
Cayenne Guide
Version 4.1 (4.1.B1)

Table of Contents
1. Object Relational Mapping with Cayenne . 2

1.1. Setup . 2

1.2. Cayenne Mapping Structure . 3

1.3. CayenneModeler Application . 5

2. Cayenne Framework . 8

2.1. Including Cayenne in a Project . 8

2.2. Starting Cayenne. 21

2.3. Persistent Objects and ObjectContext . 24

2.4. Expressions . 30

2.5. Orderings . 36

2.6. Queries . 37

2.7. Lifecycle Events . 55

2.8. Performance Tuning . 60

2.9. Customizing Cayenne Runtime . 67

3. Cayenne Framework - Remote Object Persistence. 78

3.1. Introduction to ROP . 78

3.2. ROP Deployment . 79

4. DB-First Flow. 80

4.1. Introduction. 80

4.2. Filtering. 81

4.3. Other Settings . 89

4.4. Reverse Engineering in Cayenne Modeler . 90

5. Cayenne Additional Modules. 93

5.1. Cache invalidation extension . 93

5.2. Commit log extension . 94

5.3. Crypto extension. 95

5.4. JCache integration . 97

5.5. Project compatibility extension . 99

5.6. Apache Velocity extension . 100

5.7. Cayenne Web extension . 101

5.8. Cayenne OSGI extension. 101

5.9. Cayenne Rop Server extension . 102

6. Appendix A. Configuration Properties . 103

7. Appendix B. Service Collections . 106

8. Appendix C. Expressions BNF . 108

9. List of tables . 111

Copyright © 2011-2019 Apache Software Foundation and individual authors

License

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements.
See the NOTICE file distributed with this work for additional information regarding copyright
ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you
may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

1

http://www.apache.org/licenses/LICENSE-2.0

Chapter 1. Object Relational Mapping with
Cayenne

1.1. Setup

System Requirements

• Java: Cayenne runtime framework and CayenneModeler GUI tool are written in 100% Java, and
run on any Java-compatible platform. Minimal required JDK version depends on the version of
Cayenne you are using, as shown in the following table:

Table 1. Cayenne Version History

Cayenne Version Java Version Status

4.1 Java 1.8 or newer Beta

4.0 Java 1.7 or newer Stable

3.1 Java 1.5 or newer Stable

3.0 Java 1.5 Aging

1.2 / 2.0 Java 1.4 Legacy

1.1 Java 1.3 Legacy

• JDBC Driver: An appropriate DB-specific JDBC driver is needed to access the database. It can be
included in the application or used in web container DataSource configuration.

• Third-party Libraries: Cayenne runtime framework has a minimal set of required and a few
more optional dependencies on third-party open source packages. See Including Cayenne in a
Project chapter for details.

Running CayenneModeler

CayenneModeler GUI tool is intended to work with object relational mapping projects. While you
can edit your XML by hand, it is rarely needed, as the Modeler is a pretty advanced tool included in
Cayenne distribution. To obtain CayenneModeler, download Cayenne distribution archive from
http://cayenne.apache.org/download.html matching the OS you are using. Of course Java needs to
be installed on the machine where you are going to run the Modeler.

• OS X distribution contains CayenneModeler.app at the root of the distribution disk image.

• Windows distribution contains CayenneModeler.exe file in the bin directory.

• Cross-platform distribution (targeting Linux, but as the name implies, compatible with any OS)
contains a runnable CayenneModeler.jar in the bin directory. It can be executed either by
double-clicking, or if the environment is not configured to execute jars, by running from
command-line:

$ java -jar CayenneModeler.jar

2

http://cayenne.apache.org/download.html

The Modeler can also be started from Maven. While it may look like an exotic way to start a GUI
application, it has its benefits - no need to download Cayenne distribution, the version of the
Modeler always matches the version of the framework, the plugin can find mapping files in the
project automatically. So it is an attractive option to some developers. Maven option requires a
declaration in the POM:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.cayenne.plugins</groupId>
 <artifactId>cayenne-modeler-maven-plugin</artifactId>
 <version>4.1.B1</version>
 </plugin>
 </plugins>
</build>

And then can be run as

$ mvn cayenne-modeler:run

Table 2. Modeler plugin parameters

Name Type Description

modelFile File

Name of the model file to open. Here is some simple example:

<plugin>
 <groupId>org.apache.cayenne.plugins</groupId>
 <artifactId>cayenne-modeler-maven-
plugin</artifactId>
 <version>${cayenne.version}</version>
 <configuration>
 <modelFile>
src/main/resources/cayenne.xml</modelFile>
 </configuration>
</plugin>

1.2. Cayenne Mapping Structure

Cayenne Project

A Cayenne project is an XML representation of a model connecting database schema with Java
classes. A project is normally created and manipulated via CayenneModeler GUI and then used to
initialize Cayenne runtime. A project is made of one or more files. There’s always a root project
descriptor file in any valid project. It is normally called cayenne-xyz.xml, where "xyz" is the name
of the project.

3

Project descriptor can reference DataMap files, one per DataMap. DataMap files are normally called
xyz.map.xml, where "xyz" is the name of the DataMap. For legacy reasons this naming convention
is different from the convention for the root project descriptor above, and we may align it in the
future versions. Here is how a typical project might look on the file system:

$ ls -l
total 24
-rw-r--r-- 1 cayenne staff 491 Jan 28 18:25 cayenne-project.xml
-rw-r--r-- 1 cayenne staff 313 Jan 28 18:25 datamap.map.xml

DataMap are referenced by name in the root descriptor:

<map name="datamap"/>

Map files are resolved by Cayenne by appending ".map.xml" extension to the map name, and
resolving the resulting string relative to the root descriptor URI. The following sections discuss
varios ORM model objects, without regards to their XML representation. XML format details are
really unimportant to the Cayenne users.

DataMap

DataMap is a container of persistent entities and other object-relational metadata. DataMap
provides developers with a scope to organize their entities, but it does not provide a namespace for
entities. In fact all DataMaps present in runtime are combined in a single namespace. Each
DataMap must be associated with a DataNode. This is how Cayenne knows which database to use
when running a query.

DataNode

DataNode is model of a database. It is actually pretty simple. It has an arbitrary user-provided
name and information needed to create or locate a JDBC DataSource. Most projects only have one
DataNode, though there may be any number of nodes if needed.

DbEntity

DbEntity is a model of a single DB table or view. DbEntity is made of DbAttributes that correspond
to columns, and DbRelationships that map PK/FK pairs. DbRelationships are not strictly tied to FK
constraints in DB, and should be mapped for all logical "relationships" between the tables.

ObjEntity

ObjEntity is a model of a single persistent Java class. ObjEntity is made of ObjAttributes and
ObjRelationships. Both correspond to entity class properties. However ObjAttributes represent
"simple" properties (normally things like String, numbers, dates, etc.), while ObjRelationships
correspond to properties that have a type of another entity.

ObjEntity maps to one or more DbEntities. There’s always one "root" DbEntity for each ObjEntity.

4

ObjAttribiute maps to a DbAttribute or an Embeddable. Most often mapped DbAttribute is from the
root DbEntity. Sometimes mapping is done to a DbAttribute from another DbEntity somehow
related to the root DbEntity. Such ObjAttribute is called "flattened". Similarly ObjRelationship maps
either to a single DbRelationship, or to a chain of DbRelationships ("flattened" ObjRelationship).

ObjEntities may also contain mapping of their lifecycle callback methods.

Embeddable

Embeddable is a model of a Java class that acts as a single attribute of an ObjEntity, but maps to
multiple columns in the database.

Procedure

A model of a stored procedure in the database.

Query

A model of a query. Cayenne allows queries to be mapped in Cayenne project, or created in the
code. Depending on the circumstances the users may take one or the other approach.

1.3. CayenneModeler Application

Reverse Engineering Database

See chapter Reverse Engineering in Cayenne Modeler

Generating Database Schema

With Cayenne Modeler you can create simple database schemas without any additional database
tools. This is a good option for initial database setup if you completely created you model with the
Modeler. You can start SQL schema generation by selecting menu Tools > Generate Database
Schema

You can select what database parts should be generated and what tables you want

Generating Java Classes

Before using Cayenne in you code you need to generate java source code for persistent objects. This
can be done with Modeler GUI or via cgen maven/ant plugin.

To generate classes in the modeler use Tools > Generate Classes

There is three default types of code generation

• Standard Persistent Objects

Default type of generation suitable for almost all cases. Use this type unless you now what exactly
you need to customize.

5

• Client Persistent Objects

This type is for generating code for client part of a ROP setup.

• Advanced

In advanced mode you can control almost all aspects of code generation including custom
templates for java code. See default Cayenne templates on GitHub as an example.

Modeling Generic Persistent Classes

Normally each ObjEntity is mapped to a specific Java class (such as Artist or Painting) that explicitly
declare all entity properties as pairs of getters and setters. However Cayenne allows to map a
completly generic class to any number of entities. The only expectation is that a generic class
implements org.apache.cayenne.DataObject. So an ideal candidate for a generic class is
CayenneDataObject, or some custom subclass of CayenneDataObject.

If you don’t enter anything for Java Class of an ObjEntity, Cayenne assumes generic mapping and
uses the following implicit rules to determine a class of a generic object. If DataMap "Custom
Superclass" is set, runtime uses this class to instantiate new objects. If not,
org.apache.cayenne.CayenneDataObject is used.

Class generation procedures (either done in the Modeler or with Ant or Maven) would skip entities
that are mapped to CayenneDataObject explicitly or have no class mapping.

Modeling Primary Key Generation Strategy

Cayenne supports three PK generation strategies:

1. Cayenne Generated. This is default strategy. Cayenne will use special table AUTO_PK_SUPPORT for
managing primary keys.

2. Database Generated. Cayenne will delegate PK generation to database (e.g. auto increment
fields on MySQL or serial type on PostgreSQL)

3. Custom Sequence. In this case Cayenne will use provided sequence to generate primary keys.

Strategy should be set per each DbEntity independently.

6

7

Chapter 2. Cayenne Framework

2.1. Including Cayenne in a Project

Jar Files

This is an overview of Cayenne jars that is agnostic of the build tool used. The following are the
important libraries:

• cayenne-di-4.1.B1.jar - Cayenne dependency injection (DI) container library. All applications
will require this file.

• cayenne-server-4.1.B1.jar - contains main Cayenne runtime (adapters, DB access classes, etc.).
Most applications will require this file.

• cayenne-client-4.1.B1.jar - a client-side runtime for ROP applications

• Other cayenne-* jars - various Cayenne tools extensions.

Dependencies

With modern build tools like Maven and Gradle, you should not worry about tracking
dependencies. If you have one of those, you can skip this section and go straight to the Maven
section below. However if your environment requires manual dependency resolution (like Ant), the
distribution provides all of Cayenne jars plus a minimal set of third-party dependencies to get you
started in a default configuration. Check lib and lib/third-party folders for those.

Dependencies for non-standard configurations will need to be figured out by the users on their
own. Check pom.xml files of the corresponding Cayenne modules in one of the searchable Maven
archives out there to get an idea of those dependencies (e.g. http://search.maven.org).

Maven Projects

If you are using Maven, you won’t have to deal with figuring out the dependencies. You can simply
include cayenne-server artifact in your POM:

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-server</artifactId>
 <version>4.1.B1</version>
</dependency>

Additionally Cayenne provides a Maven plugin with a set of goals to perform various project tasks,
such as synching generated Java classes with the mapping, described in the following subsection.
The full plugin name is org.apache.cayenne.plugins:cayenne-maven-plugin.

cgen

cgen is a cayenne-maven-plugin goal that generates and maintains source (.java) files of persistent

8

http://search.maven.org

objects based on a DataMap. By default, it is bound to the generate-sources phase. If "makePairs" is
set to "true" (which is the recommended default), this task will generate a pair of classes
(superclass/subclass) for each ObjEntity in the DataMap. Superclasses should not be changed
manually, since they are always overwritten. Subclasses are never overwritten and may be later
customized by the user. If "makePairs" is set to "false", a single class will be generated for each
ObjEntity.

By creating custom templates, you can use cgen to generate other output (such as web pages,
reports, specialized code templates) based on DataMap information.

Table 3. cgen required parameters

Name Type Description

map File

DataMap XML file which serves as a source of metadata for class
generation. E.g.

${project.basedir}/src/main/resources/my.map.xml

Table 4. cgen optional parameters

Name Type Description

additionalMaps File
A directory that contains additional DataMap XML files that
may be needed to resolve cross-DataMap relationships for
the the main DataMap, for which class generation occurs.

client boolean
Whether we are generating classes for the client tier in a
Remote Object Persistence application. "False" by default.

destDir File
Root destination directory for Java classes (ignoring their
package names). The default is "src/main/java".

embeddableTemplate String
Location of a custom Velocity template file for Embeddable
class generation. If omitted, default template is used.

embeddableSuperTemp
late

String
Location of a custom Velocity template file for Embeddable
superclass generation. Ignored unless "makepairs" set to
"true". If omitted, default template is used.

encoding String

Generated files encoding if different from the default on
current platform. Target encoding must be supported by the
JVM running the build. Standard encodings supported by
Java on all platforms are US-ASCII, ISO-8859-1, UTF-8, UTF-
16BE, UTF-16LE, UTF-16. See javadocs for
java.nio.charset.Charset for more information.

excludeEntities String
A comma-separated list of ObjEntity patterns (expressed as a
perl5 regex) to exclude from template generation. By default
none of the DataMap entities are excluded.

includeEntities String
A comma-separated list of ObjEntity patterns (expressed as a
perl5 regex) to include from template generation. By default
all DataMap entities are included.

9

Name Type Description

makePairs boolean
If "true" (a recommended default), will generate
subclass/superclass pairs, with all generated code placed in
superclass.

mode String

Specifies class generator iteration target. There are three
possible values: "entity" (default), "datamap", "all". "entity"
performs one generator iteration for each included
ObjEntity, applying either standard to custom entity
templates. "datamap" performs a single iteration, applying
DataMap templates. "All" is a combination of entity and
datamap.

overwrite boolean
Only has effect when "makePairs" is set to "false". If
"overwrite" is "true", will overwrite older versions of
generated classes.

superPkg String

Java package name of all generated superclasses. If omitted,
each superclass will be placed in the subpackage of its
subclass called "auto". Doesn’t have any effect if either
"makepairs" or "usePkgPath" are false (both are true by
default).

superTemplate String
Location of a custom Velocity template file for ObjEntity
superclass generation. Only has effect if "makepairs" set to
"true". If omitted, default template is used.

template String
Location of a custom Velocity template file for ObjEntity class
generation. If omitted, default template is used.

usePkgPath boolean

If set to "true" (default), a directory tree will be generated in
"destDir" corresponding to the class package structure, if set
to "false", classes will be generated in "destDir" ignoring their
package.

createPropertyNames boolean
If set to "true", will generate String Property names. Default
is "false"

force boolean If set to "true", will force run from maven/gradle.

createPKProperties boolean
If set to "true", will generate PK attributes as Properties.
Default is "false".

Example - a typical class generation scenario, where pairs of classes are generated with default
Maven source destination and superclass package:

10

<plugin>
 <groupId>org.apache.cayenne.plugins</groupId>
 <artifactId>cayenne-maven-plugin</artifactId>
 <version>4.1.B1</version>

 <configuration>
 <map>${project.basedir}/src/main/resources/my.map.xml</map>
 </configuration>

 <executions>
 <execution>
 <goals>
 <goal>cgen</goal>
 </goals>
 </execution>
 </executions>
</plugin>

cdbgen

cdbgen is a cayenne-maven-plugin goal that drops and/or generates tables in a database on Cayenne
DataMap. By default, it is bound to the pre-integration-test phase.

Table 5. cdbgen required parameters

Name Type Description

map File

DataMap XML file which serves as a source of metadata for class
generation. E.g.

${project.basedir}/src/main/resources/my.map.xml

dataSource XML An object that contains Data Source parameters

Table 6. <dataSource> parameters

Name Type Required Description

driver String Yes
A class of JDBC driver to use for the target
database.

url String Yes JDBC URL of a target database.

username String No Database user name.

password String No Database user password.

Table 7. cdbgen optional parameters

11

Name Type Description

adapter String

Java class name implementing
org.apache.cayenne.dba.DbAdapter. While this attribute is
optional (a generic JdbcAdapter is used if not set), it is highly
recommended to specify correct target adapter.

createFK boolean
Indicates whether cdbgen should create foreign key constraints.
Default is "true".

createPK boolean
Indicates whether cdbgen should create Cayenne-specific auto PK
objects. Default is "true".

createTables boolean
Indicates whether cdbgen should create new tables. Default is
"true".

dropPK boolean
Indicates whether cdbgen should drop Cayenne primary key
support objects. Default is "false".

dropTables boolean
Indicates whether cdbgen should drop the tables before
attempting to create new ones. Default is "false".

Example - creating a DB schema on a local HSQLDB database:

<plugin>
 <groupId>org.apache.cayenne.plugins</groupId>
 <artifactId>cayenne-maven-plugin</artifactId>
 <version>4.1.B1</version>
 <executions>
 <execution>
 <configuration>
 <map>${project.basedir}/src/main/resources/my.map.xml</map>
 <adapter>org.apache.cayenne.dba.hsqldb.HSQLDBAdapter</adapter>
 <dataSource>
 <url>jdbc:hsqldb:hsql://localhost/testdb</url>
 <driver>org.hsqldb.jdbcDriver</driver>
 <username>sa</username>
 </dataSource>
 </configuration>
 <goals>
 <goal>cdbgen</goal>
 </goals>
 </execution>
 </executions>
</plugin>

cdbimport

cdbimport is a cayenne-maven-plugin goal that generates a DataMap based on an existing database
schema. By default, it is bound to the generate-sources phase. This allows you to generate your
DataMap prior to building your project, possibly followed by "cgen" execution to generate the
classes. CDBImport plugin described in details in chapter DB-First Flow

12

Table 8. cdbimport parameters

Name Type Required Description

map File Yes

DataMap XML file which is the destination of the
schema import. Can be an existing file. If this file
does not exist, it is created when cdbimport is
executed. E.g.
${project.basedir}/src/main/resources/my.map.x
ml. If "overwrite" is true (the default), an existing
DataMap will be used as a template for the new
imported DataMap, i.e. all its entities will be
cleared and recreated, but its common settings,
such as default Java package, will be preserved
(unless changed explicitly in the plugin
configuration).

cayenneProject File No

Project XML file which will be used. Can be an
existing file, in this case data map will be added
to project if it’s not already there. If this file does
not exist, it is created when cdbimport is
executed. E.g.
${project.basedir}/src/main/resources/cayenne-
project.xml.

adapter String No

A Java class name implementing
org.apache.cayenne.dba.DbAdapter. This
attribute is optional. If not specified,
AutoAdapter is used, which will attempt to guess
the DB type.

dataSource XML Yes An object that contains Data Source parameters.

dbimport XML No

An object that contains detailed reverse
engineering rules about what DB objects should
be processed. For full information about this
parameter see DB-First Flow chapter.

Table 9. <dataSource> parameters

Name Type Required Description

driver String Yes
A class of JDBC driver to use for the target
database.

url String Yes JDBC URL of a target database.

username String No Database user name.

password String No Database user password.

Table 10. <dbimport> parameters

13

Name Type Description

defaultPackage String

A Java package that will be set as the imported
DataMap default and a package of all the
persistent Java classes. This is a required
attribute if the "map" itself does not already
contain a default package, as otherwise all the
persistent classes will be mapped with no
package, and will not compile.

forceDataMapCatalog boolean

Automatically tagging each DbEntity with the
actual DB catalog/schema (default behavior)
may sometimes be undesirable. If this is the case
then setting forceDataMapCatalog to true will set
DbEntity catalog to one in the DataMap. Default
value is false.

forceDataMapSchema boolean

Automatically tagging each DbEntity with the
actual DB catalog/schema (default behavior)
may sometimes be undesirable. If this is the case
then setting forceDataMapSchema to true will set
DbEntity schema to one in the DataMap. Default
value is false.

meaningfulPkTables String

A comma-separated list of Perl5 patterns that
defines which imported tables should have their
primary key columns mapped as ObjAttributes.
"*" would indicate all tables.

namingStrategy String
The naming strategy used for mapping database
names to object entity names. Default is
o.a.c.dbsync.naming.DefaultObjectNameGenerator.

skipPrimaryKeyLoading boolean Whether to load primary keys. Default "false".

skipRelationshipsLoading boolean Whether to load relationships. Default "false".

stripFromTableNames String

Regex that matches the part of the table name
that needs to be stripped off when generating
ObjEntity name. Here are some examples:

<!-- Strip prefix -->
<stripFromTableNames>^myt_</stripFromTab
leNames>

<!-- Strip suffix -->
<stripFromTableNames>_s$</stripFromTable
Names>

<!-- Strip multiple occurrences in the
middle -->
<stripFromTableNames>_abc</stripFromTabl
eNames>

14

Name Type Description

usePrimitives boolean
Whether numeric and boolean data types should
be mapped as Java primitives or Java classes.
Default is "true", i.e. primitives will be used.

useJava7Types boolean

Whether DATE, TIME and TIMESTAMP data
types should be mapped as java.util.Date or
java.time.* classes. Default is "false", i.e.
java.time.* will be used.

filters configuration XML

Detailed reverse engineering rules about what
DB objects should be processed. For full
information about this parameter see DB-First
Flow chapter. Here is some simple example:

<dbimport>
 <catalog name="test_catalog">
 <schema name="test_schema">
 <includeTable>
.*</includeTable>
 <excludeTable>
test_table</excludeTable>
 </schema>
 </catalog>

 <includeProcedure pattern=".*"/>
</dbimport>

Example - loading a DB schema from a local HSQLDB database (essentially a reverse operation
compared to the cdbgen example above) :

15

<plugin>
 <groupId>org.apache.cayenne.plugins</groupId>
 <artifactId>cayenne-maven-plugin</artifactId>
 <version>4.1.B1</version>

 <executions>
 <execution>
 <configuration>
 <map>${project.basedir}/src/main/resources/my.map.xml</map>
 <dataSource>
 <url>jdbc:mysql://127.0.0.1/mydb</url>
 <driver>com.mysql.jdbc.Driver</driver>
 <username>sa</username>
 </dataSource>
 <dbimport>
 <defaultPackage>com.example.cayenne</defaultPackage>
 </dbimport>
 </configuration>
 <goals>
 <goal>cdbimport</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Gradle Projects

To include Cayenne into your Gradle project you have two options:

• Simply add Cayenne as a dependency:

compile 'org.apache.cayenne:cayenne-server:4.1.B1'

• Or you can use Cayenne Gradle plugin

Gradle Plugin

Cayenne Gradle plugin provides several tasks, such as synching generated Java classes with the
mapping or synching mapping with the database. Plugin also provides cayenne extension that have
some useful utility methods. Here is example of how to include Cayenne plugin into your project:

16

buildscript {
 // add Maven Central repository
 repositories {
 mavenCentral()
 }
 // add Cayenne Gradle Plugin
 dependencies {
 classpath group: 'org.apache.cayenne.plugins', name: 'cayenne-gradle-plugin',
version: '4.1.B1'
 }
}

// apply plugin
apply plugin: 'org.apache.cayenne'

// set default DataMap
cayenne.defaultDataMap 'datamap.map.xml'

// add Cayenne dependencies to your project
dependencies {
 // this is a shortcut for 'org.apache.cayenne:cayenne-server:VERSION_OF_PLUGIN'
 compile cayenne.dependency('server')
}

Warning

Cayenne Gradle plugin is experimental and it’s API can change later.

cgen

Cgen task generates Java classes based on your DataMap, it has same configuration parameters as
in Maven Plugin version, described in Table, “cgen required parameters”.. If you provided default
DataMap via cayenne.defaultDataMap, you can skip cgen configuration as default settings will suffice
in common case.

Here is how you can change settings of the default cgen task:

cgen {
 client = false
 mode = 'all'
 overwrite = true
 createPropertiesNames = true
}

And here is example of how to define additional cgen task (e.g. for client classes if you are using
ROP):

17

task clientCgen(type: cayenne.cgen) {
 client = true
}

cdbimport

This task is for creating and synchronizing your Cayenne model from database schema. Full list of
parameters are same as in Maven Plugin version, described in Table, “cdbimport parameters”, with
exception that Gradle version will use Groovy instead of XML.

Here is example of configuration for cdbimport task:

cdbimport {
 // map can be skipped if it is defined in cayenne.defaultDataMap
 map 'datamap.map.xml'
 // optional project file, will be created if missing
 cayenneProject 'cayenne-project.xml'

 dataSource {
 driver 'com.mysql.cj.jdbc.Driver'
 url 'jdbc:mysql://127.0.0.1:3306/test?useSSL=false'
 username 'root'
 password ''
 }

 dbImport
 // additional settings
 usePrimitives false
 defaultPackage 'org.apache.cayenne.test'

 // DB filter configuration
 catalog 'catalog-1'
 schema 'schema-1'

 catalog {
 name 'catalog-2'

 includeTable 'table0', {
 excludeColumns '_column_'
 }

 includeTables 'table1', 'table2', 'table3'

 includeTable 'table4', {
 includeColumns 'id', 'type', 'data'
 }

 excludeTable '^GENERATED_.*'
 }

18

 catalog {
 name 'catalog-3'
 schema {
 name 'schema-2'
 includeTable 'test_table'
 includeTable 'test_table2', {
 excludeColumn '__excluded'
 }
 }
 }

 includeProcedure 'procedure_test_1'

 includeColumns 'id', 'version'

 tableTypes 'TABLE', 'VIEW'
 }
}

cdbgen

Cdbgen task drops and/or generates tables in a database on Cayenne DataMap. Full list of
parameters are same as in Maven Plugin version, described in Table , “cdbgen required
parameters”

Here is example of how to configure default cdbgen task:

cdbgen {

 adapter 'org.apache.cayenne.dba.derby.DerbyAdapter'

 dataSource {
 driver 'org.apache.derby.jdbc.EmbeddedDriver'
 url 'jdbc:derby:build/testdb;create=true'
 username 'sa'
 password ''
 }

 dropTables true
 dropPk true

 createTables true
 createPk true
 createFk true
}

19

Link tasks to Gradle build lifecycle

With gradle you can easily connect Cayenne tasks to default build lifecycle. Here is short example
of how to connect defaut cgen and cdbimport tasks with compileJava task:

cgen.dependsOn cdbimport
compileJava.dependsOn cgen

Running cdbimport automatically with build not always a good choice, e.g. in case
of complex model that you need to alter in the Cayenne Modeler after import.

Ant Projects

Ant tasks are the same as Maven plugin goals described above, namely "cgen", "cdbgen",
"cdbimport". Configuration parameters are also similar (except Maven can guess many defaults
that Ant can’t). To include Ant tasks in the project, use the following Antlib:

<typedef resource="org/apache/cayenne/tools/antlib.xml">
 <classpath>
 <fileset dir="lib" >
 <include name="cayenne-ant-*.jar" />
 <include name="cayenne-cgen-*.jar" />
 <include name="cayenne-dbsync-*.jar" />
 <include name="cayenne-di-*.jar" />
 <include name="cayenne-project-*.jar" />
 <include name="cayenne-server-*.jar" />
 <include name="commons-collections-*.jar" />
 <include name="commons-lang-*.jar" />
 <include name="slf4j-api-*.jar" />
 <include name="velocity-*.jar" />
 <include name="vpp-2.2.1.jar" />
 </fileset>
 </classpath>
</typedef>

cgen

cdbgen

cdbimport

This is an Ant counterpart of "cdbimport" goal of cayenne-maven-plugin described above. It has
exactly the same properties. Here is a usage example:

20

 <cdbimport map="${context.dir}/WEB-INF/my.map.xml"
 driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://127.0.0.1/mydb"
 username="sa"
 defaultPackage="com.example.cayenne"/>

2.2. Starting Cayenne

Starting and Stopping ServerRuntime

In runtime Cayenne is accessed via org.apache.cayenne.configuration.server.ServerRuntime.
ServerRuntime is created by calling a convenient builder:

ServerRuntime runtime = ServerRuntime.builder()
 .addConfig("com/example/cayenne-project.xml")
 .build();

The parameter you pass to the builder is a location of the main project file. Location is a '/'-
separated path (same path separator is used on UNIX and Windows) that is resolved relative to the
application classpath. The project file can be placed in the root package or in a subpackage (e.g. in
the code above it is in "com/example" subpackage).

ServerRuntime encapsulates a single Cayenne stack. Most applications will just have one
ServerRuntime using it to create as many ObjectContexts as needed, access the Dependency
Injection (DI) container and work with other Cayenne features. Internally ServerRuntime is just a
thin wrapper around the DI container. Detailed features of the container are discussed in
Customizing Cayenne Runtime chapter. Here we’ll just show an example of how an application
might turn on external transactions:

Module extensions = binder ->
 ServerModule.contributeProperties(binder)
 .put(Constants.SERVER_EXTERNAL_TX_PROPERTY, "true");
ServerRuntime runtime = ServerRuntime.builder()
 .addConfig("com/example/cayenne-project.xml")
 .addModule(extensions)
 .build();

It is a good idea to shut down the runtime when it is no longer needed, usually before the
application itself is shutdown:

runtime.shutdown();

When a runtime object has the same scope as the application, this may not be always necessary,
however in some cases it is essential, and is generally considered a good practice. E.g. in a web

21

container hot redeploy of a webapp will cause resource leaks and eventual OutOfMemoryError if
the application fails to shutdown CayenneRuntime.

Merging Multiple Projects

ServerRuntime requires at least one mapping project to run. But it can also take multiple projects
and merge them together in a single configuration. This way different parts of a database can be
mapped independently from each other (even by different software providers), and combined in
runtime when assembling an application. Doing it is as easy as passing multiple project locations to
ServerRuntime builder:

ServerRuntime runtime = ServerRuntime.builder()
 .addConfig("com/example/cayenne-project.xml")
 .addConfig("org/foo/cayenne-library1.xml")
 .addConfig("org/foo/cayenne-library2.xml")
 .build();

When the projects are merged, the following rules are applied:

• The order of projects matters during merge. If there are two conflicting metadata objects
belonging to two projects, an object from the last project takes precedence over the object from
the first one. This makes possible to override pieces of metadata. This is also similar to how DI
modules are merged in Cayenne.

• Runtime DataDomain name is set to the name of the last project in the list.

• Runtime DataDomain properties are the same as the properties of the last project in the list. I.e.
properties are not merged to avoid invalid combinations and unexpected runtime behavior.

• If there are two or more DataMaps with the same name, only one DataMap is used in the
merged project, the rest are discarded. Same precedence rules apply - DataMap from the project
with the highest index in the project list overrides all other DataMaps with the same name.

• If there are two or more DataNodes with the same name, only one DataNode is used in the
merged project, the rest are discarded. DataNode coming from project with the highest index in
the project list is chosen per precedence rule above.

• There is a notion of "default" DataNode. After the merge if any DataMaps are not explicitly
linked to DataNodes, their queries will be executed via a default DataNode. This makes it
possible to build mapping "libraries" that are only associated with a specific database in
runtime. If there’s only one DataNode in the merged project, it will be automatically chosen as
default. A possible way to explicitly designate a specific node as default is to override
DataDomainProvider.createAndInitDataDomain().

Web Applications

Web applications can use a variety of mechanisms to configure and start the "services" they need,
Cayenne being one of such services. Configuration can be done within standard Servlet
specification objects like Servlets, Filters, or ServletContextListeners, or can use Spring, JEE CDI, etc.
This is a user’s architectural choice and Cayenne is agnostic to it and will happily work in any
environment. As described above, all that is needed is to create an instance of ServerRuntime

22

somewhere and provide the application code with means to access it. And shut it down when the
application ends to avoid container leaks.

Still Cayenne includes a piece of web app configuration code that can assist in quickly setting up
simple Cayenne-enabled web applications. We are talking about CayenneFilter. It is declared in
web.xml:

<web-app>
 ...
 <filter>
 <filter-name>cayenne-project</filter-name>
 <filter-class>org.apache.cayenne.configuration.web.CayenneFilter</filter-
class>
 </filter>
 <filter-mapping>
 <filter-name>cayenne-project</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 ...
 </web-app>

When started by the web container, it creates a instance of ServerRuntime and stores it in the
ServletContext. Note that the name of Cayenne XML project file is derived from the "filter-name". In
the example above CayenneFilter will look for an XML file "cayenne-project.xml". This can be
overridden with "configuration-location" init parameter.

When the application runs, all HTTP requests matching the filter url-pattern will have access to a
session-scoped ObjectContext like this:

 ObjectContext context = BaseContext.getThreadObjectContext();

Of course the ObjectContext scope, and other behavior of the Cayenne runtime can be customized
via dependency injection. For this another filter init parameter called "extra-modules" is used.
"extra-modules" is a comma or space-separated list of class names, with each class implementing
Module interface. These optional custom modules are loaded after the the standard ones, which
allows users to override all standard definitions.

For those interested in the DI container contents of the runtime created by CayenneFilter, it is the
same ServerRuntime as would’ve been created by other means, but with an extra
org.apache.cayenne.configuration.web.WebModule module that provides
org.apache.cayenne.configuration.web.RequestHandler service. This is the service to override in the
custom modules if you need to provide a different ObjectContext scope, etc.

You should not think of CayenneFilter as the only way to start and use Cayenne in
a web application. In fact CayenneFilter is entirely optional. Use it if you don’t
have any special design for application service management. If you do, simply
integrate Cayenne into that design.

23

2.3. Persistent Objects and ObjectContext

ObjectContext

ObjectContext is an interface that users normally work with to access the database. It provides the
API to execute database operations and to manage persistent objects. A context is obtained from the
ServerRuntime:

ObjectContext context = runtime.newContext();

The call above creates a new instance of ObjectContext that can access the database via this
runtime. ObjectContext is a single "work area" in Cayenne, storing persistent objects. ObjectContext
guarantees that for each database row with a unique ID it will contain at most one instance of an
object, thus ensuring object graph consistency between multiple selects (a feature called
"uniquing"). At the same time different ObjectContexts will have independent copies of objects for
each unique database row. This allows users to isolate object changes from one another by using
separate ObjectContexts.

These properties directly affect the strategies for scoping and sharing (or not sharing)
ObjectContexts. Contexts that are only used to fetch objects from the database and whose objects
are never modified by the application can be shared between mutliple users (and multiple threads).
Contexts that store modified objects should be accessed only by a single user (e.g. a web application
user might reuse a context instance between multiple web requests in the same HttpSession, thus
carrying uncommitted changes to objects from request to request, until he decides to commit or
rollback them). Even for a single user it might make sense to use mutliple ObjectContexts (e.g.
request-scoped contexts to allow concurrent requests from the browser that change and commit
objects independently).

ObjectContext is serializable and does not permanently hold to any of the application resources. So
it does not have to be closed. If the context is not used anymore, it should simply be allowed to go
out of scope and get garbage collected, just like any other Java object.

Persistent Object and its Lifecycle

Cayenne can persist Java objects that implement org.apache.cayenne.Persistent interface. Generally
persistent classes are generated from the model as described above, so users do not have to worry
about superclass and property implementation details.

Persistent interface provides access to 3 persistence-related properties - objectId, persistenceState
and objectContext. All 3 are initialized by Cayenne runtime framework. Application code should not
attempt to change them. However it is allowed to read them, which provides valuable runtime
information. E.g. ObjectId can be used for quick equality check of 2 objects, knowing persistence
state would allow highlighting changed objects, etc.

Each persistent object belongs to a single ObjectContext, and can be in one of the following
persistence states (as defined in org.apache.cayenne.PersistenceState) :

Table 11. Persistence States

24

TRANSIENT The object is not registered with an ObjectContext and will not be persisted.

NEW
The object is freshly registered in an ObjectContext, but has not been saved to
the database yet and there is no matching database row.

COMMITED
The object is registered in an ObjectContext, there is a row in the database
corresponding to this object, and the object state corresponds to the last
known state of the matching database row.

MODIFIED
The object is registered in an ObjectContext, there is a row in the database
corresponding to this object, but the object in-memory state has diverged from
the last known state of the matching database row.

HOLLOW

The object is registered in an ObjectContext, there is a row in the database
corresponding to this object, but the object state is unknown. Whenever an
application tries to access a property of such object, Cayenne attempts reading
its values from the database and "inflate" the object, turning it to COMMITED.

DELETED
The object is registered in an ObjectContext and has been marked for deletion
in-memory. The corresponding row in the database will get deleted upon
ObjectContext commit, and the object state will be turned into TRANSIENT.

ObjectContext Persistence API

One of the first things users usually want to do with an ObjectContext is to select some objects from
a database:

List<Artist> artists = ObjectSelect.query(Artist.class)
 .select(context);

We’ll discuss queries in some detail in the Queries chapter. The example above is self-explanatory -
we create a ObjectSelect that matches all Artist objects present in the database, and then use
select to get the result.

Some queries can be quite complex, returning multiple result sets or even updating the database.
For such queries ObjectContext provides performGenericQuery() method. While not commonly-used,
it is nevertheless important in some situations. E.g.:

Collection<Query> queries = ... // multiple queries that need to be run together
QueryChain query = new QueryChain(queries);

QueryResponse response = context.performGenericQuery(query);

An application might modify selected objects. E.g.:

Artist selectedArtist = artists.get(0);
selectedArtist.setName("Dali");

The first time the object property is changed, the object’s state is automatically set to MODIFIED by
Cayenne. Cayenne tracks all in-memory changes until a user calls commitChanges:

25

context.commitChanges();

At this point all in-memory changes are analyzed and a minimal set of SQL statements is issued in a
single transaction to synchronize the database with the in-memory state. In our example
commitChanges commits just one object, but generally it can be any number of objects.

If instead of commit, we wanted to reset all changed objects to the previously committed state, we’d
call rollbackChanges instead:

context.rollbackChanges();

newObject method call creates a persistent object and sets its state to NEW:

Artist newArtist = context.newObject(Artist.class);
newArtist.setName("Picasso");

It will only exist in memory until commitChanges is issued. On commit Cayenne might generate a new
primary key (unless a user set it explicitly, or a PK was inferred from a relationship) and issue an
INSERT SQL statement to permanently store the object.

deleteObjects method takes one or more Persistent objects and marks them as DELETED:

context.deleteObjects(artist1);
context.deleteObjects(artist2, artist3, artist4);

Additionally deleteObjects processes all delete rules modeled for the affected objects. This may
result in implicitly deleting or modifying extra related objects. Same as insert and update, delete
operations are sent to the database only when commitChanges is called. Similarly rollbackChanges will
undo the effect of newObject and deleteObjects.

localObject returns a copy of a given persistent object that is local to a given ObjectContext:

Since an application often works with more than one context, localObject is a rather common
operation. E.g. to improve performance a user might utilize a single shared context to select and
cache data, and then occasionally transfer some selected objects to another context to modify and
commit them:

ObjectContext editingContext = runtime.newContext();
Artist localArtist = editingContext.localObject(artist);

Often an application needs to inspect mapping metadata. This information is stored in the
EntityResolver object, accessible via the ObjectContext:

26

EntityResolver resolver = objectContext.getEntityResolver();

Here we discussed the most commonly used subset of the ObjectContext API. There are other useful
methods, e.g. those allowing to inspect registered objects state in bulk, etc. Check the latest JavaDocs
for details.

Cayenne Helper Class

There is a useful helper class called Cayenne (fully-qualified name org.apache.cayenne.Cayenne) that
builds on ObjectContext API to provide a number of very common operations. E.g. get a primary
key (most entities do not model PK as an object property) :

long pk = Cayenne.longPKForObject(artist);

It also provides the reverse operation - finding an object given a known PK:

Artist artist = Cayenne.objectForPK(context, Artist.class, 34579);

If a query is expected to return 0 or 1 object, Cayenne helper class can be used to find this object. It
throws an exception if more than one object matched the query:

Artist artist = (Artist) Cayenne.objectForQuery(context, new SelectQuery(Artist.class
));

Feel free to explore Cayenne class API for other useful methods.

ObjectContext Nesting

In all the examples shown so far an ObjectContext would directly connect to a database to select
data or synchronize its state (either via commit or rollback). However another context can be used
in all these scenarios instead of a database. This concept is called ObjectContext "nesting". Nesting is
a parent/child relationship between two contexts, where child is a nested context and selects or
commits its objects via a parent.

Nesting is useful to create isolated object editing areas (child contexts) that need to all be committed
to an intermediate in-memory store (parent context), or rolled back without affecting changes
already recorded in the parent. Think cascading GUI dialogs, or parallel AJAX requests coming to
the same session.

In theory Cayenne supports any number of nesting levels, however applications should generally
stay with one or two, as deep hierarchies will most certainly degrade the performance of the deeply
nested child contexts. This is due to the fact that each context in a nesting chain has to update its
own objects during most operations.

Cayenne ROP is an extreme case of nesting when a child context is located in a separate JVM and

27

communicates with its parent via a web service. ROP is discussed in details in the following
chapters. Here we concentrate on the same-VM nesting.

To create a nested context, use an instance of ServerRuntime, passing it the desired parent:

ObjectContext parent = runtime.newContext();
ObjectContext nested = runtime.newContext(parent);

From here a nested context operates just like a regular context (you can perform queries, create
and delete objects, etc.). The only difference is that commit and rollback operations can either be
limited to synchronization with the parent, or cascade all the way to the database:

// merges nested context changes into the parent context
nested.commitChangesToParent();

// regular 'commitChanges' cascades commit through the chain
// of parent contexts all the way to the database
nested.commitChanges();

// unrolls all local changes, getting context in a state identical to parent
nested.rollbackChangesLocally();

// regular 'rollbackChanges' cascades rollback through the chain of contexts
// all the way to the topmost parent
nested.rollbackChanges();

Generic Persistent Objects

As described in the CayenneModeler chapter, Cayenne supports mapping of completely generic
classes to specific entities. Although for conveniece most applications should stick with entity-
specific class mappings, the generic feature offers some interesting possibilities, such as creating
mappings completely on the fly in a running application, etc.

Generic objects are first class citizens in Cayenne, and all common persistent operations apply to
them as well. There are some pecularities however, described below.

When creating a new generic object, either cast your ObjectContext to DataContext (that provides
newObject(String) API), or provide your object with an explicit ObjectId:

DataObject generic = ((DataContext) context).newObject("GenericEntity");

DataObject generic = new CayenneDataObject();
generic.setObjectId(new ObjectId("GenericEntity"));
context.registerNewObject(generic);

28

SelectQuery for generic object should be created passing entity name String in constructor, instead
of a Java class:

SelectQuery query = new SelectQuery("GenericEntity");

Use DataObject API to access and modify properties of a generic object:

String name = (String) generic.readProperty("name");
generic.writeProperty("name", "New Name");

This is how an application can obtain entity name of a generic object:

String entityName = generic.getObjectId().getEntityName();

Transactions

Considering how much attention is given to managing transactions in most other ORMs,
transactions have been conspicuously absent from the ObjectContext discussion till now. The
reason is that transactions are seamless in Cayenne in all but a few special cases. ObjectContext is
an in-memory container of objects that is disconnected from the database, except when it needs to
run an operation. So it does not care about any surrounding transaction scope. Sure enough all
database operations are transactional, so when an application does a commit, all SQL execution is
wrapped in a database transaction. But this is done behind the scenes and is rarely a concern to the
application code.

Two cases where transactions need to be taken into consideration are container-managed and
application-managed transactions.

If you are using an EJB container (or some other JTA environment), you’ll likely need to switch
Cayenne runtime into "external transactions mode". This is done by setting DI configuration
property defined in Constants.SERVER_EXTERNAL_TX_PROPERTY (see Appendix A). If this property is set
to "true", Cayenne assumes that JDBC Connections obtained by runtime whenever that might
happen are all coming from a transactional DataSource managed by the container. In this case
Cayenne does not attempt to commit or rollback the connections, leaving it up to the container to
do that when appropriate.

In the second scenario, an application might need to define its own transaction scope that spans
more than one Cayenne operation. E.g. two sequential commits that need to be rolled back together
in case of failure. This can be done via ServerRuntime.performInTransaction method:

29

Integer result = runtime.performInTransaction(() -> {
 // commit one or more contexts
 context1.commitChanges();
 context2.commitChanges();

 // after changing some objects in context1, commit again
 context1.commitChanges();

 // return an arbitrary result or null if we don't care about the result
 return 5;
});

When inside the transaction, current thread Transaction object can be accessed via a static method.
E.g. here is an example that initializes transaction JDBC connection with a custom connection object
:

Transaction tx = BaseTransaction.getThreadTransaction();
tx.addConnection("mydatanode", myConnection);

You can control transaction isolation level and propagation logic using TransactionDescriptor.

TransactionDescriptor descriptor = new TransactionDescriptor(
 Connection.TRANSACTION_SERIALIZABLE,
 TransactionPropagation.REQUIRES_NEW
);
transactionManager.performInTransaction(transactionalOperation, descriptor);

2.4. Expressions

Expressions Overview

Cayenne provides a simple yet powerful object-based expression language. The most common use
of expressions are to build qualifiers and orderings of queries that are later converted to SQL by
Cayenne and to evaluate in-memory against specific objects (to access certain values in the object
graph or to perform in-memory object filtering and sorting). Cayenne provides API to build
expressions in the code and a parser to create expressions from strings.

Path Expressions

Before discussing how to build expressions, it is important to understand one group of expressions
widely used in Cayenne - path expressions. There are two types of path expressions - object and
database, used for navigating graphs of connected objects or joined DB tables respectively. Object
paths are much more commonly used, as after all Cayenne is supposed to provide a degree of
isolation of the object model from the database. However database paths are helpful in certain

30

situations. General structure of path expressions is the following:

 [db:]segment[+][.segment[+]...]

• db: is an optional prefix indicating that the following path is a DB path. Otherwise it is an object
path.

• segment is a name of a property (relationship or attribute in Cayenne terms) in the path. Path
must have at least one segment; segments are separated by dot (".").

• + An "OUTER JOIN" path component. Currently "+" only has effect when translated to SQL as
OUTER JOIN. When evaluating expressions in memory, it is ignored.

An object path expression represents a chain of property names rooted in a certain (unspecified
during expression creation) object and "navigating" to its related value. E.g. a path expression
"artist.name" might be a property path starting from a Painting object, pointing to the related Artist
object, and then to its name attribute. A few more examples:

• name - can be used to navigate (read) the "name" property of a Person (or any other type of
object that has a "name" property).

• artist.exhibits.closingDate - can be used to navigate to a closing date of any of the exhibits of a
Painting’s Artist object.

• artist.exhibits+.closingDate - same as the previous example, but when translated into SQL, an
OUTER JOIN will be used for "exhibits".

Similarly a database path expression is a dot-separated path through DB table joins and columns. In
Cayenne joins are mapped as DbRelationships with some symbolic names (the closest concept to
DbRelationship name in the DB world is a named foreign key constraint. But DbRelationship names
are usually chosen arbitrarily, without regard to constraints naming or even constraints presence).
A database path therefore might look like this - db:dbrelationshipX.dbrelationshipY.COLUMN_Z".
More specific examples:

• db:NAME - can be used to navigate to the value of "NAME" column of some unspecified table.

• db:artist.artistExhibits.exhibit.CLOSING_DATE - can be used to match a closing date of any of
the exhibits of a related artist record.

Cayenne supports "aliases" in path Expressions. E.g. the same expression can be written using
explicit path or an alias:

• artist.exhibits.closingDate - full path

• e.closingDate - alias "e" is used for artist.exhibits.

SelectQuery using the second form of the path expression must be made aware of the alias via
SelectQuery.aliasPathSplits(..), otherwise an Exception will be thrown. The main use of aliases is
to allow users to control how SQL joins are generated if the same path is encountered more than
once in any given Expression. Each alias for any given path would result in a separate join. Without
aliases, a single join will be used for a group of matching paths.

31

Creating Expressions from Strings

While in most cases users are likely to rely on API from the following section for expression
creation, we’ll start by showing String expressions, as this will help to understand the semantics. A
Cayenne expression can be represented as a String, which can be converted to an expression object
using ExpressionFactory.exp static method. Here is an example:

String expString = "name like 'A%' and price < 1000";
Expression exp = ExpressionFactory.exp(expString);

This particular expression may be used to match Paintings whose names that start with "A" and
whose price is less than $1000. While this example is pretty self-explanatory, there are a few points
worth mentioning. "name" and "price" here are object paths discussed earlier. As always, paths
themselves are not attached to a specific root entity and can be applied to any entity that has
similarly named attributes or relationships. So when we are saying that this expression "may be
used to match Paintings", we are implying that there may be other entities, for which this
expression is valid. Now the expression details…

Character constants that are not paths or numeric values should be enclosed in single or double
quotes. Two of the expressions below are equivalent:

name = 'ABC'

// double quotes are escaped inside Java Strings of course
name = \"ABC\"

Case sensitivity. Expression operators are case sensitive and are usually lowercase. Complex words
follow the Java camel-case style:

// valid
name likeIgnoreCase 'A%'

// invalid - will throw a parse exception
name LIKEIGNORECASE 'A%'

Grouping with parenthesis:

value = (price + 250.00) * 3

Path prefixes. Object expressions are unquoted strings, optionally prefixed by obj: (usually they are
not prefixed at all actually). Database expressions are always prefixed with db:. A special kind of
prefix, not discussed yet is enum: that prefixes an enumeration constant:

32

// object path
name = 'Salvador Dali'

// same object path - a rarely used form
obj:name = 'Salvador Dali'

// multi-segment object path
artist.name = 'Salvador Dali'

// db path
db:NAME = 'Salvador Dali'

// enumeration constant
name = enum:org.foo.EnumClass.VALUE1

Binary conditions are expressions that contain a path on the left, a value on the right, and some
operation between them, such as equals, like, etc. They can be used as qualifiers in SelectQueries:

name like 'A%'

Parameters. Expressions can contain named parameters (names that start with "$") that can be
substituted with values either by name or by position. Parameterized expressions allow to create
reusable expression templates. Also if an Expression contains a complex object that doesn’t have a
simple String representation (e.g. a Date, a DataObject, an ObjectId), parameterizing such
expression is the only way to represent it as String. Here are the examples of both positional and
named parameter bindings:

Expression template = ExpressionFactory.exp("name = $name");
...
// name binding
Map p1 = Collections.singletonMap("name", "Salvador Dali");
Expression qualifier1 = template.params(p1);
...
// positional binding
Expression qualifier2 = template.paramsArray("Monet");

Positional binding is usually shorter. You can pass positional bindings to the exp(..) factory method
(its second argument is a params vararg):

Expression qualifier = ExpressionFactory.exp("name = $name", "Monet");

In parameterized expressions with LIKE clause, SQL wildcards must be part of the values in the
Map and not the expression string itself:

33

Expression qualifier = ExpressionFactory.exp("name like $name", "Salvador%");

When matching on a relationship, the value parameter must be either a Persistent object, an
org.apache.cayenne.ObjectId, or a numeric ID value (for single column IDs). E.g.:

Artist dali = ... // asume we fetched this one already
Expression qualifier = ExpressionFactory.exp("artist = $artist", dali);

When using positional binding, Cayenne would expect values for all parameters to be present.
Binding by name offers extra flexibility: subexpressions with uninitialized parameters are
automatically pruned from the expression. So e.g. if certain parts of the expression criteria are not
provided to the application, you can still build a valid expression:

Expression template = ExpressionFactory.exp("name like $name and dateOfBirth > $date"
);
...
Map p1 = Collections.singletonMap("name", "Salvador%");
Expression qualifier1 = template.params(p1);

// "qualifier1" is now "name like 'Salvador%'".
// 'dateOfBirth > $date' condition was pruned, as no value was specified for
// the $date parameter

Null handling. Handling of Java nulls as operands is no different from normal values. Instead of
using special conditional operators, like SQL does (IS NULL, IS NOT NULL), "=" and "!=" expressions
are used directly with null values. It is up to Cayenne to translate expressions with nulls to the valid
SQL.

 A formal definition of the expression grammar is provided in Appendix C

Creating Expressions via API

Creating expressions from Strings is a powerful and dynamic approach, however a safer
alternative is to use Java API. It provides compile-time checking of expressions validity. The API in
question is provided by ExpressionFactory class (that we’ve seen already), Property class and
Expression class itself. ExpressionFactory contains a number of self-explanatory static methods that
can be used to build expressions. E.g.:

// String expression: name like 'A%' and price < 1000
Expression e1 = ExpressionFactory.likeExp("name", "A%");
Expression e2 = ExpressionFactory.lessExp("price", 1000);
Expression finalExp = e1.andExp(e2);

34

The last line in the example above shows how to create a new expression by
"chaining" two other expressions. A common error when chaining expressions is
to assume that "andExp" and "orExp" append another expression to the current
expression. In fact a new expression is created. I.e. Expression API treats existing
expressions as immutable.

As discussed earlier, Cayenne supports aliases in path Expressions, allowing to control how SQL
joins are generated if the same path is encountered more than once in the same Expression. Two
ExpressionFactory methods allow to implicitly generate aliases to "split" match paths into
individual joins if needed:

Expression matchAllExp(String path, Collection values)
Expression matchAllExp(String path, Object... values)

"Path" argument to both of these methods can use a split character (a pipe symbol '|') instead of dot
to indicate that relationship following a path should be split into a separate set of joins, one per
collection value. There can only be one split at most in any given path. Split must always precede a
relationship. E.g. "|exhibits.paintings", "exhibits|paintings", etc. Internally Cayenne would
generate distinct aliases for each of the split expressions, forcing separate joins.

While ExpressionFactory is pretty powerful, there’s an even easier way to create expression using
static Property objects generated by Cayenne for each persistent class. Some examples:

// Artist.NAME is generated by Cayenne and has a type of Property<String>
Expression e1 = Artist.NAME.eq("Pablo");

// Chaining multiple properties into a path..
// Painting.ARTIST is generated by Cayenne and has a type of Property<Artist>
Expression e2 = Painting.ARTIST.dot(Artist.NAME).eq("Pablo");

Property objects provide the API mostly analogius to ExpressionFactory, though it is significantly
shorter and is aware of the value types. It provides compile-time checks of both property names
and types of arguments in conditions. We will use Property-based API in further examples.

Evaluating Expressions in Memory

When used in a query, an expression is converted to SQL WHERE clause (or ORDER BY clause) by
Cayenne during query execution. Thus the actual evaluation against the data is done by the
database engine. However the same expressions can also be used for accessing object properties,
calculating values, in-memory filtering.

Checking whether an object satisfies an expression:

35

Expression e = Artist.NAME.in("John", "Bob");
Artist artist = ...
if(e.match(artist)) {
 ...
}

Reading property value:

String name = Artist.NAME.path().evaluate(artist);

Filtering a list of objects:

Expression e = Artist.NAME.in("John", "Bob");
List<Artist> unfiltered = ...
List<Artist> filtered = e.filterObjects(unfiltered);

Current limitation of in-memory expressions is that no collections are permitted in
the property path.

Translating Expressions to EJBQL

EJBQL is a textual query language that can be used with Cayenne. In some situations, it is
convenient to be able to convert Expression instances into EJBQL. Expressions support this
conversion. An example is shown below.

String serial = ...
Expression e = Pkg.SERIAL.eq(serial);
List<Object> params = new ArrayList<Object>();
EJBQLQuery query = new EJBQLQuery("SELECT p FROM Pkg p WHERE " + e.toEJBQL(params,"p"
);

for(int i=0;i<params.size();i++) {
 query.setParameter(i+1, params.get(i));
}

This would be equivalent to the following purely EJBQL querying logic;

EJBQLQuery query = new EJBQLQuery("SELECT p FROM Pkg p WHERE p.serial = ?1");
query.setParameter(1,serial);

2.5. Orderings
An Ordering object defines how a list of objects should be ordered. Orderings are essentially path

36

expressions combined with a sorting strategy. Creating an Ordering:

Ordering o = new Ordering(Painting.NAME_PROPERTY, SortOrder.ASCENDING);

Like expressions, orderings are translated into SQL as parts of queries (and the sorting occurs in the
database). Also like expressions, orderings can be used in memory, naturally - to sort objects:

Ordering o = new Ordering(Painting.NAME_PROPERTY, SortOrder.ASCENDING_INSENSITIVE);
List<Painting> list = ...
o.orderList(list);

Note that unlike filtering with Expressions, ordering is performed in-place. This list object is
reordered and no new list is created.

2.6. Queries
Queries are Java objects used by the application to communicate with the database. Cayenne knows
how to translate queries into SQL statements appropriate for a particular database engine. Most
often queries are used to find objects matching certain criteria, but there are other types of queries
too. E.g. those allowing to run native SQL, call DB stored procedures, etc. When committing objects,
Cayenne itself creates special queries to insert/update/delete rows in the database.

There is a number of built-in queries in Cayenne, described later in this chapter. Most of the newer
queries use fluent API and can be created and executed as easy-to-read one-liners. Users can define
their own query types to abstract certain DB interactions that for whatever reason can not be
adequately described by the built-in set.

Queries can be roughly categorized as "object" and "native". Object queries (most notably
ObjectSelect, SelectById, and EJBQLQuery) are built with abstractions originating in the object model
(the "object" side in the "object-relational" divide). E.g. ObjectSelect is assembled from a Java class of
the objects to fetch, a qualifier expression, orderings, etc. - all of this expressed in terms of the
object model.

Native queries describe a desired DB operation as SQL code (SQLSelect, SQLTemplate query) or a
reference to a stored procedure (ProcedureQuery), etc. The results of native queries are usually
presented as Lists of Maps, with each map representing a row in the DB (a term "data row" is often
used to describe such a map). They can potentially be converted to objects, however it may take a
considerable effort to do so. Native queries are also less (if at all) portable across databases than
object queries.

ObjectSelect

Selecting objects

ObjectSelect supersedes older SelectQuery. SelectQuery is still available and supported.

ObjectSelect is the most commonly used query in Cayenne applications. This may be the only query

37

you will ever need. It returns a list of persistent objects (or data rows) of a certain type specified in
the query:

List<Artist> objects = ObjectSelect.query(Artist.class).select(context);

This returned all rows in the ARTIST table. If the logs were turned on, you might see the following
SQL printed:

INFO: SELECT t0.DATE_OF_BIRTH, t0.NAME, t0.ID FROM ARTIST t0
INFO: === returned 5 row. - took 5 ms.

This SQL was generated by Cayenne from the ObjectSelect above. ObjectSelect can have a qualifier
to select only the data matching specific criteria. Qualifier is simply an Expression (Expressions
where discussed in the previous chapter), appended to the query using "where" method. If you only
want artists whose name begins with 'Pablo', you might use the following qualifier expression:

List<Artist> objects = ObjectSelect.query(Artist.class)
 .where(Artist.NAME.like("Pablo%"))
 .select(context);

The SQL will look different this time:

INFO: SELECT t0.DATE_OF_BIRTH, t0.NAME, t0.ID FROM ARTIST t0 WHERE t0.NAME LIKE ?
[bind: 1->NAME:'Pablo%']
INFO: === returned 1 row. - took 6 ms.

ObjectSelect allows to assemble qualifier from parts, using "and" and "or" method to chain then
together:

List<Artist> objects = ObjectSelect.query(Artist.class)
 .where(Artist.NAME.like("A%"))
 .and(Artist.DATE_OF_BIRTH.gt(someDate)
 .select(context);

To order the results of ObjectSelect, one or more orderings can be applied:

List<Artist> objects = ObjectSelect.query(Artist.class)
 .orderBy(Artist.DATE_OF_BIRTH.desc())
 .orderBy(Artist.NAME.asc())
 .select(context);

There’s a number of other useful methods in ObjectSelect that define what to select and how to
optimize database interaction (prefetching, caching, fetch offset and limit, pagination, etc.). Some of

38

them are discussed in separate chapters on caching and performance optimization. Others are
fairly self-explanatory. Please check the API docs for the full extent of the ObjectSelect features.

Selecting individual columns

ObjectSelect query can be used to fetch individual properties of objects via type-safe API:

List<String> names = ObjectSelect.columnQuery(Artist.class, Artist.ARTIST_NAME)
 .select(context);

And here is example of selecting several properties, note that result will be Object[]:

List<Object[]> nameAndDate = ObjectSelect
 .columnQuery(Artist.class, Artist.ARTIST_NAME, Artist.DATE_OF_BIRTH)
 .select(context);

Selecting using aggregate functions

ObjectSelect query supports usage of aggregate functions. Most common variant of aggregation is
selecting count of records, this can be done really easy:

long count = ObjectSelect.query(Artist.class).selectCount(context);

But you can use aggregates in more cases, even combine selecting individual properties and
aggregates:

// this is artificial property signaling that we want to get full object
Property<Artist> artistProperty = Property.createSelf(Artist.class);

List<Object[]> artistAndPaintingCount = ObjectSelect.columnQuery(Artist.class,
artistProperty, Artist.PAINTING_ARRAY.count())
 .where(Artist.ARTIST_NAME.like("a%"))
 .having(Artist.PAINTING_ARRAY.count().lt(5L))
 .orderBy(Artist.PAINTING_ARRAY.count().desc(), Artist.ARTIST_NAME.asc())
 .select(context);

for(Object[] next : artistAndPaintingCount) {
 Artist artist = (Artist)next[0];
 long paintings = (Long)next[1];
 System.out.println(artist.getArtistName() + " have " + paintings + " paintings");
}

Here is generated SQL for this query:

39

SELECT DISTINCT t0.ARTIST_NAME, t0.DATE_OF_BIRTH, t0.ARTIST_ID, COUNT(t1.PAINTING_ID)
FROM ARTIST t0 JOIN PAINTING t1 ON (t0.ARTIST_ID = t1.ARTIST_ID)
WHERE t0.ARTIST_NAME LIKE ?
GROUP BY t0.ARTIST_NAME, t0.ARTIST_ID, t0.DATE_OF_BIRTH
HAVING COUNT(t1.PAINTING_ID) < ?
ORDER BY COUNT(t1.PAINTING_ID) DESC, t0.ARTIST_NAME

EJBQLQuery

EJBQLQuery was created as a part of an experiment in adopting some of Java Persistence API (JPA)
approaches in Cayenne. It is a parameterized object query that is created from query String. A
String used to build EJBQLQuery must conform to JPQL (JPA query language):

EJBQLQuery query = new EJBQLQuery("select a FROM Artist a");

JPQL details can be found in any JPA manual. Here we’ll mention only how this fits into Cayenne
and what are the differences between EJBQL and other Cayenne queries.

Although most frequently EJBQLQuery is used as an alternative to SelectQuery, there are also DELETE
and UPDATE varieties available.

As of this version of Cayenne, DELETE and UPDATE do not change the state of
objects in the ObjectContext. They are run directly against the database instead.

EJBQLQuery select = new EJBQLQuery("select a FROM Artist a WHERE a.name = 'Salvador
Dali'");
List<Artist> artists = context.performQuery(select);

EJBQLQuery delete = new EJBQLQuery("delete from Painting");
context.performGenericQuery(delete);

EJBQLQuery update = new EJBQLQuery("UPDATE Painting AS p SET p.name = 'P2' WHERE
p.name = 'P1'");
context.performGenericQuery(update);

In most cases SelectQuery is preferred to EJBQLQuery, as it is API-based, and provides you with better
compile-time checks. However sometimes you may want a completely scriptable object query. This
is when you might prefer EJBQL. A more practical reason for picking EJBQL over SelectQuery though
is that the former offers some extra selecting capabilities, namely aggregate functions and
subqueries:

40

EJBQLQuery query = new EJBQLQuery("select a, COUNT(p) FROM Artist a JOIN a.paintings p
GROUP BY a");
List<Object[]> result = context.performQuery(query);
for(Object[] artistWithCount : result) {
 Artist a = (Artist) artistWithCount[0];
 int hasPaintings = (Integer) artistWithCount[1];
}

This also demonstrates a previously unseen type of select result - a List of Object[] elements, where
each entry in an Object[] is either a DataObject or a scalar, depending on the query SELECT clause. A
result can also be a list of scalars:

EJBQLQuery query = new EJBQLQuery("select a.name FROM Artist a");
List<String> names = context.performQuery(query);

EJBQLQuery supports an "IN" clause with three different usage-patterns. The following example
would require three individual positional parameters (named parameters could also have been
used) to be supplied.

select p from Painting p where p.paintingTitle in (?1,?2,?3)

The following example requires a single positional parameter to be supplied. The parameter can be
any concrete implementation of the java.util.Collection interface such as java.util.List or
java.util.Set.

select p from Painting p where p.paintingTitle in ?1

The following example is functionally identical to the one prior.

select p from Painting p where p.paintingTitle in (?1)

It is possible to convert an Expression object used with a SelectQuery to EJBQL. Use the
Expression#appendAsEJBQL methods for this purpose.

While Cayenne Expressions discussed previously can be thought of as identical to JPQL WHERE
clause, and indeed they are very close, there are a few noteable differences:

• Null handling: SelectQuery would translate the expressions matching NULL values to the
corresponding "X IS NULL" or "X IS NOT NULL" SQL syntax. EJBQLQuery on the other hand
requires explicit "IS NULL" (or "IS NOT NULL") syntax to be used, otherwise the generated SQL
will look like "X = NULL" (or "X <> NULL"), which will evaluate differently.

• Expression Parameters: SelectQuery uses "$" to denote named parameters (e.g. "$myParam"),
while EJBQL uses ":" (e.g. ":myParam"). Also EJBQL supports positional parameters denoted by
the question mark: "?3".

41

SelectById

This query allows to search objects by their ID. It’s introduced in Cayenne 4.0 and uses new "fluent"
API same as ObjectSelect query.

Here is example of how to use it:

Artist artistWithId1 = SelectById.query(Artist.class, 1)
 .prefetch(Artist.PAINTING_ARRAY.joint())
 .localCache()
 .selectOne(context);

SQLSelect and SQLExec

SQLSelect and SQLExec are essentially a "fluent" versions of older SQLTemplate query. SQLSelect can
be used (as name suggests) to select custom data in form of entities, separate columns, collection of
DataRow or Object[]. SQLExec is designed to just execute any raw SQL code (e.g. updates, deletes,
DDLs, etc.) This queries support all directives described in SQLTemplate section. Also you can
predefine result type of columns.

Here is example of how to use SQLSelect:

42

// Selecting objects
List<Painting> paintings = SQLSelect
 .query(Painting.class, "SELECT * FROM PAINTING WHERE PAINTING_TITLE LIKE
#bind($title)")
 .params("title", "painting%")
 .upperColumnNames()
 .localCache()
 .limit(100)
 .select(context);

// Selecting scalar values
List<String> paintingNames = SQLSelect
 .scalarQuery(String.class, "SELECT PAINTING_TITLE FROM PAINTING WHERE
ESTIMATED_PRICE > #bind($price)")
 .params("price", 100000)
 .select(context);

// Selecting DataRow with predefined types
List<DataRow> result = SQLSelect
 .dataRowQuery("SELECT * FROM ARTIST_CT", Integer.class, String.class,
LocalDateTime.class)
 .select(context);

// Selecting Object[] with predefined types
List<Object[]> result = SQLSelect
 .scalarQuery("SELECT * FROM ARTIST_CT", Integer.class, String.class,
LocalDateTime.class)
 .select(context);

And here is example of how to use SQLExec:

int inserted = SQLExec
 .query("INSERT INTO ARTIST (ARTIST_ID, ARTIST_NAME) VALUES (#bind($id),
#bind($name))")
 .paramsArray(55, "Picasso")
 .update(context);

MappedSelect and MappedExec

MappedSelect and MappedExec is a queries that are just a reference to another queries stored in the
DataMap. The actual stored query can be SelectQuery, SQLTemplate, EJBQLQuery, etc. Difference
between MappedSelect and MappedExec is (as reflected in their names) whether underlying query
intended to select data or just to perform some generic SQL code.

 These queries are "fluent" versions of deprecated NamedQuery class.

Here is example of how to use MappedSelect:

43

List<Artist> results = MappedSelect.query("artistsByName", Artist.class) 
 .param("name", "Picasso") 
 .select(context);

And here is example of MappedExec:

QueryResult result = MappedExec.query("updateQuery") 
 .param("var", "value") 
 .execute(context);
System.out.println("Rows updated: " + result.firstUpdateCount());

ProcedureCall

Stored procedures are mapped as separate objects in CayenneModeler. ProcedureCall provides a
way to execute them with a certain set of parameters. This query is a "fluent" version of older
ProcedureQuery. Just like with SQLTemplate, the outcome of a procedure can be anything - a single
result set, multiple result sets, some data modification (returned as an update count), or a
combination of these. So use root class to get a single result set, and use only procedure name for
anything else:

List<Artist> result = ProcedureCall.query("my_procedure", Artist.class)
 .param("p1", "abc")
 .param("p2", 3000)
 .call(context)
 .firstList();

// here we do not bother with root class.
// Procedure name gives us needed routing information
ProcedureResult result = ProcedureCall.query("my_procedure")
 .param("p1", "abc")
 .param("p2", 3000)
 .call();

A stored procedure can return data back to the application as result sets or via OUT parameters. To
simplify the processing of the query output, QueryResponse treats OUT parameters as if it was a
separate result set. For stored procedures declaref any OUT or INOUT parameters, ProcedureResult
have convenient utility method to get them:

ProcedureResult result = ProcedureCall.query("my_procedure")
 .call(context);

// read OUT parameters
Object out = result.getOutParam("out_param");

44

There maybe a situation when a stored procedure handles its own transactions, but an application
is configured to use Cayenne-managed transactions. This is obviously conflicting and undesirable
behavior. In this case ProcedureQueries should be executed explicitly wrapped in an "external"
Transaction. This is one of the few cases when a user should worry about transactions at all. See
Transactions section for more details.

Custom Queries

If a user needs some extra functionality not addressed by the existing set of Cayenne queries, he
can write his own. The only requirement is to implement org.apache.cayenne.query.Query interface.
The easiest way to go about it is to subclass some of the base queries in Cayenne.

E.g. to do something directly in the JDBC layer, you might subclass AbstractQuery:

public class MyQuery extends AbstractQuery {

 @Override
 public SQLAction createSQLAction(SQLActionVisitor visitor) {
 return new SQLAction() {

 @Override
 public void performAction(Connection connection, OperationObserver
observer) throws SQLException, Exception {
 // 1. do some JDBC work using provided connection...
 // 2. push results back to Cayenne via OperationObserver
 }
 };
 }
}

To delegate the actual query execution to a standard Cayenne query, you may subclass
IndirectQuery:

public class MyDelegatingQuery extends IndirectQuery {

 @Override
 protected Query createReplacementQuery(EntityResolver resolver) {
 SQLTemplate delegate = new SQLTemplate(SomeClass.class, generateRawSQL());
 delegate.setFetchingDataRows(true);
 return delegate;
 }

 protected String generateRawSQL() {
 // build some SQL string
 }
}

In fact many internal Cayenne queries are IndirectQueries, delegating to SelectQuery or SQLTemplate

45

after some preprocessing.

SQLTemplate

SQLTemplate is a query that allows to run native SQL from a Cayenne application. It comes handy
when the standard ORM concepts are not sufficient for a given query or an update. SQL is too
powerful and allows to manipulate data in ways that are not easily described as a graph of related
entities. Cayenne acknowledges this fact and provides this facility to execute SQL, mapping the
result to objects when possible. Here are examples of selecting and non-selecting SQLTemplates:

SQLTemplate select = new SQLTemplate(Artist.class, "select * from ARTIST");
List<Artist> result = context.performQuery(select);

SQLTemplate update = new SQLTemplate(Artist.class, "delete from ARTIST");
QueryResponse response = context.performGenericQuery(update);

Cayenne doesn’t make any attempt to make sense of the SQL semantics, so it doesn’t know whether
a given query is performing a select or update, etc. It is the the user’s decision to run a given query
as a selecting or "generic".

Any data modifications done to DB as a result of SQLTemplate execution do not
change the state of objects in the ObjectContext. So some objects in the context may
become stale as a result.

Another point to note is that the first argument to the SQLTemplate constructor - the Java class - has
the same meaning as in SelectQuery only when the result can be converted to objects (e.g. when
this is a selecting query and it is selecting all columns from one table). In this case it denotes the
"root" entity of this query result. If the query does not denote a single entity result, this argument is
only used for query routing, i.e. determining which database it should be run against. You are free
to use any persistent class or even a DataMap instance in such situation. It will work as long as the
passed "root" maps to the same database as the current query.

To achieve interoperability between multiple RDBMS a user can specify multiple SQL statements
for the same SQLTemplate, each corresponding to a native SQL dialect. A key used to look up the right
dialect during execution is a fully qualified class name of the corresponding DbAdapter. If no DB-
specific statement is present for a given DB, a default generic statement is used. E.g. in all the
examples above a default statement will be used regardless of the runtime database. So in most
cases you won’t need to explicitly "translate" your SQL to all possible dialects. Here is how this
works in practice:

46

SQLTemplate select = new SQLTemplate(Artist.class, "select * from ARTIST");

// For Postgres it would be nice to trim padding of all CHAR columns.
// Otherwise those will be returned with whitespace on the right.
// assuming "NAME" is defined as CHAR...
String pgSQL = "SELECT ARTIST_ID, RTRIM(NAME), DATE_OF_BIRTH FROM ARTIST";
query.setTemplate(PostgresAdapter.class.getName(), pgSQL);

Scripting SQLTemplate with templates

The most interesting aspect of SQLTemplate (and the reason why it is called a "template") is that a
SQL string is treated by Cayenne as a template. Before sending it to DB as a PreparedStatement, the
String is evaluated, that does variable substitutions, and performs special callbacks in response to
various directives, thus controlling query interaction with the JDBC layer.

Here we’ll describe the two main scripting elements - "variables" (that look like $var) and
"directives" (that look like #directive(p1 p2 p3)). Cayenne defines a number of directives to bind
parameters to PreparedStatement and to control the structure of the ResultSet. These directives are
described in the following sections.

Variable Substitution

All variables in the template string are replaced from query parameters:

SQLTemplate query = new SQLTemplate(Artist.class, "delete from $tableName");
query.setParameters(Collections.singletonMap("tableName", "mydb.PAINTING"));

// this will generate SQL like this: "delete from mydb.PAINTING"

The example above demonstrates the point made earlier in this chapter - even if we don’t know
upfront which table the query will run against, we can still use a fixed "root" in constructor
(Artist.class in this case), as we are not planning on converting the result to objects.

Variable substitution within the text uses object.toString() method to replace the variable value.
Keep in mind that this may not be appropriate in all situations. E.g. passing a date object in a
WHERE clause expression may be converted to a String not understood by the target RDBMS SQL
parser. In such cases variable should be wrapped in #bind directive as described below.

Directives

These are the Cayenne directives used to customize SQLTemplate parsing and integrate it with the
JDBC layer:

#bind

Creates a PreparedStatement positional parameter in place of the directive, binding the value to it
before statement execution. #bind is allowed in places where a "?" would be allowed in a
PreparedStatement. And in such places it almost always makes sense to pass objects to the template

47

via this or other forms of #bind instead of inserting them inline.

Semantics:

#bind(value)
#bind(value jdbcType)
#bind(value jdbcType scale)

Arguments:

• value - can either be a char constant or a variable that is resolved from the query parameters.
Note that the variable can be a collection, that will be automatically expanded into a list of
individual value bindings. This is useful for instance to build IN conditions.

• jdbcType - is a JDBC data type of the parameter as defined in java.sql.Types.

• scale - An optional scale of the numeric value. Same as "scale" in PreparedStatement.

Usage:

#bind($xyz)
#bind('str')
#bind($xyz 'VARCHAR')
#bind($xyz 'DECIMAL' 2)

Full example:

update ARTIST set NAME = #bind($name) where ID = #bind($id)

#bindEqual

Same as #bind, but also includes the "=" sign in front of the value binding. Look at the example
below - we took the #bind example and replaced "ID = #bind(..)" with "ID #bindEqual(..)". While
it looks like a clumsy shortcut to eliminate the equal sign, the actual reason why this is useful is that
it allows the value to be null. If the value is not null, "= ?" is generated, but if it is, the resulting
chunk of the SQL would look like "IS NULL" and will be compilant with what the DB expects.

Semantics:

#bindEqual(value)
#bindEqual(value jdbcType)
#bindEqual(value jdbcType scale)

Arguments: (same as #bind)

Usage:

48

#bindEqual($xyz)
#bindEqual('str')
#bindEqual($xyz 'VARCHAR')
#bindEqual($xyz 'DECIMAL' 2)

Full example:

update ARTIST set NAME = #bind($name) where ID #bindEqual($id)

#bindNotEqual

This directive deals with the same issue as #bindEqual above, only it generates "not equal" in front
of the value (or IS NOT NULL).

Semantics:

#bindNotEqual(value)
#bindNotEqual(value jdbcType)
#bindNotEqual(value jdbcType scale)

Arguments: (same as #bind)

Usage:

#bindNotEqual($xyz)
#bindNotEqual('str')
#bindNotEqual($xyz 'VARCHAR')
#bindNotEqual($xyz 'DECIMAL' 2)

Full example:

update ARTIST set NAME = #bind($name) where ID #bindEqual($id)

#bindObjectEqual

It can be tricky to use a Persistent object or an ObjectId in a binding, especially for tables with
compound primary keys. This directive helps to handle such binding. It maps columns in the query
to the names of Persistent object ID columns, extracts ID values from the object, and generates SQL
like "COL1 = ? AND COL2 = ? …" , binding positional parameters to ID values. It can also correctly
handle null object. Also notice how we are specifying an array for multi-column PK.

Semantics:

#bindObjectEqual(value columns idColumns)

49

Arguments:

• value - must be a variable that is resolved from the query parameters to a Persistent or ObjectId.

• columns - the names of the columns to generate in the SQL.

• idColumn - the names of the ID columns for a given entity. Must match the order of "columns" to
match against.

Usage:

#bindObjectEqual($a 't0.ID' 'ID')
#bindObjectEqual($b ['t0.FK1', 't0.FK2'] ['PK1', 'PK2'])

Full example:

String sql = "SELECT * FROM PAINTING t0 WHERE #bindObjectEqual($a 't0.ARTIST_ID'
'ARTIST_ID') ORDER BY PAINTING_ID";
SQLTemplate select = new SQLTemplate(Artist.class, sql);

Artist a =
select.setParameters(Collections.singletonMap("a", a));

#bindObjectNotEqual

Same as #bindObjectEqual above, only generates "not equal" operator for value comparison (or IS
NOT NULL).

Semantics:

#bindObjectNotEqual(value columns idColumns)

Arguments: (same as #bindObjectEqual)

Usage:

#bindObjectNotEqual($a 't0.ID' 'ID')
#bindObjectNotEqual($b ['t0.FK1', 't0.FK2'] ['PK1', 'PK2'])

Full example:

50

String sql = "SELECT * FROM PAINTING t0 WHERE #bindObjectNotEqual($a 't0.ARTIST_ID'
'ARTIST_ID') ORDER BY PAINTING_ID";
SQLTemplate select = new SQLTemplate(Artist.class, sql);

Artist a =
select.setParameters(Collections.singletonMap("a", a));

#result

Renders a column in SELECT clause of a query and maps it to a key in the result DataRow. Also
ensures the value read is of the correct type. This allows to create a DataRow (and ultimately - a
persistent object) from an arbitrary ResultSet.

Semantics:

#result(column)
#result(column javaType)
#result(column javaType alias)
#result(column javaType alias dataRowKey)

Arguments:

• column - the name of the column to render in SQL SELECT clause.

• javaType - a fully-qualified Java class name for a given result column. For simplicity most
common Java types used in JDBC can be specified without a package. These include all numeric
types, primitives, String, SQL dates, BigDecimal and BigInteger. So "#result('A' 'String')",
"#result('B' 'java.lang.String')" and "#result('C' 'int')" are all valid

• alias - specifies both the SQL alias of the column and the value key in the DataRow. If omitted,
"column" value is used.

• dataRowKey - needed if SQL 'alias' is not appropriate as a DataRow key on the Cayenne side. One
common case when this happens is when a DataRow retrieved from a query is mapped using
joint prefetch keys (see below). In this case DataRow must use database path expressions for
joint column keys, and their format is incompatible with most databases alias format.

Usage:

#result('NAME')
#result('DATE_OF_BIRTH' 'java.util.Date')
#result('DOB' 'java.util.Date' 'DATE_OF_BIRTH')
#result('DOB' 'java.util.Date' '' 'artist.DATE_OF_BIRTH')
#result('SALARY' 'float')

Full example:

51

SELECT #result('ID' 'int'), #result('NAME' 'String'), #result('DATE_OF_BIRTH'
'java.util.Date') FROM ARTIST

 For advanced features you may look at the Apache Velocity extension

Mapping SQLTemplate Results

Here we’ll discuss how to convert the data selected via SQLTemplate to some useable format,
compatible with other query results. It can either be very simple or very complex, depending on the
structure of the SQL, JDBC driver nature and the desired result structure. This section presents
various tips and tricks dealing with result mapping.

By default SQLTemplate is expected to return a List of Persistent objects of its root type. This is the
simple case:

SQLTemplate query = new SQLTemplate(Artist.class, "SELECT * FROM ARTIST");

// List of Artists
List<Artist> artists = context.performQuery(query);

Just like SelectQuery, SQLTemplate can fetch DataRows. In fact DataRows option is very useful with
SQLTemplate, as the result type most often than not does not represent a Cayenne entity, but
instead may be some aggregated report or any other data whose object structure is opaque to
Cayenne:

String sql = "SELECT t0.NAME, COUNT(1) FROM ARTIST t0 JOIN PAINTING t1 ON (t0.ID =
t1.ARTIST_ID) "
 + "GROUP BY t0.NAME ORDER BY COUNT(1)";
SQLTemplate query = new SQLTemplate(Artist.class, sql);

// ensure we are fetching DataRows
query.setFetchingDataRows(true);

// List of DataRow
List<DataRow> rows = context.performQuery(query);

In the example above, even though the query root is Artist. The result is a list of artist names with
painting counts (as mentioned before in such case "root" is only used to find the DB to fetch against,
but has no bearning on the result). The DataRows here are the most appropriate and desired result
type.

In a more advanced case you may decide to fetch a list of scalars or a list of Object[] with each
array entry being either an entity or a scalar. You probably won’t be doing this too often and it
requires quite a lot of work to setup, but if you want your SQLTemplate to return results similar to
EJBQLQuery, it is doable using SQLResult as described below:

52

SQLTemplate query = new SQLTemplate(Painting.class, "SELECT ESTIMATED_PRICE P FROM
PAINTING");

// let Cayenne know that result is a scalar
SQLResult resultDescriptor = new SQLResult();
resultDescriptor.addColumnResult("P");
query.setResult(resultDescriptor);

// List of BigDecimals
List<BigDecimal> prices = context.performQuery(query);

SQLTemplate query = new SQLTemplate(Artist.class, "SELECT t0.ID, t0.NAME,
t0.DATE_OF_BIRTH, COUNT(t1.PAINTING_ID) C " +
 "FROM ARTIST t0 LEFT JOIN PAINTING t1 ON (t0.ID = t1.ARTIST_ID) " +
 "GROUP BY t0.ID, t0.NAME, t0.DATE_OF_BIRTH");

// let Cayenne know that result is a mix of Artist objects and the count of their
paintings
EntityResult artistResult = new EntityResult(Artist.class);
artistResult.addDbField(Artist.ID_PK_COLUMN, "ARTIST_ID");
artistResult.addObjectField(Artist.NAME_PROPERTY, "NAME");
artistResult.addObjectField(Artist.DATE_OF_BIRTH_PROPERTY, "DATE_OF_BIRTH");

SQLResult resultDescriptor = new SQLResult();
resultDescriptor.addEntityResult(artistResult);
resultDescriptor.addColumnResult("C");
query.setResult(resultDescriptor);

// List of Object[]
List<Object[]> data = context.performQuery(query);

You can fetch list of scalars, list of Object[] or list of DataRow with predefined result column types
or using default types.

// Selecting Object[] with predefined types
SQLTemplate q3 = new SQLTemplate(Artist.class, "SELECT ARTIST_ID, ARTIST_NAME FROM
ARTIST");
 q3.setResultColumnsTypes(Double.class, String.class);
 q3.setUseScalar(true);
List<Object[]> result = context.performQuery(q3);

// Selecting DataRow with predefined types
SQLTemplate q3 = new SQLTemplate(Artist.class, "SELECT ARTIST_ID, ARTIST_NAME FROM
ARTIST");
 q3.setResultColumnsTypes(Double.class, String.class);
 q3.setFetchingDataRows(true);
List<DataRow> result = context.performQuery(q3);

53

Another trick related to mapping result sets is making Cayenne recognize prefetched entities in the
result set. This emulates "joint" prefetching of SelectQuery, and is achieved by special column
naming. Columns belonging to the "root" entity of the query should use unqualified names
corresponding to the root DbEntity columns. For each related entity column names must be
prefixed with relationship name and a dot (e.g. "toArtist.ID"). Column naming can be controlled
with #result directive:

String sql = "SELECT distinct "
 + "#result('t1.ESTIMATED_PRICE' 'BigDecimal' '' 'paintings.ESTIMATED_PRICE'), "
 + "#result('t1.PAINTING_TITLE' 'String' '' 'paintings.PAINTING_TITLE'), "
 + "#result('t1.GALLERY_ID' 'int' '' 'paintings.GALLERY_ID'), "
 + "#result('t1.ID' 'int' '' 'paintings.ID'), "
 + "#result('NAME' 'String'), "
 + "#result('DATE_OF_BIRTH' 'java.util.Date'), "
 + "#result('t0.ID' 'int' '' 'ID') "
 + "FROM ARTIST t0, PAINTING t1 "
 + "WHERE t0.ID = t1.ARTIST_ID";

SQLTemplate q = new SQLTemplate(Artist.class, sql);
q.addPrefetch(Artist.PAINTINGS_PROPERTY)
List<Artist> objects = context.performQuery(query);

And the final tip deals with capitalization of the DataRow keys. Queries like "SELECT * FROM…" and
even "SELECT COLUMN1, COLUMN2, … FROM …" can sometimes result in Cayenne exceptions on
attempts to convert fetched DataRows to objects. Essentially any query that is not using a #result
directive to describe the result set is prone to this problem, as different databases may produce
different capitalization of the java.sql.ResultSet columns.

The most universal way to address this issue is to describe each column explicitly in the
SQLTemplate via #result, e.g.: "SELECT #result('column1'), #result('column2'), ..". However this
quickly becomes impractical for tables with lots of columns. For such cases Cayenne provides a
shortcut based on the fact that an ORM mapping usually follows some naming convention for the
column names. Simply put, for case-insensitive databases developers normally use either all
lowercase or all uppercase column names. Here is the API that takes advantage of that user
knowledge and forces Cayenne to follow a given naming convention for the DataRow keys (this is
also available as a dropdown in the Modeler):

SQLTemplate query = new SQLTemplate("SELECT * FROM ARTIST");
query.setColumnNamesCapitalization(CapsStrategy.LOWER);
List objects = context.performQuery(query);

or

SQLTemplate query = new SQLTemplate("SELECT * FROM ARTIST");
query.setColumnNamesCapitalization(CapsStrategy.UPPER);
List objects = context.performQuery(query);

54

None of this affects the generated SQL, but the resulting DataRows are using correct capitalization.

You probably shouldn’t bother with this unless you are getting
CayenneRuntimeExceptions when fetching with SQLTemplate.

2.7. Lifecycle Events
An application might be interested in getting notified when a Persistent object moves through its
lifecycle (i.e. fetched from DB, created, modified, committed). E.g. when a new object is created, the
application may want to initialize its default properties (this can’t be done in constructor, as
constructor is also called when an object is fetched from DB). Before save, the application may
perform validation and/or set some properties (e.g. "updatedTimestamp"). After save it may want to
create an audit record for each saved object, etc., etc.

All this can be achieved by declaring callback methods either in Persistent objects or in non-
persistent listener classes defined by the application (further simply called "listeners"). There are
eight types of lifecycle events supported by Cayenne, listed later in this chapter. When any such
event occurs (e.g. an object is committed), Cayenne would invoke all appropriate callbacks.
Persistent objects would receive their own events, while listeners would receive events from any
objects.

Cayenne allows to build rather powerful and complex "workflows" or "processors" tied to objects
lifecycle, especially with listeners, as they have full access to the application evnironment outside
Cayenne. This power comes from such features as filtering which entity events are sent to a given
listener and the ability to create a common operation context for multiple callback invocations. All
of these are discussed later in this chapter.

Types of Lifecycle Events

Cayenne defines the following 8 types of lifecycle events for which callbacks can be regsitered:

Table 12. Lifecycle Event Types

Event Occurs…

PostAdd
right after a new object is created inside ObjectContext.newObject(). When this
event is fired the object is already registered with its ObjectContext and has its
ObjectId and ObjectContext properties set.

PrePersist
right before a new object is committed, inside ObjectContext.commitChanges()
and ObjectContext.commitChangesToParent() (and after "validateForInsert()").

PreUpdate
right before a modified object is committed, inside
ObjectContext.commitChanges() and ObjectContext.commitChangesToParent()
(and after "validateForUpdate()").

PreRemove
right before an object is deleted, inside ObjectContext.deleteObjects(). The
event is also generated for each object indirectly deleted as a result of
CASCADE delete rule.

PostPersist
right after a commit of a new object is done, inside
ObjectContext.commitChanges().

55

Event Occurs…

PostUpdate
right after a commit of a modified object is done, inside
ObjectContext.commitChanges().

PostRemove
right after a commit of a deleted object is done, inside
ObjectContext.commitChanges().

PostLoad

• After an object is fetched inside ObjectContext.performQuery().

• After an object is reverted inside ObjectContext.rollbackChanges().

• Anytime a faulted object is resolved (i.e. if a relationship is fetched).

Callbacks on Persistent Objects

Callback methods on Persistent classes are mapped in CayenneModeler for each ObjEntity. Empty
callback methods are automatically created as a part of class generation (either with Maven, Ant or
the Modeler) and are later filled with appropriate logic by the programmer. E.g. assuming we
mapped a 'post-add' callback called 'onNewOrder' in ObjEntity 'Order', the following code will be
generated:

public abstract class _Order extends CayenneDataObject {
 protected abstract void onNewOrder();
}

public class Order extends _Order {

 @Override
 protected void onNewOrder() {
 //TODO: implement onNewOrder
 }
}

As onNewOrder() is already declared in the mapping, it does not need to be registered explicitly.
Implementing the method in subclass to do something meaningful is all that is required at this
point.

As a rule callback methods do not have any knowledge of the outside application, and can only
access the state of the object itself and possibly the state of other persistent objects via object’s own
ObjectContext.

Validation and callbacks: There is a clear overlap in functionality between object
callbacks and DataObject.validateForX() methods. In the future validation may be
completely superceeded by callbacks. It is a good idea to use "validateForX" strictly
for validation (or not use it at all). Updating the state before commit should be
done via callbacks.

56

Callbacks on Non-Persistent Listeners

A listener is simply some application class that has one or more annotated callback methods. A
callback method signature should be void someMethod(SomePersistentType object). It can be public,
private, protected or use default access:

 public class OrderListener {

 @PostAdd(Order.class)
 public void setDefaultsForNewOrder(Order o) {
 o.setCreatedOn(new Date());
 }
}

Notice that the example above contains an annotation on the callback method that defines the type
of the event this method should be called for. Before we go into annotation details, we’ll show how
to create and register a listener with Cayenne. It is always a user responsibility to register desired
application listeners, usually right after ServerRuntime is started. Here is an example:

First let’s define 2 simple listeners.

public class Listener1 {

 @PostAdd(MyEntity.class)
 void postAdd(Persistent object) {
 // do something
 }
}

public class Listener2 {

 @PostRemove({ MyEntity1.class, MyEntity2.class })
 void postRemove(Persistent object) {
 // do something
 }

 @PostUpdate({ MyEntity1.class, MyEntity2.class })
 void postUpdate(Persistent object) {
 // do something
 }
}

Ignore the annotations for a minute. The important point here is that the listeners are arbitrary
classes unmapped and unknown to Cayenne, that contain some callback methods. Now let’s register
them with runtime:

57

ServerRuntime runtime = ServerRuntime.builder()
 // ..
 .addModule(binder ->
 ServerModule.contributeDomainListeners()
 .add(Listener1.class)
 .add(new Listener2())
)
 // ..
 .build();

Listeners in this example are very simple. However they don’t have to be. Unlike Persistent objects,
normally listeners initialization is managed by the application code, not Cayenne, so listeners may
have knowledge of various application services, operation transactional context, etc. Besides a
single listener can apply to multiple entities. As a consequence their callbacks can do more than
just access a single ObjectContext.

Now let’s discuss the annotations. There are eight annotations exactly matching the names of eight
lifecycle events. A callback method in a listener should be annotated with at least one, but possibly
with more than one of them. Annotation itself defines what event the callback should react to.
Annotation parameters are essentially an entity filter, defining a subset of ObjEntities whose events
we are interested in:

// this callback will be invoked on PostRemove event of any object
// belonging to MyEntity1, MyEntity2 or their subclasses
@PostRemove({ MyEntity1.class, MyEntity2.class })
void postRemove(Persistent object) {
 ...
}

// similar example with multipe annotations on a single method
// each matching just one entity
@PostPersist(MyEntity1.class)
@PostRemove(MyEntity1.class)
@PostUpdate(MyEntity1.class)
void postCommit(MyEntity1 object) {
 ...
}

As shown above, "value" (the implicit annotation parameter) can contain one or more entity
classes. Only these entities' events will result in callback invocation. There’s also another way to
match entities - via custom annotations. This allows to match any number of entities without even
knowing what they are. Here is an example. We’ll first define a custom annotation:

58

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Tag {

}

Now we can define a listener that will react to events from ObjEntities annotated with this
annotation:

public class Listener3 {

 @PostAdd(entityAnnotations = Tag.class)
 void postAdd(Persistent object) {
 // do something
 }
}

As you see we don’t have any entities yet, still we can define a listener that does something useful.
Now let’s annotate some entities:

@Tag
public class MyEntity1 extends _MyEntity1 {

}

@Tag
public class MyEntity2 extends _MyEntity2 {

}

Combining Listeners with DataChannel filters

A final touch in the listeners design is preserving the state of the listener within a single select or
commit, so that events generated by multiple objects can be collected and processed all together. To
do that you will need to implement a DataChannelSyncFilter (and/or DataChannelQueryFilter), and
add some callback methods to it. They will store their state in a ThreadLocal variable of the filter.
Here is an example filter that does something pretty meaningless - counts how many total objects
were committed. However it demonstrates the important pattern of aggregating multiple events
and presenting a combined result:

59

public class CommittedObjectCounter implements DataChannelSyncFilter {

 private ThreadLocal<int[]> counter = new ThreadLocal<int[]>();

 @Override
 public GraphDiff onSync(ObjectContext originatingContext, GraphDiff changes, int
syncType,
 DataChannelSyncFilterChain filterChain) {

 // init the counter for the current commit
 counter.set(new int[1]);

 try {
 return filterChain.onSync(originatingContext, changes, syncType);
 } finally {

 // process aggregated result and release the counter
 System.out.println("Committed " + counter.get()[0] + " object(s)");
 counter.set(null);
 }
 }

 @PostPersist(entityAnnotations = Tag.class)
 @PostUpdate(entityAnnotations = Tag.class)
 @PostRemove(entityAnnotations = Tag.class)
 void afterCommit(Persistent object) {
 counter.get()[0]++;
 }
}

Now since this is both a filter and a listener, it needs to be registered as such:

// this will also add filter as a listener
ServerRuntime runtime = ServerRuntime.builder()
 // ..
 .addModule(b ->
 ServerModule.contributeDomainSyncFilters(b)
 .add(CommittedObjectCounter.class)
)
 // ..
 .build();

2.8. Performance Tuning

Prefetching

Prefetching is a technique that allows to bring back in one query not only the queried objects, but

60

also objects related to them. In other words it is a controlled eager relationship resolving
mechanism. Prefetching is discussed in the "Performance Tuning" chapter, as it is a powerful
performance optimization method. However another common application of prefetching is to
refresh stale object relationships, so more generally it can be viewed as a technique for managing
subsets of the object graph.

Prefetching example:

ObjectSelect<Artist> query = ObjectSelect.query(Artist.class);

// instructs Cayenne to prefetch one of Artist's relationships
query.prefetch(Artist.PAINTINGS.disjoint());

// the above line is equivalent to the following:
// query.prefetch("paintings", PrefetchTreeNode.DISJOINT_PREFETCH_SEMANTICS);

// query is expecuted as usual, but the resulting Artists will have
// their paintings "inflated"
List<Artist> artists = query.select(context);

All types of relationships can be preftetched - to-one, to-many, flattened. A prefetch can span
multiple relationships:

query.prefetch(Artist.PAINTINGS.dot(Painting.GALLERY).disjoint());

A query can have multiple prefetches:

query.prefetch(Artist.PAINTINGS.disjoint());
query.prefetch(Artist.PAINTINGS.dot(Painting.GALLERY).disjoint());

If a query is fetching DataRows, all "disjoint" prefetches are ignored, only "joint" prefetches are
executed (see prefetching semantics discussion below for what disjoint and joint prefetches mean).

Prefetching Semantics

Prefetching semantics defines a strategy to prefetch relationships. Depending on it, Cayenne would
generate different types of queries. The end result is the same - query root objects with related
objects fully resolved. However semantics can affect performance, in some cases significantly.
There are 3 types of prefetch semantics, all defined as constants in
org.apache.cayenne.query.PrefetchTreeNode:

PrefetchTreeNode.JOINT_PREFETCH_SEMANTICS
PrefetchTreeNode.DISJOINT_PREFETCH_SEMANTICS
PrefetchTreeNode.DISJOINT_BY_ID_PREFETCH_SEMANTICS

There’s no limitation on mixing different types of semantics in the same query. Each prefetch can

61

have its own semantics. SelectQuery uses DISJOINT_PREFETCH_SEMANTICS by default. ObjectSelect
requires explicit semantics as we’ve seen above. SQLTemplate and ProcedureQuery are both using
JOINT_PREFETCH_SEMANTICS and it can not be changed due to the nature of those two queries.

Disjoint Prefetching Semantics

This semantics results in Cayenne generatiing one SQL statement for the main objects, and a
separate statement for each prefetch path (hence "disjoint" - related objects are not fetched with the
main query). Each additional SQL statement uses a qualifier of the main query plus a set of joins
traversing the prefetch path between the main and related entity.

This strategy has an advantage of efficient JVM memory use, and faster overall result processing by
Cayenne, but it requires (1+N) SQL statements to be executed, where N is the number of prefetched
relationships.

Disjoint-by-ID Prefetching Semantics

This is a variation of disjoint prefetch where related objects are matched against a set of IDs
derived from the fetched main objects (or intermediate objects in a multi-step prefetch). Cayenne
limits the size of the generated WHERE clause, as most DBs can’t parse arbitrary large SQL. So
prefetch queries are broken into smaller queries. The size of is controlled by the DI property
Constants.SERVER_MAX_ID_QUALIFIER_SIZE_PROPERTY (the default number of conditions in the
generated WHERE clause is 10000). Cayenne will generate (1 + N * M) SQL statements for each
query using disjoint-by-ID prefetches, where N is the number of relationships to prefetch, and M is
the number of queries for a given prefetch that is dependent on the number of objects in the result
(ideally M = 1).

The advantage of this type of prefetch is that matching database rows by ID may be much faster
than matching the qualifier of the original query. Moreover this is the only type of prefetch that
can handle SelectQueries with fetch limit. Both joint and regular disjoint prefetches may produce
invalid results or generate inefficient fetch-the-entire table SQL when fetch limit is in effect.

The disadvantage is that query SQL can get unwieldy for large result sets, as each object will have
to have its own condition in the WHERE clause of the generated SQL.

Joint Prefetching Semantics

Joint semantics results in a single SQL statement for root objects and any number of jointly
prefetched paths. Cayenne processes in memory a cartesian product of the entities involved,
converting it to an object tree. It uses OUTER joins to connect prefetched entities.

Joint is the most efficient prefetch type of the three as far as generated SQL goes. There’s always just
1 SQL query generated. Its downsides are the potentially increased amount of data that needs to get
across the network between the application server and the database, and more data processing that
needs to be done on the Cayenne side.

Similar Behaviours Using EJBQL

It is possible to achieve similar behaviours with EJBQLQuery queries by employing the "FETCH"
keyword.

62

SELECT a FROM Artist a LEFT JOIN FETCH a.paintings

In this case, the Paintings that exist for the Artist will be obtained at the same time as the Artists are
fetched. Refer to third-party query language documentation for further detail on this mechanism.

Data Rows

Converting result set data to Persistent objects and registering these objects in the ObjectContext
can be an expensive operation comparable to the time spent running the query (and frequently
exceeding it). Internally Cayenne builds the result as a list of DataRows, that are later converted to
objects. Skipping the last step and using data in the form of DataRows can significantly increase
performance.

DataRow is a simply a map of values keyed by their DB column name. It is a ubiqutous
representation of DB data used internally by Cayenne. And it can be quite usable as is in the
application in many cases. So performance sensitive selects should consider DataRows - it saves
memory and CPU cycles. All selecting queries support DataRows option, e.g.:

ObjectSelect<DataRow> query = ObjectSelect.dataRowQuery(Artist.class);

List<DataRow> rows = query.select(context);

SQLSelect<DataRow> query = SQLSelect.dataRowQuery("SELECT * FROM ARTIST");
List<DataRow> rows = query.select(context);

Individual DataRows may be converted to Persistent objects as needed. So e.g. you may implement
some in-memory filtering, only converting a subset of fetched objects:

// you need to cast ObjectContext to DataContext to get access to 'objectFromDataRow'
DataContext dataContext = (DataContext) context;

for(DataRow row : rows) {
 if(row.get("DATE_OF_BIRTH") != null) {
 Artist artist = dataContext.objectFromDataRow(Artist.class, row);
 // do something with Artist...
 ...
 }
}

Specific Attributes and Relationships with EJBQL

It is possible to fetch specific attributes and relationships from a model using EJBQLQuery. The
following example would return a java.util.List of String objects;

63

SELECT a.name FROM Artist a

The following will yield a java.util.List containing Object[] instances, each of which would contain
the name followed by the dateOfBirth value.

SELECT a.name, a.dateOfBirth FROM Artist a

Refer to third-party query language documentation for further detail on this mechanism.

Iterated Queries

While contemporary hardware may easily allow applications to fetch hundreds of thousands or
even millions of objects into memory, it doesn’t mean this is always a good idea to do so. You can
optimize processing of very large result sets with two techniques discussed in this and the following
chapter - iterated and paginated queries.

Iterated query is not actually a special query. Any selecting query can be executed in iterated mode
by an ObjectContext. ObjectContext creates an object called ResultIterator that is backed by an
open ResultSet. Iterator provides constant memory performance for arbitrarily large ResultSets.
This is true at least on the Cayenne end, as JDBC driver may still decide to bring the entire ResultSet
into the JVM memory.

Data is read from ResultIterator one row/object at a time until it is exhausted. There are two styles
of accessing ResultIterator - direct access which requires explicit closing to avoid JDBC resources
leak, or a callback that lets Cayenne handle resource management. In both cases iteration can be
performed using "for" loop, as ResultIterator is "Iterable".

Direct access. Here common sense tells us that ResultIterators instances should be processed and
closed as soon as possible to release the DB connection. E.g. storing open iterators between HTTP
requests for unpredictable length of time would quickly exhaust the connection pool.

try(ResultIterator<Artist> it = ObjectSelect.query(Artist.class).iterator(context)) {
 for(Artist a : it) {
 // do something with the object...
 ...
 }
}

Same thing with a callback:

ObjectSelect.query(Artist.class).iterate(context, (Artist a) -> {
 // do something with the object...
 ...
});

64

Another example is a batch iterator that allows to process more than one object in each iteration.
This is a common scenario in various data processing jobs - read a batch of objects, process them,
commit the results, and then repeat. This allows to further optimize processing (e.g. by avoiding
frequent commits).

try(ResultBatchIterator<Artist> it = ObjectSelect.query(Artist.class).batchIterator
(context, 100)) {
 for(List<Artist> list : it) {
 // do something with each list
 ...
 // possibly commit your changes
 context.commitChanges();
 }
}

Paginated Queries

Enabling query pagination allows to load very large result sets in a Java app with very little
memory overhead (much smaller than even the DataRows option discussed above). Moreover it is
completely transparent to the application - a user gets what appears to be a list of Persistent objects
- there’s no iterator to close or DataRows to convert to objects:

// the fact that result is paginated is transparent
List<Artist> artists =
 ObjectSelect.query(Artist.class).pageSize(50).select(context);

Having said that, DataRows option can be combined with pagination, providing the best of both
worlds:

List<DataRow> rows =
 ObjectSelect.dataRowQuery(Artist.class).pageSize(50).select(context);

The way pagination works internally, it first fetches a list of IDs for the root entity of the query. This
is very fast and initially takes very little memory. Then when an object is requested at an arbitrary
index in the list, this object and adjacent objects (a "page" of objects that is determined by the query
pageSize parameter) are fetched together by ID. Subsequent requests to the objects of this "page"
are served from memory.

An obvious limitation of pagination is that if you eventually access all objects in the list, the
memory use will end up being the same as with no pagination. However it is still a very useful
approach. With some lists (e.g. multi-page search results) only a few top objects are normally
accessed. At the same time pagination allows to estimate the full list size without fetching all the
objects. And again - it is completely transparent and looks like a normal query.

65

Caching and Fresh Data

Object Caching

Query Result Caching

Cayenne supports mostly transparent caching of the query results. There are two levels of the
cache: local (i.e. results cached by the ObjectContext) and shared (i.e. the results cached at the stack
level and shared between all contexts). Local cache is much faster then the shared one, but is
limited to a single context. It is often used with a shared read-only ObjectContext.

To take advantage of query result caching, the first step is to mark your queries appropriately. Here
is an example for ObjectSelect query. Other types of queries have similar API:

ObjectSelect.query(Artist.class).localCache("artists");

This tells Cayenne that the query created here would like to use local cache of the context it is
executed against. A vararg parameter to localCache() (or sharedCache()) method contains so called
"cache groups". Those are arbitrary names that allow to categorize queries for the purpose of
setting cache policies or explicit invalidation of the cache. More on that below.

The above API is enough for the caching to work, but by default your cache is an unmanaged LRU
map. You can’t control its size, expiration policies, etc. For the managed cache, you will need to
explicitly use one of the more advanced cache providers. Use can use JCache integration module to
enable any of JCache API compatible caching providers.

Often "passive" cache expiration policies used by caching providers are not sufficient, and the users
want real-time cache invalidation when the data changes. So in addition to those policies, the app
can invalidate individual cache groups explicitly with RefreshQuery:

RefreshQuery refresh = new RefreshQuery("artist");
context.performGenericQuery(refresh);

The above can be used e.g. to build UI for manual cache invalidation. It is also possible to automate
cache refresh when certain entities are committed. This can be done with the help of Cache
invalidation extension.

Finally you may cluster cache group events. They are very small and can be efficiently sent over the
wire to other JVMs running Cayenne. An example of Cayenne setup with event clustering is
available on GitHub.

Turning off Synchronization of ObjectContexts

By default when a single ObjectContext commits its changes, all other contexts in the same runtime
receive an event that contains all the committed changes. This allows them to update their cached
object state to match the latest committed data. There are however many problems with this
ostensibly helpful feature. In short - it works well in environments with few contexts and in

66

https://github.com/andrus/wowodc13/tree/master/services/src/main/java/demo/services/cayenne

unclustered scenarios, such as single user desktop applications, or simple webapps with only a few
users. More specifically:

• The performance of synchronization is (probably worse than) O(N) where N is the number of
peer ObjectContexts in the system. In a typical webapp N can be quite large. Besides for any
given context, due to locking on synchronization, context own performance will depend not
only on the queries that it runs, but also on external events that it does not control. This is
unacceptable in most situations.

• Commit events are untargeted - even contexts that do not hold a given updated object will
receive the full event that they will have to process.

• Clustering between JVMs doesn’t scale - apps with large volumes of commits will quickly
saturate the network with events, while most of those will be thrown away on the receiving end
as mentioned above.

• Some contexts may not want to be refreshed. A refresh in the middle of an operation may lead
to unpredictable results.

• Synchronization will interfere with optimistic locking.

So we’ve made a good case for disabling synchronization in most webapps. To do that, set to "false"
the following DI property - Constants.SERVER_CONTEXTS_SYNC_PROPERTY, using one of the standard
Cayenne DI approaches. E.g. from command line:

$ java -Dcayenne.server.contexts_sync_strategy=false

Or by changing the standard properties Map in a custom extensions module:

public class MyModule implements Module {

 @Override
 public void configure(Binder binder) {
 ServerModule.contributeProperties(binder)
 .put(Constants.SERVER_CONTEXTS_SYNC_PROPERTY, "false");
 }
}

2.9. Customizing Cayenne Runtime

Dependency Injection Container

Cayenne runtime is built around a small powerful dependency injection (DI) container. Just like
other popular DI technologies, such as Spring or Guice, Cayenne DI container manages sets of
interdependent objects and allows users to configure them. These objects are regular Java objects.
We are calling them "services" in this document to distinguish from all other objects that are not
configured in the container and are not managed. DI container is responsible for service
instantiation, injecting correct dependencies, maintaining service instances scope, and dispatching
scope events to services.

67

The services are configured in special Java classes called "modules". Each module defines binding
of service interfaces to implementation instances, implementation types or providers of
implementation instances. There are no XML configuration files, and all the bindings are type-safe.
The container supports injection into instance variables and constructor parameters based on the
@Inject annotation. This mechanism is very close to Google Guice.

The discussion later in this chapter demonstrates a standalone DI container. But keep in mind that
Cayenne already has a built-in Injector, and a set of default modules. A Cayenne user would
normally only use the API below to write custom extension modules that will be loaded in that
existing container when creating ServerRuntime. See "Starting and Stopping ServerRuntime"
chapter for an example of passing an extension module to Cayenne.

Cayenne DI probably has ~80% of the features expected in a DI container and has no dependency
on the rest of Cayenne, so in theory can be used as an application-wide DI engine. But it’s primary
purpose is still to serve Cayenne. Hence there are no plans to expand it beyond Cayenne needs. It is
an ideal "embedded" DI that does not interfere with Spring, Guice or any other such framework
present elsewhere in the application.

DI Bindings API

To have a working DI container, we need three things: service interfaces and classes, a module that
describes service bindings, a container that loads the module, and resolves the depedencies. Let’s
start with service interfaces and classes:

public interface Service1 {
 public String getString();
}

public interface Service2 {
 public int getInt();
}

A service implementation using instance variable injection:

public class Service1Impl implements Service1 {
 @Inject
 private Service2 service2;

 public String getString() {
 return service2.getInt() + "_Service1Impl";
 }
}

Same thing, but using constructor injection:

68

public class Service1Impl implements Service1 {

 private Service2 service2;

 public Service1Impl(@Inject Service2 service2) {
 this.service2 = service2;
 }

 public String getString() {
 return service2.getInt() + "_Service1Impl";
 }
}

public class Service2Impl implements Service2 {
 private int i;

 public int getInt() {
 return i++;
 }
}

Now let’s create a module implementing org.apache.cayenne.tutorial.di.Module interface that will
contain DI configuration. A module binds service objects to keys that are reference. Binder
provided by container implements fluent API to connect the key to implementation, and to
configure various binding options (the options, such as scope, are demonstrated later in this
chapter). The simplest form of a key is a Java Class object representing service interface. Here is a
module that binds Service1 and Service2 to corresponding default implementations:

public class Module1 implements Module {

 public void configure(Binder binder) {
 binder.bind(Service1.class).to(Service1Impl.class);
 binder.bind(Service2.class).to(Service2Impl.class);
 }
}

Once we have at least one module, we can create a DI container. org.apache.cayenne.di.Injector is
the container class in Cayenne:

Injector injector = DIBootstrap.createInjector(new Module1());

Now that we have created the container, we can obtain services from it and call their methods:

69

Service1 s1 = injector.getInstance(Service1.class);
for (int i = 0; i < 5; i++) {
 System.out.println("S1 String: " + s1.getString());
}

This outputs the following lines, demonstrating that s1 was Service1Impl and Service2 injected into
it was Service2Impl:

0_Service1Impl
1_Service1Impl
2_Service1Impl
3_Service1Impl
4_Service1Impl

There are more flavors of bindings:

// binding to instance - allowing user to create and configure instance
// inside the module class
binder.bind(Service2.class).toInstance(new Service2Impl());

// binding to provider - delegating instance creation to a special
// provider class
binder.bind(Service1.class).toProvider(Service1Provider.class);

// binding to provider instance
binder.bind(Service1.class).toProviderInstance(new Service1Provider());

// multiple bindings of the same type using Key
// injection can reference the key name in annotation:
// @Inject("i1")
// private Service2 service2;
binder.bind(Key.get(Service2.class, "i1")).to(Service2Impl.class);
binder.bind(Key.get(Service2.class, "i2")).to(Service2Impl.class);

Another types of confiuguration that can be bound in the container are lists and maps. They will be
discussed in the following chapters.

Service Lifecycle

An important feature of the Cayenne DI container is instance scope. The default scope (implicitly
used in all examples above) is "singleton", meaning that a binding would result in creation of only
one service instance, that will be repeatedly returned from Injector.getInstance(..), as well as
injected into classes that declare it as a dependency.

Singleton scope dispatches a "BeforeScopeEnd" event to interested services. This event occurs
before the scope is shutdown, i.e. when Injector.shutdown() is called. Note that the built-in Cayenne
injector is shutdown behind the scenes when ServerRuntime.shutdown() is invoked. Services may

70

register as listeners for this event by annotating a no-argument method with @BeforeScopeEnd
annotation. Such method should be implemented if a service needs to clean up some resources,
stop threads, etc.

Another useful scope is "no scope", meaning that every time a container is asked to provide a
service instance for a given key, a new instance will be created and returned:

binder.bind(Service2.class).to(Service2Impl.class).withoutScope();

Users can also create their own scopes, e.g. a web application request scope or a session scope. Most
often than not custom scopes can be created as instances of org.apache.cayenne.di.spi.DefaultScope
with startup and shutdown managed by the application (e.g. singleton scope is a DefaultScope
managed by the Injector) .

Overriding Services

Cayenne DI allows to override services already definied in the current module, or more commonly -
some other module in the the same container. Actually there’s no special API to override a service,
you’d just bind the service key again with a new implementation or provider. The last binding for a
key takes precedence. This means that the order of modules is important when configuring a
container. The built-in Cayenne injector ensures that Cayenne standard modules are loaded first,
followed by optional user extension modules. This way the application can override the standard
services in Cayenne.

Customization Strategies

The previous section discussed how Cayenne DI works in general terms. Since Cayenne users will
mostly be dealing with an existing Injector provided by ServerRuntime, it is important to
understand how to build custom extensions to a preconfigured container. As shown in "Starting
and Stopping ServerRuntime" chapter, custom extensions are done by writing an application DI
module (or multiple modules) that configures service overrides. This section shows all the
configuration possibilities in detail, including changing properties of the existing services,
contributing services to standard service lists and maps, and overriding service implementations.
All the code examples later in this section are assumed to be placed in an application module
"configure" method:

public class MyExtensionsModule implements Module {
 public void configure(Binder binder) {
 // customizations go here...
 }
}

71

Module extensions = new MyExtensionsModule();
ServerRuntime runtime = ServerRuntime.builder()
 .addConfig("com/example/cayenne-mydomain.xml")
 .addModule(extensions)
 .build();

Changing Properties of Existing Services

Many built-in Cayenne services change their behavior based on a value of some environment
property. A user may change Cayenne behavior without even knowing which services are
responsible for it, but setting a specific value of a known property. Supported property names are
listed in "Appendix A".

There are two ways to set service properties. The most obvious one is to pass it to the JVM with -D
flag on startup. E.g.

$ java -Dcayenne.server.contexts_sync_strategy=false ...

A second one is to contribute a property to
o.a.c.configuration.DefaultRuntimeProperties.properties map (see the next section on how to do
that). This map contains the default property values and can accept application-specific values,
overrding the defaults.

Note that if a property value is a name of a Java class, when this Java class is instantiated by
Cayenne, the container performs injection of instance variables. So even the dynamically specified
Java classes can use @Inject annotation to get a hold of other Cayenne services.

If the same property is specified both in the command line and in the properties map, the
command-line value takes precedence. The map value will be ignored. This way Cayenne runtime
can be reconfigured during deployment.

Contributing to Service Collections

Cayenne can be extended by adding custom objects to named maps or lists bound in DI. We are
calling these lists/maps "service collections". A service collection allows things like appending a
custom strategy to a list of built-in strategies. E.g. an application that needs to install a custom
DbAdapter for some database type may contribute an instance of custom DbAdapterDetector to a
o.a.c.configuration.server.DefaultDbAdapterFactory.detectors list:

public class MyDbAdapterDetector implements DbAdapterDetector {
 public DbAdapter createAdapter(DatabaseMetaData md) throws SQLException {
 // check if we support this database and retun custom adapter
 ...
 }
}

72

ServerModule.contributeAdapterDetectors(binder)
 .add(MyDbAdapterDetector.class);

The names of built-in collections are listed in "Appendix B".

Alternative Service Implementations

As mentioned above, custom modules are loaded by ServerRuntime after the built-in modules. So it
is easy to redefine a built-in service in Cayenne by rebinding desired implementations or providers.
To do that, first we need to know what those services to redefine are. While we describe some of
them in the following sections, the best way to get a full list is to check the source code of the
Cayenne version you are using and namely look in
org.apache.cayenne.configuration.server.ServerModule - the main built-in module in Cayenne.

Now an example of overriding JdbcEventLogger service. The default implementation of this service
is provided by Slf4jJdbcEventLogger. But if we want to use FormattedSlf4jJdbcEventLogger (a logger
with basic SQL formatting), we can define it like this:

binder.bind(JdbcEventLogger.class)
 .to(FormattedSlf4jJdbcEventLogger.class);

Using custom data types

Value object type

ValueObjectType is a new and lightweight alternative to the Extended Types API described in the
following section. In most cases is should be preferred as is it easier to understand and use.
Currently only one case is known when ExtendedType should be used: when your value object can
be mapped on different JDBC types.

In order to use your custom data type you should implement ValueObjectType describing it in terms
of some type already known to Cayenne (e.g. backed by system or user ExtendedType). Let’s assume
we want to support some data type called Money:

73

public class Money {
 private BigDecimal value;

 public Money(BigDecimal value) {
 this.value = value;
 }

 public BigDecimal getValue() {
 return value;
 }

 // .. some other business logic ..
}

Here is how ValueObjectType that will allow to store our Money class as BigDecimal can be
implemented:

public class MoneyValueObjectType implements ValueObjectType<Money, BigDecimal> {

 @Override
 public Class<BigDecimal> getTargetType() {
 return BigDecimal.class;
 }

 @Override
 public Class<Money> getValueType() {
 return Money.class;
 }

 @Override
 public Money toJavaObject(BigDecimal value) {
 return new Money(value);
 }

 @Override
 public BigDecimal fromJavaObject(Money object) {
 return object.getValue();
 }

 @Override
 public String toCacheKey(Money object) {
 return object.getValue().toString();
 }
}

Last step is to register this new type in ServerRuntime:

74

ServerRuntime runtime = ServerRuntime.builder()
 .addConfig("cayenne-project.xml")
 .addModule(binder ->
 ServerModule.contributeValueObjectTypes(binder)
 .add(MoneyValueObjectType.class))
 .build();

More examples of implementation you can find in cayenne-server.

Extended Types

JDBC specification defines a set of "standard" database column types (defined in java.sql.Types
class) and a very specific mapping of these types to Java Object Types, such as java.lang.String,
java.math.BigDecimal, etc. Sometimes there is a need to use a custom Java type not known to JDBC
driver and Cayenne allows to configure it. For this Cayenne needs to know how to instantiate this
type from a database "primitive" value, and conversely, how to transform an object of the custom
type to a JDBC-compatible object.

Supporting Non-Standard Types

For supporting non-standard type you should define it via an interface
org.apache.cayenne.access.types.ExtendedType. An implementation must provide
ExtendedType.getClassName() method that returns a fully qualified Java class name for the
supported custom type, and a number of methods that convert data between JDBC and custom type.
The following example demonstrates how to add a custom DoubleArrayType to store
java.lang.Double[] as a custom string in a database:

/**
* Defines methods to read Java objects from JDBC ResultSets and write as parameters of
* PreparedStatements.
*/
public class DoubleArrayType implements ExtendedType {

 private final String SEPARATOR = ",";

 /**
 * Returns a full name of Java class that this ExtendedType supports.
 */
 @Override
 public String getClassName() {
 return Double[].class.getCanonicalName();
 }

 /**
 * Initializes a single parameter of a PreparedStatement with object value.
 */
 @Override
 public void setJdbcObject(PreparedStatement statement, Object value,
 int pos, int type, int scale) throws Exception {

75

https://github.com/apache/cayenne/blob/master/cayenne-server/src/main/java/org/apache/cayenne/access/types/LocalDateValueType.java

 String str = StringUtils.join((Double[]) value, SEPARATOR);
 statement.setString(pos, str);
 }

 /**
 * Reads an object from JDBC ResultSet column, converting it to class returned by
 * 'getClassName' method.
 *
 * @throws Exception if read error occurred, or an object can't be converted to a
 * target Java class.
 */
 @Override
 public Object materializeObject(ResultSet rs, int index, int type) throws
Exception {
 String[] str = rs.getString(index).split(SEPARATOR);
 Double[] res = new Double[str.length];

 for (int i = 0; i < str.length; i++) {
 res[i] = Double.valueOf(str[i]);
 }

 return res;
 }

 /**
 * Reads an object from a stored procedure OUT parameter, converting it to class
 * returned by 'getClassName' method.
 *
 * @throws Exception if read error ocurred, or an object can't be converted to a
 * target Java class.
 */
 @Override
 public Object materializeObject(CallableStatement rs, int index, int type) throws
Exception {
 String[] str = rs.getString(index).split(SEPARATOR);
 Double[] res = new Double[str.length];

 for (int i = 0; i < str.length; i++) {
 res[i] = Double.valueOf(str[i]);
 }

 return res;
 }
}

76

// add DoubleArrayType to list of user types
ServerRuntime runtime = ServerRuntime.builder()
 .addConfig("cayenne-project.xml")
 .addModule(binder ->
 ServerModule.contributeUserTypes(binder)
 .add(new DoubleArrayType()))
 .build();

DbAdapters and Extended Types

As shown in the example above, ExtendedTypes are stored by DbAdapter. In fact DbAdapters often
install their own extended types to address incompatibilities, incompleteness and differences
between JDBC drivers in handling "standard" JDBC types. For instance some drivers support
reading large character columns (CLOB) as java.sql.Clob, but some other - as "character stream", etc.
Adapters provided with Cayenne override configureExtendedTypes() method to install their own
types, possibly substituting Cayenne defaults. Custom DbAdapters can use the same technique.

Noteworthy Built-in Services

JdbcEventLogger

org.apache.cayenne.log.JdbcEventLogger is the service that defines logging API for Cayenne
internals. It provides facilities for logging queries, commits, transactions, etc. The default
implementation is org.apache.cayenne.log.Slf4jJdbcEventLogger that performs logging via slf4j-api
library. Cayenne library includes another potentially useful logger -
org.apache.cayenne.log.FormattedSlf4jJdbcEventLogger that produces formatted multiline SQL
output that can be easier to read.

DataSourceFactory

Factory that returns javax.sql.DataSource object based on the configuration provided in the
"nodeDescriptor".

DataChannelSyncFilter and DataChannelQueryFilter

Interfaces of filters that allow to intercept DataChannel operations. Filters allow to implement
chains of custom processors around a DataChannel, that can be used for security, monitoring,
business logic, providing context to lifecycle event listeners, etc.

QueryCache

Defines API of a cache that stores query results.

77

Chapter 3. Cayenne Framework - Remote
Object Persistence

3.1. Introduction to ROP

What is ROP

"Remote Object Persistence" is a low-overhead web services-based technology that provides
lightweight object persistence and query functionality to 'remote' applications. In other words it
provides familiar Cayenne API to applications that do not have direct access to the database.
Instead such applications would access Cayenne Web Service (CWS). A single abstract data model
(expressed as Cayenne XML DataMap) is used on the server and on the client, while execution logic
can be partitioned between the tiers.The following picture compares a regular Cayenne web
application and a rich client application that uses remote object persistence technology:

Persistence stack above consists of the following parts:

• ORM Tier: a server-side Cayenne Java application that directly connects to the database via
JDBC.

• CWS (Cayenne Web Service): A wrapper around an ORM tier that makes it accessible to remote
CWS clients.

78

• Remote Tier (aka Client Tier): A Java application that has no direct DB connection and persists
its objects by connecting to remote Cayenne Web Service (CWS). Note that CWS Client doesn’t
have to be a desktop application. It can be another server-side application. The word "client"
means a client of Cayenne Web Service.

Main Features

• Unified approach to lightweight object persistence across multiple tiers of a distributed system.

• Same abstract object model on the server and on the client.

• Client can "bootstrap" from the server by dynamically loading persistence metadata.

• An ability to define client objects differently than the server ones, and still have seamless
persistence.

• Generic web service interface that doesn’t change when object model changes.

• An ability to work in two modes: dedicated session mode or shared ("chat") mode when
multiple remote clients collaboratively work on the same data.

• Lazy object and collection faulting.

• Full context lifecycle

• Queries, expressions, local query caching, paginated queries.

• Validation

• Delete Rules

3.2. ROP Deployment

Server Security Note

Recent versions of Tomcat and Jetty containers (e.g. Tomcat 6 and 7, Jetty 8) contain code
addressing a security concern related to "session fixation problem" by resetting the existing session
ID of any request that requires BASIC authentication. If ROP service is protected with declarative
security (see the ROP tutorial and the following chapters on security), this feature prevents the ROP
client from attaching to its session, resulting in MissingSessionExceptions.

To solve that you will need to either switch to an alternative security mechanism, or disable
"session fixation problem" protections of the container. E.g. the later can be achieved in Tomcat 7
by adding the following context.xml file to the webapp’s META-INF/ directory:

<Context>
 <Valve className="org.apache.catalina.authenticator.BasicAuthenticator"
 changeSessionIdOnAuthentication="false" />
</Context>

(The <Valve> tag can also be placed within the <Context> in any other locations used by Tomcat to
load context configurations)

79

Chapter 4. DB-First Flow

4.1. Introduction

"DB-first" Flow

An ORM system consists of three parts: database, OR mapping and persistent Java classes. These
parts always need to be kept in sync with each other for the application to work. "DB-first" flow is a
common and practical approach to synchronization that assumes the database to be the master
source of the metadata, with other two parts synchronized from the DB as the schema evolves.
Cayenne provides a number of tools to automate and control it. Here is how "DB-first" flow is
typically implemented:

• A SQL migrations framework is used to bring a local DB to a certain version. This is outside of
the scope of Cayenne and is done with a third-party tool, such as Liquibase or Flyway.

• OR mapping model (Cayenne XML files) are synchronized with the state of the database using
"cdbimport" tool provdied by Cayenne.

• Object layer of the OR mapping model is customized to the developer liking, usually via
CayenneModeler. Subsequent runs of "cdbimport" will not override any customizations that you
make.

• Java classes are generated using "cgen" tool provided by Cayenne.

"cgen" and "cdbimport" tools can be invoked from Maven or Ant as discussed in the "Including
Cayenne in a Project" chapter or run from CayenneModeler. This chapter will mostly focus on
"cdbimport".

Here is simple maven configuration to start with:

Introduction to "cdbimport"

Here is a simple Maven configuration of "cdbimport" (for details see cayenne-maven-plugin
documentation)

80

<plugin>
 <groupId>org.apache.cayenne.plugins</groupId>
 <artifactId>cayenne-maven-plugin</artifactId>
 <version>4.1.B1</version>

 <configuration>
 <cayenneProject>${project.basedir}/src/main/resources/cayenne/cayenne-
project.xml</cayenneProject>
 <map>${project.basedir}/src/main/resources/datamap.map.xml</map>
 <dataSource>
 <url><!-- jdbc url --></url>
 <driver><!-- jdbc driver class --></driver>
 <username>username</username>
 <password>password</password>
 </dataSource>
 <dbimport>
 <defaultPackage>com.example.package</defaultPackage>
 <includeTable>.*</includeTable>
 </dbimport>
 </configuration>
 <dependencies>
 <!-- jdbc driver dependency -->
 </dependencies>
</plugin>

In the next chapters we will discuss various filtering and other reverse-engineering options.

4.2. Filtering
The first thing you usually want to control during reverse engineering is what exactly should be
loaded from database and what not. One of the most common cases is excluding system tables, as
you usually don’t want to map them.

Briefly, you are able to include/exclude tables, columns and procedures and do it at several levels:
default, catalog, schema. Although everything defined at the top level (default rules) will be applied
for the nested elements, all rules from the most specific areas will override general rules (i.e. rules
from schemas override rules from catalogs and even more override default rules).

The following use-cases will provide you a better understanding of how filtering works and how
you could use it.

Process everything from schema/catalog

The simplest example of reverse engineering is processing tables from one schema of catalog and
there are several options to do this. Basic syntax is described below:

81

<dbimport>
 <!-- Ant/Maven in case you only want to specify the schema to import -->
 <schema>SCHEMA_NAME</schema>

 <!-- Maven way in case you have nested elements in the schema -->
 <schema>
 <name>SCHEMA_NAME</name>
 ...
 </schema>

 <!-- Ant way in case you have nested elements in the schema -->
 <schema name="SCHEMA_NAME">
 ...
 </schema>
</dbimport>

The same options are available for catalogs:

<dbimport>
 <!-- Ant/Maven in case you only want to specify the catalog to import -->
 <catalog>CATALOG_NAME</catalog>

 <!-- Maven way in case you have nested elements in the catalog -->
 <catalog>
 <name>CATALOG_NAME</name>
 ...
 </catalog>

 <!-- Ant way in case you have nested elements in the catalog -->
 <catalog name="CATALOG_NAME">
 ...
 </catalog>
</dbimport>

Current version of reverse engineering doesn’t support catalog filtering for
Postgres database.

Combine Schema and Catalog filters

Cayenne supports combination of different schemas and catalogs, and it filters data according to
your requirements. You could achieve this by the following example of reverse engineering
configuration:

82

<dbimport>

 <catalog>
 <name>shop_01</name>
 <schema>schema-name-01</schema>
 <schema>schema-name-02</schema>
 <schema>schema-name-03</schema>
 </catalog>

 <catalog>
 <name>shop_02</name>
 <schema>schema-name-01</schema>
 </catalog>

 <catalog>
 <name>shop_03</name>
 <schema>schema-name-01</schema>
 <schema>schema-name-02</schema>
 <schema>schema-name-03</schema>
 </catalog>

</dbimport>

In the example above, Cayenne reverse engineering process contains three catalogs named as
shop_01, shop_02 and shop_03, each of wich has their own schemas. Cayenne will load all data only
from the declared catalogs and schemas.

If you want to load everything from database, you could simply declare catalog specification alone.

<dbimport>

 <catalog>shop_01</catalog>
 <catalog>shop_02</catalog>
 <catalog>shop_03</catalog>

</dbimport>

If you want to do reverse engineering for specific schemas, just remove unwanted schemas from
the catalog section. For example, if you want to process schema-name-01 and schema-name-03
schemas only, then you should change reverse engineering section like this.

83

<dbimport>

 <catalog>
 <name>shop_01</name>
 <schema>schema-name-01</schema>
 <schema>schema-name-03</schema>
 </catalog>

 <catalog>
 <name>shop_02</name>
 <schema>schema-name-01</schema>
 </catalog>

 <catalog>
 <name>shop_03</name>
 <schema>schema-name-01</schema>
 <schema>schema-name-03</schema>
 </catalog>

</dbimport>

Including and Excluding tables, columns, procedures and relationships

Cayenne reverse engineering let you fine tune table, columns and stored procedures names that
you need to import to your model file. In every filter you can use regexp syntax. Here is some
examples of configuration for common tasks.

1) Include tables with ‘CRM_’ prefix if you are working in that domain of application:

<includeTable>CRM_.*</includeTable>

2) Include tables with ‘_LOOKUP’ suffix

<includeTable>
 <pattern>.*_LOOKUP</pattern>
</includeTable>

3) Exclude tables with ‘CRM_’ prefix if you are not working only in that domain of application:

<excludeTable>CRM_.*</excludeTable>

4) Include only specific columns that follows specific naming convention:

84

<includeColumn>includeColumn01</includeColumn>
<includeColumn>includeColumn03</includeColumn>

5) Exclude system or obsolete columns:

<excludeColumn>excludeColumn01</excludeColumn>
<excludeColumn>excludeColumn03</excludeColumn>

6) Include/Exclude columns for particular table or group of tables:

<includeTable>
 <pattern>table pattern</pattern>
 <includeColumn>includeColumn01</includeColumn>
 <excludeColumn>excludeColumn01</excludeColumn>
</includeTable>

7) Include stored procedures:

<includeProcedure>includeProcedure01</includeProcedure>
<includeProcedure>
 <pattern>includeProcedure03</pattern>
</includeProcedure>

8) Exclude stored procedures by pattern:

<excludeProcedure>excludeProcedure01</excludeProcedure>
<excludeProcedure>
 <pattern>excludeProcedure03</pattern>
</excludeProcedure>

9) Exclude relationships:

<excludeRelationship>excludeRelationship01</excludeRelationship>
<excludeRelationship>
 <pattern>excludeRelationship03</pattern>
</excludeRelationship>

All filtering tags <includeTable>, <excludeTable>, <includeColumn>, <excludeColumn>,
<includeProcedure>, <excludeProcedure> and <excludeRelationship> have 2 ways to pass filtering
RegExp.

1) text inside tag

85

 <includeTable>CRM_.*</includeTable>

2) pattern inner tag

 <includeTable>
 <pattern>.*_LOOKUP</pattern>
 </includeTable>

All filtering tags can be placed inside schema and catalog tags, but also inside <dbimport> tag. It
means that filtering rules will be applied for all schemas and catalogs.

Complete filtering example

Initially, let’s make a small sample. Consider the following reverse engineering configuration.

<dbimport>
 <catalog>shop-01</catalog>
</dbimport>

In this case reverse engineering will not filter anything from the shop-01 catalog. If you really want
to filter database columns, tables, stored procedures and relationships, you could do it in the
following way.

<dbimport>
 <catalog>shop-01</catalog>
 <catalog>
 <name>shop-02</name>
 <includeTable>includeTable-01</includeTable>
 </catalog>
</dbimport>

Then Cayenne will do reverse engineering for both shop-01 and shop-02 catalogs. First catalog will
not be processed for filtering, but the second catalog will be processed with “includeTable-01” filter.

Let’s assume you have a lot of table prefixes with the same names. Cayenne allows you to mention
a pattern as regular expression. Using regular expressions is easier way to handle a big amount of
database entities than writing filter config for each use-case. They make your configuration more
readable, understandable and straightforward. There is not complex. Let’s see how to use patterns
in reverse engineering configuration with complete example.

<dbimport>

 <catalog>shop-01</catalog>

 <catalog>

86

 <name>shop-02</name>
 </catalog>

 <catalog>
 <name>shop-03</name>
 <includeTable>includeTable-01</includeTable>

 <includeTable>
 <pattern>includeTable-02</pattern>
 </includeTable>

 <includeTable>
 <pattern>includeTable-03</pattern>
 <includeColumn>includeColumn-01</includeColumn>
 <excludeColumn>excludeColumn-01</excludeColumn>
 </includeTable>

 <excludeTable>excludeTable-01</excludeTable>

 <excludeTable>
 <pattern>excludeTable-02</pattern>
 </excludeTable>

 <includeColumn>includeColumn-01</includeColumn>

 <includeColumn>
 <pattern>includeColumn-02</pattern>
 </includeColumn>

 <excludeColumn>excludeColumn-01</excludeColumn>

 <excludeColumn>
 <pattern>excludeColumn-02</pattern>
 </excludeColumn>

 <includeProcedure>includeProcedure-01</includeProcedure>

 <includeProcedure>
 <pattern>includeProcedure-02</pattern>
 </includeProcedure>

 <excludeProcedure>excludeProcedure-01</excludeProcedure>

 <excludeProcedure>
 <pattern>excludeProcedure-02</pattern>
 </excludeProcedure>

 <excludeRelationship>excludeRelationship-01</excludeRelationship>

 <excludeRelationship>
 <pattern>excludeRelationship-02</pattern>

87

 </excludeRelationship>

 </catalog>
</dbimport>

The example above should provide you more idea about how to use filtering and patterns in
Cayenne reverse engineering. You could notice that this example demonstrates you the "name" and
"pattern" configurations. Yes, you could use these as separates xml element and xml attributes.

The cdbimport will execute reverse engineering task for all entities from “shop-01” and “shop-02”,
including tables, views, stored procedures and table columns. As “shop-03” has variety filter tags,
entities from this catalog will be filtered by cdbimport.

Ant configuration example

Here is config sample for Ant task:

88

<!-- inside <cdbimport> tag -->
<catalog>shop-01</catalog>

<catalog name="shop-02"/>

<catalog name="shop-03">

 <includeTable>includeTable-01</includeTable>
 <includeTable pattern="includeTable-02"/>

 <includeTable pattern="includeTable-03">
 <includeColumn>includeColumn-01</includeColumn>
 <excludeColumn>excludeColumn-01</excludeColumn>
 </includeTable>

 <excludeTable>excludeTable-01</excludeTable>
 <excludeTable pattern="excludeTable-02"/>

 <includeColumn>includeColumn-01</includeColumn>
 <includeColumn pattern="includeColumn-02"/>

 <excludeColumn>excludeColumn-01</excludeColumn>
 <excludeColumn pattern="excludeColumn-02"/>

 <includeProcedure>includeProcedure-01</includeProcedure>
 <includeProcedure pattern="includeProcedure-02"/>

 <excludeProcedure>excludeProcedure-01</excludeProcedure>
 <excludeProcedure pattern="excludeProcedure-02"/>

 <excludeRelationship>excludeRelationship-01</excludeRelationship>
 <excludeRelationship pattern="excludeRelationship-02"/>

</catalog>

In Ant task configuration all filter tags located inside root tag <cdbimport> as there
is no <dbimport> tag.

4.3. Other Settings
In databases relations are defined via foreign keys and there are a lot of different politics according
to the level of relationships and ways how those relationships could be modeled in database.
Anyway, cdbimport is able to recognize basic patterns of relationships, such as OneToMany,
OneToOne and ManyToMany.

Skip Relationships Loading

You are able to skip relationships loading by the <skipRelationshipsLoading> element.

89

<dbimport>
 <skipRelationshipsLoading>true</skipRelationshipsLoading>
</dbimport>

Skip Primary Keys Loading

Another useful Cayenne reverse engineering property is <skipPrimaryKeyLoading>. If you decide to
support all relationships at the application layer and avoid their management in database, you’ll
find useful to turn off primary keys synchronization at all.

 <dbimport>
 <skipPrimaryKeyLoading>true</skipPrimaryKeyLoading>
 </dbimport>

Table Types

By default, cdbimport imports tables and views. Some databases may support other table-like
objects, e.g. SYSTEM TABLE, GLOBAL TEMPORARY, LOCAL TEMPORARY, ALIAS, SYNONYM, etc. To control
which types should be included <tableType></tableType> element is used. Some examples:

Import tables only (skip views and others and other types):

<dbimport>
 <tableType>TABLE</tableType>
</dbimport>

Tables and views (the default option):

 <dbimport>
 <tableType>TABLE</tableType>
 <tableType>VIEWS</tableType>
</dbimport>

4.4. Reverse Engineering in Cayenne Modeler
Alternative aproach to using cdbimport is doing reverse engineering from CayenneModeler.
Currently modeler GUI doesn’t support all features of ant/maven tasks but it suffice for general DB
import. Especially it’s a good place to quickly start working on your data model.

You can find reverse engineering tool in dataMap view on DbImport Tab.

Reverse engineering options

90

Reverse Engineering dialog.

Here is a list of options to tune what will be processed by reverse engineering:

• Add Catalog

• Add Schema

• Add Include Table

• Add Exclude Table

• Add Include Column

• Add Exclude Column

• Add Include Procedure

• Add Exclude Procedure

• Tables with Meaningful PK Pattern: Comma separated list of RegExp’s for tables that you want
to have meaningful primary keys. By default no meaningful PKs are created.

91

• Strip from table names: Regex that matches the part of the table name that needs to be
stripped off generating ObjEntity name.

• Skip relationships loading: Whether to load relationships.

• Skip primary key loading: Whether to load primary keys.

• Force datamap catalog: will set DbEntity catalog to one in the DataMap.

• Force datamap schema: will set DbEntity schema to one in the DataMap.

• Use Java primitive types: Use primitive types (e.g. int) or Object types (e.g. java.lang.Integer).

• Use old java.util.Date type: Use java.util.Date for all columns with DATE/TIME/TIMESTAMP
types. By default java.time. types will be used.

DataSource selection

Then you click Run Import or Configure Connection to set DataSource. If you don’t have any
DataSource yet you can create one from this menu.

Datasource selection dialog.

Then click continue to start dbImport.

92

Chapter 5. Cayenne Additional Modules

5.1. Cache invalidation extension

Description

Cache invalidation module is an extension that allows to define cache invalidation policy
programmatically.

Including in a project

Maven

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-cache-invalidation</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

compile 'org.apache.cayenne:cayenne-cache-invalidation:4.1.B1'

Usage

Module supports autoloading mechanism, so no other actions required to enable it. Just mark your
entities with @CacheGroups annotation and you are ready to use it:

@CacheGroups("some-group")
public class MyEntity extends _MyEntity {
 // ...
}

After any modification of MyEntity objects cache group "some-group" will be dropped from cache
automatically.

You can read more about cache and cache groups in corresponding chapter of this
documentation.

In case you need some complex logic of cache invalidation you can disable default behaviour and
provide your own.

To do so you need to implement o.a.c.cache.invalidation.InvalidationHandler interface and setup
Cache Invalidation module to use it. Let’s use implementation class called

93

CustomInvalidationHandler that will simply match all entities' types with "custom-group" cache group
regardless of any annotations:

public class CustomInvalidationHandler implements InvalidationHandler {
 @Override
 public InvalidationFunction canHandle(Class<? extends Persistent> type) {
 return p -> Collections.singleton(new CacheGroupDescriptor("custom-group"));
 }
}

Now we’ll set up it’s usage by ServerRuntime:

ServerRuntime.builder()
 .addModule(CacheInvalidationModule.extend()
 // optionally you can disable @CacheGroups annotation processing
 .noCacheGroupsHandler()
 .addHandler(CustomInvalidationHandler.class)
 .module())

 You can combine as many invalidation handlers as you need.

5.2. Commit log extension

Description

The goal of this module is to capture commit changes and present them to interested parties in an
easy-to-process format.

Including in a project

Maven

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-commitlog</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

compile 'org.apache.cayenne:cayenne-commitlog:4.1.B1'

94

Usage

In order to use commitlog module you need to perform three steps:

1. Mark all entities which changes you are interested in with
@org.apache.cayenne.commitlog.CommitLog annotation

@CommitLog(ignoredProperties = {"somePrivatePropertyToSkip"})
public class MyEntity extends _MyEntity {
 // ...
}

2. Implement CommitLogListener interface.

public class MyCommitLogListener implements CommitLogListener {
 @Override
 public void onPostCommit(ObjectContext originatingContext, ChangeMap changes) {
 // ChangeMap will contain all information about changes happened in
performed commit
 // this particular example will print IDs of all inserted objects
 changes.getUniqueChanges().stream()
 .filter(change -> change.getType() == ObjectChangeType.INSERT)
 .map(ObjectChange::getPostCommitId)
 .forEach(id -> System.out.println("Inserted new entity with id: " + id
));
 }
}

3. Register your listener implementation.

ServerRuntime.builder()
 .addModule(CommitLogModule.extend()
 .addListener(MyCommitLogListener.class)
 .module())

 You can use several listeners, but they all will get same changes.

5.3. Crypto extension

Description

Crypto module allows encrypt and decrypt values stored in DB transparently to your Java app.

95

Including in a project

Maven

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-crypto</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

compile 'org.apache.cayenne:cayenne-crypto:4.1.B1'

Usage

Setup your model and DB

To use crypto module you must prepare your database to allow byte[] storage and properly name
columns that will contain encrypted values.

Currently supported SQL types that can be used to store encrypted data are:

1. Binary types: BINARY, BLOB, VARBINARY, LONGVARBINARY. These types are preferred.

2. Character types, that will store base64 encoded value: CHAR, NCHAR, CLOB, NCLOB, LONGVARCHAR,
LONGNVARCHAR, VARCHAR, NVARCHAR.

 Not all data types may be supported by your database.

Default naming strategy that doesn’t require additional setup suggests using "CRYPTO_" prefix. You
can change this default strategy by injecting you own implementation of
o.a.c.crypto.map.ColumnMapper interface.

ServerRuntime.builder()
 .addModule(CryptoModule.extend()
 .columnMapper(MyColumnMapper.class)
 .module())

Here is an example of how ObjEntity with two encrypted and two unencrypted properties can look
like:

96

Setup keystore

To perform encryption you must provide KEYSTORE_URL and KEY_PASSWORD. Currently crypto module
supports only Java "jceks" KeyStore.

ServerRuntime.builder()
 .addModule(CryptoModule.extend()
 .keyStore(this.getClass().getResource("keystore.jcek"), "my-password"
.toCharArray(), "my-key-alias")
 .module())

Additional settings

Additionally to ColumnMapper mentioned above you can customize other parts of crypto module. You
can enable gzip compression and HMAC usage (later will ensure integrity of data).

ServerRuntime.builder()
 .addModule(CryptoModule.extend()
 .compress()
 .useHMAC()
 .module())

Another useful extension point is support for custom Java value types. To add support for your data
type you need to implement o.a.c.crypto.transformer.value.BytesConverter interface that will
convert required type to and from byte[].

ServerRuntime.builder()
 .addModule(CryptoModule.extend()
 .objectToBytesConverter(MyClass.class, new MyClassBytesConverter())
 .module())

In addition to Java primitive types (and their object counterparts), crypto module
supports encryption only of java.util.Date, java.math.BigInteger and
java.math.BigDecimal types.

5.4. JCache integration

97

Description

This module allows to integrate any JCache (JSR 107) compatible caching provider with Cayenne.

Including in a project

Maven

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-jcache</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

compile 'org.apache.cayenne:cayenne-jcache:4.1.B1'

Usage

To use JCache provider in your app you need to include this module and caching provider libs (e.g.
Ehcache). You can provide own implementation of
org.apache.cayenne.jcache.JCacheConfigurationFactory to customize cache configuration if
required.

For advanced configuration and management please use provider specific options and tools.

JCache module supports custom configuration files for cache managers.

ServerRuntime.builder()
 .addModule(binder ->
 JCacheModule
 .contributeJCacheProviderConfig(binder, "cache-config.xml"));

Also JCache module supports contribution of preconfigured cache manager.

ServerRuntime.builder()
 .addModule(binder ->
 binder.bind(CacheManager.class).toInstance(customCacheManager));

 You can read about using cache in Cayenne in this chapter.

You may else be interested in Cache invalidation extension.

98

Ehcache setup example

Here is an example of using ehcache as cache manager.

First you need to include ehcache dependency:

<dependency>
 <groupId>org.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>{ehcache-version}</version>
</dependency>

If you need custom configuration you can contribute configuration file to JCache module:

ServerRuntime.builder()
 .addModule(binder ->
 JCacheModule
 .contributeJCacheProviderConfig(binder, "file:/ehcache.xml"));

As a result you will have ehcache manager as your default cache manager.

5.5. Project compatibility extension

Description

Since version 4.1 Cayenne doesn’t allow to load project XML files from previous versions as this can
lead to unexpected errors in runtime. This module allows to use project files from older versions
performing their upgrade on the fly (without modifying files). This can be useful when using
Cayenne models from third-party libraries in your app.

 You should prefer explicit project upgrade via Cayenne Modeler.

Including in a project

Maven

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-project-compatibility</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

99

compile 'org.apache.cayenne:cayenne-project-compatibility:4.1.B1'

Usage

This module doesn’t require any additional setup.

5.6. Apache Velocity extension

Description

This module enables usage of full featured Apache Velocity templates in
org.apache.cayenne.query.SQLTemplate queries.

Including in a project

Maven

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-velocity</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

compile 'org.apache.cayenne:cayenne-velocity:4.1.B1'

Usage

This module doesn’t require any additional setup.

In addition of directives mentioned in this chapter, this module enables #chain and #chunk
directives.

#chain and #chunk directives are used for conditional inclusion of SQL code. They are used together
with #chain wrapping multiple #chunks. A chunk evaluates its parameter expression and if it is
NULL suppresses rendering of the enclosed SQL block. A chain renders its prefix and its chunks
joined by the operator. If all the chunks are suppressed, the chain itself is suppressed. This allows to
work with otherwise hard to script SQL semantics. E.g. a WHERE clause can contain multiple
conditions joined with AND or OR. Application code would like to exclude a condition if its right-
hand parameter is not present (similar to Expression pruning discussed above). If all conditions are
excluded, the entire WHERE clause should be excluded. chain/chunk allows to do that.

Semantics:

100

#chain(operator) ... #end
#chain(operator prefix) ... #end
#chunk() ... #end
#chunk(param) ... #end

Full example:

#chain('OR' 'WHERE')
 #chunk($name) NAME LIKE #bind($name) #end
 #chunk($id) ARTIST_ID > #bind($id) #end
#end"

5.7. Cayenne Web extension

Description

This module provides basic utilities to bootstrap Cayenne service inside web application.

Including in a project

Maven

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-web</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

compile 'org.apache.cayenne:cayenne-web:4.1.B1'

5.8. Cayenne OSGI extension

Description

This module helps to bootstrap Cayenne in OSGi environment.

Including in a project

Maven

101

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-osgi</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

compile 'org.apache.cayenne:cayenne-osgi:4.1.B1'

5.9. Cayenne Rop Server extension

Description

This module creates services for the server side of an ROP application.

Including in a project

Maven

<dependency>
 <groupId>org.apache.cayenne</groupId>
 <artifactId>cayenne-rop-server</artifactId>
 <version>4.1.B1</version>
</dependency>

Gradle

compile 'org.apache.cayenne:cayenne-rop-server:4.1.B1'

102

Chapter 6. Appendix A. Configuration
Properties
Note that the property names below are defined as constants in
org.apache.cayenne.configuration.Constants interface.

• cayenne.jdbc.driver[.domain_name.node_name] defines a JDBC driver class to use when creating a
DataSource. If domain name and optionally - node name are specified, the setting overrides
DataSource info just for this domain/node. Otherwise the override is applied to all
domains/nodes in the system.

◦ Default value: none, project DataNode configuration is used

• cayenne.jdbc.url[.domain_name.node_name] defines a DB URL to use when creating a DataSource.
If domain name and optionally - node name are specified, the setting overrides DataSource info
just for this domain/node. Otherwise the override is applied to all domains/nodes in the system.

◦ Default value: none, project DataNode configuration is used

• cayenne.jdbc.username[.domain_name.node_name] defines a DB user name to use when creating a
DataSource. If domain name and optionally - node name are specified, the setting overrides
DataSource info just for this domain/node. Otherwise the override is applied to all
domains/nodes in the system.

◦ Possible values: any

◦ Default value: none, project DataNode configuration is used

• cayenne.jdbc.password[.domain_name.node_name] defines a DB password to use when creating a
DataSource. If domain name and optionally - node name are specified, the setting overrides
DataSource info just for this domain/node. Otherwise the override is applied to all
domains/nodes in the system

◦ Default value: none, project DataNode configuration is used

• cayenne.jdbc.min_connections[.domain_name.node_name] defines the DB connection pool minimal
size. If domain name and optionally - node name are specified, the setting overrides DataSource
info just for this domain/node. Otherwise the override is applied to all domains/nodes in the
system

◦ Default value: none, project DataNode configuration is used

• cayenne.jdbc.max_connections[.domain_name.node_name] defines the DB connection pool
maximum size. If domain name and optionally - node name are specified, the setting overrides
DataSource info just for this domain/node. Otherwise the override is applied to all
domains/nodes in the system

◦ Default value: none, project DataNode configuration is used

• cayenne.jdbc.max_wait defines a maximum time in milliseconds that a connection request could
wait in the connection queue. After this period expires, an exception will be thrown in the
calling method. A value of zero will make the thread wait until a connection is available with no
time out.

◦ Default value: 20 seconds

103

• cayenne.jdbc.validation_query defines a SQL string that returns some result. It will be used to
validate connections in the pool.

◦ Default value: none

• cayenne.querycache.size An integer defining the maximum number of entries in the query
cache. Note that not all QueryCache providers may respect this property. MapQueryCache uses
it, but the rest would use alternative configuration methods.

◦ Possible values: any positive int value

◦ Default value: 2000

• cayenne.DataRowStore.snapshot.size defines snapshot cache max size

◦ Possible values: any positive int

◦ Default value: 10000

• cayenne.server.contexts_sync_strategy defines whether peer ObjectContexts should receive
snapshot events after commits from other contexts. If true (default), the contexts would
automatically synchronize their state with peers.

◦ Possible values: true, false

◦ Default value: true

• cayenne.server.object_retain_strategy defines fetched objects retain strategy for
ObjectContexts. When weak or soft strategy is used, objects retained by ObjectContext that have
no local changes can potentially get garbage collected when JVM feels like doing it.

◦ Possible values: weak, soft, hard

◦ Default value: weak

• cayenne.server.max_id_qualifier_size defines a maximum number of ID qualifiers in the
WHERE clause of queries that are generated for paginated queries and for DISJOINT_BY_ID
prefetch processing. This is needed to avoid hitting WHERE clause size limitations and memory
usage efficiency.

◦ Possible values: any positive int

◦ Default value: 10000

• cayenne.server.external_tx defines whether runtime should use external transactions.

◦ Possible values: true, false

◦ Default value: false

• cayenne.server.query_execution_time_logging_threshold defines the minimum number of
milliseconds a query must run before it is logged. A value less than or equal to zero disables
logging.

◦ Default value: 0

• cayenne.server.domain.name defines an optional name of the runtime DataDomain. If not
specified, the name is inferred from the configuration name.

◦ Default value: none

• cayenne.rop.service_url defines the URL of the ROP server

104

◦ Default value: none

• cayenne.rop.service_username defines the user name for an ROP client to login to an ROP server.

◦ Default value: none

• cayenne.rop.service_password defines the password for an ROP client to login to an ROP server.

◦ Default value: none

• cayenne.rop.shared_session_name defines the name of the shared session that an ROP client
wants to join on an ROP server. If omitted, a dedicated session is created.

◦ Default value: none

• cayenne.rop.service.timeout a value in milliseconds for the ROP client-server connection read
operation timeout

◦ Possible values: any positive long value

◦ Default value: none

• cayenne.rop.channel_events defines whether client-side DataChannel should dispatch events to
child ObjectContexts. If set to true, ObjectContexts will receive commit events and merge
changes committed by peer contexts that passed through the common client DataChannel.

◦ Possible values: true, false

◦ Default value: false

• cayenne.rop.context_change_events defines whether object property changes in the client
context result in firing events. Client UI components can listen to these events and update the
UI. Disabled by default.

◦ Possible values: true, false

◦ Default value: false

• cayenne.rop.context_lifecycle_events defines whether object commit and rollback operations
in the client context result in firing events. Client UI components can listen to these events and
update the UI. Disabled by default.

◦ Possible values: true,false

◦ Default value: false

• cayenne.server.rop_event_bridge_factory defines the name of the
org.apache.cayenne.event.EventBridgeFactory that is passed from the ROP server to the client.
I.e. server DI would provide a name of the factory, passing this name to the client via the wire.
The client would instantiate it to receive events from the server. Note that this property is
stored in cayenne.server.rop_event_bridge_properties map, not in the main cayenne.properties.

◦ Default value: false

105

Chapter 7. Appendix B. Service Collections
Note that the collection keys below are defined as constants in
org.apache.cayenne.configuration.Constants interface.

Table 13. Service Collection Keys Present in ServerRuntime and/or ClientRuntime

Collection Property Type Description

cayenne.properties Map<String,String>

Properties used by built-in Cayenne
services. The keys in this map are
the property names from the table
in Appendix A. Separate copies of
this map exist on the server and
ROP client.

cayenne.server.adapter_detectors
List<DbAdapterDetector
>

Contains objects that can discover
the type of current database and
install the correct DbAdapter in
runtime.

cayenne.server.domain_listeners List<Object> Stores DataDomain listeners.

cayenne.server.project_locations List<String>
Stores locations of the one of more
project configuration files.

cayenne.server.default_types List<ExtendedType>

Stores default adapter-agnostic
ExtendedTypes. Default
ExtendedTypes can be overridden /
extended by DB-specific DbAdapters
as well as by user-provided types
configured in another colltecion
(see "cayenne.server.user_types").

cayenne.server.user_types List<ExtendedType>

Stores a user-provided
ExtendedTypes. This collection will
be merged into a full list of
ExtendedTypes and would override
any ExtendedTypes defined in a
default list, or by a DbAdapter.

cayenne.server.type_factories List<ExtendedTypeFacto
ry>

Stores default and user-provided
ExtendedTypeFactories.
ExtendedTypeFactory allows to
define ExtendedTypes dynamically
for the whole group of Java classes.
E.g. Cayenne supplies a factory to
map all Enums regardless of their
type.

106

Collection Property Type Description

cayenne.server.rop_event_bridge_pr
operties

Map<String, String>

Stores event bridge properties
passed to the ROP client on
bootstrap. This means that the map
is configured by server DI, and
passed to the client via the wire.
The properties in this map are
specific to EventBridgeFactory
implementation (e.g JMS or XMPP
connection prameters). One
common property is
"cayenne.server.rop_event_bridge_f
actory" that defines the type of the
factory.

107

Chapter 8. Appendix C. Expressions BNF

TOKENS
<DEFAULT> SKIP : {
" "
| "\t"
| "\n"
| "\r"
}

<DEFAULT> TOKEN : {
<NULL: "null" | "NULL">
| <TRUE: "true" | "TRUE">
| <FALSE: "false" | "FALSE">
}

<DEFAULT> TOKEN : {
<PROPERTY_PATH: <IDENTIFIER> ("." <IDENTIFIER>)*>
}

<DEFAULT> TOKEN : {
<IDENTIFIER: <LETTER> (<LETTER> | <DIGIT>)* (["+"])?>
| <#LETTER: ["_","a"-"z","A"-"Z"]>
| <#DIGIT: ["0"-"9"]>
}

/**
 * Quoted Strings, whose object value is stored in the token manager's
 * "literalValue" field. Both single and double qoutes are allowed
 */<DEFAULT> MORE : {
"\'" : WithinSingleQuoteLiteral
| "\"" : WithinDoubleQuoteLiteral
}

<WithinSingleQuoteLiteral> MORE : {
<ESC: "\\" (["n","r","t","b","f","\\","\'","`","\""] | (["0"-"3"])? ["0"-"7"] (["0"-
"7"])?)> : {
| <~["\'","\\"]> : {
}

<WithinSingleQuoteLiteral> TOKEN : {
<SINGLE_QUOTED_STRING: "\'"> : DEFAULT
}

<WithinDoubleQuoteLiteral> MORE : {
<STRING_ESC: <ESC>> : {
| <~["\"","\\"]> : {
}

108

<WithinDoubleQuoteLiteral> TOKEN : {
<DOUBLE_QUOTED_STRING: "\""> : DEFAULT
}

/**
 * Integer or real Numeric literal, whose object value is stored in the token
manager's
 * "literalValue" field.
 */<DEFAULT> TOKEN : {
<INT_LITERAL: ("0" (["0"-"7"])* | ["1"-"9"] (["0"-"9"])* | "0" ["x","X"] (["0"-
"9","a"-"f","A"-"F"])+)
 (["l","L","h","H"])?> : {
| <FLOAT_LITERAL: <DEC_FLT> (<EXPONENT>)? (<FLT_SUFF>)? | <DEC_DIGITS> <EXPONENT>
(<FLT_SUFF>)?
| <DEC_DIGITS> <FLT_SUFF>> : {
| <#DEC_FLT: (["0"-"9"])+ "." (["0"-"9"])* | "." (["0"-"9"])+>
| <#DEC_DIGITS: (["0"-"9"])+>
| <#EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+>
| <#FLT_SUFF: ["d","D","f","F","b","B"]>
}

NON-TERMINALS
 expression := orCondition <EOF>
 orCondition := andCondition ("or" andCondition)*
 andCondition := notCondition ("and" notCondition)*
 notCondition := ("not" | "!") simpleCondition
 | simpleCondition
 simpleCondition := <TRUE>
 | <FALSE>
 | scalarConditionExpression
 (simpleNotCondition
 | ("=" | "==") scalarExpression
 | ("!=" | "<>") scalarExpression
 | "<=" scalarExpression
 | "<" scalarExpression | ">" scalarExpression
 | ">=" scalarExpression
 | "like" scalarExpression
 | "likeIgnoreCase" scalarExpression
 | "in" (namedParameter | "(" scalarCommaList ")")
 | "between" scalarExpression "and" scalarExpression
)?
 simpleNotCondition := ("not" | "!")
 ("like" scalarExpression
 | "likeIgnoreCase" scalarExpression
 | "in" (namedParameter | "(" scalarCommaList ")")
 | "between" scalarExpression "and" scalarExpression
)
 scalarCommaList := (scalarConstExpression ("," scalarConstExpression)*)
 scalarConditionExpression := scalarNumericExpression
 | <SINGLE_QUOTED_STRING>
 | <DOUBLE_QUOTED_STRING>

109

 | <NULL>
 scalarExpression := scalarConditionExpression
 | <TRUE>
 | <FALSE>
 scalarConstExpression := <SINGLE_QUOTED_STRING>
 | <DOUBLE_QUOTED_STRING>
 | namedParameter
 | <INT_LITERAL>
 | <FLOAT_LITERAL>
 | <TRUE>
 | <FALSE>
 scalarNumericExpression := multiplySubtractExp
 ("+" multiplySubtractExp | "-" multiplySubtractExp)*
 multiplySubtractExp := numericTerm ("*" numericTerm | "/" numericTerm)*
 numericTerm := ("+")? numericPrimary
 | "-" numericPrimary
 numericPrimary := "(" orCondition ")"
 | pathExpression
 | namedParameter
 | <INT_LITERAL>
 | <FLOAT_LITERAL>
 namedParameter := "$" <PROPERTY_PATH>
 pathExpression := (<PROPERTY_PATH>
 | "obj:" <PROPERTY_PATH>
 | "db:" <PROPERTY_PATH>
 | "enum:" <PROPERTY_PATH>)

110

Chapter 9. List of tables
• Cayenne Version History

• modeler plugin parameters

• cgen required parameters

• cgen optional parameters

• cdbgen required parameters

• <dataSource> parameters

• cdbgen optional parameters

• cdbimport parameters

• <dataSource> parameters

• <dbimport> parameters

• Persistence States

• Lifecycle Event Types

• Configuration Properties Recognized by ServerRuntime and/or ClientRuntime

• Service Collection Keys Present in ServerRuntime and/or ClientRuntime

111

	Cayenne Guide
	Table of Contents
	Chapter 1. Object Relational Mapping with Cayenne
	1.1. Setup
	1.2. Cayenne Mapping Structure
	1.3. CayenneModeler Application

	Chapter 2. Cayenne Framework
	2.1. Including Cayenne in a Project
	2.2. Starting Cayenne
	2.3. Persistent Objects and ObjectContext
	2.4. Expressions
	2.5. Orderings
	2.6. Queries
	2.7. Lifecycle Events
	2.8. Performance Tuning
	2.9. Customizing Cayenne Runtime

	Chapter 3. Cayenne Framework - Remote Object Persistence
	3.1. Introduction to ROP
	3.2. ROP Deployment

	Chapter 4. DB-First Flow
	4.1. Introduction
	4.2. Filtering
	4.3. Other Settings
	4.4. Reverse Engineering in Cayenne Modeler

	Chapter 5. Cayenne Additional Modules
	5.1. Cache invalidation extension
	5.2. Commit log extension
	5.3. Crypto extension
	5.4. JCache integration
	5.5. Project compatibility extension
	5.6. Apache Velocity extension
	5.7. Cayenne Web extension
	5.8. Cayenne OSGI extension
	5.9. Cayenne Rop Server extension

	Chapter 6. Appendix A. Configuration Properties
	Chapter 7. Appendix B. Service Collections
	Chapter 8. Appendix C. Expressions BNF
	Chapter 9. List of tables

