Cayenne Guide



Cayenne Guide
Copyright © 2011-2012 Apache Software Foundation and individual authors

License

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this
work for additional information regarding copyright ownership. The ASF licenses thisfile to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. Y ou may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the Licenseis distributed on an "AS|S' BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and
limitations under the License.



Table of Contents

I. Object Relational Mapping With CaYENNE ..........oeiiiiiiiiie e 1
S (1o PP PRRTPP PP 3
SYStEM REQUITEIMENTS ... 3
RUNNING CayennNEMOUEIES ... e e e e s e e e e e e s e e neees 3

2. Cayenne MapPing SITUCKUIE ........ouuiiieiiieiee ettt et et e ettt e et e e e st et e e s aba e e e e snne e e e annees 5
CaYENNE PrOJECE ...ttt ek e e et e e e e e s a b e e e eas 5

D 1Y I PSPPSR 5

D N\ oo [ ORI 5

D] =01 1P PR OUPPPPPPPPRR 5

(@ o] =LY TP UPRRPPRURN 5
EMDEAADIE ... e e e e e e e e e annes 5
00 (U] TP 5

(O 1= PP PP TPR PP PPPPPPRPPTPN 5
Listeners and CallDACKS .........coouuiiioiiiiice e 5

3. CayenneModeler AppliCation ... 7
Working with Mapping PrOJECES ......c.oieiiiiiiiieiee et a e e e e 7
Reverse ENgINEering DalaDase ..........cououiuiiieiiiiiiie sttt ee e 7
Generating DataDase SCREIMEL .........uuiiiiiiiiie e e e 7
MIGIaliONS ..., 7
GENErating JAVA ClaSSES .....cooiieiiiiiii ettt e e e e e e e s e s e e e e e e e e e et r e e e e e e e e e aanraaes 7
MOAENG INNEFTANCE ..ot e e e e e 7
Modeling Primary Key Generation SIrAEJY ........ccorvrrreeiiumrieeaiieieeesiieeeessiseeesssineeeessireeee e 7

O Y= L= o =4 U=. 1Yo G 9
4. Including Cayenne iN @ PrOJECE .......cooiiiieeee e 11
Jar Files and DEPENTENCIES .......cooiuuriiiiiiiiie ettt e e s e e e b e e e s anneee s 11
IMBVEN PIOJECES ...ttt ettt ettt e e e e e s e e e e et e e e e e e e e e nnes 11

N 1 (0] =X 16

LS 7 110 B O 1Y/ o = PR 17
Starting and StOpPIiNg SErVErRUNTIME ........oviiiiiiiiie e 17
Merging MUITIPIE PrOJECES .......coiiiiiiiieeiiie et 17
WeD APPLICELIONS ... 18

6. Persistent Objects and ObJECICONLEXL ...........coiiiiiiiiiiiiee e i e e e e e e e e e e e e eeanes 19
(@ o)1= o1 (00| (= SO PPRTPPPT 19
Persistent Object and itS LIfECYCIE .......eeiiiiiiiiieee e 19

(0o 1= v (000] 1 (= Ml = £ 1 (= 1011 AN o 20
CayenNeE HEIPEE ClaSS .....ccoi it e e e e e e e e s e et e e e e e e e s eenneeees 21
ODBJECLCONIEXT NESHING ...veeeeiitiiee ettt e e e e e s e e e s sba e e e e annneee s 21
GeneriC Persistent ODJECES ........ueviiiiiiiiee ittt e s e e 21



Cayenne Guide

QLI 155 oo 1 PR 21

A = o= o] PO PP PP PPPPPPPPPRRPN 23
(1= T S @ V= V= T 23

Path EXPIESSIONS ...ciiiiiiiiciiiieee et e e e e e e s st e e e e e e e e e e s eaa b e b e e e e e e e e e sannnnreaeeeeas 23
Creating EXPressions fromM SENGS ......ooiviriieiiiiee ettt e e 23
Creating Expressions With EXPressionFaCiONY ............cooiiieieeriiiieeeiiieeee e 23
Evaluating EXpressions in MEMOIY ........coovvviiiiiiiecc e 23

R @ 1= 1= RPN 25
SEIECIQUETY ...ttt et e et e e e h bt e e e et e e et e e e e e e e e e e e annes 25
EIBQLQUENY . 25
SOLTEMPIAEQUETY ... nnnnna 25
ProCEAUrEQUETY .. ...ttt e e e e e et e e e e e e e s s e bbb e e e e eaeesssasnneaaeeeaeeeeaanns 25
NBMEAQUETY ...ttt ettt e ettt e e e e b bt e e e st bt e e e e bbbt e e e anbb e e e e e anbee e e e annneee s 25
CUSLOM QUENTES ...eeieieeeee ettt e e e e s ettt et e e e e e e s et e e e e e e e s e s ntbeaeeeeaeeessannttaneeaaaeseannsnrnens 25

9. LITECYCIE EVENLS ..o 27
TYPES Of LIfECYCIE EVENES ...t e e e e e s e e e e e e e eeanes 27
Lifecycle Callbacks and LISIENEIS .......ccoiuiiiiiiiiiiie ettt 27

10. PerformancCe TUNIMNG .......ooooiiieeieeiieie ettt e et e e e b e e s as e e e s aabne e e e e snne e e e e aneeeeenan 29
1= =2 1ot 0T PPt 29
DA ROWS ...ttt ettt ettt ettt £t st s s e e st s st s s e st st s e e e e nnnnnnnnnnen 31
1= = 0= 0 O TN = = SR 31
PagiNated QUETTES ........eeieieiiiiie ettt e et e e et e e s e e e e e e e s 31
(0= o g [ aTo Tz 0o B 1= g 11D - 31
Turning off Synchronization of ObjeCtCONEXLS .........eeviieeeiiiiiee e 31

11. Customizing Cayenne RUNLIMIE ........coiiiiiieiiiiiie ettt e e e e e e nnnees 33
Dependency INJECtioN CONMTAINES ........ccoiiiiiieiiiiiie e e e e s anneeeas 33
CuStoOMIZatioN SLrALEJIES .....ccceeeieeeee e 36
Noteworthy BUITt-IN SEIVICES ........vuiiiiiei e e e e e e e e e e e e e eanes 38

I11. Cayenne Framework - Remote ODJeCt PErSISLENCE .........ccoviiiiiiiiiiiiie e 39
12, INtroduCtion 10 ROP .....ocieiiieeeiee et e e e e e e e et ee e e e e e e e e s sanneeaeeeeeaeeeeaanneeeees 41
WHEE IS ROP ...ttt et e e e s e e e e sttt e e e e st e e e e ansteeeeeansaeeeeanneeeeeannneneeanns 41
IMBIN FEBIUMES ......eeiieiiiiee ettt ettt e ettt e e e ettt e e e e sbb e e e e e nbe e e e s snsneeeeannneeee s 41

13, ROP SEIUD ..ttt ettt e oot e et e e e e e ek bbb et e e e e e e e bbb r et e e e e e e e nr e e eeeens 43
SYSEEM REQUITEIMENTS ...ttt e e e e e e e e e s e e e e annees 43

Jar Files and DEPENUENCIES ........ccooeiiiei i 43

14. Implementing ROP SEIVEL .........uiiiiiiiie et e e e e e e e e e e et r e e e e e e e e s aeaneees 45
15. IMplementing ROP CHENME .......c.uuiiiiiiiiii ettt e e anneeas 47
16. ROP DEPIOYIMENT ...ccoiiiiieeiiie e e ettt ettt ettt e e ek e e e st e e e st e e e e abb e e e e annr e e e e annbeeeeeane 49
DEPIOYING ROP SEIVES ....uueiuiiieieieiereieeeueunrerenerereremerererere———————.—.———.——————————————. 49
Deploying ROP ClIENL .....coiiiiiiiieeee e e e e e e s e s e e e e e e e s snnarreeeeaaeasaanes 49



Cayenne Guide

A. CoNfigUIation PrOPEIMIES .......uuuuuuuiuiiiiiiiiiiitiiieennrer e —.—————————————————naaannnasannsannsnnnnnnnnnnnnnnnnnnnsnnns
B. SErVICe COIIECHIONS ...t s e e e e e e e s e s e e e e e e e s e et b aeeeeeaeeesssannrenes



Vi



List of Tables

4.1, CYEN rEQUITEH PAIAIMELETS .....eeiiiiiiieeeittiee e ettt e e e ettt e e s ssbb e e e sbbe e e e e aatb e e e e e aab et e e e aabbe e e e e aabb e e e e anbeeeeennnees 12
4.2. CYEN OPLIONEl PAIBIMELENS ......eeiiieiiiie ettt ettt e e bt e e e b e e e e e bt e et e e e s b e e e e e aane e e e e anrneeeans 12
4.3. cdbgen reqUIred PAraMELEIS ........cviviiiiiiii ettt ettt et et et e e e e e e e et e e e e e ereeeeeeerererererereeeeereees 14
4.4, cdbgen OPtioNal PAIAMELEL'S ......eeiiie e i it e e e e e e e e e e e e s e e e e e e e e s s ast b e e e e eaaeesssasnrareeeeaaeesaannns 14
4.5. cdbimport reqUIred PAIBMELENS ........ooiiiiiiie ettt e st e e e s b e e e enbeeeeen 15
4.6. cdbimport OPtioNal PAIAIMELEL'S ...........eiiiiiiiiie ettt e e e r e e e anb e e e s e e e e annneeas 15
B.1. PEISISIENCE SEALES ....eiiieeiii it iiie e e e e e ettt et e e e e e e ettt ettt e e e e e e s e aete et e e eeeeeeaaneebeeeeeeeeeaeaannnnaneaeeaeeeaaanns 20
A.1. Configuration Properties Recognized by ServerRuntime and/or ClientRuntime.............ccccoceeeeeenines 53
B.1. Service Collection Keys Present in ServerRuntime and/or ClientRuntime ............cccoccvveeiiiiee e, 57

Vii



viii



Part |. Object Relational
Mapping with Cayenne






Chapter 1. Setup

System Requirements

« Java: Cayenne runtime framework and CayenneMaodeler GUI tool are written in 100% Java, and run
on any Java-compatible platform. Required JDK version is 1.5 or higher. The last version of Cayenne
compatible with JDK 1.4is1.2.x/2.0.x; JDK 1.3 - 1.1.x)

» JDBC Driver: An appropriate DB-specific JDBC driver is needed to access the database. It can be
included in the application or used in web container DataSource configuration.

e Third-party Libraries: Cayenne runtime framework has aminimal set of required and a fe more optional
dependencies on third-party open source packages. See "Including Cayennein a Project" chapter for
details.

Running CayenneModeler

CayenneModeler GUI tool isintended to work with object relational mapping projects. While you

can edit your XML by hand, it is rarely needed, as the Modeler is a pretty advanced tool included in
Cayenne distribution. To obtain CayenneModeler, download Cayenne distribution archive from http://
cayenne.apache.org/download.html matching the OS you are using. Of course Java needs to beinstalled on
the machine where you are going to run the Modeler.

OS X distribution contains CayenneModeler.app at the root of the distribution disk image.
Windows distribution contains CayenneModeler.exe file in the bi n directory.

Cross-platform distribution (targeting Linux, but as the name implies, compatible with any OS) contains a
runnable CayenneModeler.jar in the bi n directory. It can be executed either by double-clicking, or if the
environment is not configured to execute jars, by running from command-line:

java -jar CayenneMbdel er.jar

The Modeler can ao be started from Maven. While it may look like an exotic way to start a GUI application,
it has its benefits - no need to download Cayenne distribution, the version of the Modeler always matches the
version of the framework, the plugin can find mapping filesin the project automatically. So is an attractive
option to some devel opers. Maven option requires a declaration in the POM:

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>maven- cayenne- nodel er-pl ugi n</artifactld>
<ver si on>X. Y. Z</ ver si on>
</ pl ugi n>

</ pl ugi ns>


http://cayenne.apache.org/download.html
http://cayenne.apache.org/download.html

Running CayenneM odeler

</ bui | d>

And then can berun as

nvn cayenne- nodel er:run



Chapter 2. Cayenne Mapping Structure
Cayenne Project

DataMap

DataNode

DbEntity

ObjEntity

Mapping ObjAttributes to Custom Classes
Embeddable

Procedure

Query

Listeners and Callbacks






Chapter 3. CayenneModeler Application
Working with Mapping Projects

Reverse Engineering Database

Generating Database Schema

Migrations

Generating Java Classes

Modeling Inheritance

Modeling Primary Key Generation Strategy






Part II. Cayenne Framework






Chapter 4. Including Cayenne in a
Project

Jar Files and Dependencies

Cayenne distribution contains the following core runtime jarsin the distribution | i b directory:

e cayenne-server-x.x.jar - contains full Cayenne runtime (DI, adapters, DB access classes, etc.). Most
applications will use only thisfile.

» cayenne-client-x.x.jar - a subset of cayenne-server.jar trimmed for use on the client in an ROP application.
» Other cayenne-* jars - various Cayenne extensions.

When using cayenne- server - X. X. j ar you'll need afew third party jars (all includedin| i b/
t hi r d- par t y directory of the distribution):

« Apache Velocity Template Engine, version 1.6.x (and all its dependencies bundled with vel ocity-dep)
» Apache Commons Collections, version 3.2.1
» Apache Commons Logging, version 1.1

Cayenne integrates with various caching, clustering and other frameworks. These optional integrations will
require other third-party jars that the users will need to obtain on their own.

Maven Projects

If you are using Maven, you won't have to deal with figuring out the dependencies. Y ou can simply include
cayenne-server artifact in your POM:

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-server</artifact!ld>

<ver si on>X. Y. Z</ ver si on>
</ dependency>

Additionally Cayenne provides a Maven plugin with a set of goals to perform various project tasks, such as
synching generated Java classes with the mapping, described in the following subsection. The full plugin
nameisor g. apache. cayenne. pl ugi ns: maven- cayenne- pl ugi n.

cgen

cgenisamaven- cayenne- pl ugi n goa that generates and maintains source (.java) files of persistent
objects based on a DataMap. By default, it is bound to the generate-sources phase. If "makePairs’ is set to

11


http://velocity.apache.org/
http://commons.apache.org/collections/
http://commons.apache.org/logging/

cgen

"true" (which is the recommended default), thistask will generate a pair of classes (superclass/subclass)

for each ObjEntity in the DataMap. Superclasses should not be changed manually, since they are always
overwritten. Subclasses are never overwritten and may be later customized by the user. If "makePairs’ is set
to "false", asingle class will be generated for each ObjEntity.

By creating custom templates, you can use cgen to generate other output (such as web pages, reports,
specialized code templates) based on DataMap information.

Table4.1. cgen required parameters

Name Type Description

nap File DataMap XML file which serves as a source of metadata for class generation. E.g.
${project.basedir}/src/main/resources/ ny. map. xm

destDir File Root destination directory for Java classes (ignoring their package names).

Table 4.2. cgen optional parameters

Name Type Description

addi ti onal Maps File A directory that contains additional DataMap XML files that
may be needed to resolve cross-DataMap rel ationships for the
the main DataM ap, for which class generation occurs.

client boolean Whether we are generating classes for the client tier in a
Remote Object Persistence application. "False" by default.

enbeddabl eTenpl at e String  Location of acustom Velocity template file for Embeddable
class generation. If omitted, default template is used.

enbeddabl eSuper Tenpl at e String Location of acustom Velocity template file for Embeddable
superclass generation. Ignored unless "makepairs' set to "true".
If omitted, default template is used.

encodi ng String  Generated files encoding if different from the default on
current platform. Target encoding must be supported by
the VM running the build. Standard encodings supported
by Javaon al platforms are US-ASCII, 1SO-8859-1,
UTF-8, UTF-16BE, UTF-16LE, UTF-16. See javadocs for
java.nio.charset.Charset for more information.

excl udeEntities String A comma-separated list of ObjEntity patterns (expressed as a
perl5 regex) to exclude from template generation. By default
none of the DataMap entities are excluded.

i ncludeEntities String A comma-separated list of ObjEntity patterns (expressed as a
perl5 regex) to include from template generation. By default all
DataMap entities are included.

12



cgen

Name

makePai r s

node

overwite

super Pkg

super Tenpl at e

tenpl ate

usePkgPat h

Type Description

boolean If "true" (arecommended default), will generate subclass/
superclass pairs, with all generated code placed in superclass.

String  Specifies class generator iteration target. There are three
possible values: "entity" (default), "datamap”, "al". "entity"
performs one generator iteration for each included ObjEntity,
applying either standard to custom entity templates. "datamap"
performs a single iteration, applying DataM ap templates. "All"

is acombination of entity and datamap.

boolean Only has effect when "makePairs" is set to "false". If
"overwrite" os"true", will overwrite older versions of
generated classes.

String  Java package name of generated superclasses. Only has effect
if "makepairs' and "usePkgPath" are set to "true" (both are true
by default). Defines a common package for all generated Java
classes. If omitted, each superclass will be placed in the same
package as subclass.

String  Location of acustom Ve ocity template file for ObjEntity
superclass generation. Only has effect if "makepairs' set to
"true". If omitted, default template is used.

String  Location of acustom Ve ocity template file for ObjEntity class
generation. If omitted, default templateis used.

boolean If set to "true” (default), a directory tree will be generated in
"destDir" corresponding to the class package structure, if set
to "false”, classes will be generated in "destDir" ignoring their
package.

Example - atypical class generatio scenario, where pairs of classes are generated, and superclasses are

placed in a separate package:

<pl ugi n>

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifact!d>maven- cayenne-pl ugi n</artifact!|d>

<ver si on>X. Y. Z</ ver si on>

<l--

There's an intermittent problemwhen using Maven/cgen in Eclipse with nReclipse plugin that
requires placing "configuration" section at the plugin |evel, instead of execution

l evel .
-->

<confi gurati on>

<map>${ proj ect . basedi r}/src/ mai n/ resour ces/ ny. map. xm </ map>
<dest Di r >${ proj ect . basedi r}/src/ mai n/ j ava</ destDi r >
<super Pkg>or g. exanpl e. nodel . aut o</ super Pkg>

</ configuration>

13



cdbgen

<executions>
<execution>
<goal s>
<goal >cgen</ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>

cdbgen

cdbgenisamaven- cayenne- pl ugi n goal that drops and/or generates tables in a database on Cayenne
DataMap. By default, it is bound to the pre-integration-test phase.

Table 4.3. cdbgen required parameters

Name Type Description

map File DataMap XML filewhich serves as a source of metadata for DB schema generation.
E.g. ${proj ect. basedi r}/ src/ mai n/ resour ces/ ny. map. xm

driver String A class of JDBC driver to use for the target database.

url String JDBC connection URL of atarget database.

Table 4.4. cdbgen optional parameters

Name

adapt er

creat eFK
creat ePK
creat eTabl es
dr opPK
dropTabl es
password

user nane

Type
String

boolean
boolean
boolean
boolean
boolean
String

String

Description

Java class name implementing org.apache.cayenne.dba.DbAdapter. While this g
it is highly recommended to specify correct target adapter.

Indicates whether cdbgen should create foreign key constraints. Default is "true
Indicates whether cdbgen should create Cayenne-specific auto PK objects. Defa
Indicates whether cdbgen should create new tables. Default is "true”.

Indicates whether cdbgen should drop Cayenne primary key support objects. De
Indicates whether cdbgen should drop the tables before attempting to create new
Database user password.

Database user name.

Example - creating a DB schema on alocal HSQLDB database:

<pl ugi n>

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>maven-cayenne-pl ugi n</artifactld>

<versi on>X. Y. Z</ ver si on>
<executions>

<execution>
<confi gurati on>

14



cdbimport

<map>${ pr oj ect . basedir}/src/ mai n/ resources/ ny. map. xm </ nap>
<ur| >j dbc: hsql db: hsql : / /1 ocal host/testdb</url >
<adapt er >or g. apache. cayenne. dba. hsql db. HSQLDBAdapt er </ adapt er >
<driver>org. hsql db. j dbcDriver</driver>
<user name>sa</ user name>
</ configuration>
<goal s>
<goal >cdbgen</ goal >
</ goal s>
</ execution>
</ executi ons>
</ pl ugi n>

cdbimport

cdbi nport isamaven- cayenne- pl ugi n goal that generates a DataM ap based on an existing database
schema. By default, it is bound to the generate-sources phase. This alows you to generate your DataMap
prior to building your project, which may be necessary if you are also using the cgen task.

Table4.5. cdbimport required parameters

Name Type Description

map File DataMap XML file which isthe destination of the schemaimport. Maybe an
existing file. If thisfile does not exist, it is created when cdbimport is executed. E.g.
${project.basedir}/src/main/resources/ ny. map. xm

driver String A class of JDBC driver to use for the target database.
url String JDBC connection URL of atarget database.

Table 4.6. cdbimport optional parameters

Name Type Description

adapt er String Java class name implementing org.apache.cayenne.dba.DbA
highly recommended to specify correct target adapter.

i mport Procedures boolean Indicates whether stored procedures should be imported fron
nmeani ngf ul Pk boolean Indicates whether primary keys should be mapped as attribut
nani ngSt r at egy String The naming strategy used for mapping database hames to ob

or g. apache. cayenne. map. nam ng. Smart Nam nc

overwriteExisting boolean Indicates whether existing DB and object entities should be ¢
CayenneModeler. Default is "true”.

password String Database user password.

procedurePattern String Pattern to match stored procedure names against for import.
importProceduresis true.

schemaNamne String Database schema to import tables/stored procedures from.

15



Ant Projects

Name Type Description
tabl ePattern String Pattern to match table names against for import. Default is to matcl
user nane String Database user name.

Example - loading a DB schemafrom alocal HSQLDB database (essentially areverse operation compared
to the cdbgen example above) :

<pl ugi n>

<groupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>maven-cayenne-pl ugi n</artifactld>
<ver si on>X. Y. Z</ ver si on>

<executions>
<execution>
<confi guration>
<map>${ pr oj ect . basedi r}/src/ mai n/ resour ces/ ny. map. xm </ map>
<ur | >j dbc: hsql db: hsql : / /1 ocal host/t estdb</url >
<adapt er >or g. apache. cayenne. dba. hsqgl db. HSQLDBAdapt er </ adapt er >
<driver>org. hsql db. j dbcDri ver</driver>
<user name>sa</ user name>
</ configuration>
<goal s>
<goal >cdbi nport </ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

Ant Projects
cgen

cdbgen
cdbimport

cdataport

16



Chapter 5. Starting Cayenne

Starting and Stopping ServerRuntime

In runtime Cayenne is accessed via
or g. apache. cayenne. confi gurati on. server. Server Runt i nme. ServerRuntime s created
simply by calling a constructor:

ServerRuntime runtine =

new Server Runt i me(" coni exanpl e/ cayenne- proj ect. xnl ") ;
The parameter you pass to the constructor is alocation of the main project file. Location is a'/'-separated
path (same path separator is used on UNIX and Windows) that is resolved relative to the application
classpath. The project file can be placed in the root package or in a subpackage (e.g. in the code aboveitisin
"com/example" subpackage).

ServerRuntime encapsul ates a single Cayenne stack. Most applications will just have one ServerRuntime
using it to create as many ObjectContexts as needed, access the Dependency Injection (DI) container and
work with other Cayenne features. Internally ServerRuntime isjust athin wrapper around the DI container.
Detailed features of the container are discussed in "Customizing Cayenne Runtime" chapter. Here we'll just
show an example of how an application might replace a default implementation of a built-in Cayenne service
(inthis case - QueryCache) with adifferent class:

public class MyExtensi onsMdul e i npl ements Mdul e {
public void configure(Binder binder) {
bi nder . bi nd( Quer yCache. cl ass) . t o( EhCacheQuer yCache. cl ass);

}
}

Modul e ext ensi ons = new MyExt ensi onshModul e();
ServerRuntime runtine =
new Server Runti me("conl exanpl e/ cayenne-proj ect.xm ", extensions);

It isagood ideato shut down the runtime when it is no longer needed, usually before the application itself is
shutdown:

runtime. shut down();

When a runtime object has the same scope as the application, this may not be always necessary, however in
some casesit is essential, and is generally considered a good practice. E.g. in aweb container hot redepl oy
of awebapp will cause resource leaks and eventual OutOfMemoryError if the application fails to shutdown
CayenneRuntime.

Merging Multiple Projects

ServerRuntime requires at |east one mapping project to run. But it can also take multiple projects and merge
them together in asingle configuration. Thisway different parts of a database can be mapped independenity

17



Web Applications

from each other (even by different software providers), and combined in runtime when assembling an
application. Doing it is as easy as passing multiple project locations to ServerRuntime constructor:

ServerRuntime runtine =
new Server Runtime(new String[] {
"conl exanpl e/ cayenne-proj ect. xm ",
"org/fool/ cayenne-libraryl. xm",
"org/fool cayenne-library2. xm"

}
)

When the projects are merged, the following rules are applied:

» The order of projects matters during merge. If there are two conflicting metadata objects belonging to two
projects, an object from the last project takes precedence over the object from the first one. This makes
possible to override pieces of metadata. Thisis also similar to how DI modules are merged in Cayenne.

* Runtime DataDomain name is set to the name of the last project in the list.

» Runtime DataDomain properties are the same as the properties of the last project in the list. I.e. properties
are not merged to avoid invalid combinations and unexpected runtime behavior.

« If there are two or more DataM aps with the same name, only one DataMap is used in the merged project,
therest are discarded. Same precedence rules apply - DataMap from the project with the highest index in
the project list overrides all other DataM aps with the same name.

« If there are two or more DataNodes with the same name, only one DataNodes is used in the merged
project, the rest are discarded. DataNode coming from project with the highest index in the project list is
chosen per precedence rule above.

e Thereisanotion of "default" DataNode. After the merge if any DataMaps are not explicitly linked to
DataNodes, their queries will be executed via a default DataNode. This makes it possible to build mapping
"libraries" that are only associated with a specific database in runtime. If there's only one DataNode in the
merged project, it will be automatically chosen as default. A possible way to explicitly designate a specific
node as default isto override Dat aDomai nPr ovi der . cr eat eAndl ni t Dat aDomai n() .

Web Applications

18



Chapter 6. Persistent Objects and
ObjectContext

ObjectContext

ObjectContext is an interface that users normally work with to access the database. It provides the API to
execute database operations and to manage persistent objects. A context is obtained from the ServerRuntime:

Obj ect Cont ext context = runtime. get Context();

The call above creates a new instance of ObjectContext that can access the database viathis runtime.
ObjectContext isasingle "work area" in Cayenne, storing persistent objects. ObjectContext guarantees
that for each database row with aunique ID it will contain at most one instance of an object, thus ensuring
object graph consistency between multiple selects (afeature called "uniquing™). At the same time different
ObjectContexts will have independent copies of objects for each unique database row. This allows usersto
isolate object changes from one another by using separate ObjectContexts.

These properties directly affect the strategies for scoping and sharing (or not sharing) ObjectContexts.
Contexts that are only used to fetch objects from the database and whose objects are never modified by the
application can be shared between mutliple users (and multiple threads). Contexts that store modified objects
should be accessed only by asingle user (e.g. aweb application user might reuse a context instance between
multiple web requests in the same HttpSession, thus carrying uncommitted changes to objects from request
to request, until he decidesto commit or rollback them). Even for a single user it might make senseto use
mutliple ObjectContexts (e.g. request-scoped contexts to allow concurrent requests from the browser that
change and commit objects independently).

ObjectContext is serializable and does not permanently hold to any of the application resources. So it does
not have to be closed. If the context is not used anymore, it should simply be alowed to go out of scope and
get garbage collected, just like any other Java object.

Persistent Object and its Lifecycle

Cayenne can persist Java objects that implement or g. apache. cayenne. Per si st ent interface.
Generally persistent objects are created from the model via class generation as described above, so users do
not have to worry about implementation details.

Persistent interface provides access to 3 persistence-related properties - objectld, persistenceState and
objectContext. All 3 areinitialized by Cayenne runtime framework. Application code should not attempt
to change them them. However it is alowed to read them, which provides valuable runtime information.
E.g. Objectld can be used for quick equality check of 2 objects, knowing persistence state would allow
highlighting changed objects, etc.

19



ObjectContext Persistence API

Each persistent object belongs to a single ObjectContext, and can be in one of the following persistence
states (asdefined in or g. apache. cayenne. Per si st enceSt at e) :

Table6.1. Persistence States

TRANSIENT  The object is not registered with an ObjectContext and will not be persisted.

NEW The object isfreshly registered in an ObjectContext, but has not been saved to the
database yet and there is no matching database row.

COMMITTED The object isregistered in an ObjectContext, thereis arow in the database corresponding
to this object, and the object state corresponds to the last known state of the matching
database row.

MODIFIED The object isregistered in an ObjectContext, thereis arow in the database corresponding
to this object, but the object in-memory state has diverged from the last known state of the
matching database row.

HOLLOW The object isregistered in an ObjectContext, thereis arow in the database corresponding
to this object, but the object state is unknown. Whenever an application tries to access
aproperty of such object, Cayenne attempts reading its values from the database and
"inflate" the object, turning it to COMMITED.

DELETED The object isregistered in an ObjectContext and has been marked for deletion in-memory.
The corresponding row in the database will get deleted upon ObjectContext commit, and
the object state will be turned into TRANSIENT.

ObjectContext Persistence API

One of the first things users usually want to do with an ObjectContext isto select some objects from an
existing database. Thisis done by calling "performQuery" method:

Sel ect Query query = new Sel ect Query(Artist.class);
List<Artist> artists = context.performuery(query);

Welll discuss queriesin some detail in the following chapters. The example above is self-explanatory - we
create a SelectQuery that matches all Artist objects present in the database, and then call "performQuery",
getting alist of Artist objects.

In some cases queries can be quite complex, returning multiple result sets, and even updating the database.
For such queries ObjectContext provides "performGenericQuery"method. While not nearly as common as
"performQuery", it is nevertheless important in some situations. E.g.:

Col |l ection<Query> queries = ... // some queries
QueryChai n query = new QueryChai n(queries);

QueryResponse response = context. perfornGeneri cQuery(query);

The "newObject” method call creates a new persistent object setting its state to NEW:

20



Cayenne Helper Class

Artist artist = context.new(bject(Artist.class);
artist.set Name("Pi casso");

Once anew object is created, its properties can be modified by the application in memory without affecting
the database. To ensure the object is saved to the database, application must call "commitChanges':

cont ext . conmi t Changes();

In our case "commitChanges' commits just this one artist object, but in fact it commits all in-memory
changesto al objects registered in this ObjectContext (it just happens that we didn't have any more objects
to commit). |.e. anything that has changed since the previous commit or rollback (or since the context
creation if there were no previous commits or rollbacks). Commit internally generates aminimal set of SQL
statements to synchronize the database with the in-memory state of all changed objects and sends them to
DB in asingle transaction.

Cayenne Helper Class
ObjectContext Nesting
Generic Persistent Objects

Transactions

21



22



Chapter 7. Expressions
Expressions Overview

Path Expressions

Creating Expressions from Strings

Creating Expressions with
ExpressionFactory

Evaluating Expressions in Memory

23



24



Chapter 8. Queries
SelectQuery
EJBQLQuery
SQLTemplateQuery
ProcedureQuery
NamedQuery

Custom Queries

25



26



Chapter 9. Lifecycle Events
Types of Lifecycle Events

Lifecycle Callbacks and Listeners
Callback and Listener Methods Semantics
Registering Callbacks and Listeners

Combining Listeners with DataChannelFilters

27



28



Chapter 10. Performance Tuning

Prefetching

Prefetching is atechnique that allows to bring back in one query not only the queried objects, but also
objects related to them. In other wordsiit is a controlled eager relationship resolving mechanism. Prefetching
is discussed in the "Performance Tuning" chapter, asit isapowerful performance optimization method.
Another common application of prefetching isfor refreshing stale object relationships.

Prefetching example:
Sel ect Query query = new Sel ect Query(Artist.class);

/1 this instructs Cayenne to prefetch one of Artist's relationships
query. addPref et ch(" pai ntings");

/1 query is expecuted as usual, but the resulting Artists will have
/1 their paintings "inflated"
List<Artist> artists = context.performQuery(query);

All types of relationships can be preftetched - to-one, to-many, flattened.

A prefetch can span multiple relationships:

query. addPref et ch("paintings.gallery");

A query can have multiple prefetches:

query. addPref et ch(" pai ntings");
query. addPrefetch("paintings.gallery");

If aquery isfetching DataRows, all "digoint" prefetches are ignored, only "joint" prefetches are executed
(see prefetching semantics discussion below for what digjoint and joint prefetches mean).

Prefetching Semantics

Prefetching semantics defines a strategy to prefetch relationships. Depending on it, Cayenne would generate
different types of queries. The end result is the same - query root objects with related objects fully resolved.
However semantics can affect preformance, in some cases significantly. There are 3 types of prefetch
semantics, all defined as constants in org.apache.cayenne.query.PrefetchTreeNode:

Pref et chTr eeNode. JO NT_PREFETCH_SEMANTI CS
Pref et chTr eeNode. DI SJO NT_PREFETCH_SEMANTI CS
Pref et chTr eeNode. DI SJO NT_BY_| D_PREFETCH_SEMANTI CS

Each query has a default prefetch semantics, so generally users do not have to worry about changing it,
except when performance is a concern, or afew specia cases when a default sematics can't produce the
correct result. SelectQuery uses DISIOINT _PREFETCH_SEMANTICS by default. Semantics can be
changed asfollows:

Sel ect Query query = new Sel ect Query(Artist.class);

29



Digoint Prefetching Semantics

query. addPref et ch(" pai ntings").set Semanti cs(

Pref et chTr eeNode. JO NT_PREFETCH_SEMANTI CS) ;
There's no limitation on mixing different types of semantics in the same SelectQuery. Multiple prefetches
each can have its own semantics.

SQL Template and ProcedureQuery are both using JOINT_PREFETCH_SEMANTICS and it can not be
changed due to the nature of these two queries.

Disjoint Prefetching Semantics

This semantics (only applicable to SelectQuery) resultsin Cayenne generatiing one SQL statement for

the main objects, and a separate statement for each prefetch path (hence "digoint” - related objects are not
fetched with the main query). Each additional SQL statement uses aqualifier of the main query plus a set of
joinstraversing the preftech path between the main and related entity.

This strategy has an advantage of efficient VM memory use, and faster overall result processing by
Cayenne, but it requires (1+N) SQL statements to be executed, where N is the number of prefetched
relationships.

Disjoint-by-ID Prefetching Semantics

Thisisavariation of digoint prefetch where related objects are matched against a set of IDs

derived from the fetched main objects (or intermediate objects in a multi-step prefetch). Cayenne

limits the size of the generated WHERE clause, as most DBs can't parse arbitrary large SQL.

So prefetch queries are broken into smaller queries. The size of is controlled by the DI property

Constants. SERVER_MAX_ID_QUALIFIER_SIZE_PROPERTY (the default number of conditionsin the
generated WHERE clause is 10000). Cayenne will generate (1 + N * M) SQL statements for each query
using digjoint-by-1D prefetches, where N is the number of relationshipsto prefetch, and M is the number of
gueries for agiven prefetch that is dependent on the number of objectsin the result (ideally M = 1).

The advantage of this type of prefetch isthat matching database rows by 1D may be much faster than
matching the qualifier of the original query. Moreover thisisthe only type of prefetch that can handle
SelectQueries with fetch limit. Both joint and regular digjoint prefetches may produce invalid results or
generate inefficient fetch-the-entire table SQL when fetch limit isin effect.

The disadvantage is that query SQL can get unwieldy for large result sets, as each object will have to have its
own condition in the WHERE clause of the generated SQL.

Joint Prefetching Semantics

Joint senantics results in asingle SQL statement for root objects and any number of jointly prefetched paths.
Cayenne processes in memory a cartesian product of the entities involved, converting it to an object tree. It
uses OUTER joins to connect prefetched entities.

30



Data Rows

Joint isthe most efficient prefetch type of the three as far as generated SQL goes. There's alwaysjust 1

SQL query generated. Its downsides are the potentially increased amount of data that needs to get across the
network between the application server and the database, and more data processing that needs to be done on
the Cayenne side.

Data Rows
lterated Queries
Paginated Queries

Caching and Fresh Data

Object Caching

Query Result Caching

Turning off Synchronization of
ObjectContexts

31



32



Chapter 11. Customizing Cayenne
Runtime

Dependency Injection Container

Cayenne runtimeis built around a small powerful dependency injection (DI) container. Just like other
popular DI technologies, such as Spring or Guice, Cayenne DI container manages sets of interdependent
objects and alows users to configure them. These objects are regular Java objects. We are calling them
"services' in this document to distinguish from all other objects that are not configured in the container
and are not managed. DI container is responsible for service instantiation, injecting correct dependencies,
maintai ning service instances scope, and dispatching scope eventsto services.

The services are configured in special Java classes called "modules’. Each module defines binding of service
interfaces to implementation instances, implementation types or providers of implementation instances.
There are no XML configuration files, and all the bindings are type-safe. The container supports injection
into instance variables and constructor parameters based on the @ nj ect annotation. This mechanismis
very close to Google Guice.

The discussion later in this chapter demonstrates a standalone DI container. But keep in mind that Cayenne
aready has abuilt-in Injector, and a set of default modules. A Cayenne user would normally only use the
API below to write custom extension modules that will be loaded in that existing container when creating
ServerRuntime. See "Starting and Stopping ServerRuntime" chapter for an example of passing an extension
module to Cayenne.

Cayenne DI probably has ~80% of the features expected in a DI container and has no dependency on the rest
of Cayenne, so in theory can be used as an application-wide DI engine. But it's primary purposeis still to
serve Cayenne. Hence there are no plans to expand it beyond Cayenne needs. It isan idea "embedded" DI
that does not interfere with Spring, Guice or any other such framework present elsewhere in the application.

DI Bindings API

To have aworking DI container, we need three things: service interfaces and classes, amodul e that describes
service bindings, a container that 1oads the module, and resolves the depedencies. Let's start with service
interfaces and classes:

public interface Servicel {
public String getString();
}

public interface Service2 {
public int getint();
}

33



DI Bindings APl

A service implementation using instance variable injection:

public class Servicell npl inplenments Servicel {
@ nj ect
private Service2 service2;

public String getString() {

return service2.getlnt() + "_Servicellnpl";
}
}

Same thing, but using constructor injection:
public class Servicellnpl inplenents Servicel {
private Service2 service2;

public Servicellnpl (@nject Service2 service2) {
this.service2 = servicez2;

}

public String getString() {
return service2.getlnt() + "_Servicellnpl";

}
}

public class Service2lnpl inplenents Service2 {
private int i;

public int getint() {
return i++;

}
}

Now let's create a module implementing or g. apache. cayenne. tutori al . di . Modul e interface
that will contain DI configuration. A module binds service objects to keysthat are reference. Binder
provided by container implements fluent API to connect the key to implementation, and to configure various
binding options (the options, such as scope, are demonstrated later in this chapter). The simplest form of a
key is aJava Class object representing service interface. Here is amodule that binds Servicel and Service2
to corresponding default implementations:

public class Mdul el inplenents Mdule {

public void configure(Binder binder) {
bi nder. bi nd( Servi cel. cl ass).to(Servicell npl.class);
bi nder . bi nd( Servi ce2. cl ass).to(Service2l npl.class);
}
}

Once we have at |east one module, we can create a DI container.
or g. apache. cayenne. di . I nj ect or isthe container classin Cayenne:

Injector injector = Dl Bootstrap.createlnjector(new Mdul el());

Now that we have created the container, we can obtain services from it and call their methods:

Servicel sl = injector.getlnstance(Servicel.class);
for (int i =0; i <5; i++) {
Systemout.println("Sl String: " + sl.getString());



Service Lifecycle

}

This outputs the following lines, demonstrating that s1 was Servicellmpl and Service2 injected into it was
Service2lmpl:

0_Servi cell npl
1_Servi cell npl
2_Servicell npl
3_Servi cell npl
4_Servi cell npl

There are more flavors of bindings:

/1 binding to instance - allowi ng user to create and configure instance
/1 inside the nodul e class
bi nder . bi nd( Servi ce2. cl ass). tol nstance(new Service2lnpl ());

/1 binding to provider - delegating instance creation to a speci al
/'l provider class
bi nder . bi nd( Servi cel. cl ass).toProvi der (Servi celProvider.cl ass);

/1 binding to provider instance
bi nder. bi nd( Servi cel. cl ass).toProvi der | nstance(new Servi celProvider());

/1 multiple bindings of the same type using Key

/1 injection can reference the key nane in annotation:

Il @nject("il")

/1 private Service2 service2;

bi nder. bi nd(Key. get (Servi ce2.class, "il")).to(Service2lnpl.class);

bi nder. bi nd(Key. get (Servi ce2.class, "i2")).to(Service2lnpl.class);

Another types of confiuguration that can be bound in the container are lists and maps. They will be discussed

in the following chapters.

Service Lifecycle

An important feature of the Cayenne DI container is instance scope. The default scope (implicitly used in al
examples above) is "singleton”, meaning that a binding would result in creation of only one service instance,
that will be repeatedly returned from | nj ect or . get | nst ance(. . ), aswell asinjected into classes that
declare it as a dependency.

Singleton scope dispatches a "BeforeScopeEnd" event to interested services. This event occurs before the
scopeis shutdown, i.e. when | nj ect or . shut down() iscalled. Note that the built-in Cayenne injector
is shutdown behind the sceneswhen Ser ver Runt i ne. shut down() isinvoked. Services may register
as listenersfor this event by annotating a no-argument method with @ef or e ScopeEnd annotation. Such
method should be implemented if a service needs to clean up some resources, stop threads, etc.

Another useful scopeis"no scope”, meaning that every time a container is asked to provide a service
instance for a given key, a new instance will be created and returned:

bi nder . bi nd( Servi ce2. cl ass).to(Service2l npl.class).w thout Scope();

Users can also create their own scopes, e.g. aweb application request scope or a
session scope. Most often than not custom scopes can be created as instances of

35



Overriding Services

or g. apache. cayenne. di . spi . Def aul t Scope with startup and shutdown managed by the
application (e.g. singleton scope is a DefaultScope managed by the Injector) .

Overriding Services

Cayenne DI adlowsto override services aready definied in the current module, or more commonly - some
other module in the the same container. Actually there's no special API to override a service, you'd just bind
the service key again with a new implementation or provider. The last binding for a key takes precedence.
This means that the order of modulesisimportant when configuring a container. The built-in Cayenne
injector ensures that Cayenne standard modules are loaded first, followed by optional user extension
modules. Thisway the application can override the standard servicesin Cayenne.

Customization Strategies

The previous section discussed how Cayenne DI works in general terms. Since Cayenne users will mostly
be dealing with an existing Injector provided by ServerRuntime, it isimportant to understand how to build
custom extensions to a preconfigured container. As shown in " Starting and Stopping ServerRuntime"
chapter, custom extensions are done by writing an aplication DI module (or multiple modules) that
configures service overrides. This section shows all the configuration possibilities in detail, including
changing properties of the existing services, contributing services to standard service lists and maps, and
overriding service implementations. All the code examples later in this section are assumed to be placed in
an application module "configure" method:

public class M/Extensi onsModul e inpl enents Mdul e {
public void configure(Binder binder) {
/1 custom zations go here...

}
}

Modul e ext ensi ons = new MyExt ensi onshWodul e();
ServerRuntime runtine =
new Server Runti me("coni exanpl e/ cayenne- nydomai n. xm ", extensions);

Changing Properties of Existing Services

Many built-in Cayenne services change their behavior based on avalue of some environment property. A
user may change Cayenne behavior without even knowing which services are responsible for it, but setting a
specific value of aknown property. Supported property names are listed in "Appendix A".

There are two ways to set service properties. The most obvious oneisto passit to the VM with -D flag on
startup. E.g.

java -Dorg. apache. cayenne. sync_contexts=fal se ...

A second one isto contribute a property to
or g. apache. cayenne. confi gurati on. Defaul t Runti meProperties. properties

36



Contributing to Service Collections

map (see the next section on how to do that). This map contains the default property values and can accept
application-specific values, overrding the defaults.

Note that if a property value is a name of a Java class, when this Java classis instantiated by Cayenne, the
container performsinjection of instance variables. So even the dynamically specified Java classes can use
@I nject annotation to get a hold of other Cayenne services.

If the same property is specified both in the command line and in the properties map, the command-line
value takes precedence. The map value will be ignored. Thisway Cayenne runtime can be reconfigured
during deployment.

Contributing to Service Collections

Cayenne can be extended by adding custom objects to named maps or lists bound in DI. We are

calling these listsYmaps "service collections’. A service collection allows things like appending

acustom strategy to alist of built-in strategies. E.g. an application that needs to install a custom

DbAdapter for some database type may contribute an instance of custom DbAdapterDetector to a

or g. apache. cayenne. confi gurati on. server. Def aul t DbAdapt er Fact ory. detectors
list:

public class M/DbAdapterDetector inplenments DbAdapt erDetector {

publ i c DbAdapter createAdapter (DatabaseMetabData nd) throws SQLException {
/1 check if we support this database and retun custom adapter

}
}

/1l since build-in list for this key is a singleton, repeated
I/l calls to "bindList'" will return the sane instance
bi nder . bi ndLi st ( Def aul t DbAdapt er Fact ory. DETECTORS_LI ST)

. add( MyDbAdapt er Det ect or . cl ass);

Maps are customized using asimilar "bi ndMap" method.

The names of built-in collections are listed in "Appendix B".

Alternative Service Implementations

As mentioned above, custom modules are loaded by ServerRuntime after the built-in modules. So it is easy
to redefine a built-in service in Cayenne by rebinding desired implementations or providers. To do that,
first we need to know what those services to redefine are. While we describe some of them in the following
sections, the best way to get afull list isto check the source code of the Cayenne version you are using and
namely look inor g. apache. cayenne. confi gurati on. server. Server Modul e - themain
built-in module in Cayenne.

Now an example of overriding Quer yCache service. The default implementation of this serviceis provided
by MapQuer yCachePr ovi der . But if wewant to use EhCacheQuer yCache (aCayenne wrapper for
the EhCache framework), we can define it like this:

37



Noteworthy Built-in Services

bi nder. bi nd( QueryCache. cl ass) .t o( EhCacheQueryCache. cl ass);

Noteworthy Built-in Services

JdbcEventLogger

or g. apache. cayenne. | og. JdbcEvent Logger isthe service that defineslogging API for
Cayenneinternals. It provides facilities for logging queries, commits, transactions, etc. The default
implementation isor g. apache. cayenne. | og. CoormonsJdbcEvent Logger that performs
logging via commons-logging library. Cayenne library includes another potentially useful logger -

or g. apache. cayenne. | og. For nat t edConmonsJdbcEvent Logger that produces formatted
multiline SQL output that can be easier to read.

DataSourceFactory
DataChannelFilter
QueryCache
ExtendedTypes

38



Part lll. Cayenne Framework
- Remote Object Persistence






Chapter 12. Introduction to ROP
What is ROP

Main Features

41



42



Chapter 13. ROP Setup
System Requirements

Jar Files and Dependencies

43






Chapter 14. Implementing ROP Server

45



46



Chapter 15. Implementing ROP Client

47



48



Chapter 16. ROP Deployment
Deploying ROP Server
Deploying ROP Client

Security

49



50



Chapter 17. Current Limitations

51



52



Appendix A. Configuration Properties

Note that the property names below are defined as constantsin
or g. apache. cayenne. confi gurati on. Const ant s interface.

Table A.1. Configuration Properties Recognized by Server Runtime and/or

ClientRuntime

Property

cayenne. jdbc. dri ver[.donai n_namne. node_nane] - definesaJDBC
driver class to use when creating a DataSource. If domain name and optionally
- node name are specified, the setting overrides DataSource info just for this

domain/node. Otherwise the override is applied to all domains/nodes in the system.

- definesaDB URL
to use when creating a DataSource. |f domain name and optionally - node name
are specified, the setting overrides DataSource info just for this domain/node.
Otherwise the override is applied to all domaing/nodesin the system.

cayenne. jdbc. url [. domai n_name. node_narne]

- defines a
DB user name to use when creating a DataSource. |If domain name and optionally
- node name are specified, the setting overrides DataSource info just for this

cayenne. j dbc. user nanme[ . donai n_nane. node_nane]

domain/node. Otherwise the overrideis applied to all domains/nodes in the system.

cayenne. j dbc. passwor d[ . donai n_nane. node_nane] - definesa
DB password to use when creating a DataSource. If domain name and optionally

- node name are specified, the setting overrides DataSource info just for this
domain/node. Otherwise the override is applied to al domains/nodesin the system

cayenne. j dbc. mi n_connecti ons[. domai n_nane. node_nane]

- defines the DB connection pool minimal size. If domain name and optionally

- node name are specified, the setting overrides DataSource info just for this
domain/node. Otherwise the override is applied to al domains/nodesin the system

cayenne. j dbc. max_connecti ons[. domai n_nane. node_nane] -
defines the DB connection pool maximum size. If domain name and optionally

- node name are specified, the setting overrides DataSource info just for this
domain/node. Otherwise the overrideis applied to all domaing/nodes in the system

cayenne. quer ycache. si ze - Aninteger defining the maximum number of

entriesin the query cache. Note that not all QueryCache providers may respect this positive
property. MapQueryCache uses it, but the rest would use alternative configuration int value

methods.

Possible Default

Values

any

Value

none, project
DataNode
configuration
isused

none, project
DataNode
configuration
isused

none, project
DataNode
configuration
isused

none, project
DataNode
configuration
isused

none, project
DataNode
configuration
isused

none, project
DataNode
configuration
isused

2000

53



Property Possible Default
Values Value

cayenne. server. contexts_sync_strat egy - defines whether peer true, false true
ObjectContexts should receive snapshot events after commits from other contexts.

If true (default), the contexts would automatically synchronize their state with

peers.

cayenne. server. obj ect _retai n_strat egy - definesfetched objects  weak, weak
retain strategy for ObjectContexts. When weak or soft strategy is used, objects soft, hard
retained by ObjectContext that have no local changes can potetially get garbage

collected when VM feels like doing it.

cayenne. server. max_i d_qualifier_si ze - definesamaximum any 10000
number of 1D qualifiersin the WHERE clause of queriesthat are generated for positive
paginated queries and for DISJOINT_BY _ID prefetch processing. Thisisneeded int

to avoid hitting WHERE clause size limitations and memory usage efficiency.

cayenne. rop. servi ce_url - definesthe URL of the ROP server

cayenne. r op. servi ce_user nane - defines the user name for an ROP
client to login to an ROP server.

cayenne. r op. servi ce_passwor d - defines the password for an ROP client
to login to an ROP server.

cayenne. r op. shar ed_sessi on_nane- defines the name of the shared
session that an ROP client wants to join on an ROP server. If omitted, a dedicated
session is created.

cayenne. rop. servi ce. ti neout -avauein millisecondsfor the ROP any

client-server connection read operation timeout positive
long
value

cayenne. r op. channel _event s - defineswhether client-side DataChannel  true, false false
should dispatch events to child ObjectContexts. If set to true, ObjectContexts will

receive commit events and merge changes committed by peer contexts that passed

through the common client DataChannel.

cayenne. r op. cont ext _change_event s- defines whether object property true, false false
changesin the client context result in firing events. Client Ul components can
listen to these events and update the Ul. Disabled by default.

cayenne. rop. context |ifecycl e _events - defines whether object truefalse false
commit and rollback operations in the client context result in firing events. Client
Ul components can listen to these events and update the Ul. Disabled by default.



Property Possible Default
Values Value

cayenne. server.rop_event bridge_factory - definesthe
name of the org.apache.cayenne.event.EventBridgeFactory that is passed
from the ROP server to the client. |.e. server DI would provide a name of

the factory, passing this name to the client via the wire. The client would
instantiate it to receive events from the server. Note that this property is
stored in "cayenne.server.rop_event_bridge properties’ map, not in the main
"cayenne.properties’.

55



56



Appendix B. Service Collections

Note that the collection keys below are defined as constantsin
or g. apache. cayenne. confi gur ati on. Const ant s interface.

TableB.1. Service Collection Keys Present in Server Runtime and/or ClientRuntime

cayenne. properti es - Map<String,String> of properties used by built-in Cayenne services. The keys
in this map are the property names from the table in Appendix A. Separate copies of this map exist on the
server and ROP client.

cayenne. server. adapt er _det ect or s - List<DbAdapterDetector> that contains objects that can
discover the type of current database and install the correct DbAdapter in runtime.

cayenne. server. domai n_filters - List<DataChannelFilter> storing DataDomain filters.

cayenne. server. proj ect _| ocati ons - List<String> storing locations of the one of more project
configuration files.

cayenne. server. defaul t _types - List<ExtendedType> storing default adapter-agnostic
ExtendedTypes. Default ExtendedTypes can be overridden / extended by DB-specific DbAdapters as well
as by user-provided types configured in another colltecion (see "cayenne.server.user_types').

cayenne. server. user _types - List<ExtendedType> storing a user-provided ExtendedTypes. This
collection will be merged into afull list of ExtendedTypes and would override any ExtendedTypes defined
in adefault list, or by a DbAdapter.

cayenne. server.type_factori es - List<ExtendedTypeFactory> storing default and user-provided
ExtendedTypeFactories. ExtendedTypeFactory allows to define ExtendedTypes dynamically for the whole
group of Java classes. E.g. Cayenne supplies afactory to map all Enums regardless of their type.

cayenne. server.rop_event _bridge_properties - Map<String, String> storing event
bridge properties passed to the ROP client on bootstrap. This means that the map is configured

by server DI, and passed to the client viathe wire. The propertiesin this map are specific to
EventBridgeFactory implementation (e.g IMS or XM PP connection prameters). One common property is
"cayenne.server.rop_event_bridge factory” that defines the type of the factory.

57



58



	Cayenne Guide
	Table of Contents
	Part I. Object Relational Mapping with Cayenne
	Chapter 1. Setup
	System Requirements
	Running CayenneModeler

	Chapter 2. Cayenne Mapping Structure
	Cayenne Project
	DataMap
	DataNode
	DbEntity
	ObjEntity
	Mapping ObjAttributes to Custom Classes

	Embeddable
	Procedure
	Query
	Listeners and Callbacks

	Chapter 3. CayenneModeler Application
	Working with Mapping Projects
	Reverse Engineering Database
	Generating Database Schema
	Migrations
	Generating Java Classes
	Modeling Inheritance
	Modeling Primary Key Generation Strategy


	Part II. Cayenne Framework
	Chapter 4. Including Cayenne in a Project
	Jar Files and Dependencies
	Maven Projects
	cgen
	cdbgen
	cdbimport

	Ant Projects
	cgen
	cdbgen
	cdbimport
	cdataport


	Chapter 5. Starting Cayenne
	Starting and Stopping ServerRuntime
	Merging Multiple Projects
	Web Applications

	Chapter 6. Persistent Objects and ObjectContext
	ObjectContext
	Persistent Object and its Lifecycle
	ObjectContext Persistence API
	Cayenne Helper Class
	ObjectContext Nesting
	Generic Persistent Objects
	Transactions

	Chapter 7. Expressions
	Expressions Overview
	Path Expressions
	Creating Expressions from Strings
	Creating Expressions with ExpressionFactory
	Evaluating Expressions in Memory

	Chapter 8. Queries
	SelectQuery
	EJBQLQuery
	SQLTemplateQuery
	ProcedureQuery
	NamedQuery
	Custom Queries

	Chapter 9. Lifecycle Events
	Types of Lifecycle Events
	Lifecycle Callbacks and Listeners
	Callback and Listener Methods Semantics
	Registering Callbacks and Listeners
	Combining Listeners with DataChannelFilters


	Chapter 10. Performance Tuning
	Prefetching
	Prefetching Semantics
	Disjoint Prefetching Semantics
	Disjoint-by-ID Prefetching Semantics
	Joint Prefetching Semantics

	Data Rows
	Iterated Queries
	Paginated Queries
	Caching and Fresh Data
	Object Caching
	Query Result Caching

	Turning off Synchronization of ObjectContexts

	Chapter 11. Customizing Cayenne Runtime
	Dependency Injection Container
	DI Bindings API
	Service Lifecycle
	Overriding Services

	Customization Strategies
	Changing Properties of Existing Services
	Contributing to Service Collections
	Alternative Service Implementations

	Noteworthy Built-in Services
	JdbcEventLogger
	DataSourceFactory
	DataChannelFilter
	QueryCache
	ExtendedTypes



	Part III. Cayenne Framework - Remote Object Persistence
	Chapter 12. Introduction to ROP
	What is ROP
	Main Features

	Chapter 13. ROP Setup
	System Requirements
	Jar Files and Dependencies

	Chapter 14. Implementing ROP Server
	Chapter 15. Implementing ROP Client
	Chapter 16. ROP Deployment
	Deploying ROP Server
	Deploying ROP Client
	Security

	Chapter 17. Current Limitations

	Appendix A. Configuration Properties
	Appendix B. Service Collections

