
Getting Started with Cayenne

ROP (Remote Object Persistence)

Getting Started with Cayenne ROP (Remote Object Persistence)
Copyright © 2011-2012 Apache Software Foundation and individual authors

License

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this

work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the

"License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/

LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and

limitations under the License.

iii

Table of Contents

I. Prerequisites ... 1

1. Prerequisites ... 3

II. Remote Object Persistence Quick Start ... 5

2. Starting Client Project .. 7

Create an ROP Client Project in Eclipse .. 7

Create Client Java Classes .. 7

3. Setting up Hessian Web Service .. 11

Setting up Dependencies ... 11

Client Classes on the Server ... 11

Configuring web.xml .. 12

Running ROP Server .. 12

4. Porting Existing Code to Connect to a Web Service Instead of a Database 13

Starting Command Line Client .. 13

5. Adding BASIC Authentication .. 17

Securing ROP Server Application ... 17

Configuring Jetty for BASIC Authentication .. 17

Running Client with Basic Authentication ... 18

iv

Part I. Prerequisites

3

Chapter 1. Prerequisites
This tutorial starts where "Getting Started with Cayenne" left off. If you have gone through the previous

tutorial, and have the "tutorial" project open in Eclipse, you can go directly to the next step. If not, here are

the compressed instructions to prepare you for work with ROP:

• Step 1 - Eclipse Setup

• Step 2 - Create a project

• Step 3 - Create Cayenne OR Mapping

• Step 4 - Create Java Classes

• Step 5 - Convert the project to webapp.

Note that at "Step 5" you can skip the JSP creation part. Just setup web.xml and maven-jetty-plugin in the

POM.

4

Part II. Remote Object

Persistence Quick Start

7

Chapter 2. Starting Client Project

Create an ROP Client Project in Eclipse
Creation of a new Eclipse project has been discussed in some details in "Getting Started with Cayenne"

guide, so we will omit the screenshots for the common parts.

In Eclipse select "File > New > Other..." and then "Maven > Maven Project". Click "Next". On the following

screen check "Create a simple project" checkbox and click "Next" again. In the dialog shown on the

screenshot below, enter "org.example.cayenne" for the "Group Id" and "tutorial-rop-client" for the "Artifact

Id" (both without the quotes) and click "Finish".

Now you should have a new empty project in the Eclipse workspace. Check that the project Java compiler

settings are correct. Rightclick on the "tutorial-rop-client" project, select "Properties > Java Compiler" and

ensure that "Compiler compliance level" is at least 1.5 (some versions of Maven plugin seem to be setting it

to 1.4 by default).

Create Client Java Classes
The client doesn't need the XML ORM mapping, as it is loaded from the server. However it needs the client-

side Java classes. Let's generate them from the existing mapping:

• Start CayenneModeler and open cayenne.xml from the "tutorial" project (located under "tutorial/src/main/

resources", unless it is already open.

• Select the "datamap" DataMap and check "Allow Client Entities" checkbox.

• Enter "org.example.cayenne.persistent.client" for the "Client Java Package" and click "Update.." button

next to the field to refresh the client package of all entities.

Create Client Java Classes

8

• Select "Tools > Generate Classes" menu.

• For "Type" select "Client Persistent Objects".

• For the "Output Directory" select "tutorial-rop-client/src/main/java" folder (as client classes should go in

the client project).

• Click on "Entities" tab and check the "Check All Classes" checkbox (unless it is already checked and

reads "Uncheck all Classes").

• Click "Generate".

Now go back to Eclipse, right click on "tutorial-rop-client" project and select "Refresh" - you should see

pairs of classes generated for each mapped entity, same as on the server. And again, we see a bunch of

errors in those classes. Let's fix it now by adding two dependencies, "cayenne-client" and "resin-hessian",

in the bottom of the pom.xml file. We also need to add Caucho M2 repository to pull Hessian jar files. The

resulting POM should look like this:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.example.cayenne</groupId>

 <artifactId>tutorial-rop-client</artifactId>

Create Client Java Classes

9

 <version>0.0.1-SNAPSHOT</version>

 <dependencies>

 <dependency>

 <groupId>org.apache.cayenne</groupId>

 <artifactId>cayenne-client</artifactId>

 <!-- Here specify the version of Cayenne you are actually using -->

 <version>3.1M3</version>

 </dependency>

 <dependency>

 <groupId>com.caucho</groupId>

 <artifactId>resin-hessian</artifactId>

 <version>3.1.6</version>

 </dependency>

 </dependencies>

 <repositories>

 <repository>

 <id>caucho</id>

 <name>Caucho Repository</name>

 <url>http://caucho.com/m2</url>

 <layout>default</layout>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 <releases>

 <enabled>true</enabled>

 </releases>

 </repository>

 </repositories>

</project>

Your computer must be connected to the internet. Once you save the pom.xml, Eclipse will download the

needed jar files and add them to the project build path. After that all the errors should disappear.

Now let's check the entity class pairs. They look almost identical to their server counterparts, although the

superclass and the property access code are different. At this point these differences are somewhat academic,

so let's go on with the tutorial.

10

11

Chapter 3. Setting up Hessian Web

Service

Setting up Dependencies
Now lets get back to the "tutorial" project that contains a web application and set up dependencies. The only

extra one that we don't have yet is resin-hessian.jar, just like the client, so let's add it (and the caucho repo

declaration) to the pom.xml.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

 ...

 <dependencies>

 ...

 <dependency>

 <groupId>com.caucho</groupId>

 <artifactId>resin-hessian</artifactId>

 <version>3.1.6</version>

 </dependency>

 </dependencies>

 <build>

 ...

 </build>

 <repositories>

 <repository>

 <id>caucho</id>

 <name>Caucho Repository</name>

 <url>http://caucho.com/m2</url>

 <layout>default</layout>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 <releases>

 <enabled>true</enabled>

 </releases>

 </repository>

 </repositories>

</project>

Maven Optimization Hint On a real project both server and client modules will likely share a

common parent pom.xml where common repository delcaration can be placed, with child pom's

"inheriting" it from parent. This would reduce build code duplication.

Client Classes on the Server
Since ROP web service requires both server and client persistent classes, we need to generate a second copy

of the client classes inside the server project. This is a minor inconvenience that will hopefully go away in

the future versions of Cayenne. Don't forget to refresh the project in Eclipse after class generation is done.

Configuring web.xml

12

Configuring web.xml
Cayenne web service is declared in the web.xml. It is implemented as a servlet

"org.apache.cayenne.configuration.rop.server.ROPHessianServlet". Open tutorial/src/main/webapp/WEB-

INF/web.xml in Eclipse and add a service declaration:

<?xml version="1.0" encoding="utf-8"?>

 <!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Cayenne Tutorial</display-name>

 <servlet>

 <servlet-name>cayenne-project</servlet-name>

 <servlet-class>org.apache.cayenne.configuration.rop.server.ROPHessianServlet</servlet-class>

 <load-on-startup>0</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>cayenne-project</servlet-name>

 <url-pattern>/cayenne-service</url-pattern>

 </servlet-mapping>

</web-app>

Extending Server Behavior via Callbacks While no custom Java code is required on the server, just

a service declaration, it is possible to customizing server-side behavior via callbacks and listeners (not

shown in the tutorial).

Running ROP Server
Use previosly created Eclipse Jetty run configuration available via "Run > Run Configurations..." (or create a

new one if none exists yet). You should see output in the Eclipse console similar to the following:

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building tutorial 0.0.1-SNAPSHOT

[INFO] --

...

[INFO] Starting jetty 6.1.22 ...

INFO::jetty-6.1.22

INFO::No Transaction manager found - if your webapp requires one, please configure one.

INFO::Started SelectChannelConnector@0.0.0.0:8080

[INFO] Started Jetty Server

INFO: Loading XML configuration resource from file:cayenne-project.xml

INFO: loading user name and password.

INFO: Created connection pool: jdbc:derby:memory:testdb;create=true

 Driver class: org.apache.derby.jdbc.EmbeddedDriver

 Min. connections in the pool: 1

 Max. connections in the pool: 1

Cayenne ROP service URL is http://localhost:8080/tutorial/cayenne-service. If you click on it, you will see

"Hessian Requires POST" message, that means that the service is alive, but you need a client other than the

web browser to access it.

13

Chapter 4. Porting Existing Code to

Connect to a Web Service Instead of a

Database

Starting Command Line Client
One of the benefits of ROP is that the client code is no different from the server code - it uses the same

ObjectContext interface for access, same query and commit API. So the code below will be similar to the

code presented in the first Cayenne Getting Started Guide, although with a few ROP-specific parts required

to bootstrap the ObjectContext.

Let's start by creating an empty Main class with the standard main() method in the client project:

package org.example.cayenne.persistent.client;

public class Main {

 public static void main(String[] args) {

 }

}

Now the part that is actually different from regular Cayenne - establishing the server connection and

obtaining the ObjectContext:

ClientConnection connection = new HessianConnection("http://localhost:8080/tutorial/cayenne-service");

DataChannel channel = new ClientChannel(connection, false, new DefaultEventManager(), false);

ObjectContext context = new CayenneContext(channel);

Note that the "channel" can be used to create as many peer ObjectContexts as needed over the same

connection, while ObjectContext is a kind of isolated "persistence session", similar to the server-side

context. A few more notes. Since we are using HTTP(S) to communicate with ROP server, there's no need to

explicitly close the connection (or channel, or context).

So now let's do the same persistent operaions that we did in the first tutorial "Main" class. Let's start by

creating and saving some objects:

// creating new Artist

Artist picasso = context.newObject(Artist.class);

picasso.setName("Pablo Picasso");

// Creating other objects

Gallery metropolitan = context.newObject(Gallery.class);

metropolitan.setName("Metropolitan Museum of Art");

Painting girl = context.newObject(Painting.class);

girl.setName("Girl Reading at a Table");

Starting Command Line Client

14

Painting stein = context.newObject(Painting.class);

stein.setName("Gertrude Stein");

// connecting objects together via relationships

picasso.addToPaintings(girl);

picasso.addToPaintings(stein);

girl.setGallery(metropolitan);

stein.setGallery(metropolitan);

// saving all the changes above

context.commitChanges();

Now let's select them back:

// SelectQuery examples

SelectQuery select1 = new SelectQuery(Painting.class);

List<Painting> paintings1 = context.performQuery(select1);

Expression qualifier2 = ExpressionFactory.likeIgnoreCaseExp(

 Painting.NAME_PROPERTY, "gi%");

SelectQuery select2 = new SelectQuery(Painting.class, qualifier2);

List<Painting> paintings2 = context.performQuery(select2);

Now, delete:

Expression qualifier = ExpressionFactory.matchExp(Artist.NAME_PROPERTY,

 "Pablo Picasso");

SelectQuery selectToDelete = new SelectQuery(Artist.class, qualifier);

Artist picasso = (Artist) DataObjectUtils.objectForQuery(context,

 selectToDelete);

if (picasso != null) {

 context.deleteObject(picasso);

 context.commitChanges();

}

This code is exactly the same as in the first tutorial. So now let's try running the client and see what happens.

In Eclipse open main class and select "Run > Run As > Java Application" from the menu (assuming the ROP

server started in the previous step is still running). You will some output in both server and client process

consoles. Client:

INFO: Connecting to [http://localhost:8080/tutorial/cayenne-service] - dedicated session.

INFO: === Connected, session: org.apache.cayenne.remote.RemoteSession@26544ec1[sessionId=17uub1h34r9x1] - took 111 ms.

INFO: --- Message 0: Bootstrap

INFO: === Message 0: Bootstrap done - took 58 ms.

INFO: --- Message 1: flush-cascade-sync

INFO: === Message 1: flush-cascade-sync done - took 1119 ms.

INFO: --- Message 2: Query

INFO: === Message 2: Query done - took 48 ms.

INFO: --- Message 3: Query

INFO: === Message 3: Query done - took 63 ms.

INFO: --- Message 4: Query

INFO: === Message 4: Query done - took 19 ms.

INFO: --- Message 5: Query

INFO: === Message 5: Query done - took 7 ms.

INFO: --- Message 6: Query

INFO: === Message 6: Query done - took 5 ms.

INFO: --- Message 7: Query

INFO: === Message 7: Query done - took 2 ms.

INFO: --- Message 8: Query

INFO: === Message 8: Query done - took 4 ms.

Starting Command Line Client

15

INFO: --- Message 9: flush-cascade-sync

INFO: === Message 9: flush-cascade-sync done - took 34 ms.

As you see client prints no SQL statmenets, just a bunch of query and flush messages sent to the server. The

server side is more verbose, showing the actual client queries executed against the database:

...

INFO: SELECT NEXT_ID FROM AUTO_PK_SUPPORT WHERE TABLE_NAME = ? FOR UPDATE [bind: 1:'ARTIST']

INFO: SELECT NEXT_ID FROM AUTO_PK_SUPPORT WHERE TABLE_NAME = ? FOR UPDATE [bind: 1:'GALLERY']

INFO: SELECT NEXT_ID FROM AUTO_PK_SUPPORT WHERE TABLE_NAME = ? FOR UPDATE [bind: 1:'PAINTING']

INFO: INSERT INTO ARTIST (DATE_OF_BIRTH, ID, NAME) VALUES (?, ?, ?)

INFO: [batch bind: 1->DATE_OF_BIRTH:NULL, 2->ID:200, 3->NAME:'Pablo Picasso']

INFO: === updated 1 row.

INFO: INSERT INTO GALLERY (ID, NAME) VALUES (?, ?)

INFO: [batch bind: 1->ID:200, 2->NAME:'Metropolitan Museum of Art']

INFO: === updated 1 row.

INFO: INSERT INTO PAINTING (ARTIST_ID, GALLERY_ID, ID, NAME) VALUES (?, ?, ?, ?)

INFO: [batch bind: 1->ARTIST_ID:200, 2->GALLERY_ID:200, 3->ID:200, 4->NAME:'Girl Reading at a Table']

INFO: [batch bind: 1->ARTIST_ID:200, 2->GALLERY_ID:200, 3->ID:201, 4->NAME:'Gertrude Stein']

INFO: === updated 2 rows.

INFO: +++ transaction committed.

INFO: --- transaction started.

INFO: SELECT t0.GALLERY_ID, t0.NAME, t0.ARTIST_ID, t0.ID FROM PAINTING t0

INFO: === returned 2 rows. - took 14 ms.

INFO: +++ transaction committed.

INFO: --- transaction started.

INFO: SELECT t0.GALLERY_ID, t0.NAME, t0.ARTIST_ID, t0.ID FROM PAINTING t0

 WHERE UPPER(t0.NAME) LIKE UPPER(?) [bind: 1->NAME:'gi%']

INFO: === returned 1 row. - took 10 ms.

INFO: +++ transaction committed.

INFO: --- transaction started.

INFO: SELECT t0.DATE_OF_BIRTH, t0.NAME, t0.ID FROM ARTIST t0 WHERE t0.NAME = ? [bind: 1->NAME:'Pablo Picasso']

INFO: === returned 1 row. - took 8 ms.

INFO: +++ transaction committed.

INFO: --- transaction started.

INFO: DELETE FROM PAINTING WHERE ID = ?

INFO: [batch bind: 1->ID:200]

INFO: [batch bind: 1->ID:201]

INFO: === updated 2 rows.

INFO: DELETE FROM ARTIST WHERE ID = ?

INFO: [batch bind: 1->ID:200]

INFO: === updated 1 row.

INFO: +++ transaction committed.

You are done with the basic ROP client!

16

17

Chapter 5. Adding BASIC Authentication
You probably don't want everybody in the world to connect to your service and access (and update!)

arbitrary data in the database. The first step in securing Cayenne service is implementing client

authentication. The easiest way to do it is to delegate the authentication task to the web container that is

running the service. HessianConnection used in the previous chapter supports BASIC authentication on the

client side, so we'll demonstrate how to set it up here.

Securing ROP Server Application
Open web.xml file in the server project and setup security constraints with BASIC authentication for the

ROP service:

<security-constraint>

 <web-resource-collection>

 <web-resource-name>CayenneService</web-resource-name>

 <url-pattern>/cayenne-service</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>cayenne-service-user</role-name>

 </auth-constraint>

</security-constraint>

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Cayenne Realm</realm-name>

</login-config>

<security-role>

 <role-name>cayenne-service-user</role-name>

</security-role>

Configuring Jetty for BASIC Authentication

These instructions are specific to Jetty 6. Other containers (and versions of Jetty) will have different

mechansims to achieve the same thing.

Open pom.xml in the server project and configure a "userRealm" for the Jetty plugin:

<plugin>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>maven-jetty-plugin</artifactId>

 <version>6.1.22</version>

 <!-- adding configuration below: -->

 <configuration>

 <userRealms>

 <userRealm implementation="org.mortbay.jetty.security.HashUserRealm">

 <!-- this name must match the realm-name in web.xml -->

 <name>Cayenne Realm</name>

 <config>realm.properties</config>

 </userRealm>

Running Client with

Basic Authentication

18

 </userRealms>

 </configuration>

 </plugin>

</plugins>

Now create a new file called {["realm.properties"}} at the root of the server project and put user login/

password in there:

cayenne-user: secret,cayenne-service-user

.

Now let's stop the server and start it again. Everything should start as before, but if you go to http://

localhost:8080/tutorial/cayenne-service, your browser should pop up authentication dialog. Enter "cayenne-

user/secret" for user name / password, and you should see "Hessian Requires POST" message. So the server

is now secured.

Running Client with Basic Authentication
If you run the client without any changes, you'll get the following error:

org.apache.cayenne.remote.hessian.HessianConnection connect

INFO: Connecting to [http://localhost:8080/tutorial/cayenne-service] - dedicated session.

org.apache.cayenne.remote.hessian.HessianConnection connect

INFO: Error establishing remote session. URL - http://localhost:8080/tutorial/cayenne-service;

 CAUSE - cannot retry due to server authentication, in streaming mode

java.net.HttpRetryException: cannot retry due to server authentication, in streaming mode

 at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1257)

 at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:379)

 at com.caucho.hessian.client.HessianProxy.invoke(HessianProxy.java:168)

 at $Proxy0.establishSession(Unknown Source)

 at org.apache.cayenne.remote.hessian.HessianConnection.connect(HessianConnection.java:210)

 at org.apache.cayenne.remote.hessian.HessianConnection.getServerEventBridge(HessianConnection.java:114)

 at org.apache.cayenne.remote.ClientChannel.setupRemoteChannelListener(ClientChannel.java:337)

 at org.apache.cayenne.remote.ClientChannel.<init>(ClientChannel.java:108)

 at org.example.cayenne.Main.main(Main.java:25)

Exception in thread "main" org.apache.cayenne.CayenneRuntimeException: [v.3.1M3 Sep 19 2011 07:12:41]

Error establishing remote session. URL - http://localhost:8080/tutorial/cayenne-service;

CAUSE - cannot retry due to server authentication, in streaming mode

 at org.apache.cayenne.remote.hessian.HessianConnection.connect(HessianConnection.java:229)

 at org.apache.cayenne.remote.hessian.HessianConnection.getServerEventBridge(HessianConnection.java:114)

 at org.apache.cayenne.remote.ClientChannel.setupRemoteChannelListener(ClientChannel.java:337)

 at org.apache.cayenne.remote.ClientChannel.<init>(ClientChannel.java:108)

 at org.example.cayenne.Main.main(Main.java:25)

Caused by: java.net.HttpRetryException: cannot retry due to server authentication, in streaming mode

 at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1257)

 at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:379)

 at com.caucho.hessian.client.HessianProxy.invoke(HessianProxy.java:168)

 at $Proxy0.establishSession(Unknown Source)

 at org.apache.cayenne.remote.hessian.HessianConnection.connect(HessianConnection.java:210)

 ... 4 more

Which is exactly what you'd expect, as the client is not authenticating itself. So change the line in Main.java

where we obtained an ROP connection to this:

ClientConnection connection = new HessianConnection(

 "http://localhost:8080/tutorial/cayenne-service",

 "cayenne-user", "secret", null);

Running Client with

Basic Authentication

19

Try running again, and everything should work as before. Obviously in production environment, in addition

to authentication you'll need to use HTTPS to access the server to prevent third-party evesdropping on your

password and data.

Congratulations, you are done with the ROP tutorial!

20

	Getting Started with Cayenne ROP (Remote Object Persistence)
	Table of Contents
	Part I. Prerequisites
	Chapter 1. Prerequisites

	Part II. Remote Object Persistence Quick Start
	Chapter 2. Starting Client Project
	Create an ROP Client Project in Eclipse
	Create Client Java Classes

	Chapter 3. Setting up Hessian Web Service
	Setting up Dependencies
	Client Classes on the Server
	Configuring web.xml
	Running ROP Server

	Chapter 4. Porting Existing Code to Connect to a Web Service Instead of a Database
	Starting Command Line Client

	Chapter 5. Adding BASIC Authentication
	Securing ROP Server Application
	Configuring Jetty for BASIC Authentication
	Running Client with Basic Authentication

