
Cayenne 4.0 New Features

and Upgrade Guide

v.4.0 ii

Guide to 4.0 Features ... 1

1. Java Version ... 1

2. Cayenne Configuration ... 1

3. Framework API .. 2

4. CayenneModeler ... 4

5. Build Tools .. 4

v.4.0 1

Guide to 4.0 Features
This guide highlights the new features and changes introduced in Apache Cayenne 4.0. For a full list of changes

consult RELEASE-NOTES.txt included in Cayenne download. For release-specific upgrade instructions check

UPGRADE.txt.

1. Java Version

Minimum required JDK version is 1.7 or newer. Cayenne 4.0 is fully tested with Java 1.7, 1.8.

The examples below often use Java 8 syntax. But those same examples should work without lambdas just as well.

2. Cayenne Configuration

2.1. ServerRuntimeBuilder

Cayenne 3.1 introduced dependency injection and ServerRuntime. 4.0 provides a very convenient utility to create

a custom runtime with various extensions. This reduces the code needed to integrate Cayenne in your environment

to just a few lines and no boilerplate. E.g.:

ServerRuntime runtime = ServerRuntime.builder("myproject")

 .addConfigs("cayenne-project1.xml", "cayenne-project2.xml")

 .addModule(binder -> binder.bind(JdbcEventLogger.class).toInstance(myLogger))

 .dataSource(myDataSource)

 .build();

2.2. Mapping-free ServerRuntime

ServerRuntime can now be started without any ORM mapping at all. This is useful in situations when Cayenne

is used as a stack to execute raw SQL, in unit tests, etc.

2.3. DI Container Decorators

In addition to overriding services in DI container, Cayenne now allows to supply decorators. True to the "smallest-

footprint" DI philosophy, decorator approach is very simple and does not require proxies or class enhancement.

Just implement the decorated interface and provide a constructor that takes a delegate instance being decorated:

public class MyInterfaceDecorator implements MyInterface {

 private MyInterface delegate;

 public MockInterface1_Decorator3(@Inject MyInterface delegate) {

 this.delegate = delegate;

 }

 @Override

 public String getName() {

Guide to 4.0 Features

v.4.0 2

 return "<" + delegate.getName() + ">";

 }

}

Module module = binder ->

 binder.decorate(MyInterface.class).before(MyInterfaceDecorator.class);

3. Framework API

3.1. Fluent Query API

Fluent Query API is one of the most exciting new features in Cayenne 4.0. This syntax is "chainable" so you can

write query assembly and execution code on one line. The most useful fluent queries are ObjectSelect, SQLSelect

and SelectById:

3.1.1. ObjectSelect

A "chainable" analog of SelectQuery.

Artist a = ObjectSelect

 .query(Artist.class)

 .where(Artist.ARTIST_NAME.eq("Picasso"))

 .selectOne(context);

3.1.2. ColumnSelect

This query allows you directly access individual properties of Objects and use functions (including aggregate)

via type-safe API.

List<String> names = ObjectSelect

 .columnQuery(Artist.class, Artist.ARTIST_NAME)

 .where(Artist.ARTIST_NAME.length().gt(6))

 .select(context);

3.1.3. SQLSelect

A "chainable" analog of SQLTemplate used specifically to run selecting raw SQL:

List<Long> ids = SQLSelect

 .scalarQuery(Long.class, "SELECT ARTIST_ID FROM ARTIST ORDER BY ARTIST_ID")

 .select(context);

3.1.4. SelectById

There's really no good analog of SelectById in Cayenne prior to 4.0. Previously available ObjectIdQuery didn't

support half of the features of SelectById (e.g. caching consistent with other queries, prefetches, etc.) :

Artist a = SelectById

 .query(Artist.class, 3)

 .useLocalCache("g1")

 .selectOne(context)

Guide to 4.0 Features

v.4.0 3

3.2. ObjectContext

3.2.1. Callback-based Object Iterator

ObjectContext now features a simpler way to iterate over large result sets, based on callback interface that can

be implemented with a lambda:

SelectQuery<Artist> q = new SelectQuery<Artist>(Artist.class);

context.iterate(q, (Artist a) -> {

 // do something with the object...

 ...

});

3.3. Generics in Expressions and Queries

We finished the work of "genericizing" Cayenne APIs started in 3.1. Now all APIs dealing with persistent objects

(Expressions, Queries, ObjectContext, etc.) support generics of Persistent object type or attribute property type.

3.4. Property API

Persistent superclasses (_MyEntity) now contain a set of static Property<T> variables generated from the model.

These metadata objects make possible to create type-safe Expressions and other query parts.

3.5. Positional Parameter Bindings

Expressions and SQLTemplate traditionally supported binding of parameters by name as a map. Cayenne 4.0

introduces a very easy form of positional bindings. It works with the same named template format, only parameters

are bound by position, left-to-right. Here we showing a more complex example with the same parameter name

being used more than once in the query:

// two distinct names, 3 positional parameters.

// "price" is set to 23, "maxPrice" - to 50

Expression e = ExpressionFactory.exp(

 "price = $price or averagePrice = $price and maxPrice = $maxPrice", 23, 50);

This API is supported in Expressions, SQLTemplate as well as new SQLSelect and can be used interchnageably

with named parameters with a single template flavor.

3.6. Improved Transaction API

Transaction factory is now setup via DI (instead of being configured in the Modeler). There's a utility method on

ServerRuntime to perform multiple operations as one transaction:

runtime.performInTransaction(() -> {

 // ... do some changes

 context.commitChanges();

 // ... do more changes

Guide to 4.0 Features

v.4.0 4

 context.commitChanges();

 return true;

});

3.7. Transparent Database Cryptography with "cayenne-crypto" Module

Cayenne includes a new module called "cayenne-crypto" that enables transparent cryptography for designated

data columns. This is a pretty cool feature that allows to enable encryption/decryption of your sensitive data

pretty much declaratively using your regular DB storage. Encrypted values can be stored in (VAR)BINARY

and (VAR)CHAR columns. Currently "cayenne-crypto" supports AES/CBC/PKCS5Padding encryption (though

other cyphers can be added). It also supports encrypted data compression. Here is an example of building a crypto

DI module that can be added to ServerRuntime:

Module cryptoExtensions = CryptoModule.extend()

 .keyStore("file:///mykeystore", "keystorepassword".toCharArray(), "keyalias")

 .compress()

 .module();

4. CayenneModeler

4.1. Improved UI

CayenneModeler features a number of UI improvements. Attributes and relationships are now edited in the same

view (no need to switch between the tabs). Project tree allows to easily filter elements by type and quickly collapse

the tree.

4.2. Dropped Support for Mapping Listeners

Managing listeners in the DataMap XML model is counterproductive and confusing, so support for listeners was

removed from both the XML and the Modeler. If you previously had listeners mapped in the model, annotate

their callback methods, and perform listener registration in the code:

runtime.getDataDomain().addListener(myListener);

or via DI:

Module module = binder -> ServerModule.contributeDomainListeners(myListener);

Entity callbacks on the other hand are managed in the Modeler as before.

5. Build Tools

5.1. cdbimport

"cdbimport" has evolved from an experiment to a full-featured production tool that significantly reduces (and

sometimes eliminates) the need for manual maintenance of the DataMaps in CayenneModeler. Two improvements

Guide to 4.0 Features

v.4.0 5

made this possible. First, smart merge algorithm will ensure that custom changes to the model are not overridden

on subsequent runs of "cdbimport". Second, the mechanism for specifing DB reverse-engineering parameters,

such as name filtering, is made much more powerful with many new options. E.g. we started supporting filters

by catalogs and schemas, table name filters can be added per catalog/schema or at the top level, etc.

5.2. cgen

As was mentioned above, cgen now includes Property<T> static variables for expression building. It is also made

smarter about its defaults for "destDir" and "superPkg".

5.3. Gradle Plugin

Cayenne now provides it's own Gradle Plugin that allows you easily integrate cdbimport and cgen tools into your

build process. Here is example of it's usage:

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath group: 'org.apache.cayenne.plugins', name: 'cayenne-gradle-plugin', version: '4.0.B2'

 }

}

apply plugin: 'org.apache.cayenne'

cayenne.defaultDataMap 'datamap.map.xml'

dependencies {

 compile cayenne.dependency('server')

 compile cayenne.dependency('java8')

}

	Cayenne 4.0 New Features and Upgrade Guide
	Table of Contents
	Guide to 4.0 Features
	1. Java Version
	2. Cayenne Configuration
	2.1. ServerRuntimeBuilder
	2.2. Mapping-free ServerRuntime
	2.3. DI Container Decorators

	3. Framework API
	3.1. Fluent Query API
	3.1.1. ObjectSelect
	3.1.2. ColumnSelect
	3.1.3. SQLSelect
	3.1.4. SelectById

	3.2. ObjectContext
	3.2.1. Callback-based Object Iterator

	3.3. Generics in Expressions and Queries
	3.4. Property API
	3.5. Positional Parameter Bindings
	3.6. Improved Transaction API
	3.7. Transparent Database Cryptography with "cayenne-crypto" Module

	4. CayenneModeler
	4.1. Improved UI
	4.2. Dropped Support for Mapping Listeners

	5. Build Tools
	5.1. cdbimport
	5.2. cgen
	5.3. Gradle Plugin

