of caution for Windows users: The default character set on Windows systems is windows-1252,
not iso-8859-1. While Xerces C++ does recognize this Windows encoding, it is a poor choice for
portable XML data because it is not widely recognized by other XML processing tools. If you are using a
Windows-based editing tool to generate XML, check which character set it generates, and make sure that
the resulting XML specifies the correct name in the encoding="..." declaration.

I find memory leaks in Xerces C++. How do I eliminate it?
The "leaks" that are reported through a leak-detector or heap-analysis tools aren't really leaks in most
application, in that the memory usage does not grow over time as the XML parser is used and re-used.

What you are seeing as leaks are actually lazily evaluated data allocated into static variables. This data
gets released when the application ends. You can make a call to
XMLPlatformUtil::terminate() to release all the lazily allocated variables before you exit your
program.

Is EBCDIC supported?
Yes, Xerces C++ supports EBCDIC. When creating EBCDIC encoded XML data, the preferred encoding
is ibm1140. Also supported is ibm037 (and its alternate name, ebcdic-cp-us); this encoding is almost the

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 68-

same as ibm1140, but it lacks the Euro symbol.

These two encodings, ibm1140 and ibm037, are available on both Xerces-C and IBM XML4C, on all
platforms.

On IBM System 390, XML4C also supports two alternative forms, ibm037-s390 and ibm1140-s390.
These are similar to the base ibm037 and ibm1140 encodings, but with alternate mappings of the
EBCDIC new-line character, which allows them to appear as normal text files on System 390s. These
encodings are not supported on other platforms, and should not be used for portable data.

XML4C on System 390 and AS/400 also provides additional EBCDIC encodings, including those for the
character sets of different countries. The exact set supported will be platform dependent, and these
encodings are not recommended for portable XML data.

How to write out a DOM tree into an XML file?
This feature is not yet availabe in the parser. Take a look at the DOMPrint sample for an example on
parsing XML file, then writing it out back to the screen. You can use that code.

Is it OK to call the XMLPlatformUtils::Initialize/Terminate pair of routines multiple times in one
program?
No. XMLPlatformUtils::Initialize() can only be called once per process. Call Initialize() when you start
and Terminate() when you end.

Why does deleting a transcoded string result in assertion on windows?
Both your application program and the Xerces DLL must use the same *DLL* version of the runtime
library. If either statically links to the runtime library, the problem will still occur. For example, for a
Win32/VC6 build, the runtime library build setting MUST be "Multithreaded DLL" for release builds and
"Debug Multithreaded DLL" for debug builds.

How do I transcode to/from something besides the local code page?
XMLString::transcode() will transcode from XMLCh to the local code page, and other APIs which take a
char* assume that the source text is in the local code page. If this is not true, you must transcode the text
yourself. You can do this using local transcoding support on your OS, such as Iconv on Unix or or IBM's
ICU package. However, if your transcoding needs are simple, you can achieve some better portability by
using the Xerces parser's transcoder wrappers. You get a transcoder like this:

· 1. Call XMLPlatformUtils::fgTransServer- >MakeNewTranscoderFor() and provide the name of the
encoding you wish to create a transcoder for. This will return a transcoder to you, which you own and
must delete when you are through with it. NOTE: You must provide a maximum block size that you
will pass to the transcoder at one time, and you must blocks of characters of this count or smaller
when you do your transcoding. The reason for this is that this is really an internal API and is used by
the parser itself to do transcoding. The parser always does transcoding in known block sizes, and this
allows transcoders to be much more efficient for internal use since it knows the max size it will ever
have to deal with and can set itself up for that internally. In general, you should stick to block sizes in
the 4 to 64K range.

· 2. The returned transcoder is something derived from XMLTranscoder, so they are all returned to you
via that interface.

· 3. This object is really just a wrapper around the underlying transcoding system actually in use by
your version of Xerces, and does whatever is necessary to handle differences between the XMLCh
representation and the representation uesd by that underying transocding system.

· 4. The transcoder object has two primary APIs, transcodeFrom() and transcodeTo(). These transcode
between the XMLCh format and the encoding you indicated.

· 5. These APIs will transcode as much of the source data as will fit into the outgoing buffer you

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 69-

provide. They will tell you how much of the source they ate and how much of the target they filled.
You can use this information to continue the process until all source is consumed.

· 6. char* data is always dealt with in terms of bytes, and XMLCh data is always dealt with in terms of
characters. Don't mix up which you are dealing with or you will not get the correct results, since many
encodings don't have a one to one relationship of characters to bytes.

· 7. When transcoding from XMLCh to the target encoding, the transcodeTo() method provides an
'unrepresentable flag' parameter, which tells the transcoder how to deal with an XMLCh code point
that cannot be converted legally to the target encoding, which can easily happen since XMLCh is
Unicode and can represent thousands of code points. The options are to use a default replacement
character (which the underlying transcoding service will choose, and which is guaranteed to be legal
for the target encoding), or to throw an exception.

Why DOM_Node::cloneNode() does not clone the pointer assigned to a DOM_Node via
DOM_Node::setUserData()?
There are several possible options for how cloneNode should handle userData:

· 1) Copy the pointer. May be a Very Bad Idea if you really wanted the data associated with a particular
node object.

· 2) Clone the object being pointed at. Maybe a Very Bad Idea if that object, in turn, wasn't designed to
be cloned at this time.

· 3) A complex call-back API has been proposed which would allow the userData object to tell the
DOM which of these three options should be taken, but that would require that only objects
implementing that API be registered as userData. That doesn't seem to be a good option.

· 4) Do nothing. This is by far the lowest-overhead and safest choice. And since cloneNode is a DOM
operation, and userData is _not_ defined by the standard DOM API, one can make a very strong case
for this being the "most correct" option.

We chose (4), very deliberately. If you want one of the others, you can implement it by creating your own
wrapper operation for cloneNode() and calling that.

NOTE that userData should be considered a nonportable, experimental feature of the Xerces DOM. It
may evaporate entirely in favor of a scheme based on the DOM Level 3 "node key" mechanism, when
that becomes officially available.

Other Xerces C++ Questions
How do I determine the version of Xerces C++ I am using?
The version string for Xerces C++ is in one of the header files. Look inside the file
src/util/XercesDefs.hpp or, in the binary distribution, look in
include/utils/XercesDefs.hpp. Search for the static variable gXercesFullVersionStr
and look at its definition. (It is usually a string like "1_4_0" or something similar). This is the version of
Xerces C++ you are using.

If you don't have the header files, you have to find the version information from the shared library name.
On Windows NT/95/98 right click on the DLL name xerces-c_1_5_1.dll in the bin directory and look up
properties. The version information may be found on the Version tab.

On AIX, just look for the library name libxerces-c1_5_1.a (or libxerces-c1_5_1.so on Solaris/Linux and
libxerces-c1_5_1.sl on HP-UX). The version number is coded in the name of the library.

I can't use C++. Do you have a Java version?
Yes. The Xerces family of products also has a Java version. More information is available at:
http://xml.apache.org/xerces-j/index.html [36]

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 70-

http://xml.apache.org/xerces-j/index.html

Where can I find additional information on XML?
The Web. http://www.oasis-open.org/cover/xml.html [37] is an excellent place to start, with links to
overviews, FAQs, specifications, industry news, applications and other software, related standards, etc.

Is there any kind of support available for Xerces C++?
Xerces C++ comes with no formal support.

Every volunteer project obtains its strength from the people involved in it. Mailing lists provide a simple
and effective communication mechanism. You are welcome to join any of these mailing lists (or all of
them if you wish). You can choose to lurk, or to actively participate. It's up to you. Before you join these
lists, you should look over the resources in the Reference Library section

Instructions for subscribing are at http://xml.apache.org/mail.html. Archives of the lists are available from
http://archive.covalent.net

I found a defect -- how do I report it?
See Bug Reporting.

I have a patch to the Xerces C++ source code. How do I submit it?
Mail it to the Xerces C++ mailing list [15] at Apache. (You must be a subscriber to post to this list. But if
you're considering changing the code you really want to be a subscriber, in any case.) There are no set
rules about how or what must be included -- if you've fixed a problem or enhanced the code in some
way, we really would like to get your changes, and will take them in any reasonable form.

Generally a diff of the changed files against the current sources from CVS is good, along with some kind
of description of what the change is. (Working with the current sources is important!)

Where can I get predefined character entity definitions??
Download http://www.w3.org/TR/xhtml1/xhtml1.zip. [38]

Chapter 7 - Frequently Asked Questions Xerces C++ Documentation

- 71-

http://www.oasis-open.org/cover/xml.html
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
http://www.w3.org/TR/xhtml1/xhtml1.zip

8
Programming Guide

This page has sections on the following topics:
· SAX Programming Guide

· Constructing a parser
· Using the SAX API

· SAX2 Programming Guide
· Constructing an XML Reader
· Using the SAX2 API
· Supported Features

· DOM Programming Guide
· Comparision of Java and C++ DOM's

- Accessing the API from application code
- Class Names
- Objects and Memory Management

· DOMString
- Equality Testing

· Downcasting
· Subclassing

· Experimental IDOM Programming Guide
· Constructing a parser
· Comparision of C++ DOM and IDOM

- Motivation behind new design
- Class Names
- Objects and Memory Management
- DOMString vs. XMLCh

SAX1 Programming Guide

Constructing a parser
In order to use Xerces C++ to parse XML files, you will need to create an instance of the SAXParser
class. The example below shows the code you need in order to create an instance of SAXParser. The
DocumentHandler and ErrorHandler instances required by the SAX API are provided using the
HandlerBase class supplied with Xerces C++.

int main (int argc, char* args[]) {

try {

XMLPlatformUtils::Initialize();

- 72-

}

catch (const XMLException& toCatch) {

cout << "Error during initialization! :\n"

<< toCatch.getMessage() << "\n";

return 1;

}

char* xmlFile = "x1.xml";

SAXParser* parser = new SAXParser();

parser->setDoValidation(true); // optional.

parser->setDoNamespaces(true); // optional

DocumentHandler* docHandler = new HandlerBase();

ErrorHandler* errHandler = (ErrorHandler*) docHandler;

parser->setDocumentHandler(docHandler);

parser->setErrorHandler(errHandler);

try {

parser->parse(xmlFile);

}

catch (const XMLException& toCatch) {

cout << "\nFile not found: '" << xmlFile << "'\n"

<< "Exception message is: \n"

<< toCatch.getMessage() << "\n" ;

return -1;

}

}

Using the SAX API
The SAX API for XML parsers was originally developed for Java. Please be aware that there is no
standard SAX API for C++, and that use of the Xerces C++ SAX API does not guarantee client code
compatibility with other C++ XML parsers.

The SAX API presents a callback based API to the parser. An application that uses SAX provides an
instance of a handler class to the parser. When the parser detects XML constructs, it calls the methods of
the handler class, passing them information about the construct that was detected. The most commonly
used handler classes are DocumentHandler which is called when XML constructs are recognized, and
ErrorHandler which is called when an error occurs. The header files for the various SAX handler classes
are in '<xerces-c1_5_1 >/include/sax'

As a convenience, Xerces C++ provides the class HandlerBase, which is a single class which is publicly
derived from all the Handler classes. HandlerBase's default implementation of the handler callback
methods is to do nothing. A convenient way to get started with Xerces C++ is to derive your own handler
class from HandlerBase and override just those methods in HandlerBase which you are interested in
customizing. This simple example shows how to create a handler which will print element names, and
print fatal error messages. The source code for the sample applications show additional examples of how
to write handler classes.

This is the header file MySAXHandler.hpp:

#include <sax/HandlerBase.hpp>

class MySAXHandler : public HandlerBase {

Chapter 8 - Programming Guide Xerces C++ Documentation

- 73-

public:

void startElement(const XMLCh* const, AttributeList&);

void fatalError(const SAXParseException&);

};

This is the implementation file MySAXHandler.cpp:

#include "MySAXHandler.hpp"

#include <iostream.h>

MySAXHandler::MySAXHandler()

{

}

MySAXHandler::startElement(const XMLCh* const name,

AttributeList& attributes)

{

// transcode() is an user application defined function which

// converts unicode strings to usual 'char *'. Look at

// the sample program SAXCount for an example implementation.

cout << "I saw element: " << transcode(name) << endl;

}

MySAXHandler::fatalError(const SAXParseException& exception)

{

cout << "Fatal Error: " << transcode(exception.getMessage())

<< " at line: " << exception.getLineNumber()

<< endl;

}

The XMLCh and AttributeList types are supplied by Xerces C++ and are documented in the include files.
Examples of their usage appear in the source code to the sample applications.

SAX2 Programming Guide

Constructing an XML Reader
In order to use Xerces C++ to parse XML files, you will need to create an instance of the
SAX2XMLReader class. The example below shows the code you need in order to create an instance of
SAX2XMLReader. The ContentHandler and ErrorHandler instances required by the SAX API are
provided using the DefaultHandler class supplied with Xerces C++.

int main (int argc, char* args[]) {

try {

XMLPlatformUtils::Initialize();

}

catch (const XMLException& toCatch) {

cout << "Error during initialization! :\n"

<< toCatch.getMessage() << "\n";

return 1;

}

char* xmlFile = "x1.xml";

Chapter 8 - Programming Guide Xerces C++ Documentation

- 74-

SAX2XMLReader* parser = XMLReaderFactory::createXMLReader();

parser->setFeature(XMLString::transcode("http://xml.org/sax/features/validation",

true) // optional

parser->setFeature(XMLString::transcode("http://xml.org/sax/features/namespaces",

true) // optional

ContentHandler* contentHandler = new DefaultHandler();

ErrorHandler* errHandler = (ErrorHandler*) contentHandler;

parser->setContentHandler(contentHandler);

parser->setErrorHandler(errHandler);

try {

parser->parse(xmlFile);

}

catch (const XMLException& toCatch) {

cout << "\nFile not found: '" << xmlFile << "'\n"

<< "Exception message is: \n"

<< toCatch.getMessage() << "\n" ;

return -1;

}

}

Using the SAX2 API
The SAX2 API for XML parsers was originally developed for Java. Please be aware that there is no
standard SAX2 API for C++, and that use of the Xerces C++ SAX2 API does not guarantee client code
compatibility with other C++ XML parsers.

The SAX2 API presents a callback based API to the parser. An application that uses SAX2 provides an
instance of a handler class to the parser. When the parser detects XML constructs, it calls the methods of
the handler class, passing them information about the construct that was detected. The most commonly
used handler classes are ContentHandler which is called when XML constructs are recognized, and
ErrorHandler which is called when an error occurs. The header files for the various SAX2 handler classes
are in '<xerces-c1_5_1 >/include/sax2'

As a convenience, Xerces C++ provides the class DefaultHandler, which is a single class which is
publicly derived from all the Handler classes. DefaultHandler's default implementation of the handler
callback methods is to do nothing. A convenient way to get started with Xerces C++ is to derive your own
handler class from DefaultHandler and override just those methods in HandlerBase which you are
interested in customizing. This simple example shows how to create a handler which will print element
names, and print fatal error messages. The source code for the sample applications show additional
examples of how to write handler classes.

This is the header file MySAX2Handler.hpp:

#include <sax2/DefaultHandler.hpp>

class MySAX2Handler : public DefaultHandler {

public:

void startElement(

const XMLCh* const uri,

const XMLCh* const localname,

const XMLCh* const qname,

const Attributes& attrs

Chapter 8 - Programming Guide Xerces C++ Documentation

- 75-

);

void fatalError(const SAXParseException&);

};

This is the implementation file MySAX2Handler.cpp:

#include "MySAX2Handler.hpp"

#include <iostream.h>

MySAX2Handler::MySAX2Handler()

{

}

MySAX2Handler::startElement(const XMLCh* const uri,

const XMLCh* const localname,

const XMLCh* const qname,

const Attributes& attrs)

{

// transcode() is an user application defined function which

// converts unicode strings to usual 'char *'. Look at

// the sample program SAX2Count for an example implementation.

cout << "I saw element: " << transcode(qname) << endl;

}

MySAX2Handler::fatalError(const SAXParseException& exception)

{

cout << "Fatal Error: " << transcode(exception.getMessage())

<< " at line: " << exception.getLineNumber()

<< endl;

}

The XMLCh and Attributes types are supplied by Xerces C++ and are documented in the include files.
Examples of their usage appear in the source code to the sample applications.

Xerces SAX2 Supported Features
The behavior of the SAX2XMLReader is dependant on the values of the following features. All of the
features below can be set using the SAX2XMLReader::setFeature(XMLCh*,bool) function.
None of these features can be modified in the middle of a parse, or an exception will be thrown.

http://xml.org/sax/features/namespaces
true: Perform Namespace processing (default)
false: Optionally do not perform Namespace

processing

http://xml.org/sax/features/namespace-prefixes
true: Report the orignal prefixed names and

attributes used for Namespace declarations
(default)

false: Do not report attributes used for Namespace
declarations, and optionally do not report
original prefixed names.

Chapter 8 - Programming Guide Xerces C++ Documentation

- 76-

http://xml.org/sax/features/validation
true: Report all validation errors. (default)
false: Do not report validation errors.

http://apache.org/xml/features/validation/dynamic
true: The parser will validate the document only if

a grammar is specified.
(http://xml.org/sax/features/validation must
be true)

false: Validation is determined by the state of the
http://xml.org/sax/features/validation feature
(default)

http://apache.org/xml/features/validation/schema
true: Enable the parser's schema support.

(default)
false: Disable the parser's schema support.

http://apache.org/xml/features/validation/reuse-grammar
true: The parser will reuse grammar information

from previous parses in subsequent parses.
false: The parser will not reuse any grammar

information. (default)

http://apache.org/xml/features/validation/reuse-validator
(deprecated)
true: The parser will reuse grammar information

from previous parses in subsequent parses.
false: The parser will not reuse any grammar

information. (default)

DOM Programming Guide

Java and C++ DOM comparisons
The C++ DOM API is very similar in design and use, to the Java DOM API bindings. As a consequence,
conversion of existing Java code that makes use of the DOM to C++ is a straight forward process.

This section outlines the differences between Java and C++ bindings.

Accessing the API from application code

// C++

#include <dom/DOM.hpp>

// Java

import org.w3c.dom.*

The header file <dom/DOM.hpp> includes all the individual headers for the DOM API classes.

Class Names

Chapter 8 - Programming Guide Xerces C++ Documentation

- 77-

The C++ class names are prefixed with "DOM_". The intent is to prevent conflicts between DOM class
names and other names that may already be in use by an application or other libraries that a DOM based
application must link with.

The use of C++ namespaces would also have solved this conflict problem, but for the fact that many
compilers do not yet support them.

DOM_Document myDocument; // C++

DOM_Node aNode;

DOM_Text someText;

Document myDocument; // Java

Node aNode;

Text someText;

If you wish to use the Java class names in C++, then you need to typedef them in C++. This is not
advisable for the general case - conflicts really do occur - but can be very useful when converting a body
of existing Java code to C++.

typedef DOM_Document Document;

typedef DOM_Node Node;

Document myDocument; // Now C++ usage is

// indistinguishable from Java

Node aNode;

Objects and Memory Management
The C++ DOM implementation uses automatic memory management, implemented using reference
counting. As a result, the C++ code for most DOM operations is very similar to the equivalent Java code,
right down to the use of factory methods in the DOM document class for nearly all object creation, and
the lack of any explicit object deletion.

Consider the following code snippets

// This is C++

DOM_Node aNode;

aNode = someDocument.createElement("ElementName");

DOM_Node docRootNode = someDoc.getDocumentElement();

docRootNode.AppendChild(aNode);

// This is Java

Node aNode;

aNode = someDocument.createElement("ElementName");

Node docRootNode = someDoc.getDocumentElement();

docRootNode.AppendChild(aNode);

The Java and the C++ are identical on the surface, except for the class names, and this similarity remains
true for most DOM code.

However, Java and C++ handle objects in somewhat different ways, making it important to understand a
little bit of what is going on beneath the surface.

In Java, the variable aNode is an object reference , essentially a pointer. It is initially == null, and
references an object only after the assignment statement in the second line of the code.

In C++ the variable aNode is, from the C++ language's perspective, an actual live object. It is

Chapter 8 - Programming Guide Xerces C++ Documentation

- 78-

constructed when the first line of the code executes, and DOM_Node::operator = () executes at the second
line. The C++ class DOM_Node essentially a form of a smart-pointer; it implements much of the
behavior of a Java Object Reference variable, and delegates the DOM behaviors to an implementation
class that lives behind the scenes.

Key points to remember when using the C++ DOM classes:
· Create them as local variables, or as member variables of some other class. Never "new" a DOM

object into the heap or make an ordinary C pointer variable to one, as this will greatly confuse the
automatic memory management.

· The "real" DOM objects - nodes, attributes, CData sections, whatever, do live on the heap, are
created with the create... methods on class DOM_Document. DOM_Node and the other DOM classes
serve as reference variables to the underlying heap objects.

· The visible DOM classes may be freely copied (assigned), passed as parameters to functions, or
returned by value from functions.

· Memory management of the underlying DOM heap objects is automatic, implemented by means of
reference counting. So long as some part of a document can be reached, directly or indirectly, via
reference variables that are still alive in the application program, the corresponding document data
will stay alive in the heap. When all possible paths of access have been closed off (all of the
application's DOM objects have gone out of scope) the heap data itself will be automatically deleted.

· There are restrictions on the ability to subclass the DOM classes.

DOMString
Class DOMString provides the mechanism for passing string data to and from the DOM API. DOMString
is not intended to be a completely general string class, but rather to meet the specific needs of the DOM
API.

The design derives from two primary sources: from the DOM's CharacterData interface and from class
java.lang.string.

Main features are:
· It stores Unicode text.
· Automatic memory management, using reference counting.
· DOMStrings are mutable - characters can be inserted, deleted or appended.

When a string is passed into a method of the DOM, when setting the value of a Node, for example, the
string is cloned so that any subsequent alteration or reuse of the string by the application will not alter the
document contents. Similarly, when strings from the document are returned to an application via the
DOM API, the string is cloned so that the document can not be inadvertently altered by subsequent edits
to the string.

Note: The ICU classes are a more general solution to UNICODE character handling for
C++ applications. ICU is an Open Source Unicode library, available at the IBM
DeveloperWorks website [11] .

Equality Testing
The DOMString equality operators (and all of the rest of the DOM class conventions) are modeled after
the Java equivalents. The equals() method compares the content of the string, while the == operator
checks whether the string reference variables (the application program variables) refer to the same
underlying string in memory. This is also true of DOM_Node, DOM_Element, etc., in that operator ==
tells whether the variables in the application are referring to the same actual node or not. It's all very
Java-like

· bool operator == () is true if the DOMString variables refer to the same underlying storage.

Chapter 8 - Programming Guide Xerces C++ Documentation

- 79-

http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/

· bool equals() is true if the strings contain the same characters.

Here is an example of how the equality operators work:

DOMString a = "Hello";

DOMString b = a;

DOMString c = a.clone();

if (b == a) // This is true

if (a == c) // This is false

if (a.equals(c)) // This is true

b = b + " World";

if (b == a) // Still true, and the string's

// value is "Hello World"

if (a.equals(c)) // false. a is "Hello World";

// c is still "Hello".

Downcasting
Application code sometimes must cast an object reference from DOM_Node to one of the classes
deriving from DOM_Node, DOM_Element, for example. The syntax for doing this in C++ is different
from that in Java.

// This is C++

DOM_Node aNode = someFunctionReturningNode();

DOM_Element el = (Element &) aNode;

// This is Java

Node aNode = someFunctionReturningNode();

Element el = (Element) aNode;

The C++ cast is not type-safe; the Java cast is checked for compatible types at runtime. If necessary, a
type-check can be made in C++ using the node type information:

// This is C++

DOM_Node aNode = someFunctionReturningNode();

DOM_Element el; // by default, el will == null.

if (anode.getNodeType() == DOM_Node::ELEMENT_NODE)

el = (Element &) aNode;

else

// aNode does not refer to an element.

// Do something to recover here.

Subclassing
The C++ DOM classes, DOM_Node, DOM_Attr, DOM_Document, etc., are not designed to be
subclassed by an application program.

As an alternative, the DOM_Node class provides a User Data field for use by applications as a hook for
extending nodes by referencing additional data or objects. See the API description for DOM_Node for
details.

Experimental IDOM Programming Guide
The experimental IDOM API is a new design of the C++ DOM API. Please note that this experimental
IDOM API is only a prototype and is subject to change.

Chapter 8 - Programming Guide Xerces C++ Documentation

- 80-

Constructing a parser
In order to use Xerces C++ to parse XML files using IDOM, you will need to create an instance of the
IDOMParser class. The example below shows the code you need in order to create an instance of the
IDOMParser.

int main (int argc, char* args[]) {

try {

XMLPlatformUtils::Initialize();

}

catch (const XMLException& toCatch) {

cout << "Error during initialization! :\n"

<< toCatch.getMessage() << "\n";

return 1;

}

char* xmlFile = "x1.xml";

IDOMParser* parser = new IDOMParser();

parser->setValidationScheme(IDOMParser::Val_Always); // optional.

parser->setDoNamespaces(true); // optional

ErrorHandler* errHandler = (ErrorHandler*) new HandlerBase();

parser->setErrorHandler(errHandler);

try {

parser->parse(xmlFile);

}

catch (const XMLException& toCatch) {

cout << "\nFile not found: '" << xmlFile << "'\n"

<< "Exception message is: \n"

<< toCatch.getMessage() << "\n" ;

return -1;

}

return 0;

}

Comparision of C++ DOM and IDOM
This section outlines the differences between the C++ DOM and IDOM APIs.

Motivation behind new design
The performance of the C++ DOM has not been as good as it might be, especially for use in server style
applications. The DOM's reference counted automatic memory management has been the biggest time
consumer. The situation becomes worse when running multi-threaded applications.

The experimental C++ IDOM is a new alternative to the C++ DOM, and aims at meeting the following
requirements:

· Reduced memory footprint.
· Fast.

Chapter 8 - Programming Guide Xerces C++ Documentation

- 81-

· Good scalability on multiprocessor systems.
· More C++ like and less Java like.

Class Names
The IDOM class names are prefixed with "IDOM_". The intent is to prevent conflicts between IDOM
class names and DOM class names that may already be in use by an application or other libraries that a
DOM based application must link with.

IDOM_Document* myDocument; // IDOM

IDOM_Node* aNode;

IDOM_Text* someText;

DOM_Document myDocument; // DOM

DOM_Node aNode;

DOM_Text someText;

Objects and Memory Management
The C++ IDOM implementation no longer uses reference counting for automatic memory management.
The storage for a DOM document is associated with the document node object. Applications would use
normal C++ pointers to directly access the implementation objects for Nodes in IDOM C++, while they
would use object references in DOM C++.

Consider the following code snippets

// IDOM C++

IDOM_Node* aNode;

IDOM_Node* docRootNode;

aNode = someDocument->createElement("ElementName");

docRootNode = someDocument->getDocumentElement();

docRootNode->appendChild(aNode);

// DOM C++

DOM_Node aNode;

DOM_Node docRootNode;

aNode = someDocument.createElement("ElementName");

docRootNode = someDocument.getDocumentElement();

docRootNode.appendChild(aNode);

The IDOM C++ uses an independent storage allocator per document. The advantage here is that
allocation would require no synchronization in most cases (based on the the same threading model that
we have now - one thread active per document, but any number of documents running in parallel with
separate threads).

The allocator does not support a delete operation at all - all allocated memory would persist for the life of
the document, and then the larger blocks would be returned to the system without separately deleting all
of the individual nodes and strings within the document.

Chapter 8 - Programming Guide Xerces C++ Documentation

- 82-

The C++ DOM and IDOM are similar in the use of factory methods in the document class for all object
creation. They differ in the object deletion mechanism.

In C++ DOM, there is no explicit object deletion. The deallocation of memory is automatically taken care
of by the reference counting.

In C++ IDOM, there is an implict and explict object deletion. When parsing a document using an
IDOMParser, the storage allocated will be automatically deleted when the parser instance is deleted
(implicit). If a user is manually building a DOM tree in memory using the document factory methods,
then the user needs to explicilty delete the document object to free all allocated memory.

Consider the following code snippets:

// C++ IDOM - explicit deletion

IDOM_Document* myDocument;

IDOM_Node* aNode;

myDocument = IDOM_DOMImplementation::getImplementation()->createDocument();

aNode = myDocument->createElement("ElementName");

myDocument->appendChild(aNode);

delete myDocument;

// C++ DOM - implicit deletion

IDOM_Document myDocument;

DOM_Node aNode;

myDocument = DOM_DOMImplementation::getImplementation().createDocument();

aNode = myDocument.createElement("ElementName");

myDocument.appendChild(aNode);

Key points to remember when using the C++ IDOM classes:
· The DOM objects are accessed via C++ pointers.
· The DOM objects - nodes, attributes, CData sections, etc., are created with the factory methods

(create...) in the document class.
· If you are manually building a DOM tree in memory, you need to explicitly delete the document

object. Memory management will be automatically taken care of by the IDOM parser when parsing an
instance document.

DOMString vs. XMLCh
The IDOM C++ no longer uses DOMString to pass string data to and from the DOM API. Instead, the
IDOM C++ uses plain, null-terminated (XMLCh *) utf-16 strings. The (XMLCh*) utf-16 type string is
much simpler with lower overhead. All the string data would remain in memory until the document object
is deleted.

//C++ IDOM

const XMLCh* nodeValue = aNode->getNodeValue();

//C++ DOM

DOMString nodeValue = aNode.getNodeValue();

Chapter 8 - Programming Guide Xerces C++ Documentation

- 83-

Chapter 8 - Programming Guide Xerces C++ Documentation

- 84-

9
Migration

Migrating from Xerces C++ 1.4.0 to Xerces C++ 1.5.1
This document is a discussion of the technical differences between Xerces C++ 1.4.0 code base and the
new Xerces C++ 1.5.1 code base.

Topics discussed are:
· General Improvements

· Compliance
· Bug Fixes
· Speed

· Changes required to migrate to Xerces C++ 1.5.1
· Validator directory Reorganization
· DTDValidator

· New features in Xerces C++ 1.5.1
· Schema Subset Support
· Experiemental IDOM

General Improvements
The new version is improved in many ways. Some general improvements are: significantly better
conformance to the XML spec, cleaner internal architecture, many bug fixes, and faster speed.

Compliance
Except for a couple of the very obscure (mostly related to the 'standalone' mode), this version should be
quite compliant to XML 1.0 [2] . It also tracks the latest changes to DOM, SAX and Namespace
Specification. We have more than a thousand tests, some collected from various public sources and some
IBM generated, which are used to do regression testing. The C++ parser is now passing all but a handful
of them.

Bug Fixes
This version has many bug fixes since last release. Some of these were reported by users and some were
brought up by way of the conformance testing.

Speed
Much work was done to speed up this version. Some of the new features, such as experiemental IDOM
ended up eating up some of these gains, but overall the new version is significantly faster than previous
versions, even while doing more.

- 85-

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

Changes required to migrate to Xerces C++ 1.5.1
There are some architectural changes between the Xerces C++ 1.4.0 and the Xerces C++ 1.5.1 releases of
the parser, and as a result, some code has undergone restructuring as shown below.

Validator directory Reorganization
· common content model files such as DFAContentModel ... are moved to a new directory called

src/validators/common
· DTD related files are moved to a new directory called src/validators/DTD
· new directory src/validators/Datatype is created to store all datatype validators
· new directory src/validators/schema is created to store Schema related files

DTDValidator
DTDValidator was design to scan, validate and store the DTD in Xerces C++ 1.4.0 or earlier. In Xerces
C++ 1.5.1, this process is broken down into three components:

· new class DTDScanner - to scan the DTD
· new class DTDGrammar - to store the DTD Grammar
· DTDValidator - to validate the DTD only

New features in Xerces C++ 1.5.1
Schema subset support is provided in this release. See supported schema features in Xerces C++ 1.5.1..
An experiemental IDOM is also available as well.

Schema Subset Support
· Schema Subset support is added

· New function "setDoSchema" is added to DOM/SAX parser.
· New feature "http://apache.org/xml/features/validation/schema" is recognized by

SAX2XMLReader.
· New classes such as SchemaValidator, TraverseSchema ... are added.
· The Scanner is enhanced to process schema.

· New sample data files personal-schema.xml and personal.xsd.
· New command line option "-s" for samples.

See Schema Usage

Experiemental IDOM
The experimental IDOM API is a new design of the C++ DOM API. If you would like to migrate from
DOM to the experimental IDOM, please refer to IDOM programming guide. Please note that this
experimental IDOM API is only a prototype and is subject to change.

Migration Archive
For migration information from XML4C 2.x to Xerces C++ 1.4.0, please refer to Migration Archive.

Chapter 9 - Migration Xerces C++ Documentation

- 86-

10
Migration Archive

Migrating from XML4C 2.x to Xerces C++ 1.4.0
This document is a discussion of the technical differences between XML4C 2.x code base and the new
Xerces C++ 1.4.0 code base.

Topics discussed are:
· General Improvements

· Compliance
· Bug Fixes
· Speed

· Summary of changes required to migrate from XML4C 2.x to Xerces C++ 1.4.0
· The Samples
· Parser Classes
· DOM Level 2 support
· Progressive Parsing
· Namespace support
· Moved Classes to src/framework
· Loadable Message Text
· Pluggable Validators
· Pluggable Transcoders
· Util directory Reorganization

· util - The platform independent utility stuff

General Improvements
The new version is improved in many ways. Some general improvements are: significantly better
conformance to the XML spec, cleaner internal architecture, many bug fixes, and faster speed.

Compliance
Except for a couple of the very obscure (mostly related to the 'standalone' mode), this version should be
quite compliant. We have more than a thousand tests, some collected from various public sources and
some IBM generated, which are used to do regression testing. The C++ parser is now passing all but a
handful of them.

Bug Fixes
This version has many bug fixes with regard to XML4C version 2.x. Some of these were reported by
users and some were brought up by way of the conformance testing.

- 87-

Speed
Much work was done to speed up this version. Some of the new features, such as namespaces, and
conformance checks ended up eating up some of these gains, but overall the new version is significantly
faster than previous versions, even while doing more.

Summary of changes required to migrate from XML4C 2.x to Xerces C++
1.4.0
As mentioned, there are some major architectural changes between the 2.3.x and Xerces C++ 1.4.0
releases of the parser, and as a result the code has undergone significant restructuring. The list below
mentions the public api's which existed in 2.3.x and no longer exist in Xerces C++ 1.4.0. It also mentions
the Xerces C++ 1.4.0 api which will give you the same functionality. Note: This list is not exhaustive.
The API docs (and ultimately the header files) supplement this information.

· parsers/[Non]Validating[DOM/SAX]parser.hpp

These files/classes have all been consolidated in the new version to just two files/classes:
[DOM/SAX]Parser.hpp. Validation is now a property which may be set before invoking the
parse. Now, the setDoValidation() method controls the validation processing.

· The framework/XMLDocumentTypeHandler.hpp been replaced with
validators/DTD/DocTypeHandler.hpp.

· The following methods now have different set of parameters because the underlying base class
methods have changed in the 3.x release. These methods belong to one of XMLDocumentHandler,
XMLErrorReporter or DocTypeHandler interfaces.

· [Non]Validating[DOM/SAX]Parser::docComment
· [Non]Validating[DOM/SAX]Parser::doctypePI
· [Non]ValidatingSAXParser::elementDecl
· [Non]ValidatingSAXParser::endAttList
· [Non]ValidatingSAXParser::entityDecl
· [Non]ValidatingSAXParser::notationDecl
· [Non]ValidatingSAXParser::startAttList
· [Non]ValidatingSAXParser::TextDecl
· [Non]ValidatingSAXParser::docComment
· [Non]ValidatingSAXParser::docPI
· [Non]Validating[DOM/SAX]Parser::endElement
· [Non]Validating[DOM/SAX]Parser::startElement
· [Non]Validating[DOM/SAX]Parser::XMLDecl
· [Non]Validating[DOM/SAX]Parser::error

· The following methods/data members changed visibility from protected in 2.3.x to private
(with public setters and getters, as appropriate).

· [Non]ValidatingDOMParser::fDocument
· [Non]ValidatingDOMParser::fCurrentParent
· [Non]ValidatingDOMParser::fCurrentNode
· [Non]ValidatingDOMParser::fNodeStack

· The following files have moved, possibly requiring changes in the #include statements.
· MemBufInputSource.hpp
· StdInInputSource.hpp
· URLInputSource.hpp

· All the DTD validator code was moved from internal to separate validators/DTD directory.
· The error code definitions which were earlier in internal/ErrorCodes.hpp are now splitup

Chapter 10 - Migration Archive Xerces C++ Documentation

- 88-

into the following files:
· framework/XMLErrorCodes.hpp - Core XML errors
· framework/XMLValidityCodes.hpp - DTD validity errors
· util/XMLExceptMsgs.hpp - C++ specific exception codes.

The Samples
The sample programs no longer use any of the unsupported util/xxx classes. They only existed to allow us
to write portable samples. But, since we feel that the wide character APIs are supported on a lot of
platforms these days, it was decided to go ahead and just write the samples in terms of these. If your
system does not support these APIs, you will not be able to build and run the samples. On some
platforms, these APIs might perhaps be optional packages or require runtime updates or some such action.

More samples have been added as well. These highlight some of the new functionality introduced in the
new code base. And the existing ones have been cleaned up as well.

The new samples are:
1. PParse - Demonstrates 'progressive parse' (see below)
2. StdInParse - Demonstrates use of the standard in input source
3. EnumVal - Shows how to enumerate the markup decls in a DTD Validator

Parser Classes
In the XML4C 2.x code base, there were the following parser classes (in the src/parsers/ source
directory): NonValidatingSAXParser, ValidatingSAXParser, NonValidatingDOMParser,
ValidatingDOMParser. The non-validating ones were the base classes and the validating ones just
derived from them and turned on the validation. This was deemed a little bit overblown, considering the
tiny amount of code required to turn on validation and the fact that it makes people use a pointer to the
parser in most cases (if they needed to support either validating or non-validating versions.)

The new code base just has SAXParer and DOMParser classes. These are capable of handling both
validating and non-validating modes, according to the state of a flag that you can set on them. For
instance, here is a code snippet that shows this in action.

void ParseThis(const XMLCh* const fileToParse,

const bool validate)

{

//

// Create a SAXParser. It can now just be

// created by value on the stack if we want

// to parse something within this scope.

//

SAXParser myParser;

// Tell it whether to validate or not

myParser.setDoValidation(validate);

// Parse and catch exceptions...

try

{

myParser.parse(fileToParse);

}

...

};

Chapter 10 - Migration Archive Xerces C++ Documentation

- 89-

We feel that this is a simpler architecture, and that it makes things easier for you. In the above example,
for instance, the parser will be cleaned up for you automatically upon exit since you don't have to allocate
it anymore.

DOM Level 2 support
Experimental early support for some parts of the DOM level 2 specification have been added. These
address some of the shortcomings in our DOM implementation, such as a simple, standard mechanism for
tree traversal.

Progressive Parsing
The new parser classes support, in addition to the parse() method, two new parsing methods, parseFirst()
and parseNext(). These are designed to support 'progressive parsing', so that you don't have to depend
upon throwing an exception to terminate the parsing operation. Calling parseFirst() will cause the DTD
(or in the future, Schema) to be parsed (both internal and external subsets) and any pre-content, i.e.
everything up to but not including the root element. Subsequent calls to parseNext() will cause one more
pieces of markup to be parsed, and spit out from the core scanning code to the parser (and hence either on
to you if using SAX or into the DOM tree if using DOM.) You can quit the parse any time by just not
calling parseNext() anymore and breaking out of the loop. When you call parseNext() and the end of the
root element is the next piece of markup, the parser will continue on to the end of the file and return false,
to let you know that the parse is done. So a typical progressive parse loop will look like this:

// Create a progressive scan token

XMLPScanToken token;

if (!parser.parseFirst(xmlFile, token))

{

cerr << "scanFirst() failed\n" << endl;

return 1;

}

//

// We started ok, so lets call scanNext()

// until we find what we want or hit the end.

//

bool gotMore = true;

while (gotMore && !handler.getDone())

gotMore = parser.parseNext(token);

In this case, our event handler object (named 'handler' surprisingly enough) is watching form some
criteria and will return a status from its getDone() method. Since the handler sees the SAX events coming
out of the SAXParser, it can tell when it finds what it wants. So we loop until we get no more data or our
handler indicates that it saw what it wanted to see.

When doing non-progressive parses, the parser can easily know when the parse is complete and insure
that any used resources are cleaned up. Even in the case of a fatal parsing error, it can clean up all
per-parse resources. However, when progressive parsing is done, the client code doing the parse loop
might choose to stop the parse before the end of the primary file is reached. In such cases, the parser will
not know that the parse has ended, so any resources will not be reclaimed until the parser is destroyed or
another parse is started.

This might not seem like such a bad thing; however, in this case, the files and sockets which were opened

Chapter 10 - Migration Archive Xerces C++ Documentation

- 90-

in order to parse the referenced XML entities will remain open. This could cause serious problems.
Therefore, you should destroy the parser instance in such cases, or restart another parse immediately. In a
future release, a reset method will be provided to do this more cleanly.

Also note that you must create a scan token and pass it back in on each call. This insures that things don't
get done out of sequence. When you call parseFirst() or parse(), any previous scan tokens are invalidated
and will cause an error if used again. This prevents incorrect mixed use of the two different parsing
schemes or incorrect calls to parseNext().

Namespace support
The C++ parser now supports namespaces. With current XML interfaces (SAX/DOM) this doesn't mean
very much because these APIs are incapable of passing on the namespace information. However, if you
are using our internal APIs to write your own parsers, you can make use of this new information. Since
the internal event APIs must be able to now support both namespace and non-namespace information,
they have more parameters. These allow namespace information to be passed along.

Most of the samples now have a new command line parameter to turn on namespace support. You turn on
namespaces like this:

SAXParser myParser;

// Tell it whether to do namespace

myParser.setDoNamespaces(true);

Moved Classes to src/framework
Some of the classes previously in the src/internal/ directory have been moved to their more correct
location in the src/framework/ directory. These are classes used by the outside world and should have
been framework classes to begin with. Also, to avoid name classes in the absense of C++ namespace
support, some of these clashes have been renamed to make them more XML specific and less likely to
clash. More classes might end up being moved to framework as well.

So you might have to change a few include statements to find these classes in their new locations. And
you might have to rename some of the names of the classes, if you used any of the ones whose names
were changed.

Loadable Message Text
The system now supoprts loadable message text, instead of having it hard coded into the program. The
current drop still just supports English, but it can now support other languages. Anyone interested in
contributing any translations should contact us. This would be an extremely useful service.

In order to support the local message loading services, we have created a pretty flexible framework for
supporting loadable text. Firstly, there is now an XML file, in the src/NLS/ directory, which contains all
of the error messages. There is a simple program, in the Tools/NLSXlat/ directory, which can spit out that
text in various formats. It currently supports a simple 'in memory' format (i.e. an array of strings), the
Win32 resource format, and the message catalog format. The 'in memory' format is intended for very
simple installations or for use when porting to a new platform (since you can use it until you can get your
own local message loading support done.)

In the src/util/ directory, there is now an XMLMsgLoader class. This is an abstraction from which any
number of message loading services can be derived. Your platform driver file can create whichever type
of message loader it wants to use on that platform. We currently have versions for the in memory format,
the Win32 resource format, and the message catalog format. An ICU one is present but not implemented
yet. Some of the platforms can support multiple message loaders, in which case a #define token is used to

Chapter 10 - Migration Archive Xerces C++ Documentation

- 91-

control which one is used. You can set this in your build projects to control the message loader type used.

Both the Java and C++ parsers emit the same messages for an XML error since they are being taken from
the same message file.

Pluggable Validators
In a preliminary move to support Schemas, and to make them first class citizens just like DTDs, the
system has been reworked internally to make validators completely pluggable. So now the DTD validator
code is under the src/validators/DTD/ directory, with a future Schema validator probably going into the
src/validators. The core scanner architecture now works completely in terms of the
framework/XMLValidator abstract interface and knows almost nothing about DTDs or Schemas. For
now, if you don't pass in a validator to the parsers, they will just create a DTDValidator. This means that,
theoretically, you could write your own validator. But we would not encourage this for a while, until the
semantics of the XMLValidator interface are completely worked out and proven to handle DTD and
Schema cleanly.

Pluggable Transcoders
Another abstract framework added in the src/util/ directory is to support pluggable transcoding services.
The XMLTransService class is an abtract API that can be derived from, to support any desired
transcoding service. XMLTranscoder is the abstract API for a particular instance of a transcoder for a
particular encoding. The platform driver file decides what specific type of transcoder to use, which allows
each platform to use its native transcoding services, or the ICU service if desired.

Implementations are provided for Win32 native services, ICU services, and the iconv services available
on many Unix platforms. The Win32 version only provides native code page services, so it can only
handle XML code in the intrinsic encodings ASCII, UTF-8, UTF-16 (Big/Small Endian), UCS4
(Big/Small Endian), EBCDIC code pages IBM037 and IBM1140 encodings, ISO-8859-1 (aka Latin1)
and Windows-1252. The ICU version provides all of the encodings that ICU supports. The iconv version
will support the encodings supported by the local system. You can use transcoders we provide or create
your own if you feel ours are insufficient in some way, or if your platform requires an implementation
that we do not provide.

Util directory Reorganization
The src/util directory was becoming somewhat of a dumping ground of platform and compiler stuff. So
we reworked that directory to better spread things out. The new scheme is:

util - The platform independent utility stuff
· MsgLoaders - Holds the msg loader implementations

1. ICU
2. InMemory
3. MsgCatalog
4. Win32

· Compilers - All the compiler specific files
· Transcoders - Holds the transcoder implementations

1. Iconv
2. ICU
3. Win32

· Platforms
1. AIX

Chapter 10 - Migration Archive Xerces C++ Documentation

- 92-

2. HP-UX
3. Linux
4. Solaris
5.
6. Win32

This organization makes things much easier to understand. And it makes it easier to find which files you
need and which are optional. Note that only per-platform files have any hard coded references to specific
message loaders or transcoders. So if you don't include the ICU implementations of these services, you
don't need to link in ICU or use any ICU headers. The rest of the system works only in terms of the
abstraction APIs.

Chapter 10 - Migration Archive Xerces C++ Documentation

- 93-

11
Releases

Xerces C++ Version 1.5.1: July 18, 2001
Date Contributor Description
2001-07-17 Khaled Noaman [Bug 2643] - derivation by extension

of complex types does not permit
addition of ONLY element content.

2001-07-16 Tinny Ng [Bug 2410] DOMParser::parse()
throws undocumented exceptions.

2001-07-16 Tinny Ng [Bug 2512] typing mistake in code
example of chapter "Constructing an
XML Reader".

2001-07-16 Tinny Ng APIDocs fix: default for schema
processing in DOMParser,
IDOMParser, and SAXParser should
be false.

2001-07-15 James Berry Add new files to UnionTypeValidator
and ListDataTypeValidator to MacOS
Project files.

2001-07-09 Khaled Noaman Add constraint checking for simple
types.

2001-07-11 Pei Yong Zhang Fix to normalizeWhiteSpace:
synchronize fDatatypeBuffer with
toFill.

2001-07-05 Pei Yong Zhang Add ListDatatypeValidator and
UnionDatatypeValidator.

2001-07-10 Tinny Ng Give proper error messsage when
scanning external id.

2001-07-10 Tinny Ng The first char of PI Target Name
should be checked.

2001-07-09 Khaled Noaman Add <any> declaration.
2001-07-09 Khaled Noaman Fixes for import/include declarations.
2001-07-09 Tinny Ng Partial Markup in Parameter Entity is

validity constraint and thus should be
just error, not fatal error.

2001-07-08 James Berry Add new samples projects:
IDOMPPrint and SAX2Print for
ProjectBuilder

- 94-

2001-07-08 James Berry Update ProjectBuilder Xerces project
for latest file additions.

2001-07-08 James Berry [Bug 2486] Files missing from
XercesLib.mcp.

2001-07-08 James Berry Add new samples for CodeWarrior
build: IDOMPrint and SAX2Print.

2001-07-08 James Berry New file for use in building Carbon
samples.

2001-07-08 James Berry Simplify file existance checks.
2001-07-08 James Berry [Bug 2495] Missing (in

xerces-c-src1_5_0/obj/Makefile.in.
2001-07-08 James Berry Fix clean and distclean targets; broken

because rm fails if passed no files.
2001-07-06 Tinny Ng [Bug 2472] Linker options ignored on

IRIX.
2001-07-06 Martin Kalen Automatic build of single-threaded

library.
2001-07-05 Tinny Ng Encoding String must present for

external entity text decl.
2001-07-05 Tinny Ng Standalone checking is validity

constraint and thus should be just
error, not fatal error.

2001-07-05 Pei Yong Zhang Add NotationDatatypeValidator,
QNameDatatypeValidator and
ENTITYDatatypeValidator.

2001-07-04 Pei Yong Zhang Add IDREFDatatypeValidator and
IDDatatypeValidator.

2001-07-04 Pei Yong Zhang XMLString:isValidName(): to validate
Name (XML [4][5]).

2001-07-03 Tinny Ng Some compilers (e.g. the HP
compiler) has mistaken the parameter
'std', which is short for standalone as
the special prefix used by the standard
libraries.

2001-07-03 Miroslaw Dobrzanski-Neumann Supporting dce threading on AIX and
Solaris.

2001-06-27 David Bertoni [Bug 2365] Huge performance
problem with the parser in
XMLScanner::sendCharData().

2001-06-27 David Bertoni [Bug 2363]
XMLScanner::sendCharData() can
send the wrong length to the handler.

2001-06-27 Khaled Noaman [Bug 2353] Validating Parser parses
after validation failed.

2001-06-27 Murray Cumming [Bug 1147] Headers install in wrong
directory.

2001-06-26 Tinny Ng [Bug 2119] DOMString::print() should
use DOMString::transcode() for
transcoding.

2001-06-25 Stephen Dulin OS390 updates.

Chapter 11 - Releases Xerces C++ Documentation

- 95-

2001-06-25 Linda Swan AS400 updates.
2001-06-25 Pei Yong Zhang [Bug 1393] Converting from Unicode

to iso8859.
2001-06-25 Matt Lovett [Bug 965] scanDocTypeDecl messes

up the source offsets.
2001-06-25 Khaled Noaman Add constraint checking on elements

in complex types.
2001-06-22 James Berry [Bug 2277] Bad argument to

ConvertFromUnicodeToText.
2001-06-22 Pei Yong Zhang [Bug 2263] 'SIZE' : redefinition (

BooleanDatatypeValidator.cpp).
2001-06-22 Khaled Noaman [Bug 2258] Bug in Iconv and

Iconv390.
2001-06-22 Tinny Ng [Bug 2225] assignment vs.

comparison in if clause.
2001-06-22 Tinny Ng [Bug 2257] 1.5 thinks a

?xml-stylesheet ...> tag is a <?xml ...>
tag.

2001-06-21 Khaled Noaman [Bug 1946] Standalone validity check
only for external decl.

2001-06-21 Tinny Ng [Bug 2262] Duplicated header guard.
2001-06-20 Pei Yong Zhang Proper Debug Guard: Reported by

Dean.
2001-06-19 Tinny Ng Namespace should be off by default in

XMLScanner.
2001/06/19 Tinny Ng Add installAdvDocHandler to

SAX2XMLReader as the code is there
already.

2001-06-19 Khaled Noaman Handle maxChars >
length(toTranscode).

2001-06-18 Erik Rydgren Memory leak fix: to addlevel().
2001-06-18 Khaled Noaman and Pei Yong

Zhang
Add support for 'fixed' facet.

2001-06-15 Khaled Noaman Added constraint checking for ref on
elements.

2001-06-15 Tinny Ng ICU 1.8.1 update.

Xerces C++ Version 1.5.0: June 15, 2001
Date Contributor Description
2001-06-15 Tinny Ng Schema:

Add Schema support in XMLParsers
(DOM/SAX/SAX2), XMLScanner.
Create SchemaValidator.
Add Grammar Model.
Support xsi:nil.
Support xsi:schemaLocation and
xsi:noNamespaceSchemaLocation.
Update samples to enable schema.

Chapter 11 - Releases Xerces C++ Documentation

- 96-

2001-06-15 Tinny Ng Break DTDValidator into DTDGrammar, DTDScanner,
and DTDValidator.

2001-06-15 Tinny Ng IDOM:
Complete the Range, TreeWalker, NodeIterator, and
other memory fixes.
Support IDOM on UNIX platform.
Add samples IDOMPrint, and IDOMCount.
Add test cases IRangeTest and ITraversal.

2001-06-15 Khaled Noaman Schema:
Add Regular Expression.
Add Schema Messages.
Add Schema Simple Type Support.
Add Schema Complex Type Support (Except Group).
Add Schema Attribute Declarations support.
Add Schema Element Declarations support.
Support Simple Content and Complex Content.
Support Element and attribute reuse using "ref".
Support Schema Choice and Sequence.
Support Schema Import and Include.

2001-06-15 Khaled Noaman DatatypeValidator:
Add DatatypeValidator and DatatypeValidatorFactory.

2001-06-15 PeiYong Zhang Schema:
Add Schema support in Content Model.
Add Schema Exception Handling.
Add Schema XUtil.
Add QName Support.
Support SubstitutionGroup.

2001-06-15 PeiYong Zhang DatatypeValidator:
Support Base64DatatypeValidator,
BooleanDatatypeValidator,
DecimalDatatypeValidator,
HexBinDatatypeValidator,
StringDatatypeValidator,
InvalidDatatypeFacetException,
InvalidDatatypeValueException.

2001-06-13 Erik Rydgren [Bug 812] Memory leak with multiple !ATTLIST on
single !ELEMENT.

2001-06-08 Tinny Ng [Bug 2043] XMLFormatter unallocates arrays
incorrectly.

2001-06-08 PeiYong Zhang Documentation and project files update for Xerces 1.5.
2001-06-08 Khaled Noaman IDOM Documentation.
2001-06-07 Khaled Noaman Fix no error message for faulted-in attributes if reuse

grammar for 3+ times.
2001-06-06 Peter A. Volchek /Platforms/Win32/Win32PlatformUtils.cpp

Include stdlib.h.
2001-06-06 James Berry Update Mac OS ProjectBuilder projects.
2001-06-06 James Berry Fix invalid file references in project.

Chapter 11 - Releases Xerces C++ Documentation

- 97-

2001-06-06 James Berry /src/util XMLString.cpp
Clean up compiler warning.

2001-06-06 James Berry /src/util/regx RegxParser.cpp
Fix two improper NULL tests.

2001-06-05 James Berry Add support for Mac OS X command line
configuration and build.

2001-06-5 Peter A. Volchek Add 'const' to getGrammar.
2001-06-04 PeiYong Zhang The start tag "<?xml" could be followed by (#x20 | #x9

| #xD | #xA)+.
2001-06-04 James Berry Add support for tracking error count during parse;

enables simple parse without requiring error handler.
2001-06-01 Tinny Ng /scripts/packageSources.pl

Keep the BCB4 project files in the source package.
2001-05-22 James Berry Check for existance of MacOS Unicode Converter

routines prior to instanciating our transcoder object;
Xerces will thus panic, rather than crash, if they don't
exist. Add support to check for existance of MacOS
Unicode Converter to avoid calling through NULL
pointer.

2001-05-16 Henry Zongaro IDOM: Add DeepNodeList support.
2001-05-16 Henry Zongaro IDOM: Add namespace support.
2001-05-10 Christian Schuhegger [Bug 1158] built-in buffer limit could be smaller than

system limit, use PATH_MAX instead.
2001-05-10 Arnaud LeHors [Bug 1605] AttrNSImpl.cpp: fixed typo in constructor.
2001-05-09 Curt Arnold [Bug 1500] The public id was set twice and the system

id was not set on Notations.
2001-05-04 Tinny Ng DOMPrint: Check error before continuing.
2001-05-03 Tinny Ng ICU 1.8 update.
2001-05-03 Khaled Noaman Added new option to the parsers so that the NEL

(0x85) char can be treated as a newline character.
2001-04-23 Erik Rydgren DTDScanner: Reuse grammar should allow users to

use any stored element decl as root.
2001-04-19 William L Hopper Win32PlatformUtils: InterlockedCompareExchange on

different Windows.
2001-04-19 William L Hopper BCB project changes.
2001-04-16 James Berry MacOSUnicodeConverter: Fix include path, Updates

to reflect changes for Mac OS X final and Update
MacOS projects for Mac OS X final ProjectBuilder.

2001-04-11 Arnaud LeHors [Bug 1303] AttrImpl: allow value to be set to null.
2001-04-11 Tinny Ng DOMParser: Attribute default values not printed in

document type internal subset interface.
2001-04-10 Tinny Ng createdocs.bat: fix PDF generation.
2001-04-04 Alberto Massari DTDElementDecl: Error checking for null content

spec.
2001-04-02 Andy Heninger IDOM: imported.
2001-04-02 Andy Heninger IThreadTest: imported.
2001-03-30 Tinny Ng [Bug 1150] Problems with Namespaces and validating

parsing.

Chapter 11 - Releases Xerces C++ Documentation

- 98-

2001-03-27 Roman Sulzhyk [Bug 1069] Explicit Makefile dependency for 'lib' build.
2001-03-26 PeiYong Zhang When Standalone="yes", it is NOT supposed to

accept element which is defined in external DTD with
#FIXED attribute.

2001-03-26 Andy Heninger Update packageBinaries.pl for ICU 1.8. ICU debug .lib
file names and locations changed.

2001-03-23 Jeff Harrell [Bug 1018] AutoSense looks for "IRIX" when it should
look for "sgi" or "__sgi".

2001-03-22 Roman Sulzhyk [Bug 1069] The Makefiles fail to locate .cpp - > .o
dependency and rebuild .o all the time.

2001-03-22 John Rope [Bug 1021] Accessing an XML file using the file
"protocol" and a UNC path fails to open the file.

2001-03-09 Tinny Ng [Bug 733] Seg fault when trying to parse empty
filename.

2001-03-06 Tinny Ng [Bug 677] Infinite loop caused by malformed XML.
Happen when namespace is on.

2001-03-02 Martin Kalen Enabling libWWW NetAccessor support under UNIX.
Tested with latest tarball of libWWW
(w3c-libwww-5.3.2) under RedHat Linux 6.1.

2001-02-27 Tinny Ng [Bug 676] Linux for S/390 build requires -fPIC.
2001-02-22 Tinny Ng [Bug 678] StdInParse doesn't output filename or

duration.
2001-02-21 Matt Lovett ICUTranscoder::transcodeFrom() expects ICU

function ucnv_toUnicode to return an extra element in
fSrcOffsets to allow us to figure out the last char size,
which in fact it is not. The fix is to compute the last
char size ourselves using the total bytes used.

2001/02/16 Andy Heninger Change limit test to reduce spurious pointer
assignment warnings from BoundsChecker.

2001-02-14 Bob Kline Better FAQ for the checksum error.
2001-02-14 Mark Everline Core dump when UTF-16 encoding contradicts actual

encoding.
2001-02-13 Hiram Clawson Update samples/tests files for on UnixWare 7.1.1 with

gcc 2.95. Add UNIXWARE platform defines to
Makefile.incl, add recognition of sysv5uw7 to
configure.in, and add unixware as recognized platform
to runConfigure.

2001-02-09 Martin Kalen Update support for SCO UnixWare 7 (gcc). Tested
under UnixWare 7.1.1 with gcc version 2.95.2
19991024 (release) with gmake 3.79.1.

2001-02-08 Martin Kalen Enable COMPAQ Tru64 UNIX machines to build
xerces-c with gcc (tested using COMPAQ gcc
version2.95.2 19991024 (release) and Tru64 V5.0
1094).

2001-02-07 Bill Schindler Rearranged statements in Initialize() so that
platformInit() is called before an XMLMutex is created.

2001-02-07 Richard Ko Storage overlay in ucnv_setFromUCallBack.
2001-02-05 Tinny Ng [Bug 766] /src/util/Compilers/CSetDefs.hpp: define

NO_NATIVE_BOOL macro only if not
pre-defined/reserved.

Chapter 11 - Releases Xerces C++ Documentation

- 99-

2001-02-05 Jordan Naftolin Add createPDF.jar and apachPDFStyle.xsl to convert
documentation xml files to pdf format.

Release Archive
For release information about Xerces C++ 1.4.0 or earlier, please refer to Release Archive.

Chapter 11 - Releases Xerces C++ Documentation

- 100-

12
Releases Archive

Xerces C++ Version 1.4.0: January 31, 2001
Date Contributor Description
2001-01-26 Walker Curtis Undefined symbol error when building a single threaded

version of the xerces lib on irix.
2001-01-25 Arnaud LeHors Added a flag to turn off error checking in the DOM, this

is primarily used while building the DOM from the parser
to get better performance.

2001-01-25 Khaled Noaman Let users add their encoding to the intrinsic mapping
table.

2001-01-25 Khaled Noaman const should be used instead of static const. And other
clean up bug fixes.

2001-01-24 Arnaud LeHors Fixed replaceChild to handle the case where a node is
replaced by itself. Cleaned up insertBefore.

2001-01-24 Tinny Ng Guard the use of '-ptr${OUTDIR}' in
EnumVal/Makefile.in

2001-01-22 Curt Arnold. Loads winsock dynamically.
2001-01-19 Curt Arnold. COM various updates: updated the GUID's so both can

coexist, better error reporting and fixed a new minor
bugs.

2001-01-18 Bill Schindler FAQ spell check, fix typos, fix grammar, readability
editing, clean up formatting, re-organize so related
topics appear together.

2001-01-18 Bill Schindler Project file updated due to removal of
ChildAndParentNode.cpp.

2001-01-17 Arnaud LeHors DOM Implementation Optimization.
2001-01-17 Volker Krause ElementImpl::getAttributeNS should check null pointer.
2001-01-17 Arnaud LeHors Have a single counter global to the document. Removed

node basis change counter.
2001-01-17 Arnaud LeHors Removed unused field in NodeImpl that was left over.
2001-01-17 Tinny Ng Access violations and stack overflows in insertBefore.
2001-01-15 David Bertoni Performance Patches.
2001-01-12 Tinny Ng Fix style-ibm.zip for documentation generation.
2001-01-12 Tinny Ng Remove the two obsolete file: stylesheets\Copy of

book2project.xsl and stylesheets\Copy of
document2html.xsl in style-apachexml.jar

- 101-

2001-01-12 Tinny Ng Documentation Enhancement: explain values of
Val_Scheme.

2001-01-12 Tinny Ng Documentation Enhancement: Add list of SAX2 feature
strings that are supported.

2001-01-04 Khaled Noaman Assertion `size > 0' failure when cloning a node if the
last attributes has been removed.

2000-12-28 James Berry Omit include carbon.h in favor of specific include files.
2000-12-28 James Berry Add or modify cvs header in various files.
2000-12-28 James Berry Eliminate compiler warning in RangeImpl.cpp.
2000-12-28 James Berry Replace include of Carbon.h with specific include files.
2000-12-28 James Berry Move away from include of Carbon.h; include only

needed files instead. Fix bug in parsing of upwardly
relative paths under classic (thanks to Lawrence You).

2000-12-22 Tinny Ng XMLUni::fgEmptyString which is defined as "EMPTY" is
incorrectly used as an empty string; in fact
XMLUni::fgZeroLenString should be used instead.

2000-12-22 Tinny Ng Add the new header LexicalHandler.hpp to Makefile.in.
2000-12-22 Murray Cumming removes '-instances=static' from the Linux link sections.
2000-12-22 David Bertoni SAX2-ext's LexicalHandler support.
2000-12-14 Tinny Ng Better instruction for using packageBinaries.pl. Use

symbol XercesCInstallDir and XercesCSrcInstallDir
instead of hardcoding the Xerces version number in the
file.

2000-12-14 Tinny Ng Fix API document generation warning: "Warning: end of
member group without matching begin".

2000-12-14 Tinny Ng Add RangeTest as part of the xerces-all MSVC++
workspace.

2000-12-12 Gareth Reakes null pointer bug.
2000-12-08 Tinny Ng Entity Reference cleanup dumping core if the last entity

reference is deleted.
2000-12-06 Tinny Ng fix the link to FAQ.
2000-12-06 Tinny Ng further fixes to Range, and update RangeTest.cpp with

more test coverage.
2000-11-30 Bill Schindler Spell check, fix typos, fix grammar, readability editing,

clean up formatting.
2000-11-30 Bill Schindler Remove dead code (old StdOut and StdErr functions);

minor clean-up.
2000-11-30 Tinny Ng patch to fix a number of Range problems. See mail of

11/21/2000.
2000-11-30 Tinny Ng DOM_Text::splitText(), fix off by one error in the test for

index too big error.
2000-11-30 Tinny Ng reuseValidator - fix bugs (spurious errors) that occured

on reuse due to pools already containing some items.
2000-11-08 Andrei Smirnov Build updates for Solaris 2.8 64 bit.
2000/11/07 Tinny Ng Bug fix for DTD entity reference problem reported by

Tony Wuebben on 10/25.
2000-11-07 Tinny Ng config.guess and config.sub updated to newer versions.
2000-11-07 Pieter Van-Dyck Change InterlockedCompareExchange for compatibility

with Borland BCB5

Chapter 12 - Releases Archive Xerces C++ Documentation

- 102-

2000-11-07 Pieter Van-Dyck Fix incorrect version number in gXercesMinVersion.
2000-11-01 Tinny Ng SAX bug fix: Attribute lists were throwing exceptions

rather than returning null when an attribute could not be
found by name.

2000-11-01 Tinny Ng Scanner bug fix: with progessive parsing, namesapce
and validation options were not being set correctly.
Symptoms included failure to detect ignorable white
space.

2000-10-31 Tinny Ng DOM NodeIterator bug fix: iterators would sometimes
continue beyond their starting (root) node.

2000-10-20 Andy Heninger DOMParser bug fix - erroneous attempt to look up name
space URIs while scanning default attribute values in
DTD removed. Was a crashing bug when namespaces
were enabled.

2000-10-20 Andy Heninger DOM NodeFilter - define values for FilterAction enum to
match those in the DOM spec.

2000-10-19 Andy Heninger SAXCount sample, allow multiple files on command line.
DOMCount sample, rename error handler class to say
that it is an error handler.

2000-10-18 James Berry MacOS project file updates. Small code optimization.
Add comments to clarify and to reflect new fixed XMLCh
size.

2000-10-17 Andy Heninger Bug Fix - problems with multi-byte characters on input
buffer boundaries.

2000-10-17 Andy Heninger DOMPRintFormatTarget, bad override of writeChars
fixed (missing const). XMLFormatTarget, removed
version of writeChars with no length. Can not be safely
used, and obscured other errors.

2000-10-16 Andy Heninger Change XMLCh back to unsigned short on all platforms
2000-10-13 Devin Barnhart COM: interpret BSTR as UTF-16 in documents
2000-10-13 Edward Bortner Solaris: change detection for native support for type bool

to defined(_BOOL).
2000-10-13 Nadav Aharoni MXLString::trim() bug fix: failure to null terminate result.
2000-10-10 Bill Schindler XMLFormatter: Fix problems with output to multi-byte

encodings.
2000-10-10 Andy Heninger From Janitor, remove the addition that is having compile

problems in MSVC.
2000-10-10 James Berry Fix a bug in returned length of transcoded string. Add a

few comments.
2000-10-09 James Berry ProjectBuilder project to build Xerces.

Chapter 12 - Releases Archive Xerces C++ Documentation

- 103-

2000-10-09 James Berry Numerous Changes: - Increase environmental
sensitivity with hope of supporting pre OS 9 OS
versions. - Enhanced path creation/interpretation to
support proper unix style paths under Mac OS X instead
of the volume rooted paths we previously used. Paths
under Classic remain the same. - Better timer
resolution. - Detect functionality via unresolved symbols
rather than Gestalt where possible. - Softly back away
from URLAccess...if it's not installed, we just don't
support a net accessor. - Additional support for
XMLCh/UniChar size differences under GCC on Mac OS
X. - Fix Mac OS X support. GCC in this environment
sets wchar_t to a 32 bit value which requires an
additional transcoding stage (bleh...) - Improve
sensitivity to environment in order to support a broader
range of system versions. - Fix a few compiler
sensitivities. - Carbon.h header support

2000-10-09 James Berry Add some auto_ptr functionality to allow modification of
monitored pointer value. This eases use of Janitor in
some situations.

2000-10-09 James Berry Autosense.hpp: modify sensing of Mac OS X.
2000-09-28 Andy Heninger DOM_Document::putIdentifier() removed. There never

was an implementation for this function.
2000-09-28 Curt Arnold COM wrappers updated.
2000-09-28 Linda Swan AS400 related changes.
2000-09-28 Andy Heninger DOM_Document - remove the un-implemented function

putIdentifier() from the header.
2000-09-28 Andy Heninger DOMParser MemoryLeak fixed. Occured when a

document redefined the a builtin entity, e.g. <.
2000-09-28 Andy Heninger DOMPrint sample: add deletes before exit so

boundschecker runs cleanly.
2000-09-22 James Berry Change file access permissions to fsRdPerm. Since we

never write, there's no reason to request write access.
Thanks to John Mostrom @ Adobe. Also nuke a few
spaces and the entire defunct support for reading
directly from MacOS resources.

2000-09-22 Arundhari Bhowmick DOM Parser: internal subset entity printing update.

Xerces C++ Version 1.3.0: Sept 21, 2000
Date Contributor Description
2000-09-21 Torbjörn Bäckström HPUX - Incorrect use of Array Janitor in Platform

Utils removed.
2000-09-21 Arundhati Bhowmick DOMPrint - DTD internal subset, printing of

attribute value enumerations was broken.
2000/09/19 Arundhati Bhowmick DOMPrint - output entity reference nodes as XML

entity references, instead of just printing their
children.

2000-09-19 Bill Schindler OS/2 - port update
2000-09-18 Arundhati Bhowmick DOM EntityReferences, fixed bugs with length()

and hasChildNodes() methods.

Chapter 12 - Releases Archive Xerces C++ Documentation

- 104-

2000-09-12 Arundhati Bhowmick DOM: changed name of expandEntityReferences
option to createEntityReferenceNodes. More
accurately describes what it does. Fixed bugs that
caused creation of Entity Reference nodes to fail.

2000-09-12 IBM AS400 - transcoder updates.
2000-09-11 Shengkai Qu OS390 - makefile updates
2000-09-11 Kirk Wylie Alpha processor support update in config.sub.
2000-09-08 Kirk Wylie Reordered member variables in

ThrowEOEJanitor.
2000-09-08 Arnaud LeHors DOM NamedNodeMap - because in many cases

we may have to deal with both nodes with a
namespace and nodes without any, NS methods
through findNamePoint must handle both types of
nodes.

2000-09-08 Kirk Wylie Some destructors not virtual that should have
been; some members of DOM_Entity virtual that
should not have been.

2000-09-08 Andy Heninger Removed incorrect detection of nested CDATA
sections. Problem reported by Johannes Lipp.

2000-09-08 Andy Heninger DOMPrint incorrectly handled DOCTYPE
declarations containing both a public and system
id. Problem reported by Jesse Pelton.

2000-09-08 Radovan Chytracek MSVC: RangeTest project settings incorrect, build
failed.

2000-09-07 Bob Kline XMLReader::skippedString(), failed under certain
rare circumstances.

2000-09-07 Andy Heninger Fix SAXException assignment operator. Now
non-virtual, and SAXParseException subclass
invokes base class operator.

2000-09-06 William L. Hopper Borland updates. It had fallen way behind.
2000-09-06 Andy Heninger HPUX 11, packageBinaries build script,

DCEThreads no longer default
2000-09-06 James Berry Macintosh: Add support for new compile time

options defined in prefix file. These control the
selection of the msgloader, transcoder, and
netaccessor. Add a tiny bit of robustness to the
nasty panic method..

2000-09-06 Shengkai Qu S390: socket related changes
2000-09-06 James Berry Macintosh: Allow ShortenFiles to work even when

destination directory already exists.
2000-09-06 Arundhati Bhowmick HP compile options modified for ICU compatibility
2000-09-05 Michael Crawford Macintosh: Fix atomic increment & decrement to

return value after operation rather than before.
2000-09-05 Andy Heninger Cleaned up various compiler warnings.
2000-09-05 Andy Heninger SAX parser: added advanced callback support for

XMLDecl
2000-09-01 Andy Heninger Fix ICU transcoding service, crashing bug on

Linux, Solaris
2000-08-30 Andy Heninger Builds - clean up a number of compiler warnings.

Chapter 12 - Releases Archive Xerces C++ Documentation

- 105-

2000-08-24 Andy Heninger DOMPrint - fixed crash when input xml file was
not found.

2000-08-23 Andy Heninger Build Script updates and cleanups
2000-08-18 Andy Heninger Version number bumped to 1.3 in preparation for

the upcoming xerces 1.3 / xml4c 3.3 release
2000-08-17 Arnaud Lehors DOM: Rewrote code updating the linked list on

node addition and removal. I believe it is now
easier to read and it uses fewer tests so it is also
a little faster.

2000-08-17 Arnaud Lehors DOM: small cleanup: renamed a set of [] boolean
flag methods. yes, I know, I also wish I got them
right in the first place...

2000-08-17 Sumit Chawla PTX port updates
2000-08-16 Andy Heninger Fixed crash when XML text content has very long

lines. Bug pointed out by Simon Fell.
2000-08-14 Joe Polastre SAX2 DefaultHandler, inconsistency in const

parameters fixed.
2000-08-11 Arundhati Bhowmick ICU Transcoding - updates to support ICU 1.6
2000-08-09 Arundhati Bhowmick DOM Range: Add const to API where

appropriate.
2000-08-09 Joe Polastre Many conformance and stability changes:

- ContentHandler::resetDocument() removed
- attrs param of ContentHandler::startDocument()
made const
- SAXExceptions thrown now have msgs
- removed duplicate function signatures that had
'const'
[eg: getContentHander()]
- changed getFeature and getProperty to apply to
const objs
- setProperty now takes a void* instead of const
void*
- SAX2XMLReaderImpl does not inherit from
SAXParser anymore
- Reuse Validator
(http://apache.org/xml/features/reuse-validator)
implemented
- Features & Properties now read-only during
parse

2000-08-09 Joe Polastre Namespaces bug - bogus default namespace
removed.

2000-08-09 Joe Polastre SAXException enhanced, messages added.
2000-08-08 Joe Polastre SAX2Count - new sample program for SAX2.
2000-08-07 Arundhati Bhowmick Remove detach() method from TreeWalker.
2000-08-03 James Berry Add Mac Codewarrior projects.
2000-08-01 Joe Polastre SAX2 support added
2000-08-01 Gary Gale Compaq Tru64 port added.
2000-07-31 Joe Polastre bug fix in removeAll() to zero out all the pointers.
2000-07-31 Andy Heninger utf-8 byte order mark recognition

Chapter 12 - Releases Archive Xerces C++ Documentation

- 106-

2000-07-29 James Berry Mac OS Port, general cleanups.
2000-07-28 James Berry Addition of NetAccessor functionality for MacOS,

built on URLAccess library.
2000-07-28 Arundhati Bhowmick ICU Transcoding service: changes for move to

ICU 1.6
2000-07-27 Arundhati Bhowmick DOM Range added. (Major new feature)
2000-07-27 Murray Cumming makefile fixes for SUNW_0.7
2000-07-25 Arundhati Bhowmick XMLCh character constants definitions moved to

XMLUniDefs.h. Removes name clashes with
application defined symbols.

2000-07-25 Joe Polastre allow nesting of PlatformUtils::Init() and
Terminate()

2000-07-25 Gary Gale ICU transcoding: fix off by one error.
2000-07-21 <check> Change wcsupr to _wcsupr
2000-07-21 Eric Schroeder Win32TransService - fix error in use of

hashtables
2000-07-21 Joe Polastre DOMPrint: fixed error in handling of null CDATA

sections.
2000-07-20 Andy Heninger Improved net access (parse of URLs). Still weak,

though.
2000-07-20 Erik Schroeder XMLScaner.cpp bugfix: call startDocument() at

beginning of scan.
2000-07-20 Arundhati Bhowmick DOMCount exception handling cleaned up.
2000-07-19 Todd Collins runConfigure: modified to take "configureoptions"
2000-07-19 <check> Add 'make install' target to

src/util/Platforms/Makefile.in
2000-07-19 <check> DOM: BugFix: DocumentType nodes can not

have children.
2000-07-19 <check> DOM: Bug in NodeIDMap constructor.
2000-07-18 Anupam Bagchi Documentation generation tools updated.
2000-07-17 James Berry Mac OS port brought up to date (was very old)
2000-07-17 Andy Heninger Change windows project to link with ws2_32.lib

instead of winsock32.lib
2000-07-17 Grace Yan, Joe Kesselman DOM NodeIterator: bug fix for SHOW_ELEMENT

flag incorrectly being retrieved.
2000-07-17 Joe Polastre switched scanMisc() with endDoc() in scanNext.

Pointed out by Dean Roddey.
2000-07-17 Jim Reitz fix for uninitialized variable gotData bug in

XMLScanner.cpp.
2000-07-12 Arundhati Bhowmick DOM: fix bug in setting previous sibling pointer

during insertNode
2000-07-07 Joe Polastre Update to use of hashtables.
2000-07-07 Joe Polastre DOM userdata: several bug fixes.
2000-07-06 Andy Heninger Speedups in XMLScanner, XMLReader
2000-07-07 <check> bug fixes in IXMLDOM*
2000-07-06 Joe Polastre Performance tweaks, added more inlines.
2000-07-05 Anupam Bagchi Documentation updates.

Chapter 12 - Releases Archive Xerces C++ Documentation

- 107-

2000-07-05 Joe Polastre DOM: Attribute node default value handling
implemented.

2000-07-05 Joe Polastre DOM Attr nodes - fixed setting of specified when
cloning. (change may be in error)

2000-07-04 Dean Roddey Fixed a memory leak when namespaces are
enabled.

2000-06-28 Curt Arnold COM object usage documentation update.
2000-06-28 Joe Polastre DOM Userdata - put pointers in a hash table

rather than having one pre-allocated per node.
Memory footprint reduction.

2000-06-27 Joe Polastre extended the (implementation) hash table
classes.

2000-06-26 John Roper@iOra.com Bug fix: check if initialized in Terminate() to stop
access violations.

2000-06-26 <check> Solaris build - template directory related
changes.

Xerces C++ Version 1.2.0: June 22, 2000
2000/06/22 <check> OS/2 Port updated.
2000-06-22 Joe Polastre DOM Attr nodes, specified flag not set correctly by

parser. Fixed.
2000-06-20 Rahul, Joe, Arundhati Many doc updates in preparation for release of

version 1.2
2000-06-19 Rahul Jain Update Package Binaries script to build Xerces with

ICU.
2000-06-19 Joe Polastre Added help messages to PParse and StdInParse

samples.
2000-06-19 Joe Polastre Changed "XML4C" to "Xerces-C" in DOMPrint.

(Missed in earlier mass name change.)
2000-06-19 Arundhati Bhowmick Moved version.incl up one directory level.
2000-06-19 Curt Arnold Improved Windows project file.
2000-06-16 John Smirl Bug Fix: Document Handler was not called for PIs

occurring before the document element. Bug
identified by John Smirl and Rich Taylor

2000-06-16 Rahul Jain DOMPrint, SAXPrint: remove extra space in printing
PIs.

2000-06-16 Rahul Jain Windows Debug Build: add 'D' suffix to DLL name in
VCPPDefs.hpp

2000-06-16 Rahul Jain Samples: added -v option (validate always). Needed
for testing scripts.

2000-06-14 Joe Polastre Fixed null ptr failures in DOM NamedNodeMap
2000-06-12 Andy Heninger Fixed bug in XMLString::trim(), reported by Michele

Laghi
2000-06-07 Joe Polastre DOM: reduced memory usage for elements with no

attributes.
2000-06-01 Andy Heninger DOMString - add const to return type of const

XMLCh *DOMString::rawBuffer()

Chapter 12 - Releases Archive Xerces C++ Documentation

- 108-

2000-06-01 Arundhati Bhowmick Fix crash with Solaris optimized build. Modified
XMLURL.cpp to dodge compiler code generation
error.

2000-06-01 Joe Polastre Bug fix: DOM Attr Specified flag was incorrectly set
when cloning or importing attributes.

2000-05-31 Andy Heninger MSVC projects modified to produce separate debug
and release versions of Xerces lib and dll.

2000-05-31 Rahul Jain Bug fix: DOMPrint, SAXPrint produced garbage
output on Solaris. Solaris library problem.

2000-05-31 Joe Polastre Fixed incorrect error check for end of file in Win32
platform utils.

2000-05-31 Rahul Jain DOMPrint enhancements. Add options for specifying
character encoding of the output, better control over
escaping of characters, better handling of CDATA
sections. Default validation is now "auto"

2000-05-22 Dean Roddey XMLFormatter now escapes characters, as reqd.,
occurring midway in strings. Reported by Hugo
Duncan.

2000-05-22 Andy Heninger Bug fix in implementation of
DOM_Document::GetElementById()

2000-05-18 Anupam Bagchi Documentation, DTD for source xml files moved into
xerces-c project, sbk: prefixes removed, xml can
now be validated locally.

2000-05-15 Dean Fixed 'fatal error' when 'reusing the validator' problem
reported
by Rocky Raccoon (rrockey@bigfoot.com). Fix
submitted by
Dean Roddey (droddey@charmedquark.com).

2000-05-15 James Berry Changed #include <memory.h> to <string.h>
everywhere. <jberry@criticalpath.com>

2000-05-15 Andy H. DOMTest: removed incorrectly failing entity tests
2000-05-12 Andy H. Revised implementation of

DOMDocument::getElementsById(), removed
memory leaks, new test program for it.

2000-05-12 Dean Bug fix - A PE ref appearing at the start of a skipped
conditional section
was incorrectly being processed rather than ignored.
Fix from Dean Roddey.

2000-05-11 Rahul Jain Start using the socket based netaccessor by default
on most Unix platforms.

2000-05-11 Rahul Jain Update ICUTransService to work with latest revision
of ICU which provides a hard linked data DLL. i.e.
icudata.dll will be loaded when xerces-c is loaded.

2000-05-05 Dean Problem with progressive parsing. parseNext() would
through an exception when the document contains
entities, either or external.

2000-05-11 Sean MacRoibeaird Add missing validity checks for stand-alone
documents, character range
and Well-formed parsed entities.

Chapter 12 - Releases Archive Xerces C++ Documentation

- 109-

2000-05-10 Radovan Chytracek Fix compilation problems on MSVC 5.
Radovan.Chytracek@cern.ch>

2000-05-10 Dean Fix XMLReader defect reported by SHOGO SAWAKI
2000-05-09 Andy H Fix problem with Windows filenames containing '\' in

Japanese and Korean encodings.
2000-05-08 Andy H Memory Cleanup. XMLPlatformUtils::Terminate()

deletes all lazily allocated memory
2000-05-05 Dean Fixed defect in progressive parsing 'parseNext()'

reported by Tim Johnston
2000-05-03 Tom Jordahl Fixed Solaris build problems with static character

constants. Tom Jordahl <tomj@allaire.com>
2000-04-28 Arnaud LeHors Reduced memory usage for DOM Attributes.
2000-04-28 boercher@kidata.de New runConfigure options -P and -C
2000-04-27 Andy H Memory leaks in TransService. Joseph Chen

JosephC@plumtree.com>
2000-04-27 Arnaud LeHors DOM - storage requirements for nodes substantially

reduced.
2000-04-27 Arundhati Added DOM XMLDecl node type; provides access to

XML declaration.
2000-04-20 Arundhati Added DOM access to DTD subset (DOM Level 2

feature)
2000-04-19 Anupam Bagchi API document generation changed to DOxygen from

Doc++
2000-04-18 Arundhati Full support for DOM_EntityReference, DOM_Entity

and DOM_DocumentType introduced
2000-04-18 Dean Roddey Don't allow spaces before PI target. Bug #42
2000-04-17 Anupam Bagchi Follow the SMP/E procedures for the OS/390

BATCH install
2000-04-12 Dean Roddey Auto-validate mode. Validate only when a DTD is

present.
2000-04-11 Dean Roddey If a SAX error handler is installed, then the

resetErrors() event handler
should call the one on the installed SAX error
handler.

2000-04-10 Dean Roddey Allow an empty DOCTYPE declaration, with just the
root name.

2000-04-06 Dean Roddey Add low level support for transcoding XML output to
different character encodings.

2000-04-06 Arnaud Lehors DOM node memory footprint reduction.
2000-04-06 Dean Roddey Fixed hanging bug in character transcoding.
2000-04-05 Dean Roddey Enable installation of DTDHandler on SAX parser.
2000-04-04 Anupam Bagchi Support for PTX platform
2000-04-03 IRIX 6.5 port
2000-03-30 COM wrappers
2000-03-24 Jeff Lewis DOM_Document::GetElementsByTagId() added.
2000-03-23 Chih Hsiang Chou DOM: support for identifying "ignorable white space"

text nodes.
2000-03-23 Rahul Jain URL Net Accessor added.

Chapter 12 - Releases Archive Xerces C++ Documentation

- 110-

2000-03-20 Dean Roddey Fix null pointer exception with some bad documents.
2000-03-17 Dean Roddey Initial support for two-way transcoding.
2000-03-17 Dean Roddey Intrinsic transcoding table generation utility added.
2000-03-17 Anupam Bagchi UNIX build: Now generates object files in

platform-specific directories
2000-03-13 Anupam Bagchi Fix GCC build problem: Changed XML_GNUG to

XML_GCC
2000-03-13 Helmut Eiken Fixed #54. Changed self-assignment to now use the

parameter value.
Reported by Helmut Eiken <H.Eiken@cli.de>

2000-03-10 Chih Hsiang Chou Fix bug # 19, add const keyword to API. As a result,
update test case.

2000-03-10 Chih Hsiang Chou DOM: "specified" flag of attributes now set correctly.
2000-03-08 Dean Roddey Some fixes for content models that have multiple,

trailing, empty
PE refs (for content model extension.)

2000-03-07 Dean Roddey First cut for additions to Win32 xcode. Based very
loosely on a
prototype from Eric Ulevik.

2000-03-03 Dean Roddey Fixed a bug in SimpleContentModel that allowed an
<a/> to be taken
as valid for a content model of (a,b).

2000-03-02 Dean Roddey Added a scanReset()/parseReset() method to the
scanner and
parsers, to allow for reset after early exit from a
progressive parse.
Added calls to new Terminate() call to all of the
samples. Improved
documentation in SAX and DOM parsers.

2000-03-02 Dean Roddey Change "XML4C" to "Xerces" in many places
Add a cleanup method to XMLPlatformUtils.
Implement the Locator scheme for SAX.
Add a -n option to most of the samples, to enable
namespaces
Fix an error where XMLScanner::parseNext() was
falling through on an
exception instead of return a failure.
Implement the specialized string loading for Win98,
since LoadStringW()
doesn't work on 98 and makes the loaded error text
from the Win32
message loader come out junk
fix error when two trailing entity references in a
content model, like so:
<!ELEMENT foo (a|b|c|d|e %one;%two;)*>

Xerces C++ Version 1.1.0: Feb 28, 2000

Chapter 12 - Releases Archive Xerces C++ Documentation

- 111-

2000/02/18 Dean Roddey XMLCh defaults to wchar_t on platforms where wchar_t
uses Unicode.

2000-02-18 Dean Roddey Add Windows-1252 as a built in encoding
2000-02-17 Dean Roddey Fixed an infinite loop caused while trying to trim leading

white space from the raw URL during parsing.
2000-02-17 Rahul Jain Add LibWWW based net accessor
2000-02-17 Chih Hsiang Chou DOM: NodeIterator, TreeWalker added.
2000-02-16 Dean Roddey Updates for EBCDIC code page issues.
2000-02-15 Chih Hsiang Chou DOM: several namespace bugfixes
2000-02-14 Dean Roddey Disallow EBCDIC documents without an encoding

declaration
2000-02-10 Bill Schindler Fixed defect in compare[N]IString function. Defect and fix

reported
by Bill Schindler from developer@bitranch.com

2000-02-10 Anupam Bagchi Sample source code cleaned up.
2000-02-08 Dean Roddey Fixed bug: xmlns:xxx="" should affect the mapping of the

prefixes of sibling attributes
2000-02-07 Dean Roddey Don't weave base and relative paths unless relative part is

really relative.
2000-02-03 Dietrich Wolf C++-Builder 4 support
2000-02-03 Robert Weir DOMString enhancements
2000-01-31 Dean Roddey Win32 mutex implementation was changed to use critical

sections for speed.
2000-01-28 Dean Roddey The API is not in place to allow client code to make sense

of start/end entity
ref calls from attribute values. So suppress them for now.

2000-01-28 Andy Heninger Fix multi-threading problem in DOM.
2000-01-27 Dean Roddey Fixed bug: If an entity ends on the last > of some markup,

then the end of entity
won't be sent because the end of entity is not sensed.

2000-01-24 Dean Roddey Fixes a bogus error about]]> in char data.
2000-01-24 Dean Roddey Exposed the APIs to get to the byte offset in the source

XML buffer.
2000-01-21 Dean Roddey Added a check for a broken pipe error on file read.
2000-01-18 Dean Roddey Update to support new ICU 1.4 release
2000-01-18 Dean Roddey Remove dependence on old utils standard streams
2000-01-18 Rahul Jain Added CreateDOMDocument sample.
2000-01-13 Dean Roddey Added a NetAccessorException for use by

implementations of the NetAccessor abstraction, if they
need to report errors during processing

2000-01-12 Dean Roddey get the C++ and Java versions of error messages more
into sync.

2000-01-11 Dean Roddey Moved the input source classes from / to framework/.
2000-01-11 Dean Roddey Changes to deal with multiply nested, relative paths,

entities

Xerces C++ Version 1.0.1: December 15, 1999
· Port to Solaris.

Chapter 12 - Releases Archive Xerces C++ Documentation

- 112-

· Improved error recovery and clarified error messages.
· Added DOMTest program.

Xerces C++ Parser Version 1.0.0: December 7, 1999
· Released Xerces C++ after incorporating ICU as a value-added plug-in.
· Has bug fixes, better conformance, better speed and cleaner internal architecture
· Three additional samples added: PParse, StdInParse and EnumVal
· Experimental DOM Level 2 support
· Support for namespaces
· Loadable message text enabling future translations to be easily plugged-in
· Pluggable validators
· Pluggable transcoders
· Reorganized the util directory to better manage different platforms and compilers

Xerces C++ BETA November 5, 1999
· Created initial code base derived from IBM's XML4C Version 2.0
· Modified documentation to reflect new name (Xerces-C)

Chapter 12 - Releases Archive Xerces C++ Documentation

- 113-

13
Bug Reporting

How to report bugs
Please report bugs to Bugzilla [21] , the Apache bug database. Pick the product "Xerces-C++: Apache
XML parsers in C++" using the following components:

Component Description
DOM Items specific to DOM
SAX/SAX2 Items specific to SAX or SAX2
Non-Validating Parser General Parsing Problem
Validating Parser (DTD) DTD related parser issue
Validating Parser (Schema) Schema related parser issue
Utilities Items related to utilities like MessageLoader, Transcoder,

NetAccessors, Platform specific utilities
Build Problem with build, makefile, project files
Documentation Documentation bugs such as FAQ, Programming Guide
Samples/Tests Samples or test cases related issues
Miscellaneous Items not covered in other categories

A copy of your bug report is sent automatically to the discussion list Xerces-C mailing list [15] .

Search frist
Check the Bugzilla [21] database before submitting your bug report to avoid creating a duplicate report.
Even the bug has been reported already, you may add a comment to the existing report since your
contribution may lead to a quicker identification/resolution to the bug reported.

Write good bug report
Writing a useful bug report, which makes the bug reproducible, is the first step towards the resolution of
the bug. Specifics about the bug, like

· Xerces C++ version number
· Platform
· Operating system and version number
· Compiler and version number
· The XML document (or excerpt) that failed
· The C++ application code that failed
· Whether you built the Xerces C++ library yourself or used the binary distribution
· What happened

- 114-

http://nagoya.apache.org/bugzilla/
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
http://nagoya.apache.org/bugzilla/

are all necessary information to allow developer to reproduce, identify, evaluate and eventually, fix the
bug, which is the very purpose of your reporting of the bug.

Chapter 13 - Bug Reporting Xerces C++ Documentation

- 115-

14
Feedback Procedures

Questions or Comments
Please browse through this bundled documentation completely. Most of the common questions have been
answered in the FAQ's. Specifically, do read the answer to " Is there any kind of support available for
Xerces C++?". Browsing this documentation, may be the quickest way to get an answer. Of course, if all
else fails, as mentioned in the link above, you can post a question to the Xerces-C mailing list [15] .

See Bug Reporting if you would like to report a defect (greatly appreciated!).

Acknowledgements
Ever since this source code base was initially created, many people have helped to port the code to
different platforms, and provided patches for both new features and bug fixes.

Listed below are some names (in alphabetical order) of people to whom we would like to give special
thanks.

· Nadav Aharoni
· Curt Arnold
· Anupam Bagchi
· Torbjörn Bäckström
· Matthew Baker
· Devin Barnhart
· James Berry
· David Bertoni
· John Bellardo
· Arundhati Bhowmick
· Edward Bortner
· Sumit Chawla
· Chih Hsiang Chou
· Radovan Chytracek
· Hiram Clawson
· Todd Collins
· Michael Crawford
· Murray Cumming
· Helmut Eiken
· Mark Everline
· Simon Fell
· Paul Ferguson

- 116-

mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org

· Pierpaolo Fumagalli
· Gary Gale
· Herny Gongaro
· Susan Hardenbrook
· Jeff Harrell
· Andy Heninger
· William L. Hopper
· Rahul Jain
· Tom Jordahl
· Martin Kalen
· Joe Kesselman
· Bob Kline
· Richard Ko
· Paul Kramer
· Volker Krause
· Arnaud LeHors
· Andy Levine
· Jeff Lewis
· Matt Lovett
· Sean MacRoibeaird
· Alberto Massari
· Jordan Naftolin
· Tinny Ng
· David Nickerson
· Khaled Noaman
· Michael Ottati
· Mike Pogue
· Joe Polastre
· John Ponzo
· Shengkai Qu
· Gareth Reakes
· Jim Reitz
· Dean Roddey
· John Roper
· Steven Rosenthal
· Erik Rydgren
· Bill Schindler
· Erik Schroeder
· Christian Schuhegger
· John Smirl
· Andrei Smirnov
· Gereon Steffens
· Rick J. Stevens
· Roman Sulzhyk
· Linda M. Swan
· Pieter Van-Dyck
· Curtis Walker
· Tom Watson

Chapter 14 - Feedback Procedures Xerces C++ Documentation

- 117-

· Roger Webster
· Robert Weir
· Dietrich Wolf
· Kirk Wylie
· Peter A. Volchek
· Grace Yan
· PeiYong Zhang
· Henry Zongaro

Chapter 14 - Feedback Procedures Xerces C++ Documentation

- 118-

15
Y2K Compliance

Apache Xerces Parser Year-2000 Readiness
Q: Are the Xerces parsers Year-2000-compliant?

Yes, Xerces-J and Xerces-C are Year 2000 compliant. They do not currently use any dates at all (at least
until the XML Schema date datatypes are fully supported). However, you may still have Y2K problems if
the underlying OS or Java implementation has problems with dates past year 2000 (e.g. OS calls which
accept or return year numbers).

Most (UNIX) systems store dates internally as signed 32-bit integers which contain the number of
seconds since 1st January 1970, so the magic boundary to worry about is the year 2038 and not 2000. But
modern operating systems shouldn't cause any trouble at all.

The Apache Xerces project is an open-source software product of the Apache Software Foundation. The
project and the Foundation cannot and does not offer legal assurances regarding any suitability of the
software for your application. There are several commercial support organizations and derivative products
available that may be able to certify the software and provide you with any assurances you may require
(IBM's Websphere product is one of them).

The Apache HTTP server software is distributed with the following disclaimer, found in the software
license:

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR

ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

- 119-

16
PDF Documentation

PDF Documentation
You can get the entire Xerces C++ documentation in PDF format [39] for printing and offline reference.

Note: A word of caution! The tools to create the PDF documentation are still
experimental. So the resulting PDF document is not perfect. We would be glad to
receive your comments on the Xerces-C mailing list [15] .

- 120-

mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org
mailto:xerces-c-dev@xml.apache.org

Appendix A
Links Reference

[1] http://www.w3.org/XML/

[2] http://www.w3.org/TR/REC-xml

[3] http://www.w3.org/TR/REC-DOM-Level-1/

[4] http://www.w3.org/TR/DOM-Level-2-Core/

[5] http://www.megginson.com/SAX/SAX1/index.html

[6] http://www.megginson.com/SAX/index.html

[7] http://www.w3.org/TR/REC-xml-names/

[8] http://www.w3.org/TR/xmlschema-0/

[9] http://www-4.ibm.com/software/ad/vacpp/

[10] http://www-4.ibm.com/software/ad/vacpp/service/csd.html

[11] http://oss.software.ibm.com/icu/

[12] http://www.gnu.org

[13] http://www.gnu.org/software/autoconf/autoconf.html

[14] http://www.gnu.org/software/make/make.html

[15] mailto:xerces-c-dev@xml.apache.org

[16] http://www.gnu.org/software/gcc/gcc.html

[17] mailto:rchgo400@us.ibm.com

[18] http://oss.software.ibm.com/developerworks/opensource/

[19] http://oss.software.ibm.com/icu/download/index.html

[20] http://archive.covalent.net

[21] http://nagoya.apache.org/bugzilla/

[22] http://www.stack.nl/~dimitri/doxygen/

[23] http://www.research.att.com/sw/tools/graphviz/

[24] http://www.w3.org/TR/xmlschema-1/

[25] http://www.w3.org/TR/xmlschema-2/

- 121-

[26] http://www.x.org/terms.htm

[27] http://www.alphaworks.ibm.com/tech/xml4c

[28] http://xml.apache.org/xerces-c/index.html

[29] http://xml.apache.org/dist/xerces-c/

[30] http://xml.apache.org/

[31] http://xml.apache.org/cocoon/index.html

[32] http://www.gnu.org/software/tar/tar.html

[33] http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112

[34] http://sunsolve.sun.com

[35] http://www.w3.org/TR/REC-xml#charsets

[36] http://xml.apache.org/xerces-j/index.html

[37] http://www.oasis-open.org/cover/xml.html

[38] http://www.w3.org/TR/xhtml1/xhtml1.zip

[39] http://xml.apache.org/xerces-c/pdf/xerces-c.pdf

Appendix A - Links Reference
Xerces C++ Documentation

- 122-

