View Javadoc

1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math.stat.descriptive;
18  
19  import org.apache.commons.math.DimensionMismatchException;
20  import org.apache.commons.math.linear.RealMatrix;
21  
22  /**
23   * Implementation of
24   * {@link org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics} that
25   * is safe to use in a multithreaded environment.  Multiple threads can safely
26   * operate on a single instance without causing runtime exceptions due to race
27   * conditions.  In effect, this implementation makes modification and access
28   * methods atomic operations for a single instance.  That is to say, as one
29   * thread is computing a statistic from the instance, no other thread can modify
30   * the instance nor compute another statistic.
31   * @since 1.2
32   * @version $Revision: 618097 $ $Date: 2008-02-03 22:39:08 +0100 (dim., 03 févr. 2008) $
33   */
34  public class SynchronizedMultivariateSummaryStatistics
35    extends MultivariateSummaryStatistics {
36  
37      /** Serialization UID */
38      private static final long serialVersionUID = 7099834153347155363L;
39  
40      /**
41       * Construct a SynchronizedMultivariateSummaryStatistics instance
42       * @param k dimension of the data
43       * @param isCovarianceBiasCorrected if true, the unbiased sample
44       * covariance is computed, otherwise the biased population covariance
45       * is computed
46       */
47      public SynchronizedMultivariateSummaryStatistics(int k, boolean isCovarianceBiasCorrected) {
48          super(k, isCovarianceBiasCorrected);
49      }
50  
51      /**
52       * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#addValue(double[])
53       */
54      public synchronized void addValue(double[] value)
55        throws DimensionMismatchException {
56        super.addValue(value);
57      }
58  
59      /**
60       * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getDimension()
61       */
62      public synchronized int getDimension() {
63          return super.getDimension();
64      }
65  
66      /**
67       * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getN()
68       */
69      public synchronized long getN() {
70          return super.getN();
71      }
72  
73      /**
74       * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getSum()
75       */
76      public synchronized double[] getSum() {
77          return super.getSum();
78      }
79  
80      /**
81       * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getSumSq()
82       */
83      public synchronized double[] getSumSq() {
84          return super.getSumSq();
85      }
86  
87      /**
88       * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getSumLog()
89       */
90      public synchronized double[] getSumLog() {
91          return super.getSumLog();
92      }
93  
94      /**
95       * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getMean()
96       */
97      public synchronized double[] getMean() {
98          return super.getMean();
99      }
100 
101     /**
102      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getStandardDeviation()
103      */
104     public synchronized double[] getStandardDeviation() {
105         return super.getStandardDeviation();
106     }
107 
108     /**
109      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getCovariance()
110      */
111     public synchronized RealMatrix getCovariance() {
112         return super.getCovariance();
113     }
114 
115     /**
116      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getMax()
117      */
118     public synchronized double[] getMax() {
119         return super.getMax();
120     }
121 
122     /**
123      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getMin()
124      */
125     public synchronized double[] getMin() {
126         return super.getMin();
127     }
128 
129     /**
130      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getGeometricMean()
131      */
132     public synchronized double[] getGeometricMean() {
133         return super.getGeometricMean();
134     }
135     
136     /**
137      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#toString()
138      */
139     public synchronized String toString() {
140         return super.toString();
141     }
142 
143     /**
144      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#clear()
145      */
146     public synchronized void clear() {
147         super.clear();
148     }
149     
150     /**
151      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#equals(Object)
152      */
153     public synchronized boolean equals(Object object) {
154         return super.equals(object);
155     }
156     
157     /**
158      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#hashCode()
159      */
160     public synchronized int hashCode() {
161         return super.hashCode();
162     }
163 
164     /**
165      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getSumImpl()
166      */
167     public synchronized StorelessUnivariateStatistic[] getSumImpl() {
168         return super.getSumImpl();
169     }
170 
171     /**
172      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#setSumImpl(StorelessUnivariateStatistic[])
173      */
174     public synchronized void setSumImpl(StorelessUnivariateStatistic[] sumImpl)
175       throws DimensionMismatchException {
176         super.setSumImpl(sumImpl);
177     }
178 
179     /**
180      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getSumsqImpl()
181      */
182     public synchronized StorelessUnivariateStatistic[] getSumsqImpl() {
183         return super.getSumsqImpl();
184     }
185 
186     /**
187      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#setSumsqImpl(StorelessUnivariateStatistic[])
188      */
189     public synchronized void setSumsqImpl(StorelessUnivariateStatistic[] sumsqImpl)
190       throws DimensionMismatchException {
191         super.setSumsqImpl(sumsqImpl);
192     }
193 
194     /**
195      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getMinImpl()
196      */
197     public synchronized StorelessUnivariateStatistic[] getMinImpl() {
198         return super.getMinImpl();
199     }
200 
201     /**
202      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#setMinImpl(StorelessUnivariateStatistic[])
203      */
204     public synchronized void setMinImpl(StorelessUnivariateStatistic[] minImpl)
205       throws DimensionMismatchException {
206         super.setMinImpl(minImpl);
207     }
208 
209     /**
210      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getMaxImpl()
211      */
212     public synchronized StorelessUnivariateStatistic[] getMaxImpl() {
213         return super.getMaxImpl();
214     }
215 
216     /**
217      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#setMaxImpl(StorelessUnivariateStatistic[])
218      */
219     public synchronized void setMaxImpl(StorelessUnivariateStatistic[] maxImpl)
220       throws DimensionMismatchException {
221         super.setMaxImpl(maxImpl);
222     }
223 
224     /**
225      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getSumLogImpl()
226      */
227     public synchronized StorelessUnivariateStatistic[] getSumLogImpl() {
228         return super.getSumLogImpl();
229     }
230 
231     /**
232      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#setSumLogImpl(StorelessUnivariateStatistic[])
233      */
234     public synchronized void setSumLogImpl(StorelessUnivariateStatistic[] sumLogImpl)
235       throws DimensionMismatchException {
236         super.setSumLogImpl(sumLogImpl);
237     }
238 
239     /**
240      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getGeoMeanImpl()
241      */
242     public synchronized StorelessUnivariateStatistic[] getGeoMeanImpl() {
243         return super.getGeoMeanImpl();
244     }
245 
246     /**
247      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#setGeoMeanImpl(StorelessUnivariateStatistic[])
248      */
249     public synchronized void setGeoMeanImpl(StorelessUnivariateStatistic[] geoMeanImpl)
250       throws DimensionMismatchException {
251         super.setGeoMeanImpl(geoMeanImpl);
252     }
253 
254     /**
255      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#getMeanImpl()
256      */
257     public synchronized StorelessUnivariateStatistic[] getMeanImpl() {
258         return super.getMeanImpl();
259     }
260 
261     /**
262      * @see org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics#setMeanImpl(StorelessUnivariateStatistic[])
263      */
264     public synchronized void setMeanImpl(StorelessUnivariateStatistic[] meanImpl)
265       throws DimensionMismatchException {
266         super.setMeanImpl(meanImpl);
267     }
268 
269 }