
FOP Design: Properties

$Revision: 197410 $

by Karen Lease

Table of contents

1 Introduction..2

2 Issues..2

3 Overview of Processing... 2

4 PropertyListBuilder..2

5 Property datatypes..3

6 Property Makers...3

7 Processing the attribute list.. 4

8 How the Property Maker works... 4

9 Structure of the PropertyList..5

10 Implementing Standard Properties... 5

10.1 Generic properties..5

10.2 Element-specific properties... 6

10.3 Reference properties.. 7

10.4 Corresponding properties...7

11 Mapping... 7

12 Enumerated values... 8

13 Compound property types.. 8

14 Refinement... 9

15 Refined FO Tree...9

PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

1. Introduction

As the input XSL-FO is being parsed and the FO Tree is being built, the attributes of the FO
elements are passed by the parser to the related FO object. The java object that represent the FO
object then converts the attributes into properties that are stored in the FO Tree.

2. Issues

The following are some issues when dealing with properties:

• Initial Property Set
• Inheritance: Some properties can be inherited from parent objects.
• Adoption: The parentage for some elements can move around. Markers are one example.
• Multiple Namespaces: The properties for foreign namespaces must be handled.
• Expressions: XSL-FO expressions can be included in properties.

3. Overview of Processing

The general flow of property processing is as follows:

• As part of FOTreeBuilder.startElement(), FObj.handleAttrs is passed a list
of attributes to be processed for the new FObj.

• FObj.handleAttrs gets a PropertyListBuilder and asks it to create a Property List from the list
of attributes. There is currently only one static PropertyListBuilder, which handles the fo:
namespace.

• FObj.handleAttrs then cross-references the returned PropertyList with the FObj, creates a
PropertyManager to facilitate downstream processing of the PropertyList, and handles the
special case of the writing-mode property.

4. PropertyListBuilder

Each plb object contains a hash of property names and their respective Makers. It may also
contain element-specific property maker hashes; these are based on the local name of the flow
object, ie. table-row, not fo:table-row. If an element-specific property mapping exists, it is
preferred to the generic mapping.

The PLB loops through each attribute in the list, finds an appropriate "Maker" for it, then calls
the Maker to convert the attribute value into a Property object of the correct type, and stores that

FOP Design: Properties

Page 2
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Property in the PropertyList.

5. Property datatypes

The property datatypes are defined in the org.apache.fop.datatypes package, except Number and
String which are java primitives. The FOP datatypes are:

• Number
• String
• ColorType
• Length (has several subclasses)
• CondLength (compound)
• LengthRange (compound)
• Space (compound)
• Keep (compound)

The org.apache.fop.fo.Property class is the superclass for all Property subclasses. There is a
subclass for each kind of property datatype. These are named using the datatype name plus the
word Property, resulting in NumberProperty, StringProperty, and so on. There is also a class
EnumProperty which uses an int primitive to hold enumerated values. There is no
corresponding Enum datatype class.

The Property class provides a "wrapper" around any possible property value. Code manipulating
property values (in layout for example) usually knows what kind (or kinds) of datatypes are
acceptable for a given property and will use the appropriate accessor.

The base Property class defines accessor methods for all FO property datatypes, such as
getNumber(), getColorType(), getSpace(), getEnum(), etc. It doesn't define accessors for SVG
types, since these are handled separately (at least for now.) In the base Property class, all of these
methods return null, except getEnum which returns 0. Individual subclasses return a value of the
appropriate type, such as Length or ColorType. A subclass may also choose to return a
reasonable value for other accessor types. For example, a SpaceProperty will return the optimum
value if asked for a Length.

6. Property Makers

The Property class contains a nested class called Maker. This is the base class for all other
property Makers. It provides basic framework functionality which is overridden by the code
generated by properties.xsl from the *properties.xml files. In particular it provides basic
expression evaluation, using PropertyParser class in the org.apache.fop.fo.expr package.

FOP Design: Properties

Page 3
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Other Property subclasses such as LengthProperty define their own nested Maker classes
(subclasses of Property.Maker). These handle conversion from the Property subclass returned
from expression evaluation into the appropriate subclass for the property.

For each generic or specific property definition in the properties.xml files, a new subclass of one
of the Maker classes is created. Note that no new Property subclasses are created, only new
PropertyMaker subclasses. Once the property value has been parsed and stored, it has no specific
functionality. Only the Maker code is specific. Maker subclasses define such aspects as keyword
substitutions, whether the property can be inherited or not, which enumerated values are legal,
default values, corresponding properties and specific datatype conversions.

The PLB finds a "Maker" for the property based on the attribute name and the element name.
Most Makers are generic and handle the attribute on any element, but it's possible to set up an
element-specific property Maker. The attribute name to Maker mappings are automatically
created during the code generation phase by processing the XML property description files.

7. Processing the attribute list

The PLB first looks to see if the font-size property is specified, since it sets up relative units
which can be used in other property specifications. Each attribute is then handled in turn. If the
attribute specifies part of a compound property such as space-before.optimum, the PLB looks to
see if the attribute list also contains the "base" property (space-before in this case) and processes
that first.

8. How the Property Maker works

There is a family of Maker objects for each of the property datatypes, such as Length, Number,
Enumerated, Space, etc. But since each Property has specific aspects such as whether it's
inherited, its default value, its corresponding properties, etc. there is usually a specific Maker for
each Property. All these Maker classes are created during the code generation phase by
processing (using XSLT) the XML property description files to create Java classes.

The Maker first checks for "keyword" values for a property. These are things like "thin, medium,
thick" for the border-width property. The datatype is really a Length but it can be specified using
these keywords whose actual value is determined by the "User Agent" rather than being specified
in the XSL standard. For FOP, these values are currently defined in foproperties.xml. The
keyword value is just a string, so it still needs to be parsed as described next.

The Maker also checks to see if the property is an Enumerated type and then checks whether the
value matches one of the specified enumeration values.

FOP Design: Properties

Page 4
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Otherwise the Maker uses the property parser in the fo.expr package to evaluate the attribute
value and return a Property object. The parser interprets the expression language and performs
numeric operations and function call evaluations.

If the returned Property value is of the correct type (specificed in foproperties.xml, where else?),
the Maker returns it. Otherwise, it may be able to convert the returned type into the correct type.

Some kinds of property values can't be fully resolved during FO tree building because they
depend on layout information. This is the case of length values specified as percentages and of
the special proportional-column-width(x) specification for table-column widths. These are stored
as special kinds of Length objects which are evaluated during layout. Expressions involving
"em" units which are relative to font-size _are_ resolved during the FO tree building however.

9. Structure of the PropertyList

The PropertyList extends HashMap and its basic function is to associate Property value objects
with Property names. The Property objects are all subclasses of the base Property class. Each one
simply contains a reference to one of the property datatype objects. Property provides accessors
for all known datatypes and various subclasses override the accessor(s) which are reasonable for
the datatype they store.

The PropertyList itself provides various ways of looking up Property values to handle such
issues as inheritance and corresponding properties.

The main logic is:
If the property is a writing-mode relative property (using start, end, before or after in its name),
the corresponding absolute property value is returned if it's explicitly set on this FO.
Otherwise, the writing-mode relative value is returned if it's explicitly set. If the property is
inherited, the process repeats using the PropertyList of the FO's parent object. (This is easy
because each PropertyList points to the PropertyList of the nearest ancestor FO.) If the property
isn't inherited or no value is found at any level, the initial value is returned.

10. Implementing Standard Properties

Because the properties defined in the standard are basically static, FOP currently builds the
source code for the related Property classes from an XML data file. All properties are specified
in src/codegen/foproperties.xml. The related classes are created automatically during the build
process by applying an XSLT stylesheet to the foproperties.xml file.

10.1. Generic properties

FOP Design: Properties

Page 5
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

In the properties xml files, one can define generic property definitions which can serve as a basis
for individual property definitions. There are currently several generic properties defined in
foproperties.xml. An example is GenericColor, which defines basic properties for all ColorType
properties. Since the generic specification doesn't include the inherited or default elements, these
should be set in each property which is based on GenericColor. Here is an example:

<property type='generic'> <name>background-color</name>
<use-generic>GenericColor</use-generic>
<inherited>false</inherited> <default>transparent</default>
</property>

A generic property specification can include all of the elements defined for the property element
in the DTD, including the description of components for compound properties, and the
specification of keyword shorthands.

Generic property specifications can be based on other generic specifications. An example is
GenericCondPadding template which is based on the GenericCondLength definition but which
extends it by adding an inherited element and a default value for the length component.

Generic properties can specify enumerated values, as in the GenericBorderStyle template. This
means that the list of values, which is used by 8 properties (the "absolute" and
"writing-mode-relative" variants for each BorderStyle property) is only specified one time.

When a property includes a "use-generic" element and includes no other elements (except the
"name" element), then no class is generated for the property. Instead the generated mapping will
associate this property directly with an instance of the generic Maker.

A generic class may also be hand-coded, rather than generated from the properties file.
Properties based on such a generic class are indicated by the attribute ispropclass='true'
on the use-generic element.

This is illustrated by the SVG properties, most of which use one of the Property subclasses
defined in the org.apache.fop.svg package. Although all of these properties are now declared in
svgproperties.xml, no specific classes are generated. Classes are only generated for those SVG
properties which are not based on generic classes defined in svg.

10.2. Element-specific properties

Properties may be defined for all flow objects or only for particular flow objects. A
PropertyListBuilder object will always look first for a Property.Maker for the flow object before
looking in the general list. These are specified in the element-property-list section of
the properties.xml files. The localname element children of this element specify for which

FOP Design: Properties

Page 6
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

flow-object elements the property should be registered.

NOTE: All the properties for an object or set of objects must be specified in a single
element-property-list element. If the same localname appears in several element lists, the later set
of properties will hide the earlier ones! Use the ref functionality if the same property is to be
used in different sets of element-specific mappings.

10.3. Reference properties

A property element may have a type attribute with the value ref. The content of the name child
element is the name of the referenced property (not its class-name!). This indicates that the
property specification has already been given, either in this same specification file or in a
different one (indicated by the family attribute). The value of the family attribute is XX where
the file XXproperties.xml defines the referenced property. For example, some SVG objects may
have properties defined for FO. Rather than defining them again with a new name, the SVG
properties simply reference the defined FO properties. The generating mapping for the SVG
properties will use the FO Maker classes.

10.4. Corresponding properties

Some properties have both absolute and writing-mode-relative forms. In general, the absolute
forms are equivalent to CSS properties, and the writing-mode-relative forms are based on
DSSSL. FO files may use either or both forms. In FOP code, a request for an absolute form will
retrieve that value if it was specified on the FO; otherwise the corresponding relative property
will be used if it was specified. However, a request for a relative form will only use the specified
relative value if the corresponding absolute value was not specified for that FO.

Corresponding properties are specified in the properties.xml files using the element
corresponding, which has at least one propval child and may have a propexpr child, if
the corresponding value is calculated based on several other properties, as for start-indent.

NOTE: most current FOP code accesses the absolute variants of these properties, notably for
padding, border, height and width attributes. However it does use start-indent and end-indent,
rather than the "absolute" margin properties.

11. Mapping

The XSL script propmap.xsl is used to generate property mappings based on both
foproperties.xml and svgproperties.xml. The mapping classes in the main fop packages simply
load these automatically generated mappings. The mapping code still uses the static "maker"

FOP Design: Properties

Page 7
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

function of the generated object to obtain a Maker object. However, for all generated classes, this
method returns an instance of the class itself (which is a subclass of Property.Maker) and not an
instance of a separate nested Maker class.

For most SVG properties which use the SVG Property classes directly, the generated mapper
code calls the "maker" method of the SVG Property class, which returns an instance of its nested
Maker class.

The property generation also handles element-specific property mappings as specified in the
properties XML files.

12. Enumerated values

For any property whose datatype is Enum or which contains possible enumerated values, FOP
code may need to access enumeration constants. These are defined in the interfaces whose name
is the same as the generated class name for the property, for example
BorderBeforeStyle.NONE. These interface classes are generated by the XSL script
enumgen.xsl. A separate interface defining the enumeration constants is always generated for
every property which uses the constants, even if the constants themselves are defined in a generic
class, as in BorderStyle.

If a subproperty or component of a compound property has enumerated values, the constants are
defined in a nested interface whose name is the name of the subproperty (using appropriate
capitalization rules). For example, the keep properties may have values of AUTO or FORCE or
an integer value. These are defined for each kind of keep property. For example, the
keep-together property is a compound property with the components within-line, within-column
and within-page. Since each component may have the values AUTO or FORCE, the
KeepTogether interface defines three nested interfaces, one for each component, and each
defines these two constants. An example of a reference in code to the constant is
KeepTogether.WithinPage.AUTO.

13. Compound property types

Some XSL FO properties are specified by compound datatypes. In the FO file, these are defined
by a group of attributes, each having a name of the form property.component, for example
space-before.minimum. These are several compound datatypes:

• LengthConditional, with components length and conditionality
• LengthRange, with components minimum, optimum, and maximum
• Space, with components minimum, optimum, maximum, precedence and conditionality
• Keep, with components within-line, within-column and within-page

FOP Design: Properties

Page 8
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

These are described in the properties.xml files using the element compound which has
subproperty children. A subproperty element is much like a property element, although it
may not have an inherited child element, as only a complete property object may be
inherited.

Specific datatype classes exist for each compound property. Each component of a compound
datatype is itself stored as a Property object. Individual components may be accessed either by
directly performing a get operation on the name, using the "dot" notation, eg.
get("space-before.optimum"); or by using an accessor on the compound property, eg.
get("space-before").getOptimum(). In either case, the result is a Property object,
and the actual value may be accessed (in this example) by using the "getLength()" accessor.

14. Refinement

The Refinement step is part of reading and using the properties which may happen immediately
or during the layout process. FOP does not currently use a separate Refinement process, but
tends to handle refining steps as the FO Tree is built.

15. Refined FO Tree

The Refined FO Tree is the result of the Refinement process.

FOP Design: Properties

Page 9
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 Introduction
	2 Issues
	3 Overview of Processing
	4 PropertyListBuilder
	5 Property datatypes
	6 Property Makers
	7 Processing the attribute list
	8 How the Property Maker works
	9 Structure of the PropertyList
	10 Implementing Standard Properties
	10.1 Generic properties
	10.2 Element-specific properties
	10.3 Reference properties
	10.4 Corresponding properties

	11 Mapping
	12 Enumerated values
	13 Compound property types
	14 Refinement
	15 Refined FO Tree

