1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.math.analysis; 18 19 import java.io.Serializable; 20 import org.apache.commons.math.MathException; 21 22 /** 23 * Implements the <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html"> 24 * Neville's Algorithm</a> for interpolation of real univariate functions. For 25 * reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X, 26 * chapter 2. 27 * <p> 28 * The actual code of Neville's evalution is in PolynomialFunctionLagrangeForm, 29 * this class provides an easy-to-use interface to it.</p> 30 * 31 * @version $Revision: 620312 $ $Date: 2008-02-10 12:28:59 -0700 (Sun, 10 Feb 2008) $ 32 * @since 1.2 33 */ 34 public class NevilleInterpolator implements UnivariateRealInterpolator, 35 Serializable { 36 37 /** serializable version identifier */ 38 static final long serialVersionUID = 3003707660147873733L; 39 40 /** 41 * Computes an interpolating function for the data set. 42 * 43 * @param x the interpolating points array 44 * @param y the interpolating values array 45 * @return a function which interpolates the data set 46 * @throws MathException if arguments are invalid 47 */ 48 public UnivariateRealFunction interpolate(double x[], double y[]) throws 49 MathException { 50 51 PolynomialFunctionLagrangeForm p; 52 p = new PolynomialFunctionLagrangeForm(x, y); 53 return p; 54 } 55 }