Cayenne Guide

S (1 o PR PRI 2
1.1, System REQUITEIMENTSccoeeii e 2

1.2. RUNNING CayenNNEMOTEIENoveiiieieii i e e s et e e e e e e s sararaeees 2

2. Cayenne MapPing SITUCLUIEcoiuuuiiiiiiitiee ettt e b e et e e e e st b et e e et et e e e snbbe e e e enbeeeeen 4
2.1, CAYEINNE PIOJECE ...eeiiiiiiiie ettt e et e e e e e ekt e e e et e e e e e b b e e e e s ee e e e annneeas 4

P D L - |V o T USROS 4

P2 T B T -\ oo (=PRSS 4

2.4, DDENLITY ...eeeiiiiiieiee ettt e e et e et e e e an e s 5

ST © o] o1 (] YU PPPRTTRR 5

2.6. EMDEAUEDIEcooiiiei e e 5

P R o (0o o U PSPPSR 5

P T @ U= o PP TP PP PPPPPPPON 5

3. CayenneModel € APPHICAIONveiieiiiei et e s e e e e e e s anbrreeeaaa 6
3.1. Working with Mapping PrOJECESeevveiiiiiiiiiieiceeeeeeee e ee e e ee e ee e ee e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeenees 6

3.2. Reverse ENgineering Databasecccvvviiiiie e 6

3.3. Generating Database SChEMAocuvviii i 6

I T = 1o g ST P PP P TUPPPPP 6

3.5, Generating JaVa ClasseScccooiii i ————— 6

3.6. MOdEliNg INNEITANCEveiiiii e e e e e e e s e bbb e e e e e e e e eaaes 6

3.7. Modeling GeneriC Persistent ClaSSESccciiuiriiiiiiiiee ittt 6

3.8. Mapping ObjAttributes t0 CUSIOM ClBSSEScoouiiieeiiiiiie ettt 6

3.9. Modeling Primary Key Generation Strategyccooeevieeeeiiiii e, 6
0= Y= o gL =0 1Yo RO 7
4. Including Cayenne iN @ PrOJECEuuiiiiiiiiiie ettt et e e e nne e s 8
4.1. Jar Files and DEPENUENCIEScoourrieeiiiieeeeiiii et a et e et e s e e s e e e s b e e e e e anneees 8

4.2. MaVeN PrOJECESccceeeiei e 8

G T AN 0| G = (1=t £ SRR 14

5. SEAIMING CAYENNE ...ttt ettt e ettt e e ek e et e e e bt e e e e sttt e e e e nb et e e e e nb e e e e e enbreeeeans 15
5.1. Starting and StOpPiNg SErVErRUNTIMEoiiiiiiiiii et 15

5.2. Merging MUItIPle PrOJECEScoovviiiiiiiieieeeee ettt ettt ettt e e e e e e eeeeeeeeeeeeeeeeeees 15
RIS oI A o] o [T o= (o] 0T EEPRR 16

6. Persistent Objects and ODJECICONLEXTcociiiuriiieiiiiiie e 18
6.1, ODJECICOMEEXLeeeeiiieeeeeeiieeee ettt e e et e e e e e e e e st e e e e abb e e e e e nnbe e e e e annne e e e e nnneeas 18

6.2. Persistent Object and itS LITECYCIEuuuiuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieerenenenenenenenenennnnnnnnns 18

6.3. ObjectContext PersiSteNCe APluuiiiiiie e 19

6.4. CayenNE HEIPES ClESSooiiiiiiie ittt s st e e e e enneeas 21

6.5. ODJECICONTEXE INESLINGveeeeiiieiie ettt e et e e e e e e e et e e e e b ne e e e annreeean 21

6.6. Generic Persistent ODJECESovviiiiiiiiiiiieeeeeeeeeee ettt e e e e e e e e e e e e e e eeereeeeeeeeeees 22

I I = 15" o 0] PP 23

v.3.1

Cayenne Guide

A == 0] PP PP PP PPPPPROPPPRN 25
7.1, EXPreSSIONS OVEIVIEIWvveieiiiiiiee ettt e e ettt e sttt e e et e e s ettt e e e ansn e e e e anne e e e e nnnneeenans 25

A o 1 T o (=S] 11 25

7.3. Creating EXpressions from SENQScc.vvvveiiieee e e e e e e e 26

7.4. Creating EXPressions With APeeii e 28

7.5. Evaluating EXPressions iN MEMOTYcoiiiiiiieiiiiiee ettt e s e e e e 29

8. OFAENINGS ..o 31
O, QUENTES ...eveeeeeeeeeeeeeeeeeeeeeeeaeseae e seaessaeseaesesasesesasasesesesssesesesesesesesessseaeeeseseanssaesneneeeenesenreraerererrrrrres 32
S S = L= o (O U= o PP PP PPPRPP 32

0.2, EIBQLQUENY ..eeeiiee ettt e ettt e e ettt e e e sttt e e e ettt e e e sttt e e e eset e e e e anna e e e e ennteaeeeanneeeeeannreaeennnnes 33

S G TS O 1= 011 (- 34

9.4, ProCEAUIEQUETY ..ottt e e e e e ettt et e e e e e e et e e e e e e e e s et a e e e e e e e e s saantbaneeeaaeeessannneraneeaaens 42

0.5, NBMEAQUETY ...ttt e et e e ettt e e ekttt e e ekt e e e enbe e e e e snbn e e e e annnneeas 43

O.6. CUSLOM QUEKTES .eeieeeeiieetiieieeeae e e s ettt et e e e e e e e s s teeaaeeessaanntbeeeeeaaeesssansnsaaeeeaaeeseaansnseneeens 43

10, LITECYCIE EVENLS ..uuvuiieieiiiiiiieieeeieeeueueueeseerenererenerereeeneseneessseesesenesesesssssessssssssssssnsssssssnsnsnsnnnnnnnnnnns 45
10.1. Types Of LIfECYCIE EVENESccoiiiiieiee ettt e e e e 45
10.2. Callbacks 0N PersiStent ODJECESveiiiiiiiiee et 46
10.3. Callbacks 0n NON-Persistent LiStENEISuuveiiireeeiiiiiiiieieeeeeeseeeiiineeeeae e e s esnnneeeeeeeeeseannnes 46
10.4. Combining Listeners with DataChannelFIItersocevvvviieveiivieiieeieeeeeeeeeeeeeeeeeeeeeee e 49

11, PerformanCe TUNINGceoooi oot e e e e e e e e e e e e e e e s e st b e e e e e e e e s e s aatataaeeeaeeesaannrrrnneeeens 51
O = = (] o PRSP PR PPPPRP 51
12.2. DA@ ROWS ... 53
11.3. Iteraled QUENIES ... ——— 54
11.4. Paginated QUENIEScociuiiiiieeie e et e e et e e e e e e s e e e e e e e e s s e ant e e e e e e e e e e e easaraeeeeas 55
11.5. Caching and FreSh D@alacceiiuiiiieiiiiiie ittt e e e 55
11.6. Turning off Synchronization of ObjJECICONTEXLSccccuvrieiiiiiiiee e 55

12. Customizing CayenNE RUNLIMIEuuuuuuiuiriuiiiuierurnrnreenrnrnrnrnrrrnrrrnerere——————————————————————————————. 57
12.1. Dependency INJeCtion CONLAINESceeiieeiiiiiiirieieeee e e s cecire e e e e e e e s esrrree e e e e e s e e enaaraeeeeas 57
12.2. CUSIOMIZALTION SITALEJIESeeiiuieeieeieiiiee ettt e ettt e et e et e st e e s e e e s sbbe e e e s anbneeenn 60
12.3. Noteworthy BUIlT-iN SEIVICEScoiiiiiiiiiiieie et 62

[11. Cayenne Framework - Remote ObjeCt PErSISLENCEuiiiiiiiiiiii s nnnnnnnes 63
13, INtrodUCLION T0 ROPceeiiiiiiiiiee ettt e e st e e e e st e e e st b e e e e e anbae e e e anbeeeeennnes 64
131 What IS ROP ...ttt et e e e e e et e e e et e e e e et e e e s enna e e e e anaeeas 64
G IV = T T == = SRR 66

I @ S (1o SR 67
14.1. SyStemM REQUITEIMENLSvveiiieeeii ittt ee e e e s e et e e e e e e e s e et e e e e e e e s e et b ra e e e e e e e e e s annraaeeeeaeens 67
14.2. Jar Files and DEPENAENCIESuviiiiiiiiee ettt 67

15, IMpPlementing ROP SEIVEYoiiiiiiiiiee ittt e e e e e s e e e e enneeeean 68
16. Implementing ROP CHENEooviiiiiiiiiie e 69
A (O e B = o [0)Y] 1.4 | P PURRRP 70

v.3.1 i

Cayenne Guide

17.1. DEPIOYING ROP SEIVENcooiiiiiieiiiiiee ettt ettt e s e e s b e e e e nees 70

17.2. DePIoying ROP ClIENTooiiiiiiieiiiieee ettt e e eeeaaes 70

17.3. SEOUNILY itttk ekt e ekt e bt e et e e et e e e e b e e enne e e nnneas 70

18. CUITENt LIMITALIONSouiiiiiiiiiieie ettt ettt et e b e eeenne e 71

A. CONFIQUIELION PrOPEITIESccoiieiieiiiiiie ettt e et e et e e e e et e e e et e e e e e nbe e e e e ennees 72
B. SEIVICE COIECLIONS ...t e e e s e e e e s e e e e e r e e e e ennees 75
C. EXPressionS BNFcooooiiiii 77

v.3.1 iv

Part |. Object Relational
Mapping with Cayenne

v.3.1

Chapter 1. Setup

1.1. System Requirements

« Java: Cayenne runtime framework and CayenneModeler GUI tool are written in 100% Java, and run on any
Java-compatible platform. Required JDK versionis 1.5 or higher. Thelast version of Cayenne compatible with
JDOK 1.4is1.2.x/2.0x and IDK 1.3is1.1.x

« JDBC Driver: An appropriate DB-specific JDBC driver is needed to access the database. It can beincluded in
the application or used in web container DataSource configuration.

e Third-party Libraries. Cayenne runtime framework has a minimal set of required and a few more optional
dependencies on third-party open source packages. See "Including Cayennein a Project” chapter for details.

1.2. Running CayenneModeler

CayenneModeler GUI tool isintended to work with object relational mapping projects. While you can edit your
XML by hand, it israrely needed, as the Modeler is a pretty advanced tool included in Cayenne distribution. To
obtain CayenneM odeler, download Cayenne distribution archive from http://cayenne.apache.org/download.html
matching the OS you are using. Of course Java needs to be installed on the machine where you are going to run
the Modeler.

OS X distribution contains CayenneM odeler.app at the root of the distribution disk image.
Windows distribution contains CayenneMaodel er.exe file in the bi n directory.

Cross-platform distribution (targeting Linux, but as the name implies, compatible with any OS) contains a
runnable CayenneModeler.jar in the bin directory. It can be executed either by double-clicking, or if the
environment is not configured to execute jars, by running from command-line:

java -jar CayenneMbdel er.j ar

The Modeler can also be started from Maven. While it may look like an exotic way to start a GUI application,
it has its benefits - no need to download Cayenne distribution, the version of the Modeler always matches the
version of the framework, the plugin can find mapping filesin the project automatically. So isan attractive option
to some devel opers. Maven option requires a declaration in the POM:

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifact|d>maven- cayenne- nodel er - pl ugi n</artifactld>
<ver si on>X. Y. Z</ ver si on>
</ pl ugi n>
</ pl ugi ns>

v.3.1 2

http://cayenne.apache.org/download.html

</ bui | d>

And then can be run as

nm/n cayenne- nodel er: run

v.3.1

Chapter 2. Cayenne Mapping Structure

2.1. Cayenne Project

A Cayenne project isan XML representation of amodel connecting database schemawith Java classes. A project
is normally created and manipulated via CayenneModeler GUI and then used to initialize Cayenne runtime. A
project ismade of one or morefiles. There'sawaysaroot project descriptor filein any valid project. Itisnormally
called cayenne-xyz. xm , Where "xyz" is the name of the project.

Project descriptor can reference DataMap files, one per DataMap. DataMap filesare normally called xyz. map. xni ,
where "xyz" is the name of the DataMap. For legacy reasons this naming convention is different from the
convention for the root project descriptor above, and we may align it in the future versions. Hereis how atypical
project might look on the file system:

~ Is -1l

total 24
-rwr--r-- 1 cayenne staff 491 Jan 28 18: 25 cayenne- proj ect. xmnl
-rwr--r-- 1 cayenne staff 313 Jan 28 18: 25 dat amap. map. xni

DataMap are referenced by name in the root descriptor:

<map nane="dat amap"/>

Map filesare resolved by Cayenne by appending . map. xm " extension to the map name, and resolving the resulting
string relative to the root descriptor URI. The following sections discuss varios ORM model objects, without
regards to their XML representation. XML format details are really unimportant to the Cayenne users.

2.2. DataMap

DataMap is a container of persistent entities and other object-relational metadata. DataM ap provides developers
with a scope to organize their entities, but it does not provide a namespace for entities. In fact all DataMaps
present in runtime are combined in asingle namespace. Each DataM ap must be associated with a DataNode. This
is how Cayenne knows which database to use when running a query.

2.3. DataNode

DataNode is model of a database. It is actually pretty simple. It has an arbitrary user-provided name and
information needed to create or locate a JDBC DataSource. Most projects only have one DataNode, though there
may be any number of nodes if needed.

v.3.1 4

Cayenne Mapping Structure

2.4. DbEntity

DbEntity isamodel of asingle DB table or view. DbEntity is made of DbA(ttributes that correspond to columns,
and DbRelationships that map PK/FK pairs. DbRelationships are not strictly tied to FK constraints in DB, and
should be mapped for al logical "relationships’ between the tables.

2.5. ObjEntity

ObjEntity isamodel of asingle persistent Java class. ObjEntity is made of ObjAttributes and ObjRelationships.
Both correspond to entity class properties. However ObjAttributes represent "simple” properties (normally things
like String, numbers, dates, etc.), while ObjRelationships correspond to properties that have a type of another
entity.

ObjEntity mapsto one or more DbEntities. There's always one "root" DbEntity for each ObjEntity. ObjAttribiute
maps to a DbAttribute or an Embeddable. Most often mapped DbAttribute is from the root DbEntity. Sometimes
mapping isdoneto aDbAttribute from another DbEntity somehow related to theroot DbEntity. Such ObjAttribute
is called "flattened”. Similarly ObjRelationship maps either to a single DbRelationship, or to a chain of
DbRelationships ("flattened” ObjRelationship).

ObjEntities may also contain mapping of their lifecycle callback methods.

2.6. Embeddable

Embeddableisamodel of aJavaclassthat acts as asingle attribute of an ObjEntity, but mapsto multiple columns
in the database.

2.7. Procedure

A mode of astored procedure in the database.

2.8. Query

A model of aquery. Cayenne allows queries to be mapped in Cayenne project, or created in the code. Depending
on the circumstances the users may take one or the other approach.

v.3.1 5

Chapter 3. CayenneModeler Application

3.1. Working with Mapping Projects
3.2. Reverse Engineering Database
3.3. Generating Database Schema
3.4. Migrations

3.5. Generating Java Classes

3.6. Modeling Inheritance

3.7. Modeling Generic Persistent Classes

Normally each ObjEntity is mapped to a specific Java class (such as Artist or Painting) that explicitly declare all
entity properties as pairs of getters and setters. However Cayenne alows to map acompletly generic classto any
number of entities. The only expectation is that a generic class implements org.apache.cayenne.DataObject. So
an ideal candidate for a generic class is CayenneDataObject, or some custom subclass of CayenneDataObject.

If you don't enter anything for Java Class of an ObjEntity, Cayenne assumes generic mapping and uses the
following implicit rulesto determine a class of a generic object. If DataMap " Custom Superclass’ is set, runtime
uses this class to instantiate new objects. If not, org.apache.cayenne.CayenneDataObject is used.

Classgeneration procedures (either doneinthe Modeler or with Ant or Maven) would skip entitiesthat are mapped
to CayenneDataObject explicitly or have no class mapping.

3.8. Mapping ObjAttributes to Custom Classes

3.9. Modeling Primary Key Generation Strategy

v.3.1 6

Part Il. Cayenne Framework

v.3.1

Chapter 4. Including Cayenne in a Project

4.1. Jar Files and Dependencies
Cayenne distribution contains the following core runtime jars in the distribution 1 i b directory:

e cayenne-server-x.x.jar - contains full Cayenne runtime (DI, adapters, DB access classes, etc.). Most
applications will use only thisfile.

« cayenne-client-x.x.jar - asubset of cayenne-server.jar trimmed for use on the client in an ROP application.

e Other cayenne-* jars - various Cayenne extensions.

When using cayenne- server-x. x. j ar you'll need afew third party jars (all included in i b/ t hi r d- part y directory
of the distribution):

» Apache Velocity Template Engine, version 1.6.x (and all its dependencies bundled with vel ocity-dep)
» Apache Commons Collections, version 3.2.1

e Apache Commons Logging, version 1.1

Cayenne integrates with various caching, clustering and other frameworks. These optiona integrations will
require other third-party jars that the users will need to obtain on their own.

4.2. Maven Projects

If you are using Maven, you won't have to deal with figuring out the dependencies. You can simply include
cayenne-server artifact in your POM:

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-server</artifactld>
<ver si on>X. Y. Z</ ver si on>

</ dependency>

Additionally Cayenne provides a Maven plugin with a set of goals to perform various project tasks, such as
synching generated Java classes with the mapping, described in the following subsection. The full plugin name

iSorg.apache.cayenne.plugins:naven-cayenne-plugin.

4.2.1. cgen

cgen iS @maven- cayenne- pl ugi n goal that generates and maintains source (.java) files of persistent objects based
on a DataMap. By default, it is bound to the generate-sources phase. If "makePairs’ is set to "true" (which is

v.3.1 8

http://velocity.apache.org/
http://commons.apache.org/collections/
http://commons.apache.org/logging/

Including Cayenne in a Project

the recommended default), this task will generate a pair of classes (superclass/subclass) for each ObjEntity in
the DataMap. Superclasses should not be changed manually, since they are always overwritten. Subclasses are
never overwritten and may be later customized by the user. If "makePairs’ is set to "false”, a single class will
be generated for each ObjEntity.

By creating custom templates, you can use cgen to generate other output (such as web pages, reports, speciaized
code templates) based on DataM ap information.

Table4.1. cgen required parameters

Name Type

Description

nap File

DataMap XML file which serves as a source of metadata for class generation. E.g.

${ proj ect. basedi r}/src/ main/resources/ny. map. xni

destDir File

Root destination directory for Java classes (ignoring their package names).

Table 4.2. cgen optional parameters

Name

Type

Description

addi ti onal Maps

File

A directory that contains additiona DataMap XML files that
may be needed to resolve cross-DataM ap rel ationshipsfor thethe
main DataMap, for which class generation occurs.

client

boolean

Whether we are generating classes for the client tier in a Remote
Object Persistence application. "False" by default.

enbeddabl eTenpl at e

String

Location of acustom Vel ocity templatefilefor Embeddable class
generation. If omitted, default template is used.

enbeddabl eSuper Tenpl at e

String

Location of a custom Velocity template file for Embeddable
superclass generation. Ignored unless "makepairs” set to "true”.
If omitted, default template is used.

encodi ng

String

Generated files encoding if different from the default on current
platform. Target encoding must be supported by the VM running
the build. Standard encodings supported by Javaon all platforms
are US-ASCII, 1SO-8859-1, UTF-8, UTF-16BE, UTF-16LE,
UTF-16. See javadocs for java.nio.charset.Charset for more
information.

excludeEntities

String

A comma-separated list of ObjEntity patterns (expressed as a
perl5 regex) to exclude from template generation. By default
none of the DataMap entities are excluded.

v.3.1

Including Cayenne in a Project

Name

Type

Description

includeEntities

String

A comma-separated list of ObjEntity patterns (expressed as a
perl5 regex) to include from template generation. By default al
DataMap entities are included.

makePai r s

boolean

If "true" (a recommended default), will generate subclasy/
superclass pairs, with all generated code placed in superclass.

node

String

Specifies class generator iteration target. There arethree possible
values: "entity" (default), "datamap”, "al". "entity" performsone
generator iteration for each included ObjEntity, applying either
standard to custom entity templates. "datamap" performsasingle
iteration, applying DataM ap templates. "All" isacombination of
entity and datamap.

overwite

boolean

Only has effect when "makePairs" isset to "false". If "overwrite"
os "true”, will overwrite older versions of generated classes.

super Pkg

String

Java package name of generated superclasses. Only has effect
if "makepairs' and "usePkgPath" are set to "true" (both are true
by default). Defines a common package for all generated Java
classes. If omitted, each superclass will be placed in the same
package as subclass.

super Tenpl ate

String

Location of a custom Velocity template file for ObjEntity
superclass generation. Only has effect if "makepairs' set to
"true". If omitted, default template is used.

tenpl ate

String

Location of a custom Velocity template file for ObjEntity class
generation. If omitted, default templateis used.

usePkgPat h

boolean

If set to "true" (default), a directory tree will be generated in
"destDir" corresponding to the class package structure, if set
to "false", classes will be generated in "destDir" ignoring their
package.

Example - atypical class generation scenario, where pairs of classes are generated, and superclasses are placed

in a separate package:

<pl ugi n>

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifact|d>maven-cayenne- pl ugi n</artifactld>
<versi on>X. Y. Z</ ver si on>

<l--

v.3.1

10

Including Cayenne in a Project

There's an interm ttent probl emwhen using Maven/cgen in Eclipse with nReclipse plugin that
requires placing "configuration" section at the plugin |evel, instead of execution

| evel .
o

<confi guration>

<map>%${ proj ect . basedi r}/src/ mai n/ resour ces/ ny. map. xm </ map>
<dest Di r >${ proj ect . basedir}/src/ mai n/java</ destDi r>
<super Pkg>or g. exanpl e. nodel . aut o</ super Pkg>

</ configuration>

<executions>
<execution>

<goal s>

<goal >cgen</ goal >

</ goal s>

</ executi on>
</ execut i ons>

</ pl ugi n>

4.2.2. cdbgen

cdbgen iS amaven- cayenne- pl ugi n goal that drops and/or generates tables in a database on Cayenne DataMap. By
default, it is bound to the pre-integration-test phase.

Table 4.3. cdbgen required parameters

Name Type Description

map File DataMap XML filewhich serves as a source of metadatafor DB schemageneration.
E.g. ${proj ect . basedi r}/ src/ mai n/ resour ces/ ny. map. xm

driver String A class of JDBC driver to use for the target database.

url String JDBC connection URL of atarget database.

Table 4.4. cdbgen optional parameters

Name Type Description

adapt er String Java class name implementing org.apache.cayenne.dba.DbAdapter. While this
attribute is optional (a generic JdbcAdapter is used if not set), it is highly
recommended to specify correct target adapter.

creat eFK boolean | Indicates whether cdbgen should create foreign key constraints. Default is "true”.

creat ePK boolean | Indicates whether cdbgen should create Cayenne-specific auto PK objects. Default

is"true".

creat eTabl es

boolean | Indicates whether cdbgen should create new tables. Default is "true”.

v.3.1

11

Including Cayenne in a Project

Name Type Description

dr opPK boolean | Indicates whether cdbgen should drop Cayenne primary key support objects.
Default is"false".

dr opTabl es boolean | Indicates whether cdbgen should drop the tables before attempting to create new

ones. Default is"false”.

passwor d String Database user password.

user nane String Database user name.

Example - creating a DB schemaon alocal HSQLDB database:

<pl ugi n>
<gr oupl d>or g. apache. cayenne. pl ugi ns</ groupl d>
<artifact|d>maven-cayenne-pl ugi n</artifactld>
<ver si on>X. Y. Z</ ver si on>

<executions>
<execution>
<confi gurati on>
<map>${ pr oj ect . basedi r}/ src/ mai n/ resour ces/ ny. map. xn </ map>
<ur | >j dbc: hsql db: hsql : / /1 ocal host/t estdb</url >
<adapt er >or g. apache. cayenne. dba. hsql db. HSQLDBAdapt er </ adapt er >
<driver>org. hsqgl db. j dbcDri ver</driver>
<user nane>sa</ user nane>
</ confi guration>
<goal s>
<goal >cdbgen</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

4.2.3. cdbimport

cdbi nport IS @ maven- cayenne- pl ugi n goal that generates a DataMap based on an existing database schema. By
default, it is bound to the generate-sources phase. This allows you to generate your DataMap prior to building
your project, which may be necessary if you are also using the cgen task.

Table 4.5. cdbimport required parameters

Name Type Description

map File DataMap XML file which is the destination of the schema import. Maybe an
existing file. If thisfile does not exist, it is created when cdbimport is executed. E.g.

${proj ect.basedir}/src/ min/resources/ my. map. xm

driver String A class of JDBC driver to use for the target database.

v.3.1 12

Including Cayenne in a Project

Name Type Description

url String JDBC connection URL of atarget database.

Table 4.6. cdbimport optional parameters

Name Type Description

adapt er String Java class name implementing org.apache.cayenne.dba.DbAdapter.
Whilethisattributeisoptional (ageneric JdbcAdapter isused if not set),
it is highly recommended to specify correct target adapter.

i mpor t Procedur es boolean | Indicates whether stored procedures should be imported from the
database. Default isfalse.

meani ngf ul Pk boolean | Indicates whether primary keys should be mapped as attributes of the
ObjEntity. Default is false.

nani ngSt r at egy String The naming strategy used for mapping database
names to object entity names. Default is

or g. apache. cayenne. map. nani ng. Smar t Nam ngStr at egy.

overwr it eExi sting boolean | Indicateswhether existing DB and object entities should be overwritten.
Thisis an al-or-nothing setting. If you need finer granularity, use the
CayenneModeler. Default is "true”.

passwor d String Database user password.

procedur ePat t ern String Pattern to match stored procedure names against for import. Default
is to match al stored procedures. This value is only meaningful if
importProceduresis true.

schemaNane String Database schema to import tables/stored procedures from.

tabl ePattern String Pattern to match table names against for import. Default is to match all
tables.

user nane String Database user name.

Example - loading a DB schema from a local HSQLDB database (essentially a reverse operation compared to
the cdbgen example above) :

<pl ugi n>
<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifact|d>maven-cayenne-pl ugi n</artifactld>
<versi on>X. Y. Z</ ver si on>

<executions>

v.3.1 13

Including Cayenne in a Project

<executi on>
<confi guration>
<map>%${ proj ect . basedi r}/src/ mai n/ resour ces/ ny. map. xm </ map>
<url >j dbc: nysql : //127.0.0. 1/ nydb</ url >
<adapt er >or g. apache. cayenne. dba. hsql db. HSQLDBAdapt er </ adapt er >
<driver>com nysql .jdbc. Driver</driver>
<user nane>sa</ user nane>
</ configuration>
<goal s>
<goal >cdbi nport </ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>

4.3. Ant Projects
4.3.1. cgen
4.3.2. cdbgen

4.3.3. cdbimport

Thisisan Ant counterpart of "cdbimport" goal of maven-cayenne-plugin described above. It has exactly the same
properties. Here is a usage example:

<cdbi nport map="${context.dir}/WEB-1NF/ ny. map. xm "
driver="com nysql .jdbc.Driver"
url ="jdbc: nysql://127.0.0. 1/ mydb"
user name="sa"/ >

4.3.4. cdataport

v.3.1 14

Chapter 5. Starting Cayenne

5.1. Starting and Stopping ServerRuntime

In runtime Cayenneis accessed viaor g. apache. cayenne. confi gur ati on. server. Server Runti me. ServerRuntimeis
created simply by calling a constructor:

ServerRuntine runtime = new ServerRunti me("conif exanpl e/ cayenne-proj ect.xm");

The parameter you pass to the constructor is a location of the main project file. Location is a '/'-separated path
(same path separator is used on UNIX and Windows) that is resolved relative to the application classpath. The
project file can be placed in the root package or in a subpackage (e.g. in the code above it is in "com/example"
subpackage).

ServerRuntime encapsul ates a single Cayenne stack. Most applicationswill just have one ServerRuntime using it
to create as many ObjectContexts as needed, access the Dependency Injection (DI) container and work with other
Cayenne features. Internally ServerRuntime is just a thin wrapper around the DI container. Detailed features of
the container are discussed in "Customizing Cayenne Runtime" chapter. Here we'll just show an example of how
an application might replace a default implementation of a built-in Cayenne service (in this case - QueryCache)
with a different class:

public class MyExtensionsMdul e i npl ements Mdul e {
public void configure(Binder binder) {
bi nder. bi nd(QueryCache. cl ass) .t o(EhCacheQueryCache. cl ass) ;

}

Modul e ext ensions = new MyExt ensi onsModul e();
ServerRuntinme runtime = new ServerRunti me("conf exanpl e/ cayenne-proj ect.xm ", extensions);

It is a good idea to shut down the runtime when it is no longer needed, usually before the application itself is
shutdown:

runti me. shut down() ;

When aruntime object has the same scope as the application, this may not be always necessary, however in some
casesitisessential, and isgenerally considered agood practice. E.g. in aweb container hot redeploy of awebapp
will cause resource leaks and eventual OutOfMemoryError if the application failsto shutdown CayenneRuntime.

5.2. Merging Multiple Projects

ServerRuntime requires at |east one mapping project to run. But it can also take multiple projects and merge them
together in asingle configuration. Thisway different parts of a database can be mapped independenity from each
other (even by different software providers), and combined in runtime when assembling an application. Doing it
is as easy as passing multiple project locations to ServerRuntime constructor:

v.3.1 15

Starting Cayenne

ServerRuntime runtime = new ServerRuntime(new String[] {
"com exanpl e/ cayenne- proj ect.xm ",
"org/fool cayenne-libraryl. xm ",
"org/ fool/ cayenne-library2. xm"

)

When the projects are merged, the following rules are applied:

« The order of projects matters during merge. If there are two conflicting metadata objects belonging to two
projects, an object from the last project takes precedence over the object from thefirst one. This makes possible
to override pieces of metadata. Thisis aso similar to how DI modules are merged in Cayenne.

* Runtime DataDomain name is set to the name of the last project in the list.

« Runtime DataDomain properties are the same as the properties of the last project inthelist. |.e. propertiesare
not merged to avoid invalid combinations and unexpected runtime behavior.

 |f there are two or more DataMaps with the same name, only one DataMap is used in the merged project,
the rest are discarded. Same precedence rules apply - DataMap from the project with the highest index in the
project list overrides all other DataM aps with the same name.

« If there are two or more DataNodes with the same name, only one DataNodes is used in the merged project,
the rest are discarded. DataNode coming from project with the highest index in the project list is chosen per
precedence rule above.

e There is a notion of "default" DataNode. After the merge if any DataMaps are not explicitly linked to
DataNodes, their queries will be executed via a default DataNode. This makes it possible to build mapping
"libraries" that are only associated with a specific database in runtime. If there's only one DataNode in the
merged project, it will be automatically chosen as default. A possible way to explicitly designate a specific
node as default is to override bat aDonai nPr ovi der . cr eat eAndl ni t Dat aDomai n() .

5.3. Web Applications

Web applications can use avariety of mechanismsto configure and start the "services' they need, Cayenne being
one of such services. Configuration can be donewithin standard Servlet specification objectslike Servlets, Filters,
or ServletContextListeners, or can use Spring, JEE CDI, etc. Thisis a user's architectural choice and Cayenne
is agnostic to it and will happily work in any environment. As described above, all that is needed is to create
an instance of ServerRuntime somewhere and provide the application code with means to access it. And shut it
down when the application ends to avoid container leaks.

Still Cayenneincludes a piece of web app configuration code that can assist in quickly setting up simple Cayenne-
enabled web applications. We are talking about CayenneFilter. It is declared in web.xml:

<web- app>

v.3.1 16

Starting Cayenne

<filter>
<filter-name>cayenne-project</filter-name>
<filter-class>org. apache. cayenne. confi guration. web. CayenneFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>cayenne-project</filter-name>
<url-pattern>/*</url-pattern>
</filter-mppi ng>

</ web- app>

When started by the web container, it creates ainstance of ServerRuntime and storesit in the ServletContext. Note
that the name of Cayenne XML project fileisderived from the "filter-name". In the example above CayenneFilter
will look for an XML file "cayenne-project.xml”. This can be overridden with "configuration-location" init
parameter.

When the application runs, all HT TP requests matching the filter url-pattern will have access to a session-scoped
ObjectContext like this:

Obj ect Cont ext context = BaseCont ext. get ThreadObj ect Cont ext () ;

Of course the ObjectContext scope, and other behavior of the Cayenne runtime can be customized via dependency
injection. For this another filter init parameter called "extramodules’ is used. "extramodules' is a comma or
space-separated list of class names, with each class implementing Module interface. These optional custom
modules are loaded after the the standard ones, which allows usersto override al standard definitions.

For those interested in the DI container contents of the runtime created by
CayenneFilter, it is the same ServerRuntime as wouldve been creasted by other
means, but with an extra org. apache. cayenne. configuration. web. Webvodule module that provides
or g. apache. cayenne. conf i gur at i on. web. Request Handl er Service. This is the service to override in the custom
modulesif you need to provide a different ObjectContext scope, €etc.

Note

Y ou should not think of CayenneFilter as the only way to start and use Cayenne in aweb application. In
fact CayenneFilter isentirely optional. Useit if you don't have any special design for application service
management. If you do, simply integrate Cayenne into that design.

v.3.1 17

Chapter 6. Persistent Objects and
ObjectContext

6.1. ObjectContext

ObjectContext is an interface that users normally work with to access the database. It providesthe API to execute
database operations and to manage persistent objects. A context is obtained from the ServerRuntime:

hj ect Cont ext context = runtine. get Context();

The call above creates a new instance of ObjectContext that can access the database via this runtime.
ObjectContext is a single "work ared’ in Cayenne, storing persistent objects. ObjectContext guarantees that for
each database row with aunique ID it will contain at most one instance of an object, thus ensuring object graph
consistency between multiple selects (a feature called "uniquing"). At the same time different ObjectContexts
will have independent copies of objectsfor each unique database row. This allows usersto isolate object changes
from one another by using separate ObjectContexts.

These properties directly affect the strategies for scoping and sharing (or not sharing) ObjectContexts. Contexts
that are only used to fetch objects from the database and whose objects are never maodified by the application can
be shared between mutliple users (and multiple threads). Contexts that store modified objects should be accessed
only by asingle user (e.g. aweb application user might reuse a context instance between multiple web requestsin
the same HttpSession, thus carrying uncommitted changes to objects from request to request, until he decides to
commit or rollback them). Even for asingle user it might make sense to use mutliple ObjectContexts (e.g. request-
scoped contexts to allow concurrent requests from the browser that change and commit objects independently).

ObjectContext is serializable and does not permanently hold to any of the application resources. So it does not
have to be closed. If the context is not used anymore, it should simply be allowed to go out of scope and get
garbage collected, just like any other Java object.

6.2. Persistent Object and its Lifecycle

Cayenne can persist Java objects that implement or g. apache. cayenne. Persi st ent interface. Generally persistent
classes are generated from the model as described above, so users do not have to worry about superclass and
property implementation details.

Persistent interface provides access to 3 persistence-related properties - objectld, persistenceState and
objectContext. All 3areinitialized by Cayenneruntimeframework. Application code should not attempt to change
them them. However it is alowed to read them, which provides valuable runtime information. E.g. Objectld
can be used for quick equality check of 2 objects, knowing persistence state would alow highlighting changed
objects, etc.

v.3.1 18

Persistent Objects and ObjectContext

Each persistent object belongs to a single ObjectContext, and can be in one of the following persistence states
(as defined in or g. apache. cayenne. Per si st enceSt at e) :

Table 6.1. Persistence States

TRANSIENT | The object is not registered with an ObjectContext and will not be persisted.

NEW The object is freshly registered in an ObjectContext, but has not been saved to the database
yet and there is no matching database row.

COMMITTED | The object isregistered in an ObjectContext, there is arow in the database corresponding to
this object, and the object state corresponds to the last known state of the matching database
row.

MODIFIED The object is registered in an ObjectContext, there is a row in the database corresponding
to this object, but the object in-memory state has diverged from the last known state of the
matching database row.

HOLLOW The object isregistered in an ObjectContext, there is arow in the database corresponding to
thisobject, but the object state is unknown. Whenever an application triesto access aproperty
of such object, Cayenne attempts reading its values from the database and "inflate" the object,
turning it to COMMITED.

DELETED The object is registered in an ObjectContext and has been marked for deletion in-memory.
The corresponding row in the database will get deleted upon ObjectContext commit, and the
object state will be turned into TRANSIENT.

6.3. ObjectContext Persistence API

One of the first things users usually want to do with an ObjectContext is to select some objects from a database.
Thisisdone by calling "performQuery" method:

Sel ect Query query = new Sel ect Query(Artist.class);
List<Artist> artists = context.perfornQuery(query);

WEe'll discuss queriesin some detail in the following chapters. The example above is self-explanatory - we create
a SelectQuery that matches all Artist objects present in the database, and then call "performQuery", getting alist
of Artist objects.

Some queries can be quite complex, returning multiple result sets or even updating the database. For
such queries ObjectContext provides "performGenericQuery"method. While not nearly as commonly-used as
"performQuery", it is neverthel ess important in some situations. E.g.:

Col | ecti on<Query> queries = ... // multiple queries that need to be run together
QueryChai n query = new QueryChai n(queries);

v.3.1 19

Persistent Objects and ObjectContext

Quer yResponse response = context. perfornGeneri cQuery(query); ‘

An application might modify selected objects. E.qg.:

Artist selectedArtist = artists.get(0);
sel ectedArtist.setNane("Dali");

Thefirst time the object property is changed, the object's state is automatically set to "MODIFIED" by Cayenne.
Cayenne tracks all in-memory changes until a user calls"commitChanges":

cont ext. conm t Changes() ; ‘

At this point al in-memory changes are analyzed and a minimal set of SQL statements is issued in a single
transaction to synchronize the database with thein-memory state. In our example "commitChanges' commitsjust
one object, but generaly it can be any number of objects.

If instead of commit, we wanted to reset all changed objects to the previously committed state, we'd call
rollbackChanges instead:

cont ext. rol | backChanges(); ‘

"newObject” method call creates a persistent object and sets its state to "NEW":

Artist newArtist = context.newlbject(Artist.class);
newArti st.set Name("Pi casso");

It will only exist in memory until "commitChanges' isissued. On commit Cayenne might generate anew primary
key (unlessauser set it explicitly, or aPK wasinferred from arelationship) and issue an INSERT SQL statement
to permanently store the object.

del eteObjects method takes one or more Persistent objects and marks them as"DELETED":

context . del eteoj ects(artistl);
context.del ete(jects(artist2, artist3, artistd4);

Additionally "deleteObjects’ processes al delete rules modeled for the affected objects. This may result in
implicitly deleting or modifying extrarelated objects. Same asinsert and update, del ete operations are sent to the
database only when"commitChanges" is called. Similarly "rollbackChanges' will undo the effect of "newObject”
and "deleteObjects’.

local Object returns a copy of agiven persistent object that is "local" to a given ObjectContext:

Since an application often works with more than one context, "local Object” isarather common operation. E.g. to
improve performance a user might utilize a single shared context to select and cache data, and then occasionally
transfer some sel ected objects to another context to modify and commit them:

Obj ect Cont ext editingContext = runtime. getContext();
Artist local Artist = editingContext.|ocal Cbject(artist);

v.3.1 20

Persistent Objects and ObjectContext

Often an appliction needs to inspect mapping metadata. This information is stored in the EntityResolver object,
accessible viathe ObjectContext:

EntityResol ver resol ver = object Context.getEntityResol ver();

Here we discussed the most commonly used subset of the ObjectContext API. There are other useful methods,
e.g. those allowing to inspect registered objects state en bulk, etc. Check the latest JavaDocs for details.

6.4. Cayenne Helper Class

Thereisauseful helper class called "Cayenne" (fully-qualified name " or g. apache. cayenne. Cayenne") that builds
on ObjectContext API to provide a number of very common operations. E.g. get a primary key (most entities do
not model PK as an object property) :

I ong pk = Cayenne. | ongPKFor Obj ect (artist);

It also provides the reverse operation - finding an object given aknown PK:

Artist artist = Cayenne. obj ect For PK(context, Artist.class, 34579);

If aquery is expected to return O or 1 object, Cayenne helper class can be used to find this object. It throws an
exception if more than one object matched the query:

Artist artist = (Artist) Cayenne. object For Query(context, new Sel ect Query(Artist.class));

Feel free to explore Cayenne class API for other useful methods.

6.5. ObjectContext Nesting

In al the examples shown so far an ObjectContext would directly connect to a database to select data or
synchronize its state (either via commit or rollback). However another context can be used in all these scenarios
instead of a database. This concept is called ObjectContext "nesting”. Nesting is a parent/child relationship
between two contexts, where child is a nested context and selects or commits its objects via a parent.

Nesting is useful to create isolated object editing areas (child contexts) that need to all be committed to an
intermediate in-memory store (parent context), or rolled back without affecting changes already recorded in the
parent. Think cascading GUI dialogs, or parallel AJAX requests coming to the same session.

In theory Cayenne supports any number of nesting levels, however applications should generally stay with one
or two, as deep hierarchies will most certainly degrade the performance of the deeply nested child contexts. This
is due to the fact that each context in a nesting chain has to update its own objects during most operations.

Cayenne ROP is an extreme case of nesting when achild context islocated in a separate VM and communicates
with its parent via aweb service. ROP is discussed in details in the following chapters. Here we concentrate on
the same-VM nesting.

v.3.1 21

Persistent Objects and ObjectContext

To create a nested context, use an instance of ServerRuntime, passing it the desired parent:

oj ect Context parent = runtine. get Cont ext();
hj ect Cont ext nested = runtinme. get Cont ext ((Dat aChannel) parent);

From here anested context operatesjust like aregular context (you can perform queries, create and del ete objects,
etc.). The only difference is that commit and rollback operations can either be limited to synchronization with

the parent, or cascade all the way to the database:

/1 merges nested context changes into the parent context
nest ed. conmi t ChangesToParent () ;

/] regular 'conmmtChanges' cascades conmmit through the chain
/] of parent contexts all the way to the database
nest ed. conmi t Changes() ;

/1 unrolls all local changes, getting context in a state identical to parent

nest ed. rol | backChangesLocal | y();

/'l regul ar 'roll backChanges' cascades rollback through the chain of contexts

/1 all the way to the topnopst parent
nest ed. rol | backChanges() ;

6.6. Generic Persistent Objects

Asdescribed inthe CayenneM odel er chapter, Cayenne supports mapping of completely generic classesto specific
entities. Although for conveniece most applications should stick with entity-specific class mappings, the generic
feature offers some interesting possibilities, such as creating mappings completely on the fly in a running

application, etc.

Generic objects are first class citizens in Cayenne, and al common persistent operations apply to them as well.

There are some pecularities however, described below.

When creating a new generic object, either cast your ObjectContext to DataContext (that provides

"newObject(String)" API), or provide your object with an explicit Objectld:

Dat aObj ect generic = ((DataContext) context).newObject("GenericEntity");

Dat aCbj ect generic = new CayenneDat ahj ect ();
generic.set Obj ectld(new Obj ectld("CenericEntity"));
cont ext . regi st er NewObj ect (generi c);

SelectQuery for generic object should be created passing entity name String in constructor, instead of a Javaclass:

Sel ect Query query = new Sel ect Query("GenericEntity");

Use DataObject API to access and modify properties of a generic object:

String name = (String) generic.readProperty("nanme");

v.3.1

22

Persistent Objects and ObjectContext

generic.witeProperty("name", "New Nane"); ‘

Thisishow an application can obtain entity name of a generic object:

String entityName = generic.getObjectld().getEntityName(); ‘

6.7. Transactions

Considering how much attention is given to managing transactions in most other ORMs, transactions have been
conspicuously absent from the ObjectContext discussion till now. The reason is that transactions are seamlessin
Cayennein all but afew special cases. ObjectContext is an in-memory container of objects that is disconnected
from the database, except when it needsto run an operation. So it does not care about any surrounding transaction
scope. Sure enough all database operations are transactional, so when an application does a commit, all SQL
execution is wrapped in a database transaction. But this is done behind the scenes and is rarely a concern to the
application code.

Two caseswheretransactions need to be taken into consideration are contai ner-managed and appli cation-managed
transactions.

If you are using an EJB container (or some other JTA environment), you'll likely need to switch Cayenne runtime
into "external transactions mode". Thisis either done in the Modeler (check DataDomain > 'Container-M anaged
Transactions' checkbox), or in the code:

runti nme. get Dat aDonai n() . set Usi ngExt er nal Tr ansacti ons(true);

In this case Cayenne assumes that JDBC Connections obtained by runtime whenever that might happen are all
coming from a transactional DataSource managed by the container. In this case Cayenne does not attempt to
commit or rollback the connections, leaving it up to the container to do that when appropriate.

In the second scenario, an application might need to define its own transaction scope that spans more than one
Cayenne operation. E.g. two sequential commits that need to be rolled back together in case of failure. This can
be done with an explicit thread-bound transaction that surrounds a set of operations. Application is responsible
for committing or rolling it back:

Transaction tx = runtime. get Dat aDomai n() . createTransaction();
Transacti on. bi ndThreadTr ansacti on(tx);

try {
// commt one or nore contexts
cont ext 1. conmi t Changes() ;
cont ext 2. conmi t Changes() ;

// after changing sone objects in contextl, comit again
cont ext 1. conmi t Chnages() ;

// if no failures, commt
tx.commt();

v.3.1 23

Persistent Objects and ObjectContext

catch (Exception ex) {
t x. set Rol | backOnl y();

}
finally {
Transact i on. bi ndThr eadTr ansacti on(nul l);
if (tx.getStatus() == Transaction. STATUS MARKED ROLLEDBACK) {
try {
tx. rol | back();
}
catch (Exception rollbackEx) {
}
}
}

v.3.1

24

Chapter 7. Expressions

7.1. Expressions Overview

Cayenne provides a simple yet powerful object-based expression language. The most common usese of
expressions are to build qualifiers and orderings of queries that are later converted to SQL by Cayenne and
to evaluate in-memory against specific objects (to access certain values in the object graph or to perform in-
memory object filtering and sorting). Cayenne provides API to build expressionsin the code and a parser to create
expressions from strings.

7.2. Path Expressions

Before discussing how to build expressions, it is important to understand one group of expressions widely used
in Cayenne - path expressions. There are two types of path expressions - object and database, used for navigating
graphs of connected objects or joined DB tables respectively. Object paths are much more commonly used, as
after all Cayenne is supposed to provide a degree of isolation of the object model from the database. However
database paths are helpful in certain situations. General structure of path expressionsis the following:

[db:] segment[+] [.segment[+]...]
« "db:" isan optional prefix indicating that the following path isa DB path. Otherwiseit is an object path.

» "segment" is a name of a property (relationship or attribute in Cayenne terms) in the path. Path must have at
least one segment; segments are separated by dot (".").

e "+" An "OUTER JOIN" path component. Currently "+" only has effect when trandated to SQL as OUTER
JOIN. When evaluating expressions in memory, it isignored.

An object path expression represents a chain of property names rooted in a certain (unspecified during expression
creation) object and "navigating" to its related value. E.g. a path expression "artist.name" might be a property
path starting from a Painting object, pointing to the related Artist object, and then to its name attribute. A few
more examples:

» "name" - can be used to navigate (read) the "name" property of a Person (or any other type of object that has
a"name" property).

« "artist.exhibits.closingDate" - can be used to navigate to a closing date of any of the exhibits of a Painting's
Artist object.

o "artist.exhibitst.closingDate" - same as the previous example, but when trandated into SQL, an OUTER JOIN
will be used for "exhibits'.

Similarly a database path expression is a dot-separated path through DB table joins and columns. In Cayenne
joins are mapped as DbRelationships with some symbolic names (the closest concept to DbRelationship name

v.3.1 25

Expressions

in the DB world is a named foreign key constraint. But DbRelationship names are usually chosen arbitrarily,
without regard to constraints naming or even constraints presence). A database path therefore might look likethis
- "db:dbrelationshipX.dbrelationshipY .COLUMN_Z". More specific examples:

» "db:NAME" - can be used to navigate to the value of "NAME" column of some unspecified table.

« "db:artist.artistExhibits.exhibit. CLOSING_DATE" - can be used to match a closing date of any of the exhibits
of arelated artist record.

Cayenne supports "aliases’ in path Expressions. E.g. the same expression can be written using explicit path or
an dlias:

» "artist.exhibits.closingDate" - full path

« "eclosingDate" - dlias"€e" isused for "artist.exhibits".

SelectQuery using the second form of the path expression must be made aware of the aias via
"SelectQuery.aliasPathSplits(..)", otherwise an Exception will bethrown. Themain use of aliasesisto allow users
to control how SQL joins are generated if the same path is encountered more than once in any given Expression.
Each dlias for any given path would result in a separate join. Without aliases, a single join will be used for a
group of matching paths.

7.3. Creating Expressions from Strings

While in most cases users are likely to rely on API from the following section for expression creation, well
start by showing String expressions, as thiswill help understanding the semantics. A Cayenne expression can be
represented as a String, which can be later converted to an expression object using Expr essi on. fronst ri ng static
method. Here is an example:

String expString = "nane like 'A% and price < 1000";
Expressi on exp = Expression.fronfString(expString);

This particular expression may be used to match Paintings with names that start with "A" and a price less than
$1000. Whilethisexampleis pretty self-explanatory, there are afew pointsworth mentioning. "name" and "price"
here are object paths discussed earlier. As always, paths themselves are not attached to a specific root entity and
can be applied to any entity that has similarly named attributes or relationships. So when we are saying that this
expression "may be used to match Paintings', we are implying that there may be other entities, for which this
expression is valid. Now the expression details...

Character constants that are not paths or numeric values should be enclosed in single or double quotes. Two of
the expressions below are equivalent:

name = ' ABC

// doubl e quotes are escaped inside Java Strings of course
name = \"ABQ\"

v.3.1 26

Expressions

Case sensitivity. Expression operators are all case sensitive and are usually lowercase. Complex words follow

the java camel-case style:

/1l valid
name |i kel gnoreCase ' A%

/'l invalid - will throw a parse exception
name LI KEI GNORECASE ' A%

Grouping with parenthesis:

value = (price + 250.00) * 3

Path prefixes. Object expressions are unguoted strings, optionally prefixed by "obj:" (usually they are not prefixed
at al actually). Database expressions are always prefixed with "db:". A special kind of prefix, not discussed yet

is"enum:" that prefixes an enumeration constant:

/'l object path
nane = ' Sal vador Dali'

/'l sane object path - a rarely used form
obj : name = ' Sal vador Dali’

/'l multi-segnent object path
artist.name = ' Sal vador Dali'

/1 db path
db: NAME = ' Sal vador Dali'

/! enuneration constant
name = enum or g. f oo. EnunCl ass. VALUEL

Binary conditions are expressions that contain a path on the left, avalue on the right, and some operation between

them, such as equals, like, etc. They can be used as qualifiersin SelectQueries:

name |ike 'A%

Named parameters. Expressions can have named parameters (names that start with "$"). Parameterized
expressions alow to create reusable expression templates. Also if an Expression contains a complex object
that doesn't have a simple String representation (e.g. a Date, a DataObject, an Objectld), parameterizing such

expression isthe only way to represent it as String. Here are some examples.

Expression tenpl ate = Expression.fronString("name = $nane");

Map pl = Coll ections. si ngl et onMap("nane", "Salvador Dali");
Expression qualifierl = tenpl ate. expWthParaneters(pl);

Map p2 = Col |l ecti ons. si ngl etonMap("nane", "Monet");
Expression qualifier2 = tenpl ate. expWt hPar anet ers(p2);

v.3.1

27

Expressions

To create a named parameterized expression with a LIKE clause, SQL wildcards must be part of the valuesin
the Map and not the expression string itself:

Expression tenpl ate = Expression.fronfString("nane |ike $nane");

Map pl = Coll ections. si ngl etonMap("nane", "Sal vador%);
Expression qualifierl = tenpl ate. expWt hParaneters(pl);

When matching on arelationship, parameters can be Persistent objects or Objectlds:

Expression tenplate = Expression.fronfString("artist = $artist");

Artist dali =// asume we fetched this one already
Map pl = Col |l ections. singl etonMap("artist", dali);
Expression qualifierl = tenpl ate. expWt hPar aneters(pl);

Uninitialized parameterswill be automatically pruned from expressions, so auser can omit some parameterswhen
creating an expression from a parameterized templ ate:

Expression tenplate = Expression.fronftring("nane |ike $nane and dateOGfBirth > $date");

Map pl = Coll ections. singl etonMap("nane", "Sal vador%);
Expression qualifierl = tenpl ate. expWt hParaneters(pl);

/1 qualifierl is now equals to "name |ike 'Salvador%", the 'dateCdBirth' condition was
// pruned, as no value was specified for the $date paraneter

Null handling. Handling of Java nulls as operands is no different from normal values. Instead of using specia
conditional operators, like SQL does (ISNULL, ISNOT NULL), "=" and "!=" expressions can be used directly
with null values. It is up to Cayenne to transate expressions with nulls to the valid SQL.

Note

A formal definition of all possiblevalid expressionsinaform of JavaCC grammar isprovided in Appendix
C

7.4. Creating Expressions with API

Creating expressions from Strings is a powerful and dynamic approach, however a safer aternative is to use
Java API. It provides some degree of compile-time checking of expressions validity. The API is cenetred
around ExpressionFactory class, and the Expression class. ExpressionFactory contains a number of rather self-
explanatory factory methods. We won't be going over al of them in detail, but will rather show a few general
examples and some gotchas.

The following code recreates the expression from the previous chapter, but now using expression API:

/1 String expression: nane like 'A% and price < 1000
Expression el = ExpressionFactory.|ikeExp(Painting. NAVE_PROPERTY, "A%);
Expressi on e2 = ExpressionFactory. | essExp(Pai nting. PRI CE_PROPERTY, 1000);

v.3.1 28

Expressions

Expression final Exp = el. andExp(e2);

This is more verbose than creating it from String, but it is also more resilient to the entity properties renaming
and precludes semantic errors in the expression String.

Note

The last line in the example above shows how to create a new expression by "chaining" 2 other
epxressions. A common error when chaining expressionsisto assume that "andExp" and "orExp" append
another expression to the current expression. In fact a new expression is created. |.e. Expression AP
treats existing expressions as immutable.

As discussed earlier, Cayenne supports aliases in path Expressions, allowing to control how SQL joins are
generated if the same path is encountered more than once in the same Expression. Two ExpressionFactory
methods allow to implicitly generate aliasesto "split" match pathsinto individual joinsif needed:

Expressi on mat chAl | Exp(String path, Collection val ues)
Expressi on matchAl | Exp(String path, Cbject... val ues)

"Path" argument to both of these methods can use a split character (a pipe symbol '|') instead of dot to indicate
that relationship following a path should be split into a separate set of joins, one per collection value. There can
only be one split at most in any given path. Split must always precede arelationship. E.g. "|exhibits.paintings”,
"exhibits|paintings’, etc. Internally Cayenne would generate distinct aliases for each of the split expressions,
forcing separate joins.

7.5. Evaluating Expressions in Memory

When used in a query, an expression is converted to SQL WHERE clause (or ORDER BY clause) by Cayenne
during query execution. Thus the actual evaluation against the data is done by the database engine. However the
same expressions can aso be used for accessing object properties, calculating values, in-memory filtering.
Checking whether an object satisfies an expression:

Expression e = Expressi onFactory. i nExp(User. NAVE_PROPERTY, "John", "Bob");

User user = ...

i f(e.match(user)) {

}

Reading property value:

Expression e = Expression. fronString(User. NAVE_PROPERTY) ;
String nane = e.eval uate(user);

Filtering alist of objects:

Expressi on e = Expressi onFactory. i nExp(User. NAVE_PROPERTY, "John", "Bob");
Li st<User> unfiltered = ...

v.3.1 29

Expressions

Li st<User> filtered = e.filterCbjects(unfiltered);

Note

Current limitation of in-memory expressionsis that no collections are permitted in the property path.

v.3.1

30

Chapter 8. Orderings

An Ordering object defines how a list of objects should be ordered. Orderings are essentially path expressions
combined with a sorting strategy. Creating an Ordering:

Ordering o = new Ordering(Painting. NAVE_PROPERTY, Sort O der. ASENDI NG ;

Like expressions, orderings are trandated into SQL as parts of queries (and the sorting occurs in the database).
Also like expressions, orderings can be used in memory, naturally - to sort objects:

Ordering o = new Ordering(Painting. NAVE_PROPERTY, Sort O der. ASCENDI NG | NSENSI Tl VE) ;
Li st<Painting> list = ...
o.orderList(list);

Note that unlike filtering with Expressions, ordering is performed in-place. This list object is reordered and no
new list is created.

v.3.1 31

Chapter 9. Queries

Queries are Java objects used by the application to communicate with the database. Cayenne knows how to
trandlate queriesinto SQL statements appropriate for a particular database engine. Most often queries are used to
find objects matching certain criteria, but there are other types of queriestoo. E.g. those alowing to run native
SQL, call DB stored procedures, etc. When committing objects, Cayenne itself creates special queries to insert/
update/delete rowsin the dabase.

Thereisanumber of built-in queriesin Cayenne, described later in this chapter. Users can also define their own
query types to abstract certain DB interactions that for whatever reason can not be adequately described by the
built-in set.

Queries can be roughly categorized as "object" and "native". Object queries (most notably SelectQuery and
EJBQLQuery) are built with abstractions originating in the object model (the "object" side in the "object-
relational” divide). E.g. SelectQuery is assembled from a Java class of the objects to fetch, aqualifier expression,
orderings, etc. - all of this expressed in terms of the object model.

Native queries describe a desired DB operation as SQL code (SQL Template query) or a reference to a stored
procedure (ProcedureQuery), etc. The results of native queries are usually presented as Lists of Maps, with each
map representing arow in the DB (aterm "datarow" is often used to describe such a map). They can potentially
be converted to objects, however it may take a considerable effort to do so. Native queries are also less (if at all)
portabl e across databases than object queries.

9.1. SelectQuery

SelectQuery isthe most commonly used query in user applications. This may be the only query you will need in
most appplications. It returns alist of persistent objects of a certain type specified in the query:

Sel ect Query query = new Sel ect Query(Artist.class);
Li st<Artist> objects = context.perfornmuery(query);

Thisreturned al rowsinthe"ARTIST" table. If thelogswere turned on, you might seethe following SQL printed:

I NFO SELECT t0. DATE_OF BIRTH, t0. NAME, tO0.|D FROM ARTI ST tO
INFO === returned 5 row. - took 5 ns.

This SQL was generated by Cayenne from the SelectQuery above. SelectQuery can have a qualifier to select
only the data that you care about. Qualifier is simply an Expression (Expressions where discussed in the
previous chapter). If you only want artists whose name begins with 'Pablo’, you might use the following qualifier
expression:

Sel ect Query query = new Sel ect Query(Artist.class,
Expressi onFactory. | i keExp(Artist. NAVE_PROPERTY, "Pablo%));
Li st<Artist> objects = context.perfornQuery(query);

v.3.1 32

Queries

The SQL will look different thistime:
INFQ SELECT t0.DATE_OF BIRTH, t0.NAME, t0.1D FROM ARTI ST t0 WHERE t 0. NAVE LIKE ?

[bi nd: 1->NAME: ' Pabl 0%]
INFO === returned 1 row. - took 6 ns.

SelectQuery allowsto append parts of qualifier to self:
Sel ect Query query = new Sel ect Query(Artist.class);

query. set Qual i fi er (ExpressionFactory.|ikeExp(Artist. NAVME_PROPERTY, "A%));
query. andQual i fi er (Expressi onFactory. greater Exp(Artist. DATE O Bl RTH PROPERTY, soneDate));

To order the results of SelectQuery, one or more Orderings can be applied. Ordering were already discussed
earlier. E.g.:

Sel ect Query query = new Sel ect Query(Artist.class);

/] create Ordering object explicitly
query. addOrderi ng(new Ordering(Artist. DATE _OF Bl RTH PROPERTY, Sort Order. DESCENDI NG)) ;

/1 or let SelectQery create it behind the scenes
guery. addOrderi ng(Artist. NAME_PROPERTY, Sort O der. ASCENDI NG ;

There'sanumber of other useful propertiesin SelectQuery that define what to sel ect and how to optimize database
interaction (prefetching, caching, fetch offset and limit, pagination, etc.). Some of them are discussed in separate
chapters on caching and performance optimization. Others are fairly self-explanatory. Please check the API docs
for the full extent of the SelectQuery features.

9.2. EJBQLQuery

EJBQL Query wascreated asapart of an experiment in adopting some of JavaPersistence API (JPA) approachesin
Cayenne. Itisaparameterized object query that is created from query String. A String used to build EJBQL Query
must conform to JPQL (JPA query language):

EJBQLQuery query = new EJBQLQuery("select a FROM Artist a");

JPQL details can be found in any JPA manual. Here we'll mention only how this fitsinto Cayenne and what are
the differences between EJBQL and other Cayenne queries.

Although most frequently EJBQLQuery is used as an alternative to SelectQuery, there are also DELETE and
UPDATE varieties available.

Note

As of this version of Cayenne, DELETE and UPDATE do not change the state of objects in the
ObjectContext. They are run directly against the database instead.

EJBQLQuery sel ect = new EJBQ.Query("select a FROM Arti st a WHERE a. nane = ' Sal vador Dali'");

v.3.1 33

Queries

List<Artist> artists = context.perfornmuery(sel ect);

EJIBQLQuery del ete = new EJBQLQuery("del ete from Painting");
cont ext . per formGeneri cQuery(del ete);

EJBQLQuery update = new EJBQLQuery("UPDATE Painting AS p SET p.nane = 'P2' WHERE p.nane = 'P1'");
cont ext . per formGeneri cQuery(update);

In most cases SelectQuery is preferred to EIBQL Query, asitis API-based, and provides you with better compile-
time checks. However sometimes you may want a completely scriptable object query. Thisis when you might
prefer EJBQL. A more practical reason for picking EJBQL over SelectQuery though is that the former offers
some extra selecting capabilities, namely aggregate functions and subqueries:

EJBQLQuery query = new EJBQQuery("select a, COUNT(p) FROM Artist a JON a.paintings p GROUP BY a");
Li st<Object[]> result = context.perfornfuery(query);
for(Qbject[] artistWthCount : result) {
Artist a = (Artist) artistWthCount[O0];
int hasPaintings = (Integer) artistWthCount[1];
}

This also demonstrates a previously unseen type of select result - aList of Object[] elements, where each entry
in an Object[] is either a DataObject or a scalar, depending on the query SELECT clause. A result can also be
alist of scalars:

EJBQLQuery query = new EJBQ.Query("sel ect a.name FROM Artist a");
Li st<String> names = context. performuery(query);

While Cayenne Expressions discussed previously can be thought of as identical to JPQL WHERE clause, and
indeed they are very close, there are afew noteable differences:

« Null handling: SelectQuery would trand ate the expressions matching NULL valuesto the corresponding "X IS
NULL" or "X ISNOT NULL" SQL syntax. EJIBQL Query on the other hand requires explicit "ISNULL" (or
"IS NOT NULL") syntax to be used, otherwise the generated SQL will look like "X = NULL" (or "X <>
NULL"), which will evaluate differently.

» Expression Parameters. SelectQuery uses "$" to denote named parameters (e.g. "$myParam™), while EJBQL
uses":" (e.g. ":myParam"). Also EJBQL supports positional parameters denoted by the question mark: "?3".

9.3. SQLTemplate

SQLTemplate is a query that allows to run native SQL from a Cayenne application. It comes handy when the
standard ORM concepts are not sufficient for a given query or an update. SQL is too powerful and allows to
manipulate data in ways that are not easily described as a graph of related entities. Cayenne acknowledges this
fact and provides this facility to execute SQL, mapping the result to objects when possible. Here are examples
of selecting and non-selecting SQL Templ ates:

SQLTenpl ate sel ect = new SQ.Tenpl ate(Artist.class, "select * from ARTI ST");

v.3.1 34

Queries

List<Artist> result = context.perfornuery(select); ‘

SQL.Tenpl ate update = new SQ.Tenpl ate(Artist.class, "delete fromARTI ST");
Quer yResponse response = context. perfornmCGeneri cQuery(update);

Cayenne doesn't make any attempt to make sense of the SQL semantics, so it doesn't know whether agiven query
is performing a select or update, etc. It is the the user's decision to run a given query as a selecting or "generic".

Note

Any data modifications done to DB as a result of SQL Template execution do not change the state of
objectsin the ObjectContext. So some objects in the context may become stale as aresult.

Another point to note is that the first argument to the SQL Template constructor - the Java class - has the same
meaning as in SelectQuery only when the result can be converted to objects (e.g. when thisis a selecting query
and it is selecting all columns from one table). In this case it denotes the "root” entity of this query result. If the
query does not denote a single entity result, this argument is only used for query routing, i.e. determining which
database it should be run against. You are free to use any persistent class or even a DataMap instance in such
situation. It will work as long as the passed "root" maps to the same database as the current query.

To achieve interoperability between mutliple RDBMS a user can specify multiple SQL statements for the same
SQL Template, each corresponding to anative SQL dialect. A key used to look up theright dialect during execution
isafully qualified class name of the corresponding DbAdapter. If no DB-specific statement is present for agiven
DB, adefault generic statement is used. E.g. in al the examples above a default statement will be used regardless
of the runtime database. So in most casesyou won't need to explicitly "trandate” your SQL to all possibledialects.
Hereis how thisworksin practice:

SQLTenpl ate sel ect = new SQLTenpl ate(Artist.class, "select * from ARTI ST");

/'l For Postgres it would be nice to trimpadding of all CHAR col umms.

/'l Otherwise those will be returned with whitespace on the right.

/1 assum ng "NAME" is defined as CHAR ..

String pgSQL = "SELECT ARTI ST_I D, RTRI M NAME), DATE_OF BI RTH FROM ARTI ST";
query. set Tenpl at e(Post gr esAdapt er. cl ass. get Name(), pgSQ);

9.3.1. Scripting SQLTemplate with Velocity

The most interesting aspect of SQL Template (and the reason why it is called a"template”) isthat a SQL string is
treated by Cayenne as an Apache Velocity template. Before sending it to DB as a PreparedStatement, the String
isevaluated in the Velocity context, that does variable substitutions, and performs special callbacks in response
to various directives, thus controlling query interaction with the JDBC layer.

Check Velocity docs for the syntax details. Here well just mention the two main scripting elements -
"variables" (that look like svar) and "directives' (that look like #directive(pl p2 p3)). All built-in Velocity
directives are supported. Additionally Cayenne defines a number of its own directives to bind parameters to
PreparedStatements and to control the structure of the ResultSet. These directives are described in the following
sections.

v.3.1 35

Queries

9.3.2. Variable Substitution

All variablesin the template string are replaced from query parameters:

SQL.Tenpl ate query = new SQ.Tenpl ate(Artist.class, "delete from $tabl eNane");
query. set Paranet ers(Col | ecti ons. si ngl et onMap("t abl eNanme", "mydb. PAI NTING'));

/1 this will generate SQ. like this: "delete from mydb. PAI NTI NG'

The example above demonstrates the point made earlier in this chapter - even if we don't know upfront which
table the query will run against, we can still use a fixed "root" in constructor (arti st . cl ass in this case) , aswe
are not planning on converting the result to objects.

Variable substitution within the text uses"obj ect . t oSt ri ng() " method to replace the variable value. Keepin mind
that this may not be appropriatein all situations. E.g. passing adate object in aWHERE clause expression may be
converted to a String not understood by the target RDBM S SQL parser. |n such cases variable should be wrapped
in #bi nd directive as described below.

9.3.3. Directives
These are the Cayenne directives used to customize SQL Template parsing and integrate it with the JDBC layer:

9.3.3.1. #bind

Creates a PreparedStatement positional parameter in place of the directive, binding the valueto it before statement
execution. #bi nd is allowed in places where a"?' would be allowed in a PreparedStatement. And in such places
it aimost always makes sense to pass objects to the template via this or other forms of #bi nd instead of inserting
them inline.

Semantics:

#bi nd(val ue)
#bi nd(val ue j dbcType)
#bi nd(val ue j dbcType scal e)

Arguments:

 val ue - can either be a char constant or a variable that is resolved from the query parameters. Note that the
variable can be a collection, that will be automatically expanded into alist of individual value bindings. This
isuseful for instance to build IN conditions.

* jdbcType - isaJDBC datatype of the parameter as defined inj ava. sql . Types.

* scal e - An optional scale of the numeric value. Same as "scale" in PreparedStatement.

Usage:

#bi nd($xyz)
#bi nd('str')
#bi nd($xyz ' VARCHAR)

v.3.1 36

Queries

#bi nd($xyz ' DECI NAL' 2) ‘
Full example:

updat e ARTI ST set NAME = #bi nd($nane) where | D = #bi nd($id) ‘

9.3.3.2. #bindEqual

Same as #bind, but aso includes the "=" sign in front of the value binding. Look at the example below - we took
the #bind example and replaced "1 D = #bi nd(..) " With "I D #bi ndEqual (. .)". Whileit lookslike a clumsy shortcut
to eliminate the equal sign, the actual reason why thisis useful isthat it alows the value to be null. If the value
isnot null, "= 2" is generated, but if it is, the resulting chunk of the SQL would look like"i's nuLL" and will be
compilant with what the DB expects.

Semantics:

#bi ndEqual (val ue)
#bi ndEqual (val ue j dbcType)
#bi ndEqual (val ue j dbcType scal e)

Arguments: (same as #bind)

Usage:

#bi ndEqual ($xyz)

#bi ndEqual (' str')

#bi ndEqual ($xyz ' VARCHAR)
#bi ndEqual ($xyz ' DECI MAL' 2)

Full example:

updat e ARTI ST set NAME = #bi nd($nane) where | D #bi ndEqual ($i d)

9.3.3.3. #bindNotEqual

This directive deals with the same issue as #bi ndequal above, only it generates "not equal” in front of the value
(or ISNOT NULL).

Semantics:

#bi ndNot Equal (val ue)
#bi ndNot Equal (val ue j dbcType)
#bi ndNot Equal (val ue j dbcType scal e)

Arguments: (same as #bind)

Usage:

#bi ndNot Equal ($xyz)

#bi ndNot Equal (' str')

#bi ndNot Equal ($xyz ' VARCHAR)
#bi ndNot Equal ($xyz ' DECI MAL' 2)

v.3.1 37

Queries

Full example:

updat e ARTI ST set NAME = #bi nd($nane) where | D #bi ndEqual ($i d)

9.3.3.4. #bindObjectEqual

It can betricky to use a Persistent object or an Objectld in abinding, especially for tables with compound primary
keys. This directive helps to handle such binding. It maps columnsin the query to the names of Persistent object
ID columns, extracts |D values from the object, and generates SQL like"COL1=?AND COL2="2...", binding
positional parameters to ID values. It can also correctly handle null object. Also notice how we are specifying
aVelocity array for multi-column PK.

Semantics:

#bi ndQbj ect Equal (val ue col umms i dCol unms)

Arguments:

* val ue - must be avariable that is resolved from the query parameters to a Persistent or Objectld.

¢ col ums - the names of the columns to generate in the SQL.

* idcol um - the names of the ID columnsfor agiven entity. Must match the order of "columns" to match against.
Usage:

#bi ndObj ect Equal ($a 't0.1D 'ID)

#bi ndObj ect Equal ($b ['t0. FK1', 't0.FK2'] ['PKl', 'PK2'])
Full example:
String sql = "SELECT * FROM PAI NTING t 0 WHERE #bi ndObj ect Equal ($a ' t0. ARTIST_ID 'ARTIST_ID) ORDER BY PAI NTI NC

SQLTenpl ate sel ect = new SQ Tenpl ate(Artist.class, sql);

Artist a =
sel ect. set Par anet er s(Col | ecti ons. si ngl etonMap("a", a));

9.3.3.5. #bindObjectNotEqual
Same as #bindObjectEqual above, only generates "not equal" operator for value comparison (or ISNOT NULL).

Semantics:

#bi ndQbj ect Not Equal (val ue col unms i dCol unms) ‘

Arguments: (same as #bindObjectEqual)

Usage:

#bi ndObj ect Not Equal ($a 't0.1D 'I1D)
#bi ndObj ect Not Equal ($b ['t0. FK1', 't0.FK2'] ['PK1', 'PK2'])

v.3.1 38

Queries

Full example:

String sql = "SELECT * FROM PAI NTI NG t0 WHERE #bi ndObj ect Not Equal ($a 't0. ARTIST ID 'ARTIST ID) R BY PAI NI

SQLTenpl ate sel ect = new SQ.Tenpl ate(Artist.class, sql);

Artist a =
sel ect. set Par anet er s(Col | ecti ons. si ngl etonMap("a", a));

9.3.3.6. #result

Renders a column in SELECT clause of a query and maps it to a key in the result DataRow. Also ensures the
value read is of the correct type. This allows to create a DataRow (and ultimately - a persistent object) from an
arbitrary ResultSet.

Semantics:

#resul t (col um)

#resul t (col um j avaType)

#resul t (col um javaType ali as)

#resul t (col um javaType alias dat aRowKey)

Arguments:
* col um - the name of the column to render in SQL SELECT clause.

e javaType - a fully-qualified Java class name for a given result column. For simplicity most common Java
types used in JDBC can be specified without a package. These include all numeric types, primitives, String,

SQL dates, BigDecimal and BigInteger. So "#result (* A ' String')", "#result(' B 'java.lang. String)" and
"#result('Cc 'int')" aredl vaid

* alias - specifies both the SQL alias of the column and the value key in the DataRow. If omitted, "column”
valueis used.

 dat aRowkey - needed if SQL ‘'adias is not appropriate as a DataRow key on the Cayenne side. One common
case when this happens is when a DataRow retrieved from a query is mapped using joint prefetch keys (see
below). In this case DataRow must use database path expressions for joint column keys, and their format is
incompatible with most databases alias format.

Usage:

#resul t (' NAME')

#resul t (' DATE_OF_BIRTH 'java.util.Date')

#result (' DOB' 'java.util.Date' 'DATE_OF_BIRTH)
#result (' DOB' 'java.util.Date' '' 'artist.DATE_OF_BIRTH)
#resul t (' SALARY" 'float')

Full example:

SELECT #result('ID 'int'), #result('NAME 'String'), #result(' DATE_ OF BIRTH 'java.util.Date') FWAWIST

v.3.1 39

Queries

9.3.3.7. #chain and #chunk

#chai n and #chunk directives are used for conditional inclusion of SQL code. They are used together with #chai n
wrapping multiple #chunks. A chunk evaluates its parameter expression and if it is NULL suppresses rendering
of the enclosed SQL block. A chain renders its prefix and its chunks joined by the operator. If all the chunks
are suppressed, the chain itself is suppressed. This alows to work with otherwise hard to script SQL semantics.
E.g. aWHERE clause can contain multiple conditions joined with AND or OR. Application code would like to
exclude a condition if its right-hand parameter is not present (similar to Expression pruning discussed above). If
all conditions are excluded, the entire WHERE clause should be excluded. chain/chunk allows to do that.

Semantics:
#chai n(operator) ... #end
#chai n(operator prefix) ... #end
#chunk() ... #end
#chunk(param ... #end
Full example:

#chai n(' OR ' WHERE')
#chunk($nanme) NAME LI KE #bi nd($nane) #end"
#chunk($i d) ARTIST_I D > #bi nd($id) #end"
#end"

9.3.4. Mapping SQLTemplate Results

Here we'll discuss how to convert the data selected via SQL Template to some useable format, compatible with
other query results. It can either be very simple or very complex, depending on the structure of the SQL, JDBC
driver nature and the desired result structure. This section presents various tips and tricks dealing with result

mapping.

By default SQL Template is expected to return aList of Persistent objects of itsroot type. Thisisthe simple case:

SQL.Tenpl ate query = new SQ.Tenpl ate(Artist.class, "SELECT * FROM ARTI ST");

/1 List of Artists
List<Artist> artists = context.perfornmuery(query);

Just like SelectQuery, SQLTemplate can fetch DataRows. In fact DataRows option is very useful with
SQL Template, astheresult type most often than not does not represent a Cayenne entity, but instead may be some
aggregated report or any other data whose object structure is opaque to Cayenne:

String sql = SELECT t0. NAME, COUNT(1) FROM ARTI ST t0 JON PAINTINGt1 ON (t0.1D = t1. ARTIST_ID) "
+ "GROUP BY t0. NAME ORDER BY COUNT(1)";
SQL.Tenpl ate query = new SQ.Tenpl ate(Artist.class, sql);

// ensure we are fetching DataRows
guery. set Fet chi ngDat aRows(true);

/1 List of DataRow

v.3.1 40

Queries

Li st <Dat aRow> rows = context. performuery(query);

In the example above, even though the query root is Artist. theresult isalist of artist names with painting counts
(as mentioned before in such case "root" is only used to find the DB to fetch against, but has no bearning on the

result). The DataRows here are the most appropriate and desired result type.

In amore advanced case you may decide to fetch alist of scalars or alist of Object[] with each array entry being
either an entity or ascalar. Y ou probably won't be doing this too often and it requires quite alot of work to setup,
but if you want your SQL Template to return results similar to EJBQLQuery, it is doable using SQLResult as

described below:

SQL.Tenpl ate query = new SQ.Tenpl at e(Pai nti ng. cl ass,
/1 1et Cayenne know that result is a scalar
SQLResult resul tDescriptor = new SQLResul t();

resul t Descri pt or. addCol umResul t ("P");

query. set Resul t (resul t Descriptor);

/1 List of BigDecinals

Li st <Bi gDeci mal > prices = context. perfornmuery(query);

SQLTenpl ate query = new SQ.Tenpl ate(Artist.class, "SELECT tO0.ID,
"FROM ARTI ST t0 LEFT JON PAINTINGt1 ON (t0.1D = t1. ARTI ST_I D)
"GROUP BY t0.1D, t0. NAMVE, tO0.DATE OF Bl RTH');

// let Cayenne know that result
EntityResult artistResult = new EntityResult(Artist.class);
artistResult.addDbFi el d(Artist.| D PK COLUWN, "ARTIST_ID");
artistResult.addObjectFiel d(Artist. NAVE_PROPERTY, "NAME");
artistResult.addObjectFiel d(Artist. DATE_OF_BI RTH_PROPERTY,

SQLResult resul tDescriptor = new SQLResul t();
resul t Descriptor.addEntityResul t(artistResult);
resul t Descri pt or. addCol umResul t ("C");

query. set Resul t (resul t Descriptor);

/1 List of Object[]

Li st <Obj ect[]> data = context. performuery(query);

"SELECT ESTI MATED_ PRI CE P FROM PAI NTI NG') ;

t 0. NAME,
"+

is amx of Artist objects and the count of their paintings

" DATE_OF_BI RTH') ;

t0. DATE_OF_BI RTH, COUNT(t 1

Another trick related to mapping result sets is making Cayenne recognize prefetched entities in the result set.
Thisemulates"joint" prefetching of SelectQuery, and isachieved by special column naming. Columns belonging
to the "root" entity of the query should use unqualified names corresponding to the root DbEntity columns. For
each related entity column names must be prefixed with relationship name and adot (e.g. "toArtist.ID"). Column

naming can be controlled with "#result" directive:

String sql = "SELECT distinct "
+ "#resul t('tl. ESTI MATED PRICE 'BigDecimal' '' 'paintings. ESTI MATED PRICE), "
"#result('t1. PAINTING TITLE 'String' '' 'paintings.PAINTING TITLE), "

"#result('tl. GALLERY_ID ‘'int' '' 'paintings. GALLERY_ID), "
"#result('t1.1D 'int' ''" 'paintings.ID), "
"#result (' NAME' ' String'), "

"#result (' DATE_.OF_BIRTH 'java.util.Date'), "

+ + + + o+

v.3.1

41

PAI NTI NG_I L

Queries

+ "#result('t0.1D 'int' "' "ID) "
+ "FROM ARTI ST t0, PAINTINGt1 "
+ "WHERE t0.1D = t1. ARTI ST_I D*;

SQLTenpl ate g = new SQLTenpl ate(Artist.class, sql);
g. addPr ef et ch(Arti st. PAI NTI NGS_PROPERTY)
Li st<Artist> objects = context.perfornuery(query);

Andthefinal tip dealswith capitalization of the DataRow keys. Querieslike"seLect * Frov .. " and even "SeLECT
COLUMNI, COLUMN2, ... FROM ..." can sometimes result in Cayenne exceptions on attempts to convert fetched
DataRows to objects. Essentially any query that isnot using a#resul t directive to describe the result set is prone
to this problem, as different databases may produce different capitalization of the java.sgl.ResultSet columns.

Themost universal way to addressthisissueisto describe each column explicitly inthe SQL Templatevia#r esul t
€.0.: "SELECT #resul t (' colum1'), #result (' columz2'), ..". However thisquickly becomesimpractical for tables
with lots of columns. For such cases Cayenne provides ashortcut based on the fact that an ORM mapping usually
follows some naming convention for the column names. Simply put, for case-insensitive databases developers
normally use either all lowercase or all uppercase column names. Hereisthe API that takes advantage of that user
knowledge and forces Cayenne to follow a given naming convention for the DataRow keys (thisis also available
as adropdown in the Model er):

SQ.Tenpl ate query = new SQ.Tenpl at e(" SELECT * FROM ARTI ST") ;
query. set Col unmNanesCapi t al i zati on(CapsStrat egy. LOAER) ;
Li st objects = context.perfornQuery(query);

or

SQLTenpl ate query = new SQ.Tenpl at e(" SELECT * FROM ARTI ST") ;
query. set Col utmNanesCapi tal i zati on(CapsStrat egy. UPPER) ;
Li st objects = context. performuery(query);

None of this affects the generated SQL, but the resulting DataRows are using correct capitalization. Note that
you probably shouldn't bother with this unless you are getting CayenneRuntimeExceptions when fetching with
SQL Template.

9.4. ProcedureQuery

Stored procedures are mapped as separate objectsin CayenneM odel er. ProcedureQuery provides away to execute
them with a certain set of parameters. Just like with SQL Template, the outcome of a procedure can be anything
- asingle result set, mutliple result sets, some data modification (returned as an update count), or a combination
of these. So use "performQuery" to get asingle result set, and use "performGenericQuery” for anything else:

ProcedureQuery query = new ProcedureQuery("ny_procedure", Artist.class);

/1 Set "IN' paraneter val ues
qguery. addPar anm("pl", "abc");
query. addPar am(" p2", 3000);

v.3.1 42

Queries

List<Artist> result = context.perfornuery(query);

/] here we do not bother with root class.
/1 Procedure nane gives us needed routing information
ProcedureQuery query = new ProcedureQuery("ny_procedure");

query. addPar an(" pl", "abc");
query. addPar an(" p2", 3000);

Quer yResponse response = cont ext. perfornGeneri cQuery(query);

A stored procedure can return data back to the application as result sets or via OUT parameters. To simplify
the processing of the query output, QueryResponse treats OUT parameters as if it was a separate result set. If
a stored procedure declares any OUT or INOUT parameters, QueryResponse will contain their returned values
in the very first result list:

ProcedureQuery query = new ProcedureQuery("ny_procedure");
Quer yResponse response = context. perfornGeneri cQuery(query);

// read OUT paraneters
Li st out = response.firstList();

if(lout.isEnpty()) {
Map out Par anet er Val ues = (Map) outList.get(0);
}

There maybe a situation when a stored procedure handles its own transactions, but an application is configured
to use Cayenne-managed transactions. This is obviously conflicting and undesirable behavior. In this case
ProcedureQueries should be executed explicitly wrapped in an "external" Transaction. This is one of the few
cases when a user should worry about transactions at all. See Transactions section for more details.

9.5. NamedQuery

NamedQuery is a query that is a reference to another query stored in the DataMap. The actual stored query can
be SelectQuery, SQL Template, EIJBQL Query, etc. It doesn't matter - the API for calling them is the same - via
a NamedQuery:

String[] keys = new String[] {"loginid", "password"};
Obj ect[] values = new String[] {"joe", "secret"};

NanedQuery query = new NanedQuery("Login", keys, val ues);

Li st <User > mat chi ngUsers = cont ext . per f or nQuery(query);

9.6. Custom Queries

If auser needs some extrafunctionality not addressed by the existing set of Cayenne queries, he can write hisown.
The only requirement isto implement or g. apache. cayenne. query. Query interface. The easiest way to go about it
isto subclass some of the base queriesin Cayenne.

v.3.1 43

Queries

E.g. to do something directly in the JDBC layer, you might subclass AbstractQuery:
public class MyQuery extends Abstract Query {
@verride
public SQLAction createSQ.Action(SQLActionVisitor visitor) {

return new SQLAction() {

@verride

public void performActi on(Connecti on connection, OperationObserver observer) throws SQ.Exception,

// 1. do some JDBC work using provided connection...
/1 2. push results back to Cayenne via Operati onCbserver

To delegate the actual query execution to a standard Cayenne query, you may subclass IndirectQuery:

public class MyDel egati ngQuery extends | ndirectQery {

@verride

protected Query createRepl acement Query(EntityResol ver resolver) {
SQ.Tenpl at e del egate = new SQ.Tenpl at e(SoneCl ass. cl ass, generateRawSQ.());
del egat e. set Fet chi ngDat aRows(true);
return del egate;

protected String generateRawSQ() {
/1 build sone SQ string

In fact many internal Cayenne queries are IndirectQueries, delegating to SelectQuery or SQL Template after some
preprocessing.

v.3.1 44

Ex

Chapter 10. Lifecycle Events

An application might be interested in getting notified when a Persistent object moves through its lifecycle
(i.e. fetched from DB, created, modified, committed). E.g. when a new object is created, the application may
want to initialize its default properties (this can't be done in constructor, as constructor is also called when an
object isfetched from DB). Before save, the application may perform validation and/or set some properties (e.g.
"updatedTimestamp"). After save it may want to create an audit record for each saved object, etc., etc.

All this can be achieved by declaring callback methods either in Persistent objects or in non-persistent listener
classes defined by the application (further smply called "listeners'). There are eight types of lifecycle events
supported by Cayenne, listed later in this chapter. When any such event occurs (e.g. an object is committed),
Cayennewouldinvokeall appropriate callbacks. Persistent objectswould receivetheir own events, whilelisteners
would receive events from any objects.

Cayenne alows to build rather powerful and complex "workflows" or "processors' tied to objects lifecycle,
especially with listeners, as they have full access to the application evnironment outside Cayenne. This power
comes from such features as filtering which entity events are sent to a given listener and the ability to create a
common operation context for multiple callback invocations. All of these are discussed |ater in this chapter.

10.1. Types of Lifecycle Events
Cayenne defines the following 8 types of lifecycle events for which callbacks can be regsitered:

Table 10.1. Lifecycle Event Types

Event Occurs...

PostAdd right after anew object is created inside avj ect Cont ext . newabj ect () . When thisevent isfired
the object isaready registered with its ObjectContext and hasits Objectld and ObjectContext
properties set.

PrePersist right before a new object is committed, inside ject Context.comitChanges() and

Qbj ect Cont ext . conmi t ChangesToPar ent () (@nd prior to "val i dat eFor I nsert ()).

PreUpdate right before a modified object is committed, inside j ect Cont ext . commi t Changes() and
Qoj ect Cont ext . commi t ChangesToPar ent () (and prior to "val i dat eFor Updat e() ").

PreRemove right before an object is deleted, inside j ect Cont ext . del et ethj ects(). The event is also
generated for each object indirectly deleted as aresult of CASCADE delete rule.

PostPersist right after acommit of a new object is done, inside tbj ect Cont ext . conmi t Changes() .

PostUpdate right after acommit of amodified object is done, inside j ect Cont ext . conmi t Changes() .

PostRemove right after acommit of a deleted object is done, inside oj ect Cont ext . commi t Changes() .

v.3.1 45

Lifecycle Events

Event Occurs...

PostLoad » After an object isfetched inside aj ect Cont ext . per f or nQuery() .
» After an object isreverted inside aj ect Cont ext . rol | backChanges() .

» Anytime afaulted object isresolved (i.e. if arelationship is fetched).

10.2. Callbacks on Persistent Objects

Callback methods on Persistent classes are mapped in CayenneModeler for each ObjEntity. Empty callback
methods are automatically created as a part of class generation (either with Maven, Ant or the Modeler) and
are later filled with appropriate logic by the programmer. E.g. assuming we mapped a 'post-add' callback called
‘onNewQrder' in ObjEntity 'Order’, the following code will be generated:

public abstract class _Order extends CayenneDataCbject {
protected abstract void onNewOrder();

}

public class Order extends _Order {

@verride
protected void onNewOrder () {
// TODQ i npl ement onNewOr der
}
}

AsonNewar der () isalready declared in the mapping, it does not need to be registered explicitly. Implementing the
method in subclass to do something meaningful is all that is required at this point.

As arule callback methods do not have any knowledge of the outside application, and can only access the state
of the abject itself and possibly the state of other persistent objects via object's own ObjectContext.

Note

Validation and callbacks. There is a clear overlap in functionality between object callbacks and
Dat athj ect . val i dat eFor X() mMethods. In the future validation may be completely superceeded by
callbacks. It isagood ideato use "validateForX" strictly for validation (or not useit at all). Updating the
state before commit should be done via callbacks.

10.3. Callbacks on Non-Persistent Listeners

Note

While listener callback methods can be declared in the Model er (at least as of thiswrting), which ensures
their automatic registration in runtime, there's a big downside to it. The power of the listeners lies in

v.3.1 46

Lifecycle Events

their complete separation from the XML mapping. The mapping once created, can be reused in different
contexts each having adifferent set of listeners. Placing a Javaclass of the listener in the XML mapping,
and relying on Cayenneto instantiate the listeners severly limits mapping reusability. Further downinthis
chapter we'll assumethat the listener classes are never present in the DataM ap and are registered via API.

A listener is simply some application class that has one or more annotated callback methods. A callback method
signature should be voi d someMet hod(SonmePer si st ent Type obj ect). It can be public, private, protected or use
default access:

public class OrderlListener {

@Post Add(Or der . cl ass)
public void set Defaul t sFor NewOr der (Order o) {
0. set Creat edOn(new Date());

}

Notice that the example above contains an annotation on the callback method that defines the type of the event
this method should be called for. Before we go into annotation details, we'll show how to create and register a
listener with Cayenne. It isalways auser responsibility to register desired application listeners, usually right after
ServerRuntime is started. Here is an example:

First let's define 2 simple listeners.

public class Listenerl {

@Post Add(MyEnti ty. cl ass)
voi d post Add(Persi stent object) {
/1 do sonet hi ng
}
}

public class Listener2 {

@ost Renove({ MyEntityl.class, M/Entity2.class })
voi d post Renpbve(Persi stent object) {
/1 do sonething

}

@Post Updat e({ MyEntityl.class, M/Entity2.class })
voi d post Updat e(Persi stent object) {
/1 do sonething

}

Ignore the annotations for a minute. The important point hereis that the listeners are arbitrary classes unmapped
and unknown to Cayenne, that contain some callback methods. Now let's register them with runtime:

ServerRuntine runtinme = ...

Li fecycl eCal | backRegi stry registry =

v.3.1l 47

Lifecycle Events

runti nme. get Dat aDomai n() . get Enti t yResol ver (). get Cal | backRegi stry();

regi stry. addLi st ener (new Li stener1());
regi stry. addLi st ener (new Li stener2());

Listenersin this example are very ssmple. However they don't have to be. Unlike Persistent objects, normally
listeners initialization is managed by the application code, not Cayenne, so listeners may have knowledge of
various application services, operation transactional context, etc. Besides a single listener can apply to multiple

entities. As a conseguence their callbacks can do more than just access a single ObjectContext.

Now let's discuss the annotations. There are eight annotations exactly matching the names of eight lifecycle
events. A callback method in alistener should be annotated with at least one, but possibly with more than one of
them. Annotation itself defines what event the callback should react to. Annotation parameters are essentially an

entity filter, defining a subset of ObjEntities whose events we areinterested in:

/'l this callback will be invoked on Post Renove event of any object
/'l belonging to MyEntityl, MyEntity2 or their subcl asses

@ost Remove({ MyEntityl.class, M/Entity2.class })

voi d post Renove(Persi stent object) {

}

I/l simlar exanple with nultipe annotations on a single nethod
/1 each matching just one entity

@Post Persi st (MyEntityl. cl ass)

@Post Renpve(MyEntityl. cl ass)

@Post Updat e(MyEnti tyl. cl ass)

voi d post Commi t (MyEntityl object) {

}

As shown above, "value" (the implicit annotation parameter) can contain one or more entity classes. Only
these entities' events will result in callback invocation. There's also another way to match entities - via custom
annotations. Thisalowsto match any number of entitieswithout even knowing what they are. Hereisan example.

Well first define a custom annotation:

@rar get (El enent Type. TYPE)
@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
public @nterface Tag {

}

Now we can define alistener that will react to events from ObjEntities annotated with this annotation:

public class Listener3 {

@Post Add(entityAnnotati ons = Tag. cl ass)
voi d post Add(Persi stent object) {
/1 do sonet hi ng

}

v.3.1

48

Lifecycle Events

As you see we don't have any entities yet, still we can define a listener that does something useful. Now let's

annotate some entities:

@ag
public class MyEntityl extends _MyEntityl {

@ag
public class MyEntity2 extends _M/Entity2 {

10.4. Combining Listeners with DataChannelFilters

A final touch in the listeners design is preserving the state of the listener within a single select or commit,
so that events generated by multiple objects can be collected and processed all together. To do that you will
need to implement a bat achannel Fi I ter, and add some callback methods to it. They will store their state in a
ThreadL ocal variable of thefilter. Here is an examplefilter that does something pretty meaningless - counts how
many total objectswere committed. However it demonstratestheimportant pattern of aggregating multiple events

and presenting a combined resullt:

public class ConmittedObjectCounter inplenents DataChannel Filter {
private ThreadlLocal <int[]> counter;

@verride
public void init(DataChannel channel) {
counter = new ThreadLocal <int[]>();

@verride
publ i c QueryResponse onQuery(Object Context origi nati ngContext, Query query,
return filterChain.onQuery(originatingContext, query);

@verride
public GraphDi ff onSync(Object Context originati ngContext, G aphDi ff changes,
Dat aChannel Fil terChain filterChain) {

// init the counter for the current commit
counter.set(newint[1]);

try {
return filterChain.onSync(originati ngContext, changes, syncType);

} finally {
/] process aggregated result and rel ease the counter

Systemout.printin("Commtted " + counter.get()[0] + " object(s)");
counter.set(null);

v.3.1

Dat aChannel FilterChajn filterChe

int syncType,

49

Lifecycle Events

@Post Persi st (entityAnnotations = Tag. cl ass)

@Post Updat e(ent it yAnnot ati ons = Tag. cl ass)

@Post Renove(entityAnnot ati ons = Tag. cl ass)

voi d afterConmt (Persistent object) {
counter. get()[0] ++;

Now since thisis both afilter and alistener, it needs to be registered as such:
Commi tt edCbj ect Count er counter = new Conmi ttedObj ect Counter();

ServerRuntinme runtime = ...
Dat aDomai n domai n = runti ne. get Dat aDonai n() ;

/'l register filter
donmi n. addFi | ter (counter);

/'l register l|istener
domai n. get Enti t yResol ver (). get Cal | backRegi stry() . addLi st ener (counter);

v.3.1

50

Chapter 11. Performance Tuning

11.1. Prefetching

Prefetching is a technique that alows to bring back in one query not only the queried objects, but also objects
related to them. In other wordsit is a controlled eager relationship resolving mechanism. Prefetching is discussed
in the "Performance Tuning" chapter, as it is a powerful performance optimization method. However another
common application of prefetching is to refresh stale object relationships, so more generaly it can be viewed as
atechnique for managing subsets of the object graph.

Prefetching example:
Sel ect Query query = new Sel ect Query(Artist.class);

// this instructs Cayenne to prefetch one of Artist's relationships
query. addPref et ch("pai ntings");

/1 query is expecuted as usual, but the resulting Artists will have
// their paintings "inflated"
Li st<Artist> artists = context.performuery(query);

All types of relationships can be preftetched - to-one, to-many, flattened.

A prefetch can span multiple relationships:

query. addPrefetch("paintings.gallery");

A gquery can have multiple prefetches:

query. addPref et ch("pai ntings");
query. addPref et ch("paintings.gallery");

If aquery isfetching DataRows, al "digoint" prefetches are ignored, only "joint" prefetches are executed (see
prefetching semantics discussion below for what digjoint and joint prefetches mean).

11.1.1. Prefetching Semantics

Prefetching semantics defines a strategy to prefetch relationships. Depending on it, Cayenne would generate
different types of queries. The end result is the same - query root objects with related objects fully resolved.
However semantics can affect preformance, in some cases significantly. There are 3 types of prefetch semantics,
all defined as constants in org.apache.cayenne.query.PrefetchTreeNode:

Pr ef et chTr eeNode. JO NT_PREFETCH_SEMANTI CS
Pr ef et chTr eeNode. DI SJO NT_PREFETCH_SEMANTI CS
Pr ef et chTr eeNode. DI SJO NT_BY_| D_PREFETCH_SEMANTI CS

v.3.1 51

Performance Tuning

Each query has a default prefetch semantics, so generally users do not have to worry about changing it, except
when performance is a concern, or afew special cases when a default sematics can't produce the correct result.
SelectQuery uses DISJIOINT_PREFETCH_SEMANTICS by default. Semantics can be changed as follows:

Sel ect Query query = new Sel ect Query(Artist.class);
query. addPr ef et ch("pai nti ngs"). set Semanti cs(
Pr ef et chTr eeNode. JO NT_PREFETCH_SEMANTI CS) ;

There's no limitation on mixing different types of semantics in the same SelectQuery. Multiple prefetches each
can have its own semantics.

SQL Template and ProcedureQuery are both using JOINT_PREFETCH_SEMANTICS and it can not be changed
due to the nature of these two queries.

11.1.2. Disjoint Prefetching Semantics

This semantics (only applicable to SelectQuery) results in Cayenne generatiing one SQL statement for the main
objects, and a separate statement for each prefetch path (hence "digoint” - related objects are not fetched with
the main query). Each additional SQL statement uses a qualifier of the main query plus a set of joins traversing
the preftech path between the main and related entity.

This strategy has an advantage of efficient VM memory use, and faster overall result processing by Cayenne,
but it requires (1+N) SQL statements to be executed, where N is the number of prefetched relationships.

11.1.3. Disjoint-by-ID Prefetching Semantics

Thisis avariation of disjoint prefetch where related objects are matched against a set of 1Ds derived from the
fetched main objects (or intermediate objects in a multi-step prefetch). Cayenne limits the size of the generated
WHERE clause, asmost DBs can't parse arbitrary large SQL. So prefetch queries are broken into smaller queries.
The size of is controlled by the DI property Constants.SERVER_MAX ID_QUALIFIER _SIZE PROPERTY
(the default number of conditions in the generated WHERE clause is 10000). Cayenne will generate (1 + N *
M) SQL statements for each query using digoint-by-I1D prefetches, where N is the number of relationships to
prefetch, and M is the number of queries for a given prefetch that is dependent on the number of objects in the
result (ideally M = 1).

The advantage of this type of prefetch is that matching database rows by ID may be much faster than matching
the qualifier of the original query. Moreover thisisthe only type of prefetch that can handle SelectQueries with
fetch limit. Both joint and regular digoint prefetches may produce invalid results or generate inefficient fetch-
the-entire table SQL when fetch limit isin effect.

The disadvantage is that query SQL can get unwieldy for large result sets, as each object will have to have its
own condition in the WHERE clause of the generated SQL.

v.3.1 52

Performance Tuning

11.1.4. Joint Prefetching Semantics

Joint semantics results in a single SQL statement for root objects and any number of jointly prefetched paths.
Cayenne processes in memory a cartesian product of the entities involved, converting it to an object tree. It uses
OUTER joins to connect prefetched entities.

Joint isthe most efficient prefetch type of the three asfar as generated SQL goes. There'salwaysjust 1 SQL query
generated. Itsdownsides are the potentially increased amount of datathat needsto get acrossthe network between
the application server and the database, and more data processing that needs to be done on the Cayenne side.

11.2. Data Rows

Converting result set data to Persistent objects and registering these objects in the ObjectContext can be an
expensive operation compareable to the time spent running the query (and frequently exceeding it). Internally
Cayenne builds the result as a list of DataRows, that are later converted to objects. Skipping the last step and
using datain the form of DataRows can significantly increase performance.

DataRow isasimply amap of values keyed by their DB column name. It is a ubiqutous representation of DB data
used internally by Cayenne. And it can be quite usable as is in the application in many cases. So performance
sensitive selects should consider DataRows - it saves memory and CPU cycles. All selecting queries support
DataRows option, e.g.:

Sel ect Query query = new Sel ect Query(Artist.class);
guery. set Fet chi ngDat aRows(true);

Li st <Dat aRow> rows = cont ext . perfornQuery(query);

SQ.Tenpl ate query = new SQLTenpl ate(Artist.class, "SELECT * FROM ARTI ST");
guery. set Fet chi ngDat aRows(true);

Li st <Dat aRow> rows = context. perfornmuery(query);

Moreover DataRows may be converted to Persistent objects later as needed. So e.g. you may implement some
in-memory filtering, only converting a subset of fetched objects:

/1 you need to cast ObjectContext to DataContext to get access to 'objectFronDataRow
Dat aCont ext dat aCont ext = (DataContext) context;

for(DataRow row : rows) {
i f(row get("DATE_OF_BIRTH') != null) {
Artist artist = dataContext.objectFronDataRow Artist.class, row);
/! do something with Artist...

v.3.1 53

Performance Tuning

11.3. lterated Queries

While contemporary hardware may easily alow applications to fetch hundreds of thousands or even millions of
objects into memory, it doesn't mean this is always a good idea to do so. Y ou can optimize processing of very
large result sets with two techniques discussed in this and the following chapter - iterated and paginated queries.

Iterated query is not actually a specia query. Any selecting query can be executed in iterated mode by the
DataContext (likein the previous example, a cast to DataContext is needed). DataContext returns an object called
Resultiterator that is backed by an open ResultSet. Data is read from Resultlterator one row at a time until
it is exhausted. Data comes as a DataRows regardless of whether the orginating query was configured to fetch
DataRows or not. A Resultlterator must be explicitly closed to avoid JDBC resource leak.

Iterated query provides constant memory performance for arbitrarily large ResultSets. Thisistrue at least on the
Cayenne end, as JDBC driver may still decide to bring the entire ResultSet into the VM memory.

Hereisafull example:

/1 you need to cast ObjectContext to DataContext to get access to 'performteratedQuery’
Dat aCont ext dat aCont ext = (Dat aContext) context;

/'l create a regul ar query
Sel ect Query g = new Sel ect Query(Artist.class);

/! Resultlterator operations all throw checked CayenneException
/1 nmoreover 'finally' is required to close it

try {

Resultlterator it = dataContext.performteratedQery(q);

try {
whi | e(it.hasNext Row()) {

/1 normally we'd read a row, process its data, and throw it away
/1 this gives us constant nenory perfornance
Map row = (Map) it.next Row();

/1 do sonething with the row. ..

}

}
finally {

it.close();
}

}
cat ch(CayenneException e) {

e.printStackTrace();
}

Also common sense tells us that Resultlterators should be processed and closed as soon as possible to release the
DB connection. E.g. storing open iterators between HTTP requests and for unpredictable length of time would
quickly exhaust the connection pool.

v.3.1 54

Performance Tuning

11.4. Paginated Queries

Enabling query pagination allows to load very large result sets in a Java app with very little memory overhead
(much smaller than even the DataRows option discussed above). Moreover it is completely transparent to the
application - a user gets what appears to be alist of Persistent objects - there's no iterator to close or DataRows
to convert to objects:

Sel ect Query query = new Sel ect Query(Artist.class);
query. set PageSi ze(50) ;

/1 the fact that result is paginated is transparent
List<Artist> artists = ctxt.perfornQuery(query);

Having said that, DataRows option can be combined with pagination, providing the best of both worlds:

Sel ect Query query = new Sel ect Query(Artist.class);
guery. set PageSi ze(50) ;
guery. set Fet chi ngDat aRows(true);

Li st <Dat aRow> rows = ctxt. perfornQuery(query);

The way pagination works internaly, it first fetches alist of IDsfor the root entity of the query. Thisisvery fast
and initially takes very little memory. Then when an object isrequested at an arbitrary index in thelist, this object
and adjacent objects (a"page" of objectsthat is determined by the query pageSize parameter) are fetched together
by ID. Subsequent requests to the objects of this"page" are served from memory.

An obvious limitation of pagination is that if you eventually access all objects in the list, the memory use will
end up being the same as with no pagination. However it is still a very useful approach. With some lists (e.g.
multi-page search results) only afew top objects are normally accessed. At the same time pagination allows to
estimate the full list size without fetching all the objects. And again - it is completely transparent and looks like
anormal query.

11.5. Caching and Fresh Data
11.5.1. Object Caching

11.5.2. Query Result Caching

11.6. Turning off Synchronization of ObjectContexts

By default when a single ObjectContext commits its changes, all other contexts in the same runtime receive an
event that contains all the committed changes. This allows them to update their cached object state to match the
latest committed data. There are however many problems with this ostensibly helpful feature. In short - it works
well in environments with few contexts and in unclustered scenarios, such as single user desktop applications, or
simple webapps with only afew users. More specifically:

v.3.1 55

Performance Tuning

* The performance of synchronization is (probably worse than) O(N) where N is the number of peer
ObjectContexts in the system. In atypical webapp N can be quite large. Besides for any given context, due to
locking on synchronization, context own performance will depend not only on the queriesthat it runs, but also
on external eventsthat it does not control. Thisis unacceptable in most situations.

« Commit events are untargeted - even contextsthat do not hold a given updated object will receive thefull event
that they will have to process.

 Clustering between JVMs doesn't scale - apps with large volumes of commitswill quickly saturate the network
with events, while most of those will be thrown away on the receiving end as mentioned above.

¢ Some contexts may not want to be refreshed. A refresh in the middle of an operation may lead to unpredictable
results.

 Synchronization will interfere with optimistic locking.

So we've made agood case for disabling synchronization in most webapps. To do that, set to "false" the following
DI property - const ant s. SERVER_CONTEXTS_SYNC_PROPERTY, Using one of the standard Cayenne DI approaches. E.g.
from command line:

java -Dcayenne. server. cont exts_sync_strat egy=fal se

Or by changing the standard properties Map in a custom extensions module:
public class MyMdul e inpl ements Mdul e {
@verride

public void configure(Binder binder) {
bi nder. bi ndMap(Const ant s. PROPERTI ES_MAP) . put (Const ant s. SERVER_CONTEXTS_SYNC_PROPERTY, "fal sef

~

}

v.3.1 56

Chapter 12. Customizing Cayenne
Runtime

12.1. Dependency Injection Container

Cayenne runtime is built around a small powerful dependency injection (DI) container. Just like other popular DI
technologies, such as Spring or Guice, Cayenne DI container manages sets of interdependent objects and allows
users to configure them. These objects are regular Java objects. We are calling them "services' in this document
to distinguish from all other objects that are not configured in the container and are not managed. DI container
is responsible for service instantiation, injecting correct dependencies, maintaining service instances scope, and
dispatching scope events to services.

The services are configured in special Java classes called "modules’. Each module defines binding of service
interfaces to implementation instances, implementation types or providers of implementation instances. There
are no XML configuration files, and all the bindings are type-safe. The container supports injection into instance
variables and constructor parameters based on the @nj ect annotation. This mechanism is very close to Google
Guice.

Thediscussion later in thischapter demonstrates a standal one DI container. But keep in mind that Cayenne already
has a built-in Injector, and a set of default modules. A Cayenne user would normally only use the API below to
write custom extension modules that will be loaded in that existing container when creating ServerRuntime. See
"Starting and Stopping ServerRuntime" chapter for an example of passing an extension module to Cayenne.

Cayenne DI probably has ~80% of the features expected in a DI container and has no dependency on the rest
of Cayenne, so in theory can be used as an application-wide DI engine. But it's primary purposeis still to serve
Cayenne. Hence there are no plans to expand it beyond Cayenne needs. It is an ideal "embedded" DI that does
not interfere with Spring, Guice or any other such framework present el sewhere in the application.

12.1.1. DI Bindings API

To have aworking DI container, we need three things: service interfaces and classes, a module that describes
service bindings, acontainer that loadsthe module, and resolvesthe depedencies. Let's start with serviceinterfaces
and classes:

public interface Servicel {
public String getString();
}

public interface Service2 {
public int getlnt();

}

A service implementation using instance variable injection:

v.3.1 57

Customizing Cayenne Runtime

public class Servicell npl inplenments Servicel {
@ nj ect
private Service2 service2;

public String getString() {
return service2.getlnt() + "_Servicellnpl";

Same thing, but using constructor injection:
public class Servicell npl inplenments Servicel {
private Service2 service2;
public Servicell npl (@nject Service2 service2) {

this.service2 = service2;

public String getString() {
return service2.getlnt() + "_Servicell npl";

public class Service2l npl inplenments Service2 {
private int i;

public int getlnt() {
return i ++;

Now let's create a module implementing or g. apache. cayenne. tut orial . di . Modul e interface that will contain DI
configuration. A modul e binds service objectsto keysthat are reference. Binder provided by container implements
fluent API to connect the key to implementation, and to configure various binding options (the options, such
as scope, are demonstrated later in this chapter). The simplest form of akey is a Java Class object representing
service interface. Here is amodule that binds Servicel and Service2 to corresponding default implementations:

public class Mdul el i nplements Mdul e {

public void configure(Binder binder) {
bi nder. bi nd(Servi cel. cl ass).to(Servicell npl.class);
bi nder. bi nd(Servi ce2. cl ass).to(Service2l npl.class);

Oncewe have at |east one module, we can create aDI container. or g. apache. cayenne. di . | nj ect or iSthe container
classin Cayenne:

Injector injector = Dl Bootstrap.createlnjector(new Mdul el());

Now that we have created the container, we can obtain services from it and call their methods:

v.3.1 58

Customizing Cayenne Runtime

Servicel s1 = injector.getlnstance(Servicel.class);
for (int i =0; i <5; i++) {
Systemout.printIn("S1 String: " + sl.getString());

This outputs the following lines, demonstrating that s1 was Servicellmpl and Service2 injected into it was
Service2lmpl:

0_Servi cell npl
1_Servi cell npl
2_Servi cell npl
3_Servi cell npl
4_Servi cell npl

There are more flavors of bindings:

/1 binding to instance - allow ng user to create and configure instance
/1 inside the nodul e cl ass
bi nder. bi nd(Servi ce2. cl ass).tol nstance(new Service2lnpl ());

/1 binding to provider - delegating instance creation to a speci al
/1 provider class
bi nder. bi nd(Servi cel. cl ass).toProvi der (Servi celProvider.cl ass);

/1 binding to provider instance
bi nder. bi nd(Servi cel. cl ass).toProvi derl nstance(new Servi celProvider());

/1 multiple bindings of the sane type using Key

/'l injection can reference the key name in annotation:

/Il @nject("il")

/] private Service2 service2;

bi nder. bi nd(Key. get (Servi ce2.class, "il1")).to(Service2lnpl.class);
bi nder. bi nd(Key. get (Servi ce2.class, "i2")).to(Service2lnpl.class);

Another types of confiuguration that can be bound in the container are lists and maps. They will be discussed
in the following chapters.

12.1.2. Service Lifecycle

An important feature of the Cayenne DI container is instance scope. The default scope (implicitly used in all
examples above) is "singleton”, meaning that a binding would result in creation of only one service instance,
that will be repeatedly returned from 1 nj ect or. get I nstance(. .), as well asinjected into classes that declare it
as adependency.

Singleton scope dispatches a " BeforeScopeEnd” event to interested services. Thisevent occurs beforethe scopeis
shutdown, i.e. when i nj ect or . shut down() iscalled. Notethat the built-in Cayenneinjector is shutdown behind the
sceneswhen ser ver Runt i me. shut down() iSinvoked. Services may register aslistenersfor this event by annotating
ano-argument method with @ef or escopeEnd annotation. Such method should be implemented if a service needs
to clean up some resources, stop threads, etc.

v.3.1 59

Customizing Cayenne Runtime

Another useful scope is "no scope", meaning that every time a container is asked to provide a service instance
for agiven key, a new instance will be created and returned:

bi nder. bi nd(Servi ce2. cl ass).to(Service2l npl.class).w thout Scope();

Users can also create their own scopes, e.g. aweb application request scope or asession scope. Most often than not
custom scopes can be created asinstances of or g. apache. cayenne. di . spi . Def aul t Scope With startup and shutdown
managed by the application (e.g. singleton scope is a DefaultScope managed by the Injector) .

12.1.3. Overriding Services

Cayenne DI alowsto override services already definied in the current module, or more commonly - some other
modulein the the same container. Actually there'sno special API to override aservice, you'd just bind the service
key again with anew implementation or provider. Thelast binding for akey takes precedence. This meansthat the
order of modulesisimportant when configuring a container. The built-in Cayenne injector ensures that Cayenne
standard modules are loaded first, followed by optional user extension modules. This way the application can
override the standard servicesin Cayenne.

12.2. Customization Strategies

The previous section discussed how Cayenne DI works in general terms. Since Cayenne users will mostly be
dealing with an existing Injector provided by ServerRuntime, it isimportant to understand how to build custom
extensions to a preconfigured container. As shown in "Starting and Stopping ServerRuntime" chapter, custom
extensions are done by writing an aplication DI module (or multiple modules) that configures service overrides.
This section shows all the configuration possibilities in detail, including changing properties of the existing
services, contributing servicesto standard service lists and maps, and overriding service implementations. All the
code examples later in this section are assumed to be placed in an application module "configure" method:

public class MyExtensi onsModul e i npl ements Mdul e {
public void configure(Binder binder) {
/! custom zations go here...

}

Modul e ext ensi ons = new MyExt ensi onshMbdul e();
ServerRuntine runtinme =
new Server Runti me("coni exanpl e/ cayenne- nydonai n. xm ", extensi ons);

12.2.1. Changing Properties of Existing Services

Many built-in Cayenne services change their behavior based on a value of some environment property. A user
may change Cayenne behavior without even knowing which services are responsible for it, but setting a specific
value of aknown property. Supported property names are listed in "Appendix A".

There are two ways to set service properties. The most obvious one is to pass it to the VM with -D flag on
startup. E.g.

v.3.1 60

Customizing Cayenne Runtime

java -Dcayenne. server.contexts_sync_strategy=false ...

A second one is to contribute a property to
org. apache. cayenne. confi gurati on. Def aul t Runti meProperties. properties Map (see the next section on how to
do that). This map contains the default property values and can accept application-specific values, overrding the
defaults.

Note that if a property value is a name of a Java class, when this Java class is instantiated by Cayenne, the
container performsinjection of instance variables. So even the dynamically specified Javaclasses can use @I nject
annotation to get a hold of other Cayenne services.

If the same property is specified both in the command line and in the properties map, the command-line value takes
precedence. The map value will be ignored. Thisway Cayenne runtime can be reconfigured during deployment.

12.2.2. Contributing to Service Collections

Cayenne can be extended by adding custom objects to named maps or lists bound in DI. We
are calling these listsymaps "service collections'. A service collection allows things like appending a
custom strategy to a list of built-in strategies. E.g. an application that needs to install a custom
DbAdapter for some database type may contribute an instance of custom DbAdapterDetector to a

org. apache. cayenne. confi gurati on. server. Def aul t DbAdapt er Factory. detectors list:

public class MyDbAdapt er Det ect or inplements DbAdapt er Det ector {
publ i c DbAdapt er creat eAdapt er (Dat abaseMet aDat a nd) throws SQLException {
// check if we support this database and retun custom adapter

// since build-in list for this key is a singleton, repeated
// calls to 'bindList' will return the sane instance
bi nder. bi ndLi st (Def aul t DbAdapt er Fact ory. DETECTORS_LI ST)

. add(MyDbAdapt er Det ect or. cl ass) ;

Maps are customized using asimilar "bi ndvap" method.

The names of built-in collections are listed in "Appendix B".

12.2.3. Alternative Service Implementations

As mentioned above, custom modules are loaded by ServerRuntime after the built-in modules. So it is easy to
redefine a built-in service in Cayenne by rebinding desired implementations or providers. To do that, first we
need to know what those servicesto redefine are. While we describe some of them in the following sections, the
best way to get afull list isto check the source code of the Cayenne version you are using and namely look in
or g. apache. cayenne. confi guration. server. Server Mdul e - the main built-in modulein Cayenne.

v.3.1 61

Customizing Cayenne Runtime

Now an example of overriding qQuerycache service. The default implementation of this service is provided
by mvapQueryCacheProvider. But if we want to use EnhcacheQuerycache (a Cayenne wrapper for the EhCache
framework), we can define it like this:

bi nder . bi nd(Quer yCache. cl ass) .t o(EnCacheQuer yCache. cl ass);

12.3. Noteworthy Built-in Services

12.3.1. JdbcEventLogger

org. apache. cayenne. | og. JdbcEvent Logger iS the service that defines logging APl for Cayenne internals.
It provides facilities for logging queries, commits, transactions, etc. The default implementation is
or g. apache. cayenne. | og. CormonsJdbcEvent Logger that performs logging via commons-logging library. Cayenne
library includes ancther potentially useful logger - org. apache. cayenne. | og. For mat t edConmonsJdbcEvent Logger
that produces formatted multiline SQL output that can be easier to read.

12.3.2. DataSourceFactory
12.3.3. DataChannelFilter
12.3.4. QueryCache

12.3.5. ExtendedTypes

v.3.1 62

v.3.1

Part Ill. Cayenne Framework
- Remote Object Persistence

63

Chapter 13. Introduction to ROP

13.1. What is ROP

"Remote Object Persistence” is alow-overhead web services-based technology that provides lightweight object
persistence and query functionality to 'remote’ applications. In other words it provides familiar Cayenne API to
applications that do not have direct access to the database. Instead such applications would access Cayenne Web
Service (CWS). A single abstract data model (expressed as Cayenne XML DataMap) is used on the server and
on the client, while execution logic can be partitioned between the tiers. The foll owing picture compares aregular
Cayenne web application and arich client application that uses remote object persistence technology:

v.3.1 64

Introduction to ROP

Client JVMs |

Swing f SWT
omponents

Remote Tier

Cayenne
Client Browsers (CayenneContext)

| CayennaCaonnaction

. I
|

CWS

Sener JYN
Server JyYik

Web Companents
" | Cayenng Web Service

Cayenne | E Cayenne
[DataGontext) [] (DataContext)
CORM Tier
JOBGC JDBC

—_— —

Database Database
Tree Tier Web Application: Three Tier Rich Client Application:
Cayenne in the application server tier Cayenne in the application server

and on the Client

Persistence stack above consists of the following parts:
* ORM Tier: aserver-side Cayenne Java application that directly connects to the database via JDBC.
* CWS (Cayenne Web Service): A wrapper around an ORM tier that makesit accessible to remote CWSclients.

* Remote Tier (aka Client Tier): A Java application that has no direct DB connection and persists its objects
by connecting to remote Cayenne Web Service (CWS). Note that CWS Client doesn't have to be a desktop
application. It can be another server-side application. Theword "client" meansaclient of CayenneWeb Service.

v.3.1 65

Introduction to ROP

13.2. Main Features

« Unified approach to lightweight object persistence across multiple tiers of adistributed system.

e Same abstract object model on the server and on the client.

« Client can "bootstrap" from the server by dynamically loading persistence metadata.

» An ability to define client objects differently than the server ones, and still have seamless persistence.
» Generic web service interface that doesn't change when object model changes.

< An ability to work in two modes: dedicated session mode or shared ("chat") mode when multiple remote clients
collaboratively work on the same data.

» Lazy object and collection faulting.

* Full context lifecycle

» Queries, expressions, local query caching, paginated queries.
» Vdidation

* Delete Rules

v.3.1 66

Chapter 14. ROP Setup

14.1. System Requirements

14.2. Jar Files and Dependencies

v.3.1

67

Chapter 15. Implementing ROP Server

v.3.1

68

Chapter 16. Implementing ROP Client

v.3.1

69

Chapter 17. ROP Deployment

17.1. Deploying ROP Server

Note

Recent versions of Tomcat and Jetty containers (e.g. Tomcat 6 and 7, Jetty 8) contain code addressing a
security concern related to "session fixation problem" by resetting the existing session ID of any request
that requires BASIC authentcaition. If ROP service is protected with declarative security (see the the
ROP tutorial and the following chapters on security), this feature prevents the ROP client from attaching
to its session, resulting in MissingSessionExceptions. To solve that you will need to either switch to an
alternative security mechanism, or disable "session fixation problem" protections of the container. E.g.
the later can be achieved in Tomcat 7 by adding the following context.xml file to the webapp's META-

INF/ directory:

<Cont ext >
<Val ve cl assName="or g. apache. cat al i na. aut henti cat or. Basi cAut henti cat or"

changeSessi onl dOnAut henti cati on="f al se" />
</ Cont ext >

(The<Vave> tag can also be placed within the <Context> in any other locations used by Tomcat to load
context configurations)

17.2. Deploying ROP Client

17.3. Security

v.3.1

Chapter 18. Current Limitations

v.3.1

71

Appendix A. Configuration Properties

Note that the property names below are defined as constants in or g. apache. cayenne. confi gurati on. Const ant s

interface.

Table A.1. Configuration Properties Recognized by Server Runtime and/or ClientRuntime

- node name are specified, the setting overrides DataSource info just for
this domain/node. Otherwise the override is applied to all domains/nodes
in the system.

Property Possible Default Value
Values

cayenne. j dbc. dri ver[. donmai n_nane. node_nane] - defines a JDBC driver none, project

class to use when creating a DataSource. If domain name and optionally DataNode

configuration is
used

cayenne. j dbc. url [. domai n_nane. node_nane] - defines a DB URL to use
when creating a DataSource. |f domain name and optionally - node name
are specified, the setting overrides DataSource info just for this domain/
node. Otherwisethe overrideisapplied to all domains/nodesin the system.

none,
DataNode
configuration is
used

project

- defines a DB user
name to use when creating a DataSource. If domain name and optionally
- node name are specified, the setting overrides DataSource info just for
this domain/node. Otherwise the override is applied to all domains/nodes
in the system.

cayenne. j dbc. user nane[. domai n_nane. node_nane]

none, project
DataNode
configuration is

used

cayenne. j dbc. passwor d[. domai n_nane. node_nane] - defines a DB
password to use when creating a DataSource. If domain name and
optionally - node name are specified, the setting overrides DataSourceinfo
just for thisdomain/node. Otherwisethe overrideisapplied to al domainsg/
nodes in the system

none, project
DataNode
configuration is

used

cayenne. j dbc. m n_connecti ons[. domai n_nane. node_nane] - definesthe DB
connection pool minimal size. If domain name and optionally - node name
are specified, the setting overrides DataSource info just for this domain/
node. Otherwisethe overrideisapplied to al domains/nodesin the system

none, project
DataNode
configuration is

used

cayenne. j dbc. max_connect i ons[. domai n_nane. node_nane] - definesthe DB
connection pool maximum size. If domain name and optionally - node
name are specified, the setting overrides DataSource info just for this
domain/node. Otherwise the override is applied to all domaing/nodes in
the system

none, project
DataNode
configuration is

used

v.3.1

72

Configuration Properties

Property

Possible
Values

Default Value

cayenne. quer ycache. si ze - An integer defining the maximum number of
entries in the query cache. Note that not all QueryCache providers may
respect this property. MapQueryCache uses it, but the rest would use
aternative configuration methods.

any positive
int value

2000

cayenne. server.contexts_sync_strategy - defines whether peer
ObjectContexts should receive snapshot events after commits from other
contexts. If true (default), the contexts would automatically synchronize

their state with peers.

true, false

true

cayenne. server. obj ect _retain_strategy - defines fetched objects retain
strategy for ObjectContexts. When weak or soft strategy is used, objects
retained by ObjectContext that have no local changes can potetialy get
garbage collected when VM feelslike doing it.

weak,
hard

soft,

weak

cayenne. server. max_i d_qual i fier_size - defines a maximum number of
ID qualifiers in the WHERE clause of queries that are generated for
paginated queries and for DISJOINT_BY _ID prefetch processing. Thisis
needed to avoid hitting WHERE clause size limitations and memory usage
efficiency.

any positive
int

10000

cayenne. rop. servi ce_url - definesthe URL of the ROP server

cayenne. rop. servi ce_user name - defines the user name for an ROP client
tologin to an ROP server.

cayenne. rop. servi ce_password - defines the password for an ROP client
tologin to an ROP server.

cayenne. rop. shar ed_sessi on_nane- defines the name of the shared session
that an ROP client wantsto join on an ROP server. If omitted, a dedicated
session is created.

cayenne. rop. servi ce. ti neout - avaluein millisecondsfor the ROP client-
server connection read operation timeout

any positive
long value

cayenne. rop. channel _events - defines whether client-side DataChannel
should dispatch events to child ObjectContexts. If set to true,
ObjectContextswill receive commit events and merge changes committed
by peer contexts that passed through the common client DataChannel.

true, false

fase

v.3.1

73

Configuration Properties

Property Possible Default Value
Values

cayenne. r op. cont ext _change_events- defines whether object property | true, false false

changesin the client context result in firing events. Client Ul components

can listen to these events and update the UI. Disabled by default.

cayenne. rop. context _| i fecycl e_events - defines whether object commit | true,false false

and rollback operationsin the client context result in firing events. Client
Ul components can listen to these events and update the Ul. Disabled by
defaullt.

cayenne. server.rop_event_bridge factory - defines the name of the
org.apache.cayenne.event.EventBridgeFactory that is passed from the
ROP server to the client. I.e. server DI would provide a name of the
factory, passing this name to the client via the wire. The client would
instantiate it to receive events from the server. Note that this property is
stored in "cayenne.server.rop_event_bridge properties’ map, not in the
main "cayenne.properties’.

v.3.1

74

Appendix B. Service Collections

Note that the collection keys below are defined as constants in or g. apache. cayenne. confi gurati on. Const ant s

interface.

Table B.1. Service Collection Keys Present in Server Runtime and/or ClientRuntime

Collection Property

Type

Description

cayenne. properties

Map<String, String>

Propertiesused by built-in Cayenne
services. The keys in this map are
the property names from the table
in Appendix A. Separate copies of
this map exist on the server and
ROP client.

cayenne. server. adapt er _detectors

Li st <DbAdapt er Det ect or >

Contains objects that can discover
the type of current database and
install the correct DbAdapter in
runtime.

cayenne. server.domain_filters

Li st <Dat aChannel Fi |l ter>

Stores DataDomain filters.

cayenne. server. proj ect _| ocations

Li st<String>

Stores locations of the one of more
project configuration files.

cayenne. server. defaul t _types

Li st <Ext endedType>

Stores default adapter-
agnostic ExtendedTypes. Default
ExtendedTypes can be overridden /
extended by DB-specific
DbAdapters as well as by
user-provided types configured
in another colltecion (see

"cayenne.server.user_types")

cayenne. server. user _types

Li st <Ext endedType>

Stores a user-provided
ExtendedTypes. This collection
will be merged into a full list of
ExtendedTypesand would override
any ExtendedTypes defined in a
default list, or by a DbAdapter.

cayenne. server.type_factories

v.3.1

Li st <Ext endedTypeFact or y>

Stores default and user-
provided ExtendedTypeFactories.

75

Service Collections

Collection Property Type Description

ExtendedTypeFactory alows to
define ExtendedTypesdynamically
for the whole group of Javaclasses.
E.g. Cayenne supplies a factory to
map all Enums regardless of their

type.

cayenne. server.rop_event _bridge_properties| Map<String, String> Stores event bridge properties
passed to the ROP client on
bootstrap. This means that the
map is configured by server DI,
and passed to the client via the
wire. The properties in this map
are specific to EventBridgeFactory
implementation (e.g JMS or
XMPP connection prameters).
One common property is
"cayenne. server.rop_event _bridge_factory"

that defines the type of the factory.

v.3.1 76

Appendix C. Expressions BNF

TOKENS
<DEFAULT> SKI P : {

<DEFAULT> TOKEN : {

<NULL: "nul " | "NULL">

| <TRUE: "true" | "TRUE">

| <FALSE: "false" | "FALSE">

}

<DEFAULT> TOKEN : {

<PROPERTY_PATH: <I| DENTI FI ER> ("."

}

<DEFAULT> TOKEN : {
<I DENTI FI ER. <LETTER> (<LETTER> |

| <#LETTER ["_","a"-"2z","A"-"Z"]>

| <#DIGT: ["0"-"9"]>
}

[**

* Quoted Strings, whose object value is stored in the token manager's
* "literal Value" field. Both single and double qoutes are all owed

*[<DEFAULT> MORE : {
"\"" : WthinSingl eQotelLiteral
| "\"" : WthinDoubl eQuoteLiteral
}

<W t hi nSi ngl eQuot eLi teral > MORE :

<ESC: "\\" (["n","r","t", b, "fr, "

| <V
}

<W t hi nSi ngl eQuot eLi t eral > TOKEN :

<| DENTI FI ER>) *>

DET)* (["+])?>

L R

{

<SI NGLE_QUOTED STRING "\'"> : DEFAULT

}

<W t hi nDoubl eQuot eLi teral > MORE :
<STRI NG_ESC. <ESC>> : {

RS EAREPRAA S R

}

<W t hi nDoubl eQuot eLi teral > TOKEN :

{

{

<DOUBLE_QUOTED STRING "\""> : DEFAULT

}

v.3.1

(["0"-"3"])2 ["0"-"7"]

(["0"-"7"1)?)> :

{

77

Expressions BNF

/**
* Integer or real Nuneric literal, whose object value is stored in the token nmanager's

* "literal Val ue" field.
*[<DEFAULT> TOKEN : {

<INT_LITERAL: (70" (["0"-"7"])* | ["1"-"9"] (["0"-"9"])* | "0" ["x","X"] (["0"-"9","a"-"f" "A"-"F']))

([nlu7nLu7nhn7nH'])?>: {
<FLOAT_LITERAL: <DEC FLT> (<EXPONENT>)? (<FLT_SUFF>)? | <DEC DI G TS> <EXPONENT> (<FLT_SUFF>)?
<DEC DI G TS> <FLT_SUFF>> : {

I
I
| <#DEC FLT: (["O0"-"9"])+ "."™ (["O0"-"9"1)* | "." (["0"-"9"])+>
| <#DEC_.DIGTS: (["0"-"9"]) +>
| <#EXPONENT: ["e","E'] (["+","-"1)? (["0"-"9"])+>
| <#FLT_SUFF. ["d","D',"f","F","b","B"]>
}
NON- TERM NALS
expressi on 1= or Condi ti on <EOF>
or Condi tion 1= andCondition ("or" andCondition)*
andCondi ti on 1= not Condi tion ("and" notCondition)*
not Condi ti on 1= ("not" | "!") sinpleCondition
| si npl eCondi ti on
si npl eCondi ti on L= <TRUE>
| <FALSE>

| scal ar Condi ti onExpr essi on
(si npl eNot Condi tion

("="| "==") scalarExpression

("!'="] "<>") scal ar Expression

"<=" scal ar Expr essi on

"<" scal arExpression | ">" scal ar Expression

"like" scal ar Expression
"1i kel gnoreCase" scal ar Expr essi on
"in" (nanedParaneter | "(" scal arComaList ")")

I
I
I
I
| ">=" scal ar Expr essi on
I
I
I
| "between" scal ar Expression "and" scal ar Expressi on

)?
si mpl eNot Condi ti on 1= ("not" | "I")
("like" scal ar Expression
| "likelgnoreCase" scal ar Expr essi on
| "in" (nanedParaneter | "(" scal arCommaList ")")
| "between" scal ar Expression "and" scal ar Expressi on
)
scal ar Commali st 1= (scal ar Const Expression ("," scal ar Const Expression)*)
scal ar Condi ti onExpr essi on L= scal ar Nuneri cExpressi on

[<SI NGLE_QUOTED_STRI NG>
| <DOUBLE_QUOTED_STRI NG>

| <NULL>
scal ar Expressi on 1= scal ar Condi ti onExpr essi on
| <TRUE>
| <FALSE>
scal ar Const Expr essi on 1= <S|I NGLE_QUOTED_STRI NG

<DOUBLE_QUOTED_STRI NG>
nanmedPar anet er

<I NT_LI TERAL>
<FLQOAT_LI TERAL>

<TRUE>

I
I
I
I
I
| <FALSE>

v.3.1

78

Expressions BNF

v.3.1

scal ar Nurer i cExpr essi on 1= mul ti pl ySubt ract Exp

("+" multiplySubtractExp | "-" multiplySubtractExp)*

mul ti pl ySubt ract Exp 1= nunericTerm ("*" nunericTerm |

nunericTerm 1= ("+")? numericPrimry
| "-" numericPrimry
nuneri cPri mary 1= "(" orCondition ")"
| pat hExpr essi on
| nanedPar anet er
[<I NT_LI TERAL>
[<FLOAT_LI TERAL>
nanedPar anet er = "$" <PROPERTY_PATH>
pat hExpr essi on 1= (<PROPERTY_PATH>
| "obj:" <PROPERTY_PATH>
| "db:" <PROPERTY_PATH>
| "enum " <PROPERTY_PATH>

nyn

nunericTerm)*

79

	Cayenne Guide
	Table of Contents
	Part I. Object Relational Mapping with Cayenne
	Chapter 1. Setup
	1.1. System Requirements
	1.2. Running CayenneModeler

	Chapter 2. Cayenne Mapping Structure
	2.1. Cayenne Project
	2.2. DataMap
	2.3. DataNode
	2.4. DbEntity
	2.5. ObjEntity
	2.6. Embeddable
	2.7. Procedure
	2.8. Query

	Chapter 3. CayenneModeler Application
	3.1. Working with Mapping Projects
	3.2. Reverse Engineering Database
	3.3. Generating Database Schema
	3.4. Migrations
	3.5. Generating Java Classes
	3.6. Modeling Inheritance
	3.7. Modeling Generic Persistent Classes
	3.8. Mapping ObjAttributes to Custom Classes
	3.9. Modeling Primary Key Generation Strategy

	Part II. Cayenne Framework
	Chapter 4. Including Cayenne in a Project
	4.1. Jar Files and Dependencies
	4.2. Maven Projects
	4.2.1. cgen
	4.2.2. cdbgen
	4.2.3. cdbimport

	4.3. Ant Projects
	4.3.1. cgen
	4.3.2. cdbgen
	4.3.3. cdbimport
	4.3.4. cdataport

	Chapter 5. Starting Cayenne
	5.1. Starting and Stopping ServerRuntime
	5.2. Merging Multiple Projects
	5.3. Web Applications

	Chapter 6. Persistent Objects and ObjectContext
	6.1. ObjectContext
	6.2. Persistent Object and its Lifecycle
	6.3. ObjectContext Persistence API
	6.4. Cayenne Helper Class
	6.5. ObjectContext Nesting
	6.6. Generic Persistent Objects
	6.7. Transactions

	Chapter 7. Expressions
	7.1. Expressions Overview
	7.2. Path Expressions
	7.3. Creating Expressions from Strings
	7.4. Creating Expressions with API
	7.5. Evaluating Expressions in Memory

	Chapter 8. Orderings
	Chapter 9. Queries
	9.1. SelectQuery
	9.2. EJBQLQuery
	9.3. SQLTemplate
	9.3.1. Scripting SQLTemplate with Velocity
	9.3.2. Variable Substitution
	9.3.3. Directives
	9.3.3.1. #bind
	9.3.3.2. #bindEqual
	9.3.3.3. #bindNotEqual
	9.3.3.4. #bindObjectEqual
	9.3.3.5. #bindObjectNotEqual
	9.3.3.6. #result
	9.3.3.7. #chain and #chunk

	9.3.4. Mapping SQLTemplate Results

	9.4. ProcedureQuery
	9.5. NamedQuery
	9.6. Custom Queries

	Chapter 10. Lifecycle Events
	10.1. Types of Lifecycle Events
	10.2. Callbacks on Persistent Objects
	10.3. Callbacks on Non-Persistent Listeners
	10.4. Combining Listeners with DataChannelFilters

	Chapter 11. Performance Tuning
	11.1. Prefetching
	11.1.1. Prefetching Semantics
	11.1.2. Disjoint Prefetching Semantics
	11.1.3. Disjoint-by-ID Prefetching Semantics
	11.1.4. Joint Prefetching Semantics

	11.2. Data Rows
	11.3. Iterated Queries
	11.4. Paginated Queries
	11.5. Caching and Fresh Data
	11.5.1. Object Caching
	11.5.2. Query Result Caching

	11.6. Turning off Synchronization of ObjectContexts

	Chapter 12. Customizing Cayenne Runtime
	12.1. Dependency Injection Container
	12.1.1. DI Bindings API
	12.1.2. Service Lifecycle
	12.1.3. Overriding Services

	12.2. Customization Strategies
	12.2.1. Changing Properties of Existing Services
	12.2.2. Contributing to Service Collections
	12.2.3. Alternative Service Implementations

	12.3. Noteworthy Built-in Services
	12.3.1. JdbcEventLogger
	12.3.2. DataSourceFactory
	12.3.3. DataChannelFilter
	12.3.4. QueryCache
	12.3.5. ExtendedTypes

	Part III. Cayenne Framework - Remote Object Persistence
	Chapter 13. Introduction to ROP
	13.1. What is ROP
	13.2. Main Features

	Chapter 14. ROP Setup
	14.1. System Requirements
	14.2. Jar Files and Dependencies

	Chapter 15. Implementing ROP Server
	Chapter 16. Implementing ROP Client
	Chapter 17. ROP Deployment
	17.1. Deploying ROP Server
	17.2. Deploying ROP Client
	17.3. Security

	Chapter 18. Current Limitations

	Appendix A. Configuration Properties
	Appendix B. Service Collections
	Appendix C. Expressions BNF

