
User Guide

Version 1.0-SNAPSHOT

Copyright © 2004-2007, Apache Software Foundation

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the
NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF

licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License.

Table of Contents

1. Introduction ..1
1.1. ...1

2. Architecture ...2
2.1. ...2

3. Enterprise Integration Patterns ..5
3.1. ...5

4. Getting Started with Apache Camel ..9
4.1. ...9

5. Pattern Appendix ...10
5.1. ...10

6. Camel Components ...29
6.1. ...29

Apache ActiveMQ ii

Chapter 1. Introduction
Apache Camel is a powerful rule based routing and mediation engine which provides a POJO based
implementation of the Enterprise Integration Patterns using an extremely powerful fluent API (or
declarative Java Domain Specific Language) to configure routing and mediation rules. The Domain
Specific Language means that Apache Camel can support type-safe smart completion of routing
rules in your IDE using regular Java code without huge amounts of XML configuration files; though
Xml Configuration inside Spring is also supported.

Apache Camel uses generics, annotations and URIs so that it can easily work directly with any kind
of Transport or messaging model such as HTTP, JMS, JBI, SCA, MINA or CXF Bus API without
mandating a normalized message API which can often lead to leaky abstractions. Apache Camel is
also a small library which has minimal dependencies for easy embedding in any Java application.

Apache Camel can be used as a routing and mediation engine for the following projects:

• Apache ActiveMQ which is the most popular and powerful open source message broker

• Apache CXF which is a smart web services suite (JAX-WS)

• Apache MINA a networking framework

• Apache ServiceMix which is the most popular and powerful distributed open source ESB and JBI
container

So don't get the hump, try Camel today!

Apache ActiveMQ 1

http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/xml-configuration.html
http://cwiki.apache.org/CAMEL/spring.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/transport.html
http://cwiki.apache.org/CAMEL/http.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/jbi.html
http://cwiki.apache.org/CAMEL/mina.html
http://cwiki.apache.org/CAMEL/cxf.html
http://cwiki.apache.org/CAMEL/what-are-the-dependencies.html
http://activemq.apache.org/
http://incubator.apache.org/cxf/
http://mina.apache.org/
http://incubator.apache.org/servicemix/

Chapter 2. Architecture
Routing Domain Specific Language (DSL)Xml Configurationrouting and mediation
rulesCamelContextEnterprise Integration Patterns

At a high level Camel consists of a CamelContext which contains a collection of Component
instances. A Component is essentially a factory of Endpoint instances. You can explicitly configure
Component instances in Java code or an IoC container like Spring or Guice, or they can be
auto-discovered using URIs.

An Endpoint acts rather like a URI or URL in a web application or a Destination in a JMS system; you
can communicate with an endpoint; either sending messages to it or consuming messages from it.
You can then create a Producer or Consumer on an Endpoint to exchange messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression or Predicate to make a
truly powerful DSL which is extensible to the most suitable language depending on your needs. The
following languages are supported

• Scripting Languages such as

• BeanShell

• JavaScript

• Groovy

• Python

• PHP

• Ruby

• SQL

• XPath

• XQuery

Camel makes extensive use of URIs to allow you to refer to endpoints which are lazily created by a
Component if you refer to them within Routes

Component URI Description

ActiveMQ
activemq:[topic:]destinationName

For JMS Messaging with
Apache ActiveMQ

CXF
cxf:serviceName

Working with Apache CXF for
web services integration

Direct
direct:name

Direct invocation of the
consumer from the producer so
that single threaded
(non-SEDA) in VM invocation is
performed

Apache ActiveMQ 2

http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/xml-configuration.html
http://cwiki.apache.org/CAMEL/routes.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Producer.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Consumer.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/languages.html
http://cwiki.apache.org/CAMEL/expression.html
http://cwiki.apache.org/CAMEL/predicate.html
http://cwiki.apache.org/CAMEL/scripting-languages.html
http://cwiki.apache.org/CAMEL/beanshell.html
http://cwiki.apache.org/CAMEL/javascript.html
http://cwiki.apache.org/CAMEL/groovy.html
http://cwiki.apache.org/CAMEL/python.html
http://cwiki.apache.org/CAMEL/php.html
http://cwiki.apache.org/CAMEL/ruby.html
http://cwiki.apache.org/CAMEL/sql.html
http://cwiki.apache.org/CAMEL/xpath.html
http://cwiki.apache.org/CAMEL/xquery.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/routes.html
http://cwiki.apache.org/CAMEL/activemq.html
http://activemq.apache.org/
http://cwiki.apache.org/CAMEL/cxf.html
http://incubator.apache.org/cxf/
http://cwiki.apache.org/CAMEL/direct.html

File
file://nameOfFileOrDirectory

Sending messages to a file or
polling a file or directory

FTP
ftp://host[:port]/fileName

Sending and receiving files over
FTP

HTTP
http://hostname[:port]

Working with the HTTP protocol
either consuming requests over
HTTP or consuming external
RESTful resources

IMap
imap://hostname[:port]

Receiving email using IMap

IRC
irc:host[:port]/#room

For IRC communication

JBI
jbi:serviceName

For JBI integration such as
working with Apache
ServiceMix

JMS
jms:[topic:]destinationName

Working with JMS providers

JPA
jpa://entityName

For using a database as a
queue via the JPA specification
for working with OpenJPA,
Hibernate or TopLink

Mail
mail://user-info@host:port

Sending and receiving email

MINA
[tcp|udp|multicast]:host[:port]

Working with Apache MINA

Multicast
multicast://host:port

Working with TCP protocols
using Apache MINA

Mock
mock:name

For testing routes and
mediation rules using mocks

Pojo
pojo:name

Exposing and invoking a POJO

POP
pop3://user-info@host:port

Receiving email using POP3
and JavaMail

Quartz
quartz://groupName/timerName

Provides a scheduled delivery
of messages using the Quartz
scheduler

Queue
queue:name

Used to deliver messages to a
java.util.Queue, useful when
creating SEDA style processing

Architecture

Apache ActiveMQ 3

http://cwiki.apache.org/CAMEL/file.html
http://cwiki.apache.org/CAMEL/ftp.html
http://cwiki.apache.org/CAMEL/http.html
http://cwiki.apache.org/CAMEL/mail.html
http://cwiki.apache.org/CAMEL/irc.html
http://cwiki.apache.org/CAMEL/jbi.html
http://incubator.apache.org/servicemix/
http://incubator.apache.org/servicemix/
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/jpa.html
http://cwiki.apache.org/CAMEL/mail.html
http://cwiki.apache.org/CAMEL/mina.html
http://mina.apache.org/
http://cwiki.apache.org/CAMEL/mina.html
http://mina.apache.org/
http://cwiki.apache.org/CAMEL/mock.html
http://cwiki.apache.org/CAMEL/pojo.html
http://cwiki.apache.org/CAMEL/mail.html
http://cwiki.apache.org/CAMEL/quartz.html
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://cwiki.apache.org/CAMEL/queue.html

pipelines

RMI
rmi://host[:port]

Working with RMI

SFTP
sftp://host[:port]/fileName

Sending and receiving files over
SFTP

SMTP
smtp://user-info@host[:port]

Sending email using SMTP and
JavaMail

Timer
timer://name

A timer endpoint

TCP
tcp://host:port

Working with TCP protocols
using Apache MINA

UDP
udp://host:port

Working with UDP protocols
using Apache MINA

XMPP
xmpp://host:port/room

Working with XMPP and Jabber

WebDAV
webdav://host[:port]/fileName

Sending and receiving files over
WebDAV

For a full details of the individual components see the Component Appendix

Architecture

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/rmi.html
http://cwiki.apache.org/CAMEL/ftp.html
http://cwiki.apache.org/CAMEL/mail.html
http://cwiki.apache.org/CAMEL/timer.html
http://cwiki.apache.org/CAMEL/mina.html
http://mina.apache.org/
http://cwiki.apache.org/CAMEL/mina.html
http://mina.apache.org/
http://cwiki.apache.org/CAMEL/xmpp.html
http://cwiki.apache.org/CAMEL/ftp.html
http://cwiki.apache.org/CAMEL/book-component-appendix.html

Chapter 3. Enterprise Integration Patterns
Camel supports most of the Enterprise Integration Patterns from the excellent book of the same
name by Gregor Hohpe and Bobby Woolf. Its a highly recommended book, particularly for users of
Camel.

There now follows a list of the Enterprise Integration Patterns from the book along with examples of
the various patterns using Apache Camel

Message Channel How does one application
communicate with another
using messaging?

Message How can two applications
connected by a message
channel exchange a piece of
information?

Pipes and Filters How can we perform complex
processing on a message while
maintaining independence and
flexibility?

Message Router How can you decouple
individual processing steps so
that messages can be passed
to different filters depending on
a set of conditions?

Message Translator How can systems using
different data formats
communicate with each other
using messaging?

Message Endpoint How does an application
connect to a messaging
channel to send and receive
messages?

Messaging Channels

Point to Point Channel How can the caller be sure that
exactly one receiver will receive
the document or perform the
call?

Publish Subscribe Channel How can the sender broadcast
an event to all interested
receivers?

Dead Letter Channel What will the messaging
system do with a message it

Apache ActiveMQ 5

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG
http://cwiki.apache.org/CAMEL/message-channel.html
http://cwiki.apache.org/CAMEL/message.html
http://cwiki.apache.org/CAMEL/pipes-and-filters.html
http://cwiki.apache.org/CAMEL/message-router.html
http://cwiki.apache.org/CAMEL/message-translator.html
http://cwiki.apache.org/CAMEL/message-endpoint.html
http://cwiki.apache.org/CAMEL/point-to-point-channel.html
http://cwiki.apache.org/CAMEL/publish-subscribe-channel.html
http://cwiki.apache.org/CAMEL/dead-letter-channel.html

cannot deliver?

Guaranteed Delivery How can the sender make sure
that a message will be
delivered, even if the
messaging system fails?

Message Bus What is an architecture that
enables separate applications
to work together, but in a
de-coupled fashion such that
applications can be easily
added or removed without
affecting the others?

Message Routing

Content Based Router How do we handle a situation
where the implementation of a
single logical function (e.g.,
inventory check) is spread
across multiple physical
systems?

Message Filter How can a component avoid
receiving uninteresting
messages?

Recipient List How do we route a message to
a list of dynamically specified
recipients?

Splitter How can we process a
message if it contains multiple
elements, each of which may
have to be processed in a
different way?

Resequencer How can we get a stream of
related but out-of-sequence
messages back into the correct
order?

Message Transformation

Content Enricher How do we communicate with
another system if the message
originator does not have all the
required data items available?

Enterprise Integration Patterns

Apache ActiveMQ 6

http://cwiki.apache.org/CAMEL/guaranteed-delivery.html
http://cwiki.apache.org/CAMEL/message-bus.html
http://cwiki.apache.org/CAMEL/content-based-router.html
http://cwiki.apache.org/CAMEL/message-filter.html
http://cwiki.apache.org/CAMEL/recipient-list.html
http://cwiki.apache.org/CAMEL/splitter.html
http://cwiki.apache.org/CAMEL/resequencer.html
http://cwiki.apache.org/CAMEL/content-enricher.html

Content Filter How do you simplify dealing
with a large message, when
you are interested only in a few
data items?

Normalizer How do you process messages
that are semantically
equivalent, but arrive in a
different format?

Messaging Endpoints

Messaging Mapper How do you move data
between domain objects and
the messaging infrastructure
while keeping the two
independent of each other?

Event Driven Consumer How can an application
automatically consume
messages as they become
available?

Polling Consumer How can an application
consume a message when the
application is ready?

Competing Consumers How can a messaging client
process multiple messages
concurrently?

Message Dispatcher How can multiple consumers on
a single channel coordinate
their message processing?

Selective Consumer How can a message consumer
select which messages it
wishes to receive?

Durable Subscriber How can a subscriber avoid
missing messages while it's not
listening for them?

Idempotent Consumer How can a message receiver
deal with duplicate messages?

Transactional Client How can a client control its
transactions with the
messaging system?

Messaging Gateway How do you encapsulate
access to the messaging
system from the rest of the

Enterprise Integration Patterns

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/content-filter.html
http://cwiki.apache.org/CAMEL/normalizer.html
http://cwiki.apache.org/CAMEL/messaging-mapper.html
http://cwiki.apache.org/CAMEL/event-driven-consumer.html
http://cwiki.apache.org/CAMEL/polling-consumer.html
http://cwiki.apache.org/CAMEL/competing-consumers.html
http://cwiki.apache.org/CAMEL/message-dispatcher.html
http://cwiki.apache.org/CAMEL/selective-consumer.html
http://cwiki.apache.org/CAMEL/durable-subscriber.html
http://cwiki.apache.org/CAMEL/idempotent-consumer.html
http://cwiki.apache.org/CAMEL/transactional-client.html
http://cwiki.apache.org/CAMEL/messaging-gateway.html

application?

Service Activator How can an application design
a service to be invoked both via
various messaging
technologies and via
non-messaging techniques?

System Management

Wire Tap How do you inspect messages
that travel on a point-to-point
channel?

For a full breakdown of each pattern see the Book Pattern Appendix

Enterprise Integration Patterns

Apache ActiveMQ 8

http://cwiki.apache.org/CAMEL/service-activator.html
http://cwiki.apache.org/CAMEL/wire-tap.html
http://cwiki.apache.org/CAMEL/book-pattern-appendix.html

Chapter 4. Getting Started with Apache Camel

Apache ActiveMQ 9

Chapter 5. Pattern Appendix
There now follows a breakdown of the various Enterprise Integration Patterns that Camel supports

Camel supports the Message Channel from the EIP patterns. The Message Channel is an internal
implementation detail of the Endpoint interface and all interactions with the Message Channel are via
the Endpoint interfaces.

For more details see

• Message

• Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message

Camel supports the Message from the EIP patterns using the Message interface.

To support various message exchange patterns like one way event messages and request-response
messages Camel uses an Exchange interface which is used to handle either oneway messages with
a single inbound Message, or request-reply where there is an inbound and outbound message.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Pipes and Filters

Camel supports the Pipes and Filters from the EIP patterns in various ways.

With Camel you can split your processing across multiple independent Endpoint instances which can
then be chained together.

Using Routing Logic

You can create pipelines of logic using multiple Endpoint or Message Translator instances as follows

from("direct:a").pipeline("direct:x", "direct:y", "direct:z", "mock:result");

In the above example we are routing from a single Endpoint to a list of different endpoints specified
using URIs. If you find the above a bit confusing, try reading about the Architecture or try the

Apache ActiveMQ 10

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/CAMEL/message.html
http://cwiki.apache.org/CAMEL/message-endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Message.html
http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/message-translator.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/architecture.html

Examples

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message Router

The Message Router from the EIP patterns allows you to consume from an input destination,
evaluate some predicate then choose the right output destination.

The following example shows how to route a request from an input queue:a endpoint to either
queue:b, queue:c or queue:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").choice()
.when(header("foo").isEqualTo("bar")).to("queue:b")
.when(header("foo").isEqualTo("cheese")).to("queue:c")
.otherwise().to("queue:d");

}
};

Using the Spring XML Extensions

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><choice><when><predicate><header name="foo"/><isEqualTo value="bar"/></predicate><to uri="queue:b"/></when><when><predicate><header name="foo"/><isEqualTo value="cheese"/></predicate><to uri="queue:c"/></when><otherwise><to uri="queue:d"/></otherwise></choice></route></camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message Translator

Camel supports the Message Translator from the EIP patterns by using an artibrary Processor in the
routing logic

Using the Fluent Builders

from("direct:start").setBody(body().append(" World!")).to("mock:result");

or you can add your own Processor

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

Pattern Appendix

Apache ActiveMQ 11

http://cwiki.apache.org/CAMEL/examples.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/predicate.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/processor.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/processor.html

For further examples of this pattern in use you could look at one of the JUnit tests

• TransformTest

• TransformViaDSLTest

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message Endpoint

Camel supports the Message Endpoint from the EIP patterns using the Endpoint interface.

When using the DSL to create Routes you typically refer to Message Endpoints by their URIs rather
than directly using the Endpoint interface. Its then a responsibility of the CamelContext to create and
activate the necessary Endpoint instances using the available Component implementations.

For more details see

• Message

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Messaging Channels

Point to Point Channel

Camel supports the Point to Point Channel from the EIP patterns using the following components

• Queue for in-VM seda based messaging

• JMS for working with JMS Queues for high performance, clustering and load balancing

• JPA for using a database as a simple message queue

• XMPP for point-to-point communication over XMPP (Jabber)

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of

Pattern Appendix

(1.0-SNAPSHOT)

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/routes.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Component.html
http://cwiki.apache.org/CAMEL/message.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/queue.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/jpa.html
http://cwiki.apache.org/CAMEL/xmpp.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html

the Examples first before trying this pattern out.

Publish Subscribe Channel

Camel supports the Publish Subscribe Channel from the EIP patterns using the following
components

• JMS for working with JMS Topics for high performance, clustering and load balancing

• XMPP when using rooms for group communication

Using Routing Logic

Another option is to explicitly list the publish-subscribe relationship in your routing logic; this keeps
the producer and consumer decoupled but lets you control the fine grained routing configuration
using the DSL or Xml Configuration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").to("queue:b", "queue:c", "queue:d");
}

};

Using the Spring XML Extensions

<camelContext id="buildStaticRecipientList" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><to><uri>queue:b</uri><uri>queue:c</uri><uri>queue:d</uri></to></route></camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Dead Letter Channel

Camel supports the Dead Letter Channel from the EIP patterns using the DeadLetterChannel
processor which is an Error Handler.

Redelivery

It is common for a temporary outage or database deadlock to cause a message to fail to process; but
the chances are if its tried a few more times with some time delay then it will complete fine. So we
typically wish to use some kind of redelivery policy to decide how many times to try redeliver a
message and how long to wait before redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You can customize things like

• how many times a message is attempted to be redelivered before it is considered a failure and

Pattern Appendix

Apache ActiveMQ 13

http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/xmpp.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/xml-configuration.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://cwiki.apache.org/CAMEL/error-handler.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html

sent to the dead letter channel

• the initial redelivery timeout

• whether or not exponential backoff is used (i.e. the time between retries increases using a backoff
multiplier)

• whether to use collision avoidence to add some randomness to the timings

Once all attempts at redelivering the message fails then the message is forwarded to the dead letter
queue.

Redelivery header

When a message is redelivered the DeadLetterChannel will append a customizable header to the
message to indicate how many times its been redelivered. The default value is
org.apache.camel.redeliveryCount.

Configuring via the DSL

The following example shows how to configure the Dead Letter Channel configuration using the DSL

RouteBuilder<Exchange> builder = new RouteBuilder<Exchange>() {
public void configure() {

errorHandler(deadLetterChannel("queue:errors"));

from("queue:a").to("queue:b");
}

};

You can also configure the RedeliveryPolicy as this example shows

RouteBuilder<Exchange> builder = new RouteBuilder<Exchange>() {
public void configure() {

errorHandler(deadLetterChannel("queue:errors").maximumRedeliveries(2).useExponentialBackOff());

from("queue:a").to("queue:b");
}

};

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Guaranteed Delivery

Camel supports the Guaranteed Delivery from the EIP patterns using the following components

• File for using file systems as a persistent store of messages

• JMS when using persistent delivery (the default) for working with JMS Queues and Topics for
high performance, clustering and load balancing

Pattern Appendix

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/file.html
http://cwiki.apache.org/CAMEL/jms.html

• JPA for using a database as a persistence layer

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message Bus

Camel supports the Message Bus from the EIP patterns. You could view Camel as a Message Bus
itself as it allows producers and consumers to be decoupled.

Folks often assume that a Message Bus is a JMS though so you may wish to refer to the JMS
component for traditional MOM support.

Also worthy of node is the XMPP component for supporting messaging over XMPP (Jabber)

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message Routing

Content Based Router

The Content Based Router from the EIP patterns allows you to route messages to the correct
destination based on the contents of the message exchanges.

The following example shows how to route a request from an input queue:a endpoint to either
queue:b, queue:c or queue:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").choice()
.when(header("foo").isEqualTo("bar")).to("queue:b")
.when(header("foo").isEqualTo("cheese")).to("queue:c")
.otherwise().to("queue:d");

}
};

Using the Spring XML Extensions

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><choice><when><predicate><header name="foo"/><isEqualTo value="bar"/></predicate><to uri="queue:b"/></when><when><predicate><header name="foo"/><isEqualTo value="cheese"/></predicate><to uri="queue:c"/></when><otherwise><to uri="queue:d"/></otherwise></choice></route></camelContext>

For further examples of this pattern in use you could look at the junit test case

Pattern Appendix

Apache ActiveMQ 15

http://cwiki.apache.org/CAMEL/jpa.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/xmpp.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/predicate.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message Filter

The Message Filter from the EIP patterns allows you to filter messages

The following example shows how to create a Message Filter route consuming messages from an
endpoint called queue:a which if the Predicate is true will be dispatched to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").filter(header("foo").isEqualTo("bar")).to("queue:b");
}

};

You can of course use many different Predicate languages such as XPath, XQuery, SQL or various
Scripting Languages. Here is an XPath example

from("direct:start").filter(
xpath("/person[@name='James']")

).to("mock:result");

Using the Spring XML Extensions

<camelContext id="buildSimpleRouteWithHeaderPredicate" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><filter><predicate><header name="foo"/><isEqualTo value="bar"/></predicate></filter><to uri="queue:b"/></route></camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Recipient List

The Recipient List from the EIP patterns allows you to route messages to a number of destinations.

Static Receipient List

The following example shows how to route a request from an input queue:a endpoint to a static list of
destinations

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

Pattern Appendix

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/Filter.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/predicate.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/predicate.html
http://cwiki.apache.org/CAMEL/xpath.html
http://cwiki.apache.org/CAMEL/xquery.html
http://cwiki.apache.org/CAMEL/sql.html
http://cwiki.apache.org/CAMEL/scripting-languages.html
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/fluent-builders.html

from("queue:a").to("queue:b", "queue:c", "queue:d");
}

};

Using the Spring XML Extensions

<camelContext id="buildStaticRecipientList" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><to><uri>queue:b</uri><uri>queue:c</uri><uri>queue:d</uri></to></route></camelContext>

Dynamic Recipient List

Usually one of the main resons for using the Recipient List pattern is that the list of recipients is
dynamic and calculated at runtime. The following example demostrates how to create a dynamic
recipient list using an Expression (which in this case it extracts a named header value dynamically) to
calculate the list of endpoints which are either of type Endpoint or are converted to a String and then
resolved using the endpoint URIs.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").recipientList(header("foo"));
}

};

The above assumes that the header contains a list of endpoint URIs. The following takes a single
string header and tokenizes it

from("direct:a").recipientList(header("recipientListHeader").tokenize(","));

Using the Spring XML Extensions

<camelContext id="buildDynamicRecipientList" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><recipientList><recipients><header name="foo"/></recipients></recipientList></route></camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Splitter

The Splitter from the EIP patterns allows you split a message into a number of pieces and process
them individually

Example

The following example shows how to take a request from the queue:a endpoint the split it into pieces
using an Expression, then forward each piece to queue:b

Pattern Appendix

Apache ActiveMQ 17

http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://cwiki.apache.org/CAMEL/expression.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientTest.java?view=markup
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/Sequencer.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/expression.html

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").splitter(bodyAs(String.class).tokenize("\n")).to("queue:b");
}

};

The splitter can use any Expression language so you could use any of the Languages Supported
such as XPath, XQuery, SQL or one of the Scripting Languages to perform the split. e.g.

from("activemq:my.queue").splitter(xpath("//foo/bar")).to("file://some/directory")

Using the Spring XML Extensions

<camelContext id="buildSplitter" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><splitter><recipients><bodyAs class="java.lang.String"/>
<tokenize token="

"/>
</recipients></splitter><to uri="queue:b"/></route></camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Resequencer

The Resequencer from the EIP patterns allows you to reorganise messages based on some
comparator. By default in Camel we use an Expression to create the comparator; so that you can
compare by a message header or the body or a piece of a message etc.

The following example shows how to reorder the messages so that they are sorted in order of the
body() expression. That is messages are collected into a batch (either by a maximum number of
messages per batch or using a timeout) then they are sorted in order and then sent out to their
output.

Using the Fluent Builders

from("direct:a").resequencer(body()).to("mock:result");

So the above example will reorder messages from endpoint direct:a in order of their bodies, to the
endpoint mock:result. Typically you'd use a header rather than the body to order things; or maybe a
part of the body. So you could replace this expression with

resequencer(header("JMSPriority"))

for example to reorder messages using their JMS priority.

You can of course use many different Expression languages such as XPath, XQuery, SQL or various
Scripting Languages.

Pattern Appendix

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/expression.html
http://cwiki.apache.org/CAMEL/languages-supported.html
http://cwiki.apache.org/CAMEL/xpath.html
http://cwiki.apache.org/CAMEL/xquery.html
http://cwiki.apache.org/CAMEL/sql.html
http://cwiki.apache.org/CAMEL/scripting-languages.html
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/expression.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/expression.html
http://cwiki.apache.org/CAMEL/xpath.html
http://cwiki.apache.org/CAMEL/xquery.html
http://cwiki.apache.org/CAMEL/sql.html
http://cwiki.apache.org/CAMEL/scripting-languages.html

You can also use multiple expressions; so you could for example sort by priority first then some other
custom header

resequencer(header("JMSPriority"), header("MyCustomerRating"))

Using the Spring XML Extensions

For further examples of this pattern in use you could look at the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message Transformation

Content Enricher

Camel supports the Content Enricher from the EIP patterns using a Message Translator or by using
an artibrary Processor in the routing logic to enrich the message.

Using the Fluent Builders

Here is a simple example using the DSL directly

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

For further examples of this pattern in use you could look at one of the JUnit tests

• TransformTest

• TransformViaDSLTest

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Content Filter

Pattern Appendix

Apache ActiveMQ 19

http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/message-translator.html
http://cwiki.apache.org/CAMEL/processor.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/processor.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html

Camel supports the Content Filter from the EIP patterns using a Message Translator or by using an
artibrary Processor in the routing logic to filter content from the inbound message.

A common way to filter messages is to use an Expression in the DSL like XQuery, SQL or one of the
supported Scripting Languages.

Using the Fluent Builders

Here is a simple example using the DSL directly

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

For further examples of this pattern in use you could look at one of the JUnit tests

• TransformTest

• TransformViaDSLTest

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Normalizer

Camel supports the Normalizer from the EIP patterns by using a Message Router in front of a
number of Message Translator instances.

See Also

• Message Router

• Content Based Router

• Message Translator

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Pattern Appendix

(1.0-SNAPSHOT)

http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/message-translator.html
http://cwiki.apache.org/CAMEL/processor.html
http://cwiki.apache.org/CAMEL/expression.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/xquery.html
http://cwiki.apache.org/CAMEL/sql.html
http://cwiki.apache.org/CAMEL/scripting-languages.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/dsl.html
http://cwiki.apache.org/CAMEL/processor.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/Normalizer.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/message-router.html
http://cwiki.apache.org/CAMEL/message-translator.html
http://cwiki.apache.org/CAMEL/message-router.html
http://cwiki.apache.org/CAMEL/content-based-router.html
http://cwiki.apache.org/CAMEL/message-translator.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html

Messaging Endpoints

Messaging Mapper

Camel supports the Messaging Mapper from the EIP patterns by using either Message Translator
pattern or the Type Converter module.

See also

• Message Translator

• Type Converter

• CXF for JAX-WS support for binding business logic to messaging & web services

• POJO

• Bean

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Event Driven Consumer

Camel supports the Event Driven Consumer from the EIP patterns. The default consumer model is
event based (i.e. asynchronous) as this means that the Camel container can then manage pooling,
threading and concurrency for you in a declarative manner.

The Event Driven Consumer is implemented by consumers implementing the Processor interface
which is invoked by the Message Endpoint when a Message is available for processing.

For more details see

• Message

• Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Polling Consumer

Camel supports implementing the Polling Consumer from the EIP patterns using the

Pattern Appendix

Apache ActiveMQ 21

http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/message-translator.html
http://cwiki.apache.org/CAMEL/type-converter.html
http://cwiki.apache.org/CAMEL/message-translator.html
http://cwiki.apache.org/CAMEL/type-converter.html
http://cwiki.apache.org/CAMEL/cxf.html
http://cwiki.apache.org/CAMEL/pojo.html
http://cwiki.apache.org/CAMEL/bean.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Processor.html
http://cwiki.apache.org/CAMEL/message-endpoint.html
http://cwiki.apache.org/CAMEL/message.html
http://cwiki.apache.org/CAMEL/message.html
http://cwiki.apache.org/CAMEL/message-endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html

PollingConsumer interface which can be created via the Endpoint.createPollingConsumer() method.

So in your Java code you can do

Endpoint endpoint = context.getEndpoint("activemq:my.queue");
PollingConsumer consumer = endpoint.createPollingConsumer();
Exchange exchange = consumer.receive();

There are 3 main polling methods on PollingConsumer

Method name Description

receive() Waits until a message is available and then
returns it; potentially blocking forever

receive(long) Attempts to receive a message exchange
immediately without waiting and returning null if
a message exchange is not available yet

receiveNoWait() Attempts to receive a message exchange,
waiting up to the given timeout and returning null
if no message exchange could be received
within the time available

Scheduled Poll Components

Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages and push
them through the Camel processing routes. That is to say externally from the client the endpoint
appears to use an Event Driven Consumer but internally a scheduled poll is used to monitor some
kind of state or resource and then fire message exchanges.

Since this a such a common pattern, polling components can extend the ScheduledPollConsumer
base class which makes it simpler to implement this pattern.

There is also the Quartz Component which provides scheduled delivery of messages using the
Quartz enterprise scheduler.

For more details see

• PollingConsumer

• Scheduled Polling Components

• ScheduledPollConsumer

• File

• JPA

• Mail

• Quartz

Pattern Appendix

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://cwiki.apache.org/CAMEL/event-driven-consumer.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://cwiki.apache.org/CAMEL/quartz.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://cwiki.apache.org/CAMEL/file.html
http://cwiki.apache.org/CAMEL/jpa.html
http://cwiki.apache.org/CAMEL/mail.html
http://cwiki.apache.org/CAMEL/quartz.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Competing Consumers

Camel supports the Competing Consumers from the EIP patterns using a few different components.

You can use the following components to implement competing consumers:-

• Queue for SEDA based concurrent processing using a thread pool

• JMS for distributed SEDA based concurrent processing with queues which support reliable load
balancing,ß failover and clustering.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Message Dispatcher

Camel supports the Message Dispatcher from the EIP patterns using various approaches.

You can use a component like JMS with selectors to implement a Selective Consumer as the
Message Dispatcher implementation. Or you can use an Endpoint as the Message Dispatcher itself
and then use a Content Based Router as the Message Dispatcher.

See Also

• JMS

• Selective Consumer

• Content Based Router

• Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Selective Consumer

Pattern Appendix

Apache ActiveMQ 23

http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/queue.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/selective-consumer.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/content-based-router.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/selective-consumer.html
http://cwiki.apache.org/CAMEL/content-based-router.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html

The Selective Consumer from the EIP patterns can be implemented in two ways

The first solution is to provide a Message Selector to the underlying URIs when creating your
consumer. For example when using JMS you can specify a selector parameter so that the message
broker will only deliver messages matching your criteria.

The other approach is to use a Message Filter which is applied; then if the filter matches the
message your consumer is invoked as shown in the following example

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").filter(header("foo").isEqualTo("bar")).process(myProcessor);
}

};

Using the Spring XML Extensions

<camelContext id="buildCustomProcessorWithFilter" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><filter><predicate><header name="foo"/><isEqualTo value="bar"/></predicate></filter><process ref="#myProcessor"/></route></camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Durable Subscriber

Camel supports the Durable Subscriber from the EIP patterns using the JMS component which
supports publish & subscribe using Topics with support for non-durable and durable subscribers.

Another alternative is to combine the Message Dispatcher or Content Based Router with File or JPA
components for durable subscribers then something like Queue for non-durable.

See Also

• JMS

• File

• JPA

• Message Dispatcher

• Selective Consumer

• Content Based Router

• Endpoint

Using This Pattern

Pattern Appendix

(1.0-SNAPSHOT)

http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/message-filter.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/message-dispatcher.html
http://cwiki.apache.org/CAMEL/content-based-router.html
http://cwiki.apache.org/CAMEL/file.html
http://cwiki.apache.org/CAMEL/jpa.html
http://cwiki.apache.org/CAMEL/queue.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/file.html
http://cwiki.apache.org/CAMEL/jpa.html
http://cwiki.apache.org/CAMEL/message-dispatcher.html
http://cwiki.apache.org/CAMEL/selective-consumer.html
http://cwiki.apache.org/CAMEL/content-based-router.html
http://cwiki.apache.org/CAMEL/endpoint.html

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Idempotent Consumer

The Idempotent Consumer from the EIP patterns is used to filter out duplicate messages.

This pattern is implemented using the IdempotentConsumer class. This uses an Expression to
calculate a unique message ID string for a given message exchange; this ID can then be looked up
in the MessageIdRepository to see if it has been seen before; if it has the message is consumed; if
its not then the message is processed and the ID is added to the repository.

The Idempotent Consumer essentially acts like a Message Filter to filter out duplicates.

Using the Fluent Builders

The following example will use the header myMessageId to filter out duplicates

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").idempotentConsumer(
header("myMessageId"), memoryMessageIdRepository(200)

).to("queue:b");
}

};

The above ??? will use an in-memory based MessageIdRepository which can easily run out of
memory and doesn't work in a clustered environment. So you might prefer to use the JPA based
implementation which uses a database to store the message IDs which have been processed

returnnew SpringRouteBuilder() {
public void configure() {

from("direct:start").idempotentConsumer(
header("messageId"),
jpaMessageIdRepository(bean(JpaTemplate.class), "myProcessorName")

).to("mock:result");
}

};

In the above ??? we are using the header messageId to filter out duplicates and using the collection
myProcessorName to indicate the Message ID Repository to use. This name is important as you
could process the same message by many different processors; so each may require its own logical
Message ID Repository.

Using the Spring XML Extensions

<camelContext id="buildCustomProcessorWithFilter" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><filter><predicate><header name="foo"/><isEqualTo value="bar"/></predicate></filter><process ref="#myProcessor"/></route></camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of

Pattern Appendix

Apache ActiveMQ 25

http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://cwiki.apache.org/CAMEL/expression.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://cwiki.apache.org/CAMEL/message-filter.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html

the Examples first before trying this pattern out.

Transactional Client

Camel recommends supporting the Transactional Client from the EIP patterns using spring
transactions.

Transaction Oriented Endpoints (Camel Toes) like JMS support using a transaction for both inbound
and outbound message exchanges. Endpoints that support transactions will participate in the current
transaction context that they are called from.

You should use the SpringRouteBuilder to setup the routes since you will need to setup the spring
context with the TransactionTemplates that will define the transaction manager configuration and
policies.

For inbound endpoint to be transacted, they normally need to be configured to use a Spring
PlatformTransactionManager. In the case of the JMS component, this can be done by looking it up in
the spring context.

You first define needed object in the spring configuration.

<bean id="jmsTransactionManager" class="org.springframework.jms.connection.JmsTransactionManager"><property name="connectionFactory" ref="jmsConnectionFactory" /></bean><bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory"><property name="brokerURL" value="tcp://localhost:61616"/></bean>

Then you look them up and use them to create the JmsComponent.

PlatformTransactionManager transactionManager = (PlatformTransactionManager) spring.getBean("jmsTransactionManager");
ConnectionFactory connectionFactory = (ConnectionFactory) spring.getBean("jmsConnectionFactory");
JmsComponent component = JmsComponent.jmsComponentTransacted(connectionFactory, transactionManager);
component.getConfiguration().setConcurrentConsumers(1);
ctx.addComponent("activemq", component);

Transaction Policies

Outbound endpoints will automatically enlist in the current transaction context. But what if you do not
want your outbound endpoint to enlist in the same transaction as your inbound endpoint? The
solution is to add a Transaction Policy to the processing route. You first have to define transaction
policies that you will be using. The policies use a spring TransactionTemplate to declare the
transaction demarcation use. So you will need to add something like the following to your spring xml:

<bean id="PROPAGATION_REQUIRED" class="org.springframework.transaction.support.TransactionTemplate"><property name="transactionManager" ref="jmsTransactionManager"/></bean><bean id="PROPAGATION_NOT_SUPPORTED" class="org.springframework.transaction.support.TransactionTemplate"><property name="transactionManager" ref="jmsTransactionManager"/><property name="propagationBehaviorName" value="PROPAGATION_NOT_SUPPORTED"/></bean><bean id="PROPAGATION_REQUIRES_NEW" class="org.springframework.transaction.support.TransactionTemplate"><property name="transactionManager" ref="jmsTransactionManager"/><property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/></bean>

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy objects for
each of the templates.

public void configure() {
...
Policy requried = new SpringTransactionPolicy(bean(TransactionTemplate.class, "PROPAGATION_REQUIRED"));
Policy notsupported = new SpringTransactionPolicy(bean(TransactionTemplate.class, "PROPAGATION_NOT_SUPPORTED"));
Policy requirenew = new SpringTransactionPolicy(bean(TransactionTemplate.class, "PROPAGATION_REQUIRES_NEW"));
...

}

Once created, you can use the Policy objects in your processing routes:

// Send to bar in a new transaction
from("activemq:queue:foo").policy(requirenew).to("activemq:queue:bar");

Pattern Appendix

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/what-is-a-camel-toe.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://cwiki.apache.org/CAMEL/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html

// Send to bar without a transaction.
from("activemq:queue:foo").policy(notsupported).to("activemq:queue:bar");

See Also

• JMS

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Messaging Gateway

Camel has several endpoint components that support the Messaging Gateway from the EIP patterns.

Components like Bean, CXF and Pojo provide a a way to bind a Java interface to the message
exchange.

See Also

• Bean

• Pojo

• CXF

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Service Activator

Camel has several endpoint components that support the Service Activator from the EIP patterns.

Components like Bean, CXF and Pojo provide a a way to bind the message exchange to a Java
interface/service.

See Also

• Bean

• Pojo

Pattern Appendix

Apache ActiveMQ 27

http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/bean.html
http://cwiki.apache.org/CAMEL/cxf.html
http://cwiki.apache.org/CAMEL/pojo.html
http://cwiki.apache.org/CAMEL/bean.html
http://cwiki.apache.org/CAMEL/pojo.html
http://cwiki.apache.org/CAMEL/cxf.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/bean.html
http://cwiki.apache.org/CAMEL/cxf.html
http://cwiki.apache.org/CAMEL/pojo.html
http://cwiki.apache.org/CAMEL/bean.html
http://cwiki.apache.org/CAMEL/pojo.html

• CXF

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

System Management

Wire Tap

The Wire Tap from the EIP patterns allows you to route messages to a separate tap location before it
is forwarded to the ultimate destination.

The following example shows how to route a request from an input queue:a endpoint to the wire tap
location queue:tap before it is received by queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").to("queue:tap", "queue:b");
}

};

Using the Spring XML Extensions

<camelContext id="buildWireTap" xmlns="http://activemq.apache.org/camel/schema/spring"><route><from uri="queue:a"/><to><uri>queue:tap</uri><uri>queue:b</uri></to></route></camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find the
Architecture useful particularly the description of Endpoint and URIs. Then you could try out some of
the Examples first before trying this pattern out.

Pattern Appendix

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/cxf.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html
http://www.enterpriseintegrationpatterns.com/WireTap.html
http://cwiki.apache.org/CAMEL/enterprise-integration-patterns.html
http://cwiki.apache.org/CAMEL/fluent-builders.html
http://cwiki.apache.org/CAMEL/spring-xml-extensions.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/architecture.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/uris.html
http://cwiki.apache.org/CAMEL/examples.html

Chapter 6. Camel Components
There now follows the documentation on each Camel component.

The ActiveMQ component allows messages to be sent to a JMS Queue or Topic ; or messages to be
consumed from a JMS Queue or Topic using Apache ActiveMQ. This component is based on the
JMS Component and uses Spring's JMS support for declarative transactions, using Spring's
JmsTemplate for sending and a MessageListenerContainer for consuming.

activemq:[topic:]destinationName

So for example to send to queue FOO.BAR you would use

activemq:FOO.BAR

You can be completely specific if you wish via

activemq:queue:FOO.BAR

If you want to send to a topic called Stocks.Prices then you would use

activemq:topic:Stocks.Prices

Configuring the Connection Factory

The following ??? shows how to add an ActiveMQComponent to the CamelContext using the
activeMQComponent() method while specifying the brokerURL used to connect to ActiveMQ

camelContext.addComponent("activemq", activeMQComponent("vm://localhost?broker.persistent=false"));

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

CXF Component

The cxf: component provides integration with Apache CXF for connecting to JAX-WS services
hosted in CXF.

URI format

cxf:address

Apache ActiveMQ 29

http://java.sun.com/products/jms/
http://activemq.apache.org/
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/camelcontext.html
http://cwiki.apache.org/CAMEL/maven/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://cwiki.apache.org/CAMEL/http://activemq.apache.org/configuring-transports.html
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://incubator.apache.org/cxf/

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

Direct Component

The direct: component provides direct, synchronous invocation of any consumers when a producer
sends a message exchange.This endpoint can be used connect existing routes or if a client in the
same JVM as the Camel router wants to access the routes.

URI format

direct:someName

Where someName can be any string to uniquely identify the endpoint

Options

Name Default Value Description

allowMultipleConsumers true If set to false, then when a
second consumer is started on
the endpoint, a
IllegalStateException is thrown

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

File Component

The *??? component provides access to file systems.

URI format

file:fileName

Camel Components

Apache ActiveMQ 30

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html

Where fileName represents the underlying file name

Options

Name Default Value Description

initialDelay 1000 milliseconds before polling the
file/directory starts

delay 500 milliseconds before the next
poll of the file/directory

useFixedDelay false if true, poll once after the initial
delay

recursive true if a directory, will look for
changes in files in all the sub
directories

attemptFileLock false if true, will only fire an
exchange for a file it can lock

regexPattern null will only fire a an exchange for
a file that matches the regex
pattern

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

FTP/SFTP/WebDAV Component

This component provides access to remote file systems over the FTP, SFTP and WebDAV protocols

URI format

ftp://host[:port]/fileName[?options]
sftp://host[:port]/fileName[?options]
webdav://host[:port]/fileName[?options]

Where fileName represents the underlying file name or directory

Options

Camel Components

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html

Name Default Value Description

directory false indicates whether or not the
given file name should be
interpreted by default as a
directory or file (as it sometimes
hard to be sure with some FTP
servers)

password null specifies the password to use
to login to the remote file
system

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

HTTP Component

The http: component provides HTTP based endpoints for exposing HTTP resources or consuming
external HTTP resources.

URI format

http:hostname[:port][/resourceUri]

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

JBI Component

The jbi: component provides integration with a JBI Service Bus such as provided by Apache
ServiceMix

Camel Components

Apache ActiveMQ 32

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://incubator.apache.org/servicemix/
http://incubator.apache.org/servicemix/

URI format

jbi:service:serviceQName
jbi:interface:interfaceQName
jbi:endpoint:endpointName

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

JMS Component

The JMS component allows messages to be sent to a JMS Queue or Topic; or messages to be
consumed from a JMS Queue or Topic. The implementation of the JMS Component uses Spring's
JMS support for declarative transactions, using Spring's JmsTemplate for sending and a
MessageListenerContainer for consuming.

URI format

jms:[topic:]destinationName?properties

So for example to send to queue FOO.BAR you would use

jms:FOO.BAR

You can be completely specific if you wish via

jms:queue:FOO.BAR

If you want to send to a topic called Stocks.Prices then you would use

jms:topic:Stocks.Prices

Notes

If you wish to use durable topic subscriptions, you need to specify both clientId and
durableSubscriberName. Note that the value of the clientId must be unique and can only be used
by a single JMS connection instance in your entire network. You may prefer to use Virtual Topics
instead to avoid this limitation. More background on durable messaging here.

If you are using ActiveMQ

Note that the JMS component reuses Spring 2's

Camel Components

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://java.sun.com/products/jms/
http://cwiki.apache.org/CAMEL/http://activemq.apache.org/virtual-destinations.html
http://cwiki.apache.org/CAMEL/http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

JmsTemplate for sending messages. This is not
ideal for use in a non-J2EE container and
typically requires some caching JMS provider to
avoid performance being lousy.

So if you intent to use Apache ActiveMQ as your
Message Broker - which is a good choice as
ActiveMQ rocks , then we recommend that you
either

• use the ActiveMQ component which is
already configured to use ActiveMQ
efficiently

• use the PoolingConnectionFactory in
ActiveMQ

Properties

You can configure lots of different properties on the JMS endpoint which map to properties on the
JMSConfiguration POJO.

Property Default Value Description

acceptMessagesWhileStopping false Should the consumer accept
messages while it is stopping

acknowledgementModeName "AUTO_ACKNOWLEDGE" The JMS acknowledgement
name which is one of:
TRANSACTED,
CLIENT_ACKNOWLEDGE,
AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE

autoStartup true Should the consumer container
auto-startup

cacheLevelName "CACHE_CONSUMER" Sets the cache level name for
the underlying JMS resources

clientId null Sets the JMS client ID to use.
Note that this value if specified
must be unique and can only be
used by a single JMS
connection instance. Its
typically only required for
durable topic subscriptions. You
may prefer to use Virtual Topics
instead

concurrentConsumers 1 Specifies the default number of

Camel Components

Apache ActiveMQ 34

http://cwiki.apache.org/CAMEL/http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://cwiki.apache.org/CAMEL/activemq.html
http://cwiki.apache.org/CAMEL/maven/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://cwiki.apache.org/CAMEL/http://activemq.apache.org/virtual-destinations.html

concurrent consumers

connectionFactory null The default JMS connection
factory to use for the
listenerConnectionFactory and
templateConnectionFactory if
neither are specified

deliveryPersistent true Is persistent delivery used by
default?

durableSubscriptionName null The durable subscriber name
for specifying durable topic
subscriptions

exceptionListener null The JMS Exception Listener
used to be notified of any
underlying JMS exceptions

explicitQosEnabled false Set if the deliveryMode, priority
or timeToLive should be used
when sending messages

exposeListenerSession true Set if the listener session
should be exposed when
consuming messages

idleTaskExecutionLimit 1 Specify the limit for idle
executions of a receive task,
not having received any
message within its execution. If
this limit is reached, the task
will shut down and leave
receiving to other executing
tasks (in case of dynamic
scheduling; see the
"maxConcurrentConsumers"
setting).

listenerConnectionFactory null The JMS connection factory
used for consuming messages

maxConcurrentConsumers 1 Specifies the maximum number
of concurrent consumers

maxMessagesPerTask 1 The number of messages per
task

messageConverter null The Spring Message Converter

messageIdEnabled true When sending, should
message IDs be added

messageTimestampEnabled true Should timestamps be enabled
by default on sending
messages

Camel Components

(1.0-SNAPSHOT)

priority -1 Values of > 1 specify the
message priority when sending,
if the explicitQosEnabled
property is specified

receiveTimeout none The timeout when receiving
messages

recoveryInterval none The recovery interval

serverSessionFactory null The JMS ServerSessionFactory
if you wish to use
ServerSessionFactory for
consumption

subscriptionDurable false Enabled by default if you
specify a
durableSubscriberName and a
clientId

taskExecutor null Allows you to specify a custom
task executor for consuming
messages

templateConnectionFactory null The JMS connection factory
used for sending messages

timeToLive null Is a time to live specified when
sending messages

transacted false Is transacted mode used for
sending/receiving messages?

transactionManager null The Spring transaction
manager to use

transactionName null The name of the transaction to
use

transactionTimeout null The timeout value of the
transaction if using transacted
mode

useVersion102 false Should the old JMS API be
used

See Also

• Configuring Camel

• Component

• Endpoint

Camel Components

Apache ActiveMQ 36

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html

• Getting Started

JPA Component

The jpa: component allows you to work with databases using JPA (EJB 3 Persistence) such as for
working with OpenJPA, Hibernate, TopLink to work with relational databases.

Sending POJOs to the JPA endpoint inserts entities into the database. Consuming messages
removes (or updates) entities in the database.

URI format

jpa:entityClassName

Options

Name Default Value Description

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

Mail Component

The mail: component provides access to Email via Spring's Mail support and the underlying JavaMail
system

URI format

pop://[user-info@]host[:port][?password=somepwd]
imap://[user-info@]host[:port][?password=somepwd]
smtp://[user-info@]host[:port][?password=somepwd]

which supports either POP, IMAP or SMTP underlying protocols.

Property Description

host the host name or IP address to connect to

port the TCP port number to connect on

user-info the user name on the email server

Camel Components

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html

password the users password to use

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

MINA Component

The mina: component is a transport for working with Apache MINA

URI format

mina:tcp://hostname[:port]
mina:udp://hostname[:port]
mina:multicast://hostname[:port]

Options

Name Default Value Description

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

Mock Component

The mock: component provides a powerful declarative testing mechanism which is similar to jMock
in that it allows declarative expectations to be created on an endpoint up front, then a route used,
then the expectations can be asserted in a test case to ensure the routing rules and processors
worked as expected.

URI format

mock:someName

Camel Components

Apache ActiveMQ 38

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://mina.apache.org/
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://jmock.org/

Where someName can be any string to uniquely identify the endpoint

Examples

Here's quick example of MockEndpoint in use, asserting the number of messages which are
expected during a test run

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You can see from the javadoc of MockEndpoint the various helper methods you can use. You can
use other methods such as

• assertIsSatisfied()

• expectedMessageCount(int)

• expectedBodiesReceived(...)

Here's another example

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody", "thirdMessageBody");

Or you could add an expectation on the headers or content of a specific message. For example

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-corecore processor tests.

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

Pojo Component

The pojo: component binds PojoExchanges to method invocations on Java Objects.

URI format

Camel Components

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html

pojo:someName

Where someName can be any string to uniquely identify the endpoint

Using

Object instance that can receive invocations, must be explicitly registered with the PojoComponent.

PojoComponent component = (PojoComponent)camelContext.getComponent("pojo");
component.addService("bye", new SayService("Good Bye!"));

Once an endpoint has been registered, you can build Camel routes that use it to process exchanges.

// lets add simple route
camelContext.addRoutes(new RouteBuilder() {

public void configure() {
from("direct:hello").to("pojo:bye");

}
});

A pojo: endpoint cannot be defined as the input to the route. Consider using a direct: or queue:
endpoint as the input for a PojoExchange. You can use the createProxy() methods on
PojoComponent to create a proxy that will generate PojoExchanges and send them to any endpoint:

Endpoint endpoint = camelContext.getEndpoint("direct:hello");
ISay proxy = PojoComponent.createProxy(endpoint, ISay.class);
String rc = proxy.say();
assertEquals("Good Bye!", rc);

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

Quartz Component

The quartz: component provides a scheduled delivery of messages using the Quartz scheduler.Each
endpoint represents a different timer (in Quartz terms, a Trigger and JobDetail).

URI format

quartz://timerName?parameters
quartz://groupName/timerName?parameters
quartz://groupName/timerName/cronExpression

You can configure the Trigger and JobDetail using the parameters

Camel Components

Apache ActiveMQ 40

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://www.opensymphony.com/quartz/

Property Description

trigger.repeatCount How many times should the timer repeat for?

trigger.repeatInterval The amount of time in milliseconds between
repeated triggers

job.name Sets the name of the job

For example the following routing rule will fire 2 timer events to the endpoint mock:results

from("quartz://myGroup/myTimerName?trigger.repeatInterval=2&trigger.repeatCount=1").to("mock:result");

Using Cron Triggers

Quartz supports Cron-like expressions for specifying timers in a handy format. You can use these
expressions in the URI; though to preserve valid URI encoding we allow / to be used instead of
spaces and $ to be used instead of ?.

For example the following will fire a message at 12pm (noon) every day

from("quartz://myGroup/myTimerName/0/0/12/*/*/$").to("activemq:Totally.Rocks");

which is equivalent to using the cron expression

0 0 12 * * ?

The following table shows the URI character encodings we use to preserve valid URI syntax

URI Character Cron character

'/' ' '

'$' '?'

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

Queue Component

The queue: component provides asynchronous SEDA behaviour so that consumers are invoked in a
seperate thread pool to the producer within the same JVM. Note this component has nothing to do

Camel Components

(1.0-SNAPSHOT)

http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://www.eecs.harvard.edu/~mdw/proj/seda/

with JMS, if you want a distributed SEA then try using either JMS or ActiveMQ or even MINA

URI format

queue:someName

Where someName can be any string to uniquely identify the endpoint

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

RMI Component

The rmi: component bind the PojoExchanges to the RMI protocol (JRMP).

Since this binding is just using RMI, normal RMI rules still apply in regards to what the methods can
be used over it. This component only supports PojoExchanges that carry a method invocation that is
part of an interface that extends the Remote interface. All parameters in the method should be either
Serializable or Remote objects too.

URI format

rmi://rmi-regisitry-host:rmi-registry-port/registry-path

For example:

rmi://localhost:1099/path/to/service

Using

To call out to an existing RMI service registered in an RMI registry, create a Route similar to:

from("pojo:foo").to("rmi://localhost:1099/foo");

To bind an existing camel processor or service in an RMI registry, create a Route like:

RmiEndpoint endpoint= (RmiEndpoint) endpoint("rmi://localhost:1099/bar");
endpoint.setRemoteInterfaces(ISay.class);
from(endpoint).to("pojo:bar");

Notice that when binding an inbound RMI endpoint, the Remote interfaces exposed must be
specified.

Camel Components

Apache ActiveMQ 42

http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/jms.html
http://cwiki.apache.org/CAMEL/activemq.html
http://cwiki.apache.org/CAMEL/mina.html
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://cwiki.apache.org/CAMEL/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://cwiki.apache.org/CAMEL/http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://cwiki.apache.org/CAMEL/http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

Timer Component

The timer: component derives from the POJO component to provide timed events. You can only
consume events from this endpoint. It produces POJO exchanges that send a Runnable.run()
method invocation.

URI format

timer:name?options

Where options is a query string that can specify any of the following parameters:

Name Default Value Description

time The date/time that the (first)
event should be generated.

period -1 If set to greater than 0, then
generate periodic events every
period milliseconds

delay -1 The number of milliseconds to
wait before the first event is
generated. Should not be used
in conjunction with the time
parameter.

fixedRate false Events take place at
approximately regular intervals,
separated by the specified
period.

daemon true Should the thread associated
with the timer endpoint be run
as a daemon.

Using

To setup a route that generates an event every 500 seconds:

from("timer://foo?fixedRate=true&delay=0&period=500").to("pojo:bar");

Camel Components

(1.0-SNAPSHOT)

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/pojo.html

Note that the "bar" pojo registered should implement Runnable.

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

XMPP Component

The xmpp: component implements an XMPP (Jabber) transport.

URI format

xmpp:hostname[:port][/room]

The component supports both room based and private person-person conversations

See Also

• Configuring Camel

• Component

• Endpoint

• Getting Started

Camel Components

Apache ActiveMQ 44

http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html
http://cwiki.apache.org/CAMEL/configuring-camel.html
http://cwiki.apache.org/CAMEL/component.html
http://cwiki.apache.org/CAMEL/endpoint.html
http://cwiki.apache.org/CAMEL/getting-started.html

	Camel
	Table of Contents
	Chapter 1. Introduction
	1.1.

	Chapter 2. Architecture
	2.1.

	Chapter 3. Enterprise Integration Patterns
	3.1.

	Chapter 4. Getting Started with Apache Camel
	4.1.

	Chapter 5. Pattern Appendix
	5.1.

	Chapter 6. Camel Components
	6.1.

