
FOP Development: Coding Conventions

$Revision: 344073 $

Table of contents

1 Subversion Repository... 2

2 Java...2

2.1 Java Style...2

2.2 Checkstyle... 4

2.3 Java Best Practices.. 4

2.4 Resources...5

2.5 Related Links...5

3 XML...5

PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Acknowledgement: Some content in this guide was adapted from other Apache projects such as
Avalon, Cactus, Turbine and Velocity.

1. Subversion Repository

Conventions in this section apply to Repository content, regardless of type:

• Files checked in must conform to the code conventions for that type of file (java files must
conform to java requirements, xml to xml requirements, etc.). If a submitted patch does not
conform, it is the responsibility of the committer to bring it into conformance before
checking it in. Developers submitting patches are encouraged to follow the code conventions
to reduce the work load on the the committers.

• To reduce the amount of spurious deltas, all text (non-binary) files checked into SVN must
have Unix-style line endings (LF only). Many IDEs and editors (even on non-Unix
platforms) have settings that can facilitate this convention.

• In order to be able to discern commits from a committer from those where a committer
applied a patch from a contributor, the commit message must contain a separate line
following this pattern: "Submitted by: [contributor's name] <[contributor's obfuscated
e-mail address]>". This also helps doing audits on the repository.

2. Java

2.1. Java Style

In order to facilitate the human reading of FOP source code, reduce churning in code, and
prevent disputes, the FOP developers have agreed on a set of coding conventions. The basis of
these coding conventions is documented in the Apache XML Project Guidelines, which requires
that all Java Language source code in the repository must be written in conformance to
Sun's Code Conventions for the Java Programming Language. In addition, the FOP developers
have agreed to other conventions, which are summarized in the following table:

Convention Rationale Enforced By

Every Java source file starts
with the Apache licence
header.

Required by Apache. checkstyle

No tabs in content. Programmers should not have
to adjust the tab settings in
their editor to be able to read
the source code.

checkstyle

FOP Development: Coding Conventions

Page 2
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xml.apache.org/source.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Indentation of 4 spaces per
level.

Maximize readability. Not enforced

Comments, identifiers, and
project documentation must be
in English. In general, other
languages must not be used,
except in translated
documentation and
language-specific i10n files.

To avoid the need for everyone
to learn all languages, English
has become the standard
language for many technology
projects, and is the only human
language that all FOP
developers are expected to
know.

Not enforced

American English spelling
should be used. Alternative
spelling and idioms are
tolerated, but may be changed
by anyone to American.

Some standard is useful, and
American English is widely
used and accepted for
technology standards and
projects.

Not enforced.

Fully qualify all import
statements (no "import
java.util.*")

Clarity checkstyle

No underscores in variable
names except for static finals.

Upper/lower case distinctions
can be made in all other
variable names, eliminating the
need for artificial word
boundaries.

checkstyle

Opening brace for a block
should be on the same line as
its control statement (if, while,
etc.).

Standardization, general
preference.

checkstyle

Write appropriate javadoc
entries for all public and
protected classes, methods,
and variables.

Basic API documentation is
needed.

checkstyle

Personal attribution in the
source code, such as @author
tags and attribution comments
should not be used. Excepted
from this general rule are
potentially confusing or
wide-ranging changes. If such
changes prove useful over
time, the related comments
should be removed.

Personal attribution tends to
clutter the code. The relevant
historical information that might
be useful for problem-solving is
tracked in the code repository.

Not enforced. Anyone is free to
remove such comments.

FOP Development: Coding Conventions

Page 3
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

For developers that dislike these conventions, one workaround is to develop using their own
style, then use a formatting tool like astyle (Artistic Style) before committing.

2.2. Checkstyle

The java syntax checker "Checkstyle" is used to enforce many of the FOP coding standards. The
standards enforced through Checkstyle are documented in its configuration file
(xml-fop/checkstyle.cfg). The conventions defined in the configuration file are an integral part of
FOP's coding conventions, and should not be changed without common consent. In other words,
the configuration file contains additional conventions that are not documented on this page, but
are generally accepted as good style within the java community (i.e. they are the default behavior
of checkstyle, which the FOP developers have decided to adopt de facto). Any apparent
contradiction between the configuration file and this document should be raised on the fop-dev
mailing list so that it can be clarified.

To use the "checkstyle" target in FOP's build process, download the source from the Checkstyle
web site, place checkstyle-all-*.jar in the lib directory and call "build checkstyle". Output (in the
build directory) includes checkstyle_report.txt and checkstyle_report.xml. If you copy the file
contrib/checkstyle-noframes.xsl from Checkstyle into FOP's root directory, you will also get an
HTML report.

Checkstyle is probably most useful when integrated into your IDE. See the Checkstyle web site
for more information about IDE plugins.

2.3. Java Best Practices

The following general principles are a distillation of best practice expectations on the FOP
project.

• Apply common sense when coding. When coding keep in mind that others will read your
code and have to understand it.

• Readability comes before performance, at least initially.
• If you can refactor some code to make it more understandable, please do so.
• Properly document code, especially where it's important.
• Use interfaces instead of implementations where possible. This favors a clearer design and

makes switching between implementations easier (Examples: List instead of
ArrayList/Vector, Map instead of HashMap/Hashtable).

• Avoid using exceptions for flow control.
• Try to catch exceptions as much as possible and rethrow higher level exceptions (meaning

hiding the low level detailed and putting a message that is more related to the function of
your code).

FOP Development: Coding Conventions

Page 4
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://astyle.sourceforge.net/
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

• It is important not to lose the stack trace which contains important information. Use chained
exception for that. Avalon Framework provides CascadingException (and similar) for this.
Exception class names and stack traces must be treated like gold. Do whatever is required so
that this information is not lost. Printing error messages to System.err or System.out is
useless in a server-side environment where this info is usually lost.

• Always log the exception at the higher level (i.e. where it is handled and not rethrown).
• Try to avoid catching Throwable or Exception and catch specific exceptions instead.

2.4. Resources

• [book on code style] Code Complete by Steve McConnell.
• [code formatting software] JRefactory.

2.5. Related Links

• Apache XML Graphics Code Repositories
• Jakarta Code Conventions and Standards (see Coding Conventions and Standards section)

3. XML

Convention Rationale Enforced By

XML files must always be
well-formed. Validation is
optional.

Document integrity Not enforced

No tabs in content. Users should not have to adjust
tab settings in their editor to be
able to read the content.

Not enforced

Indentation of 2 spaces per
level

Maximize readability Not enforced

FOP Development: Coding Conventions

Page 5
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://jakarta.apache.org/avalon/api/org/apache/avalon/framework/CascadingException.htm
http://jrefactory.sourceforge.net
http://xmlgraphics.apache.org/repo.html
http://jakarta.apache.org/site/faqs.html#Coding%20Conventions%20and%20Standards
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 Subversion Repository
	2 Java
	2.1 Java Style
	2.2 Checkstyle
	2.3 Java Best Practices
	2.4 Resources
	2.5 Related Links

	3 XML

