
Xerces-C++ Documentation

Copyright 2001 The Apache Software Foundation. All Rights Reserved.



Table of Contents

1. Xerces C++ Parser 5

Xerces-C++ Version 1.6.0 5

Applications of the Xerces Parser 5

Features 5

Platforms with Binaries 5

Other ports... 6

2. Installation 7

Window NT/98 7

UNIX 7

3. Build Instructions 9

Building on Windows and UNIX 9

Building on Other Platforms 16

Other Build Instructions 22

4. API Documentation 27

API Docs for SAX and DOM 27

5. Xerces-C++ Samples 28

Building the Samples 28

Running the Samples 28

Xerces-C++ Sample 1: SAXCount 30

Xerces-C++ Sample 2: SAXPrint 32

Xerces-C++ Sample 3: DOMCount 34

Xerces-C++ Sample 4: DOMPrint 35

Xerces-C++ Sample 5: MemParse 37

Xerces-C++ Sample 6: Redirect 39

Xerces-C++ Sample 7: PParse 40

Xerces-C++ Sample 8: StdInParse 42

Xerces-C++ Sample 9: EnumVal 43

Xerces-C++ Sample 10: CreateDOMDocument 45

Xerces-C++ Sample 11: SAX2Count 46

Xerces-C++ Sample 12: SAX2Print 48

Xerces-C++ Sample 13: IDOMCount 50

Xerces-C++ Sample 14: IDOMPrint 51

Xerces-C++ Sample 9: SEnumVal 53

6. Schema 56

Introduction 56

Limitations 56

Interpretation of Areas that are Unclear or Implementation-Dependent 56

Usage 56

Assocating Schema Grammar with instance document 57

7. Frequently Asked Questions 59

Distributing Xerces-C++ 59

Parsing with Xerces-C++ 61

Other Xerces-C++ Questions 71

Xerces-C++ Documentation



8. Programming Guide 73

SAX1 Programming Guide 73

SAX2 Programming Guide 75

DOM Programming Guide 80

Experimental IDOM Programming Guide 83

9. Migration 90

Migrating from Xerces-C++ 1.5.2 to Xerces-C++ 1.6.0 90

New features in Xerces-C++ 1.6.0 90

Public API Changes in Xerces-C++ 1.6.0 90

Migration Archive 91

10. Migration Archive 92

Migrating from Xerces-C++ 1.4.0 to Xerces-C++ 1.5.2 92

General Improvements 92

Changes required to migrate to Xerces-C++ 1.5.2 93

New features in Xerces-C++ 1.5.2 93

Migrating from XML4C 2.x to Xerces-C++ 1.4.0 93

General Improvements 94

Summary of changes required to migrate from XML4C 2.x to Xerces-C++ 1.4.0 94

The Samples 95

Parser Classes 95

DOM Level 2 support 96

Progressive Parsing 96

Namespace support 97

Moved Classes to src/framework 97

Loadable Message Text 98

Pluggable Validators 98

Pluggable Transcoders 98

Util directory Reorganization 99

11. Releases 100

Xerces-C++ Version 1.6.0: December 6, 2001 100

Xerces-C++ Version 1.5.2: October 26, 2001 104

Xerces-C++ Version 1.5.1: July 18, 2001 108

Xerces-C++ Version 1.5.0: June 15, 2001 110

Release Archive 114

12. Releases Archive 115

Xerces-C++ Version 1.4.0: January 31, 2001 115

Xerces-C++ Version 1.3.0: Sept 21, 2000 118

Xerces-C++ Version 1.2.0: June 22, 2000 122

Xerces-C++ Version 1.1.0: Feb 28, 2000 125

Xerces-C++ Version 1.0.1: December 15, 1999 126

Xerces C++ Parser Version 1.0.0: December 7, 1999 127

Xerces-C++ BETA November 5, 1999 127

13. Bug Reporting 128

How to report bugs 128

Search frist 128

Xerces-C++ Documentation



Write good bug report 128

14. Feedback Procedures 130

Questions or Comments 130

Acknowledgements 130

15. Y2K Compliance 133

Apache Xerces Parser Year-2000 Readiness 133

16. PDF Documentation 134

PDF Documentation 134

Appendix A: Links Reference 135

Xerces-C++ Documentation



1
Xerces C++ Parser

Xerces-C++ Version 1.6.0
Xerces-C++ is a validating XML parser written in a portable subset of C++. Xerces-C++ makes it easy
to give your application the ability to read and write XML [1] data. A shared library is provided for
parsing, generating, manipulating, and validating XML documents.

Xerces-C++ is faithful to the XML 1.0 [2] recommendation and associated standards ( DOM 1.0 [3] ,
DOM 2.0 [4] . SAX 1.0 [5] , SAX 2.0 [6] , Namespaces [7] , and W3C's XML Schema recommendation
version 1.0 [8] .)

The parser provides high performance, modularity, and scalability. Source code, samples and API
documentation are provided with the parser. For portability, care has been taken to make minimal use of
templates, no RTTI, no C++ namespaces and minimal use of #ifdefs.

Applications of the Xerces Parser
Xerces has rich generating and validating capabilities. The parser is used for:

· Building XML-savvy Web servers
· Building next generation of vertical applications that use XML as their data format
· On-the-fly validation for creating XML editors
· Ensuring the integrity of e-business data expressed in XML
· Building truly internationalized XML applications

Features
· Conforms to XML Spec 1.0 [2]

· Tracking of latest DOM (Level 1.0) [3] , DOM (Level 2.0) [4] , SAX/SAX2 [6] , Namespace [7] , and
W3C's XML Schema recommendation version 1.0 [8] specifications.

· Source code, samples, and documentation is provided.
· Programmatic generation and validation of XML
· Pluggable catalogs, validators and encodings
· High performance
· Customizable error handling

Platforms with Binaries
· Win32 using MSVC 6.0 SP3
· Linux (RedHat 6.1) using egcs-2.91.66 and glibc-2.1.2-11
· Solaris 2.6 using Forte C++ Version 6 Update 2
· AIX 4.3 using xlC_r 5.0.2
· HP-UX 11 using aCC A.03.13 with pthreads

- 5-

http://www.w3.org/XML/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://sax.sourceforge.net/?selected=sax1
http://sax.sourceforge.net/?selected=sax1
http://sax.sourceforge.net/
http://sax.sourceforge.net/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://sax.sourceforge.net/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html
http://www.w3.org/XML/Schema.html


Other ports...
· OS/390
· AS/400
· FreeBSD
· SGI IRIX
· Macintosh
· OS/2
· PTX
· UnixWare
· and more!

Chapter 1 - Xerces C++ Parser Xerces-C++ Documentation

- 6-



2
Installation

Window NT/98
Install the binary Xerces-C++ release by using unzip on the file-win32.zip archive in the Windows
environment. You can use WinZip, or any other UnZip utility.

unzip xerces-c1_6_0-win32.zip

This creates a 'xerces-c1_6_0-win32' sub-directory containing the Xerces-C++ distribution.

You need to add the 'xerces-c1_6_0-win32\bin' directory to your path:

To do this under Windows NT, go to the start menu, click the settings menu and select control panel.
When the control panel opens, double click on System and select the 'Environment' tab. Locate the PATH
variable under system variables and add <full_path_to_xerces-c1_6_0 >\bin to the PATH variable. To do
this under Windows 95/98 add this line to your AUTOEXEC.BAT file:

SET PATH=<full_path_to_xerces-c1_6_0>\bin;%PATH%

or run the SET PATH command in your shell window.

UNIX
Binary installation of this release is to extract the files from the compressed .tar archive (using 'tar').

cd $HOME

gunzip xerces-c1_6_0-linux.tar.gz

tar -xvf xerces-c1_6_0-linux.tar

This will create an 'xerces-c1_6_0-linux' sub-directory (in the home directory) which contains the
Xerces-C++ distribution. You will need to add the xerces-c1_6_0-linux/bin directory to your PATH
environment variable:

For Bourne Shell, K Shell or Bash, type:

export PATH="$PATH:$HOME/xerces-c1_6_0-linux/bin"

For C Shell, type:

setenv PATH "$PATH:$HOME/xerces-c1_6_0-linux/bin"

If you wish to make this setting permanent, you need to change your profile by changing your setup files
which can be either .profile or .kshrc.

In addition, you will also need to set the environment variables XERCESCROOT, ICUROOT and the
library search path. (LIBPATH on AIX, LD_LIBRARY_PATH on Solaris and Linux, SHLIB_PATH on
HP-UX).

- 7-



Note: XERCESCROOT and ICUROOT are needed only if you intend to recompile the
samples or build your own applications. The library path is necessary to link the shared
libraries at runtime.

For Bourne Shell, K Shell or Bash, type:

export XERCESCROOT=<wherever you installed Xerces-C++>

export ICUROOT=<wherever you installed ICU>

export LIBPATH=$XERCESCROOT/lib:$LIBPATH (on AIX)

export LD_LIBRARY_PATH=$XERCESCROOT/lib:$LD_LIBRARY_PATH (on Solaris, Linux)

export SHLIB_PATH=$XERCESCROOT/lib:$SHLIB_PATH (on HP-UX)

For C Shell, type:

setenv XERCESCROOT "<wherever you installed Xerces-C++>"

setenv ICUROOT "<wherever you installed ICU>"

setenv LIBPATH "$XERCESCROOT/lib:$LIBPATH" (on AIX)

setenv LD_LIBRARY_PATH "$XERCESCROOT/lib:$LD_LIBRARY_PATH" (on Solaris, Linux)

setenv SHLIB_PATH "$XERCESCROOT/lib:$SHLIB_PATH" (on HP-UX)

Note: If you need to build the samples after installation, make sure you read and follow
the build instructions given in the FAQ.

Chapter 2 - Installation Xerces-C++ Documentation

- 8-



3
Build Instructions

Building on Windows and UNIX
Building Xerces-C++ on Windows NT/98
Xerces-C++ comes with Microsoft Visual C++ projects and workspaces to help you build Xerces-C++.
The following describes the steps you need to build Xerces-C++.

Building Xerces-C++ library
To build Xerces-C++ from it source (using MSVC), you will need to open the workspace containing the
project. If you are building your application, you may want to add the Xerces-C++ project inside your
applications's workspace.

The workspace containing the Xerces-C++ project file and all other samples is:

xerces-c-src1_6_0\Projects\Win32\VC6\xerces-all\xerces-all.dsw

Once you are inside MSVC, you need to build the project marked XercesLib.

If you want to include the Xerces-C++ project separately, you need to pick up:

xerces-c-src1_6_0\Projects\Win32\VC6\xerces-all\XercesLib\XercesLib.dsp

You must make sure that you are linking your application with the xerces-c_1.lib library and also make
sure that the associated DLL is somewhere in your path.

Note: If you are working on the AlphaWorks version which uses ICU, you must have the ICU
data DLL named icudata.dll available from your path setting. For finding out where you
can get ICU from and build it, look at the How to Build ICU.

Building samples
If you are using the source package, inside the same workspace (xerces-all.dsw), you'll find several other
projects. These are for the samples. Select all the samples and right click on the selection. Then choose
"Build (selection only)" to build all the samples in one shot.

If you are using the binary package, load the
xerces-c1_6_0-win32\samples\Projects\Win32\VC6\samples.dsw Microsoft Visual C++ workspace
inside your MSVC IDE. Then select all the samples and right click on the selection. Then choose "Build
(selection only)" to build all the samples in one shot.

Building Xerces-C++ on Windows using Visual Age C++
A few unsupported projects are also packaged with Xerces-C++. Due to origins of Xerces-C++ inside
IBM labs, we do have projects for IBM's Visual Age C++ compiler [9] on Windows. The following
describes the steps you need to build Xerces-C++ using Visual Age C++.

- 9-

http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/


Building Xerces-C++ library
Requirements:

· VisualAge C++ Version 4.0 with Fixpak 1:

Download the Fixpak [10] from the IBM VisualAge C++ Corrective Services web page.

To include the ICU library:

· ICU Build:

You should have the ICU Library [11] in the same directory as the Xerces-C++ library. For example if
Xerces-C++ is at the top level of the d drive, put the ICU library at the top level of d e.g.
d:/xerces-c1_6_0 d:/icu.

Instructions:
1. Change the directory to d:\xerces-c1_6_0\Projects\Win32
2. If a d:\xerces-c1_6_0\Project\Win32\VACPP40 directory does not exist, create it.
3. Copy the IBM VisualAge project file, XML4C2X.icc, to the VACPP40 directory.
4. From the VisualAge main menu enter the project file name and path.
5. When the build finishes the status bar displays this message: Last Compile completed Successfully

with warnings on date.

Note: These instructions assume that you install in drive d:\. Replace d with the appropriate
drive letter.

Building Xerces-C++ on Windows using Borland C++Builder
Xerces-C++ comes with Borland C++Builder projects to help you build Xerces-C++. The following
describes the steps you need to build Xerces-C++.

Building Xerces-C++ library
The library and demo projects are all contained in the Xerces-all project group:

· xerces-c-src1_5_1\Projects\Win32\BCB5\Xerces-all\Xerces-all.bpg

Each project in the group refers a directory belog \Xerces-all. For example, the XercesLib project files
are contained in the directory

· xerces-c-src1_5_1\Projects\Win32\BCB5\Xerces-all\XercesLib

To build any project, open the project manager. Double click on the project name. Then select
"Project|Build" from the menu. For example, double click on XercesLib.dll in the manager. Then select
"Project|Build XercesLib" from the menu. Once the library has been built, include XercesLib.lib with in
application's project and place XercesLib.dll somewhere in your path.

Building Xerces-C++ on UNIX platforms
Xerces-C++ uses GNU [12] tools like Autoconf [13] and GNU Make [14] to build the system. You must
first make sure you have these tools installed on your system before proceeding. If you don not have
required tools, ask your system administrator to get them for you. These tools are free under the GNU
Public Licence and may be obtained from the Free Software Foundation [12] .

Do not jump into the build directly before reading this.

Spending some time reading the following instructions will save you a lot of wasted time and
support-related e-mail communication. The Xerces-C++ build instructions are a little different from
normal product builds. Specifically, there are some wrapper-scripts that have been written to make life
easier for you. You are free not to use these scripts and use Autoconf [13] and GNU Make [14] directly, but
we want to make sure you know what you are by-passing and what risks you are taking. So read the
following instructions carefully before attempting to build it yourself.

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 10-

http://www-4.ibm.com/software/ad/vacpp/service/csd.html
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://www.gnu.org
http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/make/make.html


Besides having all necessary build tools, you also need to know what compilers we have tested
Xerces-C++ on. The following table lists the relevant platforms and compilers.

Operating System C++, C Compilers
Redhat Linux 6.1 g++, gcc (egcs)

AIX 4.3 xlC_r, xlc_r

Solaris 2.6 CC, cc

HP-UX 11 aCC, cc

If you are not using any of these compilers, you are taking a calculated risk by exploring new grounds.
Your effort in making Xerces-C++ work on this new compiler is greatly appreciated and any problems
you face can be addressed on the Xerces-C mailing list [15] .

Differences between the UNIX platforms: The description below is generic, but as every programmer is
aware, there are minor differences within the various UNIX flavors the world has been bestowed with.
The one difference that you need to watch out in the discussion below, pertains to the system environment
variable for finding libraries. On Linux and Solaris, the environment variable name is called
LD_LIBRARY_PATH, on AIX it is LIBPATH, while on HP-UX it is SHLIB_PATH. The following
discussion assumes you are working on Linux, but it is with subtle understanding that you know how to
interpret it for the other UNIX flavors.

Note: If you wish to build Xerces-C++ with ICU, look at the Building ICU. It tells you where
you can get ICU and how to build Xerces-C++ with it.

Setting build environment variables
Before doing the build, you must first set your environment variables to pick-up the compiler and also
specify where you extracted Xerces-C++ on your machine. While the first one is probably set for you by
the system administrator, just make sure you can invoke the compiler. You may do so by typing the
compiler invocation command without any parameters (e.g. xlc_r, or g++, or cc) and check if you get a
proper response back.

Next set your Xerces-C++ root path as follows:

export XERCESCROOT=<full path to xerces-c-src1_6_0>

This should be the full path of the directory where you extracted Xerces-C++.

Building Xerces-C++ library
As mentioned earlier, you must be ready with the GNU tools like autoconf [13] and gmake [14] before you
attempt the build.

The autoconf tool is required on only one platform and produces a set of portable scripts (configure) that
you can run on all other platforms without actually having the autoconf tool installed everywhere. In all
probability the autoconf-generated script (called configure) is already in your src directory. If not,
type:

cd $XERCESCROOT/src

autoconf

This generates a shell-script called configure. It is tempting to run this script directly as is normally
the case, but wait a minute. If you are using the default compilers like gcc [16] and g++ [16] you do not
have a problem. But if you are not on the standard GNU compilers, you need to export a few more
environment variables before you can invoke configure.

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 11-

mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/gcc/gcc.html
http://www.gnu.org/software/gcc/gcc.html


Rather than make you to figure out what strange environment variables you need to use, we have
provided you with a wrapper script that does the job for you. All you need to tell the script is what your
compiler is, and what options you are going to use inside your build, and the script does everything for
you. Here is what the script takes as input:

runConfigure: Helper script to run "configure" for one of the supported

platforms

Usage: runConfigure "options"

where options may be any of the following:

-p <platform> (accepts 'aix', 'linux', 'solaris',

'hp-10', 'hp-11', 'unixware', 'os400', 'irix', 'ptx', 'tru64',

'macosx' )

-c <C compiler name> (e.g. gcc, cc, xlc_r, icc)

-x <C++ compiler name> (e.g. g++, CC, xlC_r, icc, c++)

-d (specifies that you want to build debug version)

-m <message loader> can be 'inmem', 'icu', 'MsgFile' or 'iconv'

-n <net accessor> can be 'fileonly', 'libwww', 'socket' or 'native'

-t <transcoder> can be 'icu', 'Iconv400', 'Iconv390' or 'native'

-r <thread option> can be 'pthread' or 'dce' (only used on aix, HP-11 and

solaris) or 'sproc' (only on IRIX) or 'none'

-l <extra linker options>

-z <extra compiler options>

-P <install-prefix>

-C <any one extra configure options>

-h (to get help on the above commands)

Note: Xerces-C++ can be built as either a standalone library or as a library dependent on
International Components for Unicode (ICU). For simplicity, the following discussion only
explains standalone builds.

One of the common ways to build Xerces-C++ is as follows:

runConfigure -plinux -cgcc -xg++ -minmem -nsocket -tnative -rpthread

The response will be something like this:

Generating makefiles with the following options ...

Platform: linux

C Compiler: gcc

C++ Compiler: g++

Extra compile options:

Extra link options:

Message Loader: inmem

Net Accessor: socket

Transcoder: native

Thread option: pthread

Extra configure options:

Debug is OFF

creating cache ./config.cache

checking for gcc... gcc

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 12-



checking whether the C compiler (gcc -O -DXML_USE_NATIVE_TRANSCODER

-DXML_USE_INMEM_MESSAGELOADER -DXML_USE_PTHREADS -DXML_USE_NETACCESSOR_SOCKET )

works... yes

checking whether the C compiler (gcc -O -DXML_USE_NATIVE_TRANSCODER

-DXML_USE_INMEM_MESSAGELOADER -DXML_USE_PTHREADS -DXML_USE_NETACCESSOR_SOCKET )

is a cross-compiler... no

checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking for c++... g++

checking whether the C++ compiler (g++ -O -DXML_USE_NATIVE_TRANSCODER

-DXML_USE_INMEM_MESSAGELOADER -DXML_USE_PTHREADS -DXML_USE_NETACCESSOR_SOCKET )

works... yes

checking whether the C++ compiler (g++ -O -DXML_USE_NATIVE_TRANSCODER

-DXML_USE_INMEM_MESSAGELOADER -DXML_USE_PTHREADS -DXML_USE_NETACCESSOR_SOCKET )

is a cross-compiler... no

checking whether we are using GNU C++... yes

checking whether g++ accepts -g... yes

checking for a BSD compatible install... /usr/bin/install -c

checking for autoconf... autoconf

checking how to run the C preprocessor... gcc -E

checking for ANSI C header files... yes

checking for XMLByte... no

checking host system type... i686-pc-linux-gnu

updating cache ./config.cache

creating ./config.status

creating Makefile

creating util/Makefile

creating util/Transcoders/ICU/Makefile

creating util/Transcoders/Iconv/Makefile

creating util/Transcoders/Iconv390/Makefile

creating util/Transcoders/Iconv400/Makefile

creating util/Transcoders/MacOSUnicodeConverter/Makefile

creating util/Platforms/Makefile

creating util/Platforms/Solaris/Makefile

creating util/Platforms/AIX/Makefile

creating util/Platforms/Linux/Makefile

creating util/Platforms/HPUX/Makefile

creating util/Platforms/OS390/Makefile

creating util/Platforms/OS400/Makefile

creating util/Platforms/IRIX/Makefile

creating util/Platforms/PTX/Makefile

creating util/Platforms/UnixWare/Makefile

creating util/Platforms/Tru64/Makefile

creating util/Platforms/MacOS/Makefile

creating util/Compilers/Makefile

creating util/MsgLoaders/InMemory/Makefile

creating util/MsgLoaders/ICU/Makefile

creating util/MsgLoaders/MsgCatalog/Makefile

creating util/MsgLoaders/MsgFile/Makefile

creating util/NetAccessors/Socket/Makefile

creating util/NetAccessors/libWWW/Makefile

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 13-



creating util/NetAccessors/MacOSURLAccess/Makefile

creating util/regx/Makefile

creating validators/Makefile

creating validators/common/Makefile

creating validators/datatype/Makefile

creating validators/DTD/Makefile

creating validators/schema/Makefile

creating framework/Makefile

creating dom/Makefile

creating idom/Makefile

creating parsers/Makefile

creating internal/Makefile

creating sax/Makefile

creating sax2/Makefile

creating ../obj/Makefile

Having build problems? Read instructions at

http://xml.apache.org/xerces-c/build.html

Still cannot resolve it? Find out if someone else had the same problem before.

Go to http://marc.theaimsgroup.com/?l=xerces-c-dev

In future, you may also directly type the following commands to create the

Makefiles.

export TRANSCODER="NATIVE"

export MESSAGELOADER="INMEM"

export NETACCESSOR="Socket"

export THREADS="pthread"

export CC="gcc"

export CXX="g++"

export CXXFLAGS=" -O -DXML_USE_NATIVE_TRANSCODER -DXML_USE_INMEM_MESSAGELOADER

-DXML_USE_PTHREADS -DXML_USE_NETACCESSOR_SOCKET"

export CFLAGS=" -O -DXML_USE_NATIVE_TRANSCODER -DXML_USE_INMEM_MESSAGELOADER

-DXML_USE_PTHREADS -DXML_USE_NETACCESSOR_SOCKET"

export LDFLAGS=""

export LIBS=" -lpthread "

configure

If the result of the above commands look OK to you, go to the directory

/home/build/linux_xml4c/xerces-c-src1_5_2/src and type "gmake" to make the

XERCES-C system.

Note: The error message concerning conf.h is NOT an indication of a problem. This code has
been inserted to make it work on AS/400, but it gives this message which appears to be an error.
The problem will be fixed in future.

So now you see what the wrapper script has actually been doing! It has invoked configure to create
the Makefiles in the individual sub-directories, but in addition to that, it has set a few environment
variables to correctly configure your compiler and compiler flags too.

Now that the Makefiles are all created, you are ready to do the actual build.

gmake

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 14-



Is that it? Yes, that's all you need to build Xerces-C++.

Building samples
The installation process for the samples is same on all UNIX platforms.

cd xerces-c1_6_0-linux/samples

./runConfigure -p<platform> -c<C_compiler> -x<C++_compiler>

gmake

This will create the object files in each sample directory and the executables in '
xerces-c1_6_0-linux/bin' directory.

Note that runConfigure is just a helper script and you are free to use ./configure with the correct
parameters to make it work on any platform-compiler combination of your choice. The script needs the
following parameters:

Usage: runConfigure "options"

where options may be any of the following:

-p <platform> (accepts 'aix', 'unixware', 'linux', 'solaris',

'hp-10', 'hp-11', 'os400', 'irix', 'ptx', 'tru64', 'macosx')

-c <C compiler name> (e.g. gcc, xlc or icc)

-x <C++ compiler name> (e.g. g++, xlC, or icc)

-d (specifies that you want to build debug version)

-h (get help on the above commands)

-z <extra compiler options>

Note: NOTE:The code samples in this section assume that you are are working on the Linux
binary drop. If you are using some other UNIX flavor, please replace '-linux' with the
appropriate platform name in the code samples.

To delete all the generated object files and executables, type:

gmake clean

Building Xerces-C++ as a single-threaded library on Unix platforms
To build a single-threaded library on Unix platforms you have to update one or more of the following
files Makefile.incl, Makefile.in, runConfigure. The following steps guide you to create
a single-threaded library for each platform:

For Aix -

· Replace xlc_r and xlC_r libraries with xlc and xlC respectively
· Replace makeC++SharedLib_r with makeC++SharedLib
· Remove the flag -D_THREAD_SAFE
· Remove inclusion of any threaded library directories from the LIBPATH
· Remove inclusion of -lpthreads and -lpthread_compat
· Add -DAPP_NO_THREADS to define the variable under AIX specific options in Makefile.incl

For Solaris -

· Add -DAPP_NO_THREADS to define the variable under SOLARIS specific options in
Makefile.incl

· Remove compiler switch -mt
· Remove -D_REENTRANT flag from the 'compile' options
· Remove inclusion of -lpthread

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 15-



For Linux -

· Add -DAPP_NO_THREADS to define the variable under LINUX specific options in
Makefile.incl

· Remove -D_REENTRANT flag from the 'compile' options
· Remove inclusion of -lpthread

For HPUX -

· Add -DAPP_NO_THREADS to define the variable under HP specific options in Makefile.incl
· Remove inclusion of -lpthread and -lcma
· Remove threading defines like -D_PTHREADS_DRAFT4 , -DXML_USE_DCE

Building on Other Platforms
Building Xerces-C++ on OS/2 using Visual Age C++
OS/2 is a favourite IBM PC platforms. The only option in this platform is to use Visual Age C++
compiler [9] . Here are the steps you need to build Xerces-C++ using Visual Age C++ on OS/2.

Building Xerces-C++ library
Requirements:

· VisualAge C++ Version 4.0 with Fixpak 1:

Download the Fixpak [10] from the IBM VisualAge C++ Corrective Services web page.

There are two ways to build Xerces-C++. The "From Existing" method only requires VAC++. The
"From Scratch" method requires both Object Rexx and VAC++ installed.

The "From Existing" Method
1. In the xerces-c-src1_6_0\Projects\OS2\VACPP40 directory, find and edit the VAC++

configuration file project_options.icc.
2. Change the directory on the first line 'BASE_DIR = "..."' to match the base directory of the

Xerces-C++ sources on your system. Note that the directory path must use double backslashes
"\\"!

3. Save project_options.icc
4. Start the Command Line in the VAC++ folder.
5. Navigate to the xerces-c-src1_6_0\Projects\OS2\VACPP40 directory.
6. Run build.cmd. This does a migration build.
7. When build.cmd finishes, review the file compiler.errors. This file should contain only

informational messages, almost all complaining about constant values in comparisons.
8. You should now have a xerces-c.dll and xerces-c.lib. The library file is an import

library for the DLL.

The "From Scratch" Method
1. If you are not currently running Object Rexx, run the SWITCHRX command from a command

line, answer "yes" to switching to Object Rexx, and follow the instructions to reboot. You can
switch back to "Classic Rexx" by running SWITCHRX again. But you probably won't need to
switch back since Object Rexx runs almost 100% of Classic Rexx programs.

2. In the xerces-c-src1_6_0\Projects\OS2\VACPP40 directory, run genICC.cmd. This
builds the VAC++ configuration files for the sources you have on your system.

3. Check the generated ICC files to ensure that they didn't pick up some non-OS/2 platform stuff.
This happens when new platform-specific directories are added to Xerces. If they did pick up new
non-OS/2 stuff, either edit it out of the ICC file or add them to the "ignore" array in genICC.cmd
and re-run genICC.

4. Start the Command Line in the VAC++ folder.

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 16-

http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/
http://www-4.ibm.com/software/ad/vacpp/service/csd.html


5. Navigate to the xerces-c-src1_6_0\Projects\OS2\VACPP40 directory.
6. Run build.cmd This does a migration build.
7. When build.cmd finishes, review the file compiler.errors. This file should contain only

informational messages, almost all complaining about constant values in comparisons.
8. You should now have a xerces-c.dll and xerces-c.lib. The library file is an import

library for the DLL.)

Packaging the Binaries

There is an Object Rexx program that will package the binaries and headers. (See step 1 of the "From
scratch" method on how to switch to Object Rexx.) The packageBinaries.cmd file is in the
xerces-c-src1_6_0\Projects\OS2\VACPP40 directory. Run packageBinaries, giving
the source and target directories like this:

packageBinaries -s x:\xerces-c-src1_6_0 -o x:\temp\xerces-c1_6_0-os2

(Match the source directory to your system; the target directory can be anything you want.)

Note: If you don't want to use the Object Rexx program, you'll need to manually copy the
"*.hpp" and "*.c" files to an include directory. (Be sure to maintain the same directory structure
that you find under xerces-c-src1_6_0.)

Building Samples
Building the Xerces-C++ samples using IBM Visual Age C++ Professional 4.0 for OS/2 (VAC++).

· In the XercesCSrcInstallDir;\samples\Projects\OS2\VACPP40 directory, find and
edit the VAC++ configuration file basedir.icc.

· All of the directories used to build the samples are defined in basedir.icc. You need to edit the
directories to match your system. Here are the directories you need to assign: SRC_DIR --
XercesCSrcInstallDir; This is where VAC++ should look to find the samples directories
containing the source files. BASE_DIR -- The install directory XercesCSrcInstallDir;.
VAC++ will store the compiled samples in the bin directory under BASE_DIR. It will also look for
the xerces-c.lib file in the lib directory under BASE_DIR. Other directories are set based on
these two. You can choose to override them if you wish.

· Save basedir.icc
· Start the Command Line in the VAC++ folder.
· Navigate to the XercesCSrcInstallDir;\samples\Projects\OS2\VACPP40 directory.
· Run bldsamples.cmd
· When build.cmd finishes, review the file compiler.errors. This file should contain only

informational messages, almost all complaining about constant values in comparisons.
· You should now have several executable files.

Rebuilding the Configuration Files

Although it shouldn't be necessary, if you want to rebuild the VAC++ configuration files, you'll need to
have Object Rexx running on your system:

· If you are not currently running Object Rexx, run the SWITCHRX command from a command line,
answer "yes" to switching to Object Rexx, and follow the instructions to reboot. (Note: You can
switch back to "Classic Rexx" by running SWITCHRX again. But you probably won't need to switch
back since Object Rexx runs almost 100% of Classic Rexx programs.)

· In the Projects\OS2\VACPP40 directory, run genICC.cmd. This builds the VAC++ configuration files
for the samples you have on your system.

· Go to the first step above in the "Building asmples for OS/2" section.

Building Xerces-C++ on AS/400

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 17-



The following addresses the requirements and build of Xerces-C++ natively on the AS/400.

Building Xerces-C++ library
Requirements:

· QSHELL interpreter installed (install base option 30, operating system)
· QShell Utilities, PRPQ 5799-XEH
· ILE C++ for AS/400, PRPQ 5799-GDW
· GNU facilities (the gnu facilities are currently available by request only. Send e-mail to

rchgo400@us.ibm.com [17] )

Recommendations:
· There are a couple of options when building the Xerces-C++ parser on AS/400. For messaging

support, you can use the in memory message option or the message file support. For code page
translation, you can use the AS/400 native Iconv400 support or ICU. If you choose ICU, follow the
instructions to build the ICU service program with the ICU download. Those instructions are not
included here.

· Currently we recommend that you take the options of MsgFile and Iconv400 (see below)

Setup Instructions:
· Make sure that you have the requirements installed on your AS/400. We highly recommend that you

read the writeup that accompanies the gnu facilities download. There are install instructions as well as
information about how modules, programs and service programs can be created in Unix-like fashion
using gnu utilities. Note that symbolic links are use in the file system to point to actual AS/400
*module, *pgm and *srvpgm objects in libraries.

· Download the tar file (unix version) to the AS/400 (using a mapped drive), and decompress and
untar the source. We have had difficulty with the tar command on AS/400. This is under
investigation. If you have trouble, we recommend the following work around:

qsh:

gunzip -d <tar file.gz>

pax -r -f <uncompressed tar file>

· Create AS400 target library. This library will be the target for the resulting modules and Xerces-C++
service program. You will specify this library on the OUTPUTDIR environment variable in step 4

· Set up the following environment variables in your build process (use ADDENVVAR or WRKENVVAR
CL commands):

XERCESCROOT - <the full path to your Xerces-C++ sources>

PLATFORM - 'OS400'

MAKE - '/usr/bin/gmake'

OUTPUTDIR - <identifies target as400 library for *module, *pgm and *srvpgm

objects>

ICUROOT - (optional if using ICU) <the path of your ICU includes>

· Add QCXXN, to your build process library list. This results in the resolution of CRTCPPMOD used by
the icc compiler.

· The runConfigure instruction below uses 'egrep'. This is not on the AS/400 but you can create it
by doing the following: edtf '/usr/bin/egrep' with the following source:

#!/usr/bin/sh

/usr/bin/grep -e "$@"

You may want to put the environment variables and library list setup instructions in a CL program so you
will not forget these steps during your build.

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 18-

mailto:rchgo400@us.ibm.com


Configure

To configure the make files for an AS/400 build do the following:

qsh

cd <full path to Xerces-C++>/src

runConfigure -p os400 -x icc -c icc -m MsgFile -t Iconv400

Troubleshooting:

error: configure: error: installation or configuration problem:

C compiler cannot create executables.

If during runConfigure you see the above error message, it can mean one of two things. Either
QCXXN is not on your library list OR the runConfigure cannot create the temporary modules
CONFTest1, etc) it uses to test out the compiler options. The second reason happens because the test
modules already exist from a previous run of runConfigure. To correct the problem, do the following:

DLTMOD <your OUTPUTDIR library>/CONFT* and

DLTPGM your <OUTPUTDIR library>/CONFT*

Build

qsh

gmake -e

The above gmake will result in a service program being created in your specified library and a symbolic
link to that service program placed in <path to Xerces-C++/lib >. You can either bind your XML
application programs directly to the parser's service program via the BNDSRVPGM option on the CRTPGM
or CRTSRVPGM command or you can specify a binding directory on your icc command. To specify an
archive file to bind to, use the -L, -l binding options on icc. An archive file on AS/400 is a binding
directory. To create an archive file, use qar command. (see the gnu facilities write up).

After building the Xerces-C++ service program, create a binding directory by doing the following (note,
this binding directory is used when building the samples):

qsh

cd <full path to Xerces-C++>/lib>

qar -cuv libxercesc1_1.a *.o

command = CRTBNDDIR BNDDIR(yourlib/libxercesc)

TEXT('/yourlib/Xerces-C++/lib/libxercesc1_1.a')

command = ADDBNDDIRE BNDDIR(yourlib/libxercesc) OBJ((yourlib/LIBXERCESC *SRVPGM)

)

Troubleshooting:

If you are on a V4R3 system, you will get a bind problem 'descriptor
QlgCvtTextDescToDesc not found' using Iconv400. On V4R3 the system doesn't
automatically pick up the QSYS/QLGUSR service program for you when resolving this function. This is
not the case on V4R4. To fix this, you can either manually create the service program after creating all the
resulting modules in your <OUTPUTDIR> library or you can create a symbolic link to a binding
directory that points to the QLGUSR service program and then specify an additional -L, -l on the
EXTRA_LINK_OPTIONS in Makefile.incl. See the ln and qar function in the gnu utilities.

To build for transcoder ICU:

1. Make sure you have an ICUROOT path set up so that you can find the ICU header files (usually
/usr/local)

2. Make sure you have created a binding directory (symbolic link) in the file system so that you can

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 19-



bind the Xerces-C++ service program to the ICU service program and specify that on the
EXTRA_LINK_OPTIONS in src/Makefile.incl (usually the default is a link in
/usr/local/lib).

Creating AS400 XML parser message file:

As specified earlier, the -m MsgFile support on the runConfigure enable the parser messages to be
pulled from an AS/400 message file. To view the source for creating the message file and the XML parser
messages, see the following stream file:

EDTF <full path to Xerces-C++>/src/util/MsgLoaders/MsgFile/CrtXMLMsgs

In the prolog of CrtXMLMsgs there are instructions to create the message file:

1. Use the CPYFRMSTMF to copy the CL source to an AS/400 source physical file. Note that the target
source file needs to have record length of about 200 bytes to avoid any truncation.

2. Create the CL program to create the message file and add the various message descriptions
3. Call the CL program, providing the name of the message file (use QXMLMSG as default) and a

library (this can be any library, including any product library in which you wish to embed the xml
parser)

Note that the Xerces-C++ source code for resolving parser messages is using by default message file
QXMLMSG, *LIBL. If you want to change either the message file name or explicitly qualify the library
to match your product needs, you must edit the following .cpp files prior to your build.

<full path to Xerces-C++>/src/util/MsgLoaders/MsgFile/MsgLoader.cpp

<full path to Xerces-C++>/src/util/Platforms/OS400/OS400PlatformUtils.cpp

Troubleshooting:

If you are using the parser and are failing to get any message text for error codes, it may be because of the
*LIBL resolution of the message file.

Building Samples on AS/400

qsh

cd <full path to Xerces-C++>/samples

runConfigure -p os400 -x icc -c icc

gmake -e

Troubleshooting:

If you take a 'sed' error, while trying to make the samples. This is an AS400 anomaly having to do
with certain new line character and the sed function. A temporary work around is to use EDTF on the
configure stream file (../samples/configure) and delete the following line near the bottom:
s%@DEFS@%$DEFS%g.

Building Xerces-C++ on Macintosh
The Xerces-C++ Mac port has the key following attributes:

1. Built atop CoreServices APIs and a limited number of Carbon APIs; supports builds for both Mac
OS Classic, Carbon, and Mac OS X systems.

2. Has a Mac OS native transcoder that utilizes the built-in Mac OS Unicode converter
[MacOSUnicodeConverter].

3. Has a Mac OS native netaccessor that utilizes the built-in Mac OS URLAccess routines
[MacOSURLAccess].

4. Supports builds from Metroworks CodeWarrior, Apple Project Builder, and Mac OS X shell.

Using Xerces-C++ with CodeWarrior

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 20-



Xerces-C++ and CodeWarrior:

Xerces-C++ may be built with CodeWarrior under Mac OS Classic or Mac OS X. Since the Xerces-C++
code contains some files with very long names, and CodeWarrior does not yet support use of files with
such long names, the installation in this case is somewhat involved.

Installing Xerces-C++ for use with CodeWarrior:

For compatibility with CodeWarrior, it is necessary to adjust some of the file names (and referencing
include statements). To do this, it is necessary to perform the following steps on a unix (or Mac OS X)
machine that has support for long file names (a Windows machine may also work):

· Retrieve Xerces-C++ from CVS, or untar a packaged build. Note that these steps should not be
performed in a Classic Mac OS environment, as file names would then be mangled at this point!

· Xerces-C++ comes with a tool that will shorten file names as appropriate, and fix up referencing
include statements. Duplicate the file Projects/MacOS/ShortenFiles.pl to the xercesc main directory
(the same directory that contains the Projects directory). Executing this perl script from this location
will create a new directory MacSrc that contains patched up versions of files from the src directory.

cd <xercescroot>

cp Projects/MacOS/ShortenFiles.pl .

perl ShortenFiles.pl

· The source files will likely not now have proper Mac OS type/creator attribution. CodeWarrior badly
wants this to be correct. So set the type/creator of these files somehow. The following should work
from Mac OS X (but if you're not going to keep building on a Mac OS X machine, you may well need
to perform this step in some other way once you get the files onto your classic machine).

find . \( -name "*.c" -or -name "*.h" -or -name "*.cpp" -or -name "*.hpp" -or \

-name "*.xml" \) -print0 | xargs -0 /Developer/Tools/SetFile -c CWIE -t TEXT

· Move the entire directory structure to your Mac OS machine.

Building Xerces-C++ with CodeWarrior:
· Run CodeWarrior (tested with latest CW Pro 7.0).
· Import the project Projects/MacOS/CodeWarrior/XercesLib/XercesLib.mcp.xml, saving it back out to

the same directory as XercesLib.mcp.
· This project contains five build targets that build all combinations of classic, carbon, debug, and

release versions, with an all target that builds all of these. Build any or all of these.

Building Xerces-C++ Samples with CodeWarrior:

A CodeWarrior project is included that builds the DOMPrint sample. This may be used as an example
from which to build additional sample projects. Please read the following important notes:

· Once again, it is required that you import the .xml version of the project file, and save it back out.
· The Xerces-C++ sample programs are written to assume a command line interface. To avoid making

Macintosh-specific changes to these command line programs, we have opted to instead require that
you make a small extension to your CodeWarrior runtime that supports such command line programs.
Please read and follow the usage notes in XercesSampleSupport/XercesSampleStartupFragment.c.

Building Xerces-C++ with Project Builder
Projects are included to build the Xerces-C++ library and DOMPrint sample under Apple's Project
Builder for Mac OS X. The following notes apply:

· Since you are running under Mac OS X, and if you are not also performing CodeWarrior builds, it is
not necessary to shorten file names or set the type/creator codes as required for CodeWarrior.

· The Project Builder project builds XercesLib as the framework Xerces.framework. This framework,

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 21-



however, does not currently include a correct set of public headers. Any referencing code must have
an include path directive that points into the Xerces-C++ src directory.

· The DOMPrint project illustrates one such usage of the Xerces.framework.

Building Xerces-C++ from the Mac OS X command line
Support for Mac OS X command line builds is now included in the standard "unix" Xerces-C++ build
infrastructure.

· In general, the Mac OS X command line build follows the generic unix build instructions. You need
to set your XERCESCROOT environment variable, ./runConfigure, and make.

setenv XERCESCROOT "<directory>"

cd src

./runConfigure -p macosx -n native

make

· Similar instructions apply to build the samples and tests, though the -n flag is not used in these cases:

cd samples

./runConfigure -p macosx

make

Special usage information for Xerces-C++ on the Macintosh
File Path Specification

Apart from the build instructions, above, the most important note about use of Xerces-C++ on the
Macintosh is that Xerces-C++ expects all filename paths to be specified in unix syntax. If running
natively under a Mac OS X system, this path will be the standard posix path as expected by the shell. The
easiest means of creating and interpreting these paths will be through the routines
XMLCreateFullPathFromFSRef and XMLParsePathToFSRef as declared in the file
MacOSPlatformUtils.hpp. FSSpec variants of these routines are also supplied.

Mac OS Version Compatibility

Xerces-C++ requires that several key components of the Mac OS be relatively up to date. It should be
readily compatible with any system above Mac OS 9.0. Compatibility with earlier systems may perhaps
be achieved if you can install appropriate components.

Required components are:

· Unicode Converter and Text Encoding Converter. These provide the base transcoding service used to
support Xerces-C++ transcoding requirements.

Optional components are:

· URLAccess. Provides NetAccessor support to Xerces-C++ for use in fetching network referenced
entities. If URLAccess is not installed, any such references will fail; the absence of URLAccess,
however, will not in itself prevent Xerces-C++ from running.

· Multiprocessing library. Provides mutual exclusion support. Once again, the routines will back down
gracefully if Multiprocessing support is not available.

· HFS+ APIs. If HFS+ APIs are available, all file access is performed using the HFS+ fork APIs to
support long file access, and to support long unicode compliant file names. In the absence of HFS+
APIs, classic HFS APIs are used instead.

Other Build Instructions
Building Xerces-C++ with ICU using bundled Perl scripts on Windows
As mentioned earlier, Xerces-C++ may be built in stand-alone mode using native encoding support and

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 22-



also using ICU where you get support over 180 different encodings. ICU stands for International
Components for Unicode and is an open source distribution from IBM. You can get ICU libraries [11]

from IBM's developerWorks site [18] or go to the ICU download page [19] directly.

Note: Important: Please remember that ICU and Xerces-C++ must be built with the same
compiler, preferably with the same version. You cannot for example, build ICU with a threaded
version of the xlC compiler and build Xerces-C++ with a non-threaded one.

There are two options to build Xerces-C++ with ICU. One is to use the MSDEV GUI environment, and
the other is to invoke the compiler from the command line.

Using, the GUI environment, requires one to edit the project files. Here, we will describe only the second
option. It involves using the perl script 'packageBinaries.pl'.

Prerequisites:
· Perl 5.004 or higher
· Cygwin tools or MKS Toolkit
· zip.exe

Extract Xerces-C++ source files from the .zip archive using WinZip, say in the root directory (an
arbitrary drive x:). It should create a directory like 'x:\xerces-c-src1_6_0'.

Extract the ICU files, using WinZip, in root directory of the disk where you have installed Xerces-C++,
sources. After extraction, there should be a new directory 'x:\icu' which contains all the ICU source
files.

Start a command prompt to get a new shell window. Make sure you have perl, cygwin tools (uname, rm,
cp, ...), and zip.exe somewhere in the path. Next setup the environment for MSVC using
VCVARS32.BAT' or a similar file. Then at the prompt enter:

set XERCESCROOT=x:\xerces-c-src1_6_0

set ICUROOT=x:\icu

cd x:\xerces-c-src1_6_0\scripts

perl packageBinaries.pl -s x:\xerces-c-src1_6_0 -o x:\temp\xerces-c1_6_0-win32

-t icu

(Match the source directory to your system; the target directory can be anything you want.)

If everything is setup right and works right, then you should see a binary drop created in the target
directory specified above. This script will build both ICU and Xerces-C++, copy the files (relevant to the
binary drop) to the target directory.

For a description of options available, you can enter:

perl packageBinaries.pl

Building Xerces-C++ COM Wrapper on Windows
To build the COM module for use with XML on Windows platforms, you must first set up your machine
appropriately with necessary tools and software modules and then try to compile it. The end result is an
additional library that you can use along with the standard Xerces-C++ for writing VB templates or for
use with IE 5.0 using JavaScript.

Setting up your machine for COM
To build the COM project you will need to install the MS PlatformSDK. Some of the header files we use
don't come with Visual C++ 6.0. You may download it from Microsoft's Website at
http://www.microsoft.com/msdownload/platformsdk/setuplauncher.htm or directly FTP it from
ftp://ftp.microsoft.com/developr/PlatformSDK/April2000/Msi/WinNT/x86/InstMsi.exe.

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 23-

http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/developerworks/opensource/
http://oss.software.ibm.com/developerworks/opensource/
http://oss.software.ibm.com/developerworks/opensource/
http://oss.software.ibm.com/icu/download/index.html
http://oss.software.ibm.com/icu/download/index.html


The installation is huge, but you don't need most of it. So you may do a custom install by just selecting
"Build Environment" and choosing the required components. First select the top level Platform SDK.
Then click the down arrow and make all of the components unavailable. Next open the "Build
Environment" branch and select only the following items:

· Win32 API
· Component Services
· Web Services - Internet Explorer

Important: When the installation is complete you need to update VC6's include path to include
..\platformsdk\include\atl30. You do this by choosing "Tools - > Options - > Directories".
This path should be placed second after the normal PlatformSDK include. You change the order of the
paths by clicking the up and down arrows.

Note: The order in which the directories appear on your path is important. Your first include
path should be ..\platformsdk\include. The second one should be
..\platformsdk\include\atl30.

Building COM module for Xerces-C++
Once you have set up your machine, build Xerces-C++ COM module by choosing the project named
'xml4com' inside the workspace. Then select your build mode to be xml4com - Win32 Release
MinDependency. Finally build the project. This will produce a DLL named xerces-com.dll which
needs to be present in your path (on local machine) before you can use it.

Testing the COM module
There are some sample test programs in the test/COMTest directory which show examples of
navigating and searching an XML tree using DOM. You need to browse the HTML files in this directory
using IE 5.0. Make sure that your build has worked properly, specially the registration of the ActiveX
controls that happens in the final step.

You may also want to check out the NIST DOM test suite at http://xw2k.sdct.itl.nist.gov/BRADY/DOM/.
You will have to modify the documents in the NIST suite to load the Xerces COM object instead of the
MSIE COM object.

Building User Documentation
The user documentation (this very page that you are reading on the browser right now), was generated
using an XML application called StyleBook. This application makes use of Xerces-J and Xalan to create
the HTML file from the XML source files. The XML source files for the documentation are part of the
Xerces-C++ module. These files reside in the doc directory.

Pre-requisites for building the user documentation are:
· JDK 1.2.2 (or later).
· Xerces-J 1.0.1.bundled
· Xalan-J 0.19.2.bundled
· Stylebook 1.0-b2. bundled
· The Apache Style files (dtd's and .xsl files).bundled

Invoke a command window and setup PATH to include the JDK 1.2.2 bin directory

Next, cd to the Xerces-C++ source drop root directory, and enter

· Under Windows:

createDocs
· Under Unix's:

sh createDocs.bat

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 24-



This should generate the .html files in the 'doc/html' directory.

I wish to port Xerces to my favourite platform. Do you have any suggestions?
All platform dependent code in Xerces has been isolated to a couple of files, which should ease the
porting effort. Here are the basic steps that should be followed to port Xerces.

1. The directory src/util/Platforms contains the platform sensitive files while
src/util/Compilers contains all development environment sensitive files. Each operating
system has a file of its own and each development environment has another one of its own too.

As an example, the Win32 platform as a Win32Defs.hpp file and the Visual C++ environment
has a VCPPDefs.hpp file. These files set up certain define tokens, typedefs, constants, etc... that
will drive the rest of the code to do the right thing for that platform and development environment.
AIX/CSet have their own AIXDefs.hpp and CSetDefs.hpp files, and so on. You should
create new versions of these files for your platform and environment and follow the comments in
them to set up your own. Probably the comments in the Win32 and Visual C++ will be the best to
follow, since that is where the main development is done.

2. Next, edit the file XercesDefs.hpp, which is where all of the fundamental stuff comes into the
system. You will see conditional sections in there where the above per-platform and
per-environment headers are brought in. Add the new ones for your platform under the appropriate
conditionals.

3. Now edit AutoSense.hpp. Here we set canonical Xerces internal #define tokens which
indicate the platform and compiler. These definitions are based on known platform and compiler
defines.

AutoSense.hpp is included in XercesDefs.hpp and the canonical platform and compiler
settings thus defined will make the particular platform and compiler headers to be the included at
compilation.

It might be a little tricky to decipher this file so be careful. If you are using say another compiler on
Win32, probably it will use similar tokens so that the platform will get picked up already using what
is already there.

4. Once this is done, you will then need to implement a version of the platform utilities for your
platform. Each operating system has a file which implements some methods of the
XMLPlatformUtils class, specific to that operating system. These are not terribly complex, so it
should not be a lot of work. The Win32 verions is called Win32PlatformUtils.cpp, the AIX
version is AIXPlatformUtils.cpp and so on. Create one for your platform, with the correct
name, and empty out all of the implementation so that just the empty shells of the methods are there
(with dummy returns where needed to make the compiler happy.) Once you've done that, you can
start to get it to build without any real implementation.

5. Once you have the system building, then start implementing your own platform utilties methods.
Follow the comments in the Win32 version as to what they do, the comments will be improved in
subsequent versions, but they should be fairly obvious now. Once you have these implementations
done, you should be able to start debugging the system using the demo programs.

Other concerns are:

· Does ICU compile on your platform? If not, then you'll need to create a transcoder implementation
that uses your local transcoding services. The Iconv transcoder should work for you, though perhaps
with some modifications.

· What message loader will you use? To get started, you can use the "in memory" one, which is very
simple and easy. Then, once you get going, you may want to adapt the message catalog message
loader, or write one of your own that uses local services.

That is the work required in a nutshell!

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 25-



What should I define XMLCh to be?
XMLCh should be defined to be a type suitable for holding a utf-16 encoded (16 bit) value, usually an
unsigned short.

All XML data is handled within Xerces-C++ as strings of XMLCh characters. Regardless of the size of
the type chosen, the data stored in variables of type XMLCh will always be utf-16 encoded values.

Unlike XMLCh, the encoding of wchar_t is platform dependent. Sometimes it is utf-16 (AIX, Windows),
sometimes ucs-4 (Solaris, Linux), sometimes it is not based on Unicode at all (HP/UX, AS/400, system
390).

Some earlier releases of xerce-c defined XMLCh to be the same type as wchar_t on most platforms, with
the goal of making it possible to pass XMLCh strings to library or system functions that were expecting
wchar_t paramters. This approach has been abandonded because of

· Portability problems with any code that assumes that the types of XMLCh and wchar_t are compatible
· Excessive memory usage, especially in the DOM, on platforms with 32 bit wchar_t.
· utf-16 encoded XMLCh is not always compatible with ucs-4 encoded wchar_t on Solaris and Linux.

The problem occurs with Unicode characters with values greater than 64k; in ucs-4 the value is stored
as a single 32 bit quatity. With utf-16, the value will be stored as a "surrogate pair" of two 16 bit
values. Even with XMLCh equated to wchar_t, xerces will still create the utf-16 encoded surrogate
pairs, which are illegal in ucs-4 encoded wchar_t strings.

Where can I look for more help?
If you have read this page, followed the instructions, and still cannot resolve your problem(s), there is
more help. You can find out if others have solved this same problem before you, by checking the Apache
XML mailing list archives at http://archive.covalent.net [20] and the Bugzilla [21] Apache bug database.

Chapter 3 - Build Instructions Xerces-C++ Documentation

- 26-

http://archive.covalent.net 
http://nagoya.apache.org/bugzilla/


4
API Documentation

API Docs for SAX and DOM
Xerces-C++ is packaged with the API documentation for SAX and DOM, the two most common
programming interfaces for XML. The most common framework classes have also been documented.

Xerces-C++ DOM is an implementation of the Document Object Model (Core) Level 1 [3] as defined in
the W3C Recommendation of 1 October, 1998; and Document Object Model (Core) Level 2 [4] as defined
in the W3C Recommendation of 13 November, 2000. For a complete understanding of how the
Xerces-C++ APIs work, we recommend you to read these documents.

Xerces-C++ SAX is an implementation of the SAX 1.0/2.0 [6] specification. You are encouraged to read
this document for a better understanding of the SAX API in Xerces-C++.

See the Xerces-C++ API documentation. for more details.

Note: The API documentation is automatically generated using doxygen [22] and
GraphViz [23] .

- 27-

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://sax.sourceforge.net/
http://sax.sourceforge.net/
http://www.stack.nl/~dimitri/doxygen/
http://www.research.att.com/sw/tools/graphviz/


5
Xerces-C++ Samples

Xerces-C++ comes packaged with 15 sample applications that demonstrate salient features of the parser
using simple applications written on top of the SAX and DOM APIs provided by the parser. Sample
XML data files are provided in the samples/data directory.

Building the Samples
Please refer to the Build Page for Build Instructions as per specific platform.

Running the Samples
The sample applications are dependent on the Xerces-C++ shared library (and could also depend on the
ICU library if you built Xerces-C++ with ICU). Therefore, on Windows platforms you must make sure
that your PATH environment variable is set properly to pick up these shared libraries at runtime.

On UNIX platforms you must ensure that LIBPATH environment variable is set properly to pick up the
shared libraries at runtime. (UNIX gurus will understand here that LIBPATH actually translates to
LD_LIBRARY_PATH on Solaris and Linux, SHLIB_PATH on HP-UX and stays as LIBPATH on
AIX).

To set you LIBPATH (on AIX for example), you would type:

export LIBPATH=xerces-c1_6_0/lib:$LIBPATH

Once you have set up your PATH variable, you can run the samples by opening a command window (or
your shell prompt for UNIX environments).

Xerces-C++ Samples
· SAXCount

SAXCount counts the elements, attributes, spaces and characters in an XML file.
· SAXPrint

SAXPrint parses an XML file and prints it out.
· DOMCount

DOMCount counts the elements in a XML file.
· DOMPrint

DOMPrint parses an XML file and prints it out.
· MemParse

MemParse parses XML in a memory buffer, outputing the number of elements and attributes.
· Redirect

Redirect redirects the input stream for external entities.
· PParse

- 28-



PParse demonstrates progressive parsing.
· StdInParse

StdInParse demonstrates streaming XML data from standard input.
· EnumVal

EnumVal shows how to enumerate the markup decls in a DTD Grammar.
· SEnumVal

SEnumVal shows how to enumerate the markup decls in a Schema Grammar.
· CreateDOMDocument

CreateDOMDocument creates a DOM tree in memory from scratch.
· SAX2Count

SAX2Count counts the elements, attributes, spaces and characters in an XML file.
· SAX2Print

SAX2Print parses an XML file and prints it out.
· IDOMCount

IDOMCount counts the elements in a XML file.
· IDOMPrint

IDOMPrint parses an XML file and prints it out.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 29-



Xerces-C++ Sample 1: SAXCount

SAXCount
SAXCount is the simplest application that counts the elements and characters of a given XML file using
the (event based) SAX API.

Running SAXCount
The SAXCount sample parses an XML file and prints out a count of the number of elements in the file.
To run SAXCount, enter the following

SAXCount <XML File>

The following parameters may be set from the command line

Usage:

SAXCount [options] <XML file | List file>

This program invokes the SAX Parser, and then prints the

number of elements, attributes, spaces and characters found

in each XML file, using SAX API.

Options:

-l Indicate the input file is a List File that has a list of xml

files.

Default to off (Input file is an XML file).

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

-f Enable full schema constraint checking. Defaults to off.

-? Show this help.

* = Default if not provided explicitly.

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from SAXCount

cd xerces-c1_6_0-linux/samples/data

SAXCount -v=always personal.xml

personal.xml: 60 ms (37 elems, 12 attrs, 134 spaces, 134 chars)

Running SAXCount with the validating parser gives a different result because ignorable white-space is
counted separately from regular characters.

SAXCount -v=never personal.xml

personal.xml: 10 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

Note that the sum of spaces and chracters in both versions is the same.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 30-



Note: The time reported by the program may be different depending on your machine
processor.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 31-



Xerces-C++ Sample 2: SAXPrint

SAXPrint
SAXPrint uses the SAX APIs to parse an XML file and print it back. Do note that the output of this
sample is not exactly the same as the input (in terms of whitespaces, first line), but the output has the
same information content as the input.

Running SAXPrint
The SAXPrint sample parses an XML file and prints out the contents again in XML (some loss occurs).
To run SAXPrint, enter the following

SAXPrint <XML file>

The following parameters may be set from the command line

Usage:

SAXPrint [options] <XML file>

This program invokes the SAX Parser, and then prints the

data returned by the various SAX handlers for the specified

XML file.

Options:

-u=xxx Handle unrepresentable chars [fail | rep | ref*].

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing.

-s Enable schema processing.

-f Enable full schema constraint checking.

-x=XXX Use a particular encoding for output (LATIN1*).

-? Show this help.

* = Default if not provided explicitly.

The parser has intrinsic support for the following encodings:

UTF-8, USASCII, ISO8859-1, UTF-16[BL]E, UCS-4[BL]E,

WINDOWS-1252, IBM1140, IBM037.

-u=fail will fail when unrepresentable characters are encountered

-u=rep will replace with the substitution character for that codepage

-u=ref will report the character as a reference

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from SAXPrint

cd xerces-c1_6_0-linux/samples/data

SAXPrint -v=always personal.xml

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 32-



<?xml version="1.0" encoding="LATIN1"?>

<personnel>

<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

<link subordinates="one.worker two.worker three.worker

four.worker five.worker"></link>

</person>

<person id="one.worker">

<name><family>Worker</family> <given>One</given></name>

<email>one@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="two.worker">

<name><family>Worker</family> <given>Two</given></name>

<email>two@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="three.worker">

<name><family>Worker</family> <given>Three</given></name>

<email>three@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="four.worker">

<name><family>Worker</family> <given>Four</given></name>

<email>four@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="five.worker">

<name><family>Worker</family> <given>Five</given></name>

<email>five@foo.com</email>

<link manager="Big.Boss"></link>

</person>

</personnel>

Note: SAXPrint does not reproduce the original XML file. SAXPrint and DOMPrint
produce different results because of the way the two APIs store data and capture
events.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 33-



Xerces-C++ Sample 3: DOMCount

DOMCount
DOMCount uses the provided DOM API to parse an XML file, constructs the DOM tree and walks
through the tree counting the elements (using just one API call).

Running DOMCount
The DOMCount sample parses an XML file and prints out a count of the number of elements in the file.
To run DOMCount, enter the following

DOMCount <XML file>

The following parameters may be set from the command line

Usage:

DOMCount [options] <XML file | List file>

This program invokes the DOM parser, builds the DOM tree,

and then prints the number of elements found in each XML file.

Options:

-l Indicate the input file is a List File that has a list of xml

files.

Default to off (Input file is an XML file).

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

-f Enable full schema constraint checking. Defaults to off.

-? Show this help.

* = Default if not provided explicitly.

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from DOMCount

cd xerces-c1_6_0-linux/samples/data

DOMCount -v=always personal.xml

personal.xml: 20 ms (37 elems)

Note: The time reported by the system may be different, depending on your processor
type.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 34-



Xerces-C++ Sample 4: DOMPrint

DOMPrint
DOMPrint parses an XML file, constructs the DOM tree, and walks through the tree printing each
element. It thus dumps the XML back (output same as SAXPrint).

Running DOMPrint
The DOMPrint sample parses an XML file, using either a validating or non-validating DOM parser
configuration, builds a DOM tree, and then walks the tree and outputs the contents of the nodes in a
'canonical' format. To run DOMPrint, enter the following:

DOMPrint <XML file>

The following parameters may be set from the command line

Usage:

DOMPrint [options] <XML file>

This program invokes the DOM parser, and builds the DOM tree.

It then traverses the DOM tree and prints the contents of the

tree for the specified XML file.

Options:

-e create entity reference nodes. Default is no expansion.

-u=xxx Handle unrepresentable chars [fail | rep | ref*].

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Default is off.

-s Enable schema processing. Default is off.

-f Enable full schema constraint checking. Defaults to off.

-x=XXX Use a particular encoding for output. Default is

the same encoding as the input XML file. UTF-8 if

input XML file has not XML declaration.

-? Show this help.

* = Default if not provided explicitly.

The parser has intrinsic support for the following encodings:

UTF-8, USASCII, ISO8859-1, UTF-16[BL]E, UCS-4[BL]E,

WINDOWS-1252, IBM1140, IBM037.

-u=fail will fail when unrepresentable characters are encountered

-u=rep will replace with the substitution character for that codepage

-u=ref will report the character as a reference

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from DOMPrint

cd xerces-c1_6_0-linux/samples/data

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 35-



DOMPrint -v=always personal.xml

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE personnel SYSTEM "personal.dtd">

<!-- @version: -->

<personnel>

<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

<link subordinates="one.worker two.worker three.worker

four.worker five.worker"></link>

</person>

<person id="one.worker">

<name><family>Worker</family> <given>One</given></name>

<email>one@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="two.worker">

<name><family>Worker</family> <given>Two</given></name>

<email>two@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="three.worker">

<name><family>Worker</family> <given>Three</given></name>

<email>three@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="four.worker">

<name><family>Worker</family> <given>Four</given></name>

<email>four@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="five.worker">

<name><family>Worker</family> <given>Five</given></name>

<email>five@foo.com</email>

<link manager="Big.Boss"></link>

</person>

</personnel>

Note that DOMPrint does not reproduce the original XML file. DOMPrint and SAXPrint produce
different results because of the way the two APIs store data and capture events.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 36-



Xerces-C++ Sample 5: MemParse

MemParse
MemParse uses the Validating SAX Parser to parse a memory buffer containing XML statements, and
reports the number of elements and attributes found.

Running MemParse
This program uses the SAX Parser to parse a memory buffer containing XML statements, and reports the
number of elements and attributes found.

The following parameters may be set from the command line

Usage:

MemParse [options]

This program uses the SAX Parser to parse a memory buffer

containing XML statements, and reports the number of

elements and attributes found.

Options:

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

-f Enable full schema constraint checking. Defaults to off.

-? Show this help.

* = Default if not provided explicitly.

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from MemParse

cd xerces-c1_6_0-linux/samples/data

MemParse -v=always

The output is the following:

Finished parsing the memory buffer containing the following XML statements:

<?xml version='1.0' encoding='ascii'?>

<!DOCTYPE company [

<!ELEMENT company (product,category,developedAt)>

<!ELEMENT product (#PCDATA)>

<!ELEMENT category (#PCDATA)>

<!ATTLIST category idea CDATA #IMPLIED>

<!ELEMENT developedAt (#PCDATA)>

]>

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 37-



<company>

<product>XML4C</product>

<category idea='great'>XML Parsing Tools</category>

<developedAt>

IBM Center for Java Technology, Silicon Valley, Cupertino, CA

</developedAt>

</company>

Parsing took 10 ms (4 elements, 1 attributes, 16 spaces, 95 characters).

Running MemParse with the validating parser gives a different result because ignorable white-space is
counted separately from regular characters.

MemParse -v=never

The output is the following:

Finished parsing the memory buffer containing the following XML statements:

<?xml version='1.0' encoding='ascii'?>

<!DOCTYPE company [

<!ELEMENT company (product,category,developedAt)>

<!ELEMENT product (#PCDATA)>

<!ELEMENT category (#PCDATA)>

<!ATTLIST category idea CDATA #IMPLIED>

<!ELEMENT developedAt (#PCDATA)>

]>

<company>

<product>XML4C</product>

<category idea='great'>XML Parsing Tools</category>

<developedAt>

IBM Center for Java Technology, Silicon Valley, Cupertino, CA

</developedAt>

</company>

Parsing took 10 ms (4 elements, 1 attributes, 0 spaces, 111 characters).

Note that the sum of spaces and chracters in both versions is the same.

Note: The time reported by the system may be different, depending on your processor
type.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 38-



Xerces-C++ Sample 6: Redirect

Redirect
Redirect uses the SAX EntityResolver handler to redirect the input stream for external entities. It installs
an entity resolver, traps the call to the external DTD file and redirects it to another specific file which
contains the actual DTD.

Running Redirect
This program illustrates how a XML application can use the SAX EntityResolver handler to redirect the
input stream for external entities. It installs an entity resolver, traps the call to the external DTD file and
redirects it to another specific file which contains the actual DTD.

The program then counts and reports the number of elements and attributes in the given XML file.

Redirect <XML file>

Redirect is invoked as follows:

cd xerces-c1_6_0-linux/samples/data

Redirect personal.xml

The output is the following:

cd xerces-c1_6_0-linux/samples/data

Redirect personal.xml

personal.xml: 30 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

External files required to run this sample are 'personal.xml', 'personal.dtd' and 'redirect.dtd', which are all
present in the 'samples/data' directory. Make sure that you run redirect in the samples/data directory.

The 'resolveEntity' callback in this sample looks for an external entity with system id as 'personal.dtd'.
When it is asked to resolve this particular external entity, it creates and returns a new InputSource for the
file 'redirect.dtd'.

A real-world XML application can similarly do application specific processing when encountering
external entities. For example, an application might want to redirect all references to entities outside of its
domain to local cached copies.

Note: The time reported by the program may be different depending on your machine
processor.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 39-



Xerces-C++ Sample 7: PParse

PParse
PParse demonstrates progressive parsing.

In this example, the programmer doesn't have to depend upon throwing an exception to terminate the
parsing operation. Calling parseFirst() will cause the DTD to be parsed (both internal and external
subsets) and any pre-content, i.e. everything up to but not including the root element. Subsequent calls to
parseNext() will cause one more piece of markup to be parsed, and spit out from the core scanning code
to the parser. You can quit the parse any time by just not calling parseNext() anymore and breaking out of
the loop. When you call parseNext() and the end of the root element is the next piece of markup, the
parser will continue on to the end of the file and return false, to let you know that the parse is done.

Running PParse
PParse parses an XML file and prints out a count of the number of elements in the file

Usage:

PParse [options] <XML file>

This program demonstrates the progressive parse capabilities of

the parser system. It allows you to do a scanFirst() call followed by

a loop which calls scanNext(). You can drop out when you've found what

ever it is you want. In our little test, our event handler looks for

16 new elements then sets a flag to indicate its found what it wants.

At that point, our progressive parse loop exits.

Options:

-v=xxx - Validation scheme [always | never | auto*].

-n - Enable namespace processing [default is off].

-s - Enable schema processing [default is off].

-f - Enable full schema constraint checking [default is off].

-? - Show this help.

* = Default if not provided explicitly.

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from PParse

cd xerces-c1_6_0-linux/samples/data

PParse -v=always personal.xml

personal.xml: 60 ms (37 elems, 12 attrs, 134 spaces, 134 chars)

Running PParse with the validating parser gives a different result because ignorable white-space is
counted separately from regular characters.

PParse -v=never personal.xml

personal.xml: 10 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 40-



Note that the sum of spaces and chracters in both versions is the same.

Note: The time reported by the program may be different depending on your machine
processor.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 41-



Xerces-C++ Sample 8: StdInParse

StdInParse
StdInParse demonstrates streaming XML data from standard input.

Running StdInParse
The StdInParse sample parses an XML file from standard input and prints out a count of the number of
elements in the file. To run StdInParse, enter the following:

StdInParse < <XML file>

The following parameters may be set from the command line

Usage:

StdInParse [options] < <XML file>

This program demonstrates streaming XML data from standard

input. It then uses the SAX Parser, and prints the

number of elements, attributes, spaces and characters found

in the input, using SAX API.

Options:

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

-f Enable full schema constraint checking. Defaults to off.

-? Show this help.

* = Default if not provided explicitly.

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Make sure that you run StdInParse in the samples/data directory.

Here is a sample output from StdInParse:

cd xerces-c1_6_0-linux/samples/data

StdInParse -v=always < personal.xml

stdin: 10 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

Running StdInParse with the validating parser gives a different result because ignorable white-space is
counted separately from regular characters.

StdInParse -v=never < personal.xml

stdin: 10 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

Note that the sum of spaces and chracters in both versions is the same.

Note: The time reported by the program may be different depending on your machine
processor.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 42-



Xerces-C++ Sample 9: EnumVal

EnumVal
EnumVal shows how to enumerate the markup decls in a DTD Grammar.

Running EnumVal
This program parses the specified XML file, then shows how to enumerate the contents of the DTD
Grammar.

Usage:

EnumVal <XML file>

This program parses the specified XML file, then shows how to

enumerate the contents of the DTD Grammar. Essentially,

shows how one can access the DTD information stored in internal

data structures.

Here is a sample output from EnumVal

cd xerces-c1_6_0-linux/samples/data

EnumVal personal.xml

ELEMENTS:

----------------------------

Name: personnel

Content Model: (person)+

Name: person

Content Model: (name,email*,url*,link?)

Attributes:

Name:id, Type: ID

Name: name

Content Model: (#PCDATA|family|given)*

Name: email

Content Model: (#PCDATA)*

Name: url

Content Model: EMPTY

Attributes:

Name:href, Type: CDATA

Name: link

Content Model: EMPTY

Attributes:

Name:subordinates, Type: IDREF(S)

Name:manager, Type: IDREF(S)

Name: family

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 43-



Content Model: (#PCDATA)*

Name: given

Content Model: (#PCDATA)*

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 44-



Xerces-C++ Sample 10: CreateDOMDocument

CreateDOMDocument
CreateDOMDocument, illustrates how you can create a DOM tree in memory from scratch. It then reports
the elements in the tree that was just created.

Running CreateDOMDocument
The CreateDOMDocument sample illustrates how you can create a DOM tree in memory from scratch.
To run CreateDOMDocument, enter the following

CreateDOMDocument

Here is a sample output from CreateDOMDocument

cd xerces-c1_6_0-linux/samples/data

CreateDOMDocument

The tree just created contains: 4 elements.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 45-



Xerces-C++ Sample 11: SAX2Count

SAX2Count
SAX2Count is the simplest application that counts the elements and characters of a given XML file using
the (event based) SAX2 API.

Running SAX2Count
The SAX2Count sample parses an XML file and prints out a count of the number of elements in the file.
To run SAX2Count, enter the following

SAX2Count <XML File>

The following parameters may be set from the command line

Usage:

SAX2Count [options] <XML file | List file>

This program invokes the SAX2XMLReader, and then prints the

number of elements, attributes, spaces and characters found

in each XML file, using SAX2 API.

Options:

-l Indicate the input file is a List File that has a list of xml

files.

Default to off (Input file is an XML file).

-v=xxx Validation scheme [always | never | auto*].

-f Enable full schema constraint checking processing. Defaults to

off.

-n Disable namespace processing. Defaults to on.

NOTE: THIS IS OPPOSITE FROM OTHER SAMPLES.

-s Disable schema processing. Defaults to on.

NOTE: THIS IS OPPOSITE FROM OTHER SAMPLES.

-? Show this help.

* = Default if not provided explicitly.

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from SAX2Count

cd xerces-c1_6_0-linux/samples/data

SAX2Count -v=always personal.xml

personal.xml: 60 ms (37 elems, 12 attrs, 134 spaces, 134 chars)

Running SAX2Count with the validating parser gives a different result because ignorable white-space is
counted separately from regular characters.

SAX2Count -v=never personal.xml

personal.xml: 10 ms (37 elems, 12 attrs, 0 spaces, 268 chars)

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 46-



Note that the sum of spaces and chracters in both versions is the same.

Note: The time reported by the program may be different depending on your machine
processor.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 47-



Xerces-C++ Sample 12: SAX2Print

SAX2Print
SAX2Print uses the SAX2 APIs to parse an XML file and print it back. Do note that the output of this
sample is not exactly the same as the input (in terms of whitespaces, first line), but the output has the
same information content as the input.

Running SAX2Print
The SAX2Print sample parses an XML file and prints out the contents again in XML (some loss occurs).
To run SAX2Print, enter the following

SAX2Print <XML file>

The following parameters may be set from the command line

Usage:

SAX2Print [options] <XML file>

This program invokes the SAX2XMLReader, and then prints the

data returned by the various SAX2 handlers for the specified

XML file.

Options:

-u=xxx Handle unrepresentable chars [fail | rep | ref*].

-v=xxx Validation scheme [always | never | auto*].

-e Expand Namespace Alias with URI's.

-x=XXX Use a particular encoding for output (LATIN1*).

-f Enable full schema constraint checking processing. Defaults to

off.

-s Disable schema processing. Defaults to on.

NOTE: THIS IS OPPOSITE FROM OTHER SAMPLES.

-? Show this help.

* = Default if not provided explicitly.

The parser has intrinsic support for the following encodings:

UTF-8, USASCII, ISO8859-1, UTF-16[BL]E, UCS-4[BL]E,

WINDOWS-1252, IBM1140, IBM037.

-u=fail will fail when unrepresentable characters are encountered

-u=rep will replace with the substitution character for that codepage

-u=ref will report the character as a reference

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from SAX2Print

cd xerces-c1_6_0-linux/samples/data

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 48-



SAX2Print -v=always personal.xml

<?xml version="1.0" encoding="LATIN1"?>

<personnel>

<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

<link subordinates="one.worker two.worker three.worker

four.worker five.worker"></link>

</person>

<person id="one.worker">

<name><family>Worker</family> <given>One</given></name>

<email>one@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="two.worker">

<name><family>Worker</family> <given>Two</given></name>

<email>two@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="three.worker">

<name><family>Worker</family> <given>Three</given></name>

<email>three@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="four.worker">

<name><family>Worker</family> <given>Four</given></name>

<email>four@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="five.worker">

<name><family>Worker</family> <given>Five</given></name>

<email>five@foo.com</email>

<link manager="Big.Boss"></link>

</person>

</personnel>

Note: SAX2Print does not reproduce the original XML file. SAX2Print and DOMPrint
produce different results because of the way the two APIs store data and capture
events.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 49-



Xerces-C++ Sample 13: IDOMCount

IDOMCount
IDOMCount uses the provided IDOM API to parse an XML file, constructs the DOM tree and walks
through the tree counting the elements (using just one API call).

Running IDOMCount
The IDOMCount sample parses an XML file and prints out a count of the number of elements in the file.
To run IDOMCount, enter the following

IDOMCount <XML file>

The following parameters may be set from the command line

Usage:

IDOMCount [options] <XML file | List file>

This program invokes the IDOM parser, builds the DOM tree,

and then prints the number of elements found in each XML file.

Options:

-l Indicate the input file is a List File that has a list of xml

files.

Default to off (Input file is an XML file).

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Defaults to off.

-s Enable schema processing. Defaults to off.

-f Enable full schema constraint checking. Defaults to off.

-? Show this help.

* = Default if not provided explicitly.

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from IDOMCount

cd xerces-c1_6_0-linux/samples/data

IDOMCount -v=always personal.xml

personal.xml: 20 ms (37 elems)

Note: The time reported by the system may be different, depending on your processor
type.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 50-



Xerces-C++ Sample 14: IDOMPrint

IDOMPrint
IDOMPrint parses an XML file, constructs the DOM tree, and walks through the tree printing each
element. It thus dumps the XML back (output same as SAXPrint).

Running IDOMPrint
The IDOMPrint sample parses an XML file, using either a validating or non-validating IDOM parser
configuration, builds a DOM tree, and then walks the tree and outputs the contents of the nodes in a
'canonical' format. To run IDOMPrint, enter the following:

IDOMPrint <XML file>

The following parameters may be set from the command line

Usage:

IDOMPrint [options] <XML file>

This program invokes the IDOM parser, and builds the DOM tree.

It then traverses the DOM tree and prints the contents of the

tree for the specified XML file.

Options:

-e create entity reference nodes. Default is no expansion.

-u=xxx Handle unrepresentable chars [fail | rep | ref*].

-v=xxx Validation scheme [always | never | auto*].

-n Enable namespace processing. Default is off.

-s Enable schema processing. Default is off.

-f Enable full schema constraint checking. Defaults is off.

-x=XXX Use a particular encoding for output. Default is

the same encoding as the input XML file. UTF-8 if

input XML file has not XML declaration.

-? Show this help.

* = Default if not provided explicitly.

The parser has intrinsic support for the following encodings:

UTF-8, USASCII, ISO8859-1, UTF-16[BL]E, UCS-4[BL]E,

WINDOWS-1252, IBM1140, IBM037.

-u=fail will fail when unrepresentable characters are encountered

-u=rep will replace with the substitution character for that codepage

-u=ref will report the character as a reference

-v=always will force validation

-v=never will not use any validation

-v=auto will validate if a DOCTYPE declaration or a schema declaration is present in the XML
document

Here is a sample output from IDOMPrint

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 51-



cd xerces-c1_6_0-linux/samples/data

IDOMPrint -v=always personal.xml

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE personnel SYSTEM "personal.dtd">

<!-- @version: -->

<personnel>

<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

<link subordinates="one.worker two.worker three.worker

four.worker five.worker"></link>

</person>

<person id="one.worker">

<name><family>Worker</family> <given>One</given></name>

<email>one@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="two.worker">

<name><family>Worker</family> <given>Two</given></name>

<email>two@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="three.worker">

<name><family>Worker</family> <given>Three</given></name>

<email>three@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="four.worker">

<name><family>Worker</family> <given>Four</given></name>

<email>four@foo.com</email>

<link manager="Big.Boss"></link>

</person>

<person id="five.worker">

<name><family>Worker</family> <given>Five</given></name>

<email>five@foo.com</email>

<link manager="Big.Boss"></link>

</person>

</personnel>

Note that IDOMPrint does not reproduce the original XML file. IDOMPrint and SAXPrint produce
different results because of the way the two APIs store data and capture events.

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 52-



Xerces-C++ Sample 9: SEnumVal

SEnumVal
SEnumVal shows how to enumerate the markup decls in a Schema Grammar.

Running SEnumVal
This program parses the specified XML file, then shows how to enumerate the contents of the Schema
Grammar.

Usage:

SEnumVal <XML file>

This program parses a file, then shows how to enumerate the

contents of the Schema Grammar. Essentially, shows how one can

access the Schema information stored in internal data structures.

Here is a sample output from SEnumVal

cd xerces-c1_6_0-linux/samples/data

SEnumVal personal-schema.xml

Name: personnel

Model Type: Children

Create Reason: Declared

ContentType: OneOrMore

Content Model: (person)+

ComplexType:

TypeName: ,C0

ContentType: OneOrMore

--------------------------------------------

Name: person

Model Type: Children

Create Reason: Declared

ContentType: Sequence

Content Model: (name,email*,url*,link?)

ComplexType:

TypeName: ,C1

ContentType: Sequence

Attributes:

Name: salary

Type: CDATA

Default Type: #IMPLIED

Base Datatype: Decimal

Facets:

fractionDigits=0

Name: id

Type: ID

Default Type: #REQUIRED

Base Datatype: ID

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 53-



Name: contr

Type: CDATA

Default Type: #DEFAULT

Value: false

Base Datatype: string

Name: note

Type: CDATA

Default Type: #IMPLIED

Base Datatype: string

--------------------------------------------

Name: name

Model Type: Children

Create Reason: Declared

ContentType: Sequence

Content Model: (family,given)

ComplexType:

TypeName: ,C3

ContentType: Sequence

--------------------------------------------

Name: family

Model Type: Simple

Create Reason: Declared

Base Datatype: string

--------------------------------------------

Name: given

Model Type: Simple

Create Reason: Declared

Base Datatype: string

--------------------------------------------

Name: email

Model Type: Simple

Create Reason: Declared

Base Datatype: string

--------------------------------------------

Name: url

Model Type: Empty

Create Reason: Declared

Content Model: EMPTY

ComplexType:

TypeName: ,C4

Attributes:

Name: href

Type: CDATA

Default Type: #DEFAULT

Value: http://

Base Datatype: string

--------------------------------------------

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 54-



Name: link

Model Type: Empty

Create Reason: Declared

Content Model: EMPTY

ComplexType:

TypeName: ,C5

Attributes:

Name: subordinates

Type: IDREFS

Default Type: #IMPLIED

Base Datatype: List

Name: manager

Type: IDREF

Default Type: #IMPLIED

Base Datatype: IDREF

--------------------------------------------

Chapter 5 - Xerces-C++ Samples Xerces-C++ Documentation

- 55-



6
Schema

Introduction
This package contains an implementation of the W3C XML Schema Language, a recommendation of the
Worldwide Web Consortium available in three parts: XML Schema: Primer [24] and XML Schema:
Structures [25] and XML Schema: Datatypes [26] . We consider this implementation complete except for
the limitations cited below.

We would very much appreciate feedback on the package via the Xerces-C mailing list
xerces-c-dev@xml.apache.org [15] , and we encourage the submission of bugs as described in
Bug-Reporting [27] page. Please read this document before using this package.

Limitations
· No interface is provided for exposing the post-schema validation infoset , beyond that provided by

DOM or SAX;
· The parser permits situations in which there is circular or multiple importing. However, the parser

only permits forward references--that is, references directed from the direction of the schema cited in
the instance document to other schemas. For instance, if schema A imports both schema B and
schema C, then any reference in schema B to an information item from schema C will produce an
error. Circular or multiple <include>s have similar limitations.

· Due to the way in which the parser constructs content models for elements with complex content,
specifying large values for the minOccurs or maxOccurs attributes may cause a stack overflow or
very poor performance in the parser. Large values for minOccurs should be avoided, and
unbounded should be used instead of a large value for maxOccurs.

Interpretation of Areas that are Unclear or Implementation-Dependent
· We have interpreted the specs as requiring <keyref> Identity Constraints to refer to <key> or

> identity constraints within the scope of the elements to which the <keyref> is attached. This
interpretation is at variance with the Schema Primer, which contains an example with a <keyref>
declared on an element used inside the element of its corresponding <key>.

Usage
Here is an example how to turn on schema processing in DOMParser (default is off). Note that you must
also turn on namespace support (default is off) for schema processing.

// Instantiate the DOM parser.

DOMParser parser;

parser.setDoNamespaces(true);

parser.setDoSchema(true);

- 56-

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
mailto:xerces-c-dev@xml.apache.org 
http://xml.apache.org/xerces-c/bug-report.html


parser.parse(xmlFile);

Usage in SAXParser is similar, please refer to the sample program 'samples/SAXCount/SAXCount.cpp'
for further reference.

Here is an example how to turn on schema processing in SAX2XMLReader (default is on). Note that
namespace must be on (default is on) as well.

SAX2XMLReader* parser = XMLReaderFactory::createXMLReader();

parser->setFeature(XMLString::transcode("http://xml.org/sax/features/namespaces"),

true);

parser->setFeature(XMLString::transcode("http://apache.org/xml/features/validation/schema"),

true);

parser->parse(xmlFile);

Review the sample file, 'samples/data/personal-schema.xml' and 'samples/data/personal.xsd' for an
example of an XML Schema grammar.

Assocating Schema Grammar with instance document
Schema grammars can be associated with instance documents in two ways.

Specifying Schema Grammar through method calls:
An application developer may use the methods setExternalSchemaLocation if they use
namespaces, and setExternalNoNamespaceSchemaLocation otherwise to associate schemas
with instance documents. (For SAX2XMLReader, use the properites:
"http://apache.org/xml/properties/schema/external-schemaLocation" and
"http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation")

Here is an example with no target namspace:

// Instantiate the DOM parser.

DOMParser parser;

parser.setDoNamespaces(true);

parser.setDoSchema(true);

parser.setExternalNoNamespaceSchemaLocation("personal.xsd");

parser.parse("test.xml");

// Instantiate the SAX2 XMLReader.

SAX2XMLReader* parser = XMLReaderFactory::createXMLReader();

parser->setProperty(

XMLString::transcode("http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation"),

XMLString transcode("personal.xsd"));

parser.parse("test.xml");

Here is an example with a target namespace. Note that it is an error to specify a different namespace than
the target namespace defined in the Schema.

// Instantiate the DOM parser.

Chapter 6 - Schema Xerces-C++ Documentation

- 57-



DOMParser parser;

parser.setDoNamespaces(true);

parser.setDoSchema(true);

parser.setExternalSchemaLocation("http://my.com personal.xsd http://my2.com

test2.xsd");

parser.parse("test.xml");

// Instantiate the SAX2 XMLReader.

SAX2XMLReader* parser = XMLReaderFactory::createXMLReader();

parser->setProperty(

XMLString::transcode("http://apache.org/xml/properties/schema/external-SchemaLocation"),

XMLString transcode("http://my.com personal.xsd http://my2.com

test2.xsd"));

parser.parse("test");

Specifying Schema Grammar through attributes in the instance document:
If schema grammar was not specified externally through methods, then each instance document that uses
XML Schema grammars must specify the location of the grammars it uses by using an
xsi:schemaLocation attribute if they use namespaces, and xsi:noNamespaceSchemaLocation attribute
otherwise.

Here is an example with no target namspace:

<?xml version="1.0" encoding="UTF-8"?>

<personnel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation='personal.xsd'>

...

</personnel>

Here is an example with a target namespace. Note that it is an error to specify a different namespace than
the target namespace defined in the Schema.

<?xml version="1.0" encoding="UTF-8"?>

<personnel xmlns="http://my.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://my.com personal.xsd">

...

</personnel>

Chapter 6 - Schema Xerces-C++ Documentation

- 58-



7
Frequently Asked Questions

Distributing Xerces-C++
What compilers are being used on the supported platforms?
Xerces binaries has been built on the following platforms with these compilers

Operating System Compiler
Windows NT 4.0 SP5/98 MSVC 6.0 SP3

Redhat Linux 6.1 egcs-2.91.66 and glibc-2.1.2-11

AIX 4.3 xlC_r 5.0.2

Solaris 2.6 Forte C++ Version 6 Update 2

HP-UX 11.0 aCC A.03.13 with pthreads

What are the differences between Xerces-C and XML4C?
Xerces-C has intrinsic support for ASCII, UTF-8, UTF-16 (Big/Small Endian), UCS4 (Big/Small
Endian), EBCDIC code pages IBM037 and IBM1140 encodings, ISO-8859-1 (aka Latin1) and
Windows-1252. This means that it can parse input XML files in these above mentioned encodings.

However, if you wish to parse XML files in any other encodings, say in Shift-JIS, Big5 etc., then you
cannot use Xerces-C. XML4C addresses this need. It combines Xerces-C and International Components
for Unicode (ICU) [11] and provides support for over 100 different encodings.

ICU is also an open source project but is licensed under the X License [28] . XML4C is published by IBM
and can be downloaded from their Alphaworks [29] site. The license to use XML4C is simply to comply
with the Apache license (because of Xerces-C) and X License (because of ICU).

XML4C binaries are published for Solaris using SunWorkshop compiler, HPUX 10.20 and 11.0 using CC
and aCC, Redhat Linux using gcc, Windows NT using MSVC, AIX using xlC.

Which DLL's do I need to distribute with my application?
As mentioned above, there are two configurations in which Xerces-C binaries are shipped. One is from
the Apache site [30] , while the other is from IBM published at IBM's Alphaworks Site [29] .

If you are using the binaries from the Apache download site [31] site, then you only need to distribute one
file:

xerces-c_1_6_0.dll for Windows NT/95/98, or

libxerces-c1_6_0.a for AIX, or

libxerces-c1_6_0.so for Solaris/Linux, or

libxerces-c1_6_0.sl for HP-UX.

- 59-

http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://www.x.org/terms.htm
http://www.x.org/terms.htm
http://www.alphaworks.ibm.com/tech/xml4c
http://xml.apache.org/xerces-c/index.html
http://xml.apache.org/xerces-c/index.html
http://www.alphaworks.ibm.com/tech/xml4c
http://www.alphaworks.ibm.com/tech/xml4c
http://www.alphaworks.ibm.com/tech/xml4c
http://xml.apache.org/dist/xerces-c/
http://xml.apache.org/dist/xerces-c/
http://xml.apache.org/dist/xerces-c/


However, if you are using the XML4C binaries then in addition to the library file mentioned above, you
also need to ship:

1. ICU shared library file:

icuuc.dll for Windows NT/95/98, or

libicuuc.a for AIX, or

libicuuc.so for Solaris/Linux, or

libicuuc.sl for HP-UX.
2. ICU converter data shared library file:

icudata.dll for Windows NT/95/98, or

libicudata.a for AIX, or

libicudata.so for Solaris/Linux, or

libicudata.sl for HP-UX.

How do I package the sources to create a binary drop?
You have to first compile the sources inside your IDE to create the required DLLs and EXEs. Then you
need to copy over the binaries to another directory for the binary drop. A perl script has been provided to
give you a jump start. You need to install perl on your machine for the script to work. If you have
changed your source tree, you have to modify the script to suit your current directory structure. To invoke
the script, go to the \<Xerces>\scripts directory, and type:

perl packageBinaries.pl

You will get a message that somewhat looks like this (changes always happpen, we are evolving you
see!):

Usage is: packageBinaries <options>

options are: -s <source_directory>

-o <target_directory>

-c <C compiler name> (e.g. gcc or xlc_r)

-x <C++ compiler name> (e.g. g++ or xlC_r)

-m <message loader> can be 'inmem', 'icu' or 'iconv'

-n <net accessor> can be 'fileonly' or 'libwww'

-t <transcoder> can be 'icu' or 'native'

-r <thread option> can be 'pthread' or 'dce' (only used on HP-11)

-h to get help on these commands

Example: perl packageBinaries.pl -s$HOME/xerces-c_1_0_0

-o$HOME/xerces-c_1_0_0

-cgcc -xg++ -minmem

-nfileonly -tnative

Make sure that your compiler can be invoked from the command line and follow the instructions to
produce a binary drop.

I do not see binaries for my platform. When will they be available?">
The reason why you see binaries only for some specific platforms is that we have had the maximum
requests for them. Moreover, we have limited resources and hence cannot publish binaries for every
platform. If you wish to contribute your time and effort in building binaries for a specific
platform/environment then please send a mail to the Xerces-C mailing list [15] . We can definitely use
any extra help in this open source project

When will a port to my platform be available?

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 60-

mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 


We would like to see Xerces ported to as many platforms as there are. Again, due to limited resources we
cannot do all the ports. We will help you make this port happen. Here are some Porting Guidelines.

We strongly encourage you to submit the changes that are required to make it work on another platform.
We will incorporate these changes in the source code base and make them available in the future releases.

All porting changes may be sent to the Xerces-C mailing list [15] .

How can I port Xerces to my favourite platform?
Some porting information is mentioned on the build page.

What application do you use to create the documentation?
We have used an internal XML based application to create the documentation. The documentation files
are all written in XML and the application, internally codenamed StyleBook, makes use of XSL to
transform it into an HTML document that you are seeing right now. It is currently available on the
Apache [32] open source website as Cocoon [33] .

The API documentation is automatically generated using doxygen [22] and GraphViz [23] .

Can I use Xerces in my product?
Yes! Read the license agreement first and if you still have further questions, then please address them to
the Xerces-C mailing list [15] .

How do I uninstall Xerces-C++?
Xerces-C++ only installs itself in a single directory and does not set any registry entries. Thus, to
uninstall, you only need to remove the directory where you installed it, and all Xerces-C++ related files
will be removed.

I am getting a tar checksum error on Solaris. What's the problem?
The problem is caused by a limitation in the original tar spec, which prevented it from archiving files with
long pathnames. Unfortunately, various current versions of tar use different extensions for eliminating
this restriction which are incompatible with each other (or they do not remove the restriction at all).
Rather than altering the pathnames for the Xerces-C++ package, which would make them compatible
with the original tar spec but make it more difficult to know what was where, it was decided to use GNU
tar (gtar), which handles arbitrarily long pathnames and is freely available on every platform on which
Xerces-C++ is supported. If you don't already have GNU tar installed on your system, you can obtain it
from the Free Software Foundation http://www.gnu.org/software/tar/tar.html [34] . For additional
background information on this problem, see the online manual GNU tar and POSIX tar [35] for the
utility.

Parsing with Xerces-C++
Does Xerces-C++ support Schema?
Yes. The Xerces-C++ 1.6.0 contains an implementation of the W3C XML Schema Language, a
recommendation of the Worldwide Web Consortium available in three parts: XML Schema: Primer [24]

and XML Schema: Structures [25] and XML Schema: Datatypes [26] . We consider this implementation
complete. See the Schema page for limitations.

Why Xerces-C++ does not support this particular Schema feature?
The Xerces-C++ 1.6.0 contains an implementation of the W3C XML Schema Language, a
recommendation of the Worldwide Web Consortium available in three parts: XML Schema: Primer [24]

and XML Schema: Structures [25] and XML Schema: Datatypes [26] . We consider this implementation
complete. See the Schema page for limitations.

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 61-

mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
http://xml.apache.org/
http://xml.apache.org/cocoon/index.html
http://www.stack.nl/~dimitri/doxygen/
http://www.research.att.com/sw/tools/graphviz/
mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
http://www.gnu.org/software/tar/tar.html
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.gnu.org/manual/tar/html_node/tar_117.html#SEC112
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/


If you find any Schema feature which is specified in the W3C XML Schema Language Recommendation
does not work with Xerces-C++ 1.6.0, we encourage the submission of bugs as described in
Bug-Reporting [27] page.

Why does my application crash on AIX when I run it under a multi-threaded environment?
AIX maintains two kinds of libraries on the system, thread-safe and non-thread safe. Multi-threaded
libraries on AIX follow a different naming convention, Usually the multi-threaded library names are
followed with "_r". For example, libc.a is single threaded whereas libc_r.a is multi-threaded.

To make your multi-threaded application run on AIX, you must ensure that you do not have a "system
library path" in your LIBPATH environment variable when you run the application. The appropriate
libraries (threaded or non-threaded) are automatically picked up at runtime. An application usually
crashes when you build your application for multi-threaded operation but don't point to the thread-safe
version of the system libraries. For example, LIBPATH can be simply set as:

LIBPATH=$HOME/<Xerces>/lib

Where <Xerces> points to the directory where the Xerces application resides.

If, for any reason unrelated to Xerces, you need to keep a "system library path" in your LIBPATH
environment variable, you must make sure that you have placed the thread-safe path before you specify
the normal system path. For example, you must place /lib/threads before /lib in your LIBPATH variable.
That is to say your LIBPATH may look like this:

export LIBPATH=$HOME/<Xerces>/lib:/usr/lib/threads:/usr/lib

Where /usr/lib is where your system libraries are.

I cannot run the sample applications. What is wrong?
In order to run an application built using Xerces you must set up your path and library search path
properly. In the stand-alone version from Apache, you must have the Xerces-C++ runtime library
available from your path settings. On Windows this library is called xerces-c_1_6_0.dll which
must be available from your PATH settings. (Note that now there are separate debug and release dlls for
Windows. If the release dll is named xerces-c_1_6_0.dll then the debug dll is named
xerces-c_1_6_0d.dll). On UNIX platforms the library is called libxerces-c1_6_0.so (or
.a or .sl) which must be available from your LD_LIBRARY_PATH (or LIBPATH or SHLIB_PATH)
environment variable.

Thus, if you installed your binaries under $HOME/fastxmlparser, you need to point your library
path to that directory.

export LIBPATH=$LIBPATH:$HOME/fastxmlparser/lib # (AIX)

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/fastxmlparser/lib # (Solaris,

Linux)

export SHLIB_PATH=$SHLIB_PATH:$HOME/fastxmlparser/lib # (HP-UX)

If you are using the enhanced version of this parser from IBM, you will need to put in two additional
DLLs. In the Windows build these are icuuc.dll and icudata.dll which must be available from
your PATH settings. On UNIX, these libraries are called libicuuc.so and libicudata.so (or
.sl for HP-UX or .a for AIX) which must be available from your library search path.

I just built my own application using the Xerces-C++ parser. Why does it crash?
In order to work with the Xerces-C++ parser, you have to first initialize the XML subsystem. The most
common mistake is to forget this initialization. Before you make any calls to Xerces-C++ APIs, you must
call XMLPlatformUtils::Initialize():

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 62-

http://xml.apache.org/xerces-c/bug-report.html


try {

XMLPlatformUtils::Initialize();

}

catch (const XMLException& toCatch) {

// Do your failure processing here

}

This initializes the Xerces system and sets its internal variables. Note that you must the include
util/PlatformUtils.hpp file for this to work.

Is Xerces-C++ thread-safe?
This is not a question that has a simple yes/no answer. Here are the rules for using Xerces-C++ in a
multi-threaded environment:

Within an address space, an instance of the parser may be used without restriction from a single thread, or
an instance of the parser can be accessed from multiple threads, provided the application guarantees that
only one thread has entered a method of the parser at any one time.

When two or more parser instances exist in a process, the instances can be used concurrently, without
external synchronization. That is, in an application containing two parsers and two threads, one parser can
be running within the first thread concurrently with the second parser running within the second thread.

The same rules apply to Xerces-C++ DOM documents. Multiple document instances may be
concurrently accessed from different threads, but any given document instance can only be accessed by
one thread at a time.

DOMStrings allow multiple concurrent readers. All DOMString const methods are thread safe, and can
be concurrently entered by multiple threads. Non-const DOMString methods, such as appendData(),
are not thread safe and the application must guarantee that no other methods (including const methods)
are executed concurrently with them.

The application also needs to guarantee that only one thread has entered either the method
XMLPlatformUtils::Initialize() or the method XMLPlatformUtils::Terminate() at any one time.

The libs/dll's I downloaded keep me from using the debugger in VC6.0. I am using the 'D', debug
versions of them. "no symbolic information found" is what it says. Do I have to compile everything
from source to make it work?
Unless you have the .pdb files, all you are getting with the debug library is that it uses the debug heap
manager, so that you can compile your stuff in debug mode and not be dangerous. If you want full
symbolic info for the Xerces-C++ library, you'll need the .pdb files, and to get those, you'll need to
rebuild the Xerces-C++ library.

"First-chance exception in DOMPrint.exe (KERNEL32.DLL): 0xE06D7363: Microsoft C++
Exception." I am always getting this message when I am using the parser. My programs are
terminating abnormally. Even the samples are giving this exception. I am using Visual C++ 6.0 with
latest service pack installed.
Xerces-C++ uses C++ exceptions internally, as part of its normal operation. By default, the MSVC
debugger will stop on each of these with the "First-chance exception ..." message.

To stop this from happening do this:

· start debugging (so the debug menu appears)
· from the debug menu select "Exceptions"
· from the box that opens select "Microsoft C++ Exception" and set it to "Stop if not handled" instead

of "stop always".

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 63-



You'll still land in the debugger if your program is terminating abnormally, but it will be at your problem,
not from the internal Xerces-C++ exceptions.

I am seeing memory leaks in Xerces-C++. Are they real?
The Xerces-C++ library allocates and caches some commonly reused items. The storage for these may be
reported as memory leaks by some heap analysis tools; to avoid the problem, call the function
XMLPlatformUtils::Terminate() before your application exits. This will free all memory that
was being held by the library.

For most applications, the use of Terminate() is optional. The system will recover all memory when
the application process shuts down. The exception to this is the use of Xerces-C++ from DLLs that will
be repeatedly loaded and unloaded from within the same process. To avoid memory leaks with this kind
of use, Terminate() must be called before unloading the Xerces-C++ library

To ensure all the memory held by the parser are freed, the number of XMLPlatformUtils::Terminate()
calls should match the number of XMLPlatformUtils::Initialize() calls.

Is there a facility in Xerces-C++ to validate the data contained in a DOM tree? That is, without saving
and re-parsing the source document?
No. This is a frequently requested feature, but at this time it is not possible to feed XML data from the
DOM directly back to the DTD validator. The best option for now is to generate XML source from the
DOM and feed that back into the parser.

Can I use Xerces to perform "write validation" (which is having an appropriate DTD and being able to
add elements to the DOM whilst validating against the DTD)? Is there a function that I have totally
missed that creates an XML file from a DTD, (obviously with the values missing, a skeleton, as it
were.)
The answers are: "No" and "No." Write Validation is a commonly requested feature, but Xerces-C++
does not have it yet.

The best you can do for now is to create the DOM document, write it back as XML and re-parse it.

Why does my multi-threaded application crash on Solaris?
The problem appears because the throw call on Solaris 2.6 is not multi-thread safe. Sun Microsystems
provides a patch to solve this problem. To get the latest patch for solving this problem, go to
SunSolve.sun.com [36] and get the appropriate patch for your operating system. For Intel machines
running Solaris, you need to get Patch ID 104678. For SPARC machines you need to get Patch ID
#105591.

Why does my application gives unresolved linking errors on Solaris?
On Solaris there are a few things that need to be done before you execute your application using
Xerces-C++. In case you're using the binary build of Xerces-C++ make sure that the OS and compiler
are the same version as the ones used to build the binary. Different OS and compiler versions might cause
unresolved linking problems or compilation errors. If the versions are different, rebuild the Xerces-C++
library on your system before building your application. If you're using ICU (which is packaged with
XML4C) you need to rebuild the compatible version of ICU first.

Also check that the library path is set properly and that the correct versions of gmake and autoconf
are on your system.

Why do I get Internal Compiler Error when compiling Xerces-C++ for a 64bit target with gcc?
This is a compiler problem. Try turning off optimization to bypass the problem.

How are entity reference nodes handled in DOM?

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 64-

http://sunsolve.sun.com


If you are using the native DOM classes, the function setExpandEntityReferences controls how
entities appear in the DOM tree. When setExpandEntityReferences is set to false (the default), an
occurrence of an entity reference in the XML document will be represented by a subtree with an
EntityReference node at the root whose children represent the entity expansion. Entity expansion will be a
DOM tree representing the structure of the entity expansion, not a text node containing the entity
expansion as text.

If setExpandEntityReferences is true, an entity reference in the XML document is represented by only the
nodes that represent the entity expansion. The DOM tree will not contain any entityReference nodes.

What kinds of URLs are currently supported in Xerces-C++?
The XMLURL class provides for limited URL support. It understands the file://, http://, and
ftp:// URL types, and is capable or parsing them into their constituent components, and normalizing
them. It also supports the commonly required action of conglomerating a base and relative URL into a
single URL. In other words, it performs the limited set of functions required by an XML parser.

Another thing that URLs commonly do are to create an input stream that provides access to the entity
referenced. The parser, as shipped, only supports this functionality on URLs in the form file:/// and
file://localhost/, i.e. only when the URL refers to a local file.

You may enable support for HTTP and FTP URLs by implementing and installing a NetAccessor object.
When a NetAccessor object is installed, the URL class will use it to create input streams for the remote
entities referred to by such URLs.

How can I add support for URLs with HTTP/FTP protocols?
Support for the http: protocol is now included by default on all platforms.

To address the need to make remote connections to resources specified using additional protocols, ftp for
example, Xerces-C++ provides the NetAccessor interface. The header file is
src/util/XMLNetAccessor.hpp. This interface allows you to plug in your own implementation
of URL networking code into the Xerces-C++ parser.

Can I use Xerces-C++ to parse HTML?
Yes, but only if the HTML follows the rules given in the XML specification [2] . Most HTML, however,
does not follow the XML rules, and will generate XML well-formedness errors.

I keep getting an error: "invalid UTF-8 character". What's wrong?
Most commonly, the XML encoding = declaration is either incorrect or missing. Without a
declaration, XML defaults to the use utf-8 character encoding, which is not compatible with the default
text file encoding on most systems.

The XML declaration should look something like this:

<?xml version="1.0" encoding="iso-8859-1"?>

Make sure to specify the encoding that is actually used by file. The encoding for "plain" text files depends
both on the operating system and the locale (country and language) in use.

Another common source of problems is that some characters are not allowed in XML documents,
according to the XML spec. Typical disallowed characters are control characters, even if you escape them
using the Character Reference form. See the XML spec [37] , sections 2.2 and 4.1 for details. If the parser
is generating an Invalid character (Unicode: 0x???) error, it is very likely that there's a
character in there that you can't see. You can generally use a UNIX command like "od -hc" to find it.

What encodings are supported by Xerces-C / XML4C?
Xerces-C has intrinsic support for ASCII, UTF-8, UTF-16 (Big/Small Endian), UCS4 (Big/Small

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 65-

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml#charsets
http://www.w3.org/TR/REC-xml#charsets


Endian), EBCDIC code pages IBM037 and IBM1140 encodings, ISO-8859-1 (aka Latin1) and
Windows-1252. This means that it can parse input XML files in these above mentioned encodings.

XML4C -- the version of Xerces-C available from IBM -- extends this set to include the encodings
listed in the table below.

Common Name Use this name in XML
8 bit Unicode UTF-8

ISO Latin 1 ISO-8859-1

ISO Latin 2 ISO-8859-2

ISO Latin 3 ISO-8859-3

ISO Latin 4 ISO-8859-4

ISO Latin Cyrillic ISO-8859-5

ISO Latin Arabic ISO-8859-6

ISO Latin Greek ISO-8859-7

ISO Latin Hebrew ISO-8859-8

ISO Latin 5 ISO-8859-9

EBCDIC US ebcdic-cp-us

EBCDIC with Euro symbol ibm1140

Chinese, PRC gb2312

Chinese, Big5 Big5

Cyrillic koi8-r

Japanese, Shift JIS Shift_JIS

Korean, Extended UNIX code euc-kr

Some implementations or ports of Xerces-C provide support for additional encodings. The exact set will
depend on the supplier of the parser and on the character set transcoding services in use.

What character encoding should I use when creating XML documents?
The best choice in most cases is either utf-8 or utf-16. Advantages of these encodings include:

· The best portability. These encodings are more widely supported by XML processors than any others,
meaning that your documents will have the best possible chance of being read correctly, no matter
where they end up.

· Full international character support. Both utf-8 and utf-16 cover the full Unicode character set, which
includes all of the characters from all major national, international and industry character sets.

· Efficient. utf-8 has the smaller storage requirements for documents that are primarily composed of of
characters from the Latin alphabet. utf-16 is more efficient for encoding Asian languages. But both
encodings cover all languages without loss.

The only drawback of utf-8 or utf-16 is that they are not the native text file format for most systems,
meaning that common text file editors and viewers can not be directly used.

A second choice of encoding would be any of the others listed in the table above. This works best when
the xml encoding is the same as the default system encoding on the machine where the XML document is
being prepared, because the document will then display correctly as a plain text file. For UNIX systems in
countries speaking Western European languages, the encoding will usually be iso-8859-1.

The versions of Xerces distributed by IBM, both C and Java (known respectively as XML4C and
XML4J), include all of the encodings listed in the above table, on all platforms.

A word of caution for Windows users: The default character set on Windows systems is windows-1252,

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 66-



not iso-8859-1. While Xerces-C++ does recognize this Windows encoding, it is a poor choice for
portable XML data because it is not widely recognized by other XML processing tools. If you are using a
Windows-based editing tool to generate XML, check which character set it generates, and make sure that
the resulting XML specifies the correct name in the encoding="..." declaration.

I find memory leaks in Xerces-C++. How do I eliminate it?
The "leaks" that are reported through a leak-detector or heap-analysis tools aren't really leaks in most
application, in that the memory usage does not grow over time as the XML parser is used and re-used.

What you are seeing as leaks are actually lazily evaluated data allocated into static variables. This data
gets released when the application ends. You can make a call to
XMLPlatformUtil::terminate() to release all the lazily allocated variables before you exit your
program.

To ensure all the memory held by the parser are freed, the number of XMLPlatformUtils::Terminate()
calls should match the number of XMLPlatformUtils::Initialize() calls.

Is EBCDIC supported?
Yes, Xerces-C++ supports EBCDIC. When creating EBCDIC encoded XML data, the preferred
encoding is ibm1140. Also supported is ibm037 (and its alternate name, ebcdic-cp-us); this encoding is
almost the same as ibm1140, but it lacks the Euro symbol.

These two encodings, ibm1140 and ibm037, are available on both Xerces-C and IBM XML4C, on all
platforms.

On IBM System 390, XML4C also supports two alternative forms, ibm037-s390 and ibm1140-s390.
These are similar to the base ibm037 and ibm1140 encodings, but with alternate mappings of the
EBCDIC new-line character, which allows them to appear as normal text files on System 390s. These
encodings are not supported on other platforms, and should not be used for portable data.

XML4C on System 390 and AS/400 also provides additional EBCDIC encodings, including those for the
character sets of different countries. The exact set supported will be platform dependent, and these
encodings are not recommended for portable XML data.

How to write out a DOM tree into an XML file?
This feature is not yet availabe in the parser. Take a look at the DOMPrint sample for an example on
parsing XML file, then writing it out back to the screen. You can use that code.

Is it OK to call the XMLPlatformUtils::Initialize/Terminate pair of routines multiple times in one
program?
Yes. Since Xerces-C++ Version 1.5.2., the code has been enhanced so that calling
XMLPlatformUtils::Initialize/Terminate pair of routines multiple times in one process is now allowed.

But the application needs to guarantee that only one thread has entered either the method
XMLPlatformUtils::Initialize() or the method XMLPlatformUtils::Terminate() at any one time.

If you are calling XMLPlatformUtils::Initialize() a number of times, and then follow with
XMLPlatformUtils::Terminate() the same number of times, only the first XMLPlatformUtils::Initialize()
will do the initialization, and only the last XMLPlatformUtils::Terminate() will clean up the memory. The
other calls are ignored.

To ensure all the memory held by the parser are freed, the number of XMLPlatformUtils::Terminate()
calls should match the number of XMLPlatformUtils::Initialize() calls.

Consider the following code snippets (for illustration simplicity the following sample code is not coded in
try/catch clause):

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 67-



// The XMLPlatformUtils::Initialize/Terminate calls are paired.

{

// Initialize the parser

XMLPlatformUtils::Initialize();

SAXParser parser;

parser.parse(xmlFile);

// Free all memory that was being held by the parser

XMLPlatformUtils::Terminate();

// Initialize the parser

XMLPlatformUtils::Initialize();

SAXParser parser;

parser.parse(xmlFile);

// Free all memory that was being held by the parser

XMLPlatformUtils::Terminate();

}

// calls XMLPlatformUtils::Initialize() three times

// then calls XMLPlatformUtils::Terminate() numerous times

{

// Initialize the parser

XMLPlatformUtils::Initialize();

// The next two calls are no-op

XMLPlatformUtils::Initialize();

XMLPlatformUtils::Initialize();

SAXParser parser;

parser.parse(xmlFile);

// The first two XMLPlatformUtils::Terminate() calls are no-op

XMLPlatformUtils::Terminate();

XMLPlatformUtils::Terminate();

// This third XMLPlatformUtils::Terminate() will free all memory that was

being held by the parser

XMLPlatformUtils::Terminate();

// This extra fourth XMLPlatformUtils::Terminate() call is no-op.

// However calling XMLPlatformUtils::Terminate() without a matching

XMLPlatformUtils::Initialize()

// is dangerous and should be avoided.

XMLPlatformUtils::Terminate();

}

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 68-



Why does deleting a transcoded string result in assertion on windows?
Both your application program and the Xerces DLL must use the same *DLL* version of the runtime
library. If either statically links to the runtime library, the problem will still occur. For example, for a
Win32/VC6 build, the runtime library build setting MUST be "Multithreaded DLL" for release builds and
"Debug Multithreaded DLL" for debug builds.

How do I transcode to/from something besides the local code page?
XMLString::transcode() will transcode from XMLCh to the local code page, and other APIs which take a
char* assume that the source text is in the local code page. If this is not true, you must transcode the text
yourself. You can do this using local transcoding support on your OS, such as Iconv on Unix or or IBM's
ICU package. However, if your transcoding needs are simple, you can achieve some better portability by
using the Xerces parser's transcoder wrappers. You get a transcoder like this:

· 1. Call XMLPlatformUtils::fgTransServer- >MakeNewTranscoderFor() and provide the name of the
encoding you wish to create a transcoder for. This will return a transcoder to you, which you own and
must delete when you are through with it. NOTE: You must provide a maximum block size that you
will pass to the transcoder at one time, and you must blocks of characters of this count or smaller
when you do your transcoding. The reason for this is that this is really an internal API and is used by
the parser itself to do transcoding. The parser always does transcoding in known block sizes, and this
allows transcoders to be much more efficient for internal use since it knows the max size it will ever
have to deal with and can set itself up for that internally. In general, you should stick to block sizes in
the 4 to 64K range.

· 2. The returned transcoder is something derived from XMLTranscoder, so they are all returned to you
via that interface.

· 3. This object is really just a wrapper around the underlying transcoding system actually in use by
your version of Xerces, and does whatever is necessary to handle differences between the XMLCh
representation and the representation uesd by that underying transocding system.

· 4. The transcoder object has two primary APIs, transcodeFrom() and transcodeTo(). These transcode
between the XMLCh format and the encoding you indicated.

· 5. These APIs will transcode as much of the source data as will fit into the outgoing buffer you
provide. They will tell you how much of the source they ate and how much of the target they filled.
You can use this information to continue the process until all source is consumed.

· 6. char* data is always dealt with in terms of bytes, and XMLCh data is always dealt with in terms of
characters. Don't mix up which you are dealing with or you will not get the correct results, since many
encodings don't have a one to one relationship of characters to bytes.

· 7. When transcoding from XMLCh to the target encoding, the transcodeTo() method provides an
'unrepresentable flag' parameter, which tells the transcoder how to deal with an XMLCh code point
that cannot be converted legally to the target encoding, which can easily happen since XMLCh is
Unicode and can represent thousands of code points. The options are to use a default replacement
character (which the underlying transcoding service will choose, and which is guaranteed to be legal
for the target encoding), or to throw an exception.

Why DOM_Node::cloneNode() does not clone the pointer assigned to a DOM_Node via
DOM_Node::setUserData()?
There are several possible options for how cloneNode should handle userData:

· 1) Copy the pointer. May be a Very Bad Idea if you really wanted the data associated with a particular
node object.

· 2) Clone the object being pointed at. Maybe a Very Bad Idea if that object, in turn, wasn't designed to
be cloned at this time.

· 3) A complex call-back API has been proposed which would allow the userData object to tell the

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 69-



DOM which of these three options should be taken, but that would require that only objects
implementing that API be registered as userData. That doesn't seem to be a good option.

· 4) Do nothing. This is by far the lowest-overhead and safest choice. And since cloneNode is a DOM
operation, and userData is _not_ defined by the standard DOM API, one can make a very strong case
for this being the "most correct" option.

We chose (4), very deliberately. If you want one of the others, you can implement it by creating your own
wrapper operation for cloneNode() and calling that.

NOTE that userData should be considered a nonportable, experimental feature of the Xerces DOM. It
may evaporate entirely in favor of a scheme based on the DOM Level 3 "node key" mechanism, when
that becomes officially available.

Why does my application crash or hang if XMLPlatformUtils::Initialize()/Terminate() pair more than
once
Please make sure you are using Xerces-C++ Version 1.5.2 or up.

Please make sure the XMLPlatformUtils::Terminate() is the last Xerces-C++ function to be called in
your program. NO explicit nor implicit Xerces-C++ destructor (those local data that are destructed when
going out of scope) should be called after XMLPlatformUtils::Terminate().

Consider the following code snippets which is incorrect (for illustration simplicity the following sample
code is not coded in try/catch clause):

1: {

2: XMLPlatformUtils::Initialize();

3: DOMString c("hello");

4: XMLPlatformUtils::Terminate();

5: }

The DOMString object "c" is destructed when going out of scope at line 5 before the closing brace. As a
result, DOMString destructor is called at line 5 after XMLPlatformUtils::Terminate() which is wrong.
Correct code should be:

1: {

2: XMLPlatformUtils::Initialize();

2a: {

3: DOMString c("hello");

3a: }

4: XMLPlatformUtils::Terminate();

5: }

The extra pair of braces (line 2a and 3a) ensures that all implicit destructors are called before terminating
Xerces-C++.

In addition the application also needs to guarantee that only one thread has entered either the method
XMLPlatformUtils::Initialize() or the method XMLPlatformUtils::Terminate() at any one time.

Why does SAX2XMLReader::setProperty not work?
The function SAX2XMLReader::setProperty(const XMLCh* const name, void*
value) takes a void pointer for the property value. Application is required to initialize this void pointer
to a correct type. See SAX2 Programming Guide to learn exactly what type of property value that each

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 70-



property expects for processing. Passing a void pointer that was initialized with a wrong type will lead to
unexpected result.

Why does SAX2XMLReader::setProperty not work?
The function void* SAX2XMLReader::getProperty(const XMLCh* const name)
returns a void pointer for the property value. See SAX2 Programming Guide to learn exactly what type of
object each property returns.

The parser owns the returned pointer, and the memory allocated for the returned pointer will be destroyed
when the parser is deleted. To ensure assessiblity of the returned information after the parser is deleted,
callers need to copy and store the returned information somewhere else; other you may get unexpected
result. Since the returned pointer is a generic void pointer, see SAX2 Programming Guide to learn exactly
what type of object each property returns for replication.

Why do I get compilation error when compiling Xerces-C++ on FreeBSD with native transcoder?
Please make sure you configure with "-t IconvFBSD" to use FreeBSD specific native transcoder.

Or you can use ICU transcoder (configure with -t icu) instead of the native transcoder.

Why do I get link error saying icudata library not found when building with ICU?
There is a bug in the Makefile of ICU 1.7, 1.8 and 1.8.1. The link created during ICU installation in
$ICUROOT is, for example,

icudata.so@ - > icudt17l.so

instead of

libicudata.so@ - > libicudt17l.so

Therefore the -licudata doesn't work. To bypass the problem, please manually create the following link:

libicudata.so@ - > libicudt17l.so

This problem has been fixed in ICU 2.0.

Other Xerces-C++ Questions
How do I determine the version of Xerces-C++ I am using?
The version string for Xerces-C++ is in one of the header files. Look inside the file
src/util/XercesDefs.hpp or, in the binary distribution, look in
include/utils/XercesDefs.hpp. Search for the static variable gXercesFullVersionStr
and look at its definition. (It is usually a string like "1_4_0" or something similar). This is the version of
Xerces-C++ you are using.

If you don't have the header files, you have to find the version information from the shared library name.
On Windows NT/95/98 right click on the DLL name xerces-c_1_6_0.dll in the bin directory and look up
properties. The version information may be found on the Version tab.

On AIX, just look for the library name libxerces-c1_6_0.a (or libxerces-c1_6_0.so on Solaris/Linux and
libxerces-c1_6_0.sl on HP-UX). The version number is coded in the name of the library.

I can't use C++. Do you have a Java version?
Yes. The Xerces family of products also has a Java version. More information is available at:
http://xml.apache.org/xerces-j/index.html [38]

Where can I find additional information on XML?
The Web. http://www.oasis-open.org/cover/xml.html [39] is an excellent place to start, with links to
overviews, FAQs, specifications, industry news, applications and other software, related standards, etc.

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 71-

http://xml.apache.org/xerces-j/index.html
http://www.oasis-open.org/cover/xml.html


Is there any kind of support available for Xerces-C++?
Xerces-C++ comes with no formal support.

Every volunteer project obtains its strength from the people involved in it. Mailing lists provide a simple
and effective communication mechanism. You are welcome to join any of these mailing lists (or all of
them if you wish). You can choose to lurk, or to actively participate. It's up to you. Before you join these
lists, you should look over the resources in the Reference Library section

Instructions for subscribing are at http://xml.apache.org/mail.html. Archives of the lists are available from
http://archive.covalent.net

I found a defect -- how do I report it?
See Bug Reporting.

I have a patch to the Xerces-C++ source code. How do I submit it?
Mail it to the Xerces-C++ mailing list [15] at Apache. (You must be a subscriber to post to this list. But if
you're considering changing the code you really want to be a subscriber, in any case.) There are no set
rules about how or what must be included -- if you've fixed a problem or enhanced the code in some
way, we really would like to get your changes, and will take them in any reasonable form.

Generally a diff of the changed files against the current sources from CVS is good, along with some kind
of description of what the change is. (Working with the current sources is important!)

Where can I get predefined character entity definitions??
Download http://www.w3.org/TR/xhtml1/xhtml1.zip. [40]

Chapter 7 - Frequently Asked Questions Xerces-C++ Documentation

- 72-

mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
mailto:xerces-c-dev@xml.apache.org 
http://www.w3.org/TR/xhtml1/xhtml1.zip


8
Programming Guide

This page has sections on the following topics:

SAX1 Programming Guide

Constructing a parser
In order to use Xerces-C++ to parse XML files, you will need to create an instance of the SAXParser
class. The example below shows the code you need in order to create an instance of SAXParser. The
DocumentHandler and ErrorHandler instances required by the SAX API are provided using the
HandlerBase class supplied with Xerces-C++.

int main (int argc, char* args[]) {

try {

XMLPlatformUtils::Initialize();

}

catch (const XMLException& toCatch) {

cout << "Error during initialization! :\n"

<< DOMString(toCatch.getMessage()) << "\n";

return 1;

}

char* xmlFile = "x1.xml";

SAXParser* parser = new SAXParser();

parser->setDoValidation(true); // optional.

parser->setDoNamespaces(true); // optional

DocumentHandler* docHandler = new HandlerBase();

ErrorHandler* errHandler = (ErrorHandler*) docHandler;

parser->setDocumentHandler(docHandler);

parser->setErrorHandler(errHandler);

try {

parser->parse(xmlFile);

}

catch (const XMLException& toCatch) {

cout << "Exception message is: \n"

<< DOMString(toCatch.getMessage()) << "\n" ;

return -1;

}

- 73-



catch (const SAXParseException& toCatch) {

cout << "Exception message is: \n"

<< DOMString(toCatch.getMessage()) << "\n" ;

return -1;

}

catch (...) {

cout << "Unexpected Exception \n" ;

return -1;

}

}

Using the SAX API
The SAX API for XML parsers was originally developed for Java. Please be aware that there is no
standard SAX API for C++, and that use of the Xerces-C++ SAX API does not guarantee client code
compatibility with other C++ XML parsers.

The SAX API presents a callback based API to the parser. An application that uses SAX provides an
instance of a handler class to the parser. When the parser detects XML constructs, it calls the methods of
the handler class, passing them information about the construct that was detected. The most commonly
used handler classes are DocumentHandler which is called when XML constructs are recognized, and
ErrorHandler which is called when an error occurs. The header files for the various SAX handler classes
are in '<xerces-c1_6_0 >/include/sax'

As a convenience, Xerces-C++ provides the class HandlerBase, which is a single class which is publicly
derived from all the Handler classes. HandlerBase's default implementation of the handler callback
methods is to do nothing. A convenient way to get started with Xerces-C++ is to derive your own handler
class from HandlerBase and override just those methods in HandlerBase which you are interested in
customizing. This simple example shows how to create a handler which will print element names, and
print fatal error messages. The source code for the sample applications show additional examples of how
to write handler classes.

This is the header file MySAXHandler.hpp:

#include <sax/HandlerBase.hpp>

class MySAXHandler : public HandlerBase {

public:

void startElement(const XMLCh* const, AttributeList&);

void fatalError(const SAXParseException&);

};

This is the implementation file MySAXHandler.cpp:

#include "MySAXHandler.hpp"

#include <iostream.h>

MySAXHandler::MySAXHandler()

{

}

MySAXHandler::startElement(const XMLCh* const name,

AttributeList& attributes)

{

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 74-



// transcode() is an user application defined function which

// converts unicode strings to usual 'char *'. Look at

// the sample program SAXCount for an example implementation.

cout << "I saw element: " << transcode(name) << endl;

}

MySAXHandler::fatalError(const SAXParseException& exception)

{

cout << "Fatal Error: " << transcode(exception.getMessage())

<< " at line: " << exception.getLineNumber()

<< endl;

}

The XMLCh and AttributeList types are supplied by Xerces-C++ and are documented in the include
files. Examples of their usage appear in the source code to the sample applications.

SAX2 Programming Guide

Constructing an XML Reader
In order to use Xerces-C++ to parse XML files, you will need to create an instance of the
SAX2XMLReader class. The example below shows the code you need in order to create an instance of
SAX2XMLReader. The ContentHandler and ErrorHandler instances required by the SAX API are
provided using the DefaultHandler class supplied with Xerces-C++.

int main (int argc, char* args[]) {

try {

XMLPlatformUtils::Initialize();

}

catch (const XMLException& toCatch) {

cout << "Error during initialization! :\n"

<< DOMString(toCatch.getMessage()) << "\n";

return 1;

}

char* xmlFile = "x1.xml";

SAX2XMLReader* parser = XMLReaderFactory::createXMLReader();

parser->setFeature(XMLString::transcode("http://xml.org/sax/features/validation",

true) // optional

parser->setFeature(XMLString::transcode("http://xml.org/sax/features/namespaces",

true) // optional

ContentHandler* contentHandler = new DefaultHandler();

ErrorHandler* errHandler = (ErrorHandler*) contentHandler;

parser->setContentHandler(contentHandler);

parser->setErrorHandler(errHandler);

try {

parser->parse(xmlFile);

}

catch (const XMLException& toCatch) {

cout << "Exception message is: \n"

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 75-



<< DOMString(toCatch.getMessage()) << "\n" ;

return -1;

}

catch (const SAXParseException& toCatch) {

cout << "Exception message is: \n"

<< DOMString(toCatch.getMessage()) << "\n" ;

return -1;

}

catch (...) {

cout << "Unexpected Exception \n" ;

return -1;

}

}

Using the SAX2 API
The SAX2 API for XML parsers was originally developed for Java. Please be aware that there is no
standard SAX2 API for C++, and that use of the Xerces-C++ SAX2 API does not guarantee client code
compatibility with other C++ XML parsers.

The SAX2 API presents a callback based API to the parser. An application that uses SAX2 provides an
instance of a handler class to the parser. When the parser detects XML constructs, it calls the methods of
the handler class, passing them information about the construct that was detected. The most commonly
used handler classes are ContentHandler which is called when XML constructs are recognized, and
ErrorHandler which is called when an error occurs. The header files for the various SAX2 handler classes
are in '<xerces-c1_6_0 >/include/sax2'

As a convenience, Xerces-C++ provides the class DefaultHandler, which is a single class which is
publicly derived from all the Handler classes. DefaultHandler's default implementation of the handler
callback methods is to do nothing. A convenient way to get started with Xerces-C++ is to derive your
own handler class from DefaultHandler and override just those methods in HandlerBase which you are
interested in customizing. This simple example shows how to create a handler which will print element
names, and print fatal error messages. The source code for the sample applications show additional
examples of how to write handler classes.

This is the header file MySAX2Handler.hpp:

#include <sax2/DefaultHandler.hpp>

class MySAX2Handler : public DefaultHandler {

public:

void startElement(

const XMLCh* const uri,

const XMLCh* const localname,

const XMLCh* const qname,

const Attributes& attrs

);

void fatalError(const SAXParseException&);

};

This is the implementation file MySAX2Handler.cpp:

#include "MySAX2Handler.hpp"

#include <iostream.h>

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 76-



MySAX2Handler::MySAX2Handler()

{

}

MySAX2Handler::startElement(const XMLCh* const uri,

const XMLCh* const localname,

const XMLCh* const qname,

const Attributes& attrs)

{

// transcode() is an user application defined function which

// converts unicode strings to usual 'char *'. Look at

// the sample program SAX2Count for an example implementation.

cout << "I saw element: " << transcode(qname) << endl;

}

MySAX2Handler::fatalError(const SAXParseException& exception)

{

cout << "Fatal Error: " << transcode(exception.getMessage())

<< " at line: " << exception.getLineNumber()

<< endl;

}

The XMLCh and Attributes types are supplied by Xerces-C++ and are documented in the include files.
Examples of their usage appear in the source code to the sample applications.

Xerces SAX2 Supported Features
The behavior of the SAX2XMLReader is dependant on the values of the following features. All of the
features below can be set using the function SAX2XMLReader::setFeature(cons XMLCh*
const, const bool). And can be queried using the function bool
SAX2XMLReader::getFeature(const XMLCh* const).

None of these features can be modified in the middle of a parse, or an exception will be thrown.

http://xml.org/sax/features/namespaces
true: Perform Namespace processing (default)
false: Optionally do not perform Namespace

processing

http://xml.org/sax/features/namespace-prefixes
true: Report the orignal prefixed names and

attributes used for Namespace declarations
(default)

false: Do not report attributes used for Namespace
declarations, and optionally do not report
original prefixed names.

http://xml.org/sax/features/validation
true: Report all validation errors. (default)
false: Do not report validation errors.

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 77-



http://apache.org/xml/features/validation/dynamic
true: The parser will validate the document only if

a grammar is specified.
(http://xml.org/sax/features/validation must
be true)

false: Validation is determined by the state of the
http://xml.org/sax/features/validation feature
(default)

http://apache.org/xml/features/validation/schema
true: Enable the parser's schema support.

(default)
false: Disable the parser's schema support.

http://apache.org/xml/features/validation/schema-full-checking
true: Enable full schema constraint checking,

including checking which may be
time-consuming or memory intensive.
Currently, particle unique attribution
constraint checking and particle derivation
resriction checking are controlled by this
option.

false: Disable full schema constraint checking
(default).

http://apache.org/xml/features/validation/reuse-grammar
true: The parser will reuse grammar information

from previous parses in subsequent parses.
false: The parser will not reuse any grammar

information. (default)

http://apache.org/xml/features/validation/reuse-validator
(deprecated)
Please use
http://apache.org/xml/features/validation/reuse-grammar
true: The parser will reuse grammar information

from previous parses in subsequent parses.
false: The parser will not reuse any grammar

information. (default)

Xerces SAX2 Supported Properties
The behavior of the SAX2XMLReader is dependant on the values of the following properties. All of the
properties below can be set using the function SAX2XMLReader::setProperty(const XMLCh*
const, void*). It takes a void pointer as the property value. Application is required to initialize this
void pointer to a correct type. Please check the column "Value Type" below to learn exactly what type of
property value each property expects for processing. Passing a void pointer that was initialized with a
wrong type will lead to unexpected result. If the same property is set more than once, the last one takes
effect.

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 78-



Property values can be queried using the function void* SAX2XMLReader::getFeature(const
XMLCh* const). The parser owns the returned pointer, and the memory allocated for the returned
pointer will be destroyed when the parser is deleted. To ensure assessiblity of the returned information
after the parser is deleted, callers need to copy and store the returned information somewhere else. Since
the returned pointer is a generic void pointer, check the column "Value Type" below to learn exactly what
type of object each property returns for replication.

None of these properties can be modified in the middle of a parse, or an exception will be thrown.

http://apache.org/xml/properties/schema/external-schemaLocation
Description The XML Schema Recommendation

explicitly states that the inclusion of
schemaLocation/
noNamespaceSchemaLocation attributes in
the instance document is only a hint; it does
not mandate that these attributes must be
used to locate schemas. Similar situation
happens to <import> element in schema
documents. This property allows the user to
specify a list of schemas to use. If the
targetNamespace of a schema specified
using this method matches the
targetNamespace of a schema occurring in
the instance document in schemaLocation
attribute, or if the targetNamespace matches
the namespace attribute of <import>
element, the schema specified by the user
using this property will be used (i.e., the
schemaLocation attribute in the instance
document or on the <import> element will be
effectively ignored).

Value The syntax is the same as for
schemaLocation attributes in instance
documents: e.g, "http://www.example.com
file_name.xsd". The user can specify more
than one XML Schema in the list.

Value Type XMLCh*

http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation
Description The XML Schema Recommendation

explicitly states that the inclusion of
schemaLocation/
noNamespaceSchemaLocation attributes in
the instance document is only a hint; it does
not mandate that these attributes must be
used to locate schemas. This property allows
the user to specify the no target namespace
XML Schema Location externally. If
specified, the instance document's
noNamespaceSchemaLocation attribute will
be effectively ignored.

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 79-



Value The syntax is the same as for the
noNamespaceSchemaLocation attribute that
may occur in an instance document:
e.g."file_name.xsd".

Value Type XMLCh*

DOM Programming Guide

Java and C++ DOM comparisons
The C++ DOM API is very similar in design and use, to the Java DOM API bindings. As a consequence,
conversion of existing Java code that makes use of the DOM to C++ is a straight forward process.

This section outlines the differences between Java and C++ bindings.

Accessing the API from application code

// C++

#include <dom/DOM.hpp>

// Java

import org.w3c.dom.*

The header file <dom/DOM.hpp> includes all the individual headers for the DOM API classes.

Class Names
The C++ class names are prefixed with "DOM_". The intent is to prevent conflicts between DOM class
names and other names that may already be in use by an application or other libraries that a DOM based
application must link with.

The use of C++ namespaces would also have solved this conflict problem, but for the fact that many
compilers do not yet support them.

DOM_Document myDocument; // C++

DOM_Node aNode;

DOM_Text someText;

Document myDocument; // Java

Node aNode;

Text someText;

If you wish to use the Java class names in C++, then you need to typedef them in C++. This is not
advisable for the general case - conflicts really do occur - but can be very useful when converting a body
of existing Java code to C++.

typedef DOM_Document Document;

typedef DOM_Node Node;

Document myDocument; // Now C++ usage is

// indistinguishable from Java

Node aNode;

Objects and Memory Management
The C++ DOM implementation uses automatic memory management, implemented using reference

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 80-



counting. As a result, the C++ code for most DOM operations is very similar to the equivalent Java code,
right down to the use of factory methods in the DOM document class for nearly all object creation, and
the lack of any explicit object deletion.

Consider the following code snippets

// This is C++

DOM_Node aNode;

aNode = someDocument.createElement("ElementName");

DOM_Node docRootNode = someDoc.getDocumentElement();

docRootNode.AppendChild(aNode);

// This is Java

Node aNode;

aNode = someDocument.createElement("ElementName");

Node docRootNode = someDoc.getDocumentElement();

docRootNode.AppendChild(aNode);

The Java and the C++ are identical on the surface, except for the class names, and this similarity remains
true for most DOM code.

However, Java and C++ handle objects in somewhat different ways, making it important to understand a
little bit of what is going on beneath the surface.

In Java, the variable aNode is an object reference , essentially a pointer. It is initially == null, and
references an object only after the assignment statement in the second line of the code.

In C++ the variable aNode is, from the C++ language's perspective, an actual live object. It is
constructed when the first line of the code executes, and DOM_Node::operator = () executes at the second
line. The C++ class DOM_Node essentially a form of a smart-pointer; it implements much of the
behavior of a Java Object Reference variable, and delegates the DOM behaviors to an implementation
class that lives behind the scenes.

Key points to remember when using the C++ DOM classes:
· Create them as local variables, or as member variables of some other class. Never "new" a DOM

object into the heap or make an ordinary C pointer variable to one, as this will greatly confuse the
automatic memory management.

· The "real" DOM objects - nodes, attributes, CData sections, whatever, do live on the heap, are
created with the create... methods on class DOM_Document. DOM_Node and the other DOM classes
serve as reference variables to the underlying heap objects.

· The visible DOM classes may be freely copied (assigned), passed as parameters to functions, or
returned by value from functions.

· Memory management of the underlying DOM heap objects is automatic, implemented by means of
reference counting. So long as some part of a document can be reached, directly or indirectly, via
reference variables that are still alive in the application program, the corresponding document data
will stay alive in the heap. When all possible paths of access have been closed off (all of the
application's DOM objects have gone out of scope) the heap data itself will be automatically deleted.

· There are restrictions on the ability to subclass the DOM classes.

DOMString
Class DOMString provides the mechanism for passing string data to and from the DOM API. DOMString
is not intended to be a completely general string class, but rather to meet the specific needs of the DOM
API.

The design derives from two primary sources: from the DOM's CharacterData interface and from class

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 81-



java.lang.string.

Main features are:
· It stores Unicode text.
· Automatic memory management, using reference counting.
· DOMStrings are mutable - characters can be inserted, deleted or appended.

When a string is passed into a method of the DOM, when setting the value of a Node, for example, the
string is cloned so that any subsequent alteration or reuse of the string by the application will not alter the
document contents. Similarly, when strings from the document are returned to an application via the
DOM API, the string is cloned so that the document can not be inadvertently altered by subsequent edits
to the string.

Note: The ICU classes are a more general solution to UNICODE character handling for
C++ applications. ICU is an Open Source Unicode library, available at the IBM
DeveloperWorks website [11] .

Equality Testing
The DOMString equality operators (and all of the rest of the DOM class conventions) are modeled after
the Java equivalents. The equals() method compares the content of the string, while the == operator
checks whether the string reference variables (the application program variables) refer to the same
underlying string in memory. This is also true of DOM_Node, DOM_Element, etc., in that operator ==
tells whether the variables in the application are referring to the same actual node or not. It's all very
Java-like

· bool operator == () is true if the DOMString variables refer to the same underlying storage.
· bool equals() is true if the strings contain the same characters.

Here is an example of how the equality operators work:

DOMString a = "Hello";

DOMString b = a;

DOMString c = a.clone();

if (b == a) // This is true

if (a == c) // This is false

if (a.equals(c)) // This is true

b = b + " World";

if (b == a) // Still true, and the string's

// value is "Hello World"

if (a.equals(c)) // false. a is "Hello World";

// c is still "Hello".

Downcasting
Application code sometimes must cast an object reference from DOM_Node to one of the classes
deriving from DOM_Node, DOM_Element, for example. The syntax for doing this in C++ is different
from that in Java.

// This is C++

DOM_Node aNode = someFunctionReturningNode();

DOM_Element el = (DOM_Element &) aNode;

// This is Java

Node aNode = someFunctionReturningNode();

Element el = (Element) aNode;

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 82-

http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/
http://oss.software.ibm.com/icu/


The C++ cast is not type-safe; the Java cast is checked for compatible types at runtime. If necessary, a
type-check can be made in C++ using the node type information:

// This is C++

DOM_Node aNode = someFunctionReturningNode();

DOM_Element el; // by default, el will == null.

if (anode.getNodeType() == DOM_Node::ELEMENT_NODE)

el = (DOM_Element &) aNode;

else

// aNode does not refer to an element.

// Do something to recover here.

Subclassing
The C++ DOM classes, DOM_Node, DOM_Attr, DOM_Document, etc., are not designed to be
subclassed by an application program.

As an alternative, the DOM_Node class provides a User Data field for use by applications as a hook for
extending nodes by referencing additional data or objects. See the API description for DOM_Node for
details.

Experimental IDOM Programming Guide
The experimental IDOM API is a new design of the C++ DOM API. Please note that this experimental
IDOM API is only a prototype and is subject to change.

Constructing a parser
In order to use Xerces-C++ to parse XML files using IDOM, you will need to create an instance of the
IDOMParser class. The example below shows the code you need in order to create an instance of the
IDOMParser.

int main (int argc, char* args[]) {

try {

XMLPlatformUtils::Initialize();

}

catch (const XMLException& toCatch) {

cout << "Error during initialization! :\n"

<< DOMString(toCatch.getMessage()) << "\n";

return 1;

}

char* xmlFile = "x1.xml";

IDOMParser* parser = new IDOMParser();

parser->setValidationScheme(IDOMParser::Val_Always); // optional.

parser->setDoNamespaces(true); // optional

ErrorHandler* errHandler = (ErrorHandler*) new HandlerBase();

parser->setErrorHandler(errHandler);

try {

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 83-



parser->parse(xmlFile);

}

catch (const XMLException& toCatch) {

cout << "Exception message is: \n"

<< DOMString(toCatch.getMessage()) << "\n" ;

return -1;

}

catch (const SAXParseException& toCatch) {

cout << "Exception message is: \n"

<< DOMString(toCatch.getMessage()) << "\n" ;

return -1;

}

catch (...) {

cout << "Unexpected Exception \n" ;

return -1;

}

return 0;

}

Comparision of C++ DOM and IDOM
This section outlines the differences between the C++ DOM and IDOM APIs.

Motivation behind new design
The performance of the C++ DOM has not been as good as it might be, especially for use in server style
applications. The DOM's reference counted automatic memory management has been the biggest time
consumer. The situation becomes worse when running multi-threaded applications.

The experimental C++ IDOM is a new alternative to the C++ DOM, and aims at meeting the following
requirements:

· Reduced memory footprint.
· Fast.
· Good scalability on multiprocessor systems.
· More C++ like and less Java like.

Class Names
The IDOM class names are prefixed with "IDOM_". The intent is to prevent conflicts between IDOM
class names and DOM class names that may already be in use by an application or other libraries that a
DOM based application must link with.

IDOM_Document* myDocument; // IDOM

IDOM_Node* aNode;

IDOM_Text* someText;

DOM_Document myDocument; // DOM

DOM_Node aNode;

DOM_Text someText;

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 84-



Objects Management
Applications would use normal C++ pointers to directly access the implementation objects for Nodes in
IDOM C++, while they would use object references in DOM C++.

Consider the following code snippets

// IDOM C++

IDOM_Node* aNode;

IDOM_Node* docRootNode;

aNode = someDocument->createElement("ElementName");

docRootNode = someDocument->getDocumentElement();

docRootNode->appendChild(aNode);

// DOM C++

DOM_Node aNode;

DOM_Node docRootNode;

aNode = someDocument.createElement("ElementName");

docRootNode = someDocument.getDocumentElement();

docRootNode.appendChild(aNode);

Memory Management
The C++ IDOM implementation no longer uses reference counting for automatic memory management.
The C++ IDOM uses an independent storage allocator per document. The storage for a DOM document is
associated with the document node object. The advantage here is that allocation would require no
synchronization in most cases (based on the the same threading model that we have now - one thread
active per document, but any number of documents running in parallel with separate threads).

The allocator does not support a delete operation at all - all allocated memory would persist for the life of
the document, and then the larger blocks would be returned to the system without separately deleting all
of the individual nodes and strings within the document.

The C++ DOM and IDOM are similar in the use of factory methods in the document class for all object
creation. They differ in the object deletion mechanism.

In C++ DOM, there is no explicit object deletion. The deallocation of memory is automatically taken care
of by the reference counting.

In C++ IDOM, there is an implict and explict object deletion.

Implicit Object Deletion
When parsing a document using an IDOMParser, all memory allocated for a DOM tree is associated to
the DOM document. And this storage will be automatically deleted when the parser instance is deleted
(implicit).

If you do multiple parse using the same IDOMParser instance, then multiple DOM documents will be
generated and saved in a vector pool. All these documents (and thus all the allocated memory) won't be
deleted until the parser instance is destroyed. If you want to release the memory back to the system but
don't want to destroy the IDOMParser instance at this moment, then you can call the method
IDOMParser::resetDocumentPool to reset the document vector pool, provided that you do not need access
to these documents anymore.

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 85-



Consider the following code snippets:

// C++ IDOM - implicit deletion

IDOMParser* parser = new IDOMParser();

parser->parse(xmlFile)

IDOM_Document *doc = parser->getDocument();

unsigned int i = 1000;

while (i > 0) {

parser->parse(xmlFile)

IDOM_Document* myDoc = parser->getDocument();

i--;

}

// all allocated memory associated with these 1001 DOM documents

// will be deleted implicitly when the parser instance is destroyed

delete parser;

// C++ IDOM - implicit deletion

// optionally release the memory

IDOMParser* parser = new IDOMParser();

unsigned int i = 1000;

while (i > 0) {

parser->parse(xmlFile)

IDOM_Document *doc = parser->getDocument();

i--;

}

// instead of waiting until the parser instance is destroyed,

// user can optionally choose to release the memory back to the system

// if does not need access to these 1000 parsed documents anymore.

parser->resetDocumentPool();

// now the parser has some fresh memory to work on for the following

// big loop

i = 1000;

while (i > 0) {

parser->parse(xmlFile)

IDOM_Document *doc = parser->getDocument();

i--;

}

delete parser;

Explicit Object Deletion
If user is manually building a DOM tree in memory using the document factory methods, then the user
needs to explicilty delete the document object to free all the allocated memory. It normally falls under the
following 3 scenarios:

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 86-



· If a user is manually creating a DOM document using the document implementation factory methods,
IDOM_DOMImplementation::getImplementation()- >createDocument, then the user needs to
explicilty delete the document object to free all allocated memory.

· If a user is creating a DocumentType object using the document implementation factory method,
IDOM_DOMImplementation::getImplementation()- >createDocumentType, then the user also needs
to explicilty delete the document type object to free the allocated memory.

· Special case: If a user is creating a DocumentType using the document implementation factory
method, and clone the node WITHOUT assigning a document owner to that documentType object,
then the cloned node also needs to be explicitly deleted.

Consider the following code snippets:

// C++ IDOM - explicit deletion

// use the document implementation factory method to create a document type and

a document

IDOM_DocumentType* myDocType;

IDOM_Document* myDocument;

IDOM_Node* root;

IDOM_Node* aNode;

myDocType =

createDocumentType(name, 0, 0);

myDocument = IDOM_DOMImplementation::getImplementation()->createDocument(0,

name, myDocType);

root = myDocument->getDocumentElement();

aNode = myDocument->createElement(anElementname);

root->appendChild(aNode);

// need to delete both myDocType and myDocument which are created through DOM

Implementation

delete myDocType;

delete myDocument;

// C++ IDOM - explicit deletion

// use the document implementation factory method to create a document

IDOM_DocumentType* myDocType;

IDOM_Document* myDocument;

IDOM_Node* root;

IDOM_Node* aNode;

myDocument = IDOM_DOMImplementation::getImplementation()->createDocument();

myDocType = myDocument->createDocumentType(name);

root = myDocument->createElement(name);

aNode = myDocument->createElement(anElementname);

myDocument->appendChild(myDocType);

myDocument->appendChild(root);

root->appendChild(aNode);

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 87-



// the myDocType is created through myDocument, not through Document

Implementation

// thus no need to delete myDocType

delete myDocument;

// C++ IDOM - explicit deletion

// manually build a DOM document

// clone the document type object which does not have an owner yet

IDOM_DocumentType* myDocType1;

IDOM_DocumentType* myDocType;

IDOM_Document* myDocument;

IDOM_Node* root;

IDOM_Node* aNode;

myDocType =

createDocumentType(name, 0, 0);

myDocType1 = (IDOM_DocumentType*) myDocType->cloneNode(false);

myDocument = IDOM_DOMImplementation::getImplementation()->createDocument(0,

name, myDocType);

root = myDocument->getDocumentElement();

aNode = myDocument->createElement(anElementname);

root->appendChild(aNode);

// myDocType does not have an owner yet when myDocType1 was cloned.

// thus need to explicitly delete myDocType1

delete myDocType1;

delete myDocType;

delete myDocument;

// C++ IDOM - explicit deletion

// manually build a DOM document

// clone the document type object that has an owner already

// thus no need to delete the cloned object

IDOM_DocumentType* myDocType1;

IDOM_DocumentType* myDocType;

IDOM_Document* myDocument;

IDOM_Node* root;

IDOM_Node* aNode;

myDocType =

createDocumentType(name, 0, 0);

myDocument = IDOM_DOMImplementation::getImplementation()->createDocument(0,

name, myDocType);

myDocType1 = (IDOM_DocumentType*) myDocType->cloneNode(false);

root = myDocument->getDocumentElement();

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 88-



aNode = myDocument->createElement(anElementname);

root->appendChild(aNode);

// myDocType already has myDocument as the owner when myDocType1 was cloned

// thus NO need to explicitly delete myDocType1

delete myDocType;

delete myDocument;

Key points to remember when using the C++ IDOM classes:
· The DOM objects are accessed via C++ pointers.
· The DOM objects - nodes, attributes, CData sections, etc., are created with the factory methods

(create...) in the document class.
· If you are manually building a DOM tree in memory, you need to explicitly delete the document

object. Memory management will be automatically taken care of by the IDOM parser when parsing an
instance document.

DOMString vs. XMLCh
The IDOM C++ no longer uses DOMString to pass string data to and from the DOM API. Instead, the
IDOM C++ uses plain, null-terminated (XMLCh *) utf-16 strings. The (XMLCh*) utf-16 type string is
much simpler with lower overhead. All the string data would remain in memory until the document object
is deleted.

//C++ IDOM

const XMLCh* nodeValue = aNode->getNodeValue();

//C++ DOM

DOMString nodeValue = aNode.getNodeValue();

Chapter 8 - Programming Guide Xerces-C++ Documentation

- 89-



9
Migration

Migrating from Xerces-C++ 1.5.2 to Xerces-C++ 1.6.0
This document is a discussion of the technical differences between Xerces-C++ 1.5.2 code base and the
Xerces-C++ 1.6.0 code base.

Topics discussed are:
· New features in Xerces-C++ 1.6.0
· Public API Changes in Xerces-C++ 1.6.0

· New Public API
· Public API Modified
· Deprecated Public API

New features in Xerces-C++ 1.6.0
· Full Schema support is available in this release. See the Schema page for details.
· New sample SEnumVal to show how to enumerate the markup decls in a Schema Grammar is added.

Public API Changes in Xerces-C++ 1.6.0
The following lists the public API changes between the Xerces-C++ 1.5.2 and the Xerces-C++ 1.6.0
releases of the parser.

New Public API
· It should not be a fatal error if a schema InputSource is not found. Add the following new methods:

· const bool InputSource::getIssueFatalErrorIfNotFound() const
· void InputSource::setIssueFatalErrorIfNotFound(const bool flag

· Allow code to take advantage of the fact that the length of the prefix and local name are known when
constructing the QName. Add the following new methods:

· void QName::setNPrefix(const XMLCh*, const unsigned int)
· void QName::setNLocalPart(const XMLCh*, const unsigned int)

· To support schemaLocation and noNamespaceSchemaLocation to be specified outside the instance
document, the following new methods are added:

· XMLCh* DOMParser::getExternalSchemaLocation() const
· XMLCh* DOMParser::getExternalNoNamespaceSchemaLocation() const
· void DOMParser::setExternalSchemaLocation(const XMLCh* const schemaLocation)
· void DOMParser::setExternalNoNamespaceSchemaLocation(const char* const

noNamespaceSchemaLocation)
· XMLCh* IDOMParser::getExternalSchemaLocation() const
· XMLCh* IDOMParser::getExternalNoNamespaceSchemaLocation() const

- 90-



· void IDOMParser::setExternalSchemaLocation(const XMLCh* const schemaLocation)
· void IDOMParser::setExternalNoNamespaceSchemaLocation(const char* const

noNamespaceSchemaLocation)
· XMLCh* SAXParser::getExternalSchemaLocation() const
· XMLCh* SAXParser::getExternalNoNamespaceSchemaLocation() const
· void SAXParser::setExternalSchemaLocation(const XMLCh* const schemaLocation)
· void SAXParser::setExternalNoNamespaceSchemaLocation(const char* const

noNamespaceSchemaLocation)
· and the following properties are recognized by SAX2XMLReader:

- http://apache.org/xml/properties/schema/external-schemaLocation
- http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation

· To support identity constraints, the following new method is added:
· QName* XMLAttr::getAttName() const

Pulic API Modified
· To support attribute constraint checking, the constant values in XMLAttDef::DefAttTypes have been

re-ordered.

Deprecated Pulic API
· Root Element check is moved from XMLValidator to XMLScanner. Thus

XMLValidator::checkRootElement() is deprecated.

Migration Archive
For migration information to Xerces-C++ 1.5.2 or earlier, please refer to Migration Archive.

Chapter 9 - Migration Xerces-C++ Documentation

- 91-



10
Migration Archive

Migrating from Xerces-C++ 1.4.0 to Xerces-C++ 1.5.2
The following section is a discussion of the technical differences between Xerces-C++ 1.4.0 code base
and the Xerces-C++ 1.5.2 code base.

Topics discussed are:
· General Improvements

· Compliance
· Bug Fixes
· Speed

· Changes required to migrate to Xerces-C++ 1.5.2
· Validator directory Reorganization
· DTDValidator

· New features in Xerces-C++ 1.5.2
· Schema Subset Support
· Experiemental IDOM

General Improvements
The new version is improved in many ways. Some general improvements are: significantly better
conformance to the XML spec, cleaner internal architecture, many bug fixes, and faster speed.

Compliance
Except for a couple of the very obscure (mostly related to the 'standalone' mode), this version should be
quite compliant to XML 1.0 [2] . It also tracks the latest changes to DOM, SAX and Namespace
Specification. We have more than a thousand tests, some collected from various public sources and some
IBM generated, which are used to do regression testing. The C++ parser is now passing all but a handful
of them.

Bug Fixes
This version has many bug fixes since last release. Some of these were reported by users and some were
brought up by way of the conformance testing.

Speed
Much work was done to speed up this version. Some of the new features, such as experiemental IDOM
ended up eating up some of these gains, but overall the new version is significantly faster than previous
versions, even while doing more.

- 92-

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml


Changes required to migrate to Xerces-C++ 1.5.2
There are some architectural changes between the Xerces-C++ 1.4.0 and the Xerces-C++ 1.5.2 releases
of the parser, and as a result, some code has undergone restructuring as shown below.

Validator directory Reorganization
· common content model files such as DFAContentModel ... are moved to a new directory called

src/validators/common
· DTD related files are moved to a new directory called src/validators/DTD
· new directory src/validators/Datatype is created to store all datatype validators
· new directory src/validators/schema is created to store Schema related files

DTDValidator
DTDValidator was design to scan, validate and store the DTD in Xerces-C++ 1.4.0 or earlier. In
Xerces-C++ 1.5.2, this process is broken down into three components:

· new class DTDScanner - to scan the DTD
· new class DTDGrammar - to store the DTD Grammar
· DTDValidator - to validate the DTD only

New features in Xerces-C++ 1.5.2
Schema subset support and an experimental IDOM are available in this release.

Schema Subset Support
· New function "setDoSchema" is added to DOM/SAX parser.
· New feature "http://apache.org/xml/features/validation/schema" is recognized by SAX2XMLReader.
· New classes such as SchemaValidator, TraverseSchema ... are added.
· The Scanner is enhanced to process schema.
· New sample data files personal-schema.xml and personal.xsd.
· New command line option "-s" for samples.

See the Schema page for details.

Experiemental IDOM
The experimental IDOM API is a new design of the C++ DOM API. If you would like to migrate from
DOM to the experimental IDOM, please refer to IDOM programming guide. Please note that this
experimental IDOM API is only a prototype and is subject to change.

Migrating from XML4C 2.x to Xerces-C++ 1.4.0
The following section is a discussion of the technical differences between XML4C 2.x code base and the
new Xerces-C++ 1.4.0 code base.

Topics discussed are:
· General Improvements

· Compliance
· Bug Fixes
· Speed

· Summary of changes required to migrate from XML4C 2.x to Xerces-C++ 1.4.0
· The Samples
· Parser Classes
· DOM Level 2 support

Chapter 10 - Migration Archive Xerces-C++ Documentation

- 93-



· Progressive Parsing
· Namespace support
· Moved Classes to src/framework
· Loadable Message Text
· Pluggable Validators
· Pluggable Transcoders
· Util directory Reorganization

· util - The platform independent utility stuff

General Improvements
The new version is improved in many ways. Some general improvements are: significantly better
conformance to the XML spec, cleaner internal architecture, many bug fixes, and faster speed.

Compliance
Except for a couple of the very obscure (mostly related to the 'standalone' mode), this version should be
quite compliant. We have more than a thousand tests, some collected from various public sources and
some IBM generated, which are used to do regression testing. The C++ parser is now passing all but a
handful of them.

Bug Fixes
This version has many bug fixes with regard to XML4C version 2.x. Some of these were reported by
users and some were brought up by way of the conformance testing.

Speed
Much work was done to speed up this version. Some of the new features, such as namespaces, and
conformance checks ended up eating up some of these gains, but overall the new version is significantly
faster than previous versions, even while doing more.

Summary of changes required to migrate from XML4C 2.x to Xerces-C++
1.4.0
As mentioned, there are some major architectural changes between the 2.3.x and Xerces-C++ 1.4.0
releases of the parser, and as a result the code has undergone significant restructuring. The list below
mentions the public api's which existed in 2.3.x and no longer exist in Xerces-C++ 1.4.0. It also mentions
the Xerces-C++ 1.4.0 api which will give you the same functionality. Note: This list is not exhaustive.
The API docs (and ultimately the header files) supplement this information.

· parsers/[Non]Validating[DOM/SAX]parser.hpp

These files/classes have all been consolidated in the new version to just two files/classes:
[DOM/SAX]Parser.hpp. Validation is now a property which may be set before invoking the
parse. Now, the setDoValidation() method controls the validation processing.

· The framework/XMLDocumentTypeHandler.hpp been replaced with
validators/DTD/DocTypeHandler.hpp.

· The following methods now have different set of parameters because the underlying base class
methods have changed in the 3.x release. These methods belong to one of XMLDocumentHandler,
XMLErrorReporter or DocTypeHandler interfaces.

· [Non]Validating[DOM/SAX]Parser::docComment
· [Non]Validating[DOM/SAX]Parser::doctypePI
· [Non]ValidatingSAXParser::elementDecl
· [Non]ValidatingSAXParser::endAttList

Chapter 10 - Migration Archive Xerces-C++ Documentation

- 94-



· [Non]ValidatingSAXParser::entityDecl
· [Non]ValidatingSAXParser::notationDecl
· [Non]ValidatingSAXParser::startAttList
· [Non]ValidatingSAXParser::TextDecl
· [Non]ValidatingSAXParser::docComment
· [Non]ValidatingSAXParser::docPI
· [Non]Validating[DOM/SAX]Parser::endElement
· [Non]Validating[DOM/SAX]Parser::startElement
· [Non]Validating[DOM/SAX]Parser::XMLDecl
· [Non]Validating[DOM/SAX]Parser::error

· The following methods/data members changed visibility from protected in 2.3.x to private
(with public setters and getters, as appropriate).

· [Non]ValidatingDOMParser::fDocument
· [Non]ValidatingDOMParser::fCurrentParent
· [Non]ValidatingDOMParser::fCurrentNode
· [Non]ValidatingDOMParser::fNodeStack

· The following files have moved, possibly requiring changes in the #include statements.
· MemBufInputSource.hpp
· StdInInputSource.hpp
· URLInputSource.hpp

· All the DTD validator code was moved from internal to separate validators/DTD directory.
· The error code definitions which were earlier in internal/ErrorCodes.hpp are now splitup

into the following files:
· framework/XMLErrorCodes.hpp - Core XML errors
· framework/XMLValidityCodes.hpp - DTD validity errors
· util/XMLExceptMsgs.hpp - C++ specific exception codes.

The Samples
The sample programs no longer use any of the unsupported util/xxx classes. They only existed to allow us
to write portable samples. But, since we feel that the wide character APIs are supported on a lot of
platforms these days, it was decided to go ahead and just write the samples in terms of these. If your
system does not support these APIs, you will not be able to build and run the samples. On some
platforms, these APIs might perhaps be optional packages or require runtime updates or some such action.

More samples have been added as well. These highlight some of the new functionality introduced in the
new code base. And the existing ones have been cleaned up as well.

The new samples are:
1. PParse - Demonstrates 'progressive parse' (see below)
2. StdInParse - Demonstrates use of the standard in input source
3. EnumVal - Shows how to enumerate the markup decls in a DTD Validator

Parser Classes
In the XML4C 2.x code base, there were the following parser classes (in the src/parsers/ source
directory): NonValidatingSAXParser, ValidatingSAXParser, NonValidatingDOMParser,
ValidatingDOMParser. The non-validating ones were the base classes and the validating ones just
derived from them and turned on the validation. This was deemed a little bit overblown, considering the
tiny amount of code required to turn on validation and the fact that it makes people use a pointer to the
parser in most cases (if they needed to support either validating or non-validating versions.)

Chapter 10 - Migration Archive Xerces-C++ Documentation

- 95-



The new code base just has SAXParer and DOMParser classes. These are capable of handling both
validating and non-validating modes, according to the state of a flag that you can set on them. For
instance, here is a code snippet that shows this in action.

void ParseThis(const XMLCh* const fileToParse,

const bool validate)

{

//

// Create a SAXParser. It can now just be

// created by value on the stack if we want

// to parse something within this scope.

//

SAXParser myParser;

// Tell it whether to validate or not

myParser.setDoValidation(validate);

// Parse and catch exceptions...

try

{

myParser.parse(fileToParse);

}

...

};

We feel that this is a simpler architecture, and that it makes things easier for you. In the above example,
for instance, the parser will be cleaned up for you automatically upon exit since you don't have to allocate
it anymore.

DOM Level 2 support
Experimental early support for some parts of the DOM level 2 specification have been added. These
address some of the shortcomings in our DOM implementation, such as a simple, standard mechanism for
tree traversal.

Progressive Parsing
The new parser classes support, in addition to the parse() method, two new parsing methods, parseFirst()
and parseNext(). These are designed to support 'progressive parsing', so that you don't have to depend
upon throwing an exception to terminate the parsing operation. Calling parseFirst() will cause the DTD
(or in the future, Schema) to be parsed (both internal and external subsets) and any pre-content, i.e.
everything up to but not including the root element. Subsequent calls to parseNext() will cause one more
pieces of markup to be parsed, and spit out from the core scanning code to the parser (and hence either on
to you if using SAX or into the DOM tree if using DOM.) You can quit the parse any time by just not
calling parseNext() anymore and breaking out of the loop. When you call parseNext() and the end of the
root element is the next piece of markup, the parser will continue on to the end of the file and return false,
to let you know that the parse is done. So a typical progressive parse loop will look like this:

// Create a progressive scan token

XMLPScanToken token;

if (!parser.parseFirst(xmlFile, token))

{

Chapter 10 - Migration Archive Xerces-C++ Documentation

- 96-



cerr << "scanFirst() failed\n" << endl;

return 1;

}

//

// We started ok, so lets call scanNext()

// until we find what we want or hit the end.

//

bool gotMore = true;

while (gotMore && !handler.getDone())

gotMore = parser.parseNext(token);

In this case, our event handler object (named 'handler' surprisingly enough) is watching form some
criteria and will return a status from its getDone() method. Since the handler sees the SAX events coming
out of the SAXParser, it can tell when it finds what it wants. So we loop until we get no more data or our
handler indicates that it saw what it wanted to see.

When doing non-progressive parses, the parser can easily know when the parse is complete and insure
that any used resources are cleaned up. Even in the case of a fatal parsing error, it can clean up all
per-parse resources. However, when progressive parsing is done, the client code doing the parse loop
might choose to stop the parse before the end of the primary file is reached. In such cases, the parser will
not know that the parse has ended, so any resources will not be reclaimed until the parser is destroyed or
another parse is started.

This might not seem like such a bad thing; however, in this case, the files and sockets which were opened
in order to parse the referenced XML entities will remain open. This could cause serious problems.
Therefore, you should destroy the parser instance in such cases, or restart another parse immediately. In a
future release, a reset method will be provided to do this more cleanly.

Also note that you must create a scan token and pass it back in on each call. This insures that things don't
get done out of sequence. When you call parseFirst() or parse(), any previous scan tokens are invalidated
and will cause an error if used again. This prevents incorrect mixed use of the two different parsing
schemes or incorrect calls to parseNext().

Namespace support
The C++ parser now supports namespaces. With current XML interfaces (SAX/DOM) this doesn't mean
very much because these APIs are incapable of passing on the namespace information. However, if you
are using our internal APIs to write your own parsers, you can make use of this new information. Since
the internal event APIs must be able to now support both namespace and non-namespace information,
they have more parameters. These allow namespace information to be passed along.

Most of the samples now have a new command line parameter to turn on namespace support. You turn on
namespaces like this:

SAXParser myParser;

// Tell it whether to do namespace

myParser.setDoNamespaces(true);

Moved Classes to src/framework
Some of the classes previously in the src/internal/ directory have been moved to their more correct
location in the src/framework/ directory. These are classes used by the outside world and should have
been framework classes to begin with. Also, to avoid name classes in the absense of C++ namespace

Chapter 10 - Migration Archive Xerces-C++ Documentation

- 97-



support, some of these clashes have been renamed to make them more XML specific and less likely to
clash. More classes might end up being moved to framework as well.

So you might have to change a few include statements to find these classes in their new locations. And
you might have to rename some of the names of the classes, if you used any of the ones whose names
were changed.

Loadable Message Text
The system now supoprts loadable message text, instead of having it hard coded into the program. The
current drop still just supports English, but it can now support other languages. Anyone interested in
contributing any translations should contact us. This would be an extremely useful service.

In order to support the local message loading services, we have created a pretty flexible framework for
supporting loadable text. Firstly, there is now an XML file, in the src/NLS/ directory, which contains all
of the error messages. There is a simple program, in the Tools/NLSXlat/ directory, which can spit out that
text in various formats. It currently supports a simple 'in memory' format (i.e. an array of strings), the
Win32 resource format, and the message catalog format. The 'in memory' format is intended for very
simple installations or for use when porting to a new platform (since you can use it until you can get your
own local message loading support done.)

In the src/util/ directory, there is now an XMLMsgLoader class. This is an abstraction from which any
number of message loading services can be derived. Your platform driver file can create whichever type
of message loader it wants to use on that platform. We currently have versions for the in memory format,
the Win32 resource format, and the message catalog format. An ICU one is present but not implemented
yet. Some of the platforms can support multiple message loaders, in which case a #define token is used to
control which one is used. You can set this in your build projects to control the message loader type used.

Both the Java and C++ parsers emit the same messages for an XML error since they are being taken from
the same message file.

Pluggable Validators
In a preliminary move to support Schemas, and to make them first class citizens just like DTDs, the
system has been reworked internally to make validators completely pluggable. So now the DTD validator
code is under the src/validators/DTD/ directory, with a future Schema validator probably going into the
src/validators. The core scanner architecture now works completely in terms of the
framework/XMLValidator abstract interface and knows almost nothing about DTDs or Schemas. For
now, if you don't pass in a validator to the parsers, they will just create a DTDValidator. This means that,
theoretically, you could write your own validator. But we would not encourage this for a while, until the
semantics of the XMLValidator interface are completely worked out and proven to handle DTD and
Schema cleanly.

Pluggable Transcoders
Another abstract framework added in the src/util/ directory is to support pluggable transcoding services.
The XMLTransService class is an abtract API that can be derived from, to support any desired
transcoding service. XMLTranscoder is the abstract API for a particular instance of a transcoder for a
particular encoding. The platform driver file decides what specific type of transcoder to use, which allows
each platform to use its native transcoding services, or the ICU service if desired.

Implementations are provided for Win32 native services, ICU services, and the iconv services available
on many Unix platforms. The Win32 version only provides native code page services, so it can only
handle XML code in the intrinsic encodings ASCII, UTF-8, UTF-16 (Big/Small Endian), UCS4

Chapter 10 - Migration Archive Xerces-C++ Documentation

- 98-



(Big/Small Endian), EBCDIC code pages IBM037 and IBM1140 encodings, ISO-8859-1 (aka Latin1)
and Windows-1252. The ICU version provides all of the encodings that ICU supports. The iconv version
will support the encodings supported by the local system. You can use transcoders we provide or create
your own if you feel ours are insufficient in some way, or if your platform requires an implementation
that we do not provide.

Util directory Reorganization
The src/util directory was becoming somewhat of a dumping ground of platform and compiler stuff. So
we reworked that directory to better spread things out. The new scheme is:

util - The platform independent utility stuff
· MsgLoaders - Holds the msg loader implementations

1. ICU
2. InMemory
3. MsgCatalog
4. Win32

· Compilers - All the compiler specific files
· Transcoders - Holds the transcoder implementations

1. Iconv
2. ICU
3. Win32

· Platforms
1. AIX
2. HP-UX
3. Linux
4. Solaris
5. ....
6. Win32

This organization makes things much easier to understand. And it makes it easier to find which files you
need and which are optional. Note that only per-platform files have any hard coded references to specific
message loaders or transcoders. So if you don't include the ICU implementations of these services, you
don't need to link in ICU or use any ICU headers. The rest of the system works only in terms of the
abstraction APIs.

Chapter 10 - Migration Archive Xerces-C++ Documentation

- 99-



11
Releases

Xerces-C++ Version 1.6.0: December 6, 2001
Date Contributor Description
2001-12-06 Khaled Noaman Schema: Add Identity Constraint(Key,

KeyRef, Unique, Selector, Field, and
Partial XPath Support).
Add XPathSymbols,
XPathMatcherStack,
XPathMatcher,
XPathException,
XercesXPath,
ValueStoreCache,
ValueStore,
IdentityConstraint,
IC_Unique,
IC_Selector,
IC_KeyRef,
IC_Key,
IC_Field,
FieldValueMap,
FieldActivator.
Support Particle Derivation Constraint
Checking.

- 100-



2001-12-06 PeiYong Zhang DatatypeValidator:
Support DateTimeValidator,
DateTimeDatatypeValidator,
DateDatatypeValidator,
TimeDatatypeValidator,
DayDatatypeValidator,
MonthDatatypeValidator,
MonthDayDatatypeValidator,
YearDatatypeValidator,
YearMonthDatatypeValidator,
DurationDatatypeValidator.
Add SchemaDataTimeException,
XMLAbstractDoubleFloat,
XMLDateTime.

2001-12-06 Tinny Ng [Bug 1959] setNodeValue throws
exception when spec specifies NOP.

2001-12-06 Erik Rydgren [Bug 2174] Bug in
NamedNodeMapImpl.

2001-12-06 Henry Zongaro Performance Enhancement. Added
setNPrefix and setNLocalPart
methods in QName that allow code to
take advantage of the fact that it
knows the length of the prefix and
local name, when possible.

2001-12-06 Henry Zongaro Performance Enhancement. Added a
second ContentSpecNode constructor
that allows the QName to be just
assigned, not copied.

2001-12-06 Henry Zongaro Performance Enhancement. Added a
second CMLeaf constructor that
indicated the QName passed in was to
be adopted.

2001-12-06 Henry Zongaro Performance Enhancement. Modify
the handling of the fNEL option so that
it results in fgCharCharsTable being
modified, instead of having all of the
low-level routines check the option.

2001-12-06 Tinny Ng Make the runConfigure and
associated config*, Makefile* in folders
tests, samples and src more
consistent.

2001-12-05 Khaled Noaman [Bug 1236] Incorrect NMTOKENS
attribute normalization.

2001-12-05 Khaled Noaman [Bug 2752] Surrogate support
incomplete.

2001-12-05 Edward Avis Fix runConfigure which can run into
infinite loop with invalid argument

2001-12-05 Tinny Ng Generate linker map for certain
platforms

Chapter 11 - Releases Xerces-C++ Documentation

- 101-



2001-12-03 Tinny Ng [Bug 5237] PATH_MAX undefined
during build without threading support.

2001-12-03 Tinny Ng [Bug 5179] Misprint in downcasting
description.

2001-12-03 Max Gotlib Add FreeBSD native transcoder
(IconvFBSD).

2001-11-30 PeiYong Zhang Build all tests on HP-UX 11.
2001-11-29 Michael Huedepohl Add FreeBSD Support.
2001-11-28 PeiYong Zhang DOMMemTest: delete compiler

generated temperary DOMString
object "Hello Goodbye".

2001-11-28 Tinny Ng Fix broken ParserTest.
2001-11-28 Tinny Ng Do not increment the error count if it is

a warning.
2001-11-28 Phil Brown [Bug 4019] XMLReader::getNextChar

can over read (UTF-16).
2001-11-28 Tinny Ng [Bug 4544] DOM_NodeList::getLength

incorrect when called twice for empty
list.

2001-11-28 Artur Klauser [Bug 2238]libWWW problems with
broken proxys and range requests.

2001-11-28 Artur Klauser [Bug 2237] libWWW redirect error.
2001-11-28 Matt Lovett [Bug 4422]

BinMemInputStream::readBytes is
inefficient.

2001-11-28 Tinny Ng [Bug 3683] Access Violations when
performing custom schema validation.

2001-11-28 Tinny Ng Check tohash pointer before
accessing content in XMLString::hash.

2001-11-27 Tinny Ng Fix packageBinaries.pl to correctly
strip the zip file name from the target
directory which has "." dot in it.

2001-11-26 Don Mastrovito BCB4 can use wchar_t.
2001-11-23 Tinny Ng Support ICU 2.0.
2001-11-23 Tinny Ng Eliminate Warning from Solaris Forte

C++: Warning (Anachronism): Formal
argument start_routine of type extern
"C".

2001-11-23 Tinny Ng Eliminate Warning from Solaris Forte
C++: Warning: String literal converted
to char* in initialization.

2001-11-23 Tinny Ng Eliminate Warning from AIX xlC
3.6:1540-399.

2001-11-23 Tinny Ng [Bug 4655] config.status be included
in all future binary releases.

2001-11-23 Tinny Ng [Bug 4873] ICU 2.0 breaks Xerces
1.5.2 build.

2001-11-22 PeiYong Zhang Eliminate Visual C++ compiler warning
C4273.

Chapter 11 - Releases Xerces-C++ Documentation

- 102-



2001-11-22 PeiYong Zhang Schema: Allow "0.0" to be a valid
lexcial representation of ZERO.

2001-11-21 Peter A. Volchek and PeiYong Zhang Add sample SEnumVal.
2001-11-21 Tinny Ng New method

InputSource::get/setIssueFatalErrorIfNotFound
to tell the parser whether to issue fatal
error or not if cannot find it (the
InputSource). This is required for
schema processing as it shouldn't be
a fatal error if the schema is not found.

2001-11-20 Tinny Ng Allow schemaLocation and
noNamespaceSchemaLocation to be
specified outside the instance
document. New methods
setExternalSchemaLocation and
setExternalNoNamespaceSchemaLocation
are added (for SAX2, two new
properties are added).

2001-11-19 PeiYong Zhang XMLFloat and XMLDouble boundary
Values updated.

2001-11-16 Tinny Ng Add test case InitTermTest to test
XMLPlatformUtils:Initialize/Terminate()
pair.

2001-11-16 Khaled Noaman Design change:
GeneralAttributeCheck is not longer a
singleton class.

2001-11-15 Khaled Noaman Re-organize constant values in
XMLAttDef.

2001-11-13 Tinny Ng Move root element check from
XMLValidator to XMLScanner and
deprecate
XMLValidator::checkRootElement().

2001-11-13 Tinny Ng Update documentation for
SAX2XMLReader, DefaultHandler and
DOMParser.

2001-11-09 Tinny Ng Regular Expression: Update the Block
Names and Block Range to comply to
the latest standard.

2001-11-09 Carolyn Weiss DOMIDTest/MemParse fix: Pulled the
hardcoded encoding out of the
document itself and made it a #define
to make it easier to support other
encodings.

2001-11-09 Carolyn Weiss DOMMemTest fix: Changed some
literal values to their equivalent hex
values so they work correctly on both
ASCII and EBCDIC systems.

2001-11-09 Linda Swan Bug Fix: maxChars in
XMLString::copyNString is more
related to the target than the src.

Chapter 11 - Releases Xerces-C++ Documentation

- 103-



2001-11-07 Tinny Ng Performance: Create QName in
ContentSpecNode only if it is a
leaf/Any/PCDataNode.

2001-11-07 Tinny Ng Performance: move getRawName() to
outer loop in DFAContentModel so
that it is called only once per outer
loop.

2001-11-06 Khaled Noaman [Bug 4644] Memory leak in schema
traverser.

2001-11-02 Jason Stewart [Bug 4133] --prefix not used properly
in configure.

2001-11-01 Jason Stewart [Bug 2730] Can't build xerces-c-1.5.1
with ICUMsgLoader.

2001-11-01 Jason Stewart [Bug 4578] No documentation for
XMLTranscoder.

2001-11-01 Tinny Ng IDOM: Leak: should allocate the
fNodeListPool with the overloaded
new.

2001/10/29 Tinny Ng Update samples doc to reflect the
latest changes. Also update
runConfigure usage in build doc to
reflect the latest changes.

2001-10-26 PeiYong Zhang Thread safe XMLFloat and
XMLDouble.

2001-10-26 Tinny Ng Update SAX standard web link.

Xerces-C++ Version 1.5.2: October 26, 2001
Date Contributor Description
2001-10-26 Khaled Noaman Schema:

Support group,
attributeGroup,
all,
any,
anyAttribute,
annotation,
notation,
redefine,
circular import.
Add AnySimpleTypeDatatypeValidator.
Add XercesGroupInfo.
More complex type constraint checking.

Chapter 11 - Releases Xerces-C++ Documentation

- 104-



2001-10-26 PeiYong Zhang DatatypeValidator:
Support DoubleDatatypeValidator,
FloatDatatypeValidator,
AnyURIDatatypeValidator,
AbstractStringValidator,
AbstractNumericValidator,
AbstractNumericFacetValidator,
NCNameDatatypeValidator,
NameDatatypeValidator.
Add XMLDouble,
XMLFloat,
XMLInteger,
XMLNumber,
XMLUri.

2001-10-26 Tinny Ng Schema:
Support xsi:type,
Unique Particle Attribution Constraint Checking,
anyAttribute in Scanner and Validator.
Add XercesElementWildCard,
AllContentModel,
XMLInternalErrorHandler.

2001-10-25 PeiYong Zhang XMLDeleterFor related functions and data are removed.
Replace with XMLRegisterCleanup.

2001-10-25 Henry Zongaro [Bug 2924] runConfigure script to accept multiple linker
options.

2001-10-25 John Warrier [Bug 2924] runConfigure script to accept multiple compiler
options.

2001-10-25 Mark Weaver [Bug 4213] BinHTTPURLInputStream initialisation not
thread safe.

2001-10-25 John Clayton [Bug 4121] BinHTTPUrlInputStream needs to read entire
HTTP header.

2001-10-25 Tinny Ng [Bug 4318] Single threaded build fails due to obsolete
#define.

2001-10-25 Tinny Ng [Bug 2860] gAtomicMutex should be used when
APP_NO_THREADS is not defined in both Tru64 and
OS400.

2001-10-25 Tinny Ng Comment outside root element should also be reported.
2001-10-24 PeiYong Zhang [Bug 4342] Validator mutex is not deleted.
2001-10-24 PeiYong Zhang [Bug 3975] XMLPlatformUtils::Initialize() leaks memory

after thousands of calls.
2001-10-24 Kevin Philips [Bug 3813] BinHTTPURLInputStream has weak HTTP

request capabilities.
2001-10-24 Peter A. Volchek [Bug 2305] Include stdlib.h to

BinHTTPURLInputStream.cpp.
2001-10-24 Sean Bright [Bug 2456] loadXML gives an exception.
2001-10-24 Curt Arnold Fixed xml4com.idl which attempts to set the version of the

type library to 1.5.2 when only major.minor format is
allowed.

Chapter 11 - Releases Xerces-C++ Documentation

- 105-



2001-10-23 Mark Weaver [Bug 4060] XMLPlatformUtils leaks a mutex on Solaris,
Linux and others.

2001-10-23 Mark Weaver [Bug 880] XMLPlatformUtils::Terminate cannot be called
more than once.

2001-10-22 Tinny Ng [Bug 3660] Off-by-one error in DOMString.cpp.
2001-10-22 Tinny Ng Check that memory has been acquired successfully after

memory acquisition requests in DOMString.
2001-10-22 Tinny Ng [Bug 3361] "String pool id was not legal" error in

Attributes::getURI().
2001-10-22 Linda Swan castToNodeImpl is inconsistent with other cast routinesin

IDCasts.
2001-10-19 James Berry Add new file name shortening hints; chmod +x.
2001-10-19 James Berry Cleanup handling of transcoder failure to transcode a

character; implement canTranscodeTo; thanks to Geoff
Coffey.

2001-10-19 James Berry Correctly swap / and : in classic environment MacOS
pathnames; thanks to Geoff Coffey.

2001-10-19 James Berry Update MacOS projects for CodeWarrior 7 and
ProjectBuilder 1.1, new files.

2001-10-19 Tinny Ng [Bug 3909] return non-zero an exit code when error was
encountered.

2001-10-19 Tinny Ng Modify PParse not to hardcode the number of expected
elements as this may vary.

2001-10-19 David McCreedy Fixed the binary search in XML256TableTranscoder.cpp
which fails for the last item in whichever table it is
searching.

2001-10-19 David McCreedy Added U+0110 to XMLEBCDICTranscoder.cpp's "Unicode
to IBM037" translation table.

2001-10-19 David McCreedy Modified DOMPrint and IDOMPrint not to use "endl"
method which puts out a newline in the local code page to
generate output.

2001-10-18 Jerry Carter [Bug 3666] Win32MsgLoader unable to retrieve error text if
DLL is renamed.

2001-10-18 Tinny Ng Use opt2 on AIX platform.
2001-10-18 Tinny Ng [Bug 1699] Redirect "delete this" to a temp ptr to bypass

AIX xlC v5 optimization memory leak problem.
2001-10-18 Tinny Ng [Bug 4015] IDDOMImplementation::createDocumentType

hopelessly broken.
2001-10-16 Khaled Noaman [Bug 3750] GeneralAttributeCheck threading bug.
2001-10-15 Khaled Noaman [Bug 4177] setupRange uses non-portable code.
2001-10-13 Jason Stewart [Bug 2409] undocumented XMLException in

LocalFileInputSource::new().
2001-10-13 Jason Stewart [Bug 4133] --prefix not used properly in configure.
2001-10-10 Jason Stewart XMLURL::parse now throws an exception if it sees a an

http URL without two forward slashes ('//') following the
protocol.

2001-10-10 Petr Gotthard Add "Base64::encode" for encoding binary data.

Chapter 11 - Releases Xerces-C++ Documentation

- 106-



2001-10-09 Tinny Ng [Bug 1685] memory leak after parsing document with
validation error.
And other miscellaneous memory leak.

2001-10-05 PeiYong Zhang [Bug 3831] -1 returned from getIndex() needs to be
checked.

2001-10-03 Tinny Ng [Bug 3867] IDOM_Element::getElementsByTagName()
threading problem.

2001-10-02 Tinny Ng Memory leak in IDOM, need to delete the fDocument
created.

2001-09-13 Artur Klauser Patch: Xerces 1.5 w/ libWWW for Tru64.
2001-09-13 Artur Klauser Patch: Xerces 1.5 samples with g++ compiler.
2001-09-12 PeiYong Zhang [Bug 3565] Stream leaked in ReaderMgr.
2001-09-12 Tinny Ng [Bug 3155] SAX2 does not offer progressive parse.
2001-09-11 Tinny Ng [Bug 3523] SchemaElementDecl.cpp(242) : error C2202 :

not all control paths return a value.
2001-09-10 Tinny Ng Performance: Store the fGrammarType instead of calling

getGrammarType all the time for faster performance.
2001-09-04 Christopher Just Support IRIX's sproc().
2001-09-04 Kevin Philips [Bug 3170] URLs with ? type fragments in them don't work.
2001-08-29 Henry Zongaro Allowing -p as argument to -z or -l in runConfigure.
2001-08-29 Tinny Ng Performance: Use XMLBufBid instead of XMLBuffer

directly for better performance.
2001-08-29 Tinny Ng Performance: No need to new the child QName in

ElemStack addChild. Remove it for performance gain. for
BCB5.

2001-08-22 Don Mastrovito Project files for BCB5.
2001-08-21 PeiYong Zhang [Bug 2816]Numerous datatype headers cause CC error

1144.
2001-08-21 PeiYong Zhang [Bug 3017] MSVC5.0: C2202: 'compareSpecial' : not all

control paths return a value.
2001-08-17 Nick Chiang Fix to memory leak in buildDFA().
2001-08-16 PeiYong Zhang Performance: stateTable created to optimize the

identification of new state created.
2001-08-10 PeiYong Zhang Add isHex(), isAlphaNum(), isAllWhiteSpace() and

patternMatch() in XMLString.
2001-08-09 Tinny Ng [Bug 2947]IDOM segfault calling

getElementsByTagName() using a DOM_Document().
2001-08-09 Tinny Ng Port test case DOMTest to IDOMTest.
2001-08-07 Tinny Ng [Bug 2676] IDOM: pure virtual called in

IDDeepNodeListImpl::item().
2001-08-07 Kari Whitcomb IDOM: Unaligned Access warnings in IDOM samples.
2001-08-02 Tinny Ng [Bug 1329] SAX2XMLReaderImpl leaks XMLBuffers.
2001-08-02 Tinny Ng Allow DOMCount/SAXCount/IDOMCount/SAX2Count to

take a file that has a list of xml file as input.
2001-07-31 PeiYong Zhang Fix: memory leak in

DFAContentModel::postTreeBuildInit().
2001/07/27 Tinny Ng Fix bug in 'transcode' functions reported by Evgeniy

Gabrilovich.

Chapter 11 - Releases Xerces-C++ Documentation

- 107-



2001-07-27 Tinny Ng put getScanner() back as they were there before, not to
break existing apps.

2001-07-26 Tinny Ng [Bug 2751] Several NameChar characters missing from
internal tables.

2001-07-26 Khaled Noaman [Bug 2815] util/regx/RegxParser.cpp compile fails on
HP-UX 10.20 with CC A.10.40.

2001-07-24 PeiYong Zhang [Bug 2707] DFAContentModel memory leaks.
2001-07-19 Tinny Ng Add IDOMCount, IDOMPrint, SAX2Count, and SAX2Print

to samples.dsw.
2001-07-19 Tinny Ng Add more tests in sanityTest.pl.

Xerces-C++ Version 1.5.1: July 18, 2001
Date Contributor Description
2001-07-17 Khaled Noaman [Bug 2643] - derivation by extension

of complex types does not permit
addition of ONLY element content.

2001-07-16 Tinny Ng [Bug 2410] DOMParser::parse()
throws undocumented exceptions.

2001-07-16 Tinny Ng [Bug 2512] typing mistake in code
example of chapter "Constructing an
XML Reader".

2001-07-16 Tinny Ng APIDocs fix: default for schema
processing in DOMParser,
IDOMParser, and SAXParser should
be false.

2001-07-15 James Berry Add new files to UnionTypeValidator
and ListDataTypeValidator to MacOS
Project files.

2001-07-09 Khaled Noaman Add constraint checking for simple
types.

2001-07-11 PeiYong Zhang Fix to normalizeWhiteSpace:
synchronize fDatatypeBuffer with
toFill.

2001-07-05 PeiYong Zhang Add ListDatatypeValidator and
UnionDatatypeValidator.

2001-07-10 Tinny Ng Give proper error messsage when
scanning external id.

2001-07-10 Tinny Ng The first char of PI Target Name
should be checked.

2001-07-09 Khaled Noaman Add <any> declaration.
2001-07-09 Khaled Noaman Fixes for import/include declarations.
2001-07-09 Tinny Ng Partial Markup in Parameter Entity is

validity constraint and thus should be
just error, not fatal error.

2001-07-08 James Berry Add new samples projects:
IDOMPPrint and SAX2Print for
ProjectBuilder

2001-07-08 James Berry Update ProjectBuilder Xerces project
for latest file additions.

Chapter 11 - Releases Xerces-C++ Documentation

- 108-



2001-07-08 James Berry [Bug 2486] Files missing from
XercesLib.mcp.

2001-07-08 James Berry Add new samples for CodeWarrior
build: IDOMPrint and SAX2Print.

2001-07-08 James Berry New file for use in building Carbon
samples.

2001-07-08 James Berry Simplify file existance checks.
2001-07-08 James Berry [Bug 2495] Missing ( in

xerces-c-src1_5_0/obj/Makefile.in.
2001-07-08 James Berry Fix clean and distclean targets; broken

because rm fails if passed no files.
2001-07-06 Tinny Ng [Bug 2472] Linker options ignored on

IRIX.
2001-07-06 Martin Kalen Automatic build of single-threaded

library.
2001-07-05 Tinny Ng Encoding String must present for

external entity text decl.
2001-07-05 Tinny Ng Standalone checking is validity

constraint and thus should be just
error, not fatal error.

2001-07-05 PeiYong Zhang Add NotationDatatypeValidator,
QNameDatatypeValidator and
ENTITYDatatypeValidator.

2001-07-04 PeiYong Zhang Add IDREFDatatypeValidator and
IDDatatypeValidator.

2001-07-04 PeiYong Zhang XMLString:isValidName(): to validate
Name (XML [4][5]).

2001-07-03 Tinny Ng Some compilers (e.g. the HP
compiler) has mistaken the parameter
'std', which is short for standalone as
the special prefix used by the standard
libraries.

2001-07-03 Miroslaw Dobrzanski-Neumann Supporting dce threading on AIX and
Solaris.

2001-06-27 David Bertoni [Bug 2365] Huge performance
problem with the parser in
XMLScanner::sendCharData().

2001-06-27 David Bertoni [Bug 2363]
XMLScanner::sendCharData() can
send the wrong length to the handler.

2001-06-27 Khaled Noaman [Bug 2353] Validating Parser parses
after validation failed.

2001-06-27 Murray Cumming [Bug 1147] Headers install in wrong
directory.

2001-06-26 Tinny Ng [Bug 2119] DOMString::print() should
use DOMString::transcode() for
transcoding.

2001-06-25 Stephen Dulin OS390 updates.
2001-06-25 Linda Swan AS400 updates.

Chapter 11 - Releases Xerces-C++ Documentation

- 109-



2001-06-25 PeiYong Zhang [Bug 1393] Converting from Unicode
to iso8859.

2001-06-25 Matt Lovett [Bug 965] scanDocTypeDecl messes
up the source offsets.

2001-06-25 Khaled Noaman Add constraint checking on elements
in complex types.

2001-06-22 James Berry [Bug 2277] Bad argument to
ConvertFromUnicodeToText.

2001-06-22 PeiYong Zhang [Bug 2263] 'SIZE' : redefinition (
BooleanDatatypeValidator.cpp ).

2001-06-22 Khaled Noaman [Bug 2258] Bug in Iconv and
Iconv390.

2001-06-22 Tinny Ng [Bug 2225] assignment vs.
comparison in if clause.

2001-06-22 Tinny Ng [Bug 2257] 1.5 thinks a
?xml-stylesheet ...> tag is a <?xml ...>
tag.

2001-06-21 Khaled Noaman [Bug 1946] Standalone validity check
only for external decl.

2001-06-21 Tinny Ng [Bug 2262] Duplicated header guard.
2001-06-20 PeiYong Zhang Proper Debug Guard: Reported by

Dean.
2001-06-19 Tinny Ng Namespace should be off by default in

XMLScanner.
2001/06/19 Tinny Ng Add installAdvDocHandler to

SAX2XMLReader as the code is there
already.

2001-06-19 Khaled Noaman Handle maxChars >
length(toTranscode).

2001-06-18 Erik Rydgren Memory leak fix: to addlevel().
2001-06-18 Khaled Noaman and PeiYong

Zhang
Add support for 'fixed' facet.

2001-06-15 Khaled Noaman Added constraint checking for ref on
elements.

2001-06-15 Tinny Ng ICU 1.8.1 update.

Xerces-C++ Version 1.5.0: June 15, 2001
Date Contributor Description
2001-06-15 Tinny Ng Schema:

Add Schema support in XMLParsers
(DOM/SAX/SAX2), XMLScanner.
Create SchemaValidator.
Add Grammar Model.
Support xsi:nil.
Support xsi:schemaLocation and
xsi:noNamespaceSchemaLocation.
Update samples to enable schema.

Chapter 11 - Releases Xerces-C++ Documentation

- 110-



2001-06-15 Tinny Ng Break DTDValidator into DTDGrammar, DTDScanner,
and DTDValidator.

2001-06-15 Tinny Ng IDOM:
Complete the Range, TreeWalker, NodeIterator, and
other memory fixes.
Support IDOM on UNIX platform.
Add samples IDOMPrint, and IDOMCount.
Add test cases IRangeTest and ITraversal.

2001-06-15 Khaled Noaman Schema:
Add Regular Expression.
Add Schema Messages.
Add Schema Simple Type Support.
Add Schema Complex Type Support (Except Group).
Add Schema Attribute Declarations support.
Add Schema Element Declarations support.
Support Simple Content and Complex Content.
Support Element and attribute reuse using "ref".
Support Schema Choice and Sequence.
Support Schema Import and Include.

2001-06-15 Khaled Noaman DatatypeValidator:
Add DatatypeValidator and DatatypeValidatorFactory.

2001-06-15 PeiYong Zhang Schema:
Add Schema support in Content Model.
Add Schema Exception Handling.
Add Schema XUtil.
Add QName Support.
Support SubstitutionGroup.

2001-06-15 PeiYong Zhang DatatypeValidator:
Support Base64DatatypeValidator,
BooleanDatatypeValidator,
DecimalDatatypeValidator,
HexBinDatatypeValidator,
StringDatatypeValidator,
InvalidDatatypeFacetException,
InvalidDatatypeValueException.

2001-06-13 Erik Rydgren [Bug 812] Memory leak with multiple !ATTLIST on
single !ELEMENT.

2001-06-08 Tinny Ng [Bug 2043] XMLFormatter unallocates arrays
incorrectly.

2001-06-08 PeiYong Zhang Documentation and project files update for Xerces 1.5.
2001-06-08 Khaled Noaman IDOM Documentation.
2001-06-07 Khaled Noaman Fix no error message for faulted-in attributes if reuse

grammar for 3+ times.
2001-06-06 Peter A. Volchek /Platforms/Win32/Win32PlatformUtils.cpp

Include stdlib.h.
2001-06-06 James Berry Update Mac OS ProjectBuilder projects.
2001-06-06 James Berry Fix invalid file references in project.

Chapter 11 - Releases Xerces-C++ Documentation

- 111-



2001-06-06 James Berry /src/util XMLString.cpp
Clean up compiler warning.

2001-06-06 James Berry /src/util/regx RegxParser.cpp
Fix two improper NULL tests.

2001-06-05 James Berry Add support for Mac OS X command line
configuration and build.

2001-06-5 Peter A. Volchek Add 'const' to getGrammar.
2001-06-04 PeiYong Zhang The start tag "<?xml" could be followed by (#x20 | #x9

| #xD | #xA)+.
2001-06-04 James Berry Add support for tracking error count during parse;

enables simple parse without requiring error handler.
2001-06-01 Tinny Ng /scripts/packageSources.pl

Keep the BCB4 project files in the source package.
2001-05-22 James Berry Check for existance of MacOS Unicode Converter

routines prior to instanciating our transcoder object;
Xerces will thus panic, rather than crash, if they don't
exist. Add support to check for existance of MacOS
Unicode Converter to avoid calling through NULL
pointer.

2001-05-16 Henry Zongaro IDOM: Add DeepNodeList support.
2001-05-16 Henry Zongaro IDOM: Add namespace support.
2001-05-10 Christian Schuhegger [Bug 1158] built-in buffer limit could be smaller than

system limit, use PATH_MAX instead.
2001-05-10 Arnaud LeHors [Bug 1605] AttrNSImpl.cpp: fixed typo in constructor.
2001-05-09 Curt Arnold [Bug 1500] The public id was set twice and the system

id was not set on Notations.
2001-05-04 Tinny Ng DOMPrint: Check error before continuing.
2001-05-03 Tinny Ng ICU 1.8 update.
2001-05-03 Khaled Noaman Added new option to the parsers so that the NEL

(0x85) char can be treated as a newline character.
2001-04-23 Erik Rydgren DTDScanner: Reuse grammar should allow users to

use any stored element decl as root.
2001-04-19 William L Hopper Win32PlatformUtils: InterlockedCompareExchange on

different Windows.
2001-04-19 William L Hopper BCB project changes.
2001-04-16 James Berry MacOSUnicodeConverter: Fix include path, Updates

to reflect changes for Mac OS X final and Update
MacOS projects for Mac OS X final ProjectBuilder.

2001-04-11 Arnaud LeHors [Bug 1303] AttrImpl: allow value to be set to null.
2001-04-11 Tinny Ng DOMParser: Attribute default values not printed in

document type internal subset interface.
2001-04-10 Tinny Ng createdocs.bat: fix PDF generation.
2001-04-04 Alberto Massari DTDElementDecl: Error checking for null content

spec.
2001-04-02 Andy Heninger IDOM: imported.
2001-04-02 Andy Heninger IThreadTest: imported.
2001-03-30 Tinny Ng [Bug 1150] Problems with Namespaces and validating

parsing.

Chapter 11 - Releases Xerces-C++ Documentation

- 112-



2001-03-27 Roman Sulzhyk [Bug 1069] Explicit Makefile dependency for 'lib' build.
2001-03-26 PeiYong Zhang When Standalone="yes", it is NOT supposed to

accept element which is defined in external DTD with
#FIXED attribute.

2001-03-26 Andy Heninger Update packageBinaries.pl for ICU 1.8. ICU debug .lib
file names and locations changed.

2001-03-23 Jeff Harrell [Bug 1018] AutoSense looks for "IRIX" when it should
look for "sgi" or "__sgi".

2001-03-22 Roman Sulzhyk [Bug 1069] The Makefiles fail to locate .cpp - > .o
dependency and rebuild .o all the time.

2001-03-22 John Rope [Bug 1021] Accessing an XML file using the file
"protocol" and a UNC path fails to open the file.

2001-03-09 Tinny Ng [Bug 733] Seg fault when trying to parse empty
filename.

2001-03-06 Tinny Ng [Bug 677] Infinite loop caused by malformed XML.
Happen when namespace is on.

2001-03-02 Martin Kalen Enabling libWWW NetAccessor support under UNIX.
Tested with latest tarball of libWWW
(w3c-libwww-5.3.2) under RedHat Linux 6.1.

2001-02-27 Tinny Ng [Bug 676] Linux for S/390 build requires -fPIC.
2001-02-22 Tinny Ng [Bug 678] StdInParse doesn't output filename or

duration.
2001-02-21 Matt Lovett ICUTranscoder::transcodeFrom() expects ICU

function ucnv_toUnicode to return an extra element in
fSrcOffsets to allow us to figure out the last char size,
which in fact it is not. The fix is to compute the last
char size ourselves using the total bytes used.

2001/02/16 Andy Heninger Change limit test to reduce spurious pointer
assignment warnings from BoundsChecker.

2001-02-14 Bob Kline Better FAQ for the checksum error.
2001-02-14 Mark Everline Core dump when UTF-16 encoding contradicts actual

encoding.
2001-02-13 Hiram Clawson Update samples/tests files for on UnixWare 7.1.1 with

gcc 2.95. Add UNIXWARE platform defines to
Makefile.incl, add recognition of sysv5uw7 to
configure.in, and add unixware as recognized platform
to runConfigure.

2001-02-09 Martin Kalen Update support for SCO UnixWare 7 (gcc). Tested
under UnixWare 7.1.1 with gcc version 2.95.2
19991024 (release) with gmake 3.79.1.

2001-02-08 Martin Kalen Enable COMPAQ Tru64 UNIX machines to build
xerces-c with gcc (tested using COMPAQ gcc
version2.95.2 19991024 (release) and Tru64 V5.0
1094).

2001-02-07 Bill Schindler Rearranged statements in Initialize() so that
platformInit() is called before an XMLMutex is created.

2001-02-07 Richard Ko Storage overlay in ucnv_setFromUCallBack.
2001-02-05 Tinny Ng [Bug 766] /src/util/Compilers/CSetDefs.hpp: define

NO_NATIVE_BOOL macro only if not
pre-defined/reserved.

Chapter 11 - Releases Xerces-C++ Documentation

- 113-



2001-02-05 Jordan Naftolin Add createPDF.jar and apachPDFStyle.xsl to convert
documentation xml files to pdf format.

Release Archive
For release information about Xerces-C++ 1.4.0 or earlier, please refer to Release Archive.

Chapter 11 - Releases Xerces-C++ Documentation

- 114-


