%line | %branch | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
org.apache.commons.configuration.HierarchicalConfiguration$CloneVisitor |
|
|
1 | /* |
|
2 | * Copyright 2001-2004 The Apache Software Foundation. |
|
3 | * |
|
4 | * Licensed under the Apache License, Version 2.0 (the "License") |
|
5 | * you may not use this file except in compliance with the License. |
|
6 | * You may obtain a copy of the License at |
|
7 | * |
|
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
9 | * |
|
10 | * Unless required by applicable law or agreed to in writing, software |
|
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
13 | * See the License for the specific language governing permissions and |
|
14 | * limitations under the License. |
|
15 | */ |
|
16 | ||
17 | package org.apache.commons.configuration; |
|
18 | ||
19 | import java.io.Serializable; |
|
20 | import java.util.ArrayList; |
|
21 | import java.util.Collection; |
|
22 | import java.util.HashSet; |
|
23 | import java.util.Iterator; |
|
24 | import java.util.LinkedList; |
|
25 | import java.util.List; |
|
26 | import java.util.Set; |
|
27 | import java.util.Stack; |
|
28 | ||
29 | import org.apache.commons.collections.map.LinkedMap; |
|
30 | import org.apache.commons.lang.StringUtils; |
|
31 | ||
32 | /** |
|
33 | * <p>A specialized configuration class that extends its base class by the |
|
34 | * ability of keeping more structure in the stored properties.</p><p>There |
|
35 | * are some sources of configuration data that cannot be stored very well in a |
|
36 | * <code>BaseConfiguration</code> object because then their structure is lost. |
|
37 | * This is especially true for XML documents. This class can deal with such |
|
38 | * structured configuration sources by storing the properties in a tree-like |
|
39 | * organization.</p><p>The internal used storage form allows for a more |
|
40 | * sophisticated access to single properties. As an example consider the |
|
41 | * following XML document:</p><p> |
|
42 | * |
|
43 | * <pre> |
|
44 | * <database> |
|
45 | * <tables> |
|
46 | * <table> |
|
47 | * <name>users</name> |
|
48 | * <fields> |
|
49 | * <field> |
|
50 | * <name>lid</name> |
|
51 | * <type>long</name> |
|
52 | * </field> |
|
53 | * <field> |
|
54 | * <name>usrName</name> |
|
55 | * <type>java.lang.String</type> |
|
56 | * </field> |
|
57 | * ... |
|
58 | * </fields> |
|
59 | * </table> |
|
60 | * <table> |
|
61 | * <name>documents</name> |
|
62 | * <fields> |
|
63 | * <field> |
|
64 | * <name>docid</name> |
|
65 | * <type>long</type> |
|
66 | * </field> |
|
67 | * ... |
|
68 | * </fields> |
|
69 | * </table> |
|
70 | * ... |
|
71 | * </tables> |
|
72 | * </database> |
|
73 | * </pre> |
|
74 | * |
|
75 | * </p><p>If this document is parsed and stored in a |
|
76 | * <code>HierarchicalConfiguration</code> object (which can be done by one of |
|
77 | * the sub classes), there are enhanced possibilities of accessing properties. |
|
78 | * The keys for querying information can contain indices that select a certain |
|
79 | * element if there are multiple hits.</p><p>For instance the key |
|
80 | * <code>tables.table(0).name</code> can be used to find out the name of the |
|
81 | * first table. In opposite <code>tables.table.name</code> would return a |
|
82 | * collection with the names of all available tables. Similarily the key |
|
83 | * <code>tables.table(1).fields.field.name</code> returns a collection with |
|
84 | * the names of all fields of the second table. If another index is added after |
|
85 | * the <code>field</code> element, a single field can be accessed: |
|
86 | * <code>tables.table(1).fields.field(0).name</code>.</p><p>There is a |
|
87 | * <code>getMaxIndex()</code> method that returns the maximum allowed index |
|
88 | * that can be added to a given property key. This method can be used to iterate |
|
89 | * over all values defined for a certain property.</p> |
|
90 | * |
|
91 | * @author <a href="mailto:oliver.heger@t-online.de">Oliver Heger </a> |
|
92 | * @version $Id: HierarchicalConfiguration.java,v 1.14 2004/12/02 22:05:52 |
|
93 | * ebourg Exp $ |
|
94 | */ |
|
95 | public class HierarchicalConfiguration extends AbstractConfiguration |
|
96 | { |
|
97 | /** Constant for a new dummy key. */ |
|
98 | private static final String NEW_KEY = "newKey"; |
|
99 | ||
100 | /** Stores the root node of this configuration. */ |
|
101 | private Node root = new Node(); |
|
102 | ||
103 | /** |
|
104 | * Creates a new instance of <code>HierarchicalConfiguration</code>. |
|
105 | */ |
|
106 | public HierarchicalConfiguration() |
|
107 | { |
|
108 | super(); |
|
109 | } |
|
110 | ||
111 | /** |
|
112 | * Returns the root node of this hierarchical configuration. |
|
113 | * |
|
114 | * @return the root node |
|
115 | */ |
|
116 | public Node getRoot() |
|
117 | { |
|
118 | return root; |
|
119 | } |
|
120 | ||
121 | /** |
|
122 | * Sets the root node of this hierarchical configuration. |
|
123 | * |
|
124 | * @param node the root node |
|
125 | */ |
|
126 | public void setRoot(Node node) |
|
127 | { |
|
128 | if (node == null) |
|
129 | { |
|
130 | throw new IllegalArgumentException("Root node must not be null!"); |
|
131 | } |
|
132 | root = node; |
|
133 | } |
|
134 | ||
135 | /** |
|
136 | * Fetches the specified property. Performs a recursive lookup in the tree |
|
137 | * with the configuration properties. |
|
138 | * |
|
139 | * @param key the key to be looked up |
|
140 | * @return the found value |
|
141 | */ |
|
142 | public Object getProperty(String key) |
|
143 | { |
|
144 | List nodes = fetchNodeList(key); |
|
145 | ||
146 | if (nodes.size() == 0) |
|
147 | { |
|
148 | return null; |
|
149 | } |
|
150 | else |
|
151 | { |
|
152 | List list = new ArrayList(); |
|
153 | for (Iterator it = nodes.iterator(); it.hasNext();) |
|
154 | { |
|
155 | Node node = (Node) it.next(); |
|
156 | if (node.getValue() != null) |
|
157 | { |
|
158 | list.add(node.getValue()); |
|
159 | } |
|
160 | } |
|
161 | ||
162 | if (list.size() < 1) |
|
163 | { |
|
164 | return null; |
|
165 | } |
|
166 | else |
|
167 | { |
|
168 | return (list.size() == 1) ? list.get(0) : list; |
|
169 | } |
|
170 | } |
|
171 | } |
|
172 | ||
173 | /** |
|
174 | * <p>Adds the property with the specified key.</p><p>To be able to deal |
|
175 | * with the structure supported by this configuration implementation the |
|
176 | * passed in key is of importance, especially the indices it might contain. |
|
177 | * The following example should clearify this: Suppose the actual |
|
178 | * configuration contains the following elements:</p><p> |
|
179 | * |
|
180 | * <pre> |
|
181 | * tables |
|
182 | * +-- table |
|
183 | * +-- name = user |
|
184 | * +-- fields |
|
185 | * +-- field |
|
186 | * +-- name = uid |
|
187 | * +-- field |
|
188 | * +-- name = firstName |
|
189 | * ... |
|
190 | * +-- table |
|
191 | * +-- name = documents |
|
192 | * +-- fields |
|
193 | * ... |
|
194 | * </pre> |
|
195 | * |
|
196 | * </p><p>In this example a database structure is defined, e.g. all fields |
|
197 | * of the first table could be accessed using the key |
|
198 | * <code>tables.table(0).fields.field.name</code>. If now properties are |
|
199 | * to be added, it must be exactly specified at which position in the |
|
200 | * hierarchy the new property is to be inserted. So to add a new field name |
|
201 | * to a table it is not enough to say just</p><p> |
|
202 | * |
|
203 | * <pre> |
|
204 | * config.addProperty("tables.table.fields.field.name", "newField"); |
|
205 | * </pre> |
|
206 | * |
|
207 | * </p><p>The statement given above contains some ambiguity. For instance |
|
208 | * it is not clear, to which table the new field should be added. If this |
|
209 | * method finds such an ambiguity, it is resolved by following the last |
|
210 | * valid path. Here this would be the last table. The same is true for the |
|
211 | * <code>field</code>; because there are multiple fields and no explicit |
|
212 | * index is provided, a new <code>name</code> property would be added to |
|
213 | * the last field - which is propably not what was desired.</p><p>To make |
|
214 | * things clear explicit indices should be provided whenever possible. In |
|
215 | * the example above the exact table could be specified by providing an |
|
216 | * index for the <code>table</code> element as in |
|
217 | * <code>tables.table(1).fields</code>. By specifying an index it can |
|
218 | * also be expressed that at a given position in the configuration tree a |
|
219 | * new branch should be added. In the example above we did not want to add |
|
220 | * an additional <code>name</code> element to the last field of the table, |
|
221 | * but we want a complete new <code>field</code> element. This can be |
|
222 | * achieved by specifying an invalid index (like -1) after the element where |
|
223 | * a new branch should be created. Given this our example would run:</p> |
|
224 | * <p> |
|
225 | * |
|
226 | * <pre> |
|
227 | * config.addProperty("tables.table(1).fields.field(-1).name", "newField"); |
|
228 | * </pre> |
|
229 | * |
|
230 | * </p><p>With this notation it is possible to add new branches |
|
231 | * everywhere. We could for instance create a new <code>table</code> |
|
232 | * element by specifying</p><p> |
|
233 | * |
|
234 | * <pre> |
|
235 | * config.addProperty("tables.table(-1).fields.field.name", "newField2"); |
|
236 | * </pre> |
|
237 | * |
|
238 | * </p><p>(Note that because after the <code>table</code> element a new |
|
239 | * branch is created indices in following elements are not relevant; the |
|
240 | * branch is new so there cannot be any ambiguities.)</p> |
|
241 | * |
|
242 | * @param key the key of the new property |
|
243 | * @param obj the value of the new property |
|
244 | */ |
|
245 | protected void addPropertyDirect(String key, Object obj) |
|
246 | { |
|
247 | ConfigurationKey.KeyIterator it = new ConfigurationKey(key).iterator(); |
|
248 | Node parent = fetchAddNode(it, getRoot()); |
|
249 | ||
250 | Node child = createNode(it.currentKey(true)); |
|
251 | child.setValue(obj); |
|
252 | parent.addChild(child); |
|
253 | } |
|
254 | ||
255 | /** |
|
256 | * Adds a collection of nodes at the specified position of the configuration |
|
257 | * tree. This method works similar to <code>addProperty()</code>, but |
|
258 | * instead of a single property a whole collection of nodes can be added - |
|
259 | * and thus complete configuration sub trees. E.g. with this method it is |
|
260 | * possible to add parts of another <code>HierarchicalConfiguration</code> |
|
261 | * object to this object. |
|
262 | * |
|
263 | * @param key the key where the nodes are to be added; can be <b>null </b>, |
|
264 | * then they are added to the root node |
|
265 | * @param nodes a collection with the <code>Node</code> objects to be |
|
266 | * added |
|
267 | */ |
|
268 | public void addNodes(String key, Collection nodes) |
|
269 | { |
|
270 | if (nodes == null || nodes.isEmpty()) |
|
271 | { |
|
272 | return; |
|
273 | } |
|
274 | ||
275 | Node parent; |
|
276 | if (StringUtils.isEmpty(key)) |
|
277 | { |
|
278 | parent = getRoot(); |
|
279 | } |
|
280 | else |
|
281 | { |
|
282 | ConfigurationKey.KeyIterator kit = new ConfigurationKey(key).iterator(); |
|
283 | parent = fetchAddNode(kit, getRoot()); |
|
284 | ||
285 | // fetchAddNode() does not really fetch the last component, |
|
286 | // but one before. So we must perform an additional step. |
|
287 | ConfigurationKey keyNew = new ConfigurationKey(kit.currentKey(true)); |
|
288 | keyNew.append(NEW_KEY); |
|
289 | parent = fetchAddNode(keyNew.iterator(), parent); |
|
290 | } |
|
291 | ||
292 | for (Iterator it = nodes.iterator(); it.hasNext();) |
|
293 | { |
|
294 | parent.addChild((Node) it.next()); |
|
295 | } |
|
296 | } |
|
297 | ||
298 | /** |
|
299 | * Checks if this configuration is empty. Empty means that there are no keys |
|
300 | * with any values, though there can be some (empty) nodes. |
|
301 | * |
|
302 | * @return a flag if this configuration is empty |
|
303 | */ |
|
304 | public boolean isEmpty() |
|
305 | { |
|
306 | return !nodeDefined(getRoot()); |
|
307 | } |
|
308 | ||
309 | /** |
|
310 | * Creates a new <code>Configuration</code> object containing all keys |
|
311 | * that start with the specified prefix. This implementation will return a |
|
312 | * <code>HierarchicalConfiguration</code> object so that the structure of |
|
313 | * the keys will be saved. |
|
314 | * |
|
315 | * @param prefix the prefix of the keys for the subset |
|
316 | * @return a new configuration object representing the selected subset |
|
317 | */ |
|
318 | public Configuration subset(String prefix) |
|
319 | { |
|
320 | Collection nodes = fetchNodeList(prefix); |
|
321 | if (nodes.isEmpty()) |
|
322 | { |
|
323 | return new HierarchicalConfiguration(); |
|
324 | } |
|
325 | ||
326 | HierarchicalConfiguration result = new HierarchicalConfiguration(); |
|
327 | CloneVisitor visitor = new CloneVisitor(); |
|
328 | ||
329 | for (Iterator it = nodes.iterator(); it.hasNext();) |
|
330 | { |
|
331 | Node nd = (Node) it.next(); |
|
332 | nd.visit(visitor, null); |
|
333 | ||
334 | List children = visitor.getClone().getChildren(); |
|
335 | if (children.size() > 0) |
|
336 | { |
|
337 | for (int i = 0; i < children.size(); i++) |
|
338 | { |
|
339 | result.getRoot().addChild((Node) children.get(i)); |
|
340 | } |
|
341 | } |
|
342 | } |
|
343 | ||
344 | return (result.isEmpty()) ? new HierarchicalConfiguration() : result; |
|
345 | } |
|
346 | ||
347 | /** |
|
348 | * Checks if the specified key is contained in this configuration. Note that |
|
349 | * for this configuration the term "contained" means that the key |
|
350 | * has an associated value. If there is a node for this key that has no |
|
351 | * value but children (either defined or undefined), this method will still |
|
352 | * return <b>false </b>. |
|
353 | * |
|
354 | * @param key the key to be chekced |
|
355 | * @return a flag if this key is contained in this configuration |
|
356 | */ |
|
357 | public boolean containsKey(String key) |
|
358 | { |
|
359 | return getProperty(key) != null; |
|
360 | } |
|
361 | ||
362 | /** |
|
363 | * @inheritDoc |
|
364 | */ |
|
365 | public void setProperty(String key, Object value) |
|
366 | { |
|
367 | Iterator itNodes = fetchNodeList(key).iterator(); |
|
368 | Iterator itValues = PropertyConverter.toIterator(value, getDelimiter()); |
|
369 | while (itNodes.hasNext() && itValues.hasNext()) |
|
370 | { |
|
371 | ((Node) itNodes.next()).setValue(itValues.next()); |
|
372 | } |
|
373 | ||
374 | // Add additional nodes if necessary |
|
375 | while (itValues.hasNext()) |
|
376 | { |
|
377 | addPropertyDirect(key, itValues.next()); |
|
378 | } |
|
379 | ||
380 | // Remove remaining nodes |
|
381 | while (itNodes.hasNext()) |
|
382 | { |
|
383 | clearNode((Node) itNodes.next()); |
|
384 | } |
|
385 | } |
|
386 | ||
387 | /** |
|
388 | * Removes all values of the property with the given name and of keys that |
|
389 | * start with this name. So if there is a property with the key |
|
390 | * "foo" and a property with the key "foo.bar", a call |
|
391 | * of <code>clearTree("foo")</code> would remove both properties. |
|
392 | * |
|
393 | * @param key the key of the property to be removed |
|
394 | */ |
|
395 | public void clearTree(String key) |
|
396 | { |
|
397 | List nodes = fetchNodeList(key); |
|
398 | ||
399 | for (Iterator it = nodes.iterator(); it.hasNext();) |
|
400 | { |
|
401 | removeNode((Node) it.next()); |
|
402 | } |
|
403 | } |
|
404 | ||
405 | /** |
|
406 | * Removes the property with the given key. Properties with names that start |
|
407 | * with the given key (i.e. properties below the specified key in the |
|
408 | * hierarchy) won't be affected. |
|
409 | * |
|
410 | * @param key the key of the property to be removed |
|
411 | */ |
|
412 | public void clearProperty(String key) |
|
413 | { |
|
414 | List nodes = fetchNodeList(key); |
|
415 | ||
416 | for (Iterator it = nodes.iterator(); it.hasNext();) |
|
417 | { |
|
418 | clearNode((Node) it.next()); |
|
419 | } |
|
420 | } |
|
421 | ||
422 | /** |
|
423 | * <p>Returns an iterator with all keys defined in this configuration.</p> |
|
424 | * <p>Note that the keys returned by this method will not contain any |
|
425 | * indices. This means that some structure will be lost.</p> |
|
426 | * |
|
427 | * @return an iterator with the defined keys in this configuration |
|
428 | */ |
|
429 | public Iterator getKeys() |
|
430 | { |
|
431 | DefinedKeysVisitor visitor = new DefinedKeysVisitor(); |
|
432 | getRoot().visit(visitor, new ConfigurationKey()); |
|
433 | return visitor.getKeyList().iterator(); |
|
434 | } |
|
435 | ||
436 | /** |
|
437 | * Returns an iterator with all keys defined in this configuration that |
|
438 | * start with the given prefix. The returned keys will not contain any |
|
439 | * indices. |
|
440 | * |
|
441 | * @param prefix the prefix of the keys to start with |
|
442 | * @return an iterator with the found keys |
|
443 | */ |
|
444 | public Iterator getKeys(String prefix) |
|
445 | { |
|
446 | DefinedKeysVisitor visitor = new DefinedKeysVisitor(prefix); |
|
447 | List nodes = fetchNodeList(prefix); |
|
448 | ConfigurationKey key = new ConfigurationKey(); |
|
449 | ||
450 | for (Iterator itNodes = nodes.iterator(); itNodes.hasNext();) |
|
451 | { |
|
452 | Node node = (Node) itNodes.next(); |
|
453 | for (Iterator it = node.getChildren().iterator(); it.hasNext();) |
|
454 | { |
|
455 | ((Node) it.next()).visit(visitor, key); |
|
456 | } |
|
457 | } |
|
458 | ||
459 | return visitor.getKeyList().iterator(); |
|
460 | } |
|
461 | ||
462 | /** |
|
463 | * Returns the maximum defined index for the given key. This is useful if |
|
464 | * there are multiple values for this key. They can then be addressed |
|
465 | * separately by specifying indices from 0 to the return value of this |
|
466 | * method. |
|
467 | * |
|
468 | * @param key the key to be checked |
|
469 | * @return the maximum defined index for this key |
|
470 | */ |
|
471 | public int getMaxIndex(String key) |
|
472 | { |
|
473 | return fetchNodeList(key).size() - 1; |
|
474 | } |
|
475 | ||
476 | /** |
|
477 | * Helper method for fetching a list of all nodes that are addressed by the |
|
478 | * specified key. |
|
479 | * |
|
480 | * @param key the key |
|
481 | * @return a list with all affected nodes (never <b>null </b>) |
|
482 | */ |
|
483 | protected List fetchNodeList(String key) |
|
484 | { |
|
485 | List nodes = new LinkedList(); |
|
486 | findPropertyNodes(new ConfigurationKey(key).iterator(), getRoot(), nodes); |
|
487 | return nodes; |
|
488 | } |
|
489 | ||
490 | /** |
|
491 | * Recursive helper method for fetching a property. This method processes |
|
492 | * all facets of a configuration key, traverses the tree of properties and |
|
493 | * fetches the the nodes of all matching properties. |
|
494 | * |
|
495 | * @param keyPart the configuration key iterator |
|
496 | * @param node the actual node |
|
497 | * @param data here the found nodes are stored |
|
498 | */ |
|
499 | protected void findPropertyNodes(ConfigurationKey.KeyIterator keyPart, Node node, Collection data) |
|
500 | { |
|
501 | if (!keyPart.hasNext()) |
|
502 | { |
|
503 | data.add(node); |
|
504 | } |
|
505 | else |
|
506 | { |
|
507 | String key = keyPart.nextKey(true); |
|
508 | List children = node.getChildren(key); |
|
509 | if (keyPart.hasIndex()) |
|
510 | { |
|
511 | if (keyPart.getIndex() < children.size() && keyPart.getIndex() >= 0) |
|
512 | { |
|
513 | findPropertyNodes((ConfigurationKey.KeyIterator) keyPart.clone(), (Node) children.get(keyPart |
|
514 | .getIndex()), data); |
|
515 | } |
|
516 | } |
|
517 | else |
|
518 | { |
|
519 | for (Iterator it = children.iterator(); it.hasNext();) |
|
520 | { |
|
521 | findPropertyNodes((ConfigurationKey.KeyIterator) keyPart.clone(), (Node) it.next(), data); |
|
522 | } |
|
523 | } |
|
524 | } |
|
525 | } |
|
526 | ||
527 | /** |
|
528 | * Checks if the specified node is defined. |
|
529 | * |
|
530 | * @param node the node to be checked |
|
531 | * @return a flag if this node is defined |
|
532 | */ |
|
533 | protected boolean nodeDefined(Node node) |
|
534 | { |
|
535 | DefinedVisitor visitor = new DefinedVisitor(); |
|
536 | node.visit(visitor, null); |
|
537 | return visitor.isDefined(); |
|
538 | } |
|
539 | ||
540 | /** |
|
541 | * Removes the specified node from this configuration. This method ensures |
|
542 | * that parent nodes that become undefined by this operation are also |
|
543 | * removed. |
|
544 | * |
|
545 | * @param node the node to be removed |
|
546 | */ |
|
547 | protected void removeNode(Node node) |
|
548 | { |
|
549 | Node parent = node.getParent(); |
|
550 | if (parent != null) |
|
551 | { |
|
552 | parent.remove(node); |
|
553 | if (!nodeDefined(parent)) |
|
554 | { |
|
555 | removeNode(parent); |
|
556 | } |
|
557 | } |
|
558 | } |
|
559 | ||
560 | /** |
|
561 | * Clears the value of the specified node. If the node becomes undefined by |
|
562 | * this operation, it is removed from the hierarchy. |
|
563 | * |
|
564 | * @param node the node to be cleard |
|
565 | */ |
|
566 | protected void clearNode(Node node) |
|
567 | { |
|
568 | node.setValue(null); |
|
569 | if (!nodeDefined(node)) |
|
570 | { |
|
571 | removeNode(node); |
|
572 | } |
|
573 | } |
|
574 | ||
575 | /** |
|
576 | * Returns a reference to the parent node of an add operation. Nodes for new |
|
577 | * properties can be added as children of this node. If the path for the |
|
578 | * specified key does not exist so far, it is created now. |
|
579 | * |
|
580 | * @param keyIt the iterator for the key of the new property |
|
581 | * @param startNode the node to start the search with |
|
582 | * @return the parent node for the add operation |
|
583 | */ |
|
584 | protected Node fetchAddNode(ConfigurationKey.KeyIterator keyIt, Node startNode) |
|
585 | { |
|
586 | if (!keyIt.hasNext()) |
|
587 | { |
|
588 | throw new IllegalArgumentException("Key must be defined!"); |
|
589 | } |
|
590 | ||
591 | return createAddPath(keyIt, findLastPathNode(keyIt, startNode)); |
|
592 | } |
|
593 | ||
594 | /** |
|
595 | * Finds the last existing node for an add operation. This method traverses |
|
596 | * the configuration tree along the specified key. The last existing node on |
|
597 | * this path is returned. |
|
598 | * |
|
599 | * @param keyIt the key iterator |
|
600 | * @param node the actual node |
|
601 | * @return the last existing node on the given path |
|
602 | */ |
|
603 | protected Node findLastPathNode(ConfigurationKey.KeyIterator keyIt, Node node) |
|
604 | { |
|
605 | String keyPart = keyIt.nextKey(true); |
|
606 | ||
607 | if (keyIt.hasNext()) |
|
608 | { |
|
609 | List list = node.getChildren(keyPart); |
|
610 | int idx = (keyIt.hasIndex()) ? keyIt.getIndex() : list.size() - 1; |
|
611 | if (idx < 0 || idx >= list.size()) |
|
612 | { |
|
613 | return node; |
|
614 | } |
|
615 | else |
|
616 | { |
|
617 | return findLastPathNode(keyIt, (Node) list.get(idx)); |
|
618 | } |
|
619 | } |
|
620 | ||
621 | else |
|
622 | { |
|
623 | return node; |
|
624 | } |
|
625 | } |
|
626 | ||
627 | /** |
|
628 | * Creates the missing nodes for adding a new property. This method ensures |
|
629 | * that there are corresponding nodes for all components of the specified |
|
630 | * configuration key. |
|
631 | * |
|
632 | * @param keyIt the key iterator |
|
633 | * @param root the base node of the path to be created |
|
634 | * @return the last node of the path |
|
635 | */ |
|
636 | protected Node createAddPath(ConfigurationKey.KeyIterator keyIt, Node root) |
|
637 | { |
|
638 | if (keyIt.hasNext()) |
|
639 | { |
|
640 | Node child = createNode(keyIt.currentKey(true)); |
|
641 | root.addChild(child); |
|
642 | keyIt.next(); |
|
643 | return createAddPath(keyIt, child); |
|
644 | } |
|
645 | else |
|
646 | { |
|
647 | return root; |
|
648 | } |
|
649 | } |
|
650 | ||
651 | /** |
|
652 | * Creates a new <code>Node</code> object with the specified name. This |
|
653 | * method can be overloaded in derived classes if a specific node type is |
|
654 | * needed. This base implementation always returns a new object of the |
|
655 | * <code>Node</code> class. |
|
656 | * |
|
657 | * @param name the name of the new node |
|
658 | * @return the new node |
|
659 | */ |
|
660 | protected Node createNode(String name) |
|
661 | { |
|
662 | return new Node(name); |
|
663 | } |
|
664 | ||
665 | /** |
|
666 | * A data class for storing (hierarchical) property information. A property |
|
667 | * can have a value and an arbitrary number of child properties. |
|
668 | * |
|
669 | */ |
|
670 | public static class Node implements Serializable, Cloneable |
|
671 | { |
|
672 | /** Stores a reference to this node's parent. */ |
|
673 | private Node parent; |
|
674 | ||
675 | /** Stores the name of this node. */ |
|
676 | private String name; |
|
677 | ||
678 | /** Stores the value of this node. */ |
|
679 | private Object value; |
|
680 | ||
681 | /** Stores a reference to an object this node is associated with. */ |
|
682 | private Object reference; |
|
683 | ||
684 | /** Stores the children of this node. */ |
|
685 | private LinkedMap children; // Explict type here or we |
|
686 | ||
687 | // will get a findbugs error |
|
688 | // because Map doesn't imply |
|
689 | // Serializable |
|
690 | ||
691 | /** |
|
692 | * Creates a new instance of <code>Node</code>. |
|
693 | */ |
|
694 | public Node() |
|
695 | { |
|
696 | this(null); |
|
697 | } |
|
698 | ||
699 | /** |
|
700 | * Creates a new instance of <code>Node</code> and sets the name. |
|
701 | * |
|
702 | * @param name the node's name |
|
703 | */ |
|
704 | public Node(String name) |
|
705 | { |
|
706 | setName(name); |
|
707 | } |
|
708 | ||
709 | /** |
|
710 | * Returns the name of this node. |
|
711 | * |
|
712 | * @return the node name |
|
713 | */ |
|
714 | public String getName() |
|
715 | { |
|
716 | return name; |
|
717 | } |
|
718 | ||
719 | /** |
|
720 | * Returns the value of this node. |
|
721 | * |
|
722 | * @return the node value (may be <b>null </b>) |
|
723 | */ |
|
724 | public Object getValue() |
|
725 | { |
|
726 | return value; |
|
727 | } |
|
728 | ||
729 | /** |
|
730 | * Returns the parent of this node. |
|
731 | * |
|
732 | * @return this node's parent (can be <b>null </b>) |
|
733 | */ |
|
734 | public Node getParent() |
|
735 | { |
|
736 | return parent; |
|
737 | } |
|
738 | ||
739 | /** |
|
740 | * Sets the name of this node. |
|
741 | * |
|
742 | * @param string the node name |
|
743 | */ |
|
744 | public void setName(String string) |
|
745 | { |
|
746 | name = string; |
|
747 | } |
|
748 | ||
749 | /** |
|
750 | * Sets the value of this node. |
|
751 | * |
|
752 | * @param object the node value |
|
753 | */ |
|
754 | public void setValue(Object object) |
|
755 | { |
|
756 | value = object; |
|
757 | } |
|
758 | ||
759 | /** |
|
760 | * Sets the parent of this node. |
|
761 | * |
|
762 | * @param node the parent node |
|
763 | */ |
|
764 | public void setParent(Node node) |
|
765 | { |
|
766 | parent = node; |
|
767 | } |
|
768 | ||
769 | /** |
|
770 | * Returns the reference object for this node. |
|
771 | * |
|
772 | * @return the reference object |
|
773 | */ |
|
774 | public Object getReference() |
|
775 | { |
|
776 | return reference; |
|
777 | } |
|
778 | ||
779 | /** |
|
780 | * Sets the reference object for this node. A node can be associated |
|
781 | * with a reference object whose concrete meaning is determined by a sub |
|
782 | * class of <code>HierarchicalConfiguration</code>. In an XML |
|
783 | * configuration e.g. this reference could be an element in a |
|
784 | * corresponding XML document. The reference is used by the |
|
785 | * <code>BuilderVisitor</code> class when the configuration is stored. |
|
786 | * |
|
787 | * @param ref the reference object |
|
788 | */ |
|
789 | public void setReference(Object ref) |
|
790 | { |
|
791 | reference = ref; |
|
792 | } |
|
793 | ||
794 | /** |
|
795 | * Adds the specified child object to this node. Note that there can be |
|
796 | * multiple children with the same name. |
|
797 | * |
|
798 | * @param child the child to be added |
|
799 | */ |
|
800 | public void addChild(Node child) |
|
801 | { |
|
802 | if (children == null) |
|
803 | { |
|
804 | children = new LinkedMap(); |
|
805 | } |
|
806 | ||
807 | List c = (List) children.get(child.getName()); |
|
808 | if (c == null) |
|
809 | { |
|
810 | c = new ArrayList(); |
|
811 | children.put(child.getName(), c); |
|
812 | } |
|
813 | ||
814 | c.add(child); |
|
815 | child.setParent(this); |
|
816 | } |
|
817 | ||
818 | /** |
|
819 | * Returns a list with the child nodes of this node. |
|
820 | * |
|
821 | * @return a list with the children (can be empty, but never <b>null |
|
822 | * </b>) |
|
823 | */ |
|
824 | public List getChildren() |
|
825 | { |
|
826 | List result = new ArrayList(); |
|
827 | ||
828 | if (children != null) |
|
829 | { |
|
830 | for (Iterator it = children.values().iterator(); it.hasNext();) |
|
831 | { |
|
832 | result.addAll((Collection) it.next()); |
|
833 | } |
|
834 | } |
|
835 | ||
836 | return result; |
|
837 | } |
|
838 | ||
839 | /** |
|
840 | * Returns a list with this node's children with the given name. |
|
841 | * |
|
842 | * @param name the name of the children |
|
843 | * @return a list with all chidren with this name; may be empty, but |
|
844 | * never <b>null </b> |
|
845 | */ |
|
846 | public List getChildren(String name) |
|
847 | { |
|
848 | if (name == null || children == class="keyword">null) |
|
849 | { |
|
850 | return getChildren(); |
|
851 | } |
|
852 | ||
853 | List list = new ArrayList(); |
|
854 | List c = (List) children.get(name); |
|
855 | if (c != null) |
|
856 | { |
|
857 | list.addAll(c); |
|
858 | } |
|
859 | ||
860 | return list; |
|
861 | } |
|
862 | ||
863 | /** |
|
864 | * Removes the specified child from this node. |
|
865 | * |
|
866 | * @param child the child node to be removed |
|
867 | * @return a flag if the child could be found |
|
868 | */ |
|
869 | public boolean remove(Node child) |
|
870 | { |
|
871 | if (children == null) |
|
872 | { |
|
873 | return false; |
|
874 | } |
|
875 | ||
876 | List c = (List) children.get(child.getName()); |
|
877 | if (c == null) |
|
878 | { |
|
879 | return false; |
|
880 | } |
|
881 | ||
882 | else |
|
883 | { |
|
884 | if (c.remove(child)) |
|
885 | { |
|
886 | child.removeReference(); |
|
887 | if (c.isEmpty()) |
|
888 | { |
|
889 | children.remove(child.getName()); |
|
890 | } |
|
891 | return true; |
|
892 | } |
|
893 | else |
|
894 | { |
|
895 | return false; |
|
896 | } |
|
897 | } |
|
898 | } |
|
899 | ||
900 | /** |
|
901 | * Removes all children with the given name. |
|
902 | * |
|
903 | * @param name the name of the children to be removed |
|
904 | * @return a flag if children with this name existed |
|
905 | */ |
|
906 | public boolean remove(String name) |
|
907 | { |
|
908 | if (children == null) |
|
909 | { |
|
910 | return false; |
|
911 | } |
|
912 | ||
913 | List nodes = (List) children.remove(name); |
|
914 | if (nodes != null) |
|
915 | { |
|
916 | nodesRemoved(nodes); |
|
917 | return true; |
|
918 | } |
|
919 | else |
|
920 | { |
|
921 | return false; |
|
922 | } |
|
923 | } |
|
924 | ||
925 | /** |
|
926 | * Removes all children of this node. |
|
927 | */ |
|
928 | public void removeChildren() |
|
929 | { |
|
930 | if (children != null) |
|
931 | { |
|
932 | Iterator it = children.values().iterator(); |
|
933 | children = null; |
|
934 | while (it.hasNext()) |
|
935 | { |
|
936 | nodesRemoved((Collection) it.next()); |
|
937 | } |
|
938 | } |
|
939 | } |
|
940 | ||
941 | /** |
|
942 | * A generic method for traversing this node and all of its children. |
|
943 | * This method sends the passed in visitor to this node and all of its |
|
944 | * children. |
|
945 | * |
|
946 | * @param visitor the visitor |
|
947 | * @param key here a configuration key with the name of the root node of |
|
948 | * the iteration can be passed; if this key is not <b>null </b>, the |
|
949 | * full pathes to the visited nodes are builded and passed to the |
|
950 | * visitor's <code>visit()</code> methods |
|
951 | */ |
|
952 | public void visit(NodeVisitor visitor, ConfigurationKey key) |
|
953 | { |
|
954 | int length = 0; |
|
955 | if (key != null) |
|
956 | { |
|
957 | length = key.length(); |
|
958 | if (getName() != null) |
|
959 | { |
|
960 | key.append(getName()); |
|
961 | } |
|
962 | } |
|
963 | ||
964 | visitor.visitBeforeChildren(this, key); |
|
965 | ||
966 | if (children != null) |
|
967 | { |
|
968 | for (Iterator it = children.values().iterator(); it.hasNext() && !visitor.terminate();) |
|
969 | { |
|
970 | Collection col = (Collection) it.next(); |
|
971 | for (Iterator it2 = col.iterator(); it2.hasNext() && !visitor.terminate();) |
|
972 | { |
|
973 | ((Node) it2.next()).visit(visitor, key); |
|
974 | } |
|
975 | } |
|
976 | } |
|
977 | ||
978 | if (key != null) |
|
979 | { |
|
980 | key.setLength(length); |
|
981 | } |
|
982 | visitor.visitAfterChildren(this, key); |
|
983 | } |
|
984 | ||
985 | /** |
|
986 | * Creates a copy of this object. This is not a deep copy, the children |
|
987 | * are not cloned. |
|
988 | * |
|
989 | * @return a copy of this object |
|
990 | */ |
|
991 | public Object clone() |
|
992 | { |
|
993 | try |
|
994 | { |
|
995 | return super.clone(); |
|
996 | } |
|
997 | catch (CloneNotSupportedException cex) |
|
998 | { |
|
999 | return null; // should not happen |
|
1000 | } |
|
1001 | } |
|
1002 | ||
1003 | /** |
|
1004 | * Deals with the reference when a node is removed. This method is |
|
1005 | * called for each removed child node. It can be overloaded in sub |
|
1006 | * classes, for which the reference has a concrete meaning and remove |
|
1007 | * operations need some update actions. This default implementation is |
|
1008 | * empty. |
|
1009 | */ |
|
1010 | protected void removeReference() |
|
1011 | { |
|
1012 | } |
|
1013 | ||
1014 | /** |
|
1015 | * Helper method for calling <code>removeReference()</code> on a list |
|
1016 | * of removed nodes. Used by methods that can remove multiple child |
|
1017 | * nodes in one step. |
|
1018 | * |
|
1019 | * @param nodes collection with the nodes to be removed |
|
1020 | */ |
|
1021 | private void nodesRemoved(Collection nodes) |
|
1022 | { |
|
1023 | for (Iterator it = nodes.iterator(); it.hasNext();) |
|
1024 | { |
|
1025 | ((Node) it.next()).removeReference(); |
|
1026 | } |
|
1027 | } |
|
1028 | } |
|
1029 | ||
1030 | /** |
|
1031 | * <p>Definition of a visitor class for traversing a node and all of its |
|
1032 | * children.</p><p>This class defines the interface of a visitor for |
|
1033 | * <code>Node</code> objects and provides a default implementation. The |
|
1034 | * method <code>visit()</code> of <code>Node</code> implements a generic |
|
1035 | * iteration algorithm based on the <em>Visitor</em> pattern. By providing |
|
1036 | * different implementations of visitors it is possible to collect different |
|
1037 | * data during the iteration process.</p> |
|
1038 | * |
|
1039 | */ |
|
1040 | public static class NodeVisitor |
|
1041 | { |
|
1042 | /** |
|
1043 | * Visits the specified node. This method is called during iteration for |
|
1044 | * each node before its children have been visited. |
|
1045 | * |
|
1046 | * @param node the actual node |
|
1047 | * @param key the key of this node (may be <b>null </b>) |
|
1048 | */ |
|
1049 | public void visitBeforeChildren(Node node, ConfigurationKey key) |
|
1050 | { |
|
1051 | } |
|
1052 | ||
1053 | /** |
|
1054 | * Visits the specified node after its children have been processed. |
|
1055 | * This gives a visitor the opportunity of collecting additional data |
|
1056 | * after the child nodes have been visited. |
|
1057 | * |
|
1058 | * @param node the node to be visited |
|
1059 | * @param key the key of this node (may be <b>null </b>) |
|
1060 | */ |
|
1061 | public void visitAfterChildren(Node node, ConfigurationKey key) |
|
1062 | { |
|
1063 | } |
|
1064 | ||
1065 | /** |
|
1066 | * Returns a flag that indicates if iteration should be stopped. This |
|
1067 | * method is called after each visited node. It can be useful for |
|
1068 | * visitors that search a specific node. If this node is found, the |
|
1069 | * whole process can be stopped. This base implementation always returns |
|
1070 | * <b>false </b>. |
|
1071 | * |
|
1072 | * @return a flag if iteration should be stopped |
|
1073 | */ |
|
1074 | public boolean terminate() |
|
1075 | { |
|
1076 | return false; |
|
1077 | } |
|
1078 | } |
|
1079 | ||
1080 | /** |
|
1081 | * A specialized visitor that checks if a node is defined. |
|
1082 | * "Defined" in this terms means that the node or at least one of |
|
1083 | * its sub nodes is associated with a value. |
|
1084 | * |
|
1085 | */ |
|
1086 | static class DefinedVisitor extends NodeVisitor |
|
1087 | { |
|
1088 | /** Stores the defined flag. */ |
|
1089 | private boolean defined; |
|
1090 | ||
1091 | /** |
|
1092 | * Checks if iteration should be stopped. This can be done if the first |
|
1093 | * defined node is found. |
|
1094 | * |
|
1095 | * @return a flag if iteration should be stopped |
|
1096 | */ |
|
1097 | public boolean terminate() |
|
1098 | { |
|
1099 | return isDefined(); |
|
1100 | } |
|
1101 | ||
1102 | /** |
|
1103 | * Visits the node. Checks if a value is defined. |
|
1104 | * |
|
1105 | * @param node the actual node |
|
1106 | * @param key the key of this node |
|
1107 | */ |
|
1108 | public void visitBeforeChildren(Node node, ConfigurationKey key) |
|
1109 | { |
|
1110 | defined = node.getValue() != null; |
|
1111 | } |
|
1112 | ||
1113 | /** |
|
1114 | * Returns the defined flag. |
|
1115 | * |
|
1116 | * @return the defined flag |
|
1117 | */ |
|
1118 | public boolean isDefined() |
|
1119 | { |
|
1120 | return defined; |
|
1121 | } |
|
1122 | } |
|
1123 | ||
1124 | /** |
|
1125 | * A specialized visitor that fills a list with keys that are defined in a |
|
1126 | * node hierarchy. |
|
1127 | * |
|
1128 | */ |
|
1129 | static class DefinedKeysVisitor extends NodeVisitor |
|
1130 | { |
|
1131 | /** Stores the list to be filled. */ |
|
1132 | private Set keyList; |
|
1133 | ||
1134 | /** Stores a prefix for the keys. */ |
|
1135 | private String prefix; |
|
1136 | ||
1137 | /** |
|
1138 | * Default constructor. |
|
1139 | */ |
|
1140 | public DefinedKeysVisitor() |
|
1141 | { |
|
1142 | keyList = new HashSet(); |
|
1143 | } |
|
1144 | ||
1145 | /** |
|
1146 | * Creates a new <code>DefinedKeysVisitor</code> instance and sets the |
|
1147 | * prefix for the keys to fetch. |
|
1148 | * |
|
1149 | * @param prefix the prefix |
|
1150 | */ |
|
1151 | public DefinedKeysVisitor(String prefix) |
|
1152 | { |
|
1153 | this(); |
|
1154 | this.prefix = prefix; |
|
1155 | } |
|
1156 | ||
1157 | /** |
|
1158 | * Returns the list with all defined keys. |
|
1159 | * |
|
1160 | * @return the list with the defined keys |
|
1161 | */ |
|
1162 | public Set getKeyList() |
|
1163 | { |
|
1164 | return keyList; |
|
1165 | } |
|
1166 | ||
1167 | /** |
|
1168 | * Visits the specified node. If this node has a value, its key is added |
|
1169 | * to the internal list. |
|
1170 | * |
|
1171 | * @param node the node to be visited |
|
1172 | * @param key the key of this node |
|
1173 | */ |
|
1174 | public void visitBeforeChildren(Node node, ConfigurationKey key) |
|
1175 | { |
|
1176 | if (node.getValue() != null && key != class="keyword">null) |
|
1177 | { |
|
1178 | addKey(key); |
|
1179 | } |
|
1180 | } |
|
1181 | ||
1182 | /** |
|
1183 | * Adds the specified key to the internal list. |
|
1184 | * |
|
1185 | * @param key the key to add |
|
1186 | */ |
|
1187 | protected void addKey(ConfigurationKey key) |
|
1188 | { |
|
1189 | if (prefix == null) |
|
1190 | { |
|
1191 | keyList.add(key.toString()); |
|
1192 | } |
|
1193 | else |
|
1194 | { |
|
1195 | StringBuffer buf = new StringBuffer(prefix); |
|
1196 | if (!key.isAttributeKey()) |
|
1197 | { |
|
1198 | buf.append(ConfigurationKey.PROPERTY_DELIMITER); |
|
1199 | } |
|
1200 | buf.append(key); |
|
1201 | keyList.add(buf.toString()); |
|
1202 | } |
|
1203 | } |
|
1204 | } |
|
1205 | ||
1206 | /** |
|
1207 | * A specialized visitor that is able to create a deep copy of a node |
|
1208 | * hierarchy. |
|
1209 | * |
|
1210 | */ |
|
1211 | static class CloneVisitor extends NodeVisitor |
|
1212 | { |
|
1213 | /** A stack with the actual object to be copied. */ |
|
1214 | private Stack copyStack; |
|
1215 | ||
1216 | /** Stores the result of the clone process. */ |
|
1217 | private Node result; |
|
1218 | ||
1219 | /** |
|
1220 | * Creates a new instance of <code>CloneVisitor</code>. |
|
1221 | */ |
|
1222 | public CloneVisitor() |
|
1223 | 69 | { |
1224 | 69 | copyStack = new Stack(); |
1225 | 69 | } |
1226 | ||
1227 | /** |
|
1228 | * Visits the specified node after its children have been processed. |
|
1229 | * |
|
1230 | * @param node the node |
|
1231 | * @param key the key of this node |
|
1232 | */ |
|
1233 | public void visitAfterChildren(Node node, ConfigurationKey key) |
|
1234 | { |
|
1235 | 989 | copyStack.pop(); |
1236 | 989 | if (copyStack.isEmpty()) |
1237 | { |
|
1238 | 483 | result = node; |
1239 | } |
|
1240 | 989 | } |
1241 | ||
1242 | /** |
|
1243 | * Visits and copies the specified node. |
|
1244 | * |
|
1245 | * @param node the node |
|
1246 | * @param key the key of this node |
|
1247 | */ |
|
1248 | public void visitBeforeChildren(Node node, ConfigurationKey key) |
|
1249 | { |
|
1250 | 989 | Node copy = (Node) node.clone(); |
1251 | 989 | copy.removeChildren(); |
1252 | ||
1253 | 989 | if (!copyStack.isEmpty()) |
1254 | { |
|
1255 | 506 | ((Node) copyStack.peek()).addChild(copy); |
1256 | } |
|
1257 | ||
1258 | 989 | copyStack.push(copy); |
1259 | 989 | } |
1260 | ||
1261 | /** |
|
1262 | * Returns the result of the clone process. This is the root node of the |
|
1263 | * cloned node hierarchy. |
|
1264 | * |
|
1265 | * @return the cloned root node |
|
1266 | */ |
|
1267 | public Node getClone() |
|
1268 | { |
|
1269 | 483 | return result; |
1270 | } |
|
1271 | } |
|
1272 | ||
1273 | /** |
|
1274 | * A specialized visitor base class that can be used for storing the tree of |
|
1275 | * configuration nodes. The basic idea is that each node can be associated |
|
1276 | * with a reference object. This reference object has a concrete meaning in |
|
1277 | * a derived class, e.g. an entry in a JNDI context or an XML element. When |
|
1278 | * the configuration tree is set up, the <code>load()</code> method is |
|
1279 | * responsible for setting the reference objects. When the configuration |
|
1280 | * tree is later modified, new nodes do not have a defined reference object. |
|
1281 | * This visitor class processes all nodes and finds the ones without a |
|
1282 | * defined reference object. For those nodes the <code>insert()</code> |
|
1283 | * method is called, which must be defined in concrete sub classes. This |
|
1284 | * method can perform all steps to integrate the new node into the original |
|
1285 | * structure. |
|
1286 | * |
|
1287 | */ |
|
1288 | protected abstract static class BuilderVisitor extends NodeVisitor |
|
1289 | { |
|
1290 | /** |
|
1291 | * @inheritDoc |
|
1292 | */ |
|
1293 | public void visitBeforeChildren(Node node, ConfigurationKey key) |
|
1294 | { |
|
1295 | Iterator children = node.getChildren().iterator(); |
|
1296 | Node sibling1 = null; |
|
1297 | Node nd = null; |
|
1298 | ||
1299 | while (children.hasNext()) |
|
1300 | { |
|
1301 | // find the next new node |
|
1302 | do |
|
1303 | { |
|
1304 | sibling1 = nd; |
|
1305 | nd = (Node) children.next(); |
|
1306 | } while (nd.getReference() != null && children.hasNext()); |
|
1307 | ||
1308 | if (nd.getReference() == null) |
|
1309 | { |
|
1310 | // find all following new nodes |
|
1311 | List newNodes = new LinkedList(); |
|
1312 | newNodes.add(nd); |
|
1313 | while (children.hasNext()) |
|
1314 | { |
|
1315 | nd = (Node) children.next(); |
|
1316 | if (nd.getReference() == null) |
|
1317 | { |
|
1318 | newNodes.add(nd); |
|
1319 | } |
|
1320 | else |
|
1321 | { |
|
1322 | break; |
|
1323 | } |
|
1324 | } |
|
1325 | ||
1326 | // Insert all new nodes |
|
1327 | Node sibling2 = (nd.getReference() == null) ? class="keyword">null : nd; |
|
1328 | for (Iterator it = newNodes.iterator(); it.hasNext();) |
|
1329 | { |
|
1330 | Node insertNode = (Node) it.next(); |
|
1331 | if (insertNode.getReference() == null) |
|
1332 | { |
|
1333 | Object ref = insert(insertNode, node, sibling1, sibling2); |
|
1334 | if (ref != null) |
|
1335 | { |
|
1336 | insertNode.setReference(ref); |
|
1337 | } |
|
1338 | } |
|
1339 | } |
|
1340 | } |
|
1341 | } |
|
1342 | } |
|
1343 | ||
1344 | /** |
|
1345 | * Inserts a new node into the structure constructed by this builder. |
|
1346 | * This method is called for each node that has been added to the |
|
1347 | * configuration tree after the configuration has been loaded from its |
|
1348 | * source. These new nodes have to be inserted into the original |
|
1349 | * structure. The passed in nodes define the position of the node to be |
|
1350 | * inserted: its parent and the siblings between to insert. The return |
|
1351 | * value is interpreted as the new reference of the affected |
|
1352 | * <code>Node</code> object; if it is not <b>null </b>, it is passed |
|
1353 | * to the node's <code>setReference()</code> method. |
|
1354 | * |
|
1355 | * @param newNode the node to be inserted |
|
1356 | * @param parent the parent node |
|
1357 | * @param sibling1 the sibling after which the node is to be inserted; |
|
1358 | * can be <b>null </b> if the new node is going to be the first child |
|
1359 | * node |
|
1360 | * @param sibling2 the sibling before which the node is to be inserted; |
|
1361 | * can be <b>null </b> if the new node is going to be the last child |
|
1362 | * node |
|
1363 | * @return the reference object for the node to be inserted |
|
1364 | */ |
|
1365 | protected abstract Object insert(Node newNode, Node parent, Node sibling1, Node sibling2); |
|
1366 | } |
|
1367 | } |
This report is generated by jcoverage, Maven and Maven JCoverage Plugin. |