
FOP Design: Renderers

$Revision: 197410 $

by Keiron Liddle

Table of contents

1 Introduction..2

2 Design Issues..2

2.1 Renderers are Responsible.. 2

2.2 Send Output to a Stream..2

3 Fonts...2

4 Render Context.. 2

5 XML Handling...3

6 Extensions.. 3

7 Renderer Implementations... 3

8 Adding a Renderer... 5

9 Multiple Renderers...5

10 Status.. 6

10.1 To Do... 6

10.2 Work In Progress... 6

10.3 Completed..6

PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

1. Introduction

A renderer is primarily designed to convert a given area tree into the output document format. It
should be able to produce pages and fill the pages with the text and graphical content. Usually
the output is sent to an output stream.

Some output formats may support extra information that is not available from the area tree or
depends on the destination of the document.

Each renderer is given an area tree to render to its output format. The area tree is simply a
representation of the pages and the placement of text and graphical objects on those pages.

The renderer will be given each page as it is ready and an output stream to write the data out. All
pages are supplied in the order they appear in the document. In order to save memory it is
possble to render the pages out of order. Any page that is not ready to be rendered is setup by the
renderer first so that it can reserve a space or reference for when the page is ready to be
rendered.The renderer is responsible for managing the output format and associated data and
flow.

2. Design Issues

2.1. Renderers are Responsible

Each renderer is totally responsible for its output format.

2.2. Send Output to a Stream

3. Fonts

Because font metrics (and therefore layout) are obtained in two different ways depending on the
renderer, the renderer actually sets up the fonts being used. The font metrics are used during the
layout process to determine the size of characters.

4. Render Context

The render context is used by handlers. It contains information about the current state of the

FOP Design: Renderers

Page 2
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

renderer, such as the page, the position, and any other miscellanous objects that are required to
draw into the page.

5. XML Handling

A document may contain information in the form of XML for an image or instream foreign
object. This XML is handled through the user agent. A standard extension for PDF is the SVG
handler.

If there is XML in the SVG namespace it is given to the handler which renders the SVG into the
pdf document at the given location. This separation means that other XML handlers can easily be
added.

6. Extensions

Document level extensions are handled with an extension handler. This handles the information
from the AreaTree and adds renders it to the document. An example is the pdf bookmarks. This
information first needs to have all references resolved. Then the extension handler is ready to put
the information into the pdf document.

7. Renderer Implementations

Name Type Font Source Font
Embedding?

Out of Order
Rendering?

Notes

PDF Paginated FOP Yes Yes Uses the
PDFDocument
classes to
create a PDF
document.
Most of the
work is to
insert text or
create lines.
SVG is
handled by the
XML handler
that uses the
PDFGraphics2D
and batik to
draw the svg

FOP Design: Renderers

Page 3
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

into the pdf
page.

PostScript Paginated FOP Not
implemented

? Similar to
PDF.

PCL Paginated FOP ? ? Similar to
PDF.

SVG Paginated ? ? ? Creates a
single svg
document that
contains all
the pages
rendered with
page
sequences
horizontally
and pages
vertically.
Adds links
between the
pages so that
it can be
viewed by
clicking on the
page to go to
the next page.

TXT Paginated N/A N/A No Outputs to a
text document.

AWT Paginated AWT N/A ? This draws the
pages into an
AWT graphic.

XML Paginated FOP No No Creates an
XML file that
represents the
AreaTree.

Print Paginated AWT ? No Prints the
document
using the java
printing
facitlities. The
AWT
rendering is
used to draw

FOP Design: Renderers

Page 4
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

the pages
onto the
printjob.

RTF Structural N/A N/A No Structural
format uses a
different
rendering
mechanism.

MIF Structural N/A N/A No Structural
format uses a
different
rendering
mechanism.

8. Adding a Renderer

You can add other renderers by implementing the Renderer interface. However, the
AbstractRenderer does most of what is needed, including iterating through the tree parts, so it is
probably better to extend this. This means that you only need to implement the basic
functionality such as text, images, and lines. AbstractRenderer's methods can easily be
overridden to handle things in a different way or do some extra processing.

The relevent AreaTree structures that will need to be rendered are:

• Page
• Viewport
• Region
• Span
• Block
• Line
• Inline

A renderer implementation does the following:

• render each individual page
• clip and align child areas to a viewport
• handle all types of inline area, text, image etc.
• draw various lines and rectangles

9. Multiple Renderers

FOP Design: Renderers

Page 5
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

The layout of the document depends mainly on the font being used. If two renderers have the
same font metrics then it is possible to use the same Area Tree to render both. This can be
handled by the AreaTree Handler.

10. Status

10.1. To Do

10.2. Work In Progress

10.3. Completed

• new renderer model
• new interface for structured documents, rtf and mif
• added handlers for xml in renderer

FOP Design: Renderers

Page 6
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 Introduction
	2 Design Issues
	2.1 Renderers are Responsible
	2.2 Send Output to a Stream

	3 Fonts
	4 Render Context
	5 XML Handling
	6 Extensions
	7 Renderer Implementations
	8 Adding a Renderer
	9 Multiple Renderers
	10 Status
	10.1 To Do
	10.2 Work In Progress
	10.3 Completed

