Cayenne Guide

S (1 o TP PRETTPR PP 2
1.1, SyStEM REQUITEIMENTSeeeeeeeeeeeieeeeeeeeeeeeeeereeeeeserereeeseenseeesessserssnsenssnsssssssnnssssssssssssssssnsnnnnnns 2

1.2. RUNNING CayeNNEMOTEIESoeieeiiiiciieee e e e e e e e e e e et b e e e aaeeas 2

2. Cayenne MapPiNg SITUCLUEeiieiiiieiee ettt e ettt ettt e ettt e e s e e e et b e e e anbe e e e e annneeeeennes 4
2.1, CAYENNE PrOJECEeeeiieiiiieee ettt ek e e e skt ee e e e e e e ab e e e e e st e e e e e e e e e 4

pZ D T - Y o TS OUPRR SRR 4

P2 T B T -\ oo L= PRSP 4

2.4, DDENLITY .ot r e e et e e e e nraes 5

BT @ o1 = o1 Y/ RS TRSR 5

2.6. EMDEAUEDIE ... e e e as 5

P R o (0o = o (U P PTPRR 5

P T O 1= PO PP P PP PP PPPPRT PO 5

3. CayenneModel € APPIICALIONcciiiiiieeiieie et e e e e e s e e anne e s 6
3.1. Working with Mapping PrOjECScoooviiiiiii 6

3.2. Reverse ENgineering Datalasecuveiiie it 6

3.3. Generating Database SChEmMAoviiiiiiie s 6

O T = 1o g PP PP PPP T PPPRPO 6

3.5, GENEratiNg JAVA ClESSESuuuuureurueriuereueuenetererennrerenerererererrrrrrrrrrr..... 6

3.6. MOdeling INNEITANCE ... e e e e e e reee s 6

3.7. Modeling GeneriC Persistent ClaSSESccuuiiiiiiiiiie it 7

3.8. Mapping ObjAttributes t0 CUSIOM CIESSEScooiuiiiieiiiiii ettt 7

3.9. Modeling Primary Key Generation Strategyccovvvvveiiiiiiiiiiicie e 7

[1. CayenNE FIamMEWOTK ... e e e e e e e e e e e e e e e et e e e e e e e e e e s saasatbaeeeeeeessannntraneeeaens 8
4. Including Cayenne IN @ PrOJECEooiiiiiiiieiiiieie ettt e st e e e s s e e e ennnaeeeean 9
N - = PSR 9

R B = o = 10 U= o = 9

G T Y - = T = £ SRR 9

A4, Gradle PrOJECESueeiiiiiiiiie ettt ettt ettt e e ettt e e s e bt e e e e s asbb e e e e e nbb e e e e enbaeeeaane 16

R N o (0] 1= £ T OO R T PPPPPPPPP 19

IS =1 1] 1o = 1Y = T 21
5.1. Starting and Stopping SErVErRUNLIMEuviiiiieiiiccciieee e e e 21

5.2. Merging MUItIPIE PrOJECESeviiiiiiiiieiiiiie ettt e e 21

5.3, WED APPHICELIONSeeieeiiiiee ettt e e e ek e e e et e e e e e e e e enbreeeeans 22

6. Persistent Objects and ObjeCtCONEXLccoevviiiiiiii e 24
I I @ o 1= ot @] (= AR RR 24

6.2. Persistent Object and itS LITECYCIEuvvviiiiiiieee e 24

6.3. ObjectContext PErSIStENCE APooiiiiiiiieeet e 25

6.4. Cayenne Helper Class ... 27

6.5. ObJECICONIEXE NESLINGvvviiiiieee e s e e e e e e e e e e e e e e e s snararereaaeeas 27
v.4.1l i

Cayenne Guide

6.6. GENENiC PerSiStENt ODJECESuiiiiiiiiiee ettt 28

A I =015 o o RS 29

7. EEXIOTESSIONS ...eeeeeeeeeeeeeeeeeeeseessesenssessssssssesssesssesesesesesesssesesssnsssssnsssssssssssssssssssnsssssssnssssssnsnnnnnsnnnnnnnn 30
7.1, EXPreSSIONS OVEINVIEWuuiiiiieieeeee e e ettt e e e e e s s ettt ae e e e e e e s s as st ae e e e eaeeessaantbaeseeeaeesanansrrneees 30

7.2, PatN EXPIESSIONSeeiiiiiiiiie ittt eite ettt ettt e e ettt e e e ettt e e et bt e e e esb e e e e e anbb e e e e e nbee e e e annees 30

7.3. Creating EXPressions from SINQSvvveeiiiiiieeeiiiiee e 31

7.4. Creating EXPresSionNS VIA APooeiieieieieieieieieieeeeeeeeeseeeeesesssssssseesssssesssssssnsssssrssssssnssnnnnnns 33

7.5. Evaluating EXPressions in IMEMOIYcooccuiiieiiee e e s eeciiiiee e e e e e e e eesaieeee s e e e e e s s eannnaeeeeaeeseenanes 34

7.6. Tranglating EXPressions t0 EIJBQLcoouuiiiiiiiiieeiiiiee ettt 35

SO (0 (= 1110 S PP T TP O TP PPTPPPPPTOPPPRPN 36
LS 11 1= 37
S O o1 = ot 1S 1= o RPN 37

0.2, EIB QL QUETY .ieii ittt 39

RIS = 11 =174 o NSO 41

9.4. SQLSElECt anNd SQLEXEC ...ceeiiviieeeiiiiee et e ettt e e s e e e sttt e e e e nnte e e e e e nneeeeennees 41

9.5. MappedSelect and MapPEAEXECuueiiiiee it e e e e e e e e e e e e e e e 41

S oo (U] = SRS 42

O.7. CUSLOM QUENTES ...ueeeieieeee e ittt et e e e e e e e ettt e e e e e e e s s s atebeaeeeaeeessaassteaeeeeaeessannntteeeneeeeesaassnneees 43

0.8, SOLTEMPILE ... s s s s s nnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 43

10, LIifECYCIE EVENES ...eviiiieiiee et e e e e e e e e e e e e e e e s e st bt a e e e e e e e e s s anntranaeeaeas 52
10.1. Types Of LifECYCIE BEVENLSoviiiiiiiiie ittt 52
10.2. Callbacks 0N Persistent OBJECESoooiiiiiieeiii e 53
10.3. Callbacks 0n NON-Persistent LiStENErSueiiiiieeiiiiiiiieiee e e e e e e e 53
10.4. Combining Listeners with DataChannelFiIterscccoovciiiiiiiii e, 56

11, PerfOrmManCe TUNINGcooiuueieeiiiiiee ettt et e ettt e e st e e sttt e e e sabe e e e e ssb e e e e s asnb e e e e annbeeeeesnreeeeaan 58
O = = (o [oo OO PP P PP PP PPP PP 58
102, DAE ROWSeeeieiiiiteitttttaeeeteeeteeeeee ettt bttt ettt bttt sttt s sttt e ettt bttt bbbt e nbnene e 60
11.3. Specific Attributes and Relationships with EJBQLcooviveiiiiiiiiiiiiiee e 60
124, HErated QUETTES ... eeiiieeiee ettt e e e e e e e e e e e e s et e e e e e e e e sanntbareeeaaeeessansbraaeeeaeeesans 61
11.5. PaQiNated QUENTESco.uiiiieiiitiee ettt e ettt e et e e e e e e s e e e e e et e e e e e e e e e e e 62
11.6. Caching aNd FreSh Dalal......uuuueueueeuieieieieieieiereeeeereeereeerreereermrererenrerrrrrrrrrr 62
11.7. Turning off Synchronization of ObjeCtCONEXLScevvieeiiiiiiiiiieeie e, 64

12. Customizing Cayenne RUNLIMEuuiiiiiiiiie ettt e e s e e e e e sneeeeeaan 66
12.1. Dependency INJeCtioN COMEAINEYccoiiuriieeiiiiiee et e e e e e e e e s e e e s snre e e s eanbneeenan 66
12.2. CUSIOMIZAiON SIFALEOIES .. .uuuuuueuiui i nannnnnnnnnnnnnnas 69
12.3. USING CUSIOM ALA LYPES ..ooeeeeiiiiiiiieiee ettt e e et e e e e e e et e e e e e e e e s e satnbraeeeaaeeeaann 71
12.4. Noteworthy BUilT-IN SEIVICESc.uuiiiiiiiiiee et 74

[11. Cayenne Framework - Remote ODJeCt PErSISLENCEccoiiiiiieiiiiiee e 76
G 1 T LW o1 o T 0 (0 USRS 77
T O V1Y G S PP 77

v.4.1 i

Cayenne Guide

13.2. MAIN FEALUIES ...ttt e ettt e e e e s e et e e e e e e s e st aeeeaeeesesantbaaneeaaeeesans 79

I @ =S (1o PSSR 80
14.1. SySteM REQUITEIMENLSuuuiiiiieiiie s as s nnnnsnsnsnsnsnnnsnnnnnnnnnnns 80
14.2. Jar Files and DEPENTENCIESuuiiiiieie e e e e e e e s s r e e e e e e 80

15, IMPlementing ROP SEIVEYcooiiiiiiieiiiie ettt e e s st e e e st e e e e nb e e e e e enneees 81
16. Implementing ROP CHENToiiiiiiiie et e e 82
17. ROP DEPIOYMENT ... 83
17.1. DEPIOYING ROP SEIVENuviiiiiie ettt e e e s e e e e e e s s s e e e e e e s e e naareaeeaeas 83
17.2. DEPIOYiNG ROP ClHIENTcoiieiie ettt e s e e snnneeas 83
17,3, SEOUNITY ettt e ke e e et e e e e e e ekt e e e et e e e b e e e e e e e ean 83

18. CUrrent LIMITAiONScoe e et ettt e e e e e e ettt e e e e e e e s sannee e e e eaeeeeaaannnbeeeeeaeeeeaans 84
VB = T 1= B o SRR 85
S T 1 01 o (1 o o PRSP 86
ST B 2 B T 6 = o SRR 86
19.2. Introduction t0 "CAbIMPOI"ccoiiie e 86

P20 11 (=] oo PP PPUPRR 88
20.1. Process everything from SChemMa/Cataloguvveiiiirieiiiiiiee e 88
20.2. Combine Schema and Catalog fIlTErScooiviiiiiiiee e 89
20.3. Including and Excluding tables, columns and proceduresccccoeeieeriiiniiinininisieccnnens 90
20.4. Complete filtering EXAMPIEccceeeiiieee e 91
20.5. Ant configuration EXAMPIEooiiiiiee e 93

20, OFNEN SEELINGS .. eeeeeueteee ettt e e et e et et e e e e b et e e e e bb e e e e aabe e e e e e snr e e e e annbneeeeanbeeeeeann 95
21.1. Skip RelationshipS LOAINGuuuuuuuuuuiuiiiuiiiiiuiiiiiuiniunnnannnannnnrernrnrnrnrnnnnnnnrnrarnrnnnnnnnrnnnrnnn 95
21.2. Skip Primary KeyS LOAOiNGcccoiiiiiiiiiieeiee ettt e ettt e e et e e e e e e e 95

P T = o L= Y o= TSP PPOPPPP 95

22. Reverse Engineering in Cayenne MOGEIENc.oiiiiiiiiiiee e 96
22.1. DAaS0UICE SEIOCHIONeiieeeeiiieiiiiei et e e ettt e e e ettt e e e e e e e e e ene e eeeaeeesaannernneeeaaaeeaanns 96
22.2. Reverse engineering OPLIONSciiieciiiiiiiieeee e e e e e s et e e e e s e et e e e e e e e e et ra e e e e e e e e s sannnrees 96

V. Cayenne Additional MOUUIEScooiiiiiiiiiiie et e et e e s nnnneeas 98
23. Cache invalidation EXTENSIONuuiiiiiee e e e e e s e e e e e e e e st e e e e e e e e e snnnneeeeeas 99
G T I I T == 1101 o 99
23.2. INCIUING TN @ PFOJECE ...vvvieiiee e e e e e e e e e s e e e e e e e e e s aeanrrraeeeaaens 99

23,3, U SA0E ciiiiiiettteeteeeeeeeeeeeeeeeeee———eee e e e b e e et e e e e e e e e e e e e e s a b e e e eeeas 99

24. COMMIT 10Q EXIENSION ...eeiiiiiieeeiiie e ettt e ettt e et e et e e e et e e e e e e e e st e e e e e anne e e e e annne e e e e nnees 101
0 T I T == 101 o 101
24.2. INCIUAING 1N @ PIOJECT ..vveiieiee it e e e e s e et e e e e e e s e et raaeeeeaeeas 101
24.3. USAJE ..ottt e et e e e e e e et e e e e e e e bbb e e e e e e e e e e e rnreeeas 101

25. CrYPLO EXEENSION ...ttt e et e e e et e e e e b e e e e e s e e e e e asb e e e e e e s b e e e e et e e e e e anneeeas 103
2 T I I T == 101 o 103
25.2. INCIUING TN @ PIOJECT ..vveiiieeei it e e e e s e e e e e e e e e et rraeeeeaeeas 103

v.4.1 iv

Cayenne Guide

25,3, U SA0E iiiiiittteeeeeeeeeeeeeeeeeeeee—reee e e et e e e e e e e e e e e e e e e e e e a e nreeeas 103

26. JCACNE INEEGIELIONeeiiiieiieeaiteee e ettt e et e et e e e ettt e e e st e e e e e b b et e e e aabb et e e e anbe e e e e anbe e e e e nnnnneeeann 105
2o T I I == ¢ T4 o 105

26.2. INCIUING 1N @ PIOJECT ..vviiiiieei ittt e e e e s e e e e e e e e e et aeeeaaeeas 105

26.3. USAOE .ottt e et e e e e r et e e e e e e r e e e e e e e e e e nreeeas 105

PN oo = (] 0T S 0 Lo TSR 106

A 5 T I T == T4 o 106

27.2. INCIUING TN @ PIOJECT ..vveeieieei it e e e e s et r e e e e e e e e et raaeeeeaeeas 106

27.3. USAOE ..ttt e e e et e e e e e e bbb e e e e e e e e e areeeas 106

28. Project compatibility EXTENSIONc.uvviiiiiiiiee ettt e nree e 107

22 s T I I T == T4 o 107

28.2. INCIUING 1N @ PIOJECT ..vveiiiieei it e e e e s et e e e e e e e e et raaereeaeeas 107

28.3. USA0E .ttt e e et e e e e e e e r e e e e e e e e reeeas 107

29. APaChe VEIOCITY EXIENSIONoiiiiiiiiiee ittt e e e e e e e e s e e e e e 108

2 I I I == 101 o 108

29.2. INCIUING 1N @ PIOJECT ..vveeiieeei et e e e e s e et e e e e e e e et rraeeeeaeeas 108

A R R U L o PP P PP PR OPOTPP 108

A. CoNfIQUIELIoN PrOPEITIESceiiiiiiiieiiiie ettt e e et e e e e e e e st e e e e e e e e s nnnneee s 110
S VLot @] =" o] LSS 113
O o] 1= o] 1S3 2] N PRSP 115

v.4.1 \

Part |. Object Relational
Mapping with Cayenne

v.4.1

Chapter 1. Setup

1.1. System Requirements

« Java: Cayenne runtime framework and CayenneModeler GUI tool are written in 100% Java, and run on any
Java-compatible platform. Minimal required JDK version depends on the version of Cayenne you are using,

as shown in the following table:

Table1.1. Cayenne Version History

Cayenne Version JavaVersion Status

4.1 Java 1.8 or newer Development
4.0 Java 1.7 or newer Beta

31 Java 1.5 or newer Stable

3.0 Javalb Aging
1.2/20 Javal.4 Legacy

11 Javal.3 Legacy

« JDBC Driver: An appropriate DB-specific JDBC driver is needed to access the database. It can beincluded in

the application or used in web container DataSource configuration.

» Third-party Libraries: Cayenne runtime framework has a minimal set of required and a few more optional
dependencies on third-party open source packages. See "Including Cayennein a Project” chapter for details.

1.2. Running CayenneModeler

CayenneModeler GUI tool isintended to work with object relational mapping projects. While you can edit your
XML by hand, it israrely needed, asthe Modeler is a pretty advanced tool included in Cayenne distribution. To
obtain CayenneModeler, download Cayenne distribution archive from http://cayenne.apache.org/download.html
matching the OS you are using. Of course Java needs to be installed on the machine where you are going to run

the Modeler.

e OS X distribution contains CayenneM odeler.app at the root of the distribution disk image.

« Windows distribution contains CayenneM odeler.exe file in the bi n directory.

e Cross-platform distribution (targeting Linux, but as the name implies, compatible with any OS) contains a
runnable CayenneModeler.jar in the bin directory. It can be executed either by double-clicking, or if the

environment is not configured to execute jars, by running from command-line;

v.4.1

http://cayenne.apache.org/download.html

$ java -jar CayenneModel er.jar

The Modeler can aso be started from Maven. While it may look like an exotic way to start a GUI application,
it has its benefits - no need to download Cayenne distribution, the version of the Modeler always matches the
version of the framework, the plugin can find mapping files in the project automatically. So it is an attractive
option to some devel opers. Maven option requires a declaration in the POM:

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>cayenne- nodel er - maven- pl ugi n</artifactld>
<versi on>4. 1. ML</ ver si on>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

And then can berun as

$ nmvn cayenne- nodel er:run

Table 1.2. modeler plugin parameters

Name Type | Description
model Fil e File | Name of the model fileto open. Here is some simple example:
<pl ugi n>

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>cayenne- nodel er - maven- pl ugi n</ artifactld>
<ver si on>${ cayenne. ver si on} </ ver si on>
<confi guration>
<nodel Fi | e>src/ mai n/ resour ces/ cayenne. xm </ nodel Fi | e>
</ confi guration>
</ pl ugi n>

v.4.1 3

Chapter 2. Cayenne Mapping Structure

2.1. Cayenne Project

A Cayenne project isan XML representation of amodel connecting database schemawith Java classes. A project
is normally created and manipulated via CayenneModeler GUI and then used to initialize Cayenne runtime. A
project ismade of one or morefiles. There'sawaysaroot project descriptor filein any valid project. Itisnormally
called cayenne-xyz. xm , Where "xyz" is the name of the project.

Project descriptor can reference DataMap files, one per DataMap. DataMap filesare normally called xyz. map. xni ,
where "xyz" is the name of the DataMap. For legacy reasons this naming convention is different from the
convention for the root project descriptor above, and we may align it in the future versions. Hereis how atypical
project might look on the file system:

$1s -1

total 24

-rwr--r-- 1 cayenne staff 491 Jan 28 18: 25 cayenne- proj ect. xmnl
-rwr--r-- 1 cayenne staff 313 Jan 28 18: 25 dat amap. map. xni

DataMap are referenced by name in the root descriptor:

<map nane="dat amap"/>

Map filesareresolved by Cayenne by appending”. map. xm " extension to the map name, and resolving theresulting
string relative to the root descriptor URI. The following sections discuss varios ORM model objects, without
regards to their XML representation. XML format details are really unimportant to the Cayenne users.

2.2. DataMap

DataMap is a container of persistent entities and other object-relational metadata. DataM ap provides developers
with a scope to organize their entities, but it does not provide a namespace for entities. In fact all DataMaps
present in runtime are combined in asingle namespace. Each DataM ap must be associated with a DataNode. This
is how Cayenne knows which database to use when running a query.

2.3. DataNode

DataNode is model of a database. It is actually pretty simple. It has an arbitrary user-provided name and
information needed to create or locate a JDBC DataSource. Most projects only have one DataNode, though there
may be any number of nodes if needed.

v.4.1l 4

Cayenne Mapping Structure

2.4. DbEntity

DbEntity isamodel of asingle DB table or view. DbEntity is made of DbA(ttributes that correspond to columns,
and DbRelationships that map PK/FK pairs. DbRelationships are not strictly tied to FK constraints in DB, and
should be mapped for al logical "relationships’ between the tables.

2.5. ObjEntity

ObjEntity isamodel of asingle persistent Java class. ObjEntity is made of ObjAttributes and ObjRelationships.
Both correspond to entity class properties. However ObjAttributes represent "simple” properties (normally things
like String, numbers, dates, etc.), while ObjRelationships correspond to properties that have a type of another
entity.

ObjEntity mapsto one or more DbEntities. There's always one "root" DbEntity for each ObjEntity. ObjAttribiute
maps to a DbAttribute or an Embeddable. Most often mapped DbAttribute is from the root DbEntity. Sometimes
mapping isdoneto aDbAttribute from another DbEntity somehow related to theroot DbEntity. Such ObjAttribute
is called "flattened”. Similarly ObjRelationship maps either to a single DbRelationship, or to a chain of
DbRelationships ("flattened” ObjRelationship).

ObjEntities may also contain mapping of their lifecycle callback methods.

2.6. Embeddable

Embeddableisamodel of aJavaclassthat acts as asingle attribute of an ObjEntity, but mapsto multiple columns
in the database.

2.7. Procedure

A mode of astored procedure in the database.

2.8. Query

A model of aquery. Cayenne allows queries to be mapped in Cayenne project, or created in the code. Depending
on the circumstances the users may take one or the other approach.

v.4.1 5

Chapter 3. CayenneModeler Application

3.1. Working with Mapping Projects

3.2. Reverse Engineering Database

See chapter Reverse Engineering in Cayenne Modeler

3.3. Generating Database Schema

With Cayenne Modeler you can create simple database schemas without any additional database tools. Thisisa
good option for initial database setup if you completely created you model with the Modeler. Y ou can start SQL
schema generation by selecting menu Tools > Gener ate Database Schema

Y ou can select what database parts should be generated and what tables you want

3.4. Migrations

3.5. Generating Java Classes

Before using Cayenne in you code you need to generate java source code for persistent objects. This can be done
with Modeler GUI or via cgen maven/ant plugin.

To generate classes in the modeler use Tools > Generate Classes
There is three default types of code generation
« Standard Persistent Objects

Default type of generation suitable for aimost all cases. Use this type unless you now what exactly you need
to customize.

¢ Client Persistent Objects

* Advanced.

In advanced mode you can control aimost all aspects of code generation including custom templates for java
code. See default Cayenne templates on GitHub as an example

3.6. Modeling Inheritance

v.4.1 6

https://github.com/apache/cayenne/tree/master/cayenne-tools/src/main/resources/templates/v1_2

CayenneModeler Application

3.7. Modeling Generic Persistent Classes

Normally each ObjEntity is mapped to a specific Java class (such as Artist or Painting) that explicitly declare al
entity properties as pairs of getters and setters. However Cayenne allows to map a completly generic classto any
number of entities. The only expectation is that a generic class implements org.apache.cayenne.DataObject. So
an ideal candidate for a generic classis CayenneDataObject, or some custom subclass of CayenneDataObject.

If you don't enter anything for Java Class of an ObjEntity, Cayenne assumes generic mapping and uses the
following implicit rules to determine a class of a generic object. If DataMap "Custom Superclass' is set, runtime
uses this class to instantiate new objects. If not, org.apache.cayenne.CayenneDataObject is used.

Classgeneration procedures (either doneinthe Model er or with Ant or Maven) would skip entitiesthat are mapped
to CayenneDataObject explicitly or have no class mapping.

3.8. Mapping ObjAttributes to Custom Classes

3.9. Modeling Primary Key Generation Strategy

v.4.l 7

Part Il. Cayenne Framework

v.4.1

Chapter 4. Including Cayenne in a Project

4.1. Jar Files

Thisisanoverview of Cayennejarsthat isagnostic of the build tool used. Thefollowing aretheimportant libraries:

« cayenne-di-4.1.M1.jar - Cayenne dependency injection (DI) container library. All applicationswill requirethis
file.

» cayenne-server-4.1.M1ljar - contains main Cayenne runtime (adapters, DB access classes, etc.). Most
applications will require thisfile.

 cayenne-client-4.1.M1.jar - aclient-side runtime for ROP applications.

e Other cayenne-* jars - various Cayenne tools extensions.

4.2. Dependencies

With modern build tools like Maven and Gradle, you should not worry about tracking dependencies. If you have
one of those, you can skip this section and go straight to the Maven section below. However if your environment
requires manual dependency resolution (like Ant), the distribution provides all of Cayenne jars plusaminimal set
of third-party dependencies to get you started in a default configuration. Check 1i b and 1i b/ t hi r d- party folders
for those.

Dependenciesfor non-standard configurationswill need to be figured out by the users on their own. Check pom xm
files of the corresponding Cayenne modules in one of the searchable Maven archives out there to get an idea of
those dependencies (e.g. http://search.maven.org).

4.3. Maven Projects

If you are using Maven, you won't have to deal with figuring out the dependencies. You can ssimply include
cayenne-server artifact in your POM:

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-server</artifactld>
<version>4. 1. Mi</ ver si on>

</ dependency>

Additionally Cayenne provides a Maven plugin with a set of goals to perform various project tasks, such as
synching generated Java classes with the mapping, described in the following subsection. The full plugin name

iSorg.apache.cayenne.pIugins:cayenne—naven—plugin.

v.4.1 9

http://search.maven.org

Including Cayenne in a Project

4.3.1. cgen

cgen iS acayenne- maven- pl ugi n goal that generates and maintains source (.java) files of persistent objects based
on a DataMap. By default, it is bound to the generate-sources phase. If "makePairs" is set to "true" (which is
the recommended default), this task will generate a pair of classes (superclass/subclass) for each ObjEntity in
the DataM ap. Superclasses should not be changed manually, since they are always overwritten. Subclasses are
never overwritten and may be later customized by the user. If "makePairs' is set to "false”, a single class will
be generated for each ObjEntity.

By creating custom templates, you can use cgen to generate other output (such as web pages, reports, specialized
code templates) based on DataMap information.

Table4.1. cgen required parameters

Name

Type

Description

map

File

DataMap XML file which serves as a source of metadata for class generation. E.g.

${proj ect.basedir}/src/ main/resources/ny. map. xm

Table 4.2. cgen optional parameters

Name Type | Description

addi ti onal Maps File | A directory that contains additional DataMap XML files that may be needed to resolve
cross-DataMap relationships for the the main DataMap, for which class generation
occurs.

client booleanWhether we are generating classes for the client tier in a Remote Object Persistence
application. "False" by default.

destDir File | Root destination directory for Java classes (ignoring their package names). The default
is"src/main/java’.

enbeddabl eTerplSliréng | L ocation of acustom Vel ocity templatefilefor Embeddable classgeneration. If omitted,

default template is used.

enbeddabl eSupé

rSkhipga

tleocation of a custom Velocity template file for Embeddable superclass generation.
Ignored unless "makepairs’ set to "true”. If omitted, default template is used.

encodi ng

String

Generated files encoding if different from the default on current platform. Target
encoding must be supported by the VM running the build. Standard encodings
supported by Java on al platforms are US-ASCII, 1SO-8859-1, UTF-8, UTF-16BE,
UTF-16LE, UTF-16. Seejavadacs for java.nio.charset.Charset for more information.

excl udeEntitie

»<String

A comma-separated list of ObjEntity patterns (expressed as a perl5 regex) to exclude
from template generation. By default none of the DataM ap entities are excluded.

v.4.1

10

Including Cayenne in a Project

Name Type | Description

i ncludeEntiti esString| A comma-separated list of ObjEntity patterns (expressed as a perl5 regex) to include
from template generation. By default all DataM ap entities are included.

makePai r s booleanlf "true” (a recommended default), will generate subclass/superclass pairs, with al
generated code placed in superclass.

mode String | Specifies class generator iteration target. There are three possible values:
"entity" (default), "datamap”, "al". "entity" performs one generator iteration for each
included ObjEntity, applying either standard to custom entity templates. "datamap"
performsasingleiteration, applying DataM ap templates. " All" isacombination of entity
and datamap.

overwite booleanOnly haseffect when "makePairs" issetto "false”. If "overwrite" is"true", will overwrite
older versions of generated classes.

super Pkg String | Java package name of all generated superclasses. If omitted, each superclass will be
placed in the subpackage of its subclass called "auto". Doesn't have any effect if either
"makepairs' or "usePkgPath" are false (both are true by default).

super Tenpl at e | String | Location of a custom Velocity template file for ObjEntity superclass generation. Only
has effect if "makepairs' set to "true". If omitted, default templateis used.

tenpl ate String | Location of a custom Velocity template file for ObjEntity class generation. If omitted,
default templateis used.

usePkgPat h booleanlf set to "true" (default), a directory tree will be generated in "destDir" corresponding
to the class package structure, if set to "false", classes will be generated in "destDir"
ignoring their package.

cr eat ePr oper t yNe@@keanl f set to "true”, will generate String Property names. Default is "false”

Example - atypical class generation scenario, where pairs of classes are generated with default Maven source
destination and superclass package:

<pl ugi n>
<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>cayenne- maven- pl ugi n</artifactld>
<versi on>4. 1. ML</ ver si on>

<confi guration>
<map>${ pr oj ect . basedi r}/ src/ mai n/ resour ces/ ny. map. xm </ map>
</ configuration>

<executions>
<execution>
<goal s>
<goal >cgen</ goal >

v.4.l 11

Including Cayenne in a Project

</ goal s>
</ execution>
</ executions>
</ pl ugi n>

4.3.2. cdbgen

cdbgen iSacayenne- maven- pl ugi n goal that drops and/or generates tables in a database on Cayenne DataMap. By
default, it is bound to the pre-integration-test phase.

Table 4.3. cdbgen required parameters

Name Type | Description

map File | DataMap XML file which serves as a source of metadata for DB schema generation.

E.g. ${proj ect.basedir}/src/ main/resources/ ny. map. xm

dat aSour ce XML | An object that contains Data Source parameters

Table 4.4. <dataSour ce> parameters

Name Type | Requir &escription

driver String| Yes | A classof JDBC driver to use for the target database.
url String| Yes | JDBC URL of atarget database.

user name String | No Database user name.

passwor d String | No Database user password.

Table 4.5. cdbgen optional parameters

Name Type | Description

adapt er String | Java class name implementing org.apache.cayenne.dba.DbAdapter. While this attribute
isoptional (ageneric JdbcAdapter isusedif not set), it ishighly recommended to specify
correct target adapter.

creat eFK booleanl ndicates whether cdbgen should create foreign key constraints. Default is "true”.

creat ePK booleanl ndicates whether cdbgen should create Cayenne-specific auto PK objects. Default is
"true".

createTabl es | booleanlndicates whether cdbgen should create new tables. Default is "true”.

dr opPK booleanl ndicates whether cdbgen should drop Cayenne primary key support objects. Default
is"false".

v.4.l 12

Including Cayenne in a Project

Name Type | Description

dropTabl es booleani ndicates whether cdbgen should drop the tables before attempting to create new ones.
Default is"false".

Example - creating a DB schemaon alocal HSQL DB database:

<pl ugi n>
<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactl|d>cayenne- maven- pl ugi n</artifactld>
<versi on>4. 1. Mi</ ver si on>
<executi ons>
<executi on>
<confi guration>
<map>${ pr oj ect . basedi r}/ src/ mai n/ resour ces/ ny. map. xm </ map>
<adapt er >or g. apache. cayenne. dba. hsqgl db. HSQLDBAdapt er </ adapt er >
<dat aSour ce>
<ur | >j dbc: hsql db: hsql : / /1 ocal host/t estdb</url >
<driver>org. hsqgl db. j dbcDri ver</driver>
<user nane>sa</ user nane>
</ dat aSour ce>
</ configuration>
<goal s>
<goal >cdbgen</ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>

4.3.3. cdbimport

cdbi nport IS @ cayenne- maven- pl ugi n goal that generates a DataMap based on an existing database schema. By
default, it isbound to the generate-sources phase. Thisallowsyou to generate your DataM ap prior to building your
project, possibly followed by "cgen" execution to generate the classes. CDBImport plugin described in details
in chapter "DB-First Flow"

Table 4.6. cdbimport parameters

Name Type | Requir &escription

map File |Yes |DaaMap XML file which is the destination of the schema import. Can be an
existing file. If thisfile does not exidt, it is created when cdbimport is executed.
E.Q. ${proj ect . basedi r}/src/ mai n/ resour ces/ my. map. xni . If "overwrite" istrue
(the default), an existing DataMap will be used as a template for the new
imported DataMap, i.e. all its entities will be cleared and recreated, but its
common settings, such as default Java package, will be preserved (unless
changed explicitly in the plugin configuration).

v.4.l 13

Including Cayenne in a Project

Name Type | Requir@escription

adapt er String| No | A Java class name implementing org.apache.cayenne.dba.DbAdapter. This
attribute is optional. If not specified, AutoAdapter is used, which will attempt
to guess the DB type.

dat aSour ce XML | Yes | Anobject that contains Data Source parameters

dbi nport XML | No An object that contains detail ed reverse engineering rules about what DB objects
should be processed. For full information about this parameter see "DB-First
Flow" chapter.

Table 4.7. <dataSour ce> parameters

Name Type | Requir &escription

driver String| Yes | A classof JDBC driver to use for the target database.
url String| Yes | JDBC URL of atarget database.

user nane String | No Database user name.

passwor d String | No Database user password.

Table 4.8. <dbimport> parameters

Name

Type

Description

def aul t Package String

A Javapackagethat will be set astheimported DataM ap default and apackage of all the
persistent Java classes. Thisis arequired attribute if the "map" itself does not aready
contain a default package, as otherwise all the persistent classes will be mapped with
no package, and will not compile.

f or ceDat aNapG_tb(DGtﬁa

nAutomatically tagging each DbEntity with the actual DB catalog/schema (default
behavior) may sometimes be undesirable. If this is the case then setting
f or ceDat aMapCat al og tO t rue Will set DbEntity catalog to one in the DataMap. Default
valueisfal se.

f or ceDat aMapS

Haoal eal

nAutomatically tagging each DbEntity with the actual DB catalog/schema (default
behavior) may sometimes be undesirable. If this is the case then setting
f or ceDat aMapSchema 1O t rue Will set DbEnNtity schemato one in the DataMap. Default
valueisfal se.

meani ngf ul PkTatbéNg

A comma-separated list of Perl5 patternsthat defineswhich imported tables should have
their primary key columns mapped as ObjAttributes. "*" would indicate all tables.

v.4.1

14

Including Cayenne in a Project

Name

Type

Description

nam ngSt r at egy

String

The naming strategy used for mapping database names to object entity names. Default

iSorg.apache.cayenne.dbsync.naning.DefauIthjectNaneGEnerator.

ski pPri mar yKey

IlkeateanWhether to load primary keys. Default "false”.

ski pRel ati onsk

iheokeanWéhether to load relationships. Default "false”.

stri pFronTabl ¢

:NBlirag

Regex that matches the part of the table name that needs to be stripped off when
generating ObjEntity name. Here are some examples:

<l-- Strip prefix -->
<stri pFronTabl eNames>"nyt _</stri pFroniTabl eNanes>

<l-- Strip suffix -->
<stri pFronTabl eNanmes>_s$</ st ri pFronfTabl eNanes>

<I-- Strip multiple occurrences in the mddle -->
<stri pFronTabl eNanes>_abc</ stri pFroniTabl eNanes>

usePrimtives

boolea

nWhether numeric and boolean data types should be mapped as Java primitives or Java

classes. Default is"true”, i.e. primitives will be used.

useJava7Types | booleanWhether paTe, TI M and 1 MEsTAMP data types should be mapped asj ava. util . Date OF
java. tine.* classes. Default is"false", i.e. java. tine. * will be used.
filters XML | Detailed reverse engineering rules about what DB objects should be processed. For full

configuration

information about this parameter see "DB-First Flow" chapter. Here is some simple
example:

<dbi nport >
<cat al og nanme="t est_cat al og" >
<schema nane="test_schema">
<i ncl udeTabl e>. *</i ncl udeTabl e>
<excl udeTabl e>t est _t abl e</ excl udeTabl e>
</ schema>
</ cat al og>

<incl udeProcedure pattern=".*"/>
</ dbi nport >

Example - loading a DB schema from a local HSQLDB database (essentially a reverse operation compared to
the cdbgen example above) :

<pl ugi n>

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>cayenne- maven- pl ugi n</artifactld>
<versi on>4. 1. Mi</ ver si on>

<executions>

v.4.1

15

Including Cayenne in a Project

<executi on>
<confi guration>
<map>%${ proj ect . basedi r}/src/ mai n/ resour ces/ ny. map. xm </ map>
<dat aSour ce>
<url >j dbc: nysql : //127.0.0. 1/ nydb</ url >
<driver>com nysql .jdbc. Driver</driver>
<user nane>sa</ user nane>
</ dat aSour ce>
<dbi nport >
<def aul t Package>com exanpl e. cayenne</ def aul t Package>
</ dbi nport >
</ configuration>
<goal s>
<goal >cdbi nport </ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>

4.4. Gradle Projects

To include Cayenne into your Gradle project you have two options:
« Simply add Cayenne as a dependency:

conpi l e 'org. apache. cayenne: cayenne-server: 4. 1. ML

» Or you can use Cayenne Gradle plugin

4.4.1. Gradle Plugin

Cayenne Gradle plugin provides severa tasks, such as synching generated Java classes with the mapping or
synching mapping with the database. Plugin aslo providescayenne extension that have some useful utility methods.
Here is example of how to include Cayenne plugin into your project:

bui I dscript {
// add Maven Central repository
repositories {
mavenCentral ()
}
// add Cayenne G adle Plugin
dependenci es {
cl asspath group: 'org.apache.cayenne. plugins', nane: 'cayenne-gradle-plugin', version: '4.1. M

/1 apply plugin
apply plugin: 'org.apache. cayenne

// set default DataMap
cayenne. def aul t Dat aMap ' dat amap. map. xm '

v.4.l 16

Including Cayenne in a Project

// add Cayenne dependenci es to your project

dependenci es {
/1l this is a shortcut for 'org.apache.cayenne: cayenne-server: VERSI ON_OF_PLUG N
conpi | e cayenne. dependency(' server"')
conpi | e cayenne. dependency('j ava8')

Warning

Cayenne Gradle plugin is experimental and it's API can change later.
4.4.1.1. cgen

Cgen task generates Java classes based on your DataMap, it has same configuration parameters as in Maven
Plugin version, described in Table 4.1, “cgen required parameters’. If you provided default DataMap via
cayenne. def aul t Dat aMap, YOU can sKip cgen configuration as default settings will suffice in common case.

Here is how you can change settings of the default cgen task:

cgen {
client = fal se
node = "all
overwite = true
createProperti esNames = true

}

And here is example of how to define additional cgen task (e.g. for client classes if you are using ROP):

task clientCgen(type: cayenne.cgen) {
client = true

}

4.4.1.2. cdbimport

This task is for creating and synchronizing your Cayenne model from database schema. Full list of parameters
aresame asin Maven Plugin version, described in Table 4.6, “ cdbimport parameters’, with exception that Gradle
version will use Groovy instead of XML.

Here is example of configuration for cdbimport task:

cdbi mport {
// map can be skipped if it is defined in cayenne. def aul t Dat aMap
map ' dat amap. map. xnm '

dat aSource {
driver 'comnysql.cj.jdbc.Driver'
url 'jdbc:nysqgl://127.0.0.1: 3306/t est 2useSSL=f al se
user name 'root
password

v.4.l 17

Including Cayenne in a Project

dbl npor't
// additional settings
usePrimtives false
def aul t Package ' org. apache. cayenne. t est’

// DB filter configuration
catal og 'catal og-1'
schema ' schena- 1'

catal og {
nanme ' cat al og-2'

i ncl udeTabl e 'tabl e0', {

excl udeCol ums ' _col um_"'

i ncl udeTabl es 'tablel', 'table2', 'table3

i ncl udeTabl e 'tabled4', {

i ncludeColums 'id', 'type', 'data'

excl udeTabl e ' "GENERATED . *'

catal og {
nanme ' cat al og- 3’
schema {
name 'schena-2'
i ncl udeTabl e 'test_table'
i ncludeTabl e 'test table2', {
excl udeCol um ' __excl uded'

i ncl udeProcedure 'procedure_test_1'

i ncl udeColums 'id', 'version'

tabl eTypes ' TABLE', ' VI EW

4.4.1.3. cdbgen

Cdbgen task drops and/or generates tables in a database on Cayenne DataMap. Full list of parameters are same
asin Maven Plugin version, described in Table 4.3, “ cdbgen required parameters’

Here is example of how to configure default cdbgen task:

cdbgen {

v.4.l 18

Including Cayenne in a Project

adapt er 'org. apache. cayenne. dba. der by. Der byAdapt er"'

dat aSource {
driver 'org.apache. derby.jdbc. EnbeddedDri ver'

url

"jdbc: derby: buil d/testdb; create=true

user name 'sa
password '

dropTabl es true
dropPk true

createTabl es true
createPk true
createFk true

4.4.1.4. Link tasks to Gradle build lifecycle

With gradle you can easily connect Cayenne tasks to default build lifecycle. Here is short example of how to
connect defaut cgen and cdbi mport tasks with conpi | eJava task:

cgen. dependsOn cdbi nport
conpi | eJava. dependsOn cgen

Note

Running cdbi npor t automatically with build not aways agood choice, e.g. in case of complex model that

you need to alter in the Cayenne Modeler after import.

4.5. Ant Projects

Ant tasks are the same as Maven plugin goals described above, namely "cgen”, "cdbgen”, "cdbimport".
Configuration parameters are also similar (except Maven can guess many defaultsthat Ant can't). To include Ant
tasks in the project, use the following Antlib:

<t ypedef

resour ce="or g/ apache/ cayenne/ t ool s/ antlib. xm ">

<cl asspat h>
<fileset dir="lib" >

<

<

<

<

<
<

<

<

<

<

<

</fileset>

v.4.1

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

nane="cayenne-ant-*.jar" />
nane="cayenne-cgen-*.jar" />
nane="cayenne-dbsync-*.jar" />
nane="cayenne-di-*.jar" />
nane="cayenne-project-*.jar" />
nane="cayenne-server-*.jar" />
nanme="commons-col | ecti ons-*.jar" />
nane="conmmons-| ang-*.jar" />
nane="sl f4j-api-*.jar" />
nane="vel ocity-*.jar" />
nane="vpp-2.2.1.jar" />

19

Including Cayenne in a Project

</ cl asspat h>
</ typedef >

4.5.1. cgen
4.5.2. cdbgen

4.5.3. cdbimport

Thisisan Ant counterpart of "cdbimport" goal of cayenne-maven-plugin described above. It has exactly the same
properties. Here is a usage example:

<cdbi nport map="${context.dir}/WEB-|NF/ ny. map. xm "
driver="com nysql .jdbc.Driver"
url ="jdbc: nysql://127.0.0. 1/ mydb"
user nane="sa"
def aul t Package="com exanpl e. cayenne"/ >

v.4.l 20

Chapter 5. Starting Cayenne

5.1. Starting and Stopping ServerRuntime

In runtime Cayenneis accessed viaor g. apache. cayenne. confi gur ati on. server. Server Runti me. ServerRuntimeis
created by calling a convenient builder:

ServerRuntinme runtinme = ServerRuntine. buil der ()
. addConf i g(" coni exanpl e/ cayenne- proj ect.xm ")
.build();

The parameter you pass to the builder is alocation of the main project file. Location is a'/'-separated path (same
path separator isused on UNIX and Windows) that isresolved relativeto the application classpath. Theproject file
can be placed in the root package or in a subpackage (e.g. in the code above it isin "com/example" subpackage).

ServerRuntime encapsul ates a single Cayenne stack. Most applicationswill just have one ServerRuntime using it
to create as many ObjectContexts as needed, access the Dependency Injection (DI) container and work with other
Cayenne features. Internally ServerRuntime is just a thin wrapper around the DI container. Detailed features of
the container are discussed in " Customizing Cayenne Runtime" chapter. Here we'll just show an example of how
an application might turn on external transactions:

Mbdul e ext ensions = binder ->

Ser ver Modul e. contri but eProperti es(bi nder). put (Const ants. SERVER_EXTERNAL_TX_ PROPERTY,
ServerRuntinme runtinme = ServerRuntine. buil der()

. addConfi g("conl exanpl e/ cayenne-proj ect.xm ")

. addMbdul e(ext ensi ons)

Cbuild();

It is a good idea to shut down the runtime when it is no longer needed, usually before the application itself is
shutdown:

runti me. shut down() ;

When aruntime object has the same scope as the application, this may not be always necessary, however in some
casesitisessential, and isgenerally considered agood practice. E.g. in aweb container hot redeploy of awebapp
will cause resource leaks and eventual OutOfMemoryError if the application failsto shutdown CayenneRuntime.

5.2. Merging Multiple Projects

ServerRuntime requires at |east one mapping project to run. But it can also take multiple projects and merge them
together in asingle configuration. Thisway different parts of a database can be mapped independently from each
other (even by different software providers), and combined in runtime when assembling an application. Doing it
is as easy as passing multiple project locations to ServerRuntime builder:

ServerRuntinme runtinme = ServerRuntine. buil der()

v.4.l 21

"true");

Starting Cayenne

.addConfi g("conl exanpl e/ cayenne- proj ect.xm ")
.addConfi g("org/fool/ cayenne-libraryl. xm")
.addConfi g("org/fool/ cayenne-library2. xm")
Lbuild();

When the projects are merged, the following rules are applied:

The order of projects matters during merge. If there are two conflicting metadata objects belonging to two
projects, an object from the last project takes precedence over the object from thefirst one. This makes possible
to override pieces of metadata. Thisis also smilar to how DI modules are merged in Cayenne.

Runtime DataDomain name is set to the name of the last project in the list.

Runtime DataDomain properties are the same as the properties of the last project inthelist. I.e. propertiesare
not merged to avoid invalid combinations and unexpected runtime behavior.

If there are two or more DataMaps with the same name, only one DataMap is used in the merged project,
the rest are discarded. Same precedence rules apply - DataMap from the project with the highest index in the
project list overrides all other DataM aps with the same name.

If there are two or more DataNodes with the same name, only one DataNodes is used in the merged project,
the rest are discarded. DataNode coming from project with the highest index in the project list is chosen per
precedence rule above.

There is a notion of "default” DataNode. After the merge if any DataMaps are not explicitly linked to
DataNodes, their queries will be executed via a default DataNode. This makes it possible to build mapping
"libraries’ that are only associated with a specific database in runtime. If there's only one DataNode in the
merged project, it will be automatically chosen as default. A possible way to explicitly designate a specific
node as default isto override bat aDomai nPr ovi der . cr eat eAndl ni t Dat aDomai n() .

5.3. Web Applications

Web applications can use avariety of mechanismsto configure and start the "services' they need, Cayenne being
one of such services. Configuration can be donewithin standard Servlet specification objectslike Servlets, Filters,
or ServletContextListeners, or can use Spring, JEE CDI, etc. Thisis a user's architectural choice and Cayenne
is agnostic to it and will happily work in any environment. As described above, all that is needed is to create
an instance of ServerRuntime somewhere and provide the application code with means to access it. And shut it
down when the application ends to avoid container leaks.

Still Cayenneincludes a piece of web app configuration code that can assist in quickly setting up simple Cayenne-
enabled web applications. We are talking about CayenneFilter. It is declared in web.xml:

<web- app>

<filter>
<filter-name>cayenne-project</filter-name>

v.4.l 22

Starting Cayenne

<filter-class>org. apache. cayenne. confi guration. web. CayenneFilter</filter-class>
</filter>
<filter-mppi ng>

<filter-nane>cayenne-project</filter-nanme>

<url-pattern>/*</url-pattern>
</filter-mppi ng>

</ web app>
When started by theweb container, it creates ainstance of ServerRuntime and storesit in the ServletContext. Note
that the name of Cayenne XML project fileisderived from the "filter-name". In the example above CayenneFilter

will look for an XML file "cayenne-project.xml”. This can be overridden with "configuration-location" init
parameter.

When the application runs, all HT TP requests matching the filter url-pattern will have access to a session-scoped
ObjectContext like this:

Obj ect Cont ext context = BaseCont ext. get ThreadObj ect Cont ext () ;

Of course the ObjectContext scope, and other behavior of the Cayenne runtime can be customized viadependency
injection. For this another filter init parameter called "extramodules’ is used. "extramodules' is a comma or
space-separated list of class names, with each class implementing Module interface. These optional custom
modules are loaded after the the standard ones, which allows usersto override al standard definitions.

For those interested in the DI container contents of the runtime created by
CayenneFilter, it is the same ServerRuntime as wouldve been creasted by other
means, but with an extra org. apache. cayenne. configuration. web. Webvodule module that provides
or g. apache. cayenne. conf i gur at i on. web. Request Handl er Service. This is the service to override in the custom
modulesif you need to provide a different ObjectContext scope, €etc.

Note

Y ou should not think of CayenneFilter as the only way to start and use Cayenne in aweb application. In
fact CayenneFilter isentirely optional. Useit if you don't have any special design for application service
management. If you do, simply integrate Cayenne into that design.

v.4.l 23

Chapter 6. Persistent Objects and
ObjectContext

6.1. ObjectContext

ObjectContext is an interface that users normally work with to access the database. It providesthe API to execute
database operations and to manage persistent objects. A context is obtained from the ServerRuntime:

bj ect Cont ext context = runtine. newCont ext () ;

The call above creates a new instance of ObjectContext that can access the database via this runtime.
ObjectContext is a single "work ared’ in Cayenne, storing persistent objects. ObjectContext guarantees that for
each database row with aunique ID it will contain at most one instance of an object, thus ensuring object graph
consistency between multiple selects (a feature called "uniquing"). At the same time different ObjectContexts
will have independent copies of objectsfor each unique database row. This allows usersto isolate object changes
from one another by using separate ObjectContexts.

These properties directly affect the strategies for scoping and sharing (or not sharing) ObjectContexts. Contexts
that are only used to fetch objects from the database and whose objects are never maodified by the application can
be shared between mutliple users (and multiple threads). Contexts that store modified objects should be accessed
only by asingle user (e.g. aweb application user might reuse a context instance between multiple web requestsin
the same HttpSession, thus carrying uncommitted changes to objects from request to request, until he decides to
commit or rollback them). Even for asingle user it might make sense to use mutliple ObjectContexts (e.g. request-
scoped contexts to allow concurrent requests from the browser that change and commit objects independently).

ObjectContext is serializable and does not permanently hold to any of the application resources. So it does not
have to be closed. If the context is not used anymore, it should simply be allowed to go out of scope and get
garbage collected, just like any other Java object.

6.2. Persistent Object and its Lifecycle

Cayenne can persist Java objects that implement or g. apache. cayenne. Persi st ent interface. Generally persistent
classes are generated from the model as described above, so users do not have to worry about superclass and
property implementation details.

Persistent interface provides access to 3 persistence-related properties - objectld, persistenceState and
objectContext. All 3areinitialized by Cayenneruntimeframework. Application code should not attempt to change
them them. However it is alowed to read them, which provides valuable runtime information. E.g. Objectld
can be used for quick equality check of 2 objects, knowing persistence state would alow highlighting changed
objects, etc.

v.4.1l 24

Persistent Objects and ObjectContext

Each persistent object belongs to a single ObjectContext, and can be in one of the following persistence states
(as defined in or g. apache. cayenne. Per si st enceSt at e) :

Table 6.1. Persistence States

TRANSIENT | The object is not registered with an ObjectContext and will not be persisted.

NEW The object is freshly registered in an ObjectContext, but has not been saved to the database
yet and there is no matching database row.

COMMITTED | The object isregistered in an ObjectContext, there is arow in the database corresponding to
this object, and the object state corresponds to the last known state of the matching database
row.

MODIFIED The object is registered in an ObjectContext, there is a row in the database corresponding
to this object, but the object in-memory state has diverged from the last known state of the
matching database row.

HOLLOW The object is registered in an ObjectContext, there is arow in the database corresponding to
thisobject, but the object state is unknown. Whenever an application triesto access a property
of such object, Cayenne attempts reading its values from the database and "inflate" the object,
turning it to COMMITED.

DELETED The object is registered in an ObjectContext and has been marked for deletion in-memory.
The corresponding row in the database will get deleted upon ObjectContext commit, and the
object state will be turned into TRANSIENT.

6.3. ObjectContext Persistence API

One of the first things users usually want to do with an ObjectContext is to select some objects from a database.
Thisis done by calling "performQuery" method:

Sel ect Query query = new Sel ect Query(Artist.class);
List<Artist> artists = context.perfornQuery(query);

We'll discuss queriesin some detail in the following chapters. The example aboveis self-explanatory - we create
a SelectQuery that matches all Artist objects present in the database, and then call "performQuery”, getting alist
of Artist objects.

Some queries can be quite complex, returning multiple result sets or even updating the database. For
such queries ObjectContext provides "performGenericQuery'method. While not nearly as commonly-used as
"performQuery", it is neverthel ess important in some situations. E.g.:

Col | ecti on<Query> queries = ... // multiple queries that need to be run together
QueryChai n query = new QueryChai n(queries);

Quer yResponse response = context. perfornGeneri cQuery(query);

v.4.l 25

Persistent Objects and ObjectContext

An application might modify selected objects. E.g.:

Artist selectedArtist = artists.get(0);
sel ectedArtist.setName("Dali");

Thefirst time the object property is changed, the object's state is automatically set to "MODIFIED" by Cayenne.
Cayenne tracks all in-memory changes until a user calls "commitChanges":

cont ext. conm t Changes() ; ‘

At this point all in-memory changes are analyzed and a minimal set of SQL statements is issued in a single
transaction to synchronize the database with the in-memory state. In our example "commitChanges' commitsjust
one object, but generaly it can be any number of objects.

If instead of commit, we wanted to reset all changed objects to the previously committed state, we'd call
rollbackChanges instead:

cont ext.rol |l backChanges(); ‘

"newObject” method call creates a persistent object and sets its state to "NEW":

Artist newArtist = context.newlbject(Artist.class);
newArti st.set Name("Pi casso");

It will only existin memory until "commitChanges" isissued. On commit Cayenne might generate anew primary
key (unlessauser set it explicitly, or aPK wasinferred from arelationship) and issue an INSERT SQL statement
to permanently store the object.

del eteObjects method takes one or more Persistent objects and marks them as "DELETED":

context. del eteojects(artistl);
context.del ete(jects(artist2, artist3, artistd4);

Additionally "deleteObjects" processes all delete rules modeled for the affected objects. This may result in
implicitly deleting or modifying extrarelated objects. Same asinsert and update, delete operations are sent to the
database only when "commitChanges' iscalled. Similarly "rollbackChanges" will undo the effect of "newObject"
and "deleteObjects".

local Object returns a copy of agiven persistent object that is "local" to a given ObjectContext:

Since an application often works with more than one context, "local Object" is arather common operation. E.g. to
improve performance a user might utilize a single shared context to select and cache data, and then occasionally
transfer some sel ected objects to another context to modify and commit them:

hj ect Cont ext editingContext = runtine. newContext();
Artist local Artist = editingContext.|ocal Object(artist);

Often an appliction needs to inspect mapping metadata. This information is stored in the EntityResolver object,
accessible via the ObjectContext:

v.4.l 26

Persistent Objects and ObjectContext

EntityResol ver resol ver = object Context.get EntityResol ver();

Here we discussed the most commonly used subset of the ObjectContext API. There are other useful methods,
e.g. those alowing to inspect registered objects state en bulk, etc. Check the latest JavaDocs for details.

6.4. Cayenne Helper Class

Thereisauseful helper class called "Cayenne" (fully-qualified name " or g. apache. cayenne. Cayenne") that builds
on ObjectContext API to provide a number of very common operations. E.g. get aprimary key (most entities do
not model PK as an abject property) :

I ong pk = Cayenne. | ongPKFor Obj ect (artist);

It also provides the reverse operation - finding an object given aknown PK:

Artist artist = Cayenne. obj ect For PK(context, Artist.class, 34579);

If aquery is expected to return O or 1 object, Cayenne helper class can be used to find this object. It throws an
exception if more than one object matched the query:

Artist artist = (Artist) Cayenne. object For Query(context, new Sel ect Query(Artist.class));

Feel free to explore Cayenne class API for other useful methods.

6.5. ObjectContext Nesting

In al the examples shown so far an ObjectContext would directly connect to a database to select data or
synchronize its state (either via commit or rollback). However another context can be used in all these scenarios
instead of a database. This concept is caled ObjectContext "nesting". Nesting is a parent/child relationship
between two contexts, where child is a nested context and selects or commits its objects via a parent.

Nesting is useful to create isolated object editing areas (child contexts) that need to all be committed to an
intermediate in-memory store (parent context), or rolled back without affecting changes already recorded in the
parent. Think cascading GUI dialogs, or parallel AJAX requests coming to the same session.

In theory Cayenne supports any number of nesting levels, however applications should generally stay with one
or two, as deep hierarchies will most certainly degrade the performance of the deeply nested child contexts. This
is due to the fact that each context in a nesting chain has to update its own objects during most operations.

Cayenne ROP is an extreme case of nesting when achild context islocated in a separate VM and communicates
with its parent via aweb service. ROP is discussed in details in the following chapters. Here we concentrate on
the same-VM nesting.

To create a nested context, use an instance of ServerRuntime, passing it the desired parent:

Obj ect Cont ext parent = runtinme. newCont ext();

v.4.l 27

Persistent Objects and ObjectContext

Obj ect Cont ext nested = runtime. newCont ext ((Dat aChannel) parent);

From here anested context operatesjust like aregular context (you can perform queries, create and del ete objects,
etc.). The only difference is that commit and rollback operations can either be limited to synchronization with
the parent, or cascade al the way to the database:

/1 nmerges nested context changes into the parent context
nest ed. conm t ChangesToPar ent () ;

/1 regular 'conmi tChanges' cascades conmit through the chain
/1 of parent contexts all the way to the database
nest ed. conm t Changes();

/1 unrolls all local changes, getting context in a state identical to parent
nest ed. rol | backChangesLocal | y();

/1 regular 'roll backChanges' cascades roll back through the chain of contexts
/1 all the way to the topnbst parent
nest ed. rol | backChanges();

6.6. Generic Persistent Objects

Asdescribed inthe CayenneM odel er chapter, Cayenne supports mapping of completely generic classesto specific
entities. Although for conveniece most applications should stick with entity-specific class mappings, the generic
feature offers some interesting possibilities, such as creating mappings completely on the fly in a running
application, etc.

Generic objects are first class citizens in Cayenne, and al common persistent operations apply to them as well.
There are some pecularities however, described below.

When creating a new generic object, either cast your ObjectContext to DataContext (that provides
"newObject(String)" API), or provide your object with an explicit Objectld:

Dat aCbj ect generic = ((DataContext) context).newbject("CenericEntity");

Dat aCbj ect generic = new CayenneDat abj ect ();
generic.set Obj ectld(new Obj ectld("CenericEntity"));
cont ext . regi st er NewObj ect (generi c);

SelectQuery for generic object should be created passing entity name String in constructor, instead of a Javaclass:

Sel ect Query query = new Sel ect Query("GenericEntity"); ‘

Use DataObject API to access and modify properties of a generic object:

String name = (String) generic.readProperty("nanme");
generic.witeProperty("nanme", "New Nanme");

Thisis how an application can obtain entity name of a generic object:

v.4.l 28

Persistent Objects and ObjectContext

String entityName = generic.getObjectld().getEntityNanme();

6.7. Transactions

Considering how much attention is given to managing transactions in most other ORMs, transactions have been
conspicuously absent from the ObjectContext discussion till now. The reason is that transactions are seamlessin
Cayennein all but afew specia cases. ObjectContext is an in-memory container of objects that is disconnected
from the database, except when it needsto run an operation. So it does not care about any surrounding transaction
scope. Sure enough all database operations are transactional, so when an application does a commit, all SQL
execution is wrapped in a database transaction. But this is done behind the scenes and is rarely a concern to the
application code.

Two caseswheretransactions need to be taken into consideration are contai ner-managed and appli cation-managed
transactions.

If you are using an EJB container (or some other JTA environment), you'll likely need to switch Cayenne
runtime into "external transactions mode'. This is done by setting DI configuration property defined in
Const ant s. SERVER_EXTERNAL_TX_PROPERTY (See Appendix A). If this property is set to "true", Cayenne assumes
that JDBC Connections obtained by runtime whenever that might happen are all coming from a transactional
DataSource managed by the container. In this case Cayenne does not attempt to commit or rollback the
connections, leaving it up to the container to do that when appropriate.

In the second scenario, an application might need to define its own transaction scope that spans more than one
Cayenne operation. E.g. two sequential commits that need to be rolled back together in case of failure. This can
be done via ser ver Runt i ne. per f or m nTransact i on method:

Integer result = runtime.perform nTransaction(() -> {
// commit one or nore contexts
cont ext 1. conmi t Changes() ;
cont ext 2. conmi t Changes() ;

/'l after changing sone objects in contextl, conmmt again
cont ext 1. conmi t Changes() ;

/1 return an arbitrary result or null if we don't care about the result
return 5;

});

When inside the transaction, current thread Transaction object can be accessed via a static method. E.g. hereis
an example that initializes transaction JDBC connection with a custom connection object :

Transaction tx = BaseTransaction. get ThreadTransacti on();
t x. addConnect i on(" mydat anode", myConnecti on);

v.4.l 29

Chapter 7. Expressions

7.1. Expressions Overview

Cayenne provides a simple yet powerful object-based expression language. The most common usese of
expressions are to build qualifiers and orderings of queries that are later converted to SQL by Cayenne and
to evaluate in-memory against specific objects (to access certain values in the object graph or to perform in-
memory object filtering and sorting). Cayenne provides API to build expressionsin the code and a parser to create
expressions from strings.

7.2. Path Expressions

Before discussing how to build expressions, it is important to understand one group of expressions widely used
in Cayenne - path expressions. There are two types of path expressions - object and database, used for navigating
graphs of connected objects or joined DB tables respectively. Object paths are much more commonly used, as
after all Cayenne is supposed to provide a degree of isolation of the object model from the database. However
database paths are helpful in certain situations. General structure of path expressionsis the following:

[db:] segment[+] [.segment[+]...]
« "db:" isan optional prefix indicating that the following path isa DB path. Otherwiseit is an object path.

» "segment" is a name of a property (relationship or attribute in Cayenne terms) in the path. Path must have at
least one segment; segments are separated by dot (".").

e "+" An "OUTER JOIN" path component. Currently "+" only has effect when trandated to SQL as OUTER
JOIN. When evaluating expressions in memory, it isignored.

An object path expression represents a chain of property names rooted in a certain (unspecified during expression
creation) object and "navigating" to its related value. E.g. a path expression "artist.name" might be a property
path starting from a Painting object, pointing to the related Artist object, and then to its name attribute. A few
more examples:

» "name" - can be used to navigate (read) the "name" property of a Person (or any other type of object that has
a"name" property).

« "artist.exhibits.closingDate" - can be used to navigate to a closing date of any of the exhibits of a Painting's
Artist object.

o "artist.exhibitst.closingDate" - same as the previous example, but when trandated into SQL, an OUTER JOIN
will be used for "exhibits'.

Similarly a database path expression is a dot-separated path through DB table joins and columns. In Cayenne
joins are mapped as DbRelationships with some symbolic names (the closest concept to DbRelationship name

v.4.1 30

Expressions

in the DB world is a named foreign key constraint. But DbRelationship names are usually chosen arbitrarily,
without regard to constraints naming or even constraints presence). A database path therefore might look likethis
- "db:dbrelationshipX.dbrelationshipY .COLUMN_Z". More specific examples:

» "db:NAME" - can be used to navigate to the value of "NAME" column of some unspecified table.

« "db:artist.artistExhibits.exhibit. CLOSING_DATE" - can be used to match a closing date of any of the exhibits
of arelated artist record.

Cayenne supports "aliases’ in path Expressions. E.g. the same expression can be written using explicit path or
an dlias:

» "artist.exhibits.closingDate" - full path

« "eclosingDate" - dlias"€e" isused for "artist.exhibits".

SelectQuery using the second form of the path expression must be made aware of the aias via
"SelectQuery.aliasPathSplits(..)", otherwise an Exception will bethrown. Themain use of aliasesisto allow users
to control how SQL joins are generated if the same path is encountered more than once in any given Expression.
Each dlias for any given path would result in a separate join. Without aliases, a single join will be used for a
group of matching paths.

7.3. Creating Expressions from Strings

While in most cases users are likely to rely on API from the following section for expression creation, well
start by showing String expressions, as this will help to understand the semantics. A Cayenne expression can
be represented as a String, which can be converted to an expression object using Expr essi onFact ory. exp Static
method. Here is an example:

String expString = "nane like 'A% and price < 1000";
Expressi on exp = ExpressionFactory. exp(expString);

This particular expression may be used to match Paintings whose names that start with "A" and whose price is
less than $1000. While this example is pretty self-explanatory, there are afew points worth mentioning. "name"
and "price" here are object paths discussed earlier. As aways, paths themsel ves are not attached to a specific root
entity and can be applied to any entity that has similarly named attributes or relationships. So when we are saying
that this expression "may be used to match Paintings', we are implying that there may be other entities, for which
this expression is valid. Now the expression details...

Character constants that are not paths or numeric values should be enclosed in single or double quotes. Two of
the expressions below are equivalent:

name = ' ABC

// doubl e quotes are escaped inside Java Strings of course
name = \"ABQ\"

v.4.l 31

Expressions

Case sensitivity. Expression operators are case sensitive and are usually lowercase. Complex words follow the
Java camel-case style:

/1l valid
name |i kel gnoreCase ' A%

/'l invalid - will throw a parse exception
name LI KEI GNORECASE ' A%

Grouping with parenthesis:

value = (price + 250.00) * 3

Path prefixes. Object expressions are unguoted strings, optionally prefixed by "obj:" (usually they are not prefixed
at al actually). Database expressions are always prefixed with "db:". A special kind of prefix, not discussed yet
is"enum:" that prefixes an enumeration constant:

/'l object path
nane = ' Sal vador Dali'

/'l sane object path - a rarely used form
obj : name = ' Sal vador Dali’

/'l multi-segnent object path
artist.name = ' Sal vador Dali'

/1 db path
db: NAME = ' Sal vador Dali'

/! enuneration constant
name = enum or g. f oo. EnunCl ass. VALUE1

Binary conditions are expressions that contain a path on the left, avalue on the right, and some operation between
them, such as equals, like, etc. They can be used as qualifiersin SelectQueries:

nane |ike 'A%

Parameters. Expressions can contain named parameters (names that start with "$") that can be substituted with
values either by name or by position. Parameterized expressions allow to create reusable expression templ ates.
Also if an Expression contains a complex object that doesn't have a ssimple String representation (e.g. a Date, a
DataObject, an Objectld), parameterizing such expression is the only way to represent it as String. Here are the
examples of both positional and named parameter bindings:

Expression tenpl ate = Expressi onFactory. exp("name = $nane");

/1 name bi ndi ng
Map pl = Coll ections. si ngl et onMap("nane", "Salvador Dali");
Expression qualifierl = tenpl ate. parans(pl);

/1 positional binding
Expression qualifier2 = tenpl ate. paransArray("Mnet");

v.4.l 32

Expressions

Positional binding isusually shorter. Y ou can pass positional bindingstothe"exp(. .)" factory method (its second
argument is a params vararg):

Expression qualifier = ExpressionFactory.exp("nane = $nane", "Mnet"); ‘

In parameterized expressions with LIKE clause, SQL wildcards must be part of the values in the Map and not
the expression string itself:

Expression qualifier = ExpressionFactory.exp("“nane |ike $nane", "Sal vador%); ‘

When matching on a relationship, the value parameter must be either a Persistent object, an
org. apache. cayenne. Obj ect I d, Or anumeric ID value (for single column IDs). E.g.:

Artist dali = ... // asume we fetched this one already
Expression qualifier = ExpressionFactory.exp("artist = $artist", dali);

When using positiona binding, Cayenne would expect values for all parameters to be present. Binding by
name offers extra flexibility: subexpressions with uninitialized parameters are automatically pruned from the
expression. So e.g. if certain parts of the expression criteriaare not provided to the application, you can still build
avalid expression:

Expression tenpl ate = ExpressionFactory. exp("nane |ike $nane and dateOCfBirth > $date");

Map pl = Coll ecti ons. si ngl et onMap("nane", "Sal vador%);
Expression qualifierl = tenpl ate. parans(pl);

[/ "qualifierl" is now "nane |ike 'Salvador%".
// 'dateOBirth > $date' condition was pruned, as no val ue was specified for
/'l the $date paraneter

Null handling. Handling of Java nulls as operands is no different from normal values. Instead of using special
conditional operators, like SQL does (ISNULL, ISNOT NULL), "=" and "!=" expressions are used directly with
null values. It is up to Cayenne to translate expressions with nulls to the valid SQL .

Note

A formal definition of the expression grammar is provided in Appendix C

7.4. Creating Expressions via API

Creating expressions from Strings is a powerful and dynamic approach, however a safer alternative is to use
Java API. It provides compile-time checking of expressions validity. The APl in question is provided by
Expr essi onFact ory Class (that we've seen aready), Property class and Expr essi on class itself. Expr essi onFact ory
contains a number of self-explanatory static methods that can be used to build expressions. E.g.:

[/ String expression: nane like 'A% and price < 1000
Expression el = ExpressionFactory.|ikeExp("nane", "A%);
Expressi on e2 = Expressi onFactory. | essExp("price, 1000);

v.4.1 33

Expressions

Expression final Exp = el. andExp(e2);

Note

The last line in the example above shows how to create a new expression by "chaining" two other
epxressions. A common error when chaining expressionsisto assumethat "andExp" and "orExp" append
another expression to the current expression. In fact a new expression is created. 1.e. Expression API
treats existing expressions as immutable.

As discussed earlier, Cayenne supports aliases in path Expressions, allowing to control how SQL joins are
generated if the same path is encountered more than once in the same Expression. Two ExpressionFactory
methods allow to implicitly generate aliases to "split" match pathsinto individual joins if needed:

Expressi on mat chAl | Exp(String path, Collection val ues)
Expressi on matchAl | Exp(String path, Cbject... values)

"Path" argument to both of these methods can use a split character (a pipe symbol '|') instead of dot to indicate
that relationship following a path should be split into a separate set of joins, one per collection value. There can
only be one split at most in any given path. Split must always precede arelationship. E.g. | exhi bi ts. pai nti ngs",
"exhi bi t s| pai ntings", etc. Internally Cayenne would generate distinct aliases for each of the split expressions,
forcing separate joins.

While ExpressionFactory is pretty powerful, there's an even easier way to create expression using static Property
objects generated by Cayenne for each persistent class. Some examples:

/1 Artist.NAME is generated by Cayenne and has a type of Property<String>
Expression el = Artist. NAME. eq(" Pabl 0");

// Chaining nmultiple properties into a path..
// Painting. ARTI ST is generated by Cayenne and has a type of Property<Artist>
Expression e2 = Painting. ARTI ST. dot (Arti st. NAME). eq(" Pabl 0");

Property objects provide the APl mostly analogius to ExpressionFactory, though it is significantly shorter and
is aware of the value types. It provides compile-time checks of both property names and types of argumentsin
conditions. We will use Property-based APl in further examples.

7.5. Evaluating Expressions in Memory

When used in a query, an expression is converted to SQL WHERE clause (or ORDER BY clause) by Cayenne
during query execution. Thus the actual evaluation against the data is done by the database engine. However the
same expressions can also be used for accessing object properties, calculating values, in-memory filtering.

Checking whether an object satisfies an expression:

Expression e = Artist.NAME. i n("John", "Bob");
Artist artist = ...
if(e.match(artist)) {

v4.l 34

Expressions

}

Reading property value:

String nane = Artist.NAME path().evaluate(artist); ‘

Filtering alist of objects:

Expression e = Artist.NAME. i n("John", "Bob");
List<Artist> unfiltered = ...
List<Artist> filtered = e.filterObjects(unfiltered);

Note

Current limitation of in-memory expressions is that no collections are permitted in the property path.

7.6. Translating Expressions to EJBQL

EJBQL isatextua query language that can be used with Cayenne. In some situations, it is convenient to be able
to convert Expression instances into EJBQL. Expressions support this conversion. An example is shown below.

String serial = ...

Expression e = Pkg. SERI AL. eq(seri al);

Li st <Obj ect > parans = new ArraylLi st <Cbj ect>();

EJBQLQuery query = new EJBQ.Query("SELECT p FROM Pkg p WHERE " + e.toEJBQ.(parans, "p");

for(int i=0;i<parans.size();i++) {
query. set Paraneter (i +1, parans.get(i));

}

Thiswould be equivalent to the following purely EJBQL querying logic;

EJBQLQuery query = new EJBQ.Query("SELECT p FROM Pkg p WHERE p.serial = ?1");
query. set Paraneter (1, serial);

v.4.1 35

Chapter 8. Orderings

An Ordering object defines how a list of objects should be ordered. Orderings are essentially path expressions
combined with a sorting strategy. Creating an Ordering:

Ordering o = new Ordering(Painting. NAVE_PROPERTY, Sort Order. ASCENDI NG ;

Like expressions, orderings are trandated into SQL as parts of queries (and the sorting occurs in the database).
Also like expressions, orderings can be used in memory, naturally - to sort objects:

Ordering o = new Ordering(Painting. NAVE_PROPERTY, Sort O der. ASCENDI NG | NSENSI Tl VE) ;
Li st<Painting> list = ...
o.orderList(list);

Note that unlike filtering with Expressions, ordering is performed in-place. This list object is reordered and no
new list is created.

v.4.1 36

Chapter 9. Queries

Queries are Java objects used by the application to communicate with the database. Cayenne knows how to
tranglate queriesinto SQL statements appropriate for a particular database engine. Most often queries are used to
find objects matching certain criteria, but there are other types of queries too. E.g. those allowing to run native
SQL, call DB stored procedures, etc. When committing objects, Cayenne itself creates special queries to insert/
update/del ete rowsin the database.

There is a number of built-in queriesin Cayenne, described later in this chapter. Most of the newer queries use
fluent API and can be created and executed as easy-to-read one-liners. Users can define their own query typesto
abstract certain DB interactions that for whatever reason can not be adequately described by the built-in set.

Queries can be roughly categorized as "object” and "native". Object queries (most notably ObjectSelect,
SelectByld, and EJBQL Query) are built with abstractions originating in the object model (the "object" sideinthe
"object-relationa" divide). E.g. ObjectSelect is assembled from a Java class of the objects to fetch, a qualifier
expression, orderings, etc. - all of this expressed in terms of the object model.

Native queries describe adesired DB operation as SQL code (SQL Select, SQL Template query) or areferenceto
a stored procedure (ProcedureQuery), etc. The results of native queries are usualy presented as Lists of Maps,
with each map representing arow in the DB (aterm "data row" is often used to describe such a map). They can
potentialy be converted to objects, however it may take a considerable effort to do so. Native queries are also
less (if at all) portable across databases than object queries.

9.1. ObjectSelect

9.1.1. Selecting objects
ObjectSalect supersedes older SelectQuery. SelectQuery is still available and supported.

ObjectSelect is the most commonly used query in Cayenne applications. This may be the only query you will
ever need. It returns alist of persistent objects (or data rows) of a certain type specified in the query:

Li st<Artist> objects = ObjectSel ect.query(Artist.class).select(context); ‘

Thisreturned al rowsinthe"ARTIST" table. If thelogswereturned on, you might seethefollowing SQL printed:

I NFO SELECT t 0. DATE_OF BI RTH, t0.NAME, t0.1D FROM ARTI ST t0
INFO === returned 5 row. - took 5 ns.

This SQL was generated by Cayenne from the ObjectSelect above. ObjectSelect can have a qualifier to select
only the data matching specific criteria. Qualifier is simply an Expression (Expressions where discussed in the
previous chapter), appended to the query using "where" method. If you only want artists whose name begins with
'Pablo’, you might use the following qualifier expression:

v.4.1 37

Queries

Li st<Artist> objects = ObjectSelect.query(Artist.class)
.where(Artist.NAMVE. | i ke(" Pabl 0%'))
.sel ect (context);

The SQL will look different thistime:
INFO SELECT t0. DATE_OF BIRTH, t0.NAMVE, t0.1D FROM ARTI ST t0 WHERE t 0. NANE LI KE ?

[bi nd: 1->NAME:' Pabl 0%]
INFO === returned 1 row. - took 6 ns.

ObjectSelect allows to assemble qualifier from parts, using "and" and "or" method to chain then together:

Li st<Artist> objects = ObjectSel ect.query(Artist.class)
.where(Artist. NAMVE. | i ke("A%))
.and(Artist.DATE_OF_BI RTH. gt (soneDat e)

. sel ect (context);

To order the results of ObjectSelect, one or more orderings can be applied:

Li st<Artist> objects = CbjectSelect.query(Artist.class)
.orderBy(Artist. DATE _OF_BI RTH. desc())
.orderBy(Artist. NAME. asc())

.sel ect (context);

There'sanumber of other useful methods in ObjectSelect that define what to select and how to optimize database
interaction (prefetching, caching, fetch offset and limit, pagination, etc.). Some of them are discussed in separate
chapters on caching and performance optimization. Others are fairly self-explanatory. Please check the API docs
for the full extent of the ObjectSelect features.

9.1.2. Selecting individual columns

bj ect Sel ect query can be used to fetch individual properties of objects viatype-safe API:

Li st<String> names = bj ect Sel ect. col umQuery(Artist.class, Artist.ARTI ST_NAME)
.sel ect (context);

And here is example of selecting several properties, note that result will be oj ect[]:

Li st <Obj ect[] > naneAndDat e = Obj ect Sel ect
.col umQuery(Artist.class, Artist.ARTIST_NAME, Artist.DATE _OF Bl RTH)
. sel ect (cont ext);

9.1.3. Selecting using aggregate functions

ObjectSelect query supports usage of aggregate functions. Most common variant of aggregation is selecting count
of records, this can be donerealy easy:

| ong count = Object Sel ect. query(Artist.class).sel ect Count (context);

But you can use aggregates in more cases, even combine selecting individual properties and aggregates.

v.4.1 38

Queries

// this is artificial property signaling that we want to get full object
Property<Artist> artistProperty = Property.createSel f(Artist.class);

Li st <Obj ect[]> arti st AndPai nti ngCount = Obj ect Sel ect.col umQuery(Artist.class, artistProperty, Artis

.where(Artist. ARTI ST_NAME. | i ke("a%))

. havi ng(Artist. PAI NTI NG_ARRAY. count () .1t (5L))

.orderBy(Artist.PAlI NTI NG_ARRAY. count ().desc(), Artist.ARTIST_NAME. asc())
.sel ect (context);

for(Ooject[] next : artistAndPaintingCount) {
Artist artist = (Artist)next[O0];
| ong paintings = (Long)next[1];
Systemout.println(artist.getArtistNanme() + " have " + paintings + " paintings");

}
Hereis generated sq. for this query:

SELECT DI STI NCT t 0. ARTI ST_NAME, tO0.DATE_OF BI RTH, t0.ARTIST_ID, COUNT(t 1. PAl NTI NG | D)
FROM ARTI ST t0 JON PAINTING t1 ON (t0.ARTIST_ID = t1. ARTI ST_I D)

WHERE t 0. ARTI ST_NAME LI KE ?

GROUP BY t0. ARTI ST_NAME, t0.ARTIST ID, tO0.DATE OF Bl RTH

HAVI NG COUNT(t 1. PAINTING ID) < ?

ORDER BY COUNT(t1.PAINTING | D) DESC, tO.ARTIST_NANE

9.2. EJBQLQuery

EJBQL Query was created asapart of an experiment in adopting some of JavaPersistence API (JPA) approachesin
Cayenne. Itisaparameterized object query that is created from query String. A String used to build EJBQL Query

must conform to JPQL (JPA query language):

EJBQLQuery query = new EJBQLQuery("select a FROM Artist a");

. PAI NTI NG _#£

JPQL details can be found in any JPA manual. Here we'll mention only how this fitsinto Cayenne and what are

the differences between EJBQL and other Cayenne queries.

Although most frequently EJBQLQuery is used as an aternative to SelectQuery, there are also DELETE and

UPDATE varieties available.

Note

As of this version of Cayenne, DELETE and UPDATE do not change the state of abjects in the
ObjectContext. They are run directly against the database instead.

EJBQLQuery sel ect = new EJBQLQuery("select a FROM Arti st a WHERE a. nane = ' Sal vador Dali'");
List<Artist> artists = context.perfornQuery(select);

EJBQLQuery del ete = new EJBQ.Query("del ete from Painting");
cont ext . perfornmCGeneri cQuery(delete);

EJBQLQuery update = new EJBQLQuery("UPDATE Painting AS p SET p.nane = 'P2' WHERE p.nane = 'P1'");

v.4.1

39

Queries

cont ext . per fornmGeneri cQuery(update);

In most cases SelectQuery is preferred to EIBQL Query, asit is API-based, and provides you with better compile-
time checks. However sometimes you may want a completely scriptable object query. This is when you might
prefer EJBQL. A more practical reason for picking EJBQL over SelectQuery though is that the former offers
some extra selecting capabilities, namely aggregate functions and subqueries:

EJBQLQuery query = new EJBQLQuery("sel ect a, COUNT(p) FROM Artist a JO N a.paintings p GROUP BY a");
Li st<Object[]> result = context.perfornuery(query);
for(Qoject[] artistWthCount : result) {
Artist a = (Artist) artistWthCount[O0];
int hasPaintings = (Integer) artistWthCount[1];
}

This also demonstrates a previously unseen type of select result - a List of Object[] elements, where each entry
in an Object[] is either a DataObject or a scalar, depending on the query SELECT clause. A result can also be
alist of scalars:

EJBQLQuery query = new EJBQLQuery("sel ect a.nane FROM Artist a");
Li st<String> nanes = context . perfornQuery(query);

EJBQL Query supportsan "IN" clause with three different usage-patterns. The following example would require
three individual positional parameters (named parameters could also have been used) to be supplied.

select p fromPainting p where p.paintingTitle in (?1,?2, ?3) ‘

The following example requires a single positional parameter to be supplied. The parameter can be any concrete
implementation of the java.util.Collection interface such asjava.util.List or java.util . Set.

select p fromPainting p where p.paintingTitle in ?1 ‘

The following exampleis functionally identical to the one prior.

select p fromPainting p where p.paintingTitle in (?1) ‘

It is possible to convert an Expression object used with a SelectQuery to EJBQL. Use the
Expression#tappendAsEIBQL methods for this purpose.

While Cayenne Expressions discussed previously can be thought of as identical to JPQL WHERE clause, and
indeed they are very close, there are afew noteable differences:

* Null handling: SelectQuery would translate the expressions matching NUL L valuesto the corresponding "X 1S
NULL" or "X ISNOT NULL" SQL syntax. EJBQLQuery on the other hand requires explicit "IS NULL" (or
"IS NOT NULL") syntax to be used, otherwise the generated SQL will look like "X = NULL" (or "X <>
NULL"), which will evaluate differently.

» Expression Parameters. SelectQuery uses "$" to denote named parameters (e.g. "$myParam™), while EJBQL
uses™:" (e.g. ":myParam”). Also EJBQL supports positional parameters denoted by the question mark: "?3".

v4.l 40

Queries

9.3. SelectByld

This query allows to search objects by their ID. It's introduced in Cayenne 4.0 and uses new "fluent” APl same
aS (bj ect Sel ect query.

Hereis example of how to useit:

Artist artistWthldl = Sel ectByld. query(Artist.class, 1)
.prefetch(Artist. PAINTI NG ARRAY. joint())
.1 ocal Cache()
.sel ect One(cont ext);

9.4. SQLSelect and SQLExec

s sel ect and sQLExec are essentially a "fluent” versions of older sQ Tenpl at e query. sQ.sel ect can be used (as
name suggests) to select custom data in form of entities, separate columns or collection of pat aRow. SQLExec IS
designed to just execute any raw SQL code (e.g. updates, deletes, DDLSs, etc.) This queries support all directives
described in SQL Template section.

Here is example of how to use sQ sel ect :

SQ.Sel ect <Pai nting> gl = SQ.Sel ect
.query(Painting.class, "SELECT * FROM PAI NTI NG WHERE PAI NTI NG TI TLE LI KE #bi nd($title)")

.parans("title", "painting%)
. upper Col umNanes()

.1 ocal Cache()

.limt(100)

.sel ect (context);

And here is example of how to use sQ Exec:

int inserted = SQLExec
.query(" I NSERT | NTO ARTI ST (ARTI ST ID, ARTIST NAME) VALUES (#bi nd($id), #bind($nane))")
. par ansArray(55, "Picasso")
. updat e(cont ext) ;

9.5. MappedSelect and MappedExec

MappedsSel ect and MappedExec IS a queries that are just a reference to another queries stored in the DataMap. The
actual stored query can be SelectQuery, SQL Template, EIBQL Query, etc. Difference between mappedsel ect and
MappedExec IS (as reflected in their names) whether underlying query intended to select data or just to perform
some generic SQL code.

Note

These queries are "fluent” versions of deprecated NanedQuery class.

Here is example of how to use Mappedsel ect :

v.4.1l 41

Queries

Li st<Artist> results = MappedSel ect. query("artistsByNanme", Artist.class)
. paran("nanme", "Picasso")

.sel ect (context);

And here is example of mMappedExec:
QueryResult result = MappedExec. query("updat eQuery")
.paran("var", "value")

.execut e(cont ext);
System out. println("Rows updated: " + result.firstUpdateCount());

9.6. ProcedureCall

Stored procedures are mapped as separate objects in CayenneModeler. procedur ecal | provides away to execute
them with a certain set of parameters. This query is a "fluent" version of older procedurequery. Just like with
SQLTenpl at e, the outcome of a procedure can be anything - a single result set, multiple result sets, some data
modification (returned as an update count), or a combination of these. So use root classto get a single result set,
and use only procedure name for anything else:

Li st<Artist> result = ProcedureCall.query("my_procedure", Artist.class)
. paran("pl", "abc")
. paran("p2", 3000)
.call (context)
firstList();

/1 here we do not bother with root class.
/1 Procedure nane gives us needed routing information
ProcedureResult result = ProcedureCall.query("ny_procedure")
.paran("pl", "abc")
. paran("p2", 3000)
.call();

A stored procedure can return data back to the application as result sets or via OUT parameters. To simplify the
processing of the query output, QueryResponse treats OUT parametersasif it was a separate result set. For stored
procedures declaref any OUT or INOUT parameters, pr ocedur eResul t have convenient utility method to get them:

ProcedureResult result = ProcedureCall.query("ny_procedure")
.call (context);

// read OUT paraneters
Obj ect out = result.getQutParan("out_parant');

There maybe a situation when a stored procedure handles its own transactions, but an application is configured
to use Cayenne-managed transactions. This is obviously conflicting and undesirable behavior. In this case

v.4.1l 42

Queries

ProcedureQueries should be executed explicitly wrapped in an "external" Transaction. This is one of the few
cases when a user should worry about transactions at all. See Transactions section for more details.

9.7. Custom Queries

If auser needs some extrafunctionality not addressed by the existing set of Cayenne queries, he can write hisown.
The only requirement isto implement or g. apache. cayenne. query. Query interface. The easiest way to go about it
is to subclass some of the base queriesin Cayenne.

E.g. to do something directly in the JDBC layer, you might subclass AbstractQuery:
public class MyQuery extends AbstractQuery {

@verride
public SQLAction createSQ.Acti on(SQLActionVisitor visitor) {
return new SQLAction() {

@verride
public void performActi on(Connecti on connection, OperationObserver observer) throws SQLException, EX

// 1. do some JDBC work using provided connection...
/1 2. push results back to Cayenne via OperationQbserver

}

To delegate the actual query execution to a standard Cayenne query, you may subclass IndirectQuery:

public class M/Del egati ngQuery extends | ndirectQery {

@verride

protected Query createRepl acement Query(EntityResol ver resolver) {
SQ.Tenpl at e del egate = new SQ.Tenpl at e(SoneCl ass. cl ass, generateRawSQ.());
del egat e. set Fet chi ngDat aRows(true);
return del egate;

}

protected String generateRawSQL() {
/1 build sone SQ string
}
}

In fact many internal Cayenne queriesare IndirectQueries, del egating to SelectQuery or SQL Template after some
preprocessing.

9.8. SQLTemplate

SQLTemplate is a query that allows to run native SQL from a Cayenne application. It comes handy when the
standard ORM concepts are not sufficient for a given query or an update. SQL is too powerful and alows to
manipulate data in ways that are not easily described as a graph of related entities. Cayenne acknowledges this

v4.l 43

Queries

fact and provides this facility to execute SQL, mapping the result to objects when possible. Here are examples
of selecting and non-selecting SQL Templ ates:

SQLTenpl ate sel ect = new SQLTenpl ate(Artist.class, "select * from ARTI ST");
Li st<Artist> result = context.performuery(select);

SQL.Tenpl ate update = new SQL.Tenpl ate(Artist.class, "delete fromARTI ST");
Quer yResponse response = context. performGeneri cQuery(update);

Cayenne doesn't make any attempt to make sense of the SQL semantics, so it doesn't know whether agiven query
is performing a select or update, etc. It is the the user's decision to run a given query as a selecting or "generic".

Note

Any data modifications done to DB as a result of SQLTemplate execution do not change the state of
objectsin the ObjectContext. So some objects in the context may become stale as aresult.

Another point to note is that the first argument to the SQL Template constructor - the Java class - has the same
meaning as in SelectQuery only when the result can be converted to objects (e.g. when thisis a selecting query
and it is selecting all columns from one table). In this case it denotes the "root" entity of this query result. If the
query does not denote a single entity result, this argument is only used for query routing, i.e. determining which
database it should be run against. You are free to use any persistent class or even a DataMap instance in such
situation. It will work as long as the passed "root" maps to the same database as the current query.

To achieve interoperability between mutliple RDBMS a user can specify multiple SQL statements for the same
SQL Template, each correspondingto anative SQL dialect. A key used to look up theright dialect during execution
isafully qualified class name of the corresponding DbAdapter. If no DB-specific statement is present for agiven
DB, adefault generic statement isused. E.g. in all the examples above a default statement will be used regardless
of the runtime database. So in most casesyou won't need to explicitly "trandate” your SQL to all possibledialects.
Hereis how thisworksin practice:

SQLTenpl ate sel ect = new SQ.Tenpl ate(Artist.class, "select * from ARTI ST");

/'l For Postgres it would be nice to trimpadding of all CHAR col ums.

/'l Otherwi se those will be returned with whitespace on the right.

/1 assum ng "NAME" is defined as CHAR ..

String pgSQL = "SELECT ARTI ST_I D, RTRI M NAME), DATE_OF Bl RTH FROM ARTI ST";
qguery. set Tenpl at e(Post gr esAdapt er. cl ass. get Name(), pgSQ);

9.8.1. Scripting SQLTemplate with Velocity

The most interesting aspect of SQL Template (and the reason why it is called a"template”) isthat a SQL string is
treated by Cayenne as an Apache Velocity template. Before sending it to DB as a PreparedStatement, the String
is evaluated in the Ve ocity context, that does variable substitutions, and performs special callbacks in response
to various directives, thus controlling query interaction with the JDBC layer.

v.4.1l 44

Queries

Check Velocity docs for the syntax details. Here well just mention the two main scripting elements -
"variables' (that look like svar) and "directives' (that ook like #directive(p1t p2 p3)). All built-in Velocity
directives are supported. Additionally Cayenne defines a number of its own directives to bind parameters to
PreparedStatements and to control the structure of the ResultSet. These directives are described in the following
sections.

9.8.2. Variable Substitution

All variablesin the template string are replaced from query parameters:

SQLTenpl ate query = new SQ.Tenpl ate(Artist.class, "delete from $tabl eNane");
query. set Paranet ers(Col | ecti ons. si ngl et onMap("t abl eNanme", "mydb. PAI NTING'));

/1 this will generate SQ. like this: "delete from mydb. PAI NTI NG'

The example above demonstrates the point made earlier in this chapter - even if we don't know upfront which
table the query will run against, we can still use a fixed "root" in constructor (arti st . cl ass in this case) , aswe
are not planning on converting the result to objects.

Variable substitution within the text uses"obj ect . t oSt ri ng() " method to replace the variable value. Keepin mind
that this may not be appropriate in all situations. E.g. passing adate object in aWHERE clause expression may be
converted to a String not understood by the target RDBM S SQL parser. |n such cases variable should be wrapped
in #bi nd directive as described below.

9.8.3. Directives
These are the Cayenne directives used to customize SQL Template parsing and integrate it with the JDBC layer:

9.8.3.1. #bind

Creates a PreparedStatement positional parameter in place of the directive, binding the valueto it before statement
execution. #bi nd is allowed in places where a"?' would be allowed in a PreparedStatement. And in such places
it aimost always makes sense to pass objects to the template via this or other forms of #bi nd instead of inserting
theminline.

Semantics:

#bi nd(val ue)
#bi nd(val ue j dbcType)
#bi nd(val ue j dbcType scal e)

Arguments:

* val ue - can either be a char constant or a variable that is resolved from the query parameters. Note that the
variable can be a collection, that will be automatically expanded into alist of individual value bindings. This
isuseful for instance to build IN conditions.

e jdbcType - isaJDBC datatype of the parameter as defined inj ava. sql . Types.

v4.l 45

Queries

* scal e - Anoptional scale of the numeric value. Same as "scale" in PreparedStatement.

Usage:

#bi nd($xyz)

#bi nd("' str')

#bi nd($xyz ' VARCHAR)
#bi nd($xyz ' DECI MAL' 2)

Full example:

updat e ARTI ST set NAME = #bi nd($nane) where | D = #bi nd($id)

9.8.3.2. #bindEqual

Same as #bind, but aso includes the "=" sign in front of the value binding. Look at the example below - we took
the #bind example and replaced "1 D = #bi nd(. .)" With "I D #bi ndEqual (. .)". Whileit lookslike a clumsy shortcut
to eiminate the equal sign, the actual reason why thisis useful isthat it alows the value to be null. If the value
isnot null, "= 2" is generated, but if it is, the resulting chunk of the SQL would look like"is nuLL" and will be
compilant with what the DB expects.

Semantics:

#bi ndEqual (val ue)
#bi ndEqual (val ue j dbcType)
#bi ndEqual (val ue j dbcType scal e)

Arguments: (same as #bind)
Usage:
#bi ndEqual ($xyz)
#bi ndEqual (' str')
#bi ndEqual ($xyz ' VARCHAR)
#bi ndEqual ($xyz ' DECI MAL' 2)

Full example:

updat e ARTI ST set NAME = #bi nd($nane) where | D #bi ndEqual ($i d)

9.8.3.3. #bindNotEqual

This directive deals with the same issue as #bi ndEqual above, only it generates "not equal” in front of the value
(or ISNOT NULL).

Semantics:

#bi ndNot Equal (val ue)
#bi ndNot Equal (val ue j dbcType)
#bi ndNot Equal (val ue jdbcType scal e)

Arguments: (same as #bind)

v4.l 46

Queries

Usage:
#bi ndNot Equal ($xyz)
#bi ndNot Equal (' str')
#bi ndNot Equal ($xyz ' VARCHAR)
#bi ndNot Equal ($xyz ' DECI MAL' 2)

Full example:

updat e ARTI ST set NAMVE = #bi nd($nane) where |D #bi ndEqual ($i d)

9.8.3.4. #bindObjectEqual

It can betricky to use a Persistent object or an Objectld in abinding, especially for tables with compound primary
keys. This directive helpsto handle such binding. It maps columnsin the query to the names of Persistent object
ID columns, extracts ID values from the object, and generates SQL like"COL1=?AND COL2="..." , binding
positional parameters to 1D values. It can also correctly handle null object. Also notice how we are specifying
aVelocity array for multi-column PK.

Semantics:
#bi ndQoj ect Equal (val ue col urms i dCol umms)
Arguments:
 val ue - must be avariable that is resolved from the query parametersto a Persistent or Objectld.
* col umns - the names of the columnsto generate in the SQL.

* i dcol um - the names of the ID columnsfor agiven entity. Must match the order of "columns" to match against.
Usage:

#bi ndCbj ect Equal ($a 't0. 1D 'ID)

#bi ndObj ect Equal ($b ['t0. FK1', 't0.FK2'] ['PK1', 'PK2'])
Full example:
String sql = "SELECT * FROM PAINTING t0 WHERE #bi ndCbj ect Equal ($a 't0. ARTIST_ID 'ARTIST_ID) ORDER BY PAI NTI NC

SQLTenpl ate sel ect = new SQ.Tenpl ate(Artist.class, sql);

Artist a =
sel ect. set Paranet ers(Col | ecti ons. si ngl etonMap("a", a));

9.8.3.5. #bindObjectNotEqual
Same as #hindObjectEqual above, only generates "not equal™ operator for value comparison (or ISNOT NULL).

Semantics:

#bi ndObj ect Not Equal (val ue col ums i dCol umms)

v.4.1 47

Queries

Arguments: (same as #bindObjectEqual)

Usage:

#bi ndObj ect Not Equal ($a 't0.1D 'I1D)

#bi ndObj ect Not Equal ($b ['t0. FKL', 't0.FK2'] ['PKLl', 'PK2'])
Full example:
String sql = "SELECT * FROM PAINTING t0 WHERE #bi ndCbj ect Not Equal ($a 't 0. ARTIST_ID 'ARTIST_ID)

SQLTenpl ate sel ect = new SQ.Tenpl ate(Artist.class, sql);

Artist a =
sel ect. set Par anet er s(Col | ecti ons. si ngl etonMap("a", a));

9.8.3.6. #result

Renders a column in SELECT clause of a query and maps it to a key in the result DataRow. Also ensures the
value read is of the correct type. This allows to create a DataRow (and ultimately - a persistent object) from an
arbitrary ResultSet.

Semantics:

#resul t (col um)

#resul t (col um javaType)

#resul t (col um javaType ali as)

#resul t (col um javaType alias dat aRowKey)

Arguments:
* col um - the name of the column to render in SQL SELECT clause.

* javaType - a fully-qualified Java class name for a given result column. For ssmplicity most common Java
types used in JDBC can be specified without a package. These include all numeric types, primitives, String,
SQL dates, BigDecimal and BigInteger. SO "#result (' A ' String')", "#result(' B 'java.lang. String)" and
"#gresult('Cc 'int')" aredl vaid

e alias - specifies both the SQL alias of the column and the value key in the DataRow. If omitted, "column”
valueis used.

* dataRowkey - needed if SQL 'alias is not appropriate as a DataRow key on the Cayenne side. One common
case when this happens is when a DataRow retrieved from a query is mapped using joint prefetch keys (see
below). In this case DataRow must use database path expressions for joint column keys, and their format is
incompatible with most databases alias format.

Usage:

#resul t (' NAME')
#resul t (' DATE_OF_BIRTH 'java.util.Date')
#result (' DOB' 'java.util.Date' 'DATE_OF_BIRTH)

v4.l 48

R BY PAI NI

Queries

#result (' DOB' 'java.util.Date' '' 'artist.DATE_OF_BIRTH)
#resul t (' SALARY" 'float')

Full example:

SELECT #result('ID 'int'), #result('NAME 'String'), #result(' DATE_OF_BIRTH 'java.util.Date') FWAWIST

Note

For advanced features you may look at the Apache Velocity extension

9.8.4. Mapping SQLTemplate Results

Here we'll discuss how to convert the data selected via SQL Template to some useable format, compatible with
other query results. It can either be very simple or very complex, depending on the structure of the SQL, JDBC
driver nature and the desired result structure. This section presents various tips and tricks dealing with result

mapping.

By default SQL Templateis expected to return a List of Persistent objects of itsroot type. Thisisthe simple case:

SQ.Tenpl ate query = new SQ.Tenpl ate(Artist.class, "SELECT * FROM ARTI ST");

// List of Artists
List<Artist> artists = context.perfornQuery(query);

Just like SelectQuery, SQLTemplate can fetch DataRows. In fact DataRows option is very useful with
SQL Template, asthe result type most often than not does not represent a Cayenne entity, but instead may be some
aggregated report or any other data whose object structure is opague to Cayenne:

String sql = "SELECT t0. NAME, COUNT(1) FROM ARTIST t0 JON PAINTINGt1 ON (t0.1D = t1.ARTIST_ID) "
+ "GROUP BY t0. NAME ORDER BY COUNT(1)";
SQL.Tenpl ate query = new SQ.Tenpl ate(Artist.class, sql);

/] ensure we are fetching DataRows
guery. set Fet chi ngDat aRows(true);

/1 List of DataRow
Li st <Dat aRow> rows = context. performuery(query);

In the exampl e above, even though the query root is Artist. the result isalist of artist names with painting counts
(as mentioned before in such case "root” is only used to find the DB to fetch against, but has no bearning on the
result). The DataRows here are the most appropriate and desired result type.

In amore advanced case you may decide to fetch alist of scalars or alist of Object[] with each array entry being
either an entity or ascalar. Y ou probably won't be doing thistoo often and it requires quite alot of work to setup,
but if you want your SQL Template to return results similar to EIJBQLQuery, it is doable using SQLResult as
described below:

SQL.Tenpl ate query = new SQ.Tenpl at e(Pai nti ng. cl ass, "SELECT ESTI MATED PRI CE P FROM PAI NTI NG') ; ‘

v4.l 49

Queries

/1l let Cayenne know that result is a scal ar
SQ.Result resultDescriptor = new SQLResult();
resul t Descri pt or. addCol umResul t ("P");

query. set Resul t (resul t Descriptor);

/1 List of BigDecimals
Li st <Bi gDeci mal > prices = context. perfornQuery(query);

SQLTenpl ate query = new SQ.Tenpl ate(Artist.class, "SELECT t0.I1D, t0.NAVE, tO.DATE _OF BI RTH, COUNT(t1
"FROM ARTI ST t0 LEFT JON PAINTINGt1 ON (t0.ID = t1. ARTIST_ID) " +
"GROUP BY t0.1D, t0.NAME, tO0.DATE OF BIRTH");

/'l let Cayenne know that result is a mx of Artist objects and the count of their paintings
EntityResult artistResult = new EntityResult(Artist.class);

artistResult.addDbFi el d(Artist.| D PK COLUWN, "ARTIST_ID");

artistResult.addObj ectFiel d(Artist. NAVE_PROPERTY, "NAME");

artistResult.addObj ectFiel d(Artist. DATE_OF_BlI RTH _PROPERTY, "DATE OF_BI RTH");

SQLResult resul tDescriptor = new SQLResul t();
resul t Descri ptor.addEntityResul t(artistResult);
resul t Descri pt or. addCol umResul t ("C");

query. set Resul t (resul t Descriptor);

/'l List of Cbject[]
Li st<Obj ect[]> data = context. performuery(query);

Another trick related to mapping result sets is making Cayenne recognize prefetched entities in the result set.
Thisemulates"joint" prefetching of SelectQuery, and isachieved by special column naming. Columns belonging
to the "root" entity of the query should use unqualified names corresponding to the root DbEntity columns. For
each related entity column names must be prefixed with relationship name and adot (e.g. "toArtist.ID"). Column

naming can be controlled with "#result" directive:

String sgql = "SELECT distinct
+ "#result('tl. ESTI MATED PRI CE 'BigDecimal' '' 'paintings. ESTI MATED PRI CE'),
+ "#result('t1l. PAINTING TITLE 'String' '' 'paintings.PA NTINGTITLE),
+ "#result('tl. GALLERY_ID 'int' '' 'paintings. GALLERY_ID),
+ "#result('tl1.1D 'int' '' 'paintings.ID),
+ "#result('NAME' 'String'),
+ "#result (' DATE_OF BIRTH 'java.util.Date'),
+ "#result('t0.ID 'int' ''" 'ID)
+ "FROM ARTI ST t0, PAINTINGt1 "
+ "WHERE t0.1D = t1. ARTI ST_I D*;

SQ. Tenpl ate g = new SQ.Tenpl ate(Artist.class, sqgl);
g. addPref et ch(Arti st. PAl NTI NGS_PROPERTY)
Li st<Artist> objects = context.perfornQuery(query);

Andthefinal tip dealswith capitalization of the DataRow keys. Querieslike"seLecT * FrRov .. " and even "SELECT
COLUMNI, COLUMN2, ... FRoM ..." can sometimes result in Cayenne exceptions on attempts to convert fetched
DataRows to objects. Essentially any query that isnot using a#resul t directive to describe the result set is prone

to this problem, as different databases may produce different capitalization of the java.sgl.ResultSet columns.

v.4.1 50

PAI NTI NG_I C

Queries

Themost universal way to addressthisissueisto describe each column explicitly inthe SQL Templatevia#r esul t
€.0.: "SELECT #resul t (' colum1'), #result (' columz2'), ..". However thisquickly becomesimpractical for tables
with lots of columns. For such cases Cayenne provides ashortcut based on the fact that an ORM mapping usually
follows some naming convention for the column names. Simply put, for case-insensitive databases devel opers
normally use either all lowercase or all uppercase column names. Hereisthe API that takes advantage of that user
knowledge and forces Cayenne to follow a given naming convention for the DataRow keys (thisis also available
as adropdown in the Model er):

SQ.Tenpl ate query = new SQ.Tenpl at e(" SELECT * FROM ARTI ST") ;
query. set Col unmNanesCapi t al i zati on(CapsStrat egy. LOAER) ;
Li st objects = context.perfornQuery(query);

or

SQLTenpl ate query = new SQ.Tenpl at e(" SELECT * FROM ARTI ST") ;
qguery. set Col utmNanesCapi talizati on(CapsStrat egy. UPPER) ;
Li st objects = context. performuery(query);

None of this affects the generated SQL, but the resulting DataRows are using correct capitalization. Note that
you probably shouldn't bother with this unless you are getting CayenneRuntimeExceptions when fetching with
SQL Template.

v.4.l 51

Chapter 10. Lifecycle Events

An application might be interested in getting notified when a Persistent object moves through its lifecycle
(i.e. fetched from DB, created, modified, committed). E.g. when a new object is created, the application may
want to initialize its default properties (this can't be done in constructor, as constructor is also called when an
object isfetched from DB). Before save, the application may perform validation and/or set some properties (e.g.
"updatedTimestamp"). After save it may want to create an audit record for each saved object, etc., etc.

All this can be achieved by declaring callback methods either in Persistent objects or in non-persistent listener
classes defined by the application (further smply called "listeners'). There are eight types of lifecycle events
supported by Cayenne, listed later in this chapter. When any such event occurs (e.g. an object is committed),
Cayennewouldinvokeall appropriate callbacks. Persistent objectswould receivetheir own events, whilelisteners
would receive events from any objects.

Cayenne alows to build rather powerful and complex "workflows" or "processors' tied to objects lifecycle,
especially with listeners, as they have full access to the application evnironment outside Cayenne. This power
comes from such features as filtering which entity events are sent to a given listener and the ability to create a
common operation context for multiple callback invocations. All of these are discussed |ater in this chapter.

10.1. Types of Lifecycle Events
Cayenne defines the following 8 types of lifecycle events for which callbacks can be regsitered:

Table 10.1. Lifecycle Event Types

Event Occurs...

PostAdd right after anew object is created inside avj ect Cont ext . newabj ect () . When thisevent isfired
the object isaready registered with its ObjectContext and hasits Objectld and ObjectContext
properties set.

PrePersist right before a new object is committed, inside ject Context.comitChanges() and

Obj ect Cont ext . conmi t ChangesToPar ent () (and after "val i dat eFor I nsert ()").

PreUpdate right before a modified object is committed, inside j ect Cont ext . commi t Changes() and
Qoj ect Cont ext . conmi t ChangesToPar ent () (and after "val i dat eFor Updat e()).

PreRemove right before an object is deleted, inside j ect Cont ext . del et ethj ects(). The event is also
generated for each object indirectly deleted as aresult of CASCADE delete rule.

PostPersist right after acommit of a new object is done, inside tbj ect Cont ext . conmi t Changes() .

PostUpdate right after acommit of amodified object is done, inside j ect Cont ext . conmi t Changes() .

PostRemove right after acommit of a deleted object is done, inside oj ect Cont ext . commi t Changes() .

v.4.l 52

Lifecycle Events

Event Occurs...

PostLoad » After an object isfetched inside aj ect Cont ext . per f or nQuery() .
» After an object isreverted inside aj ect Cont ext . rol | backChanges() .

» Anytime afaulted object isresolved (i.e. if arelationship is fetched).

10.2. Callbacks on Persistent Objects

Callback methods on Persistent classes are mapped in CayenneModeler for each ObjEntity. Empty callback
methods are automatically created as a part of class generation (either with Maven, Ant or the Modeler) and
are later filled with appropriate logic by the programmer. E.g. assuming we mapped a 'post-add' callback called
‘'onNewOrder' in ObjEntity 'Order’, the following code will be generated:

public abstract class _Order extends CayenneDataObject {
protected abstract void onNewOrder();

}

public class Order extends _Order {

@verride
protected void onNewOrder () {
/1 TODO: i npl ement onNewOr der

}

}

AsonNewar der () isalready declared in the mapping, it does not need to be registered explicitly. Implementing the
method in subclass to do something meaningful is all that is required at this point.

As arule callback methods do not have any knowledge of the outside application, and can only access the state
of the object itself and possibly the state of other persistent objects via object's own ObjectContext.

Note

Validation and callbacks. There is a clear overlap in functionality between object callbacks and
Dat athj ect . val i dat eFor X() mMethods. In the future validation may be completely superceeded by
callbacks. It isagood ideato use "validateForX" strictly for validation (or not useit at all). Updating the
state before commit should be done via callbacks.

10.3. Callbacks on Non-Persistent Listeners

A listener is simply some application class that has one or more annotated callback methods. A callback method
signature should be voi d someMet hod(SonePer si st ent Type obj ect) . It can be public, private, protected or use
default access.

public class OrderlListener {

v.4.1 53

Lifecycle Events

@Post Add(Or der . cl ass)
public void set Defaul t sFor NewOr der (Order o) {
0. set Creat edOn(new Date());

}

Notice that the example above contains an annotation on the callback method that defines the type of the event
this method should be called for. Before we go into annotation details, we'll show how to create and register a
listener with Cayenne. It isalways auser responsibility to register desired application listeners, usually right after
ServerRuntime is started. Hereis an example:

First let's define 2 simple listeners.
public class Listenerl {

@Post Add(MyEntity. cl ass)
voi d post Add(Persi stent object) {
/1 do somet hi ng
}
}

public class Listener2 {

@ost Renmove({ MyEntityl.class, M/Entity2.class })
voi d post Renove(Persi stent object) {
/'l do somet hi ng

}

@Post Updat e({ MyEntityl.class, M/Entity2.class })
voi d post Updat e(Persi stent object) {
/'l do somet hi ng

}

Ignore the annotations for a minute. The important point here is that the listeners are arbitrary classes unmapped
and unknown to Cayenne, that contain some callback methods. Now let's register them with runtime:

ServerRuntine runtinme = ...

runti ne. get Dat aDonai n() . addLi st ener (new Li stener1());
runti ne. get Dat aDonai n() . addLi st ener (new Li stener2());

Listeners in this example are very simple. However they don't have to be. Unlike Persistent objects, normally
listeners initialization is managed by the application code, not Cayenne, so listeners may have knowledge of
various application services, operation transactional context, etc. Besides a single listener can apply to multiple
entities. As a conseguence their callbacks can do more than just access a single ObjectContext.

Now let's discuss the annotations. There are eight annotations exactly matching the names of eight lifecycle
events. A callback method in alistener should be annotated with at least one, but possibly with more than one of

v.4.1 54

Lifecycle Events

them. Annotation itself defines what event the callback should react to. Annotation parameters are essentially an
entity filter, defining a subset of ObjEntities whose events we areinterested in:
/1 this callback will be invoked on Post Renove event of any object
/'l belonging to MyEntityl, MyEntity2 or their subcl asses

@ost Renove({ MyEntityl.class, M/Entity2.class })
voi d post Renove(Persi stent object) {

}

/'l simlar exanple with nultipe annotations on a single nethod
/1 each matching just one entity

@Post Persi st (MyEntityl. cl ass)

@Post Renpve(MyEntityl. cl ass)

@Post Updat e(MyEnti tyl. cl ass)

voi d post Commit (MyEntityl object) {

}

As shown above, "value" (the implicit annotation parameter) can contain one or more entity classes. Only
these entities' events will result in callback invocation. There's also another way to match entities - via custom
annotations. Thisallowsto match any number of entitieswithout even knowing what they are. Hereisan example.
Well first define a custom annotation:

@rar get (El enent Type. TYPE)
@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
public @nterface Tag {

}

Now we can define alistener that will react to events from ObjEntities annotated with this annotation:
public class Listener3 {

@rost Add(entityAnnotati ons = Tag. cl ass)
voi d post Add(Persi stent object) {
// do sonething

}

As you see we don't have any entities yet, still we can define a listener that does something useful. Now let's
annotate some entities:

@ag
public class MyEntityl extends _MyEntityl {

}

@ag
public class MyEntity2 extends _MyEntity2 {

}

v.4.1 55

Lifecycle Events

10.4. Combining Listeners with DataChannelFilters

A final touch in the listeners design is preserving the state of the listener within a single select or commit,
so that events generated by multiple objects can be collected and processed all together. To do that you will
need to implement a pat achannel Fi I ter, and add some callback methods to it. They will store their state in a
ThreadL ocal variable of thefilter. Here is an examplefilter that does something pretty meaningless - counts how
many total objectswere committed. However it demonstratestheimportant pattern of aggregating multiple events

and presenting a combined result:
public class ConmittedObjectCounter inplenments DataChannel Filter {
private ThreadLocal <int[]> counter;

@verride
public void init(DataChannel channel) {
counter = new ThreadLocal <int[]>();

@verride

publ i c QueryResponse onQuery(bj ect Cont ext origi nati ngContext, Query query, DataChannel FilterChain filterChs

return filterChain.onQuery(originati ngContext, query);

@verride
public G aphDi ff onSync(Cbject Context originatingContext, G aphDi ff changes, int syncType,
Dat aChannel Fil terChain filterChain) {

/1l init the counter for the current conmmt
counter.set(newint[1]);

try {
return filterChain.onSync(originatingContext, changes, syncType);

} finally {

/'l process aggregated result and rel ease the counter
Systemout.printIn("Committed " + counter.get()[0] + " object(s)");
counter.set(null);

@Post Persi st (entityAnnotations = Tag. cl ass)

@Post Updat e(enti t yAnnot ati ons = Tag. cl ass)

@Post Renove(entityAnnot ati ons = Tag. cl ass)

voi d afterConmit (Persistent object) {
counter.get()[0] ++;

Now since thisis both afilter and alistener, it needsto be registered as such:

Conmi tt edObj ect Count er counter = new Conmi ttedObj ect Counter();

v.4.1

56

Lifecycle Events

ServerRuntime runtime = ...
Dat aDonmai n domai n = runti ne. get Dat aDomai n() ;

/] register filter

/1 this will also add it as a |listener (since 3.2)
donmi n. addFi | ter (counter);

v.4.1

57

Chapter 11. Performance Tuning

11.1. Prefetching

Prefetching is a technique that allows to bring back in one query not only the queried objects, but also objects
related to them. In other wordsit is a controlled eager relationship resolving mechanism. Prefetching is discussed
in the "Performance Tuning" chapter, as it is a powerful performance optimization method. However another
common application of prefetching is to refresh stale object relationships, so more generally it can be viewed as
atechnique for managing subsets of the object graph.

Prefetching example:

Obj ect Sel ect <Artist> query = ObjectSel ect.query(Artist.class);

/1 instructs Cayenne to prefetch one of Artist's relationships
query. prefetch(Artist. PAINTINGS. disjoint());

/'l the above line is equivalent to the follow ng:
/'l query. prefetch("paintings", PrefetchTreeNode. D SIO NT_PREFETCH SEMANTI CS) ;

/1 query is expecuted as usual, but the resulting Artists will have
/1 their paintings "inflated"
List<Artist> artists = query.sel ect(context);

All types of relationships can be preftetched - to-one, to-many, flattened. A prefetch can span multiple
relationships:

query. prefetch(Artist. PAI NTI NGS. dot (Pai nti ng. GALLERY) . disjoint()); ‘

A query can have multiple prefetches:

query. prefetch(Artist. PAINTINGS. disjoint());
query. prefetch(Artist. PAI NTI NGS. dot (Pai nti ng. GALLERY) . di sjoint());

If aquery isfetching DataRows, al "digoint" prefetches are ignored, only "joint" prefetches are executed (see
prefetching semantics discussion below for what digjoint and joint prefetches mean).

11.1.1. Prefetching Semantics

Prefetching semantics defines a strategy to prefetch relationships. Depending on it, Cayenne would generate
different types of queries. The end result is the same - query root objects with related objects fully resolved.
However semantics can affect preformance, in some cases significantly. There are 3 types of prefetch semantics,
al defined as constants in or g. apache. cayenne. query. Pref et chTr eeNode:

Pr ef et chTr eeNode. JO NT_PREFETCH_SEMANTI CS
Pr ef et chTr eeNode. DI SJO NT_PREFETCH_SEMANTI CS
Pr ef et chTr eeNode. DI SJO NT_BY_| D_PREFETCH_SEMANTI CS

v.4.1 58

Performance Tuning

There's no limitation on mixing different types of semantics in the same query. Each prefetch can have its own
Semantics. Sel ect Query USES DI SO NT_PREFETCH_SEMANTI ¢S by default. ooj ect Sel ect requires explicit semantics
as we've seen above. sQLTenpl at e and Procedur eQuery are both using Ja NT_PREFETCH_SEMANTI ¢s and it can not be
changed due to the nature of those two queries.

11.1.2. Disjoint Prefetching Semantics

This semantics results in Cayenne generatiing one SQL statement for the main objects, and a separate statement
for each prefetch path (hence "disjoint" - related objects are not fetched with the main query). Each additional
SQL statement uses aqualifier of the main query plus aset of joinstraversing the preftech path between the main
and related entity.

This strategy has an advantage of efficient VM memory use, and faster overall result processing by Cayenne,
but it requires (1+N) SQL statementsto be executed, where N is the number of prefetched relationships.

11.1.3. Disjoint-by-ID Prefetching Semantics

Thisis a variation of digoint prefetch where related objects are matched against a set of I1Ds derived from the
fetched main abjects (or intermediate objects in a multi-step prefetch). Cayenne limits the size of the generated
WHERE clause, as most DBs can't parse arbitrary large SQL . So prefetch queries are broken into smaller queries.
The size of is controlled by the DI property Constants.SERVER_MAX_ID_QUALIFIER_SIZE PROPERTY
(the default number of conditions in the generated WHERE clause is 10000). Cayenne will generate (1 + N *
M) SQL statements for each query using digoint-by-I1D prefetches, where N is the number of relationships to
prefetch, and M is the number of queries for a given prefetch that is dependent on the number of objectsin the
result (ideally M = 1).

The advantage of this type of prefetch is that matching database rows by ID may be much faster than matching
the qualifier of the original query. Moreover thisisthe only type of prefetch that can handle SelectQueries with
fetch limit. Both joint and regular digoint prefetches may produce invalid results or generate inefficient fetch-
the-entire table SQL when fetch limit isin effect.

The disadvantage is that query SQL can get unwieldy for large result sets, as each object will have to have its
own condition in the WHERE clause of the generated SQL.

11.1.4. Joint Prefetching Semantics

Joint semantics results in a single SQL statement for root objects and any number of jointly prefetched paths.
Cayenne processes in memory a cartesian product of the entities involved, converting it to an object tree. It uses
OUTER joins to connect prefetched entities.

Joint isthe most efficient prefetch type of the three asfar as generated SQL goes. There'salwaysjust 1 SQL query
generated. Itsdownsides are the potentially increased amount of data that needsto get acrossthe network between
the application server and the database, and more data processing that needs to be done on the Cayenne side.

v.4.1 59

Performance Tuning

11.1.5. Similar Behaviours Using EJBQL

It is possible to achieve similar behaviours with EJBQL Query queries by employing the "FETCH" keyword.

SELECT a FROM Artist a LEFT JO N FETCH a. pai nti ngs

In this case, the Paintings that exist for the Artist will be obtained at the sametime asthe Artists are fetched. Refer
to third-party query language documentation for further detail on this mechanism.

11.2. Data Rows

Converting result set data to Persistent objects and registering these objects in the ObjectContext can be an
expensive operation compareable to the time spent running the query (and frequently exceeding it). Internally
Cayenne builds the result as a list of DataRows, that are later converted to objects. Skipping the last step and
using datain the form of DataRows can significantly increase performance.

DataRow isasimply amap of values keyed by their DB column name. It is aubiqutous representation of DB data
used internally by Cayenne. And it can be quite usable as is in the application in many cases. So performance
sensitive selects should consider DataRows - it saves memory and CPU cycles. All selecting queries support
DataRows option, e.g.:

Obj ect Sel ect <Dat aRow> query = Obj ect Sel ect . dat aRowQuery(Arti st.cl ass);

Li st <Dat aRow> rows = query. sel ect (context);

SQLSel ect <Dat aRow> query = SQLSel ect . dat aRowQuer y(" SELECT * FROM ARTI ST") ;
Li st <Dat aRow> rows = query. sel ect (context);

Individual DataRows may be converted to Persistent objects as needed. So e.g. you may implement some in-
memory filtering, only converting a subset of fetched objects:

// you need to cast ObjectContext to DataContext to get access to 'objectFronDat aRow
Dat aCont ext dat aCont ext = (DataContext) context;

for(DataRow row : rows) {
i f(row get("DATE_OF BIRTH') != null) {
Artist artist = dataContext.objectFronDataRow Artist.class, row);
// do sonething with Artist...

11.3. Specific Attributes and Relationships with EJBQL

It is possible to fetch specific attributes and relationships from a model using EJBQL Query. The following
example would return ajava.util.List of String objects;

SELECT a.nane FROM Artist a ‘

v.4.1 60

Performance Tuning

The following will yield a java.util.List containing Object[] instances, each of which would contain the name
followed by the dateOfBirth value.

SELECT a.nane, a.dateO'Birth FROM Artist a

Refer to third-party query language documentation for further detail on this mechanism.

11.4. Iterated Queries

While contemporary hardware may easily alow applications to fetch hundreds of thousands or even millions of
objects into memory, it doesn't mean this is always a good idea to do so. Y ou can optimize processing of very
large result sets with two techniques discussed in this and the following chapter - iterated and paginated queries.

Iterated query is not actually a specia query. Any selecting query can be executed in iterated mode by an
ObjectContext. ObjectContext createsan object called resul t I t er at or that isbacked by an open ResultSet. Iterator
provides constant memory performance for arbitrarily large ResultSets. Thisistrue at least on the Cayenne end,
as JDBC driver may still decide to bring the entire ResultSet into the VM memory.

Datais read from Resultlterator one row/object at a time until it is exhausted. There are two styles of accessing
Resultlterator - direct access which requires explicit closing to avoid JDBC resources leak, or acallback that lets
Cayenne handle resource management. In both casesiteration can be performed using "for" loop, as Resultlterator
is"Iterable".

Direct access. Here common sense tells us that Resultlterators instances should be processed and closed as soon
as possible to release the DB connection. E.g. storing open iterators between HTTP requests for unpredictable
length of time would quickly exhaust the connection pool.

try(Resultlterator<Artist> it = ObjectSelect.query(Artist.class).iterator(context)) {
for(Artist a : it) {
/1 do something with the object...

}

Same thing with a callback:

bj ect Sel ect. query(Artist.class).iterate(context, (Artist a) -> {
// do something with the object...

1)

Another exampleisabatch iterator that allowsto process more than one object in each iteration. Thisisacommon
scenario in various data processing jobs - read a batch of objects, process them, commit the results, and then
repeat. This allows to further optimize processing (e.g. by avoiding frequent commits).

try(ResultBatchlterator<Artist> it = ObjectSel ect.query(Artist.class).batchlterator(context, 100)) {
for(List<Artist>list : it) {
// do sonething with each |ist

v.4.l 61

Performance Tuning

/] possibly commit your changes
cont ext. conm t Changes() ;

11.5. Paginated Queries

Enabling query pagination allows to load very large result sets in a Java app with very little memory overhead
(much smaller than even the DataRows option discussed above). Moreover it is completely transparent to the
application - a user gets what appears to be alist of Persistent objects - there's no iterator to close or DataRows
to convert to objects:

/1 the fact that result is paginated is transparent
List<Artist> artists =
Obj ect Sel ect. query(Artist.class). pageSi ze(50). sel ect (context);

Having said that, DataRows option can be combined with pagination, providing the best of both worlds:

Li st <Dat aRow> rows =
bj ect Sel ect . dat aRowQuery(Arti st. cl ass). pageSi ze(50). sel ect (context);

The way pagination works internaly, it first fetches alist of IDsfor the root entity of the query. Thisisvery fast
and initially takes very little memory. Then when an object isrequested at an arbitrary index in thelist, this object
and adjacent objects (a"page" of objectsthat is determined by the query pageSize parameter) are fetched together
by ID. Subsequent requests to the objects of this"page" are served from memory.

An obvious limitation of pagination is that if you eventually access all objects in the list, the memory use will
end up being the same as with no pagination. However it is still a very useful approach. With some lists (e.g.
multi-page search results) only afew top objects are normally accessed. At the same time pagination allows to
estimate the full list size without fetching all the objects. And again - it is completely transparent and looks like
anormal query.

11.6. Caching and Fresh Data

11.6.1. Object Caching

11.6.2. Query Result Caching

Cayenne supports mostly transparent caching of the query results. There are two levels of the cache: local (i.e.
results cached by the ObjectContext) and shared (i.e. the results cached at the stack level and shared between all
contexts). Local cache is much faster then the shared one, but is limited to a single context. It is often used with
a shared read-only ObjectContext.

To take advantage of query result caching, thefirst step isto mark your queries appropriately. Hereisan example
for ObjectSelect query. Other types of queries have similar API:

v.4.l 62

Performance Tuning

oj ect Sel ect. query(Artist.class).local Cache("artists");

Thistells Cayenne that the query created here would like to use local cache of the context it is executed against.
A vararg parameter to | ocal Cache() (Or sharedcache()) method contains so called "cache groups'. Those are
arbitrary names that allow to categorize queries for the purpose of setting cache policies or explicit invalidation
of the cache. More on that below.

The above API is enough for the caching to work, but by default your cache is an unmanaged LRU map. Y ou
can't control its size, expiration policies, etc. For the managed cache, you will need to explicitly use one of the
more advanced cache providers. One such provider available in Cayenne is a provider for EhCache. It can be
enabled on ServerRuntime startup in a custom Module:

Server Runt i meBui | der
. bui | der ()
. addModul e((bi nder) ->
bi nder. bi nd(Quer yCache. cl ass) . t o(EhCacheQuer yCache. cl ass)

)
bui 1 d();

By default EhCache reads afile called "ehcache.xml" located on classpath. Y ou can put your cache configuration
inthat file. E.g.:

<ehcache xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : noNanespaceSchemalLocat i on="ehcache. xsd" updat eCheck="f al se"
nmoni tori ng="of f" dynam cConfi g="fal se">

<def aul t Cache maxEntri esLocal Heap="1000" eternal ="fal se"
over f | owToDi sk="f al se" ti nmeTol dl eSeconds="3600" ti nmeTolLi veSeconds="3600">
</ def aul t Cache>

<cache nane="artists" tineToLiveSeconds="20" maxEntri esLocal Heap="100" />
</ ehcache>

The example shows how to configure default cache settings ("defaultCache") as well as settings for a named
cache group ("artists"). For many other things you can put in "ehcache.xml" refer to EhCache docs.

Often "passive" cache expiration policies similar to shown above are not sufficient, and the users want real-time
cacheinvalidation when the data changes. So in addition to those policies, the app can invalidate individual cache
groups explicitly with Ref reshQuery:

RefreshQuery refresh = new RefreshQuery("artist");
cont ext . perfornGeneri cQuery(refresh);

The above can be used e.g. to build Ul for manual cache invalidation. It is also possible to automate cache
refresh when certain entities are committed. This requires including cayenne-1ifecycl e.jar deoendency. From
that library you will need two things: @acheG oups annotation to mark entities that generate cache invalidation
eventsand cachel nval i dati onFi | ter that catches the updates to the annotated objects and generates appropriate
invalidation events:

v.4.1 63

http://www.ehcache.org/

Performance Tuning

/1 configure filter on startup
Server Runt i meBui | der
. bui I der ()
. addModul e((bi nder) ->
bi nder. bi ndLi st (Const ants. SERVER DOVAI N_FI LTERS_LI ST) . add(Cachel nval i dati onFilter.cl ass)

)
bui 1d();

Now you can associate entities with cache groups, so that commitsto those entities would atomatically invalidate
the groups:

@acheG oups("artists")
public class Artist extends _Artist {

}

Finally you may cluster cache group events. They are very small and can be efficiently sent over the wireto other
JVMs running Cayenne. An example of Cayenne setup with event clustering is available on GitHub.

11.7. Turning off Synchronization of ObjectContexts

By default when a single ObjectContext commits its changes, all other contexts in the same runtime receive an
event that contains al the committed changes. This allows them to update their cached object state to match the
latest committed data. There are however many problems with this ostensibly helpful feature. In short - it works
well in environments with few contexts and in unclustered scenarios, such as single user desktop applications, or
simple webapps with only afew users. More specifically:

e The performance of synchronization is (probably worse than) O(N) where N is the number of peer
ObjectContexts in the system. In atypical webapp N can be quite large. Besides for any given context, due to
locking on synchronization, context own performance will depend not only on the queries that it runs, but also
on external eventsthat it does not control. Thisis unacceptable in most situations.

« Commit events are untargeted - even contextsthat do not hold a given updated object will receive the full event
that they will have to process.

¢ Clustering between JVMs doesn't scale - appswith large volumes of commitswill quickly saturate the network
with events, while most of those will be thrown away on the receiving end as mentioned above.

« Some contexts may not want to be refreshed. A refresh in the middle of an operation may lead to unpredictable
results.

« Synchronization will interfere with optimistic locking.

So we've made agood case for disabling synchronization in most webapps. To do that, set to "false” the following
DI property - const ant s. SERVER_CONTEXTS_SYNC_PROPERTY, USing one of the standard Cayenne DI approaches. E.g.
from command line:

$ java - Dcayenne. server. cont exts_sync_strat egy=f al se

v4.l 64

https://github.com/andrus/wowodc13/tree/master/services/src/main/java/demo/services/cayenne

Performance Tuning

Or by changing the standard properties Map in a custom extensions module:
public class MyMdul e inpl erents Mdul e {

@verride
public void configure(Binder binder) {
bi nder . bi ndMap(Const ant s. PROPERTI ES_MAP) . put (Const ant s. SERVER_CONTEXTS_SYNC_PROPERTY,

v.4.1

"fal sel

~

65

Chapter 12. Customizing Cayenne
Runtime

12.1. Dependency Injection Container

Cayenne runtime is built around a small powerful dependency injection (DI) container. Just like other popular DI
technologies, such as Spring or Guice, Cayenne DI container manages sets of interdependent objects and allows
users to configure them. These objects are regular Java objects. We are calling them "services' in this document
to distinguish from all other objects that are not configured in the container and are not managed. DI container
is responsible for service instantiation, injecting correct dependencies, maintaining service instances scope, and
dispatching scope events to services.

The services are configured in special Java classes called "modules’. Each module defines binding of service
interfaces to implementation instances, implementation types or providers of implementation instances. There
are no XML configuration files, and all the bindings are type-safe. The container supports injection into instance
variables and constructor parameters based on the @nj ect annotation. This mechanism is very close to Google
Guice.

Thediscussion later in thischapter demonstrates a standal one DI container. But keep in mind that Cayenne already
has a built-in Injector, and a set of default modules. A Cayenne user would normally only use the API below to
write custom extension modules that will be loaded in that existing container when creating ServerRuntime. See
"Starting and Stopping ServerRuntime" chapter for an example of passing an extension module to Cayenne.

Cayenne DI probably has ~80% of the features expected in a DI container and has no dependency on the rest
of Cayenne, so in theory can be used as an application-wide DI engine. But it's primary purposeis still to serve
Cayenne. Hence there are no plans to expand it beyond Cayenne needs. It is an ideal "embedded" DI that does
not interfere with Spring, Guice or any other such framework present el sewhere in the application.

12.1.1. DI Bindings API

To have aworking DI container, we need three things: service interfaces and classes, a module that describes
service bindings, acontainer that loadsthe module, and resolvesthe depedencies. Let's start with serviceinterfaces
and classes:

public interface Servicel {
public String getString();
}

public interface Service2 {
public int getlnt();

}

A service implementation using instance variable injection:

v.4.1 66

Customizing Cayenne Runtime

public class Servicell npl inplenments Servicel {
@ nj ect
private Service2 service2;

public String getString() {
return service2.getlnt() + "_Servicellnpl";

Same thing, but using constructor injection:
public class Servicell npl inplenments Servicel {
private Service2 service2;
public Servicell npl (@nject Service2 service2) {

this.service2 = service2;

public String getString() {
return service2.getlnt() + "_Servicell npl";

public class Service2l npl inplenments Service2 {
private int i;

public int getlnt() {
return i ++;

Now let's create a module implementing or g. apache. cayenne. tut orial . di . Modul e interface that will contain DI
configuration. A modul e binds service objectsto keysthat are reference. Binder provided by container implements
fluent API to connect the key to implementation, and to configure various binding options (the options, such
as scope, are demonstrated later in this chapter). The simplest form of akey is a Java Class object representing
service interface. Here is amodule that binds Servicel and Service2 to corresponding default implementations:

public class Mdul el i nplements Mdul e {

public void configure(Binder binder) {
bi nder. bi nd(Servi cel. cl ass).to(Servicell npl.class);
bi nder. bi nd(Servi ce2. cl ass).to(Service2l npl.class);

Oncewe have at |east one module, we can create aDI container. or g. apache. cayenne. di . | nj ect or iSthe container
classin Cayenne:

Injector injector = Dl Bootstrap.createlnjector(new Mdul el());

Now that we have created the container, we can obtain services from it and call their methods:

v.4.1 67

Customizing Cayenne Runtime

Servicel s1 = injector.getlnstance(Servicel.class);
for (int i =0; i <5; i++) {
Systemout.printIn("S1 String: " + sl.getString());

This outputs the following lines, demonstrating that s1 was Servicellmpl and Service2 injected into it was
Service2lmpl:

0_Servi cell npl
1_Servi cell npl
2_Servi cell npl
3_Servi cell npl
4_Servi cell npl

There are more flavors of bindings:

/1 binding to instance - allow ng user to create and configure instance
/1 inside the nodul e cl ass
bi nder. bi nd(Servi ce2. cl ass).tol nstance(new Service2lnpl ());

/1 binding to provider - delegating instance creation to a speci al
/1 provider class
bi nder. bi nd(Servi cel. cl ass).toProvi der (Servi celProvider.cl ass);

/1 binding to provider instance
bi nder. bi nd(Servi cel. cl ass).toProvi derl nstance(new Servi celProvider());

/1 multiple bindings of the sane type using Key

/'l injection can reference the key name in annotation:

/Il @nject("il")

/] private Service2 service2;

bi nder. bi nd(Key. get (Servi ce2.class, "il1")).to(Service2lnpl.class);
bi nder. bi nd(Key. get (Servi ce2.class, "i2")).to(Service2lnpl.class);

Another types of confiuguration that can be bound in the container are lists and maps. They will be discussed
in the following chapters.

12.1.2. Service Lifecycle

An important feature of the Cayenne DI container is instance scope. The default scope (implicitly used in all
examples above) is "singleton”, meaning that a binding would result in creation of only one service instance,
that will be repeatedly returned from 1 nj ect or. get I nstance(. .), as well asinjected into classes that declare it
as adependency.

Singleton scope dispatches a " BeforeScopeEnd” event to interested services. Thisevent occurs beforethe scopeis
shutdown, i.e. when i nj ect or . shut down() iscalled. Notethat the built-in Cayenneinjector is shutdown behind the
sceneswhen ser ver Runt i me. shut down() iSinvoked. Services may register aslistenersfor this event by annotating
ano-argument method with @ef or escopeEnd annotation. Such method should be implemented if a service needs
to clean up some resources, stop threads, etc.

v.4.1 68

Customizing Cayenne Runtime

Another useful scope is "no scope", meaning that every time a container is asked to provide a service instance
for agiven key, a new instance will be created and returned:

bi nder. bi nd(Servi ce2. cl ass).to(Service2l npl.class).w thout Scope();

Users can also create their own scopes, e.g. aweb application request scope or asession scope. Most often than not
custom scopes can be created asinstances of or g. apache. cayenne. di . spi . Def aul t Scope With startup and shutdown
managed by the application (e.g. singleton scope is a DefaultScope managed by the Injector) .

12.1.3. Overriding Services

Cayenne DI allows to override services already definied in the current module, or more commonly - some other
modulein the the same container. Actually there's no special API to override aservice, you'd just bind the service
key again with anew implementation or provider. Thelast binding for akey takes precedence. Thismeansthat the
order of modulesisimportant when configuring a container. The built-in Cayenne injector ensures that Cayenne
standard modules are loaded first, followed by optional user extension modules. This way the application can
override the standard servicesin Cayenne.

12.2. Customization Strategies

The previous section discussed how Cayenne DI works in general terms. Since Cayenne users will mostly be
dealing with an existing Injector provided by ServerRuntime, it is important to understand how to build custom
extensions to a preconfigured container. As shown in "Starting and Stopping ServerRuntime" chapter, custom
extensions are done by writing an aplication DI module (or multiple modules) that configures service overrides.
This section shows all the configuration possibilities in detail, including changing properties of the existing
services, contributing servicesto standard service lists and maps, and overriding service implementations. All the
code examples later in this section are assumed to be placed in an application module "configure" method:

public class MyExtensi onsMdul e i npl ements Mdul e {
public void configure(Binder binder) {
// custom zations go here. ..

}

Modul e ext ensions = new MyExt ensi onsModul e();
ServerRuntinme runtime = ServerRuntine. buil der ()
. addConfi g("conf exanpl e/ cayenne- nydonai n. xm ")
. addMbdul e(ext ensi ons)
Lbuild();

12.2.1. Changing Properties of Existing Services

Many built-in Cayenne services change their behavior based on a value of some environment property. A user
may change Cayenne behavior without even knowing which services are responsible for it, but setting a specific
value of aknown property. Supported property names are listed in "Appendix A".

v.4.1 69

Customizing Cayenne Runtime

There are two ways to set service properties. The most obvious one is to pass it to the VM with -D flag on
startup. E.g.

$ java - Dcayenne. server.contexts_sync_strategy=fal se ...

A second one is to contribute a property to
org. apache. cayenne. confi gurati on. Def aul t Runt i meProperti es. properties Map (see the next section on how to
do that). This map contains the default property values and can accept application-specific values, overrding the
defaults.

Note that if a property value is a name of a Java class, when this Java class is instantiated by Cayenne, the
container performsinjection of instance variables. So even the dynamically specified Javaclasses can use @I nject
annotation to get a hold of other Cayenne services.

If the same property is specified both in the command line and in the properties map, the command-line value takes
precedence. The map value will be ignored. Thisway Cayenne runtime can be reconfigured during deployment.

12.2.2. Contributing to Service Collections

Cayenne can be extended by adding custom objects to named maps or lists bound in DI. We
are calling these listsymaps "service collections'. A service collection allows things like appending a
custom strategy to a list of built-in strategies. E.g. an application that needs to install a custom
DbAdapter for some database type may contribute an instance of custom DbAdapterDetector to a

org. apache. cayenne. confi gurati on. server. Def aul t DbAdapt er Factory. detectors list:

public class MyDbAdapt er Det ect or inpl ements DbAdapt er Det ector {
publ i c DbAdapter createAdapter (DatabaseMetaData nd) throws SQLException {
// check if we support this database and retun custom adapter

/] since build-in list for this key is a singleton, repeated
// calls to "bindList' will return the same instance
bi nder. bi ndLi st (Def aul t DbAdapt er Fact ory. DETECTORS_LI ST)

. add(MyDbAdapt er Det ect or. cl ass) ;

Maps are customized using asimilar "bi ndvap" method.

The names of built-in collections are listed in "Appendix B".

12.2.3. Alternative Service Implementations

As mentioned above, custom modules are loaded by ServerRuntime after the built-in modules. So it is easy to
redefine a built-in service in Cayenne by rebinding desired implementations or providers. To do that, first we
need to know what those services to redefine are. While we describe some of them in the following sections, the
best way to get afull list isto check the source code of the Cayenne version you are using and namely look in
or g. apache. cayenne. conf i gurati on. server. Ser ver Mvdul e - the main built-in modulein Cayenne.

v.4.1 70

Customizing Cayenne Runtime

Now an example of overriding qQuerycache service. The default implementation of this service is provided
by mvapQueryCacheProvider. But if we want to use EnhcacheQuerycache (a Cayenne wrapper for the EhCache
framework), we can define it like this:

bi nder . bi nd(Quer yCache. cl ass) .t o(EnCacheQuer yCache. cl ass);

12.3. Using custom data types

12.3.1. Value object type

val ueOhj ect Type iS @ new and lightweight alternative to the Extended Types API described in the following
section. In most casesisshould be preferred asisit easier to understand and use. Currently only one caseisknown
when Ext endedType should be used: when your value object can be mapped on different JDBC types.

In order to use your custom data type you should implement val uecoj ect Type describing it in terms of some type
already known to Cayenne (e.g. backed by system or user ExtendedType). Let's assume we want to support some
datatype called money:

public class Mney {
private BigDeci mal val ue;

publ i c Money(Bi gDeci mal val ue) {
t hi s. val ue = val ue;

}

public Bi gDeci mal getVal ue() {
return val ue;

}

[/ .. some other business logic ..

}

Here is how val uenj ect Type that will alow to store our mney class as Bi gbeci mal can be implemented:

public class MneyVal ueObj ect Type i npl enents Val ueObj ect Type<ivbney, Bi gDeci mal > {

@verride
public C ass<Bi gDeci mal > get Tar get Type() {
return Bi gDeci mal . cl ass;

}

@verride
public C ass<Money> get Val ueType() {
return Money. cl ass;

}

@verride
public Money toJavaOnj ect (Bi gDeci mal val ue) {
return new Money(val ue);

}

v.4.l 71

Customizing Cayenne Runtime

@verride
public BigDeci mal fromlavaObject (Mney object) {
return object.get Val ue();

}

@verride
public String toCacheKey(Mney object) {
return object.getValue().toString();
}
}

Last step isto register this new type in server Runt i ne:

ServerRuntime runtime = ServerRuntine. buil der()
.addConfi g("cayenne-project.xm")
. addModul e(bi nder -> Server Modul e. contri but eVal uebj ect Types(bi nder) . add(MoneyVal uebj ect Type. cl ass))
Lbuild();

More examples of implementation you can find in cayenne-joda module.

12.3.2. Extended Types

JDBC specification defines a set of "standard" database column types (defined in java.sgl. Types class) and a
very specific mapping of these types to Java Object Types, such as javalang.String, javamath.BigDecimal, etc.
Sometimesthereis aneed to use a custom Javatype not known to JDBC driver and Cayenne alows to configure
it. For this Cayenne needs to know how to instantiate this type from a database "primitive" value, and conversely,
how to transform an object of the custom type to a JIDBC-compatible object.

12.3.2.1. Supporting Non-Standard Types

For supporting non-standard type you should define it via an interface
or g. apache. cayenne. access. t ypes. Ext endedType. AN implementation must provide Ext endedType. get O assNane()
method that returns a fully qualified Java class name for the supported custom type, and a number of methods
that convert data between JDBC and custom type. The following example demonstrates how to add a custom
DoubleArrayTypeto storej ava. | ang. Doubl e[] @S acustom string in a database:

/**

* Defines methods to read Java objects from JDBC ResultSets and wite as paraneters of
* PreparedStatenents.

*/

public class Doubl eArrayType inpl ements ExtendedType {

private final String SEPARATOR = ",";

/**
* Returns a full name of Java class that this ExtendedType supports.
*/
@verride
public String getd assNane() {
return Doubl e[]. cl ass. get Canoni cal Nane() ;

v.4.l 72

https://github.com/apache/cayenne/tree/master/cayenne-joda

Customizing Cayenne Runtime

/**
* Initializes a single parameter of a PreparedStatenment wi th object value.
*/
@verride
public void setJdbcObj ect (PreparedStatenent statenent, Object val ue,
int pos, int type, int scale) throws Exception {

String str = StringUils.join((Double[]) value, SEPARATOR);
statement. set String(pos, str);

/**

* Reads an object from JDBC ResultSet columm, converting it to class returned by

* 'get d assNane' nethod.

*

* @hrows Exception if read error occurred, or an object can't be converted to a

* target Java cl ass.

*/

@verride

public Object materializeObject(ResultSet rs, int index, int type) throws Exception {
String[] str = rs.getString(index).split(SEPARATOR);
Doubl e[] res = new Doubl e[str. | ength];

for (int i =0; i <str.length; i++) {
res[i] = Double.valueO(str[i]);
}
return res;
}
/**

* Reads an object froma stored procedure OUT paraneter, converting it to class

* returned by 'getC assNanme' nethod.

*

* @hrows Exception if read error ocurred, or an object can't be converted to a

* target Java cl ass.

*/

@verride

public Object materializeObject(CallableStatement rs, int index, int type) throws Exception {
String[] str = rs.getString(index).split(SEPARATOR);
Doubl e[] res = new Doubl e[str. | ength];

for (int i =0; i <str.length; i++) {
res[i] = Double.valueO(str[i]);
}
return res;
}
}
For Javar
v.4.l

73

Customizing Cayenne Runtime

// add Doubl eArrayType to |list of user types
ServerRuntime runtinme = ServerRuntine. buil der()
.addConfi g("cayenne-project.xm")
. addModul e(new Modul e() {
@verride
public void configure(Binder binder) {
Server Modul e. contri but eUser Types(bi nder) . add(new Doubl eArrayType());
}

9]
bui 1d();

For Java8

// add Doubl eArrayType to |list of user types

ServerRuntinme runtime = ServerRuntine. buil der ()
.addConfi g("cayenne-project.xm")
. addModul e(bi nder -> Server Modul e. contri but eUser Types(bi nder) . add(new Doubl eArrayType()))
Lbuild();

12.3.2.2. DbAdapters and Extended Types

As shown in the example above, ExtendedTypes are stored by DbAdapter. In fact DbAdapters often install
their own extended types to address incompatibilities, incompleteness and differences between JDBC driversin
handling "standard" JDBC types. For instance some drivers support reading large character columns (CLOB)
as javasgl.Clob, but some other - as "character stream”, etc. Adapters provided with Cayenne override
confi gur eExt endedTypes() method to install their own types, possibly substituting Cayenne defaults. Custom
DbAdapters can use the same technique.

12.4. Noteworthy Built-in Services

12.4.1. JdbcEventLogger

org. apache. cayenne. | og. JdbcEvent Logger iS the service that defines logging APl for Cayenne internals.
It provides facilities for logging queries, commits, transactions, etc. The default implementation is
org. apache. cayenne. | og. Sl f 4j JdbcEvent Logger that performs logging via df4j-api library. Cayenne library
includes another potentially useful logger - org. apache. cayenne. | og. For mat t edSl f 4j JdbcEvent Logger that
produces formatted multiline SQL output that can be easier to read.

12.4.2. DataSourceFactory

Factory that returnsj avax. sql . Dat aSour ce Object based on the configuration provided in the "nodeDescriptor”.

v.4.1 74

Customizing Cayenne Runtime

12.4.3. DataChannelFilter

An interface of afilter that allows to intercept DataChannel operations. Filters allow to implement chains of
custom processors around a DataChannel, that can be used for security, monitoring, business logic, providing
context to lifecycle event listeners, etc.

12.4.4. QueryCache

Defines API of acache that stores query results.

v.4.1 75

v.4.1

Part Ill. Cayenne Framework
- Remote Object Persistence

76

Chapter 13. Introduction to ROP

13.1. What is ROP

"Remote Object Persistence” is alow-overhead web services-based technology that provides lightweight object
persistence and query functionality to 'remote’ applications. In other words it provides familiar Cayenne API to
applications that do not have direct access to the database. Instead such applications would access Cayenne Web
Service (CWS). A single abstract data model (expressed as Cayenne XML DataMap) is used on the server and
on the client, while execution logic can be partitioned between the tiers. The foll owing picture compares aregular
Cayenne web application and arich client application that uses remote object persistence technology:

v.4.l 77

Introduction to ROP

Client JVMs |

Swing f SWT
omponents

Remote Tier

Cayenne
Client Browsers (CayenneContext)

| CayennaCaonnaction

. I
|

CWS

Sener JYN
Server JyYik

Web Companents
" | Cayenng Web Service

Cayenne | E Cayenne
[DataGontext) [] (DataContext)
CORM Tier
JOBGC JDBC

—_— —

Database Database
Tree Tier Web Application: Three Tier Rich Client Application:
Cayenne in the application server tier Cayenne in the application server

and on the Client

Persistence stack above consists of the following parts:
* ORM Tier: aserver-side Cayenne Java application that directly connects to the database via JDBC.
* CWS (Cayenne Web Service): A wrapper around an ORM tier that makesit accessible to remote CWSclients.

* Remote Tier (aka Client Tier): A Java application that has no direct DB connection and persists its objects
by connecting to remote Cayenne Web Service (CWS). Note that CWS Client doesn't have to be a desktop
application. It can be another server-side application. Theword "client" meansaclient of CayenneWeb Service.

v.4.1 78

Introduction to ROP

13.2. Main Features

« Unified approach to lightweight object persistence across multiple tiers of adistributed system.

e Same abstract object model on the server and on the client.

« Client can "bootstrap" from the server by dynamically loading persistence metadata.

» An ability to define client objects differently than the server ones, and still have seamless persistence.
» Generic web service interface that doesn't change when object model changes.

< An ability to work in two modes: dedicated session mode or shared ("chat") mode when multiple remote clients
collaboratively work on the same data.

» Lazy object and collection faulting.

* Full context lifecycle

» Queries, expressions, local query caching, paginated queries.
» Vdidation

* Delete Rules

v.4.1 79

Chapter 14. ROP Setup

14.1. System Requirements

14.2. Jar Files and Dependencies

v.4.1

80

Chapter 15. Implementing ROP Server

v.4.1

81

Chapter 16. Implementing ROP Client

v.4.1

82

Chapter 17. ROP Deployment

17.1. Deploying ROP Server

Note

Recent versions of Tomcat and Jetty containers (e.g. Tomcat 6 and 7, Jetty 8) contain code addressing a
security concern related to "session fixation problem" by resetting the existing session ID of any request
that requires BASIC authentcaition. If ROP service is protected with declarative security (see the ROP
tutorial and the following chapters on security), this feature prevents the ROP client from attaching to
its session, resulting in MissingSessionExceptions. To solve that you will need to either switch to an
alternative security mechanism, or disable "session fixation problem" protections of the container. E.g.
the later can be achieved in Tomcat 7 by adding the following context.xml file to the webapp's META-
INF/ directory:

<Cont ext >
<Val ve cl assName="or g. apache. cat al i na. aut henti cat or. Basi cAut henti cat or"

changeSessi onl dOnAut henti cati on="f al se" />
</ Cont ext >

(The<Vave> tag can also be placed within the <Context> in any other locations used by Tomcat to load
context configurations)

17.2. Deploying ROP Client

17.3. Security

v.4.1

Chapter 18. Current Limitations

v.4.1

84

v.4.1

Part IV. DB-First Flow

85

Chapter 19. Introduction

19.1. "DB-first" Flow

An ORM system consists of three parts: database, OR mapping and persistent Java classes. These parts always
need to be kept in sync with each other for the application to work. "DB-first" flow is a common and practical
approach to synchronization that assumes the database to be the master source of the metadata, with other two
parts synchronized from the DB as the schema evolves. Cayenne provides a number of tools to automate and
control it. Here is how "DB-first" flow istypically implemented:

« A SQL migrations framework is used to bring alocal DB to a certain version. This is outside of the scope of
Cayenne and is done with a third-party tool, such as Liquibase or Flyway.

* OR mapping model (Cayenne XML files) are synchronized with the state of the database using " cdbi nport
tool provdied by Cayenne.

* Object layer of the OR mapping model is customized to the developer liking, usualy via CayenneModeler.
Subsequent runs of " cdbi nport " Will not override any customizations that you make.

» Javaclasses are generated using " cgen” tool provided by Cayenne.

"cgen" and "cdbimport" tools can be invoked from Maven or Ant as discussed in the "Including Cayenne in a
Project” chapter or run from CayenneModeler. This chapter will mostly focus on "cdbimport”.

Here is simple maven configuration to start with:

19.2. Introduction to "cdbimport"

Hereisasimple Maven configuration of "cdbimport” (for details see cayenne-maven-plugin documentation)

<pl ugi n>

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactl|d>cayenne- maven- pl ugi n</artifactld>
<versi on>4. 1. ML</ ver si on>

<confi guration>

<map>${ proj ect . basedi r}/ src/ mai n/ resour ces/ dat amap. map. xm </ map>
<dat aSour ce>

<url><!-- jdbc url --></url>

<driver><!-- jdbc driver class --></driver>

<user nane>user name</ user nane>

<passwor d>passwor d</ passwor d>

</ dat aSour ce>

<dbi nport >

<def aul t Package>com exanpl e. package</ def aul t Package>

<i ncl udeTabl e>. *</i ncl udeTabl e>

v.4.1 86

Introduction

</ dbi nport >
</ configuration>
<dependenci es>
<l-- jdbc driver dependency -->
</ dependenci es>
</ pl ugi n>

In the next chapters we will discuss various filtering and other reverse-engineering options.

v.4.1

87

Chapter 20. Filtering

The first thing you usually want to control during reverse engineering is what exactly should be loaded from
database and what not. One of the most common cases is excluding system tables, as you usually don't want to
map them.

Briefly, you are abletoinclude/exclude tables, columnsand proceduresand do it at several levels: default, catal og,
schema. Although everything defined at the top level (default rules) will be applied for the nested elements, all
rulesfrom the most specific areaswill override general rules(i.e. rulesfrom schemas override rulesfrom catalogs
and even more override default rules).

Thefollowing use-caseswill provide you abetter understanding of how filtering works and how you could useit.

20.1. Process everything from schema/catalog

The simplest example of reverse engineering is processing tables from one schemaof catalog and there are several
options to do this. Basic syntax is described below:

<dbi nport >

<I-- Ant/Maven in case you only want to specify the schema to inport --

<schema>SCHEMA_NAME</ schema>
<l-- Maven way in case you have nested elenents in the schema -->
<schema>

<nanme>SCHEMA NAME</ name>

</ schema>

<I-- Ant way in case you have nested elements in the schema -->
<schema nane="SCHEMA NAME" >

</ schema>

</ dbi nport >

>

The same options are available for catalogs:

<dbi nport >

v.4.1

<l-- Ant/Maven in case you only want to specify the catalog to inport --

<cat al 0g>CATALOG NAME</ cat al og>
<l-- Maven way in case you have nested elenents in the catalog -->
<cat al og>
<nanme>CATALOG_NAME</ nane>
</ cat al og>

<l-- Ant way in case you have nested elenents in the catalog -->
<cat al og nane=" CATALOG NAME" >

</ cat al og>

>

88

Filtering

</ dbi nport >

Note

Current version of reverse engineering doesn't support catal og filtering for Postgres database.

20.2. Combine Schema and Catalog filters

Cayenne supports combination of different schemas and catalogs, and it filters data according to your
requirements. Y ou could achieve this by the following example of reverse engineering configuration:

<dbi mport >

<cat al og>
<name>shop_01</ nanme>
<schema>schema- nanme- 01</ schema>
<schema>schema- nanme- 02</ schema>
<schema>schema- nanme- 03</ schema>
</ cat al og>

<cat al og>
<nane>shop_02</ nane>
<schema>schema- nanme- 01</ schema>
</ cat al og>

<cat al og>
<nane>shop_03</ nane>
<schema>schema- nanme- 01</ schema>
<schema>schema- nanme- 02</ schema>
<schema>schema- nanme- 03</ schema>
</ cat al og>

</ dbi nport >

In the example above, Cayenne reverse engineering process contains three catalogs named as shop_01, shop_02
and shop_03, each of wich has their own schemas. Cayenne will load al data only from the declared catalogs
and schemas.

If you want to load everything from database, you could simply declare catalog specification alone.
<dbi nport >
<cat al og>shop_01</ cat al og>

<cat al og>shop_02</ cat al og>
<cat al og>shop_03</ cat al og>

</ dbi mport >

If you want to do reverse engineering for specific schemas, just remove unwanted schemas from the catalog
section. For example, if you want to process schema-name-01 and schema-name-03 schemas only, then you
should change reverse engineering section like this.

v.4.1 89

Filtering

<dbi nport >

<cat al og>
<nanme>shop_01</ nanme>
<schema>schema- nane- 01</ schema>
<schema>schema- nane- 03</ schema>
</ cat al og>

<cat al og>
<nanme>shop_02</ nanme>
<schema>schema- nane- 01</ schema>
</ cat al og>

<cat al og>
<nane>shop_03</ nane>
<schema>schema- nanme- 01</ schema>
<schema>schema- nanme- 03</ schema>
</ cat al og>

</ dbi nport >

20.3. Including and Excluding tables, columns and procedures

Cayennereverse engineering let you fine tunetable, columns and stored procedures names that you need to import
toyour model file. In every filter you can use regexp syntax. Hereis some examples of configuration for common
tasks.

1. Include tableswith ‘CRM_’ prefix if you are working in that domain of application:

<i ncl udeTabl e>CRM . *</ i ncl udeTabl e>

2. Includetableswith* LOOKUFP suffix

<i ncl udeTabl e>
<pattern>.*_ LOOKUP</pattern>
</i ncl udeTabl e>

3. Excludetableswith ‘CRM_’ prefix if you are not working only in that domain of application:

<excl udeTabl e>CRM . *</ excl udeTabl e>

4. Include only specific columns that follows specific naming convention:

<i ncl udeCol um>i ncl udeCol utmO01</i ncl udeCol um>
<i ncl udeCol um=>i ncl udeCol utmO03</ i ncl udeCol um>

5. Exclude system or obsolete columns:

<excl udeCol um>excl udeCol utmO01</ excl udeCol um>
<excl udeCol umm>excl udeCol utmO03</ excl udeCol um>

v.4.1 90

Filtering

6. Include/Exclude columns for particular table or group of tables:

<i ncl udeTabl e>
<pattern>tabl e pattern</pattern>
<i ncl udeCol um>i ncl udeCol utmO01</i ncl udeCol um>
<excl udeCol utm>excl udeCol utmO01</ excl udeCol um>
</incl udeTabl e>

7. Include stored procedures:

<i ncl udePr ocedur e>i ncl udePr ocedur e01</ i ncl udePr ocedur e>
<i ncl udePr ocedur e>

<patt ern>i ncl udePr ocedur e03</ patt ern>
</i ncl udePr ocedur e>

8. Exclude stored procedures by pattern:

<excl udePr ocedur e>excl udePr ocedur e01</ excl udePr ocedur e>
<excl udePr ocedur e>

<patt er n>excl udePr ocedur e03</ patt ern>
</ excl udePr ocedur e>

All thexing tags <i ncl udeTabl e>, <excl udeTabl e>, <i ncl udeCol um>, <excl udeCol um>, <i ncl udeProcedur e> and
<excl udePr ocedur e> have 2 ways to pass filtering RegEXp.

1. textinsidetag

<i ncl udeTabl e>CRM . *</ i ncl udeTabl e>

2. patterninner tag

<i ncl udeTabl e>
<pattern>.*_ LOOKUP</pattern>
</i ncl udeTabl e>

All filtering tags can be placed inside schema and catalog tags, but also inside <dbi nport > tag. It means that
filtering rules will be applied for al schemas and catal ogs.

20.4. Complete filtering example

Initially, let’s make a small sample. Consider the following reverse engineering configuration.
<dbi nport >

<cat al og>shop- 01</ cat al og>
</ dbi mport >

In this case reverse engineering will not filter anything from the shop-01 catalog. If you really want to filter
database columns, tables, stored procedures and relationships, you could do it in the following way.

v.4.l 91

Filtering

<dbi nport >
<cat al og>shop- 01</ cat al og>
<cat al og>
<nane>shop- 02</ nane>
<i ncl udeTabl e>i ncl udeTabl e- 01</i ncl udeTabl e>
</ cat al og>
</ dbi nport >

Then Cayenne will do reverse engineering for both shop-01 and shop-02 catalogs. First catalog will not be
processed for filtering, but the second catalog will be processed with “includeTable-01" filter.

Let’s assume you have alot of table prefixes with the same names. Cayenne allows you to mention a pattern as
regular expression. Using regular expressionsiseasier way to handle abig amount of database entitiesthan writing
filter config for each use-case. They make your configuration more readable, understandabl e and straightforward.
Thereisnot complex. Let’s see how to use patternsin reverse engineering configuration with compl ete example.

<dbi nport >

<cat al og>shop- 01</ cat al og>

<cat al og>
<nanme>shop- 02</ nane>
</ cat al og>

<cat al og>
<nane>shop- 03</ nane>
<i ncl udeTabl e>i ncl udeTabl e- 01</i ncl udeTabl e>

<i ncl udeTabl e>
<pattern>i ncl udeTabl e- 02</ pat t er n>
</incl udeTabl e>

<i ncl udeTabl e>
<pattern>i ncl udeTabl e- 03</ pattern>
<i ncl udeCol umm>i ncl udeCol um- 01</i ncl udeCol urm>
<excl udeCol utmm>excl udeCol umm- 01</ excl udeCol urm>
</incl udeTabl e>

<excl udeTabl e>excl udeTabl e- 01</ excl udeTabl e>

<excl udeTabl e>
<pattern>excl udeTabl e- 02</ pat t er n>

</ excl udeTabl e>

<i ncl udeCol um>i ncl udeCol um- 01</i ncl udeCol um>

<i ncl udeCol umm>
<pattern>i ncl udeCol utm- 02</ patt er n>

</i ncl udeCol umm>

<excl udeCol um>excl udeCol umm- 01</ excl udeCol um>

<excl udeCol um>
<patt ern>excl udeCol utm- 02</ pat t er n>

v.4.l 92

Filtering

</ excl udeCol utm>
<i ncl udePr ocedur e>i ncl udePr ocedur e- 01</ i ncl udePr ocedur e>
<i ncl udePr ocedur e>
<pattern>i ncl udeProcedur e- 02</ pattern>
</i ncl udePr ocedur e>
<excl udePr ocedur e>excl udePr ocedur e- 01</ excl udePr ocedur e>
<excl udePr ocedur e>
<pattern>excl udeProcedur e- 02</ patt ern>

</ excl udePr ocedur e>

</ cat al og>
</ dbi nport >

The example above should provide you more idea about how to use filtering and patterns in Cayenne reverse
engineering. Y ou could notice that this example demonstrates you the "name" and "pattern” configurations. Y es,
you could use these as separates xml element and xml attributes.

The cdbimport will execute reverse engineering task for all entities from “shop-01" and “shop-02”, including
tables, views, stored procedures and table columns. As* shop-03" has variety filter tags, entities from this catalog
will be filtered by cdbimport.

20.5. Ant configuration example

Hereis config sample for ant task:

<I'-- inside <cdbinport>tag -->
<cat al og>shop- 01</ cat al og>

<cat al og nanme="shop- 02"/ >

<cat al og nane="shop- 03" >

<i ncl udeTabl e>i ncl udeTabl e- 01</i ncl udeTabl e>
<i ncludeTabl e pattern="incl udeTabl e-02"/ >

<i ncl udeTabl e pattern="incl udeTabl e- 03" >
<i ncl udeCol um>i ncl udeCol um- 01</ i ncl udeCol um>
<excl udeCol utm>excl udeCol um- 01</ excl udeCol urm>
</ i ncl udeTabl e>

<excl udeTabl e>excl udeTabl e- 01</ excl udeTabl e>
<excl udeTabl e pattern="excl udeTabl e-02"/ >

<i ncl udeCol um>i ncl udeCol um- 01</ i ncl udeCol um>
<i ncl udeCol umm pattern="i ncl udeCol um- 02"/ >

<excl udeCol um>excl udeCol umm- 01</ excl udeCol um>
<excl udeCol umm pattern="excl udeCol um- 02"/ >

v.4.1 93

Filtering

<i ncl udePr ocedur e>i ncl udePr ocedur e- 01</ i ncl udePr ocedur e>
<i ncl udeProcedure pattern="incl udeProcedure-02"/>

<excl udePr ocedur e>excl udePr ocedur e- 01</ excl udePr ocedur e>
<excl udeProcedure pattern="excl udeProcedure-02"/>

</ cat al og>

Note

In Ant task configuration all filter tags located inside root tag <cdbi npor t > as there is no <dbi npor t > tag.

v.4.1

94

Chapter 21. Other Settings

In databases relations are defined via foreign keys and there are a lot of different politics according to the level
of relationships and ways how those relationships could be modeled in database. Anyway, cdbimport is able to
recognize basic patterns of relationships, such as OneToMany, OneToOne and ManyToMany.

21.1. Skip Relationships Loading

Y ou are able to skip relationships loading by the <ski pRel at i onshi psLoadi ng> €lement.

<dbi nport >
<ski pRel ati onshi psLoadi ng>t r ue</ ski pRel ati onshi psLoadi ng>
</ dbi nport >

21.2. Skip Primary Keys Loading

Another useful Cayenne reverse engineering property is <ski pPri mar yKeyLoadi ng>. If you decide to support al
relationships at the application layer and avoid their management in database, you' Il find useful to turn off primary
keys synchronization at all.

<dbi nport >
<ski pPri mar yKeyLoadi ng>t r ue</ ski pPri mar yKeyLoadi ng>
</ dbi mport >

21.3. Table Types

By default, cdbimport imports tables and views. Some databases may support other table-like objects, e.g. system
TABLE, GLOBAL TEMPORARY, LOCAL TEMPORARY, ALIAS, SYNONYM etc. To control which types should be included
<t abl eType></ t abl eType> element is used. Some examples:

Import tables only (skip views and others and other types):

<dbi nport >
<t abl eType>TABLE</t abl eType>
</ dbi mport >

Tables and views (the default option):

<dbi mport >
<t abl eType>TABLE</ t abl eType>
<t abl eType>VI EW5</ t abl eType>
</ dbi nport >

v.4.1 95

Chapter 22. Reverse Engineering in
Cayenne Modeler

Alternative aproach to using cdbimport is doing reverse engineering from Cayenne Modeler. Currently modeler
GUI doesn't support all features of ant/maven tasks but it suffice for general DB import. Especially it's a good
place to quickly start working on your data model.

Y ou can find reverse engineering tool in main modeler menu Tools > Reengineer Database Schema

22.1. DataSource selection

First you should select DataSource. If you don't have any DataSource yet you can create one from this menu.

[NN Reengineer DB Schema: Connect to Database

Saved DataSources: DataSource_MY d

JDBC Driver: com.mysgl.jdbc.Driver
DB URL: jdbec:mysqgl://localhost/
User Name: root

Password: sessssas

L]

Adapter (optional): org.apache.cayenne.dba.mysqgl.MySQLAdapter

Cancel Continue

Datasource selection dialog.

22.2. Reverse engineering options

Once DataSource is selected you can proceed to reverse engineering options.

v.4.1 96

Reverse Engineering in Cayenne Modeler

® ® Reengineer DB Schema: Select Options

Select Catalog: | test

<>

Table Name Include Pattern: .*
Table Name Exclude Pattern:
Procedure Mame Pattern: .*
Maming Strategy: org.apache.cayenne.dbsync.naming.DefaultObjectNameGenerator <
Tables with Meaningful PK Pattern:

Use Java primitive types:

Use old java.util.Date type:

Continue Cancel

Reverse Engineering dial og.

Hereisalist of optionsto tune what will be processed by reverse engineering:

Select Catalog: catalog to process

Note

Y ou can only select one catal og. If you need to import multiple catal ogs you heed to run process several
times.

» Table Name Pattern: RegEXxp to filter tables. Default pattern . « includes al tables.
« Procedure Name Pattern: RegExp to filter procedures. Default pattern . = includes all stored procedures.

« Naming Strategy: Currently thereis only one naming strategy available. See ant/maven tools documentation
for details about naming strategy.

e Tables with M eaningful PK Pattern: Comma separated list of RegExp's for tables that you want to have
meaningful primary keys. By default no meaningful PKs are created.

« UseJava primitive types: Use primitive types (e.g. i nt) or Object types (e.g. j ava. | ang. I nt eger).

* Useold java.util.Datetype: Usejava. util. Date for al columns with paTe/ 11 Me/ TI MESTAWP types. By default
java. tine.* typeswill be used.

v.4.1 97

v.4.1

Part V. Cayenne Additional Modules

98

Chapter 23. Cache invalidation extension

23.1. Description

Cache invalidation moduleis an extension that allows to define cache invalidation policy programmatically.

23.2. Including in a project

23.2.1. Maven

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-cache-invalidation</artifactld>
<versi on>4. 1. Mi</ ver si on>

</ dependency>

23.2.2. Gradle

conpi | e ' org. apache. cayenne: cayenne- cache-inval i dati on: 4. 1. ML

23.3. Usage

Module supports autol oading mechanism, so no other actions required to enable it. Just mark your entities with
@acheG oups annotation and you are ready to useit:

@CacheG oups(" sone- group")
public class MyEntity extends _MyEntity {
...

}

After any modification of m/enti t y objects cache group " sone- gr oup” Will be dropped from cache automatically.

Note

Y ou can read more about cache and cache groups in corresponding chapter of this documentation.

In case you need some complex logic of cache invalidation you can disable default behaviour and provide your
own.

To do so you need to implement or g. apache. cayenne. cache. i nval i dati on. I nval i dat i onHandl er interface and
setup Cache Invalidation module to use it. Let's use implementation class called cust om nval i dat i onHandl er that
will simply match all entities' types with " cust om gr oup" cache group regardless of any annotations:

v.4.1 99

Cache invalidation extension

public class Custom nvalidati onHandl er inplenments |nvalidationHandl er {
@verride
public InvalidationFunction canHandl e(C ass<? extends Persistent> type) {
return p -> Coll ections. singleton(new CacheG oupDescri ptor("customgroup"));

Now we'll set up it's usage by server Runt i ne:

Server Runti ne. bui | der ()
. addModul e(Cachel nval i dati onModul e. ext end()
/1 this will disable default handl er based on @acheG oups, and this is optional
. noCacheG oupsHandl er ()
. addHandl er (Cust om nval i dati onHandl er. cl ass)
. modul e())

Note

Y ou can combine as many invalidation handlers as you need.

v.4.1 100

Chapter 24. Commit log extension

24.1. Description

The goal of thismoduleisto capture commit changes and present them to interested partiesin an easy-to-process
format.

24.2. Including in a project

24.2.1. Maven

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-commtlog</artifactld>
<versi on>4. 1. Mi</ ver si on>

</ dependency>

24.2.2. Gradle

conpi l e 'org. apache. cayenne: cayenne-conmi tl og: 4. 1. ML'

24.3. Usage

In order to use conmi t | og module you need to perform three steps.

1. Mark al entities which changes you are interested in with @rg. apache. cayenne. conmi t | og. Conmi t Log
annotation

@Conmi t Log(i gnoredProperties = {"somePrivatePropertyToSkip"})
public class MyEntity extends _MyEntity {
/1

2. Implement comi t LogLi st ener interface.

public class MyComn t LogLi st ener inplenments Conm tLoglLi stener {

@verride

public void onPost Conmi t (Obj ect Cont ext ori gi nati ngCont ext, ChangeMap changes) {
/1 ChangeMap will contain all information about changes happened in perforned commt
/1 this particular exanple will print IDs of all inserted objects

changes. get Uni queChanges() . strean()
.filter(change -> change. get Type() == Obj ect ChangeType. | NSERT)
. map(Obj ect Change: : get Post Conmi t | d)
.forEach(id -> Systemout.printIn("lInserted new entity with id: " + id));

v.4.l 101

Commit log extension

3. Inject your listener into server Runt i ne

Server Runti nme. bui | der ()
. addModul e(Commi t Loghbdul e. ext end()
. addLi st ener (MyCommi t LogLi st ener. cl ass)
. modul e())

v.4.l 102

Chapter 25. Crypto extension

25.1. Description

Crypto module allows encrypt and decrypt values stored in DB transparently to your Java app.

25.2. Including in a project

25.2.1. Maven

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-crypto</artifactld>
<ver si on>4. 1. ML</ ver si on>

</ dependency>

25.2.2. Gradle

conpi | e ' org. apache. cayenne: cayenne-crypto: 4. 1. ML

25.3. Usage

25.3.1. Setup your model and DB

To use crypto module you must prepare your database to allow byt e[] Storage and properly name columns that
will contain encrypted values.

Currently supported SQL types that can be used to store encrypted data are:
1. Binary types: BI NARY, BLOB, VARBI NARY, LONGVARBI NARY. Thesetypes are preferred.

2. Character types, that will storebase64 encoded value: cHAR, NCHAR, CLOB, NCLOB, LONGVARCHAR, LONGNVARCHAR,
VARCHAR, NVARCHAR

Note

Not al datatypes may be supported by your database.

Default naming strategy that doesn't require additional setup suggestsusing " crypTo " prefix. Y ou can changethis
default strategy by injecting you own implementation of or g. apache. cayenne. crypt o. map. Col unniapper interface.

Server Runti ne. bui | der ()
. addModul e(Cr ypt oModul e. ext end()
. col umMapper (MyCol uimMapper . cl ass)
. modul e())

v.4.1 103

Crypto extension

Here is an example of how abj Ent i ty with two encrypted and two unencrypted properties can look like:

Name ~ | Java Type | DbAttribute Path | DB Type
intFieldl Int CRYPTO_INT_FIELD BLOE
intField2 Int INT_FIELD NTEGER

stringFieldl java.lang.5tring CRYPTO_STRING_FIELD ELOE
stringField2 java.lang.5tring STRING_FIELD VARCHAR

25.3.2. Setup keystore

To perform encryption you must provide KEysTore_URL and KEY_PAssSworRD. Currently crypto module supports only
Java"jceks' KeyStore.

Server Runti nme. bui | der ()
. addModul e(Crypt oModul e. ext end()
. keyStore(this.getd ass().getResource("keystore.jcek"), "ny-password".toCharArray(), | "mnmy-key-ali
. modul e())

25.3.3. Additional settings

Additionally to col umMapper mentioned above you can customize other parts of crypt o modul e. Y OU can enable
gzi p compression and Hvac usage (later will ensure integrity of data).

Server Runti nme. bui | der ()
. addMvbdul e(Crypt oMbdul e. ext end()
.conpress()
. useHVAC()
. modul e())

Another useful extension point is support for custom Javavalue types. To add support for your datatype you need
to implement or g. apache. cayenne. crypt o. t r ansf or mer . val ue. Byt esConver t er interface that will convert required

typeto and frombyte[] .

Server Runti nme. bui | der ()
. addModul e(Cr ypt oModul e. ext end()
. obj ect ToByt esConverter (M ass. cl ass, new Myd assByt esConverter())
. modul e())

Note

In addition to Java primitive types (and their object counterparts), crypt o modul e Supportsencryption only
Of java. util.Date,java. math. Bi gl nteger andj ava. mat h. Bi gDeci nal types.

v.4.1l 104

Chapter 26. JCache integration

26.1. Description

This module allows to integrate any JCache (JSR 107) compatible caching provider with Cayenne.

26.2. Including in a project

26.2.1. Maven

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-jcache</artifactld>
<versi on>4. 1. ML</ ver si on>

</ dependency>

26.2.2. Gradle

conpi |l e ' org. apache. cayenne: cayenne-j cache: 4. 1. ML

26.3. Usage

To use JCache provider in your app you need to include this module and caching provider libs (e.g. Ehcache).
Y ou can provide own implementation of or g. apache. cayenne. j cache. JCacheConf i gur at i onFact ory t0 customize
cache configuration if required.

For advanced configuration and management please use provider specific options and tools.

Note

Y ou can read about using cache in Cayenne in this chapter.

Y ou may €else be interested in cache invalidation extension.

v.4.1 105

Chapter 27. Joda time extension

27.1. Description

Joda time module dlows to USe org.joda.tine. Local Ti me, org.joda.tine. Local Date,
org.joda.tine. Local Dat eTi me and org. j oda. ti ne. Dat eTi e types for entity attributes

27.2. Including in a project

27.2.1. Maven

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-joda</artifactld>
<versi on>4. 1. ML</ ver si on>

</ dependency>

27.2.2. Gradle

conpi l e 'org. apache. cayenne: cayenne-j oda: 4. 1. ML

27.3. Usage

This module doesn't require any additional setup, you can just use new data typesin your model.

v.4.1 106

Chapter 28. Project compatibility
extension

28.1. Description

Since version 4.1 Cayenne doesn't allow to load project XML files from previous versions as this can lead to
unexpected errorsin runtime. Thismodul e allowsto use project filesfrom older versions performing their upgrade
on the fly (without modifying files). This can be useful when using Cayenne maodels from third-party libraries

in your app.
Note

Y ou should prefer explicit project upgrade via Cayenne Modeler.

28.2. Including in a project

28.2.1. Maven

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-project-conpatibility</artifactld>
<versi on>4. 1. Mi</ ver si on>

</ dependency>

28.2.2. Gradle

conpi |l e 'org. apache. cayenne: cayenne- proj ect-conpatibility:4.1. M

28.3. Usage

This module doesn't require any additional setup.

v.4.l 107

Chapter 29. Apache Velocity extension

29.1. Description

This module enables usage of full featured Apache Velocity templatesin or g. apache. cayenne. query. SQLTenpl at e
queries.

29.2. Including in a project

29.2.1. Maven

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-vel ocity</artifactld>
<versi on>4. 1. Mi</ ver si on>

</ dependency>

29.2.2. Gradle

conpi |l e 'org. apache. cayenne: cayenne-vel ocity:4.1. ML

29.3. Usage

This module doesn't require any additional setup.
In addition of directives mentioned in this chapter, this modul e enables #chai n and #chunk directives.

#chai n and #chunk directives are used for conditional inclusion of SQL code. They are used together with #chai n
wrapping multiple #chunks. A chunk evaluates its parameter expression and if it is NULL suppresses rendering
of the enclosed SQL block. A chain renders its prefix and its chunks joined by the operator. If al the chunks
are suppressed, the chain itself is suppressed. This allows to work with otherwise hard to script SQL semantics.
E.g. aWHERE clause can contain multiple conditions joined with AND or OR. Application code would like to
exclude a condition if its right-hand parameter is not present (similar to Expression pruning discussed above). If
all conditions are excluded, the entire WHERE clause should be excluded. chain/chunk allows to do that.

Semantics:
#chai n(operator) ... #end
#chai n(operator prefix) ... #end
#chunk() ... #end
#chunk(param) ... #end
Full example:

#chain(' OR ' WHERE')

v.4.1 108

Apache Velocity extension

#chunk($nanme) NAMVE LI KE #bi nd($nane) #end
#chunk($i d) ARTI ST_I D > #bi nd($i d) #end
#end"

v.4.1 109

Appendix A. Configuration Properties

Note that the property names below are defined as constants in or g. apache. cayenne. confi gurati on. Const ant s

interface.

Table A.1. Configuration Properties Recognized by Server Runtime and/or ClientRuntime

- node name are specified, the setting overrides DataSource info just for
this domain/node. Otherwise the override is applied to all domains/nodes
in the system.

Property Possible Default Value
Values

cayenne. j dbc. dri ver[. donmai n_nane. node_nane] - defines a JDBC driver none, project

class to use when creating a DataSource. If domain name and optionally DataNode

configuration is
used

cayenne. j dbc. url [. domai n_nane. node_nane] - defines a DB URL to use
when creating a DataSource. |f domain name and optionally - node name
are specified, the setting overrides DataSource info just for this domain/
node. Otherwisethe overrideisapplied to all domains/nodesin the system.

none,
DataNode
configuration is
used

project

- defines a DB user
name to use when creating a DataSource. If domain name and optionally
- node name are specified, the setting overrides DataSource info just for
this domain/node. Otherwise the override is applied to all domains/nodes
in the system.

cayenne. j dbc. user nane[. domai n_nane. node_nane]

none, project
DataNode
configuration is

used

cayenne. j dbc. passwor d[. domai n_nane. node_nane] - defines a DB
password to use when creating a DataSource. If domain name and
optionally - node name are specified, the setting overrides DataSourceinfo
just for thisdomain/node. Otherwisethe overrideisapplied to al domainsg/
nodes in the system

none, project
DataNode
configuration is

used

cayenne. j dbc. m n_connecti ons[. domai n_nane. node_nane] - definesthe DB
connection pool minimal size. If domain name and optionally - node name
are specified, the setting overrides DataSource info just for this domain/
node. Otherwisethe overrideisapplied to al domains/nodesin the system

none, project
DataNode
configuration is

used

cayenne. j dbc. max_connect i ons[. domai n_nane. node_nane] - definesthe DB
connection pool maximum size. If domain name and optionally - node
name are specified, the setting overrides DataSource info just for this
domain/node. Otherwise the override is applied to all domaing/nodes in
the system

none, project
DataNode
configuration is

used

v.4.1

110

Configuration Properties

Property

Possible
Values

Default Value

cayenne. quer ycache. si ze - An integer defining the maximum number of
entries in the query cache. Note that not all QueryCache providers may
respect this property. MapQueryCache uses it, but the rest would use
aternative configuration methods.

any positive
int value

2000

cayenne. server.contexts_sync_strategy - defines whether peer
ObjectContexts should receive snapshot events after commits from other
contexts. If true (default), the contexts would automatically synchronize

their state with peers.

true, false

true

cayenne. server. obj ect _retain_strategy - defines fetched objects retain
strategy for ObjectContexts. When weak or soft strategy is used, objects
retained by ObjectContext that have no local changes can potetialy get
garbage collected when VM feelslike doing it.

weak,
hard

soft,

weak

cayenne. server. max_i d_qual i fier_size - defines a maximum number of
ID qualifiers in the WHERE clause of queries that are generated for
paginated queries and for DISJOINT_BY _ID prefetch processing. Thisis
needed to avoid hitting WHERE clause size limitations and memory usage
efficiency.

any positive
int

10000

cayenne. server.external _tx - defines whether runtime should use
external transactions.

true, false

fase

cayenne. rop. servi ce_url - definesthe URL of the ROP server

cayenne. rop. servi ce_user nane - defines the user name for an ROP client
tologin to an ROP server.

cayenne. rop. servi ce_passwor d - defines the password for an ROP client
tologin to an ROP server.

cayenne. rop. shar ed_sessi on_nane- defines the name of the shared session
that an ROP client wantsto join on an ROP server. If omitted, a dedicated
session is created.

cayenne. rop. servi ce. ti neout - avaluein millisecondsfor the ROP client-
server connection read operation timeout

any positive
long value

cayenne. rop. channel _events - defines whether client-side DataChannel
should dispatch events to child ObjectContexts. If set to true,

v.4.1

true, false

fase

111

Configuration Properties

Property

Possible
Values

Default Value

ObjectContextswill receive commit events and merge changes committed
by peer contexts that passed through the common client DataChannel.

cayenne. r op. cont ext _change_events- defines whether object property
changesin the client context result in firing events. Client Ul components
can listen to these events and update the UI. Disabled by default.

true, false

fase

cayenne. rop. context _| i fecycl e_events - defines whether object commit
and rollback operations in the client context result in firing events. Client
Ul components can listen to these events and update the Ul. Disabled by
default.

true,false

fase

cayenne. server.rop_event _bridge factory - defines the name of the
org.apache.cayenne.event.EventBridgeFactory that is passed from the
ROP server to the client. l.e. server DI would provide a name of the
factory, passing this name to the client via the wire. The client would
instantiate it to receive events from the server. Note that this property is
stored in "cayenne.server.rop_event_bridge_properties’ map, not in the
main "cayenne.properties”.

v.4.1

112

Appendix B. Service Collections

Note that the collection keys below are defined as constants in or g. apache. cayenne. confi gurati on. Const ant s

interface.

Table B.1. Service Collection Keys Present in Server Runtime and/or ClientRuntime

Collection Property

Type

Description

cayenne. properties

Map<String, String>

Propertiesused by built-in Cayenne
services. The keys in this map are
the property names from the table
in Appendix A. Separate copies of
this map exist on the server and
ROP client.

cayenne. server. adapt er _detectors

Li st <DbAdapt er Det ect or >

Contains objects that can discover
the type of current database and
install the correct DbAdapter in
runtime.

cayenne. server.domain_filters

Li st <Dat aChannel Fi |l ter>

Stores DataDomain filters.

cayenne. server. proj ect _| ocations

Li st<String>

Stores locations of the one of more
project configuration files.

cayenne. server. defaul t _types

Li st <Ext endedType>

Stores default adapter-
agnostic ExtendedTypes. Default
ExtendedTypes can be overridden /
extended by DB-specific
DbAdapters as well as by
user-provided types configured
in another colltecion (see

"cayenne.server.user_types")

cayenne. server. user _types

Li st <Ext endedType>

Stores a user-provided
ExtendedTypes. This collection
will be merged into a full list of
ExtendedTypesand would override
any ExtendedTypes defined in a
default list, or by a DbAdapter.

cayenne. server.type_factories

v.4.1

Li st <Ext endedTypeFact or y>

Stores default and user-
provided ExtendedTypeFactories.

113

Service Collections

Collection Property Type Description

ExtendedTypeFactory alows to
define ExtendedTypesdynamically
for the whole group of Javaclasses.
E.g. Cayenne supplies a factory to
map all Enums regardless of their

type.

cayenne. server.rop_event _bridge_properties| Map<String, String> Stores event bridge properties
passed to the ROP client on
bootstrap. This means that the
map is configured by server DI,
and passed to the client via the
wire. The properties in this map
are specific to EventBridgeFactory
implementation (e.g JMS or
XMPP connection prameters).
One common property is
"cayenne. server.rop_event _bridge_factory"

that defines the type of the factory.

v.4.1l 114

Appendix C. Expressions BNF

TOKENS
<DEFAULT> SKI P : {

<DEFAULT> TOKEN : {

<NULL: "nul " | "NULL">

| <TRUE: "true" | "TRUE">

| <FALSE: "false" | "FALSE">

}

<DEFAULT> TOKEN : {

<PROPERTY_PATH: <I| DENTI FI ER> ("."

}

<DEFAULT> TOKEN : {
<I DENTI FI ER. <LETTER> (<LETTER> |

| <#LETTER ["_","a"-"2z","A"-"Z"]>

| <#DIGT: ["0"-"9"]>
}

[**

* Quoted Strings, whose object value is stored in the token manager's
* "literal Value" field. Both single and double qoutes are all owed

*[<DEFAULT> MORE : {
"\"" : WthinSingl eQotelLiteral
| "\"" : WthinDoubl eQuoteLiteral
}

<W t hi nSi ngl eQuot eLi teral > MORE :

<ESC: "\\" (["n","r","t", b, "fr, "

| <V
}

<W t hi nSi ngl eQuot eLi t eral > TOKEN :

<| DENTI FI ER>) *>

DET)* (["+])?>

L R

{

<SI NGLE_QUOTED STRING "\'"> : DEFAULT

}

<W t hi nDoubl eQuot eLi teral > MORE :
<STRI NG_ESC. <ESC>> : {

RS EAREPRAA S R

}

<W t hi nDoubl eQuot eLi teral > TOKEN :

{

{

<DOUBLE_QUOTED STRING "\""> : DEFAULT

}

v.4.1

(["0"-"3"])2 ["0"-"7"]

(["0"-"7"1)?)> :

{

115

Expressions BNF

/**
* Integer or real Nuneric literal, whose object value is stored in the token nmanager's

* "literal Val ue" field.
*[<DEFAULT> TOKEN : {

<INT_LITERAL: (70" (["0"-"7"])* | ["1"-"9"] (["0"-"9"])* | "0" ["x","X"] (["0"-"9","a"-"f" "A"-"F']))

([nlu7nLu7nhn7nH'])?>: {
<FLOAT_LITERAL: <DEC FLT> (<EXPONENT>)? (<FLT_SUFF>)? | <DEC DI G TS> <EXPONENT> (<FLT_SUFF>)?
<DEC DI G TS> <FLT_SUFF>> : {

I
I
| <#DEC FLT: (["O0"-"9"])+ "."™ (["O0"-"9"1)* | "." (["0"-"9"])+>
| <#DEC_.DIGTS: (["0"-"9"]) +>
| <#EXPONENT: ["e","E'] (["+","-"1)? (["0"-"9"])+>
| <#FLT_SUFF. ["d","D',"f","F","b","B"]>
}
NON- TERM NALS
expressi on 1= or Condi ti on <EOF>
or Condi tion 1= andCondition ("or" andCondition)*
andCondi ti on 1= not Condi tion ("and" notCondition)*
not Condi ti on 1= ("not" | "!") sinpleCondition
| si npl eCondi ti on
si npl eCondi ti on L= <TRUE>
| <FALSE>

| scal ar Condi ti onExpr essi on
(si npl eNot Condi tion

("="| "==") scalarExpression

("!'="] "<>") scal ar Expression

"<=" scal ar Expr essi on

"<" scal arExpression | ">" scal ar Expression

"like" scal ar Expression
"1i kel gnoreCase" scal ar Expr essi on
"in" (nanedParaneter | "(" scal arComaList ")")

I
I
I
I
| ">=" scal ar Expr essi on
I
I
I
| "between" scal ar Expression "and" scal ar Expressi on

)?
si mpl eNot Condi ti on 1= ("not" | "I")
("like" scal ar Expression
| "likelgnoreCase" scal ar Expr essi on
| "in" (nanedParaneter | "(" scal arCommaList ")")
| "between" scal ar Expression "and" scal ar Expressi on
)
scal ar Commali st 1= (scal ar Const Expression ("," scal ar Const Expression)*)
scal ar Condi ti onExpr essi on L= scal ar Nuneri cExpressi on

[<SI NGLE_QUOTED_STRI NG>
| <DOUBLE_QUOTED_STRI NG>

| <NULL>
scal ar Expressi on 1= scal ar Condi ti onExpr essi on
| <TRUE>
| <FALSE>
scal ar Const Expr essi on 1= <S|I NGLE_QUOTED_STRI NG

<DOUBLE_QUOTED_STRI NG>
nanmedPar anet er

<I NT_LI TERAL>
<FLQOAT_LI TERAL>

<TRUE>

I
I
I
I
I
| <FALSE>

v.4.1

116

Expressions BNF

v.4.1

scal ar Nurer i cExpr essi on 1= mul ti pl ySubt ract Exp

("+" multiplySubtractExp | "-" multiplySubtractExp)*

mul ti pl ySubt ract Exp 1= nunericTerm ("*" nunericTerm |

nunericTerm 1= ("+")? numericPrimry
| "-" numericPrimry
nuneri cPri mary 1= "(" orCondition ")"
| pat hExpr essi on
| nanedPar anet er
[<I NT_LI TERAL>
[<FLOAT_LI TERAL>
nanedPar anet er = "$" <PROPERTY_PATH>
pat hExpr essi on 1= (<PROPERTY_PATH>
| "obj:" <PROPERTY_PATH>
| "db:" <PROPERTY_PATH>
| "enum " <PROPERTY_PATH>

nyn

nunericTerm)*

117

	Cayenne Guide
	Table of Contents
	Part I. Object Relational Mapping with Cayenne
	Chapter 1. Setup
	1.1. System Requirements
	1.2. Running CayenneModeler

	Chapter 2. Cayenne Mapping Structure
	2.1. Cayenne Project
	2.2. DataMap
	2.3. DataNode
	2.4. DbEntity
	2.5. ObjEntity
	2.6. Embeddable
	2.7. Procedure
	2.8. Query

	Chapter 3. CayenneModeler Application
	3.1. Working with Mapping Projects
	3.2. Reverse Engineering Database
	3.3. Generating Database Schema
	3.4. Migrations
	3.5. Generating Java Classes
	3.6. Modeling Inheritance
	3.7. Modeling Generic Persistent Classes
	3.8. Mapping ObjAttributes to Custom Classes
	3.9. Modeling Primary Key Generation Strategy

	Part II. Cayenne Framework
	Chapter 4. Including Cayenne in a Project
	4.1. Jar Files
	4.2. Dependencies
	4.3. Maven Projects
	4.3.1. cgen
	4.3.2. cdbgen
	4.3.3. cdbimport

	4.4. Gradle Projects
	4.4.1. Gradle Plugin
	4.4.1.1. cgen
	4.4.1.2. cdbimport
	4.4.1.3. cdbgen
	4.4.1.4. Link tasks to Gradle build lifecycle

	4.5. Ant Projects
	4.5.1. cgen
	4.5.2. cdbgen
	4.5.3. cdbimport

	Chapter 5. Starting Cayenne
	5.1. Starting and Stopping ServerRuntime
	5.2. Merging Multiple Projects
	5.3. Web Applications

	Chapter 6. Persistent Objects and ObjectContext
	6.1. ObjectContext
	6.2. Persistent Object and its Lifecycle
	6.3. ObjectContext Persistence API
	6.4. Cayenne Helper Class
	6.5. ObjectContext Nesting
	6.6. Generic Persistent Objects
	6.7. Transactions

	Chapter 7. Expressions
	7.1. Expressions Overview
	7.2. Path Expressions
	7.3. Creating Expressions from Strings
	7.4. Creating Expressions via API
	7.5. Evaluating Expressions in Memory
	7.6. Translating Expressions to EJBQL

	Chapter 8. Orderings
	Chapter 9. Queries
	9.1. ObjectSelect
	9.1.1. Selecting objects
	9.1.2. Selecting individual columns
	9.1.3. Selecting using aggregate functions

	9.2. EJBQLQuery
	9.3. SelectById
	9.4. SQLSelect and SQLExec
	9.5. MappedSelect and MappedExec
	9.6. ProcedureCall
	9.7. Custom Queries
	9.8. SQLTemplate
	9.8.1. Scripting SQLTemplate with Velocity
	9.8.2. Variable Substitution
	9.8.3. Directives
	9.8.3.1. #bind
	9.8.3.2. #bindEqual
	9.8.3.3. #bindNotEqual
	9.8.3.4. #bindObjectEqual
	9.8.3.5. #bindObjectNotEqual
	9.8.3.6. #result

	9.8.4. Mapping SQLTemplate Results

	Chapter 10. Lifecycle Events
	10.1. Types of Lifecycle Events
	10.2. Callbacks on Persistent Objects
	10.3. Callbacks on Non-Persistent Listeners
	10.4. Combining Listeners with DataChannelFilters

	Chapter 11. Performance Tuning
	11.1. Prefetching
	11.1.1. Prefetching Semantics
	11.1.2. Disjoint Prefetching Semantics
	11.1.3. Disjoint-by-ID Prefetching Semantics
	11.1.4. Joint Prefetching Semantics
	11.1.5. Similar Behaviours Using EJBQL

	11.2. Data Rows
	11.3. Specific Attributes and Relationships with EJBQL
	11.4. Iterated Queries
	11.5. Paginated Queries
	11.6. Caching and Fresh Data
	11.6.1. Object Caching
	11.6.2. Query Result Caching

	11.7. Turning off Synchronization of ObjectContexts

	Chapter 12. Customizing Cayenne Runtime
	12.1. Dependency Injection Container
	12.1.1. DI Bindings API
	12.1.2. Service Lifecycle
	12.1.3. Overriding Services

	12.2. Customization Strategies
	12.2.1. Changing Properties of Existing Services
	12.2.2. Contributing to Service Collections
	12.2.3. Alternative Service Implementations

	12.3. Using custom data types
	12.3.1. Value object type
	12.3.2. Extended Types
	12.3.2.1. Supporting Non-Standard Types
	12.3.2.2. DbAdapters and Extended Types

	12.4. Noteworthy Built-in Services
	12.4.1. JdbcEventLogger
	12.4.2. DataSourceFactory
	12.4.3. DataChannelFilter
	12.4.4. QueryCache

	Part III. Cayenne Framework - Remote Object Persistence
	Chapter 13. Introduction to ROP
	13.1. What is ROP
	13.2. Main Features

	Chapter 14. ROP Setup
	14.1. System Requirements
	14.2. Jar Files and Dependencies

	Chapter 15. Implementing ROP Server
	Chapter 16. Implementing ROP Client
	Chapter 17. ROP Deployment
	17.1. Deploying ROP Server
	17.2. Deploying ROP Client
	17.3. Security

	Chapter 18. Current Limitations

	Part IV. DB-First Flow
	Chapter 19. Introduction
	19.1. "DB-first" Flow
	19.2. Introduction to "cdbimport"

	Chapter 20. Filtering
	20.1. Process everything from schema/catalog
	20.2. Combine Schema and Catalog filters
	20.3. Including and Excluding tables, columns and procedures
	20.4. Complete filtering example
	20.5. Ant configuration example

	Chapter 21. Other Settings
	21.1. Skip Relationships Loading
	21.2. Skip Primary Keys Loading
	21.3. Table Types

	Chapter 22. Reverse Engineering in Cayenne Modeler
	22.1. DataSource selection
	22.2. Reverse engineering options

	Part V. Cayenne Additional Modules
	Chapter 23. Cache invalidation extension
	23.1. Description
	23.2. Including in a project
	23.2.1. Maven
	23.2.2. Gradle

	23.3. Usage

	Chapter 24. Commit log extension
	24.1. Description
	24.2. Including in a project
	24.2.1. Maven
	24.2.2. Gradle

	24.3. Usage

	Chapter 25. Crypto extension
	25.1. Description
	25.2. Including in a project
	25.2.1. Maven
	25.2.2. Gradle

	25.3. Usage
	25.3.1. Setup your model and DB
	25.3.2. Setup keystore
	25.3.3. Additional settings

	Chapter 26. JCache integration
	26.1. Description
	26.2. Including in a project
	26.2.1. Maven
	26.2.2. Gradle

	26.3. Usage

	Chapter 27. Joda time extension
	27.1. Description
	27.2. Including in a project
	27.2.1. Maven
	27.2.2. Gradle

	27.3. Usage

	Chapter 28. Project compatibility extension
	28.1. Description
	28.2. Including in a project
	28.2.1. Maven
	28.2.2. Gradle

	28.3. Usage

	Chapter 29. Apache Velocity extension
	29.1. Description
	29.2. Including in a project
	29.2.1. Maven
	29.2.2. Gradle

	29.3. Usage

	Appendix A. Configuration Properties
	Appendix B. Service Collections
	Appendix C. Expressions BNF

