View Javadoc

1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math.analysis;
18  
19  import java.io.Serializable;
20  import org.apache.commons.math.MathException;
21  
22  /**
23   * Implements the <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
24   * Neville's Algorithm</a> for interpolation of real univariate functions. For
25   * reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
26   * chapter 2.
27   * <p>
28   * The actual code of Neville's evalution is in PolynomialFunctionLagrangeForm,
29   * this class provides an easy-to-use interface to it.</p>
30   *
31   * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $
32   * @since 1.2
33   */
34  public class NevilleInterpolator implements UnivariateRealInterpolator,
35      Serializable {
36  
37      /** serializable version identifier */
38      static final long serialVersionUID = 3003707660147873733L;
39  
40      /**
41       * Computes an interpolating function for the data set.
42       *
43       * @param x the interpolating points array
44       * @param y the interpolating values array
45       * @return a function which interpolates the data set
46       * @throws MathException if arguments are invalid
47       */
48      public UnivariateRealFunction interpolate(double x[], double y[]) throws
49          MathException {
50  
51          PolynomialFunctionLagrangeForm p;
52          p = new PolynomialFunctionLagrangeForm(x, y);
53          return p;
54      }
55  }