Cayenne Guide

S (1 o PR PRI 2
1.1, System REQUITEIMENTSccoeeii e 2

1.2. RUNNING CayenNNEMOTEIENoveiiieieii i e e s et e e e e e e s sararaeees 2

2. Cayenne MapPing SITUCLUIEcoiuuuiiiiiiitiee ettt e b e et e e e e st b et e e et et e e e snbbe e e e enbeeeeen 4
2.1, CAYEINNE PIOJECE ...eeiiiiiiiie ettt e et e e e e e ekt e e e et e e e e e b b e e e e s ee e e e annneeas 4

P D L - |V o T USROS 4

P2 T B T -\ oo (=PRSS 4

2.4, DDENLITY ...eeeiiiiiieiee ettt e e et e et e e e an e s 4

BT O o1 = o1) Y/ PSR 4

2.6. EMDEAUEDIEcooiiiei e e 4

P R o (0o o U PSPPSR 4

P T @ U= o PP TP PP PPPPPPPON 4

2.9. Listeners and CallDaCKSuuuiiiiiieeiiiiieee et e e e e e e e e e 4

3. CayenneModeler APPlICALIONcovvviiiiiii 5
3.1. Working With Mapping PrOJECESuuviiiiei e e e e e e e e e e e e 5

3.2. Reverse Engineering Datalasecoiuuiiieiiiiiiie ittt 5

3.3. Generating Datalase SCHEMALcooiiiiiiiiie e 5

B, MIGIAIONS L. ———————— 5

3.5. GeNErating JAVA ClaSSESccuvviiiiiiie ettt e e e e s e e e e e e e et e e e e e e e nrnraaes 5

3.6. MOdeliNg INNEMTANCEcoiiiiiiiie e e e 5

3.7. Modeling Generic Persistent ClaSSESccoiiiiieiiiiiie ettt 5

3.8. Modeling Primary Key Generation Strategyccoeeeveeeeieeiie e, 5
0= Y= o gL =0 1Yo RO 6
4. Including Cayenne iN @ PrOJECEuuiiiiiiiiiie ettt et e e e nne e s 7
4.1. Jar Files and DEPENUENCIEScoourrieeiiiieeeeiiii et a et e et e s e e s e e e s b e e e e e anneees 7

4.2. MaVeN PrOJECESccceeeiei e 7

G T AN 0| G = (1=t £ SRR 13

5. SEAIMING CAYENNE ...ttt ettt e ettt e e ek e et e e e bt e e e e sttt e e e e nb et e e e e nb e e e e e enbreeeeans 14
5.1. Starting and StOpPiNg SErVErRUNTIMEoiiiiiiiiii et 14

5.2. Merging MUItIPle PrOJECEScoovviiiiiiiieieeeee ettt ettt ettt e e e e e e eeeeeeeeeeeeeeeeeees 14
RIS oI A o] o [T o= (o] 0T EEPRR 15

6. Persistent Objects and ODJECICONLEXTcociiiuriiieiiiiiie e 17
6.1, ODJECICOMEEXLeeeeiiieeeeeeiieeee ettt e e et e e e e e e e e st e e e e abb e e e e e nnbe e e e e annne e e e e nnneeas 17

6.2. Persistent Object and itS LITECYCIEuuuiuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieerenenenenenenenenennnnnnnnns 17

6.3. ObjectContext PersiSteNCe APluuiiiiiie e 18

6.4. CayenNE HEIPES ClESSooiiiiiiie ittt s st e e e e enneeas 20

6.5. ODJECICONTEXE INESLINGveeeeiiieiie ettt e et e e e e e e e et e e e e b ne e e e annreeean 20

6.6. Generic Persistent ODJECESovviiiiiiiiiiiieeeeeeeeeee ettt e e e e e e e e e e e e e e eeereeeeeeeeeees 21

I I = 15" o 0] PP 22

v.3.1B2 ii

Cayenne Guide

A == 0] PP PP PP PPPPPROPPPRN 24
7.1, EXPreSSIONS OVEIVIEIWvveieiiiiiiee ettt e e ettt e sttt e e et e e s ettt e e e ansn e e e e anne e e e e nnnneeenans 24

A o 1 T o (=S] 11 24

7.3. Creating EXpressions from SENQScc.vvvveiiieee e e e e e e e 25

7.4. Creating EXPressions With APeeii e 27

7.5. Evaluating EXPressions iN MEMOTYcoiiiiiiieiiiiiee ettt e s e e e e 28

8. OFAENINGS ..o 29
O, QUENTES ...eveeeeeeeeeeeeeeeeeeeeeeeaeseae e seaessaeseaesesasesesasasesesesssesesesesesesesessseaeeeseseanssaesneneeeenesenreraerererrrrrres 30
S S = L= o (O U= o PP PP PPPRPP 30

0.2, EIBQLIQIUENY ...ttt bbbt b e b b annenenenees 31

0.3, SQLTEMPIBLEQUENYeeeeeeeeeieieieeeeteee e e ettt e e e sttt e e e e st e e e eseeeeeaanneeeeeaanseeeeeannsneeeeanseeeeennnes 31

9.4, ProCEAUIEQUETY ..ottt e e e e e ettt et e e e e e e et e e e e e e e e s et a e e e e e e e e s saantbaneeeaaeeessannneraneeaaens 31

0.5, NBMEAQUETY ...ttt e et e e ettt e e ekttt e e ekt e e e enbe e e e e snbn e e e e annnneeas 31

O.6. CUSLOM QUEKTES .eeieeeeiieetiieieeeae e e s ettt et e e e e e e e s s teeaaeeessaanntbeeeeeaaeesssansnsaaeeeaaeeseaansnseneeens 31

10, LITECYCIE EVENLS ..uuvuiieieiiiiiiieieeeieeeueueueeseerenererenerereeeneseneessseesesenesesesssssessssssssssssnsssssssnsnsnsnnnnnnnnnnns 32
10.1. Types Of LIfECYCIE EVENESccoiiiiieiee ettt e e e e 32
10.2. Lifecycle Calbacks and LiSLENENSoeviiiiiiiie i 32

11, PerfOrmanCe TUNIMNGueeeiiiiiee ettt e e st e e e e e bt e e e s b e e e e s st et e e s ann e e e e annreeeeennees 33
11.1. PrefetChing ..o, 33
11.2. DAB ROWS ... 35
12.3. HEraed QUENTESuvieieiiee e e ittt e e e e s e ettt e e e e e e sttt e e e e e e s e s st b e s eeaaeeessansnsraneaeaeesaannnes 35
11.4. PaQinated QUENTESceiiiiuiieie ettt e e ettt e ettt et e e et e e ekt e e et e e e e e e e e e e e e e annneeas 35
11.5. Caching and FreSh Dataluuuuuuuuuuuiuiiiiiiiiiai e nrararrnaaararararnrnnnnnnnnnnnrnnns 35
11.6. Turning off Synchronization of ObjeCtCONEXLSccviveiiiiiiiiiieeie e 35

12. Customizing Cayenne RUNLIMIEcooiiiiiiieiiiiie ettt et e e e e et e e e nnee e e e ennees 36
12.1. Dependency INJECtION CONLAINEYeveeiiiieieeiiiiee et e e e e e e e enneeee e 36
D R O (o] = (o IR = = | == 39
12.3. Noteworthy BUIIt-iN SEIVICESuuueiiiiiii et e e e e e e e e e 41

[11. Cayenne Framework - Remote ODject PErSISLENCEovviiiiiiii i 42
G 1 11T [N o o g T o 0 (0 RS 43
30 I Y = S | SR 43
13.2. MAIN FEBIUMESeeiieiiiieie ettt ettt e e e e sttt e e s sttt e e e e enb et e e e ente e e e e annbeeeeennnees 43

T4, ROP SEIUD oottt ettt e ettt et e e e e e 4 ek bbbttt e e e e e e e a bbb et et e e e e e s e e nnb b be e et e e e e e aanbnrnreeeaeeeas 44
14.1. SySteM REQUITEMENTSveiiiiiiiiii ettt ettt et e e s e e s e e e e s e e e e e annreeeas 44
14.2. Jar Files and DEPENUENCIESuuururuiurureruiuruiururninrninrnrnrnrrrnrnrn.—————————————————————————————. 44

15. IMplementing ROP SEIVEN ...ttt e e e e e e e e e e s e et e e e e eae e e e s eannneees 45
16. IMpPlementing ROP CHENToiuiiiiiiiiiie et e e e e e e b e e e enbeeeeeans 46
A (O e DT o o)y 11 0| PP PP PP PPPPI 47
17.1. Deploying ROP SEIVENccooe i, 47
17.2. DePIOYING ROP ClHIENLcooiiiiiiiiieiie ettt e e e e e s e e e e e e e e e eanrrrereeaeeas 47

v.3.1B2 i

Cayenne Guide

RS RS < ol 1 PP P PP OPPPPTPPPPRN 47

18. CUrrent LIMITAiONSueieeieieees it e e ettt e e e e e e st e e e e e e e s e st e e e e eaeeessansnanaeeeeaeeseaanneees 48

A. CONfIQUIaionN PrOPEIMIESuuuuuueiuiiiiiiuiitiuu e e e ———————————araaarararrraarrrerarassnssssssnsnnssnsnnnnnnnnnnns 49
B. SEIVICE COIECLIONSeeieiiiiieiie ettt e e ettt e e e ettt e e e e bt e e e e anba e e e e e nnneeeeanneees 52
C. EXPrESSIONS BINF ...ttt ettt e ettt a bt e e e a bttt e e s bbbt e e e e sttt e e e nnbe e e e e e nnreee s 53

v.3.1B2 iv

Part |. Object Relational
Mapping with Cayenne

v.3.1B2

Chapter 1. Setup

1.1. System Requirements

« Java: Cayenne runtime framework and CayenneModeler GUI tool are written in 100% Java, and run on any
Java-compatible platform. Required JDK versionis 1.5 or higher. Thelast version of Cayenne compatible with
JOK 1.4is1.2.x/2.0x and IDK 1.3is1.1.x

« JDBC Driver: An appropriate DB-specific JDBC driver is needed to access the database. It can beincluded in
the application or used in web container DataSource configuration.

» Third-party Libraries: Cayenne runtime framework has a minimal set of required and a few more optional
dependencies on third-party open source packages. See "Including Cayennein a Project” chapter for details.

1.2. Running CayenneModeler

CayenneModeler GUI tool isintended to work with object relational mapping projects. While you can edit your
XML by hand, it israrely needed, as the Modeler is a pretty advanced tool included in Cayenne distribution. To
obtain CayenneM odeler, download Cayenne distribution archive from http://cayenne.apache.org/download.html
matching the OS you are using. Of course Java needs to be installed on the machine where you are going to run
the Modeler.

OS X distribution contains CayenneModeler.app at the root of the distribution disk image.
Windows distribution contains CayenneModeler.exe filein the bi n directory.

Cross-platform distribution (targeting Linux, but as the name implies, compatible with any OS) contains a
runnable CayenneModeler.jar in the bi n directory. It can be executed either by double-clicking, or if the
environment is not configured to execute jars, by running from command-line;

java -jar CayenneMdel er.jar

The Modeler can aso be started from Maven. While it may look like an exotic way to start a GUI application,
it has its benefits - no need to download Cayenne distribution, the version of the Modeler always matches the
version of the framework, the plugin can find mapping filesin the project automatically. Sois an attractive option
to some devel opers. Maven option requires a declaration in the POM:

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>maven- cayenne- nodel er-pl ugi n</artifactld>
<ver si on>X. Y. Z</ ver si on>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

v.3.1B2 2

http://cayenne.apache.org/download.html

And then can be run as

mvn cayenne- nodel er: run

v.3.1B2

Chapter 2. Cayenne Mapping Structure

2.1. Cayenne Project
2.2. DataMap

2.3. DataNode

2.4. DbEntity

2.5. ObjEntity

2.5.1. Mapping ObjAttributes to Custom Classes

2.6. Embeddable
2.7. Procedure
2.8. Query

2.9. Listeners and Callbacks

v.3.1B2

Chapter 3. CayenneModeler Application

3.1. Working with Mapping Projects
3.2. Reverse Engineering Database
3.3. Generating Database Schema
3.4. Migrations

3.5. Generating Java Classes

3.6. Modeling Inheritance

3.7. Modeling Generic Persistent Classes

Normally each ObjEntity is mapped to a specific Java class (such as Artist or Painting) that explicitly declare all
entity properties as pairs of getters and setters. However Cayenne alows to map acompletly generic classto any
number of entities. The only expectation is that a generic class implements org.apache.cayenne.DataObject. So
an ideal candidate for a generic class is CayenneDataObject, or some custom subclass of CayenneDataObject.

If you don't enter anything for Java Class of an ObjEntity, Cayenne assumes generic mapping and uses the
following implicit rulesto determine a class of a generic object. If DataMap " Custom Superclass’ is set, runtime
uses this class to instantiate new objects. If not, org.apache.cayenne.CayenneDataObject is used.

Classgeneration procedures (either doneinthe Modeler or with Ant or Maven) would skip entitiesthat are mapped
to CayenneDataObject explicitly or have no class mapping.

3.8. Modeling Primary Key Generation Strategy

v.3.1B2 5

Part Il. Cayenne Framework

v.3.1B2

Chapter 4. Including Cayenne in a Project

4.1. Jar Files and Dependencies
Cayenne distribution contains the following core runtime jarsin the distribution | i b directory:

e cayenne-server-x.xjar - contains full Cayenne runtime (DI, adapters, DB access classes, etc.). Most
applications will use only thisfile.

» cayenne-client-x.x.jar - a subset of cayenne-server.jar trimmed for use on the client in an ROP application.

¢ Other cayenne-* jars - various Cayenne extensions.

When using cayenne-server - x. X. j ar you'll need a few third party jars (all included in| i b/t hi r d-
party directory of the distribution):

» Apache Velocity Template Engine, version 1.6.x (and all its dependencies bundled with vel ocity-dep)
» Apache Commons Collections, version 3.2.1

» Apache Commons Logging, version 1.1

Cayenne integrates with various caching, clustering and other frameworks. These optiona integrations will
require other third-party jars that the users will need to obtain on their own.

4.2. Maven Projects

If you are using Maven, you won't have to deal with figuring out the dependencies. You can ssimply include
cayenne-server artifact in your POM:

<dependency>
<gr oupl d>or g. apache. cayenne</ gr oupl d>
<artifactld>cayenne-server</artifactld>

<versi on>X. Y. Z</ ver si on>
</ dependency>

Additionally Cayenne provides a Maven plugin with a set of goals to perform various project tasks, such as
synching generated Java classes with the mapping, described in the following subsection. The full plugin name
isor g. apache. cayenne. pl ugi ns: maven- cayenne- pl ugi n.

4.2.1. cgen

cgenisanmaven- cayenne- pl ugi n goal that generates and maintains source (.java) files of persistent objects
based on a DataMap. By default, it is bound to the generate-sources phase. If "makePairs" is set to "true" (which
is the recommended default), this task will generate a pair of classes (superclass/subclass) for each ObjEntity in
the DataM ap. Superclasses should not be changed manually, since they are always overwritten. Subclasses are

v.3.1B2 7

http://velocity.apache.org/
http://commons.apache.org/collections/
http://commons.apache.org/logging/

Including Cayenne in a Project

never overwritten and may be later customized by the user. If "makePairs' is set to "false”, a single class will
be generated for each ObjEntity.

By creating custom templates, you can use cgen to generate other output (such as web pages, reports, specialized
code templates) based on DataM ap information.

Table4.1. cgen requir

ed parameters

Name Type

Description

map File

DataMap XML file which serves as a source of metadata for class generation. E.g.
${proj ect.basedir}/src/ main/resources/ny. map. xm

destDir File

Root destination directory for Java classes (ignoring their package names).

Table 4.2. cgen optional parameters

Name Type | Description

addi ti onal Maps File A directory that contains additional DataMap XML files that
may be needed to resolve cross-DataM ap rel ationshipsfor thethe
main DataMap, for which class generation occurs.

client boolean Whether we are generating classes for the client tier in a Remote
Object Persistence application. "False" by default.

enbeddabl eTenpl at e String | Location of acustom Velocity templatefilefor Embeddable class

generation. If omitted, default templateis used.

enbeddabl eSuper

Tenpl at e | String

Location of a custom Velocity template file for Embeddable
superclass generation. Ignored unless "makepairs" set to "true".
If omitted, default template is used.

encodi ng

String

Generated files encoding if different from the default on current
platform. Target encoding must be supported by the VM running
the build. Standard encodings supported by Javaon all platforms
are US-ASCII, 1S0O-8859-1, UTF-8, UTF-16BE, UTF-16LE,
UTF-16. See javadocs for java.nio.charset.Charset for more
information.

excl udeEntities

String

A comma-separated list of ObjEntity patterns (expressed as a
perl5 regex) to exclude from template generation. By default
none of the DataM ap entities are excluded.

i ncl udeEntities

String

A comma-separated list of ObjEntity patterns (expressed as a
perl5 regex) to include from template generation. By default al
DataMap entities are included.

v.3.1B2

Including Cayenne in a Project

Name

Type

Description

makePai r s

boolean

If "true" (a recommended default), will generate subclass/
superclass pairs, with all generated code placed in superclass.

node

String

Specifies class generator iteration target. There are three possible
values. "entity” (default), "datamap”, "al". "entity" performsone
generator iteration for each included ObjEntity, applying either
standard to custom entity templates. "datamap” performsasingle
iteration, applying DataM ap templates. "All" isacombination of
entity and datamap.

overwite

boolean

Only has effect when "makePairs’ isset to "false". If "overwrite"
os "true", will overwrite older versions of generated classes.

super Pkg

String

Java package name of generated superclasses. Only has effect
if "makepairs' and "usePkgPath" are set to "true" (both are true
by default). Defines a common package for al generated Java
classes. If omitted, each superclass will be placed in the same
package as subclass.

super Tenpl at e

String

Location of a custom Velocity template file for ObjEntity
superclass generation. Only has effect if "makepairs' set to
"true". If omitted, default template is used.

tenpl ate

String

Location of a custom Velocity template file for ObjEntity class
generation. If omitted, default template is used.

usePkgPat h

boolean

If set to "true" (default), a directory tree will be generated in
"destDir" corresponding to the class package structure, if set
to "false", classes will be generated in "destDir" ignoring their
package.

Example - atypical class generation scenario,

in a separate package:

<pl ugi n>

<versi on>X. Y. Z</ ver si on>
<lI--
| evel

o=
<confi guration>

v.3.1B2

where pairs of classes are generated, and superclasses are placed

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifact|d>maven- cayenne- pl ugi n</artifactld>

There's an intermttent probl em when using Maven/cgen in Eclipse with nReclipse plugin that
requires placing "configuration" section at the plugin level, instead of execution

<map>${ pr oj ect . basedi r}/ src/ nmai n/ resour ces/ ny. map. xm </ map>
<dest Di r >${ proj ect . basedi r}/src/ mai n/ j ava</ dest Di r >

Including Cayenne in a Project

</ pl ugi n>

<executi ons>
<executi on>
<goal s>

<super Pkg>or g. exanpl e. nodel . aut o</ super Pkg>
</ confi guration>

<goal >cgen</ goal >

</ goal s>
</ executi on>
</ executi ons>

4.2.2. cdbgen

cdbgen isamaven- cayenne- pl ugi n god that drops and/or generates tables in a database on Cayenne
DataMap. By default, it is bound to the pre-integration-test phase.

Table 4.3. cdbgen required parameters

Name Type Description

map File DataMap XML file which serves as a source of metadatafor DB schemageneration.
E.g. ${proj ect . basedir}/ src/ mai n/ resour ces/ ny. map. xm

driver String A class of JDBC driver to use for the target database.

ur String JDBC connection URL of atarget database.

Table 4.4. cdbgen optional parameters

Name Type Description

adapt er String Java class name implementing org.apache.cayenne.dba.DbAdapter. While this
attribute is optional (a generic JdbcAdapter is used if not set), it is highly
recommended to specify correct target adapter.

creat eFK boolean | Indicates whether cdbgen should create foreign key constraints. Default is "true”.

creat ePK boolean | Indicates whether cdbgen should create Cayenne-specific auto PK objects. Default

is"true".

creat eTabl es | boolean

Indicates whether cdbgen should create new tables. Default is"true”.

dr opPK boolean | Indicates whether cdbgen should drop Cayenne primary key support objects.
Default is"false".

dropTabl es boolean | Indicates whether cdbgen should drop the tables before attempting to create new
ones. Default is"false".

password String Database user password.

v.3.1B2

10

Including Cayenne in a Project

Name

Type

Description

user nane

String

Database user name.

Example - creating a DB schemaon alocal HSQL DB database:

<pl ugi n>

</ pl ugi n>

<executions>
<executi on>
<confi guration>

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>maven- cayenne-pl ugi n</artifactld>
<versi on>X. Y. Z</ ver si on>

<map>${ pr oj ect . basedi r}/ src/ mai n/ resour ces/ ny. map. xm </ nap>
<url >j dbc: hsql db: hsql : //1 ocal host/testdb</url >

<adapt er >or g. apache. cayenne. dba. hsql db. HSQLDBAdapt er </ adapt er >
<driver>org. hsql db.j dbcDri ver</driver>

<user nane>sa</ user nane>

</ confi guration>
<goal s>

<goal >cdbgen</ goal >

</ goal s>
</ executi on>
</ executi ons>

4.2.3. cdbimport

cdbi nport isamaven- cayenne- pl ugi n goa that generates a DataMap based on an existing database
schema. By default, it is bound to the generate-sources phase. This allows you to generate your DataMap prior to
building your project, which may be necessary if you are also using the cgen task.

Table 4.5. cdbimport required parameters

Name Type Description

map File DataMap XML file which is the destination of the schema import. Maybe an
exigting file. If thisfile does not exigt, it is created when cdbimport is executed. E.g.
${proj ect. basedir}/src/ min/resources/ny. map. xm

driver String A class of JDBC driver to use for the target database.

ur String JDBC connection URL of atarget database.

Table 4.6. cdbimport optional parameters

Name

Type Description

adapt er

String Java class name implementing org.apache.cayenne.dba.DbAdapter.
Whilethisattributeisoptional (ageneric JdbcAdapter isused if not set),
it is highly recommended to specify correct target adapter.

v.3.1B2

11

Including Cayenne in a Project

Name Type Description

i nport Procedures |boolean |Indicates whether stored procedures should be imported from the
database. Default isfalse.

meani ngf ul Pk boolean | Indicates whether primary keys should be mapped as attributes of the
ObjEntity. Default isfalse.

nam ngStr at egy String The naming strategy used for mapping database
names to object entity names. Default is
or g. apache. cayenne. map. nani ng. Snart Nam ngSt r at eg

overw iteExi sting |boolean | Indicateswhether existing DB and object entities should be overwritten.
Thisis an al-or-nothing setting. If you need finer granularity, use the
CayenneModeler. Default is "true”.

password String Database user password.

procedurePattern | String Pattern to match stored procedure names against for import. Default
is to match al stored procedures. This value is only meaningful if
importProceduresis true.

schemaNane String Database schema to import tables/stored procedures from.

tabl ePattern String Pattern to match table names against for import. Default is to match all
tables.

user nanme String Database user name.

Example - loading a DB schema from a local HSQLDB database (essentially a reverse operation compared to

the cdbgen example above) :

<pl ugi n>

<executi ons>
<executi on>
<confi guration>

<goal s>

</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

v.3.1B2

<user nane>sa</ user nane>
</ configuration>

<goal >cdbi nport </ goal >

<gr oupl d>or g. apache. cayenne. pl ugi ns</ gr oupl d>
<artifactld>maven- cayenne-pl ugi n</artifactld>
<versi on>X. Y. Z</ ver si on>

<mep>${ pr oj ect . basedi r}/ src/ mai n/ resour ces/ ny. map. xm </ map>
<url >j dbc: mysql : //127.0.0. 1/ mydb</url| >

<adapt er >or g. apache. cayenne. dba. hsql db. HSQLDBAdapt er </ adapt er >
<driver>com nysql .j dbc. Driver</driver>

12

Including Cayenne in a Project

4.3. Ant Projects
4.3.1. cgen
4.3.2. cdbgen

4.3.3. cdbimport

Thisisan Ant counterpart of "cdbimport" goal of maven-cayenne-plugin described above. It has exactly the same
properties. Here is a usage example:

<cdbi nport map="${context.dir}/WEB-|NF/ ny. map. xm "
driver="com nysql .jdbc.Driver"
url ="jdbc: nysql ://127.0.0. 1/ nydb"
user name="sa"/ >

4.3.4. cdataport

v.3.1B2 13

Chapter 5. Starting Cayenne

5.1. Starting and Stopping ServerRuntime

In runtime Cayenne is accessed via
or g. apache. cayenne. confi gurati on. server. Server Runti nme. ServerRuntime is created
simply by calling a constructor:

ServerRuntime runtime =
new Server Runti me("conl exanpl e/ cayenne-project.xm");

The parameter you pass to the constructor is a location of the main project file. Location is a '/'-separated path
(same path separator is used on UNIX and Windows) that is resolved relative to the application classpath. The
project file can be placed in the root package or in a subpackage (e.g. in the code above it is in "com/exampl€"
subpackage).

ServerRuntime encapsul ates a single Cayenne stack. Most applications will just have one ServerRuntime using it
to create as many ObjectContexts as needed, access the Dependency Injection (DI) container and work with other
Cayenne features. Internally ServerRuntime is just a thin wrapper around the DI container. Detailed features of
the container are discussed in " Customizing Cayenne Runtime" chapter. Here we'll just show an example of how
an application might replace a default implementation of a built-in Cayenne service (in this case - QueryCache)
with a different class:

public class M/ExtensionsMbdul e inpl enents Mdul e {

public void configure(Binder binder) {
bi nder. bi nd(QueryCache. cl ass) .t o(EhCacheQueryCache. cl ass);

}
}

Modul e ext ensi ons = new MyExt ensi onsModul e();
ServerRuntinme runtime =
new Server Runti me("conl exanpl e/ cayenne- proj ect.xm ", extensions);

It is a good idea to shut down the runtime when it is no longer needed, usually before the application itself is
shutdown:

runtime. shut down() ;

When aruntime object has the same scope as the application, this may not be always necessary, however in some
casesitisessential, and isgenerally considered agood practice. E.g. in aweb container hot redeploy of awebapp
will cause resource leaks and eventual OutOfMemoryError if the application failsto shutdown CayenneRuntime.

5.2. Merging Multiple Projects

ServerRuntime requires at least one mapping project to run. But it can also take multiple projects and merge them
together in asingle configuration. Thisway different parts of a database can be mapped independenlty from each

v.3.1B2 14

Starting Cayenne

other (even by different software providers), and combined in runtime when assembling an application. Doing it
is as easy as passing multiple project locations to ServerRuntime constructor:

ServerRuntime runtine =
new ServerRuntime(new String[] {
"com exanpl e/ cayenne- proj ect.xm ",
"org/fool cayenne-libraryl. xm",
"org/fool cayenne-library2. xm"

DE

When the projects are merged, the following rules are applied:

» The order of projects matters during merge. If there are two conflicting metadata objects belonging to two
projects, an object from the last project takes precedence over the object from thefirst one. This makes possible
to override pieces of metadata. Thisis also similar to how DI modules are merged in Cayenne.

* Runtime DataDomain name is set to the name of the last project in thelist.

* Runtime DataDomain properties are the same as the properties of the last project in the list. |.e. propertiesare
not merged to avoid invalid combinations and unexpected runtime behavior.

 |If there are two or more DataMaps with the same name, only one DataMap is used in the merged project,
the rest are discarded. Same precedence rules apply - DataMap from the project with the highest index in the
project list overrides all other DataM aps with the same name.

« If there are two or more DataNodes with the same name, only one DataNodes is used in the merged project,
the rest are discarded. DataNode coming from project with the highest index in the project list is chosen per
precedence rule above.

e There is a notion of "default" DataNode. After the merge if any DataMaps are not explicitly linked to
DataNodes, their queries will be executed via a default DataNode. This makes it possible to build mapping
"libraries’ that are only associated with a specific database in runtime. If there's only one DataNode in the
merged project, it will be automatically chosen as default. A possible way to explicitly designate a specific
node as default isto override Dat aDomai nPr ovi der . cr eat eAndl ni t Dat aDormai n() .

5.3. Web Applications

Web applications can use avariety of mechanismsto configure and start the "services' they need, Cayenne being
one of such services. Configuration can be donewithin standard Servlet specification objectslike Servlets, Filters,
or ServletContextListeners, or can use Spring, JEE CDI, etc. Thisis a user's architectura choice and Cayenne
is agnostic to it and will happily work in any environment. As described above, all that is needed is to create
an instance of ServerRuntime somewhere and provide the application code with means to access it. And shut it
down when the application ends to avoid container leaks.

Still Cayenneincludes a piece of web app configuration code that can assist in quickly setting up simple Cayenne-
enabled web applications. We are talking about CayenneFilter. It is declared in web.xml:

v.3.1B2 15

Starting Cayenne

<web- app>

<filter>
<filter-name>cayenne-project</filter-name>
<filter-class>org. apache. cayenne. confi guration.web. CayenneFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>cayenne-project</filter-name>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

</ web- app>

When started by the web container, it createsainstance of ServerRuntime and storesit in the ServletContext. Note
that the name of Cayenne XML project fileisderived from the "filter-name". In the example above CayenneFilter
will look for an XML file "cayenne-project.xml”. This can be overridden with "configuration-location” init
parameter.

When the application runs, all HT TP requests matching the filter url-pattern will have access to a session-scoped
ObjectContext like this:

bj ect Cont ext context = BaseCont ext. get Threadbj ect Cont ext ();

Of course the ObjectContext scope, and other behavior of the Cayenne runtime can be customized via dependency
injection. For this another filter init parameter called "extramodules’ is used. "extramodules' is a comma or
space-separated list of class names, with each class implementing Module interface. These optional custom
modules are loaded after the the standard ones, which allows usersto override al standard definitions.

For those interested in the DI container contents of the runtime created by CayenneFilter,
it is the same ServerRuntime as wouldve been created by other means, but with
an extra org.apache.cayenne. configuration.web. WebMbdul e module that provides
or g. apache. cayenne. confi gur ati on. web. Request Handl er service. This is the service to
override in the custom modulesif you need to provide a different ObjectContext scope, €etc.

Note

Y ou should not think of CayenneFilter as the only way to start and use Cayenne in aweb application. In
fact CayenneFilter isentirely optional. Useit if you don't have any special design for application service
management. If you do, simply integrate Cayenne into that design.

v.3.1B2 16

Chapter 6. Persistent Objects and
ObjectContext

6.1. ObjectContext

ObjectContext is an interface that users normally work with to access the database. It providesthe API to execute
database operations and to manage persistent objects. A context is obtained from the ServerRuntime:

bj ect Cont ext context = runtime. getContext();

The call above creates a new instance of ObjectContext that can access the database via this runtime.
ObjectContext is a single "work area’ in Cayenne, storing persistent objects. ObjectContext guarantees that for
each database row with aunique ID it will contain at most one instance of an object, thus ensuring object graph
consistency between multiple selects (a feature called "uniquing”). At the same time different ObjectContexts
will have independent copies of objects for each unique database row. This allows usersto isolate object changes
from one another by using separate ObjectContexts.

These properties directly affect the strategies for scoping and sharing (or not sharing) ObjectContexts. Contexts
that are only used to fetch objects from the database and whose objects are never modified by the application can
be shared between mutliple users (and multiple threads). Contexts that store modified objects should be accessed
only by asingle user (e.g. aweb application user might reuse a context instance between multiple web requestsin
the same HttpSession, thus carrying uncommitted changes to objects from request to request, until he decides to
commit or rollback them). Even for asingle user it might make sense to use mutliple ObjectContexts (e.g. request-
scoped contexts to allow concurrent requests from the browser that change and commit objects independently).

ObjectContext is serializable and does not permanently hold to any of the application resources. So it does not
have to be closed. If the context is not used anymore, it should simply be allowed to go out of scope and get
garbage collected, just like any other Java object.

6.2. Persistent Object and its Lifecycle

Cayenne can persist Javaobjectsthat implement or g. apache. cayenne. Per si st ent interface. Generally
persistent classes are generated from the model as described above, so users do not have to worry about superclass
and property implementation details.

Persistent interface provides access to 3 persistence-related properties - objectld, persistenceState and
objectContext. All 3areinitialized by Cayenne runtimeframework. Application code should not attempt to change
them them. However it is allowed to read them, which provides valuable runtime information. E.g. Objectld
can be used for quick equality check of 2 objects, knowing persistence state would alow highlighting changed
objects, etc.

v.3.1B2 17

Persistent Objects and ObjectContext

Each persistent object belongs to a single ObjectContext, and can be in one of the following persistence states (as
definedinor g. apache. cayenne. Per si st enceSt at e) :

Table 6.1. Persistence States

TRANSIENT | The object is not registered with an ObjectContext and will not be persisted.

NEW The object is freshly registered in an ObjectContext, but has not been saved to the database
yet and there is no matching database row.

COMMITTED | The object isregistered in an ObjectContext, there is arow in the database corresponding to
this object, and the object state corresponds to the last known state of the matching database
row.

MODIFIED The object is registered in an ObjectContext, there is a row in the database corresponding
to this object, but the object in-memory state has diverged from the last known state of the
matching database row.

HOLLOW The object isregistered in an ObjectContext, there is arow in the database corresponding to
this object, but the object stateis unknown. Whenever an application triesto access a property
of such object, Cayenne attempts reading its values from the database and "inflate" the object,
turning it to COMMITED.

DELETED The object is registered in an ObjectContext and has been marked for deletion in-memory.
The corresponding row in the database will get deleted upon ObjectContext commit, and the
object state will be turned into TRANSIENT.

6.3. ObjectContext Persistence API

One of the first things users usually want to do with an ObjectContext is to select some objects from a database.
Thisisdone by calling "performQuery" method:

Sel ect Query query = new Sel ect Query(Artist.class);
List<Artist> artists = context.performuery(query);

Wel'll discuss queriesin some detail in the following chapters. The example aboveis self-explanatory - we create
a SelectQuery that matches all Artist objects present in the database, and then call "performQuery", getting alist
of Artist objects.

Some queries can be quite complex, returning multiple result sets or even updating the database. For
such queries ObjectContext provides "performGenericQuery'method. While not nearly as commonly-used as
"performQuery"”, it is nevertheless important in some situations. E.g.:

Col | ecti on<Query> queries = ... // multiple queries that need to be run together
QueryChain query = new QueryChai n(queries);

QueryResponse response = context. performGeneri cQuery(query);

v.3.1B2 18

Persistent Objects and ObjectContext

An application might modify selected objects. E.g.:

Artist selectedArtist = artists.get(0);
sel ectedArtist.setName("Dali");

The first time the object property is changed, the object's state is automatically set to "MODIFIED" by Cayenne.
Cayenne tracks all in-memory changes until a user calls"commitChanges":

cont ext. conmi t Changes() ;

At this point al in-memory changes are analyzed and a minimal set of SQL statements is issued in a single
transaction to synchronize the database with thein-memory state. In our example "commitChanges' commitsjust
one object, but generaly it can be any number of objects.

If instead of commit, we wanted to reset all changed objects to the previously committed state, we'd call
rollbackChanges instead:

cont ext.rol | backChanges();

"newObject” method call creates a persistent object and sets its state to "NEW":

Artist newArtist = context.newlbject(Artist.class);
newArtist.set Name("Pi casso");

It will only existin memory until "commitChanges" isissued. On commit Cayenne might generate anew primary
key (unlessauser set it explicitly, or aPK wasinferred from arelationship) and issue an INSERT SQL statement
to permanently store the object.

del eteObjects method takes one or more Persistent objects and marks them as"DELETED":

context. del ete(oj ects(artistl);
context. del eteCoj ects(artist2, artist3, artistd);

Additionally "deleteObjects" processes all delete rules modeled for the affected objects. This may result in
implicitly deleting or modifying extrarelated objects. Same asinsert and update, delete operations are sent to the
database only when " commitChanges" iscalled. Similarly "rollbackChanges' will undo the effect of "newObject”
and "deleteObjects".

local Object returns a copy of agiven persistent object that is "local" to a given ObjectContext:

Since an application often works with more than one context, "local Object” isarather common operation. E.g. to
improve performance a user might utilize a single shared context to select and cache data, and then occasionally
transfer some sel ected objects to another context to modify and commit them:

Obj ect Cont ext edi tingContext = runtine.getContext();
Artist local Artist = editingContext.|ocal Object(artist);

Often an appliction needs to inspect mapping metadata. This information is stored in the EntityResolver object,
accessible via the ObjectContext:

v.3.1B2 19

Persistent Objects and ObjectContext

EntityResol ver resolver = objectContext.getEntityResolver();

Here we discussed the most commonly used subset of the ObjectContext API. There are other useful methods,
e.g. those alowing to inspect registered objects state en bulk, etc. Check the latest JavaDocs for details.

6.4. Cayenne Helper Class

Thereisauseful helper class called "Cayenne" (fully-qualified name" or g. apache. cayenne. Cayenne")
that builds on ObjectContext API to provide a number of very common operations. E.g. get a primary key (most
entities do not model PK as an object property) :

I ong pk = Cayenne. | ongPKFor Obj ect (artist);

It also provides the reverse operation - finding an object given a known PK:

‘ Artist artist = Cayenne. obj ect For PK(context, Artist.class, 34579);

If aquery is expected to return O or 1 object, Cayenne helper class can be used to find this object. It throws an
exception if more than one object matched the query:

‘Artist artist = (Artist) Cayenne. obj ect For Query(context, new Sel ect Query(Artist.class));

Feel free to explore Cayenne class API for other useful methods.

6.5. ObjectContext Nesting

In al the examples shown so far an ObjectContext would directly connect to a database to select data or
synchronize its state (either via commit or rollback). However another context can be used in all these scenarios
instead of a database. This concept is called ObjectContext "nesting”. Nesting is a parent/child relationship
between two contexts, where child is a nested context and selects or commits its objects via a parent.

Nesting is useful to create isolated object editing areas (child contexts) that need to all be committed to an
intermediate in-memory store (parent context), or rolled back without affecting changes already recorded in the
parent. Think cascading GUI dialogs, or parallel AJAX requests coming to the same session.

In theory Cayenne supports any number of nesting levels, however applications should generally stay with one
or two, as deep hierarchies will most certainly degrade the performance of the deeply nested child contexts. This
is due to the fact that each context in a nesting chain has to update its own objects during most operations.

Cayenne ROP is an extreme case of nesting when a child context islocated in a separate VM and communicates
with its parent via aweb service. ROP is discussed in details in the following chapters. Here we concentrate on
the same-VM nesting.

To create a nested context, use an instance of ServerRuntime, passing it the desired parent:

bj ect Cont ext parent
oj ect Cont ext nested

runtime. get Context();
runti me. get Cont ext ((Dat aChannel) parent);

v.3.1B2 20

Persistent Objects and ObjectContext

From here anested context operatesjust like aregular context (you can perform queries, create and del ete objects,
etc.). The only difference is that commit and rollback operations can either be limited to synchronization with
the parent, or cascade al the way to the database:

/'l nmerges nested context changes into the parent context
nest ed. conmi t ChangesToParent () ;

/'l regular 'conmmitChanges' cascades commit through the chain
/] of parent contexts all the way to the database
nest ed. conmi t Changes();

/'l unrolls all local changes, getting context in a state identical to parent
nest ed. rol | backChangesLocal | y();

/'l regular 'rollbackChanges' cascades rollback through the chain of contexts
/1 all the way to the topnost parent
nest ed. rol | backChanges();

6.6. Generic Persistent Objects

Asdescribed inthe CayenneM odel er chapter, Cayenne supports mapping of completely generic classesto specific
entities. Although for conveniece most applications should stick with entity-specific class mappings, the generic
feature offers some interesting possibilities, such as creating mappings completely on the fly in a running
application, etc.

Generic objects are first class citizens in Cayenne, and all common persistent operations apply to them as well.
There are some pecularities however, described below.

When creating a new generic object, either cast your ObjectContext to DataContext (that provides
"newObject(String)" API), or provide your object with an explicit Objectld:

‘ Dat aObj ect generic = ((DataContext) context).newObject("GenericEntity");

Dat aCbj ect generic = new CayenneDat aCbj ect ();
generic.set oj ectl d(new bj ect I d(" GenericEntity"));
cont ext . regi st er New(hj ect (generic);

SelectQuery for generic object should be created passing entity name String in constructor, instead of a Javaclass:

Sel ect Query query = new Sel ect Query("GenericEntity");

Use DataObject API to access and modify properties of a generic object:

String name = (String) generic.readProperty("name");
generic.witeProperty("name", "New Name");

Thisis how an application can obtain entity name of a generic object:

String entityName = generic.getObjectld().getEntityName();

v.3.1B2 21

Persistent Objects and ObjectContext

6.7. Transactions

Considering how much attention is given to managing transactions in most other ORMs, transactions have been
conspicuously absent from the ObjectContext discussion till now. The reason is that transactions are seamlessin
Cayennein all but afew special cases. ObjectContext is an in-memory container of objects that is disconnected
from the database, except when it needs to run an operation. So it does not care about any surrounding transaction
scope. Sure enough all database operations are transactional, so when an application does a commit, all SQL
execution is wrapped in a database transaction. But this is done behind the scenes and is rarely a concern to the
application code.

Two caseswheretransactions need to betaken into consideration are contai ner-managed and application-managed
transactions.

If you are using an EJB container (or some other JTA environment), you'll likely need to switch Cayenne runtime
into "external transactions mode". Thisis either done in the Modeler (check DataDomain > 'Container-Managed
Transactions' checkbox), or in the code:

runti me. get Dat aDomai n() . set Usi ngExt er nal Transacti ons(true);

In this case Cayenne assumes that JDBC Connections obtained by runtime whenever that might happen are all
coming from a transactional DataSource managed by the container. In this case Cayenne does not attempt to
commit or rollback the connections, leaving it up to the container to do that when appropriate.

In the second scenario, an application might need to define its own transaction scope that spans more than one
Cayenne operation. E.g. two sequential commits that need to be rolled back together in case of failure. This can
be done with an explicit thread-bound transaction that surrounds a set of operations. Application is responsible
for committing or rolling it back:

Transaction tx = runtinme. get Dat aDomai n() . createTransaction();
Transacti on. bi ndThreadTransacti on(tx);

try {
/] commit one or nore contexts
cont ext 1. commi t Changes() ;
cont ext 2. commi t Changes() ;

/1 after changing sonme objects in contextl, commit again
cont ext 1. commi t Chnages() ;

// if no failures, commt
tx.commit();
}
catch (Exception ex) {
tx. set Rol | backOnl y();
}
finally {
Transacti on. bi ndThreadTransacti on(null);

if (tx.getStatus() == Transaction. STATUS MARKED ROLLEDBACK) {

try {
tx. rol I back();

}

v.3.1B2 22

Persistent Objects and ObjectContext

v.3.1B2

catch (Exception rollbackEx) {
}

23

Chapter 7. Expressions

7.1. Expressions Overview

Cayenne provides a simple yet powerful object-based expression language. The most common usese of
expressions are to build qualifiers and orderings of queries that are later converted to SQL by Cayenne and
to evaluate in-memory against specific objects (to access certain values in the object graph or to perform in-
memory object filtering and sorting). Cayenne provides API to build expressionsin the code and a parser to create
expressions from strings.

7.2. Path Expressions

Before discussing how to build expressions, it is important to understand one group of expressions widely used
in Cayenne - path expressions. There are two types of path expressions - object and database, used for navigating
graphs of connected objects or joined DB tables respectively. Object paths are much more commonly used, as
after all Cayenne is supposed to provide a degree of isolation of the object model from the database. However
database paths are helpful in certain situations. General structure of path expressionsis the following:

[db:]segnent[+][.segnment[+]...]

» "db:" isan optional prefix indicating that the following path isa DB path. Otherwise it is an object path.

« "segment” is a name of a property (relationship or attribute in Cayenne terms) in the path. Path must have at
least one segment; segments are separated by dot (".").

e "+" An "OUTER JOIN" path component. Currently "+" only has effect when translated to SQL as OUTER
JOIN. When evaluating expressions in memory, it isignored.

An object path expression represents a chain of property names rooted in a certain (unspecified during expression
creation) object and "navigating” to its related value. E.g. a path expression "artist.name" might be a property
path starting from a Painting object, pointing to the related Artist object, and then to its name attribute. A few
more examples:

« "name" - can be used to navigate (read) the "name" property of a Person (or any other type of object that has
a'""name" property).

« "artist.exhibits.closingDate" - can be used to navigate to a closing date of any of the exhibits of a Painting's
Artist object.

o "artist.exhibitst.closingDate" - same as the previous example, but when trandated into SQL, an OUTER JOIN
will be used for "exhihits".

Similarly a database path expression is a dot-separated path through DB table joins and columns. In Cayenne
joins are mapped as DbRelationships with some symbolic names (the closest concept to DbRelationship name

v.3.1B2 24

Expressions

in the DB world is a named foreign key constraint. But DbRelationship names are usually chosen arbitrarily,
without regard to constraints naming or even constraints presence). A database path therefore might look likethis
- "db:dbrelationshipX.dbrelationshipY .COLUMN_Z". More specific examples:

e "db:NAME" - can be used to navigate to the value of "NAME" column of some unspecified table.

o "db:artist.artistExhibits.exhibit. CLOSING_DATE" - can be used to match a closing date of any of the exhibits
of arelated artist record.

Cayenne supports "aliases' in path Expressions. E.g. the same expression can be written using explicit path or
analias

o "artist.exhibits.closingDate" - full path

« "eclosingDate" - dias"e" isused for "artist.exhibits".

SelectQuery using the second form of the path expression must be made aware of the dias via
" SelectQuery.aliasPathSplits(..)", otherwise an Exception will bethrown. Themain use of aliasesisto allow users
to control how SQL joins are generated if the same path is encountered more than once in any given Expression.
Each alias for any given path would result in a separate join. Without aliases, a single join will be used for a
group of matching paths.

7.3. Creating Expressions from Strings

While in most cases users are likely to rely on API from the following section for expression creation, welll
start by showing String expressions, as thiswill help understanding the semantics. A Cayenne expression can be
represented as a String, which can belater converted to an expression object using Expr essi on. frontri ng
static method. Here is an example:

String expString = "name like 'A% and price < 1000";
Expressi on exp = Expression.fronString(expString);

This particular expression may be used to match Paintings with names that start with "A" and a price less than
$1000. Whilethisexampleis pretty self-explanatory, there are afew pointsworth mentioning. "name" and "price"
here are object paths discussed earlier. As always, paths themselves are not attached to a specific root entity and
can be applied to any entity that has similarly named attributes or relationships. So when we are saying that this
expression "may be used to match Paintings', we are implying that there may be other entities, for which this
expression isvalid. Now the expression details...

Character constants that are not paths or numeric values should be enclosed in single or double quotes. Two of
the expressions below are equivalent:

nane = ' ABC

/1 doubl e quotes are escaped inside Java Strings of course
name = \"ABQ\"

v.3.1B2 25

Expressions

Case sensitivity. Expression operators are all case sensitive and are usually lowercase. Complex words follow
the java camel-case style:

/1l valid
nanme |i kel gnoreCase ' A%

/1 invalid - will throw a parse exception
nanme LI KEI GNORECASE ' A%

Grouping with parenthesis:

value = (price + 250.00) * 3

Path prefixes. Object expressions are unquoted strings, optionally prefixed by "obj:" (usually they are not prefixed
at al actually). Database expressions are always prefixed with "db:". A specia kind of prefix, not discussed yet
is"enum:" that prefixes an enumeration constant:

/'l object path
nanme = ' Sal vador Dal i’

/] sanme object path - a rarely used form
obj : name = ' Sal vador Dal i’

/1 multi-segnent object path
artist.name = 'Sal vador Dali'

/1 db path
db: NAME = ' Sal vador Dal i’

/'l enuneration constant
name = enum org. f 0o. EnunCl ass. VALUEL

Binary conditions are expressions that contain a path on the left, avalue on the right, and some operation between
them, such as equals, like, etc. They can be used as qualifiersin SelectQueries:

nanme |ike 'A%

Named parameters. Expressions can have named parameters (names that start with "$"). Parameterized
expressions allow to create reusable expression templates. Also if an Expression contains a complex object
that doesn't have a simple String representation (e.g. a Date, a DataObject, an Objectld), parameterizing such
expression isthe only way to represent it as String. Here are some exampl es:

Expression tenplate = Expression.fronString("name = $nane");

Map pl = Col |l ections. singl etonMap("nanme", "Salvador Dali");
Expression qualifierl = tenpl ate. expWt hPar anet ers(pl);

Map p2 = Col | ecti ons. si ngl et onMap(" nane”, "Monet");
Expression qualifier2 = tenpl ate. expWt hPar anet er s(p2);

To create a named parameterized expression with a LIKE clause, SQL wildcards must be part of the valuesin
the Map and not the expression string itself:

‘ Expression tenplate = Expression.fronString("name |ike $name");

v.3.1B2 26

Expressions

Map pl = Col |l ections. si ngl etonMap("name", "Sal vador%');
Expression qualifierl = tenpl ate. expWthParaneters(pl);

When matching on arelationship, parameters can be Persistent objects or Objectlds:

Expression tenplate = Expression.fronBtring("artist = $artist");

Artist dali =// asune we fetched this one already
Map pl = Col |l ections.singletonMap("artist", dali);
Expression qualifierl = tenplate. expWthParaneters(pl);

Uninitialized parameterswill be automatically pruned from expressions, so auser can omit some parameterswhen
creating an expression from a parameterized template:

Expression tenplate = Expression.fronString("nanme |ike $name and dateOfBirth > $date");

Map pl = Col |l ections. singl etonMap("name", "Sal vador%');
Expression qualifierl = tenpl ate. expWthParaneters(pl);

/Il qualifierl is nowequals to "nane like 'Salvador% ", the 'dateOBirth' condition was
/'l pruned, as no value was specified for the $date paraneter

Null handling. Handling of Java nulls as operands is no different from normal values. Instead of using specia
conditional operators, like SQL does (ISNULL, ISNOT NULL), "=" and "!=" expressions can be used directly
with null values. It is up to Cayenne to tranglate expressions with nullsto the valid SQL.

Note

A formal definition of all possiblevalid expressionsinaform of JavaCC grammar isprovidedin Appendix
C

7.4. Creating Expressions with API

Creating expressions from Strings is a powerful and dynamic approach, however a safer aternative is to use
Java API. It provides some degree of compile-time checking of expressions validity. The API is cenetred
around ExpressionFactory class, and the Expression class. ExpressionFactory contains a number of rather self-
explanatory factory methods. We won't be going over al of them in detail, but will rather show a few general
examples and some gotchas.

The following code recreates the expression from the previous chapter, but now using expression API:

/'l String expression: nane like 'A% and price < 1000

Expressi on el = ExpressionFactory.|ikeExp(Painting. NAVE_PROPERTY, "A%);
Expressi on e2 = ExpressionFactory. | essExp(Pai nti ng. PRI CE_PROPERTY, 1000);
Expression final Exp = el. andExp(e2);

This is more verbose than creating it from String, but it is also more resilient to the entity properties renaming
and precludes semantic errors in the expression String.

v.3.1B2 27

Expressions

Note

The last line in the example above shows how to create a new expression by "chaining" 2 other
epxressions. A common error when chaining expressionsisto assume that "andExp" and "orExp" append
another expression to the current expression. In fact a new expression is created. |.e. Expression API
treats existing expressions as immutable.

As discussed earlier, Cayenne supports aliases in path Expressions, allowing to control how SQL joins are
generated if the same path is encountered more than once in the same Expression. Two ExpressionFactory
methods allow to implicitly generate aliases to "split" match pathsinto individual joins if needed:

Expression matchAl | Exp(String path, Collection values)
Expression matchAl | Exp(String path, Object... val ues)

"Path" argument to both of these methods can use a split character (a pipe symbol '|') instead of dot to indicate
that relationship following a path should be split into a separate set of joins, one per collection value. There can
only be one split at most in any given path. Split must always precede arelationship. E.g. "|exhibits.paintings”,
"exhibits|paintings’, etc. Internally Cayenne would generate distinct aliases for each of the split expressions,
forcing separate joins.

7.5. Evaluating Expressions in Memory

When used in a query, an expression is converted to SQL WHERE clause (or ORDER BY clause) by Cayenne
during query execution. Thus the actual evaluation against the data is done by the database engine. However the
same expressions can also be used for accessing object properties, calculating values, in-memory filtering.

Checking whether an object satisfies an expression:

Expressi on e = ExpressionFactory.i nExp(User. NAVE_PROPERTY, "John", "Bob");
User user = ...
if(e.match(user)) {

}

Reading property value:

Expression e = Expression.fronString(User. NAVE_PROPERTY) ;
String name = e.eval uate(user);

Filtering alist of objects:

Expressi on e = ExpressionFactory. i nExp(User. NAVE_PROPERTY, "John", "Bob");
Li st<User> unfiltered = ...
List<User> filtered = e.filterObjects(unfiltered);

Note

Current limitation of in-memory expressionsis that no collections are permitted in the property path.

v.3.1B2 28

Chapter 8. Orderings

An Ordering object defines how a list of objects should be ordered. Orderings are essentially path expressions
combined with a sorting strategy. Creating an Ordering:

Ordering o = new O dering(Pai nti ng. NAVE_PROPERTY, Sort O der. ASENDI NG ;

Like expressions, orderings are trandated into SQL as parts of queries (and the sorting occurs in the database).
Also like expressions, orderings can be used in memory, naturally - to sort objects:
O dering o = new O dering(Pai nti ng. NAVE_PROPERTY, Sort O der. ASCENDI NG _| NSENSI TI VE) ;

List<Painting> list = ...
o.orderList(list);

Note that unlike filtering with Expressions, ordering is performed in-place. This list object is reordered and no
new list is created.

v.3.1B2 29

Chapter 9. Queries

Queries are Java objects used by the application to communicate with the database. Cayenne knows how to
tranglate queriesinto SQL statements appropriate for a particular database engine. Most often queries are used to
find objects matching certain criteria, but there are other types of queriestoo. E.g. those alowing to run native
SQL, call DB stored procedures, etc. When committing objects, Cayenne itself creates special queries to insert/
update/del ete rows in the dabase.

There is anumber of built-in queriesin Cayenne, described later in this chapter. Users can also define their own
query types to abstract certain DB interactions that for whatever reason can not be adequately described by the
built-in set.

Queries can be roughly categorized as "object" and "native". Object queries (most notably SelectQuery and
EJBQLQuery) are built with abstractions originating in the object model (the "object" side in the "object-
relational” divide). E.g. SelectQuery is assembled from a Java class of the objects to fetch, aqualifier expression,
orderings, etc. - all of this expressed in terms of the object model.

Native queries describe a desired DB operation as SQL code (SQL Template query) or a reference to a stored
procedure (ProcedureQuery), etc. The results of native queries are usually presented as Lists of Maps, with
each map representing a row in the DB. They can potentialy be converted to abjects, however often it takes a
considerable effort to do so. Native queries are also less (if at all) portable across databases than object queries.

9.1. SelectQuery

SelectQuery isthe most commonly used query in user applications. It returnsalist of persistent objectsof acertain
type specified in the query:

Sel ect Query query = new Sel ect Query(Artist.class);
Li st<Artist> objects = context. performuery(query);

Thisreturned all rowsinthe"ARTIST" table. If thelogswereturned on, you might seethefollowing SQL printed:

I NFO SELECT t 0. DATE_OF BIRTH, t0.NAME, tO0.1D FROM ARTI ST t0
INFO === returned 5 row. - took 5 ns.

This SQL was generated by Cayenne from the SelectQuery above. SelectQuery can use a qualifier to select
only the data that you care about. Qualifier is simply an Expression (Expressions where discussed in the
previous chapter). If you only want artists whose name begins with 'Pablo’, you might use the following qualifier
expression:

Sel ect Query query = new Sel ect Query(Artist.class,
Expressi onFactory. | i keExp(Artist. NAVE_PROPERTY, "Pabl o%));
Li st<Artist> objects = context.perfornQuery(query);

The SQL will look different thistime:

‘INFQ SELECT t0. DATE_OF_BIRTH, t0.NAME, t0.|D FROM ARTI ST t0 WHERE t 0. NAME LIKE ?

v.3.1B2 30

Queries

[bi nd: 1->NAME:' Pabl 0%]
INFO === returned 1 row. - took 6 ns.

9.2. EJBQLQuery

9.3. SQLTemplateQuery
9.4. ProcedureQuery
9.5. NamedQuery

9.6. Custom Queries

v.3.1B2

31

Chapter 10. Lifecycle Events

10.1. Types of Lifecycle Events

10.2. Lifecycle Callbacks and Listeners
10.2.1. Callback and Listener Methods Semantics
10.2.2. Registering Callbacks and Listeners

10.2.3. Combining Listeners with DataChannelFilters

v.3.1B2

32

Chapter 11. Performance Tuning

11.1. Prefetching

Prefetching is a technique that alows to bring back in one query not only the queried objects, but also objects
related to them. In other wordsit is a controlled eager relationship resolving mechanism. Prefetching is discussed
in the "Performance Tuning" chapter, as it is a powerful performance optimization method. Another common
application of prefetching isfor refreshing stale object relationships.

Prefetching example:

Sel ect Query query = new Sel ect Query(Artist.class);

/1 this instructs Cayenne to prefetch one of Artist's relationships
query. addPref et ch("pai ntings");

/'l query is expecuted as usual, but the resulting Artists will have
/1 their paintings "inflated"
List<Artist> artists = context. performuery(query);

All types of relationships can be preftetched - to-one, to-many, flattened.
A prefetch can span multiple relationships:

‘ query. addPr ef et ch(" pai nti ngs. gal | ery");

A gquery can have multiple prefetches:

query. addPref et ch(" pai nti ngs");
query. addPref etch("pai ntings.gallery");

If aquery isfetching DataRows, all "digoint" prefetches are ignored, only "joint" prefetches are executed (see
prefetching semantics discussion below for what digjoint and joint prefetches mean).

11.1.1. Prefetching Semantics

Prefetching semantics defines a strategy to prefetch relationships. Depending on it, Cayenne would generate
different types of queries. The end result is the same - query root objects with related objects fully resolved.
However semantics can affect preformance, in some cases significantly. There are 3 types of prefetch semantics,
all defined as constants in org.apache.cayenne.query.PrefetchTreeNode:

Pref et chTr eeNode. JO NT_PREFETCH_SEMANTI CS

Pref et chTr eeNode. DI SIO NT_PREFETCH_SEMANTI CS
Pref et chTr eeNode. DI SJO NT_BY_| D_PREFETCH_SEVMANTI CS

Each query has a default prefetch semantics, so generally users do not have to worry about changing it, except
when performance is a concern, or afew special cases when a default sematics can't produce the correct result.
SelectQuery uses DISJIOINT_PREFETCH_SEMANTICS by default. Semantics can be changed as follows:

‘ Sel ect Query query = new Sel ect Query(Artist.class);

v.3.1B2 33

Performance Tuning

query. addPr ef et ch(" pai ntings").set Semanti cs(
Pref et chTr eeNode. JO NT_PREFETCH_SEMANTI CS) ;

There's no limitation on mixing different types of semantics in the same SelectQuery. Multiple prefetches each
can have its own semantics.

SQL Template and ProcedureQuery are both using JOINT_PREFETCH_SEMANTICS and it can not be changed
due to the nature of these two queries.

11.1.2. Disjoint Prefetching Semantics

This semantics (only applicable to SelectQuery) results in Cayenne generatiing one SQL statement for the main
objects, and a separate statement for each prefetch path (hence "digoint” - related objects are not fetched with
the main query). Each additional SQL statement uses a qualifier of the main query plus a set of joins traversing
the preftech path between the main and related entity.

This strategy has an advantage of efficient VM memory use, and faster overall result processing by Cayenne,
but it requires (1+N) SQL statements to be executed, where N is the number of prefetched relationships.

11.1.3. Disjoint-by-ID Prefetching Semantics

Thisis avariation of disjoint prefetch where related objects are matched against a set of 1Ds derived from the
fetched main objects (or intermediate objects in a multi-step prefetch). Cayenne limits the size of the generated
WHERE clause, asmost DBs can't parse arbitrary large SQL. So prefetch queries are broken into smaller queries.
The size of is controlled by the DI property Constants.SERVER_MAX ID_QUALIFIER _SIZE PROPERTY
(the default number of conditions in the generated WHERE clause is 10000). Cayenne will generate (1 + N *
M) SQL statements for each query using digoint-by-I1D prefetches, where N is the number of relationships to
prefetch, and M is the number of queries for a given prefetch that is dependent on the number of objects in the
result (ideally M = 1).

The advantage of this type of prefetch is that matching database rows by ID may be much faster than matching
the qualifier of the original query. Moreover thisisthe only type of prefetch that can handle SelectQueries with
fetch limit. Both joint and regular digoint prefetches may produce invalid results or generate inefficient fetch-
the-entire table SQL when fetch limit isin effect.

The disadvantage is that query SQL can get unwieldy for large result sets, as each object will have to have its
own condition in the WHERE clause of the generated SQL.

11.1.4. Joint Prefetching Semantics

Joint senantics results in a single SQL statement for root objects and any number of jointly prefetched paths.
Cayenne processes in memory a cartesian product of the entities involved, converting it to an object tree. It uses
OUTER joinsto connect prefetched entities.

Joint isthe most efficient prefetch type of the three asfar as generated SQL goes. There'salwaysjust 1 SQL query
generated. Itsdownsides are the potentially increased amount of datathat needsto get acrossthe network between
the application server and the database, and more data processing that needs to be done on the Cayenne side.

v.3.1B2 34

Performance Tuning

11.2. Data Rows
11.3. Iterated Queries
11.4. Paginated Queries

11.5. Caching and Fresh Data

11.5.1. Object Caching

11.5.2. Query Result Caching

11.6. Turning off Synchronization of ObjectContexts

v.3.1B2

35

Chapter 12. Customizing Cayenne
Runtime

12.1. Dependency Injection Container

Cayenne runtime is built around a small powerful dependency injection (DI) container. Just like other popular DI
technologies, such as Spring or Guice, Cayenne DI container manages sets of interdependent objects and allows
users to configure them. These objects are regular Java objects. We are calling them "services' in this document
to distinguish from all other objects that are not configured in the container and are not managed. DI container
is responsible for service instantiation, injecting correct dependencies, maintaining service instances scope, and
dispatching scope events to services.

The services are configured in special Java classes called "modules'. Each module defines binding of service
interfaces to implementation instances, implementation types or providers of implementation instances. There
areno XML configuration files, and all the bindings are type-safe. The container supportsinjection into instance
variables and constructor parameters based on the @ nj ect annotation. This mechanism isvery closeto Google
Guice.

Thediscussion later in thischapter demonstrates astandalone DI container. But keep in mind that Cayenne already
has a built-in Injector, and a set of default modules. A Cayenne user would normally only use the API below to
write custom extension modules that will be loaded in that existing container when creating ServerRuntime. See
"Starting and Stopping ServerRuntime" chapter for an example of passing an extension module to Cayenne.

Cayenne DI probably has ~80% of the features expected in a DI container and has no dependency on the rest
of Cayenne, so in theory can be used as an application-wide DI engine. But it's primary purposeis still to serve
Cayenne. Hence there are no plans to expand it beyond Cayenne needs. It is an ideal "embedded" DI that does
not interfere with Spring, Guice or any other such framework present elsewhere in the application.

12.1.1. DI Bindings API

To have aworking DI container, we need three things: service interfaces and classes, a module that describes
servicebindings, acontainer that |oadsthe module, and resolvesthe depedencies. Let'sstart with serviceinterfaces
and classes:

public interface Servicel {
public String getString();
}

public interface Service2 {
public int getlnt();

}

A service implementation using instance variable injection:

v.3.1B2 36

Customizing Cayenne Runtime

public class Servicellnpl inplenents Servicel {
@ nj ect
private Service2 service2;

public String getString() {
return service2.getlnt() + "_Servicellnpl";

}

Same thing, but using constructor injection:

public class Servicellnpl inplenments Servicel {

private Service2 service2;

public Servicellnmpl (@nject Service2 service2) {
this.service2 = service2;

}

public String getString() {
return service2.getlnt() + "_Servicellnpl";

}

public class Service2l nmpl inplenments Service2 {
private int i;

public int getlnt() {
return i++;

}

Now let's create a module implementing or g. apache. cayenne. tutori al . di . Modul e interface that
will contain DI configuration. A module binds service objects to keys that are reference. Binder provided by
container implements fluent API to connect the key to implementation, and to configure various binding options
(the options, such as scope, are demonstrated later in this chapter). The simplest form of a key is a Java Class
object representing service interface. Here isamodule that binds Servicel and Service2 to corresponding default
implementations:

public class Mdul el i npl ements Mdul e {

public void configure(Binder binder) {
bi nder. bi nd(Servi cel. cl ass).to(Servicell npl.class);
bi nder. bi nd(Servi ce2. cl ass).to(Service2l npl.class);

Once we have at least one module, we can create a DI container. or g. apache. cayenne. di . I nj ect or
is the container classin Cayenne:

I njector injector = DI Bootstrap.createlnjector(new Mdul el());

Now that we have created the container, we can obtain services from it and call their methods:

Servicel s1 = injector.getlnstance(Servicel.class);
for (int i =0; i <5; i++) {

v.3.1B2 37

Customizing Cayenne Runtime

Systemout.println("S1 String: " + sl.getString());

This outputs the following lines, demonstrating that s1 was Servicellmpl and Service2 injected into it was
Service2lmpl:

0_Servi cell npl
1_Servicell npl
2_Servi cell npl
3_Servi cell npl
4_Servi cell npl

There are more flavors of bindings:

/1 binding to instance - allowing user to create and configure instance
/1l inside the nodul e class
bi nder. bi nd(Servi ce2. cl ass).tol nstance(new Service2l mpl ());

/1 binding to provider - delegating instance creation to a special
/'l provider class
bi nder. bi nd(Servi cel. cl ass).toProvi der (Servi celProvider.class);

/1 binding to provider instance
bi nder. bi nd(Servi cel. cl ass).toProvi derlnstance(new ServicelProvider());

/1 multiple bindings of the sane type using Key

/1 injection can reference the key nane in annotation:

Il @nject("il")

/'l private Service2 servicez;

bi nder. bi nd(Key. get (Servi ce2.class, "il1l")).to(Service2l npl.class);
bi nder. bi nd(Key. get (Servi ce2.class, "i2")).to(Service2lnpl.class);

Another types of confiuguration that can be bound in the container are lists and maps. They will be discussed
in the following chapters.

12.1.2. Service Lifecycle

An important feature of the Cayenne DI container is instance scope. The default scope (implicitly used in all
examples above) is"singleton”, meaning that a binding would result in creation of only one service instance, that
will berepeatedly returned from | nj ect or . get | nst ance(. .), aswell asinjected into classes that declare
it as adependency.

Singleton scope dispatches a " BeforeScopeEnd” event to interested services. This event occurs before the scope
isshutdown, i.e. when | nj ect or. shut down() iscaled. Note that the built-in Cayenne injector is shutdown
behind the scenes when Ser ver Runt i ne. shut down() isinvoked. Services may register as listeners for
this event by annotating a no-argument method with @Bef or eScopeEnd annotation. Such method should be
implemented if a service needs to clean up some resources, stop threads, etc.

Another useful scope is "no scope”, meaning that every time a container is asked to provide a service instance
for agiven key, anew instance will be created and returned:

bi nder. bi nd(Servi ce2. cl ass).to(Service2l npl.class).w thout Scope();

v.3.1B2 38

Customizing Cayenne Runtime

Users can aso create their own scopes, e.g. a web application request scope or a session scope. Most often
than not custom scopes can be created as instances of or g. apache. cayenne. di . spi . Def aul t Scope
with startup and shutdown managed by the application (e.g. singleton scope is a DefaultScope managed by the
Injector) .

12.1.3. Overriding Services

Cayenne DI alowsto override services already definied in the current module, or more commonly - some other
module in the the same container. Actually there's no special API to override aservice, you'd just bind the service
key again with anew implementation or provider. Thelast binding for akey takes precedence. This meansthat the
order of modulesisimportant when configuring a container. The built-in Cayenne injector ensures that Cayenne
standard modules are loaded first, followed by optional user extension modules. This way the application can
override the standard services in Cayenne.

12.2. Customization Strategies

The previous section discussed how Cayenne DI works in general terms. Since Cayenne users will mostly be
dealing with an existing Injector provided by ServerRuntime, it isimportant to understand how to build custom
extensions to a preconfigured container. As shown in "Starting and Stopping ServerRuntime" chapter, custom
extensions are done by writing an aplication DI module (or multiple modules) that configures service overrides.
This section shows all the configuration possibilities in detail, including changing properties of the existing
services, contributing servicesto standard service lists and maps, and overriding serviceimplementations. All the
code examples later in this section are assumed to be placed in an application module "configure" method:

public class M/Extensi onsMdul e i npl ements Mdul e {
public void configure(Binder binder) {
/'l custom zations go here...
}
}

Modul e extensi ons = new MyExt ensi onsMdul e();
ServerRuntime runtime =
new Server Runti me("conl exanpl e/ cayenne- nydomai n. xm ", extensions);

12.2.1. Changing Properties of Existing Services

Many built-in Cayenne services change their behavior based on a value of some environment property. A user
may change Cayenne behavior without even knowing which services are responsible for it, but setting a specific
value of aknown property. Supported property names are listed in "Appendix A".

There are two ways to set service properties. The most obvious one is to pass it to the VM with -D flag on
startup. E.g.

java -Dorg. apache. cayenne. sync_contexts=fal se ...

A second one is to contribute a property to
or g. apache. cayenne. confi gurati on. Def aul t Runti meProperties. properti es map (see

v.3.1B2 39

Customizing Cayenne Runtime

the next section on how to do that). This map contains the default property values and can accept application-
specific values, overrding the defaults.

Note that if a property value is a name of a Java class, when this Java class is instantiated by Cayenne, the
container performsinjection of instance variables. So even the dynamically specified Java classes can use @I nject
annotation to get a hold of other Cayenne services.

If the same property is specified both in the command line and in the properties map, the command-line value takes
precedence. The map value will be ignored. This way Cayenne runtime can be reconfigured during deployment.

12.2.2. Contributing to Service Collections

Cayenne can be extended by adding custom objects to named maps or lists bound in DI. We
are caling these listmaps "service collections'. A service collection alows things like appending a
custom strategy to a list of built-in strategies. E.g. an application that needs to install a custom
DbAdapter for some database type may contribute an instance of custom DbAdapterDetector to
a org. apache. cayenne. configurati on. server. Def aul t DbAdapt er Fact ory. detectors
list:

public class M/DbAdapterDetector inplements DbAdapterDetector {

publ i c DbAdapter createAdapter(Dat abaseMetaData nd) throws SQLException {
/1l check if we support this database and retun custom adapter

}

// since build-in list for this key is a singleton, repeated
// calls to 'bindList' will return the same instance
bi nder . bi ndLi st (Def aul t DbAdapt er Fact ory. DETECTORS_LI ST)

. add(MyDbAdapt er Det ect or . cl ass) ;

Maps are customized using asimilar "bi ndMap" method.

The names of built-in collections are listed in "Appendix B".

12.2.3. Alternative Service Implementations

As mentioned above, custom modules are loaded by ServerRuntime after the built-in modules. So it is easy to
redefine a built-in service in Cayenne by rebinding desired implementations or providers. To do that, first we
need to know what those services to redefine are. While we describe some of them in the following sections,
the best way to get a full list is to check the source code of the Cayenne version you are using and namely
lookinor g. apache. cayenne. confi gurati on. server. Server Modul e - themain built-in module
in Cayenne.

Now an example of overriding Quer yCache service. The default implementation of this service is provided
by MapQuer yCachePr ovi der . But if we want to use EhCacheQuer yCache (a Cayenne wrapper for the
EhCache framework), we can define it like this:

bi nder. bi nd(QueryCache. cl ass) .t o(EhCacheQueryCache. cl ass);

v.3.1B2 40

Customizing Cayenne Runtime

12.3. Noteworthy Built-in Services

12.3.1. JdbcEventLogger

or g. apache. cayenne. | og. JdbcEvent Logger is the service that defines logging APl for
Cayenne internals. It provides facilities for logging queries, commits, transactions, etc. The
default implementation is or g. apache. cayenne. | og. CoomonsJdbcEvent Logger that performs
logging via commons-logging library. Cayenne library includes another potentially useful logger
- org. apache. cayenne. | og. For mat t edCommonsJdbcEvent Logger that produces formatted
multiline SQL output that can be easier to read.

12.3.2. DataSourceFactory
12.3.3. DataChannelFilter
12.3.4. QueryCache

12.3.5. ExtendedTypes

v.3.1B2 41

v.3.1B2

Part Ill. Cayenne Framework
- Remote Object Persistence

42

Chapter 13. Introduction to ROP

13.1. What is ROP

13.2. Main Features

v.3.1B2

43

Chapter 14. ROP Setup

14.1. System Requirements

14.2. Jar Files and Dependencies

v.3.1B2

Chapter 15. Implementing ROP Server

v.3.1B2

45

Chapter 16. Implementing ROP Client

v.3.1B2

46

Chapter 17. ROP Deployment

17.1. Deploying ROP Server

Note

Recent versions of Tomcat and Jetty containers (e.g. Tomcat 6 and 7, Jetty 8) contain code addressing a
security concern related to "session fixation problem" by resetting the existing session ID of any request
that requires BASIC authentcaition. If ROP service is protected with declarative security (see the the
ROP tutorial and the following chapters on security), this feature prevents the ROP client from attaching
to its session, resulting in MissingSessionExceptions. To solve that you will need to either switch to an
alternative security mechanism, or disable "session fixation problem" protections of the container. E.g.
the later can be achieved in Tomcat 7 by adding the following context.xml file to the webapp's META-
INF/ directory:
<Cont ext >
<Val ve cl assName="or g. apache. cat al i na. aut hent i cat or . Basi cAut hent i cat or "

changeSessi onl dOnAut henti cati on="fal se" />
</ Cont ext >

(The <Valve> tag can a so be placed within the <Context> in any other locations used by Tomcat to load
context configurations)

17.2. Deploying ROP Client

17.3. Security

v.3.1B2

Chapter 18. Current Limitations

v.3.1B2

48

Appendix A. Configuration Properties

Note that the property below are
or g. apache. cayenne. confi gurati on. Const ant s interface.

names

defined

as

constants in

Table A.1. Configuration Properties Recognized by Server Runtime and/or ClientRuntime

optionally - node name are specified, the setting overrides DataSourceinfo

v.3.1B2

Property Possible Default Value
Values

cayenne. j dbc. driver[. domai n_nane. node_nane] - none, project

definesa JDBC driver classto use when creating a DataSource. If domain DataNode

name and optionally - node name are specified, the setting overrides configuration is

DataSource info just for this domain/node. Otherwise the override is used

applied to al domains/nodes in the system.

cayenne. j dbc. url [. domai n_nane. node_nane] - defines a none, project

DB URL to use when creating a DataSource. If domain name and DataNode

optionally - node name are specified, the setting overrides DataSourceinfo configuration is

just for thisdomain/node. Otherwisethe overrideisapplied to all domains/ used

nodes in the system.

cayenne. j dbc. user nanme[. domai n_nane. node_naneg] - none, project

defines a DB user name to use when creating a DataSource. If domain DataNode

name and optionally - node name are specified, the setting overrides configuration is

DataSource info just for this domain/node. Otherwise the override is used

applied to al domainsg/nodes in the system.

cayenne. j dbc. passwor d[. donmai n_namne. node_nane] - none, project

definesa DB password to use when creating aDataSource. If domain name DataNode

and optionally - node name are specified, the setting overrides DataSource configuration is

info just for this domain/node. Otherwise the override is applied to all used

domains/nodesin the system

cayenne. j dbc. m n_connecti ons[. dormai n_nane. node_nafre] none, project

- defines the DB connection pool minimal size. If domain name and DataNode

optionally - node name are specified, the setting overrides DataSourceinfo configuration is

just for thisdomain/node. Otherwisethe overrideisappliedto all domains/ used

nodes in the system

cayenne. j dbc. max_connecti ons[. domai n_nane. node_nafe] none, project

- defines the DB connection pool maximum size. If domain name and DataNode

configuration is
used

49

Configuration Properties

Property

Possible
Values

Default Value

just for thisdomain/node. Otherwisethe overrideisappliedto all domaing/
nodes in the system

cayenne. querycache. si ze - An integer defining the maximum
number of entries in the query cache. Note that not all QueryCache
providers may respect this property. MapQueryCache uses it, but the rest
would use aternative configuration methods.

any positive
int value

2000

cayenne. server. cont exts_sync_str at egy - defineswhether
peer ObjectContexts should receive snapshot events after commits
from other contexts. If true (default), the contexts would automatically
synchronize their state with peers.

true, false

true

cayenne. server . obj ect _retai n_strat egy - defines fetched
objects retain strategy for ObjectContexts. When weak or soft strategy is
used, objects retained by ObjectContext that have no local changes can
potetially get garbage collected when VM feels like doing it.

weak,
hard

soft,

weak

cayenne. server.max_id qualifier_size - defines a
maximum number of 1D qualifiersin the WHERE clause of queries that
are generated for paginated queries and for DISJOINT_BY_ID prefetch
processing. Thisisneeded to avoid hitting WHERE clause size limitations

and memory usage efficiency.

any positive
int

10000

cayenne. rop. servi ce_url -definesthe URL of the ROP server

cayenne. r op. servi ce_user nane - defines the user name for an
ROP client to login to an ROP server.

cayenne. r op. servi ce_passwor d - defines the password for an
ROP client to login to an ROP server.

cayenne. r op. shared_sessi on_nane- defines the name of the
shared session that an ROP client wants to join on an ROP server. If
omitted, a dedicated session is created.

cayenne. r op. servi ce. ti neout - avauein milliseconds for the
ROP client-server connection read operation timeout

any positive
long value

cayenne. rop. channel _events - defines whether client-side
DataChannel should dispatch eventsto child ObjectContexts. If set to true,

v.3.1B2

true, false

fase

50

Configuration Properties

Property

Possible
Values

Default Value

ObjectContextswill receive commit events and merge changes committed
by peer contexts that passed through the common client DataChannel.

cayenne. r op. cont ext _change_event s- defineswhether object
property changes in the client context result in firing events. Client Ul
components can listen to these events and update the Ul. Disabled by
default.

true, false

fase

cayenne. rop.context |ifecycle events - defines whether
object commit and rollback operationsin the client context result in firing
events. Client Ul components can listen to these events and update the UI.
Disabled by default.

truefalse

fase

cayenne. server.rop_event _bri dge_factory - defines the
name of the org.apache.cayenne.event.EventBridgeFactory that is passed
from the ROP server to the client. |.e. server DI would provide a name of
the factory, passing this name to the client viathe wire. The client would
instantiate it to receive events from the server. Note that this property is
stored in "cayenne.server.rop_event_bridge properties’ map, not in the
main "cayenne.properties’.

v.3.1B2

51

Appendix B. Service Collections

Note that the collection keys below are defined as constants in
or g. apache. cayenne. confi gur ati on. Const ant s interface.

Table B.1. Service Collection Keys Present in Server Runtime and/or ClientRuntime

cayenne. properti es - Map<String,String> of properties used by built-in Cayenne services. The keysin
this map are the property names from the table in Appendix A. Separate copies of this map exist on the server
and ROP client.

cayenne. server. adapt er _det ect ors - List<DbAdapterDetector> that contains objects that can
discover the type of current database and install the correct DbAdapter in runtime.

cayenne. server. domai n_filters - ListxDataChannelFilter> storing DataDomain filters.

cayenne. server. proj ect | ocati ons - List<String> storing locations of the one of more project
configuration files.

cayenne. server.default _types - List<ExtendedType> storing default adapter-agnostic
ExtendedTypes. Default ExtendedTypes can be overridden / extended by DB-specific DbAdapters as well as
by user-provided types configured in another colltecion (see "cayenne.server.user_types").

cayenne. server . user _types - List<ExtendedType> storing a user-provided ExtendedTypes. This
collection will be merged into afull list of ExtendedTypes and would override any ExtendedTypes defined in
adefault list, or by a DbAdapter.

cayenne. server.type_factories - List<ExtendedTypeFactory> storing default and user-provided
ExtendedTypeFactories. ExtendedTypeFactory allows to define ExtendedTypes dynamically for the whole
group of Java classes. E.g. Cayenne supplies afactory to map al Enums regardiess of their type.

cayenne. server.rop_event _bridge properties - Map<String, String> storing event bridge
properties passed to the ROP client on bootstrap. This meansthat the map is configured by server DI, and passed
to the client via the wire. The properties in this map are specific to EventBridgeFactory implementation (e.g
JMS or XMPP connection prameters). One common property is "cayenne.server.rop_event_bridge factory"
that defines the type of the factory.

v.3.1B2 52

Appendix C. Expressions BNF

TOKENS

<DEFAULT> SKIP : {
["\t

["\n"

["\r"

}

<DEFAULT> TOKEN : {

<NULL: "null"™ | "NULL">

| <TRUE: "true" | "TRUE">

| <FALSE: "false" | "FALSE">
}

<DEFAULT> TOKEN : {
<PROPERTY_PATH: <I DENTI FI ER> ("." <I DENTI FI ER>)*>

}

<DEFAULT> TOKEN : {

<IDENTI FI ER. <LETTER> (<LETTER> | <DIGA T>)* (["+"])?>
| <#LETTER ["_","a"-"z","A"-"Z"]>

| <4DIGT: ["0"-"9"]>

}

[**

* Quoted Strings, whose object value is stored in the token manager's

* "literal Value" field. Both single and double qoutes are all owed
*| <DEFAULT> MORE : {

"\'" : WthinSingl eQuoteLiteral

| "\"" : WthinDoubl eQuot eLiteral

}

<Wt hi nSi ngl eQuot eLi teral > MORE : {

<ESC: "\\" (["nt, eyttt bttt e e (ot -"3"1)? ["0"-"7"] (["0"-"T7"])?)> |
| o<~V Wl

}

<Wt hi nSi ngl eQuot eLi teral > TOKEN : {
<SI NGLE_QUOTED _STRING "\'"> : DEFAULT
}

<W t hi nDoubl eQuot eLi teral > MORE : {
<STRING_ESC: <ESC>> : {

R SARERA S L

}

<W t hi nDoubl eQuot eLi teral > TOKEN : {
<DOUBLE_QUOTED_STRING "\""> : DEFAULT
}

/**

* Integer or real Numeric literal, whose object value is stored in the token manager's

* "literal Val ue" field.

*| <DEFAULT> TOKEN : {

<INT_LITERAL: ("O" (["O"-"7"])* | ["1"-"9"] (["O0"-"9"])* | "O" ["x","X"'] (["O"-"9","a"-"f" "A"-"F'])+)
(e, e, tht e) ?> 0 |

v.3.1B2

Expressions BNF

| <FLOAT_LI TERAL: <DEC FLT> (<EXPONENT>)? (<FLT_SUFF>)? | <DEC DI G TS> <EXPONENT> (<FLT_SUFF>)?
| <DEC DI G TS> <FLT_SUFF>> : {

| <#DEC_FLT: (["0"-"9"])+ "." (["0"-"9"])*
| <#DEC DIGTS: (["0"-"9"])+>

| <#EXPONENT: ["e","E"] (["+","-"1)? (["0"-"9"])+>
| <#FLT_SUFF: ["d","D',"f","F"',"b","B"]>
}

L (0n-9"]) >

NON- TERM NALS

expressi on 1= or Condi ti on <EOF>
or Condi ti on 1= andCondition ("or" andCondition)*
andCondi ti on 1= not Condition ("and" notCondition)*
not Condi ti on 1= ("not" | "!'") sinpleCondition

| si mpl eCondi ti on
si nmpl eCondi ti on 1= <TRUE>

| <FALSE>

| scal ar Condi ti onExpr essi on
(sinmpl eNot Condi tion

("=" "==") scalarExpression

("!="] "<>") scal arExpression

"<=" scal ar Expressi on

"<" scal arExpression | ">" scal ar Expression

"like" scal ar Expressi on
"li kel gnoreCase" scal ar Expressi on
"in" (namedParaneter | "(" scal arCommaList ")")

|
|
|
|
| ">=" scal ar Expressi on
|
|
|
| "between" scal ar Expression "and" scal ar Expressi on

)?
si mpl eNot Condi ti on 1= ("not" | "')
("like" scal ar Expressi on
| "likelgnoreCase" scal ar Expressi on
| "in" (nanedParaneter | "(" scal ar ConmaList ")")
| "between" scal ar Expression "and" scal ar Expressi on
)
scal ar Commali st 1= (scal ar Const Expression ("," scal ar Const Expression)*)
scal ar Condi ti onExpr essi on 1= scal ar Nurer i cExpr essi on

| <SI NGLE_QUOTED_STRI NG>
| <DOUBLE_QUOTED_STRI NG>

| <NULL>
scal ar Expr essi on 1= scal ar Condi ti onExpr essi on
| <TRUE>
| <FALSE>
scal ar Const Expr essi on 1= <SI NGLE_QUOTED_STRI NG

| <DOUBLE_QUOTED_STRI NG>
nanmedPar anet er

<I NT_LI TERAL>
<FLOAT_LI TERAL>

<TRUE>
| <FALSE>
scal ar Nurer i cExpr essi on 1= mul ti pl ySubt ract Exp
("+" multiplySubtractExp | "-" multiplySubtractExp)*
mul ti pl ySubt ract Exp 1= numericTerm ("*" numericTerm| "/" numericTerm)*
nunmericTerm 1= ("+")? numericPrimry
| "-" numericPrimry
nuneri cPrimary 1= "(" orCondition ")"

| pat hExpr essi on
| nanmedPar anet er
| <I NT_LI TERAL>
| <FLOAT_LI TERAL>
namedPar anet er 1= "$" <PROPERTY_PATH>
pat hExpr essi on 1= (<PROPERTY_PATH>
| "obj:" <PROPERTY_PATH>

v.3.1B2

Expressions BNF

v.3.1B2

"db: " <PROPERTY_PATH>

"enum "

<PROPERTY_PATH>)

55

	Cayenne Guide
	Table of Contents
	Part I. Object Relational Mapping with Cayenne
	Chapter 1. Setup
	1.1. System Requirements
	1.2. Running CayenneModeler

	Chapter 2. Cayenne Mapping Structure
	2.1. Cayenne Project
	2.2. DataMap
	2.3. DataNode
	2.4. DbEntity
	2.5. ObjEntity
	2.5.1. Mapping ObjAttributes to Custom Classes

	2.6. Embeddable
	2.7. Procedure
	2.8. Query
	2.9. Listeners and Callbacks

	Chapter 3. CayenneModeler Application
	3.1. Working with Mapping Projects
	3.2. Reverse Engineering Database
	3.3. Generating Database Schema
	3.4. Migrations
	3.5. Generating Java Classes
	3.6. Modeling Inheritance
	3.7. Modeling Generic Persistent Classes
	3.8. Modeling Primary Key Generation Strategy

	Part II. Cayenne Framework
	Chapter 4. Including Cayenne in a Project
	4.1. Jar Files and Dependencies
	4.2. Maven Projects
	4.2.1. cgen
	4.2.2. cdbgen
	4.2.3. cdbimport

	4.3. Ant Projects
	4.3.1. cgen
	4.3.2. cdbgen
	4.3.3. cdbimport
	4.3.4. cdataport

	Chapter 5. Starting Cayenne
	5.1. Starting and Stopping ServerRuntime
	5.2. Merging Multiple Projects
	5.3. Web Applications

	Chapter 6. Persistent Objects and ObjectContext
	6.1. ObjectContext
	6.2. Persistent Object and its Lifecycle
	6.3. ObjectContext Persistence API
	6.4. Cayenne Helper Class
	6.5. ObjectContext Nesting
	6.6. Generic Persistent Objects
	6.7. Transactions

	Chapter 7. Expressions
	7.1. Expressions Overview
	7.2. Path Expressions
	7.3. Creating Expressions from Strings
	7.4. Creating Expressions with API
	7.5. Evaluating Expressions in Memory

	Chapter 8. Orderings
	Chapter 9. Queries
	9.1. SelectQuery
	9.2. EJBQLQuery
	9.3. SQLTemplateQuery
	9.4. ProcedureQuery
	9.5. NamedQuery
	9.6. Custom Queries

	Chapter 10. Lifecycle Events
	10.1. Types of Lifecycle Events
	10.2. Lifecycle Callbacks and Listeners
	10.2.1. Callback and Listener Methods Semantics
	10.2.2. Registering Callbacks and Listeners
	10.2.3. Combining Listeners with DataChannelFilters

	Chapter 11. Performance Tuning
	11.1. Prefetching
	11.1.1. Prefetching Semantics
	11.1.2. Disjoint Prefetching Semantics
	11.1.3. Disjoint-by-ID Prefetching Semantics
	11.1.4. Joint Prefetching Semantics

	11.2. Data Rows
	11.3. Iterated Queries
	11.4. Paginated Queries
	11.5. Caching and Fresh Data
	11.5.1. Object Caching
	11.5.2. Query Result Caching

	11.6. Turning off Synchronization of ObjectContexts

	Chapter 12. Customizing Cayenne Runtime
	12.1. Dependency Injection Container
	12.1.1. DI Bindings API
	12.1.2. Service Lifecycle
	12.1.3. Overriding Services

	12.2. Customization Strategies
	12.2.1. Changing Properties of Existing Services
	12.2.2. Contributing to Service Collections
	12.2.3. Alternative Service Implementations

	12.3. Noteworthy Built-in Services
	12.3.1. JdbcEventLogger
	12.3.2. DataSourceFactory
	12.3.3. DataChannelFilter
	12.3.4. QueryCache
	12.3.5. ExtendedTypes

	Part III. Cayenne Framework - Remote Object Persistence
	Chapter 13. Introduction to ROP
	13.1. What is ROP
	13.2. Main Features

	Chapter 14. ROP Setup
	14.1. System Requirements
	14.2. Jar Files and Dependencies

	Chapter 15. Implementing ROP Server
	Chapter 16. Implementing ROP Client
	Chapter 17. ROP Deployment
	17.1. Deploying ROP Server
	17.2. Deploying ROP Client
	17.3. Security

	Chapter 18. Current Limitations

	Appendix A. Configuration Properties
	Appendix B. Service Collections
	Appendix C. Expressions BNF

