
Apache FOP: Graphics Formats

$Revision: 393467 $

Table of contents

1 Overview of Graphics Support.. 2

2 Graphics Packages... 3

2.1 FOP Native.. 3

2.2 Batik codecs...3

2.3 Image I/O (JDK 1.4 or higher).. 3

2.4 JIMI... 3

2.5 JAI (Java Advanced Imaging API)..3

2.6 Batik.. 4

3 BMP... 4

4 EPS...4

5 JPEG.. 5

6 PNG..5

7 SVG..5

7.1 Introduction... 5

7.2 Placing SVG Graphics into PDF... 5

7.3 Placing SVG Text into PDF.. 6

7.4 Scaling... 6

7.5 Known Problems... 7

8 TIFF... 7

9 Graphics Resolution...7

10 Image caching...8

PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

1. Overview of Graphics Support

The table below summarizes the theoretical support for graphical formats within FOP. In other
words, within the constraints of the limitations listed here, these formats should work. However,
many of them have not been tested, and there may be limitations that have not yet been
discovered or documented. The packages needed to support some formats are not included in the
FOP distribution and must be installed separately. Follow the links in the "Support Thru" column
for more details.

Format Type FOP
native

support

Batik SVG Batik
codecs

Image I/O JAI JIMI

BMP
(Microsoft
Windows
Bitmap)

bitmap X

EPS
(Encapsulated
PostScript)

metafile
(both
bitmap
and
vector),
probably
most
frequently
used for
vector
drawings

(X)

GIF
(Graphics
Interchange
Format)

bitmap X X X X

JPEG
(Joint
Photographic
Experts
Group)

bitmap (X)

PNG
(Portable
Network
Graphic)

bitmap X

Apache FOP: Graphics Formats

Page 2
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

SVG
(Scalable
Vector
Graphics)

vector
(with
embedded
bitmaps)

X

TIFF (Tag
Image
Format
File)

bitmap (X) X X

Note:
"(X)" means restricted support. Please see the details below.

2. Graphics Packages

2.1. FOP Native

FOP has native ability to handle some graphic file formats.

2.2. Batik codecs

Apache Batik contains codecs for PNG and TIFF access. FOP can use these.

2.3. Image I/O (JDK 1.4 or higher)

For JDKs 1.4 or higher, FOP provides a wrapper to load images through the JDK's Image I/O
API (JSR 015). Image I/O allows to dynamically add additional image codecs. An example of
such an add-on library are the JAI Image I/O Tools available from Sun.

2.4. JIMI

Because of licensing issues, the JIMI image library is not included in the FOP distribution. First,
download and install it. Then, copy the file "JimiProClasses.zip" from the archive to
{fop-install-dir}/lib/jimi-1.0.jar. Please note that FOP binary distributions are compiled with
JIMI support, so there is no need for you to build FOP to add the support. If jimi-1.0.jar is
installed in the right place, it will automatically be used by FOP, otherwise it will not.

2.5. JAI (Java Advanced Imaging API)

Apache FOP: Graphics Formats

Page 3
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://java.sun.com/j2se/1.4.2/docs/guide/imageio/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/imageio/index.html
http://java.sun.com/products/java-media/jai/
http://java.sun.com/products/jimi
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Warning:
JAI support is available for Release 0.20.5 and later. The comments in this section do not apply to releases earlier than 0.20.5.

FOP has been compiled with JAI support, but JAI is not included in the FOP distribution. To use
it, install JAI, then copy the jai_core.jar and the jai_codec.jar files to {fop-install-dir}/lib. JAI is
much faster than JIMI, but is not available for all platforms. See What platforms are supported?
on the JAI FAQ page for more details.

2.6. Batik

Current FOP distributions include a distribution of the Apache Batik version 1.6. It is
automatically installed with FOP. Because Batik's API changes frequently, it is highly
recommended that you use the version that ships with FOP, at least when running FOP.

Warning:
Batik must be run in a graphical environment.

Batik must be run in a graphical environment. It uses AWT classes for rendering SVG, which in
turn require an X server on Unixish systems. If you run a server without X, or if you can't
connect to the X server due to security restrictions or policies (a so-called "headless"
environment), SVG rendering will fail.

Here are some workarounds:

• If you are using JDK 1.4, start it with the -Djava.awt.headless=true command line
option.

• Install an X server which provides an in-memory framebuffer without actually using a screen
device or any display hardware. One example is Xvfb.

• Install a toolkit which emulates AWT without the need for an underlying X server. One
example is the PJA toolkit, which is free and comes with detailed installation instructions.

3. BMP

FOP native support for BMP images is limited to the RGB color-space.

4. EPS

FOP provides support for two output targets:

Apache FOP: Graphics Formats

Page 4
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://java.sun.com/products/java-media/jai
http://java.sun.com/products/java-media/jai/forDevelopers/jaifaq.html#platforms
http://xmlgraphics.apache.org/batik/
http://www.eteks.com/pja/en
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

• PostScript (full support).
• PDF (partial support). Due to the lack of a built-in PostScript interpreter, FOP can only

embed the EPS file into the PDF. Acrobat Reader will not currently display the EPS (it
doesn't have a PostScript interpreter, either) but it will be shown correctly when you print the
PDF on a PostScript-capable printer. PostScript devices (including GhostScript) will render
the EPS correctly.

Other output targets can't be supported at the moment because FOP lacks a PostScript interpreter.
Furthermore, FOP is not able to parse the preview bitmaps sometimes contained in EPS files.

5. JPEG

FOP native support of JPEG does not include all variants, especially those containing unusual
color lookup tables and color profiles. If you have trouble with a JPEG image in FOP, try
opening it with an image processing program (such as Photoshop or Gimp) and then saving it.
Specifying 24-bit color output may also help. For the PDF and PostScript renderers most JPEG
images can be passed through without decompression. User reports indicate that grayscale, RGB,
and CMYK color-spaces are all rendered properly.

6. PNG

If using JAI for PNG support, only RGB and RGBA color-spaces are supported for FOP
rendering.

7. SVG

7.1. Introduction

FOP uses Batik for SVG support. This format can be handled as an
fo:instream-foreign-object or in a separate file referenced with
fo:external-graphic.

Note:
Batik's SVG Rasterizer utility may also be used to convert standalone SVG documents into PDF. For more information please see
the SVG Rasterizer documentation on the Batik site.

7.2. Placing SVG Graphics into PDF

Apache FOP: Graphics Formats

Page 5
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xml.apache.org/batik/svgrasterizer.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

The SVG is rendered into PDF by using PDF commands to draw and fill lines and curves. This
means that the graphical objects created with this remain as vector graphics.

There are a number of SVG things that cannot be converted directly into PDF. Parts of the
graphic such as effects, patterns and images are inserted into the PDF as a raster graphic. The
resolution of this graphic may not be ideal depending on the FOP dpi (72dpi) and the scaling for
that graphic. We hope to improve this in the future.

Currently transparency is not supported in PDF so many svg images that contain effects or
graphics with transparent areas will not be displayed correctly.

7.3. Placing SVG Text into PDF

If possible, Batik will use normal PDF text when inserting text. It does this by checking if the
text can be drawn normally and the font is supported. This example svg text.svg / text.pdf shows
how various types and effects with text are handled. Note that tspan and outlined text are not yet
implemented.

Otherwise, text is converted and drawn as a set of shapes by batik, using the stroking text painter.
This means that a typical character will have about 10 curves (each curve consists of at least 20
characters). This can make the pdf files large and when the pdf is viewed the viewer does not
normally draw those fine curves very well (turning on Smooth Line Art in the Acrobat
preferences will fix this). If the text is inserted into the PDF using the inbuilt text commands for
PDF it will use a single character.

For PDF output, there is a configuration option to force SVG text to be rendered as text. The
drawback to this approach is that it is effective only for available fonts (including embedded
fonts). Font sizes are rounded to the next integer point size. This will be improved in the future.

Note that because SVG text can be rendered as either text or a vector graphic, you may need to
consider settings in your viewer for both. The Acrobat viewer has both "smooth line art" and
"smooth text" settings that may need to be set for SVG images to be displayed nicely on your
screen (see Edit / Preferences / Display). This setting will not affect the printing of your
document, which should be OK in any case, but will only affect the quality of the screen display.

7.4. Scaling

Currently, SVG images are rendered with the dimensions specified in the SVG file, within the
viewport specified in the fo:external-graphic element. For everything to work properly, the two
should be equal. The SVG standard leaves this issue as an implementation detail. FOP will
probably implement a scaling mechanism in the future.

Apache FOP: Graphics Formats

Page 6
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

../dev/svg/text.svg
configuration.html#svg-strokeSVGText
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

7.5. Known Problems

• soft mask transparency is combined with white so that it looks better on pdf 1.3 viewers but
this causes the soft mask to be slightly lighter or darker on pdf 1.4 viewers

• there is some problem with a gradient inside a pattern causing a pdf error when viewed in
acrobat 5

• text is not always handled correctly, it may select the wrong font especially if characters have
multiple fonts in the font list

• more pdf text handling could be implemented It could draw the string using the attributed
character iterator to handle tspans and other simple changes of text.

• JPEG images are not inserted directly into the pdf document This area has not been
implemented yet since the appropriate method in batik is static

• Uniform transparency for images and other svg elements that are converted into a raster
graphic are not drawn properly in PDF. The image is opaque.

8. TIFF

FOP-native TIFF support is limited to PDF and PostScript output only. Also, according to user
reports, FOP's native support for TIFF is limited to images with the following characteristics (all
must be true for successful rendering):

• single channel images (i.e., bi-level and grayscale only)
• uncompressed images, or images using CCITT T.4, CCITT T.6, or JPEG compression
• images using white-is-zero encoding in the TIFF PhotometricInterpretation tag

JAI: Supports RGB and RGBA only for FOP rendering.

9. Graphics Resolution

Some bitmapped image file formats store a dots-per-inch (dpi) or other resolution value. Since
PDF and most output formats do not have a concept of resolution, but only of absolute image
units (i.e. pixels) FOP ignores the resolution values as well. Instead, FOP uses the dimensions of
the image as specified in the fo:external-graphic element to render the image:

• If no dimensions are given, FOP uses a default value of 72 dpi to compute the graphic's
dimensions. For example, suppose a graphic 300 pixels wide and 400 pixels high. FOP will
render the graphic at 4.167 inches wide, 5.555 inches high, with an apparent resolution of 72
dpi.

• If only one dimension is given, FOP by default uses the same aspect ratio to compute the
other dimension (to avoid the appearance of stretching). For example, suppose a graphic 300

Apache FOP: Graphics Formats

Page 7
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

pixels wide and 400 pixels high, for which content-width = ".5in". FOP will compute the
content-height = .667 inches, and will render the graphic at that size, with an apparent
resolution of 600 dpi.

• If both dimensions are given, FOP simply renders the image in that space. For example,
suppose a graphic 300 pixels wide and 400 pixels high, for which content-width = "3in" and
content-height = "4in". FOP will render the graphic at that size, with an apparent resolution
of 100 dpi.

If you need a higher apparent output resolution for bitmapped images, first make sure that at
least one dimension of the image is defined in your XSL-FO input. Apart from that, resolution
problems are in the image file itself, and must be corrected there: use or create a
higher-resolution image file.

Note:
The explanation above describes only the basic default behavior. There are other attributes of the fo:external-graphic element that
can affect the behavior described above.

10. Image caching

FOP caches images between runs. The URL is used as a key to identify images which means that
when a particular URL appears again, the image is taken from the cache. If you have a servlet
that generates a different image each time it is called with the same URL you need to use a
constantly changing dummy parameter on the URL to avoid caching.

The image cache has been improved considerably in the redesigned code. Therefore, a
resetCache() method has become unnecessary. If you still experience OutOfMemoryErrors,
please notify us.

Apache FOP: Graphics Formats

Page 8
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 Overview of Graphics Support
	2 Graphics Packages
	2.1 FOP Native
	2.2 Batik codecs
	2.3 Image I/O (JDK 1.4 or higher)
	2.4 JIMI
	2.5 JAI (Java Advanced Imaging API)
	2.6 Batik

	3 BMP
	4 EPS
	5 JPEG
	6 PNG
	7 SVG
	7.1 Introduction
	7.2 Placing SVG Graphics into PDF
	7.3 Placing SVG Text into PDF
	7.4 Scaling
	7.5 Known Problems

	8 TIFF
	9 Graphics Resolution
	10 Image caching

