
Apache FOP: Embedding

How to Embed FOP in a Java application
$Revision: 357081 $

Table of contents

1 Overview..3

2 Basic Usage Pattern... 3

2.1 Logging..5

2.2 Processing XSL-FO...5

2.3 Processing XSL-FO generated from XML+XSLT... 5

3 Input Sources..6

4 Configuring Apache FOP Programmatically...7

5 Using a Configuration File...8

6 Hints...9

6.1 Object reuse... 9

6.2 AWT issues... 9

6.3 Getting information on the rendering process... 9

7 Improving performance..9

8 Multithreading FOP... 10

9 Examples..10

9.1 ExampleFO2PDF.java...10

9.2 ExampleXML2FO.java... 10

9.3 ExampleXML2PDF.java... 11

9.4 ExampleObj2XML.java.. 11

9.5 ExampleObj2PDF.java..11

9.6 ExampleDOM2PDF.java...12

9.7 ExampleSVG2PDF.java (PDF Transcoder example)... 12

PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

9.8 Final notes... 12

Apache FOP: Embedding

Page 2
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

1. Overview

Review Running FOP for important information that applies to embedded applications as well as
command-line use, such as options and performance.

To embed Apache FOP in your application, instantiate org.apache.fop.apps.Fop. You'll tell FOP
in the constructor which output format (i.e. Renderer) to use. Afterwards, you'll set the
OutputStream to use to output the results of the rendering (where applicable). You can customize
FOP's behaviour by supplying your own FOUserAgent instance. The FOUserAgent can, for
example, be used to set your own Renderer instance (details below). Finally, you retrieve a SAX
DefaultHandler instance from the Fop instance to which you can send your FO file.

2. Basic Usage Pattern

Apache FOP relies heavily on JAXP. It uses SAX events exclusively to receive the XSL-FO
input document. It is therefore a good idea that you know a few things about JAXP (which is a
good skill anyway). Let's look at the basic usage pattern for FOP...

Here is the basic pattern to render an XSL-FO file to PDF:

import org.apache.fop.apps.Fop;
import org.apache.fop.apps.MimeConstants;

/*..*/

// Step 1: Construct fop with desired output format
Fop fop = new Fop(MimeConstants.MIME_PDF);

// Step 2: Setup output stream.
// Note: Using BufferedOutputStream for performance reasons (helpful with
FileOutputStreams).
OutputStream out = new BufferedOutputStream(new FileOutputStream(new
File("C:/Temp/myfile.pdf")));
try {
fop.setOutputStream(out);

// Step 3: Setup JAXP using identity transformer
TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformer = factory.newTransformer(); // identity transformer

// Step 4: Setup input and output for XSLT transformation
// Setup input stream
Source src = new StreamSource(new File("C:/Temp/myfile.fo"));

// Resulting SAX events (the generated FO) must be piped through to FOP

Apache FOP: Embedding

Page 3
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

running.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Result res = new SAXResult(fop.getDefaultHandler());

// Step 5: Start XSLT transformation and FOP processing
transformer.transform(src, res);

} finally {
//Clean-up
out.close();

}

Let's discuss these 5 steps in detail:

• Step 1: You create a new Fop instance and set it up for PDF output.
• Step 2: You tell FOP where to save the generated PDF file later. It's a good idea to buffer the

OutputStream as demonstrated to improve performance.
• Step 3: We recommend that you use JAXP Transformers even if you don't do XSLT

transformations to generate the XSL-FO file. This way you can always use the same basic
pattern. The example here sets up an "identity transformer" which just passes the input
(Source) unchanged to the output (Result). You don't have to work with a SAXParser if you
don't do any XSLT transformations.

• Step 4: Here you set up the input and output for the XSLT transformation. The Source object
is set up to load the "myfile.fo" file. The Result is set up so the output of the XSLT
transformation is sent to FOP. The FO file is sent to FOP in the form of SAX events which is
the most efficient way. Please always avoid saving intermediate results to a file or a memory
buffer because that affects performance negatively.

• Step 5: Finally, we start the XSLT transformation by starting the JAXP Transformer. As
soon as the JAXP Transformer starts to send its output to FOP, FOP itself starts its
processing in the background. When the transform() method returns FOP will also have
finished converting the FO file to a PDF file and you can close the OutputStream.

Tip!
It's a good idea to enclose the whole conversion in a try..finally statement. If you close the OutputStream in the finally section, this
will make sure that the OutputStream is properly closed even if an exception occurs during the conversion.

If you're not totally familiar with JAXP Transformers, please have a look at the Embedding
examples below. The section contains examples for all sorts of use cases. If you look at all of
them in turn you should be able to see the patterns in use and the flexibility this approach offers
without adding too much complexity.

This may look complicated at first, but it's really just the combination of an XSL transformation
and a FOP run. It's also easy to comment out the FOP part for debugging purposes, for example
when you're tracking down a bug in your stylesheet. You can easily write the XSL-FO output
from the XSL transformation to a file to check if that part generates the expected output. An
example for that can be found in the Embedding examples (See "ExampleXML2FO").

Apache FOP: Embedding

Page 4
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Note:
Please be aware that you should not reuse a Fop instance for additional rendering runs. Recreate a new instance for each rendering
run. This is a relatively inexpensive operation and will be further optimized shortly.

2.1. Logging

Logging is now a little different than it was in FOP 0.20.5. We've switched from Avalon
Logging to Jakarta Commons Logging. While with Avalon Logging the loggers were directly
given to FOP, FOP now retrieves its logger(s) through a statically available LogFactory. This is
similar to the general pattern that you use when you work with Apache Log4J directly, for
example. We call this "static logging" (Commons Logging, Log4J) as opposed to "instance
logging" (Avalon Logging). This has a consequence: You can't give FOP a logger for each
processing run anymore. The log output of multiple, simultaneously running FOP instances is
sent to the same logger.

Note:
We know this may be an issue in multi-threaded server environments if you'd like to know what's going on in every single FOP
processing run. We're planning to add an additional feedback facility to FOP which can be used to obtain all sorts of specific
feedback (validation messages, layout problems etc.). "Static logging" is mainly interesting for a developer working on FOP and for
advanced users who are debugging FOP. We don't consider the logging output to be useful to normal FOP users. Please have some
patience until we can add this feature or jump in and help us build it. We've set up a Wiki page which documents what we're going
to build.

By default, Jakarta Commons Logging uses JDK logging (available in JDKs 1.4 or higher) as its
backend. You can configure Commons Logging to use an alternative backend, for example
Log4J. Please consult the documentation for Jakarta Commons Logging on how to configure
altentive backends.

2.2. Processing XSL-FO

Once the Fop instance is set up, call getDefaultHandler() to obtain a SAX
DefaultHandler instance to which you can send the SAX events making up the XSL-FO
document you'd like to render. FOP processing starts as soon as the DefaultHandler's
startDocument() methods is called. Processing stops again when the DefaultHandler's
endDocument() method is called. Please refer to the basic usage pattern shown above to
render a simply XSL-FO document.

2.3. Processing XSL-FO generated from XML+XSLT

If you want to process XSL-FO generated from XML using XSLT we recommend again using

Apache FOP: Embedding

Page 5
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://jakarta.apache.org/commons/logging/
http://wiki.apache.org/xmlgraphics-fop/ProcessingFeedback
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

standard JAXP to do the XSLT part and piping the generated SAX events directly through to
FOP. The only thing you'd change to do that on the basic usage pattern above is to set up the
Transformer differently:

//before (without XSLT):
//Transformer transformer = factory.newTransformer(); // identity

transformer

//after (with XSLT):
Source xslt = new StreamSource(new File("mystylesheet.xsl"));
Transformer transformer = factory.newTransformer(xslt);

3. Input Sources

The input XSL-FO document is always handled internally as SAX (see the Parsing Design
Document for the rationale).

However, you may not always have your input document available as a SAX stream. But with
JAXP it's easy to convert different input sources to a SAX stream so you can pipe it into FOP.
That sounds more difficult than it is. You simply have to set up the right Source instance as input
for the JAXP transformation. A few examples:

• URL: Source src = new
StreamSource("http://localhost:8080/testfile.xml");

• File: Source src = new StreamSource(new
File("C:/Temp/myinputfile.xml"));

• String: Source src = new StreamSource(new
StringReader(myString)); //myString is a String

• InputStream: Source src = new StreamSource(new
MyInputStream(something));

• Byte Array: Source src = new StreamSource(new
ByteArrayInputStream(myBuffer)); //myBuffer is a byte[] here

• DOM: Source src = new DOMSource(myDocument); //myDocument is a
Document or a Node

• Java Objects: Please have a look at the Embedding examples which contains an example for
this.

There are a variety of upstream data manipulations possible. For example, you may have a DOM
and an XSL stylesheet; or you may want to set variables in the stylesheet. Interface
documentation and some cookbook solutions to these situations are provided in Xalan Basic
Usage Patterns.

Apache FOP: Embedding

Page 6
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

../dev/design/parsing.html
../dev/design/parsing.html
http://xml.apache.org/xalan-j/usagepatterns.html
http://xml.apache.org/xalan-j/usagepatterns.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

4. Configuring Apache FOP Programmatically

Apache FOP provides a class called FOUserAgent which is used to customize FOP's behaviour.
If you wish to do that, the first step is to create your own instance of FOUserAgent and pass that
to the Fop constructor:

FOUserAgent userAgent = new FOUserAgent();
Fop fop = new Fop(MimeConstants.MIME_POSTSCRIPT, userAgent);

You can do all sorts of things on the user agent:

• The base URL to use when resolving relative URLs. Example:
userAgent.setBaseURL("file:///C:/Temp/");

• Disable strict validation. When disabled FOP is less strict about the rules established by the
XSL-FO specification. Example:
userAgent.setStrictValidation(false);

• Set the producer of the document. This is metadata information that can be used for certain
output formats such as PDF. The default producer is "Apache FOP". Example:
userAgent.setProducer("MyKillerApplication");

• Set the creating user of the document. This is metadata information that can be used for
certain output formats such as PDF. Example:
userAgent.setCreator("John Doe");

• Set the author of the document. This is metadata information that can be used for certain
output formats such as PDF. Example:
userAgent.setAuthor("John Doe");

• Override the creation date and time of the document. This is metadata information that can
be used for certain output formats such as PDF. Example:
userAgent.setCreationDate(new Date());

• Set the title of the document. This is metadata information that can be used for certain output
formats such as PDF. Example:
userAgent.setTitle("Invoice No 138716847");

• Set the keywords of the document. This is metadata information that can be used for certain
output formats such as PDF. Example:
userAgent.setKeywords("XML XSL-FO");

• Set the source resolution for the document. This is used internally to determine the pixel
size for SVG images and bitmap images without resolution information. Default: 72 dpi.
Example:
userAgent.setSourceResolution(96); //=96dpi (dots/pixels per Inch)

• Set the target resolution for the document. This is used to specify the output resolution for
bitmap images generated by bitmap renderers (such as the TIFF renderer) and by bitmaps

Apache FOP: Embedding

Page 7
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

generated by Apache Batik for filter effects and such. Default: 72 dpi. Example:
userAgent.setTargetResolution(300); //=300dpi (dots/pixels per Inch)

• Set your own Renderer instance. If you want to supply your own renderer or configure a
Renderer in a special way you can give the instance to the FOUserAgent. Normally, the
Renderer instance is created by FOP. Example:
userAgent.setRendererOverride(myRenderer); //myRenderer is an
org.apache.fop.render.Renderer

• Set your own FOEventHandler instance. If you want to supply your own FOEventHandler
or configure an FOEventHandler subclass in a special way you can give the instance to the
FOUserAgent. Normally, the FOEventHandler instance is created by FOP. Example:
userAgent.setFOEventHandlerOverride(myFOEventHandler); //myFOEventHandler
is an org.apache.fop.fo.FOEventHandler

• Manually add a ElementMapping instance. If you want to supply a special FOP extension
you can give the instance to the FOUserAgent. Normally, the FOP extensions can be
automatically detected (see the documentation on extension for more info).
userAgent.addElementMapping(myElementMapping); //myElementMapping is a
org.apache.fop.fo.ElementMapping

• Set a URIResolver for custom URI resolution. By supplying a JAXP URIResolver you can
add custom URI resolution functionality to FOP. For example, you can use Apache XML
Commons Resolver to make use of XCatalogs.
userAgent.setURIResolver(myResolver); //myResolver is a
javax.xml.transform.URIResolver

• Set the parameters for PDF encryption for the document. If you create PDF files you can
instantiate and set an org.apache.fop.pdf.PDFEncryptionParams object. Example:
userAgent.setPDFEncryptionParams(new PDFEncryptionParams(null, "owner",
false, false, true, true));

• Enable an alternative set of rules for text indents that tries to mimic the behaviour of many
commercial FO implementations that chose to break the specification in this aspect. The
default of this option is 'false' which causes Apache FOP to behave exactly as describes in
the specification. To enable the alternative behaviour, call:
userAgent.setBreakIndentInheritanceOnReferenceAreaBoundary(true);

Note:
You should not reuse an FOUserAgent instance between FOP rendering runs although you can. Especially in multi-threaded
environment, this is a bad idea.

5. Using a Configuration File

Instead of setting the parameters manually in code as shown above you can also set many values
from an XML configuration file:

Apache FOP: Embedding

Page 8
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xml.apache.org/commons/components/resolver/
http://xml.apache.org/commons/components/resolver/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

import org.apache.avalon.framework.configuration.Configuration;
import org.apache.avalon.framework.configuration.DefaultConfigurationBuilder;

/*..*/

DefaultConfigurationBuilder cfgBuilder = new DefaultConfigurationBuilder();
Configuration cfg = cfgBuilder.buildFromFile(new File("C:/Temp/mycfg.xml"));
userAgent.setUserConfig(cfg);

The layout of the configuration file is described on the Configuration page.

6. Hints

6.1. Object reuse

At the moment, the Fop instances shouldn't be reused. Please recreate Fop and FOUserAgent
instances for each rendering run until further notice. We will likely add an additional object
which will carry information and configuration which can be reused between rendering runs to
further optimize this.

6.2. AWT issues

If your XSL-FO files contain SVG then Apache Batik will be used. When Batik is initialised it
uses certain classes in java.awt that intialise the Java AWT classes. This means that a daemon
thread is created by the JVM and on Unix it will need to connect to a DISPLAY.

The thread means that the Java application may not automatically quit when finished, you will
need to call System.exit(). These issues should be fixed in the JDK 1.4.

If you run into trouble running FOP on a head-less server, please see the notes on Batik.

6.3. Getting information on the rendering process

To get the number of pages that were rendered by FOP you can call Fop.getResults().
This returns a FormattingResults object where you can lookup the number of pages
produced. It also gives you the page-sequences that were produced along with their id attribute
and their number of pages. This is particularly useful if you render multiple documents (each
enclosed by a page-sequence) and have to know the number of pages of each document.

7. Improving performance

Apache FOP: Embedding

Page 9
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

configuration.html
graphics.html#batik
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

There are several options to consider:

• Whenever possible, try to use SAX to couple the individual components involved (parser,
XSL transformer, SQL datasource etc.).

• Depending on the target OutputStream (in case of an FileOutputStream, but not for a
ByteArrayOutputStream, for example) it may improve performance considerably if you
buffer the OutputStream using a BufferedOutputStream: fop.setOutputStream(new
java.io.BufferedOutputStream(out));
Make sure you properly close the OutputStream when FOP is finished.

• Cache the stylesheet. If you use the same stylesheet multiple times you can setup a JAXP
Templates object and reuse it each time you do the XSL transformation. (More
information can be found here.)

• Use an XSLT compiler like XSLTC that comes with Xalan-J.

8. Multithreading FOP

Apache FOP may currently not be completely thread safe. FOP uses some static variables (for
example for the image cache). This code has not been fully tested for multi-threading issues, yet.

There is also a known issue with fonts being jumbled between threads when using the
Java2D/AWT renderer (which is used by the -awt and -print output options). In general, you
cannot safely run multiple threads through the AWT renderer.

9. Examples

The directory "{fop-dir}/examples/embedding" contains several working examples. In contrast
to the examples above the examples here primarily use JAXP for XML access. This may be
easier to understand for people familiar with JAXP.

9.1. ExampleFO2PDF.java

This example demonstrates the basic usage pattern to transform an XSL-FO file to PDF using
FOP.

Example XSL-FO to PDF

9.2. ExampleXML2FO.java

This example has nothing to do with FOP. It is there to show you how an XML file can be
converted to XSL-FO using XSLT. The JAXP API is used to do the transformation. Make sure

Apache FOP: Embedding

Page 10
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://www.javaworld.com/javaworld/jw-05-2003/jw-0502-xsl.html
http://xml.apache.org/xalan-j/xsltc_usage.html
http://svn.apache.org/viewcvs.cgi/xmlgraphics/fop/trunk/examples/embedding/java/embedding/ExampleFO2PDF.java?view=markup
http://svn.apache.org/viewcvs.cgi/xmlgraphics/fop/trunk/examples/embedding/java/embedding/ExampleXML2FO.java?view=markup
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

you've got a JAXP-compliant XSLT processor in your classpath (ex. Xalan).

Example XML to XSL-FO

9.3. ExampleXML2PDF.java

This example demonstrates how you can convert an arbitrary XML file to PDF using XSLT and
XSL-FO/FOP. It is a combination of the first two examples above. The example uses JAXP to
transform the XML file to XSL-FO and FOP to transform the XSL-FO to PDF.

Example XML to PDF (via XSL-FO)
The output (XSL-FO) from the XSL transformation is piped through to FOP using SAX events.
This is the most efficient way to do this because the intermediate result doesn't have to be saved
somewhere. Often, novice users save the intermediate result in a file, a byte array or a DOM tree.
We strongly discourage you to do this if it isn't absolutely necessary. The performance is
significantly higher with SAX.

9.4. ExampleObj2XML.java

This example is a preparatory example for the next one. It's an example that shows how an
arbitrary Java object can be converted to XML. It's an often needed task to do this. Often people
create a DOM tree from a Java object and use that. This is pretty straightforward. The example
here however shows how to do this using SAX which will probably be faster and not even more
complicated once you know how this works.

Example Java object to XML
For this example we've created two classes: ProjectTeam and ProjectMember (found in
xml-fop/examples/embedding/java/embedding/model). They represent the same data structure
found in xml-fop/examples/embedding/xml/xml/projectteam.xml. We want to serialize a project
team with several members which exist as Java objects to XML. Therefore we created the two
classes: ProjectTeamInputSource and ProjectTeamXMLReader (in the same place as
ProjectTeam above).

The XMLReader implementation (regard it as a special kind of XML parser)is responsible for
creating SAX events from the Java object. The InputSource class is only used to hold the
ProjectTeam object to be used.

Have a look at the source of ExampleObj2XML.java to find out how this is used. For more
detailed information see other resources on JAXP (ex. An older JAXP tutorial).

9.5. ExampleObj2PDF.java

Apache FOP: Embedding

Page 11
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xml.apache.org/xalan-j
http://svn.apache.org/viewcvs.cgi/xmlgraphics/fop/trunk/examples/embedding/java/embedding/ExampleXML2PDF.java?view=markup
http://svn.apache.org/viewcvs.cgi/xmlgraphics/fop/trunk/examples/embedding/java/embedding/ExampleObj2XML.java?view=markup
http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/xslt/3_generate.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

This example combines the previous and the third to demonstrate how you can transform a Java
object to a PDF directly in one smooth run by generating SAX events from the Java object that
get fed to an XSL transformation. The result of the transformation is then converted to PDF
using FOP as before.

Example Java object to PDF (via XML and XSL-FO)

9.6. ExampleDOM2PDF.java

This example has FOP use a DOMSource instead of a StreamSource in order to use a DOM tree
as input for an XSL transformation.

9.7. ExampleSVG2PDF.java (PDF Transcoder example)

This example shows use of the PDF Transcoder, a sub-application within FOP. It is used to
generate a PDF document from an SVG file.

9.8. Final notes

These examples should give you an idea of what's possible. It should be easy to adjust these
examples to your needs. Also, if you have other examples that you think should be added here,
please let us know via either the fop-users or fop-dev mailing lists. Finally, for more help please
send your questions to the fop-users mailing list.

Apache FOP: Embedding

Page 12
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://svn.apache.org/viewcvs.cgi/xmlgraphics/fop/trunk/examples/embedding/java/embedding/ExampleObj2PDF.java?view=markup
http://svn.apache.org/viewcvs.cgi/xmlgraphics/fop/trunk/examples/embedding/java/embedding/ExampleDOM2PDF.java?view=markup
http://svn.apache.org/viewcvs.cgi/xmlgraphics/fop/trunk/examples/embedding/java/embedding/ExampleSVG2PDF.java?view=markup
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 Overview
	2 Basic Usage Pattern
	2.1 Logging
	2.2 Processing XSL-FO
	2.3 Processing XSL-FO generated from XML+XSLT

	3 Input Sources
	4 Configuring Apache FOP Programmatically
	5 Using a Configuration File
	6 Hints
	6.1 Object reuse
	6.2 AWT issues
	6.3 Getting information on the rendering process

	7 Improving performance
	8 Multithreading FOP
	9 Examples
	9.1 ExampleFO2PDF.java
	9.2 ExampleXML2FO.java
	9.3 ExampleXML2PDF.java
	9.4 ExampleObj2XML.java
	9.5 ExampleObj2PDF.java
	9.6 ExampleDOM2PDF.java
	9.7 ExampleSVG2PDF.java (PDF Transcoder example)
	9.8 Final notes

