
Cayenne Guide

Cayenne Guide
Copyright © 2011-2012 Apache Software Foundation and individual authors

License

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this

work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the

"License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/

LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and

limitations under the License.

iii

Table of Contents

I. Object Relational Mapping with Cayenne .. 1

1. Setup ... 3

System Requirements ... 3

Running CayenneModeler ... 3

2. Cayenne Mapping Structure .. 5

Cayenne Project ... 5

DataMap .. 5

DataNode ... 5

DbEntity .. 5

ObjEntity ... 5

Embeddable ... 5

Procedure ... 5

Query .. 5

Listeners and Callbacks .. 5

3. CayenneModeler Application .. 7

Working with Mapping Projects .. 7

Reverse Engineering Database .. 7

Generating Database Schema .. 7

Migrations .. 7

Generating Java Classes ... 7

Modeling Inheritance .. 7

Modeling Primary Key Generation Strategy ... 7

II. Cayenne Framework .. 9

4. Including Cayenne in a Project ... 11

Jar Files and Dependencies ... 11

Maven Projects ... 11

Ant Projects ... 16

5. Starting Cayenne .. 17

Starting and Stopping ServerRuntime .. 17

Merging Multiple Projects .. 17

Web Applications ... 18

6. Persistent Objects and ObjectContext .. 19

ObjectContext .. 19

Persistent Object and its Lifecycle ... 19

ObjectContext Persistence API .. 20

Cayenne Helper Class ... 21

ObjectContext Nesting .. 21

Generic Persistent Objects .. 21

Cayenne Guide

iv

Transactions ... 21

7. Expressions .. 23

Expressions Overview .. 23

Path Expressions .. 23

Creating Expressions from Strings ... 23

Creating Expressions with ExpressionFactory .. 23

Evaluating Expressions in Memory ... 23

8. Queries .. 25

SelectQuery .. 25

EJBQLQuery .. 25

SQLTemplateQuery .. 25

ProcedureQuery .. 25

NamedQuery .. 25

Custom Queries .. 25

9. Lifecycle Events ... 27

Types of Lifecycle Events .. 27

Lifecycle Callbacks and Listeners ... 27

10. Performance Tuning .. 29

Prefetching ... 29

Data Rows ... 31

Iterated Queries .. 31

Paginated Queries ... 31

Caching and Fresh Data .. 31

Turning off Synchronization of ObjectContexts .. 31

11. Customizing Cayenne Runtime .. 33

Dependency Injection Container .. 33

Customization Strategies .. 36

Noteworthy Built-in Services .. 38

III. Cayenne Framework - Remote Object Persistence .. 39

12. Introduction to ROP ... 41

What is ROP .. 41

Main Features .. 41

13. ROP Setup ... 43

System Requirements ... 43

Jar Files and Dependencies ... 43

14. Implementing ROP Server .. 45

15. Implementing ROP Client ... 47

16. ROP Deployment .. 49

Deploying ROP Server ... 49

Deploying ROP Client .. 49

Cayenne Guide

v

Security .. 49

17. Current Limitations ... 51

A. Configuration Properties .. 53

B. Service Collections .. 57

vi

vii

List of Tables

4.1. cgen required parameters .. 12

4.2. cgen optional parameters .. 12

4.3. cdbgen required parameters .. 14

4.4. cdbgen optional parameters .. 14

4.5. cdbimport required parameters ... 15

4.6. cdbimport optional parameters .. 15

6.1. Persistence States ... 20

A.1. Configuration Properties Recognized by ServerRuntime and/or ClientRuntime 53

B.1. Service Collection Keys Present in ServerRuntime and/or ClientRuntime 57

viii

Part I. Object Relational

Mapping with Cayenne

3

Chapter 1. Setup

System Requirements
• Java: Cayenne runtime framework and CayenneModeler GUI tool are written in 100% Java, and run

on any Java-compatible platform. Required JDK version is 1.5 or higher. The last version of Cayenne

compatible with JDK 1.4 is 1.2.x/2.0.x; JDK 1.3 - 1.1.x)

• JDBC Driver: An appropriate DB-specific JDBC driver is needed to access the database. It can be

included in the application or used in web container DataSource configuration.

• Third-party Libraries: Cayenne runtime framework has a minimal set of required and a fe more optional

dependencies on third-party open source packages. See "Including Cayenne in a Project" chapter for

details.

Running CayenneModeler
CayenneModeler GUI tool is intended to work with object relational mapping projects. While you

can edit your XML by hand, it is rarely needed, as the Modeler is a pretty advanced tool included in

Cayenne distribution. To obtain CayenneModeler, download Cayenne distribution archive from http://

cayenne.apache.org/download.html matching the OS you are using. Of course Java needs to be installed on

the machine where you are going to run the Modeler.

OS X distribution contains CayenneModeler.app at the root of the distribution disk image.

Windows distribution contains CayenneModeler.exe file in the bin directory.

Cross-platform distribution (targeting Linux, but as the name implies, compatible with any OS) contains a

runnable CayenneModeler.jar in the bin directory. It can be executed either by double-clicking, or if the

environment is not configured to execute jars, by running from command-line:

java -jar CayenneModeler.jar

The Modeler can alo be started from Maven. While it may look like an exotic way to start a GUI application,

it has its benefits - no need to download Cayenne distribution, the version of the Modeler always matches the

version of the framework, the plugin can find mapping files in the project automatically. So is an attractive

option to some developers. Maven option requires a declaration in the POM:

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.cayenne.plugins</groupId>

 <artifactId>maven-cayenne-modeler-plugin</artifactId>

 <version>X.Y.Z</version>

 </plugin>

 </plugins>

http://cayenne.apache.org/download.html
http://cayenne.apache.org/download.html

Running CayenneModeler

4

</build>

And then can be run as

mvn cayenne-modeler:run

5

Chapter 2. Cayenne Mapping Structure

Cayenne Project

DataMap

DataNode

DbEntity

ObjEntity

Mapping ObjAttributes to Custom Classes

Embeddable

Procedure

Query

Listeners and Callbacks

6

7

Chapter 3. CayenneModeler Application

Working with Mapping Projects

Reverse Engineering Database

Generating Database Schema

Migrations

Generating Java Classes

Modeling Inheritance

Modeling Primary Key Generation Strategy

8

Part II. Cayenne Framework

11

Chapter 4. Including Cayenne in a

Project

Jar Files and Dependencies
Cayenne distribution contains the following core runtime jars in the distribution lib directory:

• cayenne-server-x.x.jar - contains full Cayenne runtime (DI, adapters, DB access classes, etc.). Most

applications will use only this file.

• cayenne-client-x.x.jar - a subset of cayenne-server.jar trimmed for use on the client in an ROP application.

• Other cayenne-* jars - various Cayenne extensions.

When using cayenne-server-x.x.jar you'll need a few third party jars (all included in lib/

third-party directory of the distribution):

• Apache Velocity Template Engine, version 1.6.x (and all its dependencies bundled with velocity-dep)

• Apache Commons Collections, version 3.2.1

• Apache Commons Logging, version 1.1

Cayenne integrates with various caching, clustering and other frameworks. These optional integrations will

require other third-party jars that the users will need to obtain on their own.

Maven Projects
If you are using Maven, you won't have to deal with figuring out the dependencies. You can simply include

cayenne-server artifact in your POM:

<dependency>

 <groupId>org.apache.cayenne</groupId>

 <artifactId>cayenne-server</artifactId>

 <version>X.Y.Z</version>

</dependency>

Additionally Cayenne provides a Maven plugin with a set of goals to perform various project tasks, such as

synching generated Java classes with the mapping, described in the following subsection. The full plugin

name is org.apache.cayenne.plugins:maven-cayenne-plugin.

cgen
cgen is a maven-cayenne-plugin goal that generates and maintains source (.java) files of persistent

objects based on a DataMap. By default, it is bound to the generate-sources phase. If "makePairs" is set to

http://velocity.apache.org/
http://commons.apache.org/collections/
http://commons.apache.org/logging/

cgen

12

"true" (which is the recommended default), this task will generate a pair of classes (superclass/subclass)

for each ObjEntity in the DataMap. Superclasses should not be changed manually, since they are always

overwritten. Subclasses are never overwritten and may be later customized by the user. If "makePairs" is set

to "false", a single class will be generated for each ObjEntity.

By creating custom templates, you can use cgen to generate other output (such as web pages, reports,

specialized code templates) based on DataMap information.

Table 4.1. cgen required parameters

Name Type Description

map File DataMap XML file which serves as a source of metadata for class generation. E.g.

${project.basedir}/src/main/resources/my.map.xml

destDir File Root destination directory for Java classes (ignoring their package names).

Table 4.2. cgen optional parameters

Name Type Description

additionalMaps File A directory that contains additional DataMap XML files that

may be needed to resolve cross-DataMap relationships for the

the main DataMap, for which class generation occurs.

client boolean Whether we are generating classes for the client tier in a

Remote Object Persistence application. "False" by default.

embeddableTemplate String Location of a custom Velocity template file for Embeddable

class generation. If omitted, default template is used.

embeddableSuperTemplate String Location of a custom Velocity template file for Embeddable

superclass generation. Ignored unless "makepairs" set to "true".

If omitted, default template is used.

encoding String Generated files encoding if different from the default on

current platform. Target encoding must be supported by

the JVM running the build. Standard encodings supported

by Java on all platforms are US-ASCII, ISO-8859-1,

UTF-8, UTF-16BE, UTF-16LE, UTF-16. See javadocs for

java.nio.charset.Charset for more information.

excludeEntities String A comma-separated list of ObjEntity patterns (expressed as a

perl5 regex) to exclude from template generation. By default

none of the DataMap entities are excluded.

includeEntities String A comma-separated list of ObjEntity patterns (expressed as a

perl5 regex) to include from template generation. By default all

DataMap entities are included.

cgen

13

Name Type Description

makePairs boolean If "true" (a recommended default), will generate subclass/

superclass pairs, with all generated code placed in superclass.

mode String Specifies class generator iteration target. There are three

possible values: "entity" (default), "datamap", "all". "entity"

performs one generator iteration for each included ObjEntity,

applying either standard to custom entity templates. "datamap"

performs a single iteration, applying DataMap templates. "All"

is a combination of entity and datamap.

overwrite boolean Only has effect when "makePairs" is set to "false". If

"overwrite" os "true", will overwrite older versions of

generated classes.

superPkg String Java package name of generated superclasses. Only has effect

if "makepairs" and "usePkgPath" are set to "true" (both are true

by default). Defines a common package for all generated Java

classes. If omitted, each superclass will be placed in the same

package as subclass.

superTemplate String Location of a custom Velocity template file for ObjEntity

superclass generation. Only has effect if "makepairs" set to

"true". If omitted, default template is used.

template String Location of a custom Velocity template file for ObjEntity class

generation. If omitted, default template is used.

usePkgPath boolean If set to "true" (default), a directory tree will be generated in

"destDir" corresponding to the class package structure, if set

to "false", classes will be generated in "destDir" ignoring their

package.

Example - a typical class generatio scenario, where pairs of classes are generated, and superclasses are

placed in a separate package:

<plugin>

 <groupId>org.apache.cayenne.plugins</groupId>

 <artifactId>maven-cayenne-plugin</artifactId>

 <version>X.Y.Z</version>

 <!--

 There's an intermittent problem when using Maven/cgen in Eclipse with m2eclipse plugin that

 requires placing "configuration" section at the plugin level, instead of execution

 level.

 -->

 <configuration>

 <map>${project.basedir}/src/main/resources/my.map.xml</map>

 <destDir>${project.basedir}/src/main/java</destDir>

 <superPkg>org.example.model.auto</superPkg>

 </configuration>

cdbgen

14

 <executions>

 <execution>

 <goals>

 <goal>cgen</goal>

 </goals>

 </execution>

 </executions>

</plugin>

cdbgen

cdbgen is a maven-cayenne-plugin goal that drops and/or generates tables in a database on Cayenne

DataMap. By default, it is bound to the pre-integration-test phase.

Table 4.3. cdbgen required parameters

Name Type Description

map File DataMap XML file which serves as a source of metadata for DB schema generation.

E.g. ${project.basedir}/src/main/resources/my.map.xml

driver String A class of JDBC driver to use for the target database.

url String JDBC connection URL of a target database.

Table 4.4. cdbgen optional parameters

Name Type Description

adapter String Java class name implementing org.apache.cayenne.dba.DbAdapter. While this attribute is optional (a generic JdbcAdapter is used if not set),

it is highly recommended to specify correct target adapter.

createFK boolean Indicates whether cdbgen should create foreign key constraints. Default is "true".

createPK boolean Indicates whether cdbgen should create Cayenne-specific auto PK objects. Default is "true".

createTables boolean Indicates whether cdbgen should create new tables. Default is "true".

dropPK boolean Indicates whether cdbgen should drop Cayenne primary key support objects. Default is "false".

dropTables boolean Indicates whether cdbgen should drop the tables before attempting to create new ones. Default is "false".

password String Database user password.

username String Database user name.

Example - creating a DB schema on a local HSQLDB database:

<plugin>

 <groupId>org.apache.cayenne.plugins</groupId>

 <artifactId>maven-cayenne-plugin</artifactId>

 <version>X.Y.Z</version>

 <executions>

 <execution>

 <configuration>

cdbimport

15

 <map>${project.basedir}/src/main/resources/my.map.xml</map>

 <url>jdbc:hsqldb:hsql://localhost/testdb</url>

 <adapter>org.apache.cayenne.dba.hsqldb.HSQLDBAdapter</adapter>

 <driver>org.hsqldb.jdbcDriver</driver>

 <username>sa</username>

 </configuration>

 <goals>

 <goal>cdbgen</goal>

 </goals>

 </execution>

 </executions>

</plugin>

cdbimport

cdbimport is a maven-cayenne-plugin goal that generates a DataMap based on an existing database

schema. By default, it is bound to the generate-sources phase. This allows you to generate your DataMap

prior to building your project, which may be necessary if you are also using the cgen task.

Table 4.5. cdbimport required parameters

Name Type Description

map File DataMap XML file which is the destination of the schema import. Maybe an

existing file. If this file does not exist, it is created when cdbimport is executed. E.g.

${project.basedir}/src/main/resources/my.map.xml

driver String A class of JDBC driver to use for the target database.

url String JDBC connection URL of a target database.

Table 4.6. cdbimport optional parameters

Name Type Description

adapter String Java class name implementing org.apache.cayenne.dba.DbAdapter. While this attribute is optional (a generic JdbcAdapter is used if not set), it is

highly recommended to specify correct target adapter.

importProcedures boolean Indicates whether stored procedures should be imported from the database. Default is false.

meaningfulPk boolean Indicates whether primary keys should be mapped as attributes of the ObjEntity. Default is false.

namingStrategy String The naming strategy used for mapping database names to object entity names. Default is

org.apache.cayenne.map.naming.SmartNamingStrategy.

overwriteExisting boolean Indicates whether existing DB and object entities should be overwritten. This is an all-or-nothing setting. If you need finer granularity, use the

CayenneModeler. Default is "true".

password String Database user password.

procedurePattern String Pattern to match stored procedure names against for import. Default is to match all stored procedures. This value is only meaningful if

importProcedures is true.

schemaName String Database schema to import tables/stored procedures from.

Ant Projects

16

Name Type Description

tablePattern String Pattern to match table names against for import. Default is to match all tables.

username String Database user name.

Example - loading a DB schema from a local HSQLDB database (essentially a reverse operation compared

to the cdbgen example above) :

<plugin>

 <groupId>org.apache.cayenne.plugins</groupId>

 <artifactId>maven-cayenne-plugin</artifactId>

 <version>X.Y.Z</version>

 <executions>

 <execution>

 <configuration>

 <map>${project.basedir}/src/main/resources/my.map.xml</map>

 <url>jdbc:hsqldb:hsql://localhost/testdb</url>

 <adapter>org.apache.cayenne.dba.hsqldb.HSQLDBAdapter</adapter>

 <driver>org.hsqldb.jdbcDriver</driver>

 <username>sa</username>

 </configuration>

 <goals>

 <goal>cdbimport</goal>

 </goals>

 </execution>

 </executions>

</plugin>

Ant Projects

cgen

cdbgen

cdbimport

cdataport

17

Chapter 5. Starting Cayenne

Starting and Stopping ServerRuntime
In runtime Cayenne is accessed via

org.apache.cayenne.configuration.server.ServerRuntime. ServerRuntime is created

simply by calling a constructor:

ServerRuntime runtime =

 new ServerRuntime("com/example/cayenne-project.xml");

The parameter you pass to the constructor is a location of the main project file. Location is a '/'-separated

path (same path separator is used on UNIX and Windows) that is resolved relative to the application

classpath. The project file can be placed in the root package or in a subpackage (e.g. in the code above it is in

"com/example" subpackage).

ServerRuntime encapsulates a single Cayenne stack. Most applications will just have one ServerRuntime

using it to create as many ObjectContexts as needed, access the Dependency Injection (DI) container and

work with other Cayenne features. Internally ServerRuntime is just a thin wrapper around the DI container.

Detailed features of the container are discussed in "Customizing Cayenne Runtime" chapter. Here we'll just

show an example of how an application might replace a default implementation of a built-in Cayenne service

(in this case - QueryCache) with a different class:

public class MyExtensionsModule implements Module {

 public void configure(Binder binder) {

 binder.bind(QueryCache.class).to(EhCacheQueryCache.class);

 }

}

Module extensions = new MyExtensionsModule();

ServerRuntime runtime =

 new ServerRuntime("com/example/cayenne-project.xml", extensions);

It is a good idea to shut down the runtime when it is no longer needed, usually before the application itself is

shutdown:

runtime.shutdown();

When a runtime object has the same scope as the application, this may not be always necessary, however in

some cases it is essential, and is generally considered a good practice. E.g. in a web container hot redeploy

of a webapp will cause resource leaks and eventual OutOfMemoryError if the application fails to shutdown

CayenneRuntime.

Merging Multiple Projects
ServerRuntime requires at least one mapping project to run. But it can also take multiple projects and merge

them together in a single configuration. This way different parts of a database can be mapped independenlty

Web Applications

18

from each other (even by different software providers), and combined in runtime when assembling an

application. Doing it is as easy as passing multiple project locations to ServerRuntime constructor:

ServerRuntime runtime =

 new ServerRuntime(new String[] {

 "com/example/cayenne-project.xml",

 "org/foo/cayenne-library1.xml",

 "org/foo/cayenne-library2.xml"

 }

);

When the projects are merged, the following rules are applied:

• The order of projects matters during merge. If there are two conflicting metadata objects belonging to two

projects, an object from the last project takes precedence over the object from the first one. This makes

possible to override pieces of metadata. This is also similar to how DI modules are merged in Cayenne.

• Runtime DataDomain name is set to the name of the last project in the list.

• Runtime DataDomain properties are the same as the properties of the last project in the list. I.e. properties

are not merged to avoid invalid combinations and unexpected runtime behavior.

• If there are two or more DataMaps with the same name, only one DataMap is used in the merged project,

the rest are discarded. Same precedence rules apply - DataMap from the project with the highest index in

the project list overrides all other DataMaps with the same name.

• If there are two or more DataNodes with the same name, only one DataNodes is used in the merged

project, the rest are discarded. DataNode coming from project with the highest index in the project list is

chosen per precedence rule above.

• There is a notion of "default" DataNode. After the merge if any DataMaps are not explicitly linked to

DataNodes, their queries will be executed via a default DataNode. This makes it possible to build mapping

"libraries" that are only associated with a specific database in runtime. If there's only one DataNode in the

merged project, it will be automatically chosen as default. A possible way to explicitly designate a specific

node as default is to override DataDomainProvider.createAndInitDataDomain().

Web Applications

19

Chapter 6. Persistent Objects and

ObjectContext

ObjectContext
ObjectContext is an interface that users normally work with to access the database. It provides the API to

execute database operations and to manage persistent objects. A context is obtained from the ServerRuntime:

ObjectContext context = runtime.getContext();

The call above creates a new instance of ObjectContext that can access the database via this runtime.

ObjectContext is a single "work area" in Cayenne, storing persistent objects. ObjectContext guarantees

that for each database row with a unique ID it will contain at most one instance of an object, thus ensuring

object graph consistency between multiple selects (a feature called "uniquing"). At the same time different

ObjectContexts will have independent copies of objects for each unique database row. This allows users to

isolate object changes from one another by using separate ObjectContexts.

These properties directly affect the strategies for scoping and sharing (or not sharing) ObjectContexts.

Contexts that are only used to fetch objects from the database and whose objects are never modified by the

application can be shared between mutliple users (and multiple threads). Contexts that store modified objects

should be accessed only by a single user (e.g. a web application user might reuse a context instance between

multiple web requests in the same HttpSession, thus carrying uncommitted changes to objects from request

to request, until he decides to commit or rollback them). Even for a single user it might make sense to use

mutliple ObjectContexts (e.g. request-scoped contexts to allow concurrent requests from the browser that

change and commit objects independently).

ObjectContext is serializable and does not permanently hold to any of the application resources. So it does

not have to be closed. If the context is not used anymore, it should simply be allowed to go out of scope and

get garbage collected, just like any other Java object.

Persistent Object and its Lifecycle
Cayenne can persist Java objects that implement org.apache.cayenne.Persistent interface.

Generally persistent objects are created from the model via class generation as described above, so users do

not have to worry about implementation details.

Persistent interface provides access to 3 persistence-related properties - objectId, persistenceState and

objectContext. All 3 are initialized by Cayenne runtime framework. Application code should not attempt

to change them them. However it is allowed to read them, which provides valuable runtime information.

E.g. ObjectId can be used for quick equality check of 2 objects, knowing persistence state would allow

highlighting changed objects, etc.

ObjectContext Persistence API

20

Each persistent object belongs to a single ObjectContext, and can be in one of the following persistence

states (as defined in org.apache.cayenne.PersistenceState) :

Table 6.1. Persistence States

TRANSIENT The object is not registered with an ObjectContext and will not be persisted.

NEW The object is freshly registered in an ObjectContext, but has not been saved to the

database yet and there is no matching database row.

COMMITTED The object is registered in an ObjectContext, there is a row in the database corresponding

to this object, and the object state corresponds to the last known state of the matching

database row.

MODIFIED The object is registered in an ObjectContext, there is a row in the database corresponding

to this object, but the object in-memory state has diverged from the last known state of the

matching database row.

HOLLOW The object is registered in an ObjectContext, there is a row in the database corresponding

to this object, but the object state is unknown. Whenever an application tries to access

a property of such object, Cayenne attempts reading its values from the database and

"inflate" the object, turning it to COMMITED.

DELETED The object is registered in an ObjectContext and has been marked for deletion in-memory.

The corresponding row in the database will get deleted upon ObjectContext commit, and

the object state will be turned into TRANSIENT.

ObjectContext Persistence API
One of the first things users usually want to do with an ObjectContext is to select some objects from an

existing database. This is done by calling "performQuery" method:

SelectQuery query = new SelectQuery(Artist.class);

List<Artist> artists = context.performQuery(query);

We'll discuss queries in some detail in the following chapters. The example above is self-explanatory - we

create a SelectQuery that matches all Artist objects present in the database, and then call "performQuery",

getting a list of Artist objects.

In some cases queries can be quite complex, returning multiple result sets, and even updating the database.

For such queries ObjectContext provides "performGenericQuery"method. While not nearly as common as

"performQuery", it is nevertheless important in some situations. E.g.:

Collection<Query> queries = ... // some queries

QueryChain query = new QueryChain(queries);

QueryResponse response = context.performGenericQuery(query);

The "newObject" method call creates a new persistent object setting its state to NEW:

Cayenne Helper Class

21

Artist artist = context.newObject(Artist.class);

artist.setName("Picasso");

Once a new object is created, its properties can be modified by the application in memory without affecting

the database. To ensure the object is saved to the database, application must call "commitChanges":

context.commitChanges();

In our case "commitChanges" commits just this one artist object, but in fact it commits all in-memory

changes to all objects registered in this ObjectContext (it just happens that we didn't have any more objects

to commit). I.e. anything that has changed since the previous commit or rollback (or since the context

creation if there were no previous commits or rollbacks). Commit internally generates a minimal set of SQL

statements to synchronize the database with the in-memory state of all changed objects and sends them to

DB in a single transaction.

Cayenne Helper Class

ObjectContext Nesting

Generic Persistent Objects

Transactions

22

23

Chapter 7. Expressions

Expressions Overview

Path Expressions

Creating Expressions from Strings

Creating Expressions with

ExpressionFactory

Evaluating Expressions in Memory

24

25

Chapter 8. Queries

SelectQuery

EJBQLQuery

SQLTemplateQuery

ProcedureQuery

NamedQuery

Custom Queries

26

27

Chapter 9. Lifecycle Events

Types of Lifecycle Events

Lifecycle Callbacks and Listeners

Callback and Listener Methods Semantics

Registering Callbacks and Listeners

Combining Listeners with DataChannelFilters

28

29

Chapter 10. Performance Tuning

Prefetching
Prefetching is a technique that allows to bring back in one query not only the queried objects, but also

objects related to them. In other words it is a controlled eager relationship resolving mechanism. Prefetching

is discussed in the "Performance Tuning" chapter, as it is a powerful performance optimization method.

Another common application of prefetching is for refreshing stale object relationships.

Prefetching example:

SelectQuery query = new SelectQuery(Artist.class);

// this instructs Cayenne to prefetch one of Artist's relationships

query.addPrefetch("paintings");

// query is expecuted as usual, but the resulting Artists will have

// their paintings "inflated"

List<Artist> artists = context.performQuery(query);

All types of relationships can be preftetched - to-one, to-many, flattened.

A prefetch can span multiple relationships:

 query.addPrefetch("paintings.gallery");

A query can have multiple prefetches:

query.addPrefetch("paintings");

query.addPrefetch("paintings.gallery");

If a query is fetching DataRows, all "disjoint" prefetches are ignored, only "joint" prefetches are executed

(see prefetching semantics discussion below for what disjoint and joint prefetches mean).

Prefetching Semantics

Prefetching semantics defines a strategy to prefetch relationships. Depending on it, Cayenne would generate

different types of queries. The end result is the same - query root objects with related objects fully resolved.

However semantics can affect preformance, in some cases significantly. There are 3 types of prefetch

semantics, all defined as constants in org.apache.cayenne.query.PrefetchTreeNode:

PrefetchTreeNode.JOINT_PREFETCH_SEMANTICS

PrefetchTreeNode.DISJOINT_PREFETCH_SEMANTICS

PrefetchTreeNode.DISJOINT_BY_ID_PREFETCH_SEMANTICS

Each query has a default prefetch semantics, so generally users do not have to worry about changing it,

except when performance is a concern, or a few special cases when a default sematics can't produce the

correct result. SelectQuery uses DISJOINT_PREFETCH_SEMANTICS by default. Semantics can be

changed as follows:

SelectQuery query = new SelectQuery(Artist.class);

Disjoint Prefetching Semantics

30

query.addPrefetch("paintings").setSemantics(

 PrefetchTreeNode.JOINT_PREFETCH_SEMANTICS);

There's no limitation on mixing different types of semantics in the same SelectQuery. Multiple prefetches

each can have its own semantics.

SQLTemplate and ProcedureQuery are both using JOINT_PREFETCH_SEMANTICS and it can not be

changed due to the nature of these two queries.

Disjoint Prefetching Semantics

This semantics (only applicable to SelectQuery) results in Cayenne generatiing one SQL statement for

the main objects, and a separate statement for each prefetch path (hence "disjoint" - related objects are not

fetched with the main query). Each additional SQL statement uses a qualifier of the main query plus a set of

joins traversing the preftech path between the main and related entity.

This strategy has an advantage of efficient JVM memory use, and faster overall result processing by

Cayenne, but it requires (1+N) SQL statements to be executed, where N is the number of prefetched

relationships.

Disjoint-by-ID Prefetching Semantics

This is a variation of disjoint prefetch where related objects are matched against a set of IDs

derived from the fetched main objects (or intermediate objects in a multi-step prefetch). Cayenne

limits the size of the generated WHERE clause, as most DBs can't parse arbitrary large SQL.

So prefetch queries are broken into smaller queries. The size of is controlled by the DI property

Constants.SERVER_MAX_ID_QUALIFIER_SIZE_PROPERTY (the default number of conditions in the

generated WHERE clause is 10000). Cayenne will generate (1 + N * M) SQL statements for each query

using disjoint-by-ID prefetches, where N is the number of relationships to prefetch, and M is the number of

queries for a given prefetch that is dependent on the number of objects in the result (ideally M = 1).

The advantage of this type of prefetch is that matching database rows by ID may be much faster than

matching the qualifier of the original query. Moreover this is the only type of prefetch that can handle

SelectQueries with fetch limit. Both joint and regular disjoint prefetches may produce invalid results or

generate inefficient fetch-the-entire table SQL when fetch limit is in effect.

The disadvantage is that query SQL can get unwieldy for large result sets, as each object will have to have its

own condition in the WHERE clause of the generated SQL.

Joint Prefetching Semantics

Joint senantics results in a single SQL statement for root objects and any number of jointly prefetched paths.

Cayenne processes in memory a cartesian product of the entities involved, converting it to an object tree. It

uses OUTER joins to connect prefetched entities.

Data Rows

31

Joint is the most efficient prefetch type of the three as far as generated SQL goes. There's always just 1

SQL query generated. Its downsides are the potentially increased amount of data that needs to get across the

network between the application server and the database, and more data processing that needs to be done on

the Cayenne side.

Data Rows

Iterated Queries

Paginated Queries

Caching and Fresh Data

Object Caching

Query Result Caching

Turning off Synchronization of

ObjectContexts

32

33

Chapter 11. Customizing Cayenne

Runtime

Dependency Injection Container
Cayenne runtime is built around a small powerful dependency injection (DI) container. Just like other

popular DI technologies, such as Spring or Guice, Cayenne DI container manages sets of interdependent

objects and allows users to configure them. These objects are regular Java objects. We are calling them

"services" in this document to distinguish from all other objects that are not configured in the container

and are not managed. DI container is responsible for service instantiation, injecting correct dependencies,

maintaining service instances scope, and dispatching scope events to services.

The services are configured in special Java classes called "modules". Each module defines binding of service

interfaces to implementation instances, implementation types or providers of implementation instances.

There are no XML configuration files, and all the bindings are type-safe. The container supports injection

into instance variables and constructor parameters based on the @Inject annotation. This mechanism is

very close to Google Guice.

The discussion later in this chapter demonstrates a standalone DI container. But keep in mind that Cayenne

already has a built-in Injector, and a set of default modules. A Cayenne user would normally only use the

API below to write custom extension modules that will be loaded in that existing container when creating

ServerRuntime. See "Starting and Stopping ServerRuntime" chapter for an example of passing an extension

module to Cayenne.

Cayenne DI probably has ~80% of the features expected in a DI container and has no dependency on the rest

of Cayenne, so in theory can be used as an application-wide DI engine. But it's primary purpose is still to

serve Cayenne. Hence there are no plans to expand it beyond Cayenne needs. It is an ideal "embedded" DI

that does not interfere with Spring, Guice or any other such framework present elsewhere in the application.

DI Bindings API

To have a working DI container, we need three things: service interfaces and classes, a module that describes

service bindings, a container that loads the module, and resolves the depedencies. Let's start with service

interfaces and classes:

public interface Service1 {

 public String getString();

}

public interface Service2 {

 public int getInt();

}

DI Bindings API

34

A service implementation using instance variable injection:

public class Service1Impl implements Service1 {

 @Inject

 private Service2 service2;

 public String getString() {

 return service2.getInt() + "_Service1Impl";

 }

}

Same thing, but using constructor injection:

public class Service1Impl implements Service1 {

 private Service2 service2;

 public Service1Impl(@Inject Service2 service2) {

 this.service2 = service2;

 }

 public String getString() {

 return service2.getInt() + "_Service1Impl";

 }

}

public class Service2Impl implements Service2 {

 private int i;

 public int getInt() {

 return i++;

 }

}

Now let's create a module implementing org.apache.cayenne.tutorial.di.Module interface

that will contain DI configuration. A module binds service objects to keys that are reference. Binder

provided by container implements fluent API to connect the key to implementation, and to configure various

binding options (the options, such as scope, are demonstrated later in this chapter). The simplest form of a

key is a Java Class object representing service interface. Here is a module that binds Service1 and Service2

to corresponding default implementations:

public class Module1 implements Module {

 public void configure(Binder binder) {

 binder.bind(Service1.class).to(Service1Impl.class);

 binder.bind(Service2.class).to(Service2Impl.class);

 }

}

Once we have at least one module, we can create a DI container.

org.apache.cayenne.di.Injector is the container class in Cayenne:

Injector injector = DIBootstrap.createInjector(new Module1());

Now that we have created the container, we can obtain services from it and call their methods:

Service1 s1 = injector.getInstance(Service1.class);

for (int i = 0; i < 5; i++) {

 System.out.println("S1 String: " + s1.getString());

Service Lifecycle

35

}

This outputs the following lines, demonstrating that s1 was Service1Impl and Service2 injected into it was

Service2Impl:

0_Service1Impl

1_Service1Impl

2_Service1Impl

3_Service1Impl

4_Service1Impl

There are more flavors of bindings:

// binding to instance - allowing user to create and configure instance

// inside the module class

binder.bind(Service2.class).toInstance(new Service2Impl());

// binding to provider - delegating instance creation to a special

// provider class

binder.bind(Service1.class).toProvider(Service1Provider.class);

// binding to provider instance

binder.bind(Service1.class).toProviderInstance(new Service1Provider());

// multiple bindings of the same type using Key

// injection can reference the key name in annotation:

// @Inject("i1")

// private Service2 service2;

binder.bind(Key.get(Service2.class, "i1")).to(Service2Impl.class);

binder.bind(Key.get(Service2.class, "i2")).to(Service2Impl.class);

Another types of confiuguration that can be bound in the container are lists and maps. They will be discussed

in the following chapters.

Service Lifecycle

An important feature of the Cayenne DI container is instance scope. The default scope (implicitly used in all

examples above) is "singleton", meaning that a binding would result in creation of only one service instance,

that will be repeatedly returned from Injector.getInstance(..), as well as injected into classes that

declare it as a dependency.

Singleton scope dispatches a "BeforeScopeEnd" event to interested services. This event occurs before the

scope is shutdown, i.e. when Injector.shutdown() is called. Note that the built-in Cayenne injector

is shutdown behind the scenes when ServerRuntime.shutdown() is invoked. Services may register

as listeners for this event by annotating a no-argument method with @BeforeScopeEnd annotation. Such

method should be implemented if a service needs to clean up some resources, stop threads, etc.

Another useful scope is "no scope", meaning that every time a container is asked to provide a service

instance for a given key, a new instance will be created and returned:

binder.bind(Service2.class).to(Service2Impl.class).withoutScope();

Users can also create their own scopes, e.g. a web application request scope or a

session scope. Most often than not custom scopes can be created as instances of

Overriding Services

36

org.apache.cayenne.di.spi.DefaultScope with startup and shutdown managed by the

application (e.g. singleton scope is a DefaultScope managed by the Injector) .

Overriding Services

Cayenne DI allows to override services already definied in the current module, or more commonly - some

other module in the the same container. Actually there's no special API to override a service, you'd just bind

the service key again with a new implementation or provider. The last binding for a key takes precedence.

This means that the order of modules is important when configuring a container. The built-in Cayenne

injector ensures that Cayenne standard modules are loaded first, followed by optional user extension

modules. This way the application can override the standard services in Cayenne.

Customization Strategies
The previous section discussed how Cayenne DI works in general terms. Since Cayenne users will mostly

be dealing with an existing Injector provided by ServerRuntime, it is important to understand how to build

custom extensions to a preconfigured container. As shown in "Starting and Stopping ServerRuntime"

chapter, custom extensions are done by writing an aplication DI module (or multiple modules) that

configures service overrides. This section shows all the configuration possibilities in detail, including

changing properties of the existing services, contributing services to standard service lists and maps, and

overriding service implementations. All the code examples later in this section are assumed to be placed in

an application module "configure" method:

public class MyExtensionsModule implements Module {

 public void configure(Binder binder) {

 // customizations go here...

 }

}

Module extensions = new MyExtensionsModule();

ServerRuntime runtime =

 new ServerRuntime("com/example/cayenne-mydomain.xml", extensions);

Changing Properties of Existing Services

Many built-in Cayenne services change their behavior based on a value of some environment property. A

user may change Cayenne behavior without even knowing which services are responsible for it, but setting a

specific value of a known property. Supported property names are listed in "Appendix A".

There are two ways to set service properties. The most obvious one is to pass it to the JVM with -D flag on

startup. E.g.

java -Dorg.apache.cayenne.sync_contexts=false ...

A second one is to contribute a property to

org.apache.cayenne.configuration.DefaultRuntimeProperties.properties

Contributing to Service Collections

37

map (see the next section on how to do that). This map contains the default property values and can accept

application-specific values, overrding the defaults.

Note that if a property value is a name of a Java class, when this Java class is instantiated by Cayenne, the

container performs injection of instance variables. So even the dynamically specified Java classes can use

@Inject annotation to get a hold of other Cayenne services.

If the same property is specified both in the command line and in the properties map, the command-line

value takes precedence. The map value will be ignored. This way Cayenne runtime can be reconfigured

during deployment.

Contributing to Service Collections

Cayenne can be extended by adding custom objects to named maps or lists bound in DI. We are

calling these lists/maps "service collections". A service collection allows things like appending

a custom strategy to a list of built-in strategies. E.g. an application that needs to install a custom

DbAdapter for some database type may contribute an instance of custom DbAdapterDetector to a

org.apache.cayenne.configuration.server.DefaultDbAdapterFactory.detectors

list:

public class MyDbAdapterDetector implements DbAdapterDetector {

 public DbAdapter createAdapter(DatabaseMetaData md) throws SQLException {

 // check if we support this database and retun custom adapter

 ...

 }

}

// since build-in list for this key is a singleton, repeated

// calls to 'bindList' will return the same instance

binder.bindList(DefaultDbAdapterFactory.DETECTORS_LIST)

 .add(MyDbAdapterDetector.class);

Maps are customized using a similar "bindMap" method.

The names of built-in collections are listed in "Appendix B".

Alternative Service Implementations

As mentioned above, custom modules are loaded by ServerRuntime after the built-in modules. So it is easy

to redefine a built-in service in Cayenne by rebinding desired implementations or providers. To do that,

first we need to know what those services to redefine are. While we describe some of them in the following

sections, the best way to get a full list is to check the source code of the Cayenne version you are using and

namely look in org.apache.cayenne.configuration.server.ServerModule - the main

built-in module in Cayenne.

Now an example of overriding QueryCache service. The default implementation of this service is provided

by MapQueryCacheProvider. But if we want to use EhCacheQueryCache (a Cayenne wrapper for

the EhCache framework), we can define it like this:

Noteworthy Built-in Services

38

binder.bind(QueryCache.class).to(EhCacheQueryCache.class);

Noteworthy Built-in Services

JdbcEventLogger

org.apache.cayenne.log.JdbcEventLogger is the service that defines logging API for

Cayenne internals. It provides facilities for logging queries, commits, transactions, etc. The default

implementation is org.apache.cayenne.log.CommonsJdbcEventLogger that performs

logging via commons-logging library. Cayenne library includes another potentially useful logger -

org.apache.cayenne.log.FormattedCommonsJdbcEventLogger that produces formatted

multiline SQL output that can be easier to read.

DataSourceFactory

DataChannelFilter

QueryCache

ExtendedTypes

Part III. Cayenne Framework

- Remote Object Persistence

41

Chapter 12. Introduction to ROP

What is ROP

Main Features

42

43

Chapter 13. ROP Setup

System Requirements

Jar Files and Dependencies

44

45

Chapter 14. Implementing ROP Server

46

47

Chapter 15. Implementing ROP Client

48

49

Chapter 16. ROP Deployment

Deploying ROP Server

Deploying ROP Client

Security

50

51

Chapter 17. Current Limitations

52

53

Appendix A. Configuration Properties
Note that the property names below are defined as constants in

org.apache.cayenne.configuration.Constants interface.

Table A.1. Configuration Properties Recognized by ServerRuntime and/or

ClientRuntime

Property Possible

Values

Default

Value

cayenne.jdbc.driver[.domain_name.node_name] - defines a JDBC

driver class to use when creating a DataSource. If domain name and optionally

- node name are specified, the setting overrides DataSource info just for this

domain/node. Otherwise the override is applied to all domains/nodes in the system.

none, project

DataNode

configuration

is used

cayenne.jdbc.url[.domain_name.node_name] - defines a DB URL

to use when creating a DataSource. If domain name and optionally - node name

are specified, the setting overrides DataSource info just for this domain/node.

Otherwise the override is applied to all domains/nodes in the system.

none, project

DataNode

configuration

is used

cayenne.jdbc.username[.domain_name.node_name] - defines a

DB user name to use when creating a DataSource. If domain name and optionally

- node name are specified, the setting overrides DataSource info just for this

domain/node. Otherwise the override is applied to all domains/nodes in the system.

none, project

DataNode

configuration

is used

cayenne.jdbc.password[.domain_name.node_name] - defines a

DB password to use when creating a DataSource. If domain name and optionally

- node name are specified, the setting overrides DataSource info just for this

domain/node. Otherwise the override is applied to all domains/nodes in the system

none, project

DataNode

configuration

is used

cayenne.jdbc.min_connections[.domain_name.node_name]

- defines the DB connection pool minimal size. If domain name and optionally

- node name are specified, the setting overrides DataSource info just for this

domain/node. Otherwise the override is applied to all domains/nodes in the system

none, project

DataNode

configuration

is used

cayenne.jdbc.max_connections[.domain_name.node_name] -

defines the DB connection pool maximum size. If domain name and optionally

- node name are specified, the setting overrides DataSource info just for this

domain/node. Otherwise the override is applied to all domains/nodes in the system

none, project

DataNode

configuration

is used

cayenne.querycache.size - An integer defining the maximum number of

entries in the query cache. Note that not all QueryCache providers may respect this

property. MapQueryCache uses it, but the rest would use alternative configuration

methods.

any

positive

int value

2000

54

Property Possible

Values

Default

Value

cayenne.server.contexts_sync_strategy - defines whether peer

ObjectContexts should receive snapshot events after commits from other contexts.

If true (default), the contexts would automatically synchronize their state with

peers.

true, false true

cayenne.server.object_retain_strategy - defines fetched objects

retain strategy for ObjectContexts. When weak or soft strategy is used, objects

retained by ObjectContext that have no local changes can potetially get garbage

collected when JVM feels like doing it.

weak,

soft, hard

weak

cayenne.server.max_id_qualifier_size - defines a maximum

number of ID qualifiers in the WHERE clause of queries that are generated for

paginated queries and for DISJOINT_BY_ID prefetch processing. This is needed

to avoid hitting WHERE clause size limitations and memory usage efficiency.

any

positive

int

10000

cayenne.rop.service_url - defines the URL of the ROP server

cayenne.rop.service_username - defines the user name for an ROP

client to login to an ROP server.

cayenne.rop.service_password - defines the password for an ROP client

to login to an ROP server.

cayenne.rop.shared_session_name- defines the name of the shared

session that an ROP client wants to join on an ROP server. If omitted, a dedicated

session is created.

cayenne.rop.service.timeout - a value in milliseconds for the ROP

client-server connection read operation timeout

any

positive

long

value

cayenne.rop.channel_events - defines whether client-side DataChannel

should dispatch events to child ObjectContexts. If set to true, ObjectContexts will

receive commit events and merge changes committed by peer contexts that passed

through the common client DataChannel.

true, false false

cayenne.rop.context_change_events- defines whether object property

changes in the client context result in firing events. Client UI components can

listen to these events and update the UI. Disabled by default.

true, false false

cayenne.rop.context_lifecycle_events - defines whether object

commit and rollback operations in the client context result in firing events. Client

UI components can listen to these events and update the UI. Disabled by default.

true,false false

55

Property Possible

Values

Default

Value

cayenne.server.rop_event_bridge_factory - defines the

name of the org.apache.cayenne.event.EventBridgeFactory that is passed

from the ROP server to the client. I.e. server DI would provide a name of

the factory, passing this name to the client via the wire. The client would

instantiate it to receive events from the server. Note that this property is

stored in "cayenne.server.rop_event_bridge_properties" map, not in the main

"cayenne.properties".

56

57

Appendix B. Service Collections
Note that the collection keys below are defined as constants in

org.apache.cayenne.configuration.Constants interface.

Table B.1. Service Collection Keys Present in ServerRuntime and/or ClientRuntime

cayenne.properties - Map<String,String> of properties used by built-in Cayenne services. The keys

in this map are the property names from the table in Appendix A. Separate copies of this map exist on the

server and ROP client.

cayenne.server.adapter_detectors - List<DbAdapterDetector> that contains objects that can

discover the type of current database and install the correct DbAdapter in runtime.

cayenne.server.domain_filters - List<DataChannelFilter> storing DataDomain filters.

cayenne.server.project_locations - List<String> storing locations of the one of more project

configuration files.

cayenne.server.default_types - List<ExtendedType> storing default adapter-agnostic

ExtendedTypes. Default ExtendedTypes can be overridden / extended by DB-specific DbAdapters as well

as by user-provided types configured in another colltecion (see "cayenne.server.user_types").

cayenne.server.user_types - List<ExtendedType> storing a user-provided ExtendedTypes. This

collection will be merged into a full list of ExtendedTypes and would override any ExtendedTypes defined

in a default list, or by a DbAdapter.

cayenne.server.type_factories - List<ExtendedTypeFactory> storing default and user-provided

ExtendedTypeFactories. ExtendedTypeFactory allows to define ExtendedTypes dynamically for the whole

group of Java classes. E.g. Cayenne supplies a factory to map all Enums regardless of their type.

cayenne.server.rop_event_bridge_properties - Map<String, String> storing event

bridge properties passed to the ROP client on bootstrap. This means that the map is configured

by server DI, and passed to the client via the wire. The properties in this map are specific to

EventBridgeFactory implementation (e.g JMS or XMPP connection prameters). One common property is

"cayenne.server.rop_event_bridge_factory" that defines the type of the factory.

58

	Cayenne Guide
	Table of Contents
	Part I. Object Relational Mapping with Cayenne
	Chapter 1. Setup
	System Requirements
	Running CayenneModeler

	Chapter 2. Cayenne Mapping Structure
	Cayenne Project
	DataMap
	DataNode
	DbEntity
	ObjEntity
	Mapping ObjAttributes to Custom Classes

	Embeddable
	Procedure
	Query
	Listeners and Callbacks

	Chapter 3. CayenneModeler Application
	Working with Mapping Projects
	Reverse Engineering Database
	Generating Database Schema
	Migrations
	Generating Java Classes
	Modeling Inheritance
	Modeling Primary Key Generation Strategy

	Part II. Cayenne Framework
	Chapter 4. Including Cayenne in a Project
	Jar Files and Dependencies
	Maven Projects
	cgen
	cdbgen
	cdbimport

	Ant Projects
	cgen
	cdbgen
	cdbimport
	cdataport

	Chapter 5. Starting Cayenne
	Starting and Stopping ServerRuntime
	Merging Multiple Projects
	Web Applications

	Chapter 6. Persistent Objects and ObjectContext
	ObjectContext
	Persistent Object and its Lifecycle
	ObjectContext Persistence API
	Cayenne Helper Class
	ObjectContext Nesting
	Generic Persistent Objects
	Transactions

	Chapter 7. Expressions
	Expressions Overview
	Path Expressions
	Creating Expressions from Strings
	Creating Expressions with ExpressionFactory
	Evaluating Expressions in Memory

	Chapter 8. Queries
	SelectQuery
	EJBQLQuery
	SQLTemplateQuery
	ProcedureQuery
	NamedQuery
	Custom Queries

	Chapter 9. Lifecycle Events
	Types of Lifecycle Events
	Lifecycle Callbacks and Listeners
	Callback and Listener Methods Semantics
	Registering Callbacks and Listeners
	Combining Listeners with DataChannelFilters

	Chapter 10. Performance Tuning
	Prefetching
	Prefetching Semantics
	Disjoint Prefetching Semantics
	Disjoint-by-ID Prefetching Semantics
	Joint Prefetching Semantics

	Data Rows
	Iterated Queries
	Paginated Queries
	Caching and Fresh Data
	Object Caching
	Query Result Caching

	Turning off Synchronization of ObjectContexts

	Chapter 11. Customizing Cayenne Runtime
	Dependency Injection Container
	DI Bindings API
	Service Lifecycle
	Overriding Services

	Customization Strategies
	Changing Properties of Existing Services
	Contributing to Service Collections
	Alternative Service Implementations

	Noteworthy Built-in Services
	JdbcEventLogger
	DataSourceFactory
	DataChannelFilter
	QueryCache
	ExtendedTypes

	Part III. Cayenne Framework - Remote Object Persistence
	Chapter 12. Introduction to ROP
	What is ROP
	Main Features

	Chapter 13. ROP Setup
	System Requirements
	Jar Files and Dependencies

	Chapter 14. Implementing ROP Server
	Chapter 15. Implementing ROP Client
	Chapter 16. ROP Deployment
	Deploying ROP Server
	Deploying ROP Client
	Security

	Chapter 17. Current Limitations

	Appendix A. Configuration Properties
	Appendix B. Service Collections

