
[vertical list of authors]
© Copyright ,.

[cover art/text goes here]

Contents

Copyright

i

Apache Software FoundationDerby Tools and Utilities GuideApache Derby
Copyright

2

Copyright
Second Edition (July 2005)

Copyright 1997, 2005 The Apache Software Foundation or its licensors, as applicable.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Copyright

3

About this guide
For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby .

Purpose of this document
This book describes how to use the Derby tools and utilities. The tools and utilities
covered in this book include:

• ij
• the import and export utilities
• the database class loading utilities
• sysinfo
• dblook

Audience
This book is for:

• developers, who might use the tools when developing applications
• system administrators, who might use the tools to run backup scripts or to import

large amounts of data
• end-users, who might use one of the tools to run ad-hoc queries against a database

How this guide is organized
This guide includes the following sections:

• What are the Derby tools and utilities?

Overview of the tools and utilities, and Derby and JDBC basics for new or infrequent
users.

• Using ij

How to get started with ij, a JDBC and SQL scripting tool.

• ij properties reference

Reference for ij properties.

• ij commands and errors reference

Reference for ij commands and errors.

• Using the bulk import and export procedures

Reference and how-to instructions for using bulk import and export.

• sysinfo

Reference information on the utility that provides information about your Derby
environment.

• dblook

dblook is Derby's Data Definition Language (DDL) Generation Utility, which is more
informally called a schema dump tool. It is a simple utility that dumps the DDL of a
user-specified database to either a console or to a file. The generated DDL can then
be used to recreate all or parts of a database, view a subset of a database's objects
(for example, those which pertain to specific tables or schemas), or document a
database's schema.

Copyright

4

What are the Derby tools and utilities?
This section covers some basics about Java, Derby, and JDBC for new users or
infrequent users (such as those who only use the Derby tools and are not developing
applications).

For more complete information on these topics, see the Derby Developer's Guide .

Overview
Derby is a database management system (DBMS), accessed by applications through the
JDBC API.

Included with the product are some standalone Java tools and utilities that make it easier
to use and develop applications for Derby.

These tools and utilities include:
• ij

ij is Derby's interactive JDBC scripting tool. It is a simple utility for running scripts
against a Derby database. You can also use it interactively to run ad hoc queries.
ij provides several commands for ease in accessing a variety of JDBC features.

ij can be used in an embedded or a client/server environment.

• The import and export utilities

These server-side utilities allow you to import data directly from files into tables and
to export data from tables into files. (You can use the utilities in a client/server
environment.)

• Database class utilities

These utilities allow you to store application logic in a database and to boot an
application using the stored classes.

• sysinfo

sysinfo provides information about your version of Derby and your environment.

• dblook

dblook is Derby's Data Definition Language (DDL) Generation Utility, also called a
schema dump tool. It is a simple utility for the dumping the DDL of a user-specified
database to either a console or to a file. The generated DDL can then be used for
such things as recreating all or parts of a database, viewing a subset of a
database's objects (for example, those which pertain to specific tables and
schemas), or documenting a database's schema.

JVM and classpath for Derby tools

ij, sysinfo, and dblook are tools that can be used in an embedded or a client/server
environment. The import and export utilities and database class utilities are
database-side utilities, which means that they run in the same JVM as Derby, although
the import and export utilities can also be used in a client/server environment.

Java 2 Platform, Standard Edition, Version 1.3

All Derby tools require Java 2 Platform, Standard Edition, Version 1.3 or later.

Classpath

Copyright

5

Derby classpath requirements:

• To use ij, you must have derbytools.jar in your classpath. If you are using the
embedded driver, you must also include derby.jar.

• To use the import and export utilities and the database class utilities, you must have
derby.jar in your classpath.

• To use sysinfo, either derby.jar or derbytools.jar must be in your classpath.
• To use Derby tools from a client with the Derby Network Server, you must have

derbyclient.jar and derbytools.jar in your classpath. See the Derby Server and
Administration Guide for more information.

About Derby databases
A Derby database consists of platform-independent files stored in a directory that has the
same name as the database.

JDBC basics
Most of the Derby tools are JDBC applications. A JDBC application is one that uses the
classes in the java.sql package to interact with a DBMS.

When you work with JDBC applications, you need to know about several concepts.

JDBC drivers overview

Before a JDBC application interacts with a database, it must cause the JDBC driver to be
loaded in the Java session. Derby provides the following JDBC drivers for use with the
Derby database engine:

• org.apache.derby.jdbc.EmbeddedDriver

For embedded environments, when Derby runs in the same JVM as the application

• org.apache.derby.jdbc.ClientDriver

For using the Network Client to connect to the Derby Network Server

You can use ij to connect to any database that supplies a JDBC driver. For those
databases, you would need to load the supplied JDBC driver.

Database connection URLs

A JDBC URL provides a way of identifying a database so that the appropriate driver
recognizes it and connects to it. In the Derby documents, a JDBC URL is referred to as a
database connection URL.

After the driver is loaded, an application must specify the correct database connection
URL to connect to a specific database. The Derby database connection URL allows you
to accomplish tasks other than simply connecting. For more information about the Derby
database connection URLs, see the Derby Developer's Guide .

A JDBC URL always starts with jdbc:. After that, the format for the database connection
URL depends on the JDBC driver.

Here is the format for the database connection URL for connecting to an existing
database using the embedded driver:

• jdbc:derby:databaseName;URLAttributes

The format for the database connection URL for connecting to an existing database using

Copyright

6

the Network Client is:
• jdbc:derby://host:port/databaseName

URL attributes can be passed to the Network Client driver by using double quotes (")
around the database name portion of the URL, as follows:

• jdbc:derby://host:port/"databaseName;URLAttributes";

The italicized items stand for something the user fills in:
• databaseName

The name of the database you want to connect to

• URLAttributes

One or more of the supported attributes of the database connection URL, such as
;territory=ll_CC or ;create=true. For more information, see the Derby Developer's
Guide .

• host

The name of the machine where the server is running. It can be the name of the
machine or the address.

• port

The port number of the server framework

About Protocols

Officially, the portion of the database connection URL called the protocol is jdbc:, just as
http:// is a protocol in Web URLs. However, the second portion of the database
connection URL (everything between jdbc: and databaseName), which is called the
subprotocol, is informally considered part of the protocol. Later in this book you might see
references to protocol. Consider protocol to be everything that comes before
databaseName.

For complete information about the database connection URL, see the Derby Developer's
Guide .

Tools and localization
The Derby tools provide support for common localization features such as localized
message files and GUI, locale-appropriate formatting of data, codesets, unicode
identifiers and data, and database territories.

For general information about international Derby systems, see the Derby Developer's
Guide .

About locales
In the Derby documentation, we refer to three locales:

• Java System locale

This is the locale of your machine, which is automatically detected by your JVM. For
Derby and Derby tools, the Java system locale determines the default locale.

• Database territory

This is the territory associated with your database when it is created. By default, this
is the same as the java system locale . The database territory determines the
language of database errors.

• ij or dblook Session locale

This locale is associated with your ij or dblook session. This locale determines

Copyright

7

the localized display format for numbers, dates, times, and timestamps.

Database territory
To specify a database territory, use the territory attribute on the URL connection when
creating the database.
Note: You cannot modify a database's territory after the database has been created.

For information about database territories, see the Internationalization appendix in the
Derby Developer's Guide .

Specifying an alternate codeset

You can specify an alternate codeset for your tool session.

Use the derby.ui.codeset property when starting ij or dblook. This property can be
useful when working with scripts created on a different system.

Formatting display of locale-sensitive data
To display dates, timestamps, numbers, and times in the format of the ij Session locale,
use the LocalizedDisplay command.
Note: These options do not change how Derby stores locale-sensitive data, simply how
the tool displays the data.

The following example demonstrates using localizedDisplay in an en_US locale:

ij> VALUES CURRENT_DATE;
1

2001-08-06
1 row selected
ij> localizeddisplay on;
ij> VALUES CURRENT_DATE;
1

September 6, 2001
1 row selected

Copyright

8

Using ij
ij is Derby's interactive JDBC scripting tool. It is a simple utility for running scripts against
a Derby database.

ij is a Java application, which you start from a command window such as an MS-DOS
Command Window or the UNIX shell. ij provides several commands for ease in
accessing a variety of JDBC features through scripts.

Starting ij

Derby provides batch and shell scripts for users in Windows and UNIX environments. If
you put the appropriate script in your path, you will be able to start ij with a simple
command. These scripts use the ij.protocol property, which automatically loads a driver
and simplifies the process of connecting to a database. The scripts are found in the
%DERBY_INSTALL%/bin/ directory. You can also customize the ij scripts to suit your
environment.

If you are starting ij from a command line, be sure that the derbytools.jar file is in your
classpath. If you are using Derby as a database server, start the server before
connecting to the Derby database. You can start ij by running the ij scripts in the
/frameworks/embedded/bin/ directory or in the /frameworks/NetworkServer/bin/ directory.

To start ij, run the script provided or use this command:

java
[<

options

>] org.apache.derby.tools.ij [-p <

propertyFile

>] [<

inputFile

>]

The command line items are:
• java

The JVM you want to run (java is the name of the JVM program).

• options

The options that the JVM uses. You can use the -D command to set ij properties
(see Starting ij using properties) or system properties, such as Derby properties.

• propertyFile

A file you can use to set ij properties (instead of the -D command). The property file
should be in the format created by the java.tools.Properties.save methods, which is
the same format as the derby.properties file.

• inputFile

A file from which to read commands. The ij tool exits at the end of the file or an exit
command. Using an input file causes ij to print out the commands as it runs them. If
you reroute standard input, ij does not print out the commands. If you do not supply
an input file, ij reads from the standard input.

Copyright

9

For detailed information about ij commands, see ij commands and errors reference .

Starting ij using properties

You set ij properties in any of the following ways:

1. by using the -D command on the command line
2. by specifying a properties file using the -p propertyfile option on the

command line
Remember: ij property names are case-sensitive, while commands are case-insensitive.

The following examples illustrate how to use ij properties:

To start ij by using a properties file called ij.properties, use the following command:

java org.apache.derby.tools.ij -p ij.properties

To start ij with a maximumDisplayWidth of 1000:

java -Dij.maximumDisplayWidth=1000 org.apache.derby.tools.ij

To start ij with an ij.protocol of jdbc:derby: and an ij.database of sample, use the
following command:

java -Dij.protocol=jdbc:derby: -Dij.database=sample
org.apache.derby.tools.ij

To start ij with two named connections, using the ij.connection.connectionName property,
use the following command:

java -Dij.connection.sample=jdbc:derby:sample
-Dij.connection.History=jdbc:derby:History
-Dderby.system.home=c:\derby\demo\databases
org.apache.derby.tools.ij

To see a list of connection names and the URL's used to connect to them, use the
following command: (If there is a connection that is currently active, it will show up with
an * after its name.)

ij version 10.1
ij(HISTORY)> show connections;
HISTORY* - jdbc:derby:History
SAMPLE - jdbc:derby:sample
* = current connection
ij(HISTORY)>

To start ij to connect to the Derby Network Server, you must specify the user and
password attributes on the URL. For more information, see the Derby Server and
Administration Guide .

Getting started with ij
This section discusses the use of the ij tool.

Connecting to a Derby database

To connect to a Derby database, you need to perform the following steps:

1. Load the appropriate driver.
2. Provide a database connection URL for the database.

Copyright

10

In ij, there are three ways of accomplishing these steps:
• Full database connection URL

ij can work with any JDBC driver. For drivers supplied by other vendors, you need to
load the driver separately. For drivers supplied by Derby, you can load the driver by
specifying the full database connection URL in the connection. You do not need to
load the driver explicitly in a second step.

To connect, specify the full database connection URL in a Connect command,
ij.connection.connectionName property, or ij.database property.

The protocol of the database connection URL must correspond to the driver
provided by Derby (see Database connection URLs) or, if you are using another
driver, to that driver. The following example shows how to connect to a Derby
database by using the Connect command:

D:>java org.apache.derby.tools.ij
ij version 10.1
ij> connect 'jdbc:derby:sample';
ij>

• Protocol and short database connection URL

For drivers supplied by Derby, specifying a protocol automatically loads the
appropriate driver. You do not need to load the driver explicitly in a separate step.
You specify a protocol with a property (ij.protocol or ij.protocol.protocolName) or
command (Protocol).

To connect, specify the "short form" of the database connection URL in a Connect
command, ij.connection.connectionName property, or ij.database property. A short
form of the database connection URL eliminates the protocol (For more information,
see About Protocols).

D:>java org.apache.derby.tools.ij
ij version 10.1
ij> protocol 'jdbc:derby:';
ij> connect 'sample';
ij>

D:>java -Dij.protocol.myprotocolName=jdbc:derby:
org.apache.derby.tools.ij

ij version 10.1
ij> connect 'sample' protocol myprotocolName;
ij>

• Driver and full database connection URL

If you are using the drivers supplied by Derby, use the driver names listed in JDBC
drivers overview . The Derby drivers are implicitly loaded when a supported protocol
is used. Any other driver has to be explicitly loaded. You can load a driver explicitly
with an ij property (ij.Driver), a system property (jdbc.drivers), or a command (
Driver).

To connect, specify the full database connection URL in a Connect command,
ij.connection.connectionName property, or ij.database property.

D:>java org.apache.derby.tools.ij
ij version 10.1
ij> driver 'sun.jdbc.odbc.JdbcOdbcDriver';
ij> connect 'jdbc:odbc:myOdbcDataSource';
ij>

Specifying the driver name and database connection URL

Specifying the Driver Name and database connection URL , summarizes the different
ways to specify the driver name and database connection URL.
Table1. Specifying the Driver Name and database connection URL

Copyright

11

Action System Property ij Property ij Command

loading the driver implicitly ' ij.connection.connectionName
(plus full URL) ij.database
(plus full URL) ij.protocol
ij.protocol.protocolName
(plus protocol clause in
Connect command)

Protocol Connect
(plus full URL)

loading the driver explicitly jdbc.drivers -D ij.Driver Driver

specifying the database
connection URL

' ij.connection.connectionName
ij.database

Connect

Using ij commands

ij accepts a number of different commands that let you execute SQL statements or run
scripts. Each ij statement must end with a semicolon.

For complete information about ij commands, see ij commands and errors reference .

Other uses for ij

ij is a JDBC-neutral scripting tool with a small command set. It can be used to access any
JDBC driver and database accessible through that driver.

The main benefit of a tool such as ij is that it is easy to run scripts for creating a database
schema and automating other repetitive database tasks.

In addition, ij accepts and processes SQL commands interactively for ad hoc database
access.

Running ij scripts

You can run scripts in ij in any of the following ways:

• Name an input file as a command-line argument.

For example:

java -Djdbc.drivers=org.apache.derby.jdbc.EmbeddedDriver
org.apache.derby.tools.ij <myscript.sql>

• Redirect standard input to come from a file.

For example:

java -Djdbc.drivers=org.apache.derby.jdbc.EmbeddedDriver
org.apache.derby.tools.ij < <myscript.sql>

• Use the Run command from the ij command line.

For example:

ij> run 'myscript.sql';

Note: If you name an input file as a command-line argument or if you use the Run
command, ij echoes input from a file. If you redirect standard input to come from a file, ij
does not echo commands.

Copyright

12

You can save output in any of the following ways:

• By redirecting output to a file:

java -Djdbc.drivers=org.apache.derby.jdbc.EmbeddedDriver
org.apache.derby.tools.ij <myscript.sql> > <myoutput.txt>

• By setting the ij.outfile property:

java -Dij.outfile=<myoutput.txt> org.apache.derby.tools.ij
<myscript.sql>

ij exits when you enter the Exit command or, if you give a command file on the Java
invocation line, when the end of the command file is reached. When you use the Exit
command, ij automatically shuts down an embedded Derby system by issuing a
connect jdbc:derby:;shutdown=true request. It does not shut down Derby if it is
running in a server framework.

Copyright

13

ij properties reference
When starting upij, you can specify properties on the command line or in a properties
file, as described in Starting ij using properties .

ij.connection.connectionName
Function

Creates a named connection to the given database connection URL when ij starts up; it
is equivalent to the Connect AS Identifier command. The database connection URL can
be of the short form if an ij.protocol is specified. This property can be specified more than
once per session, creating multiple connections. When ij starts, it displays the names of
all the connections created in this way. It also displays the name of the current
connection, if there is more than one, in the ij prompt.

Syntax

ij.connection.
connectionName
=
databaseConnectionURL

The databaseConnectionURL is not a string; do not enclose it in quotation marks.

Example

D:> java -Dij.connection.sample1=jdbc:derby:sample
-Dij.connection.anotherConn=jdbc:derby:anotherDB;create=true

org.apache.derby.tools.ij
ij version 10.1
ANOTHERCONN* - jdbc:derby:anotherDB;create=true
SAMPLE1 - jdbc:derby:sample
* = current connection
ij(ANOTHERCONN)>

See also
• Connect

ij.database
Function

Creates a connection with a generated name to the given database connection URL
when ij starts up, thus creating an initial connection (with a generated name) for the ij
session. (If you have specified an ij.protocol, you can use a shortened form of the URL.)
After it boots, ij displays the generated name of the connection made with this property.

Syntax

ij.database=
databaseConnectionURL

The databaseConnectionURL is not a string; do not enclose it in quotation marks.

Example

Copyright

14

java -Dij.protocol=jdbc:derby: -Dij.connection.sample1=sample
-Dij.connection.anotherConn=anotherDB
-Dij.database=wombat;create=true org.apache.derby.tools.ij

ij version 10.1
CONNECTION2* - jdbc:derby:wombat;create=true
ANOTHERCONN - jdbc:derby:anotherDB
SAMPLE1 - jdbc:derby:sample
* = current connection
ij(CONNECTION2)>

ij.driver
Function

Loads the JDBC driver that the class specifies.

Syntax

ij.driver=
JDBCDriverClassName

Notes

The driver property is a synonym.

Example

D:>java -Dij.driver=sun.jdbc.odbc.JdbcOdbcDriver
org.apache.derby.tools.ij
ij version 10.1
ij> Connect 'jdbc:odbc:MyODBCDataSource';
ij>

See also
• Driver

ij.maximumDisplayWidth
Function

Specifies the maximum number of characters used to display any column. The default
value is 128. Values with display widths longer than the maximum are truncated and
terminated with an & character.

Syntax

ij.maximumDisplayWidth=
numberOfCharacters

Example

java -Dij.maximumDisplayWidth=1000 org.apache.derby.tools.ij

See also
• MaximumDisplayWidth

ij.outfile
Function

Copyright

15

Specifies a file to which the system should direct output for a session. Specify the file
name relative to the current directory, or specify the absolute path.

Syntax

ij.outfile=
fileName

Example

java -Dij.outfile=out.txt org.apache.derby.tools.ij myscript.sql

ij.protocol
Function
Specifies the protocol and subprotocol portions of the database connection URL for
connections. Automatically loads the appropriate driver for recognized subprotocol. The
recognized protocol is:

• jdbc:derby:

Allows you to use a short form of a database name.

Syntax

ij.protocol=
protocolForEnvironment

Example

D:>java -Dij.protocol=jdbc:derby:
org.apache.derby.tools.ij

ij version 10.1
ij> Connect 'newDB;create=true';
ij>

See also
• Protocol

ij.protocol.protocolName
Function

This property is similar to the ij.protocol property. The only difference is that it associates
a name with the value, thus allowing you to define and use more than one protocol. (See
Connect .)

Syntax

ij.protocol.
protocolName
=
protocolForEnvironment

Example

D:>java -Dij.protocol.derby=jdbc:derby:

Copyright

16

-Dij.protocol.emp=jdbc:derby: org.apache.derby.tools.ij
ij version 10.1
ij> Connect 'newDB' protocol derby as new;
ij>

See also
• Protocol

ij.showErrorCode
Function

Set this property to true to have ij display the SQLException ErrorCode value with error
messages. The default is false.

Error codes denote the severity of the error. For more information, see the Derby
Reference Manual .

Syntax

ij.showErrorCode=
trueOrFalse

Example

java -Dij.showErrorCode=true -Dij.protocol=jdbc:derby:
org.apache.derby.tools.ij

ij version 10.1
ij> Connect 'sample';
ij> VLUES 1;
ERROR 42X01: Syntax error: Encountered "VLUES"
at line 1, column 1. (errorCode = 30000)
ij>

ij.URLCheck
Function

This property determines whether ij checks for invalid or non-Derby URL attributes. Set
this property to false to prevent ij from validating URL attributes. The default value is
true.

When the ij.URLCheck property is set to true, you are notified whenever a connection
URL contains an incorrectly specified attribute. For example if the attribute name is
misspelled or cased incorrectly ij prints a message.
Note: ij checks attribute values if the attribute has pre-defined values. For example, the
attribute unicode has the pre-defined values of true or false. If you try to set the attribute
unicode to a value other than true or false, ij displays an error. For example:

ij> Connect 'jdbc:derby:anyDB;create=true;unicode=falj';
ERROR XJ05B: JDBC attribute 'unicode' has an invalid value 'falj',
valid values are '{true|false}'.
ij>

Syntax

ij.URLCheck={ false | true }

Example
By default, ij displays messages about invalid attributes:

Copyright

17

java org.apache.derby.tools.ij
ij version 10.1
ij> connect 'mydb;uSer=naomi';
URL Attribute [uSer=naomi]

Case of the Derby attribute is incorrect.

The following command line specifies to turn off URL attribute checking in ij.

java -Dij.URLCheck=false org.apache.derby.tools.ij
ij version 10.1
ij> connect 'mydb;uSer=naomi';
ij>

Typically, you would only explicitly turn off the URL checker if you were using ij with a
non-Derby JDBC driver or database.

Notes

URLCheck does not check the validity of properties, only database connection URL
attributes.

ij recognizes the following attributes:
• bootPassword
• create
• databaseName
• dataEncryption
• encryptionAlgorithm
• encryptionProvider
• territory
• logDevice
• password
• shutdown
• unicode
• upgrade
• user

derby.ui.codeset
Function

Set this property to a supported character encoding value when using one of the Derby
tools with a language not supported by your default system.

Syntax

derby.ui.codeset=
derbyval

where derbyval is a supported character encoding value, for example, UTF8 (see Sample
Character Encodings).

Example

The following command line specifies to run ij using the Japanese territory
(territory=ja_JP) using Japanese Latin Kanji mixed encoding (codeset=Cp939):

java -Dderby.ui.territory=ja_JP -Dderby.ui.codeset=Cp939
-Dij.protocol=jdbc:derby:
org.apache.derby.tools.ij

Copyright

18

The following table contains a sampling of character encodings supported by the IBM
Application Developer Kit. To see the full list, go to
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html .
Table1. Sample Character Encodings

Character Encoding Explanation

8859_1 ISO Latin-1

8859_2 ISO Latin-2

8859_7 ISO Latin/Greek

Cp1257 Windows Baltic

Cp1258 Windows Vietnamese

Cp437 PC Original

EUCJIS Japanese EUC

GB2312 GB2312-80 Simplified Chinese

JIS JIS

KSC5601 KSC5601 Korean

MacCroatian Macintosh Croatian

MacCyrillic Macintosh Cyrillic

SJIS PC and Windows Japanese

UTF8 Standard UTF-8

Copyright

19

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

ij commands and errors reference
This section describes the commands and errors eithin the ij tool.

ij commands
ij accepts several commands to control its use of JDBC. It recognizes a semicolon as
the end of an ij or SQL command; it treats semicolons within SQL comments, strings,
and delimited identifiers as part of those constructs, not as the end of the command.
Semicolons are required at the end of an ij or SQL statement.

All ij commands, identifiers, and keywords are case-insensitive.

Commands can span multiple lines without any special escaping for the ends of lines.
This means that if a string spans a line, the new lines will show up in the value in the
string.

ij treats any command that it does not recognize as an SQL command to be passed to
the underlying connection, so syntactic errors in ij commands will cause them to be
handed to the SQL engine and will probably result in SQL parsing errors.

Conventions for ij examples

Examples in this document show input from the keyboard or a file in bold text and
console output from the DOS prompt or the ij application in regular text.

C:\> REM This example is from a DOS prompt:
C:\> java -Dij.protocol=jdbc:derby: org.apache.derby.tools.ij
ij version 10.1
ij> connect 'menuDB;create=true';
ij> CREATE TABLE menu(course CHAR(10), item CHAR(20), price INTEGER);
0 rows inserted/updated/deleted
ij> disconnect;
ij> exit;
C:\>

ij SQL command behavior

Any command other than those documented in the ij command reference are handed to
the current connection to execute directly. The statement's closing semicolon, used by ij
to determine that it has ended, is not passed to the underlying connection. Only one
statement at a time is passed to the connection. If the underlying connection itself
accepts semicolon-separated statements (which Derby does not), they can be passed to
the connection using ij's Execute command to pass in a command string containing
semicolon-separated commands.

ij uses the result of the JDBC execute request to determine whether it should print a
number-of-rows message or display a result set.

If a JDBC execute request causes an exception, it displays the SQLState, if any, and
error message.

Setting the ij property ij.showErrorCode to true displays the SQLException's error code
(see ij properties reference).

The number-of-rows message for inserts, updates, and deletes conforms to the JDBC
specification for any SQL statement that does not have a result set. DDL (data definition
language) commands typically report "0 rows inserted/updated/deleted" when they
successfully complete.

Copyright

20

To display a result set, ij formats a banner based on the JDBC ResultSetMetaData
information returned from getColumnLabel and getColumnWidth. Long columns wrap the
screen width, using multiple lines. An & character denotes truncation (ij limits displayed
width of a column to 128 characters by default; see MaximumDisplayWidth).

ij displays rows as it fetches them. If the underlying DBMS materializes rows only as
they are requested, ij displays a partial result followed by an error message if there is a
error in fetching a row partway through the result set.

ij verifies that a connection exists before issuing statements against it and does not
execute SQL when no connection has yet been made.

There is no support in ij for the JDBC feature multiple result sets.

ij command example

ij> INSERT INTO menu VALUES ('appetizer','baby greens',7),
('entree','lamb chops ',6),('dessert','creme brulee',14);
3 rows inserted/updated/deleted
ij> SELECT * FROM menu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |6
appetizer |baby greens |7

3 rows selected
ij>

Absolute
Syntax

ABSOLUTE
int
Identifier

Description
Moves the cursor to the row specified by the int, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij> autocommit off;
ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> absolute 3 scrollCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14

After Last
Syntax

AFTER LAST

Copyright

21

Identifier

Description

Moves the cursor to after the last row, then fetches the row. (Since there is no current
row, it returns the message: No current row."

The cursor must have been created with the Get Scroll Insensitive Cursor command.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> after last scrollcursor;
No current row

Async
Syntax

ASYNC

Identifier

String

Description

The ASYNC command lets you execute an SQL statement in a separate thread. It is
used in conjunction with the Wait For command to get the results.

You supply the SQL statement, which is any valid SQL statement, as a String. The
Identifier you must supply for the async SQL statement is used in the Wait For command
and is a case-insensitive ij identifier; it must not be the same as any other identifier for
an async statement on the current connection. You cannot reference a statement
previously prepared and named by the ij Prepare command in this command.

ij creates a new thread in the current connection to issue the SQL statement. The
separate thread is closed once the statement completes.

Example

ij>async aInsert 'INSERT into menu values (''entree'',''chicken'',11)';
ij>INSERT INTO menu VALUES ('dessert','ice cream',3);
1 rows inserted/updated/deleted.
ij>wait for aInsert;
1 rows inserted/updated/deleted.
-- the result of the asynchronous insert

Autocommit
Syntax

AUTOCOMMIT { ON | OFF }

Copyright

22

Description

Turns the connection's auto-commit mode on or off. JDBC specifies that the default
auto-commit mode is ON. Certain types of processing require that auto-commit mode be
OFF. For information about auto-commit, see the Derby Developer's Guide .

If auto-commit mode is turned on when there is a transaction outstanding, that work is
committed when the current transaction commits, not at the time auto-commit is turned
on. Use Commit or Rollback before turning on auto-commit when there is a transaction
outstanding, so that all prior work is completed before the return to auto-commit mode.

Example

ij> autocommit off;
ij> DROP TABLE menu;
0 rows inserted/updated/deleted
ij> CREATE TABLE menu (course CHAR(10), item CHAR(20), price INT);
0 rows inserted/updated/deleted
ij> INSERT INTO menu VALUES ('entree', 'lamb chop', 14),
('dessert', 'creme brulee', 6),
('appetizer', 'baby greens', 7);
3 rows inserted/updated/deleted
ij> commit;
ij> autocommit on;
ij>

Before First
Syntax

BEFORE FIRST
int
Identifier

Description

Moves the cursor to before the first row, then fetches the row. (Since there is no current
row, it returns the message No current row.)

The cursor must have been created with the Get Scroll Insensitive Cursor command.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> before first scrollcursor;
No current row

Close
Syntax

CLOSE

Identifier

Copyright

23

Description

Closes the named cursor. The cursor must have previously been successfully created
with the ij Get Cursor or Get Scroll Insensitive Cursor commands.

Example

ij> get cursor menuCursor as 'SELECT * FROM menu';
ij> next menuCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> next menuCursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> close menuCursor;
ij>

Commit
Syntax

COMMIT

Description

Issues a java.sql.Connection.commit request. Use this command only if auto-commit is
off. A java.sql.Connection.commit request commits the currently active transaction and
initiates a new transaction.

Example

ij> commit;
ij>

Connect
Syntax

CONNECT

String

[PROTOCOL

Identifier

]
[AS

Identifier

] [USER

String

PASSWORD

String

Copyright

24

]

Description

Takes the value of the string database connection URL and issues a
java.sql.DriverManager.getConnection request to set the current connection to
that database connection URL.

You have the option of specifying a name for your connection. Use the Set Connection
command to switch between connections. If you do not name a connection, the system
generates a name automatically.

You also have the option of specifying a named protocol previously created with the
Protocol command or the ij.protocol.protocolName property.

If the connection requires a user name and password, supply those with the optional user
and password parameters.

If the connect succeeds, the connection becomes the current one and ij displays a new
prompt for the Next command. If you have more than one open connection, the name of
the connection appears in the prompt.

All further commands are processed against the new connection.

Example

ij> connect 'jdbc:derby:menuDB;create=true';
ij> -- we create a new table in menuDB:
CREATE TABLE menu(course CHAR(10), item CHAR(20), price INTEGER);
ij> protocol 'jdbc:derby:';
ij> connect 'sample' as sample1;
ij(SAMPLE1)> connect 'newDB;create=true' as newDB;
ij(NEWDB)> show connections;
CONNECTION0 - jdbc:derby:menuDB
NEWDB* - jdbc:derby:anotherDB
SAMPLE1 - jdbc:derby:newDB
ij>
ij> connect 'jdbc:derby:sample' user 'sa' password 'cloud3x9';
ij>

Disconnect
Syntax

DISCONNECT [ALL | CURRENT |

Identifier

]

Description

Issues a java.sql.Connection.close request against the current connection. There
must be a current connection at the time the request is made.

If ALL is specified, all known connections are closed and there is no current connection.

Disconnect CURRENT is the same as Disconnect.

If a connection name is specified with an identifier, the command disconnects the named
connection. The name must be the name of a connection in the current session provided
with the ij.connection.connectionName property or with the Connect command.

Copyright

25

If the ij.database property or the Connect command without the AS clause was used, you
can supply the name the system generated for the connection. If the current connection
is the named connection, when the command completes, there will be no current
connection and you must issue a Set Connection or Connect command.

A Disconnect command issued against a Derby connection does not shut down the
database or Derby (but the Exit command does).

Example

ij> connect 'jdbc:derby:menuDB;create=true';
ij> -- we create a new table in menuDB:
CREATE TABLE menu(course CHAR(10), ITEM char(20), PRICE integer);
0 rows inserted/updated/deleted
ij> disconnect;

ij> protocol 'jdbc:derby:';
ij> connect 'sample' as sample1;
ij> connect 'newDB;create=true' as newDB;
SAMPLE1 - jdbc:derby:sample
NEWDB* - jdbc:derby:newDB;create=true
* = current connection
ij(NEWDB)> set connection sample1;
ij> disconnect sample1;
ij> disconnect all;
ij>

Driver
Syntax

DRIVER

String

Description

Takes the value of the string and issues a Class.forName request to load the named
class. The class is expected to be a JDBC driver that registers itself with
java.sql.DriverManager.

If the Driver command succeeds, a new ij prompt appears for the next command.

Example

ij> -- load the Derby driver so that a connection
-- can be made:
driver 'org.apache.derby.jdbc.EmbeddedDriver';
ij> connect 'jdbc:derby:menuDB;create=true';
ij>

Elapsedtime
Syntax

ELAPSEDTIME { ON | OFF }

Description

When elapsedtime is turned on, ij displays the total time elapsed during statement
execution. The default value is OFF.

Copyright

26

Example

ij> elapsedtime on;
ij> VALUES current_date;
1

1998-07-15
ELAPSED TIME = 2134 milliseconds
ij>

Execute
Syntax

EXECUTE {

String

|

Identifier

}
[USING {

String

|

Identifier

}]

Description
Has several uses:

• To execute an SQL command that has the same name as an ij command, using
the Execute String style. The String is passed to the connection without further
examination or processing by ij. Normally, you execute SQL commands directly,
not with the Execute command.

• To execute a named command previously prepared with the ij Prepare command,
using the Execute Identifier style.

• To execute either flavor of command when that command contains dynamic
parameters, taking values from the Using portion of the command. In this style, the
Using portion's String or previously prepared Identifier is executed, and it must have
a result set as its result. Each row of the result set is applied to the input parameters
of the command to be executed, so the number of columns in the Using's result set
must match the number of input parameters in the Execute 's statement. The results
of each execution of the Execute statement are displayed as they are made. If the
Using's result set contains no rows, the Execute 's statement is not executed.

When auto-commit mode is on, the Using's result set is closed upon the first
execution of the Execute statement. To ensure multiple-row execution of the
Execute command, use the Autocommit command to turn auto-commit off.

Example

ij> autocommit off;
ij> prepare menuInsert as 'INSERT INTO menu VALUES (?, ?, ?)';
ij> execute menuInsert using 'VALUES

(''entree'', ''lamb chop'', 14),
(''dessert'', ''creme brulee'', 6)';

1 row inserted/updated/deleted

Copyright

27

1 row inserted/updated/deleted
ij> commit;

Exit
Syntax

EXIT

Description

Causes the ij application to complete and processing to halt. Issuing this command
from within a file started with the Run command or on the command line causes the
outermost input loop to halt.

ij automatically shuts down a Derby database running in an embedded environment
(issues a Connect 'jdbc:derby:;shutdown=true' request) on exit.

ij exits when the Exit command is entered or if given a command file on the Java
invocation line, when the end of the command file is reached.

Example

ij> disconnect;
ij> exit;
C:\>

First
Syntax

FIRST

Identifier

Description
Moves the cursor to the first row in the ResultSet, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> first scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14

Get Cursor
Syntax

GET [WITH {HOLD|NOHOLD}] CURSOR

Copyright

28

Identifier

AS

String

WITH HOLD is the default attribute of the cursor. For a non-holdable cursor, use the
WITH NOHOLD option.

Note: WITH NOHOLD is only available in Java 2 Platform, Standard Edition, v 1.4 (J2SE)
or higher.

Description

Creates a cursor with the name of the Identifier by issuing a
java.sql.Statement.executeQuery request on the value of the String.

If the String is a statement that does not generate a result set, the behavior of the
underlying database determines whether an empty result set or an error is issued. If there
is an error in executing the statement, no cursor is created.

ij sets the cursor name using a java.sql.Statement.setCursorName request. Behavior
with respect to duplicate cursor names is controlled by the underlying database. Derby
does not allow multiple open cursors with the same name.

Once a cursor has been created, the ij Next and Close commands can be used to step
through its rows, and if the connection supports positioned update and delete commands,
they can be issued to alter the rows.

Example

ij> -- autocommit needs to be off so that the positioned update
ij> -- can see the cursor it operates against.
ij> autocommit off;
ij> get cursor menuCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> next menuCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> next menuCursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> UPDATE menu SET price=price+1 WHERE CURRENT OF menuCursor;
1 row inserted/updated/deleted
ij> next menuCursor;
COURSE |ITEM |PRICE

appetizer |baby greens salad |7
ij> close menuCursor;
ij> commit;
ij>

Get Scroll Insensitive Cursor
Syntax

GET SCROLL INSENSITIVE [WITH {HOLD|NOHOLD}]
CURSOR

Identifier

AS

Copyright

29

String

WITH HOLD is the default attribute of the cursor. For a non-holdable cursor, use the
WITH NOHOLD option.

Note: WITH NOHOLD is only available in Java 2 Platform, Standard Edition, v 1.4 (J2SE)
or higher.

Description
Creates a scroll insensitive cursor with the name of the Identifier. (It does this by issuing
a createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY) call and then executing the statement with
java.sql.StatementExecuteQuery request on the value of the String.)
Note: This command only works in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Scroll insensitive cursors are not updatable.

If the String is a statement that does not generate a result set, the behavior of the
underlying database determines whether an empty result set or an error is issued. If there
is an error in executing the statement, no cursor is created.

ij sets the cursor name using a java.sql.Statement.setCursorName request. Behavior with
respect to duplicate cursor names is controlled by the underlying database. Derby does
not allow multiple open cursors with the same name.

Once a scrolling cursor has been created, you can use the follow commands to work with
the result set:

• Absolute
• After Last
• Before First
• Close
• First
• Last
• Next
• Previous
• Relative

Example

ij> autocommit off;
ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> absolute 5 scrollCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> after last scrollcursor;
No current row
ij> before first scrollcursor;
No current row
ij> first scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> last scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> previous scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14

Copyright

30

ij> relative 1 scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij>>previous scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> next scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6

Help
Syntax

HELP

Description

Prints out a brief list of the ij commands.

Last
Syntax

LAST

Identifier

Description
Moves the cursor to the last row in the ResultSet, then fetches the row. The cursor must
have been created with the Get Scroll Insensitive Cursor command. It displays a banner
and the values of the row.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> absolute 5 scrollCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> last scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6

LocalizedDisplay
Syntax

LOCALIZEDDISPLAY { on | off }

Description

Specifies to display locale-sensitive data (such as dates) in the native format for the ij
locale. The ij locale is the same as the Java system locale.

Copyright

31

Example

The following demonstrates LocalizedDisplay in an English locale:

ij> VALUES CURRENT_DATE;
1

2000-05-01
1 row selected
ij> localizeddisplay on;
ij> VALUES CURRENT_DATE;
1

May 1, 2000
1 row selected

MaximumDisplayWidth
Syntax

MAXIMUMDISPLAYWIDTH
integer_value

Description

Sets the display width for column to the specified value.

Example

ij> maximumdisplaywidth 3;
ij> VALUES 'NOW IS THE TIME!';
1

NOW
ij> maximumdisplaywidth 30;
ij> VALUES 'NOW IS THE TIME!';
1

NOW IS THE TIME!

Next
Syntax

NEXT

Identifier

Description

Fetches the next row from the named cursor created with the Get Cursor command or
Get Scroll Insensitive Cursor . It displays a banner and the values of the row.

Example

ij> get cursor menuCursor as 'SELECT * FROM menu';
ij> next menuCursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij>

Copyright

32

Prepare
Syntax

PREPARE

Identifier

AS

String

Description

Creates a java.sql.PreparedStatement using the value of the String, accessible in ij by
the Identifier given to it. If a prepared statement with that name already exists in ij, an
error will be returned and the previous prepared statement will remain. Use the Remove
command to remove the previous statement first. If there are any errors in preparing the
statement, no prepared statement is created.

Any SQL statements allowed in the underlying connection's prepared statement can be
prepared with this command.

Example

ij> prepare seeMenu as 'SELECT * FROM menu';
ij> execute seeMenu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |6

2 rows selected
ij>

Previous
Syntax

PREVIOUS

Identifier

Description
Moves the cursor to the row previous to the current one, then fetches the row. The cursor
must have been created with the Get Scroll Insensitive Cursor command. It displays a
banner and the values of the row.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> last scrollcursor;

Copyright

33

COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> previous scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14

Protocol
Syntax

PROTOCOL

String

[AS

Identifier

]

Description

Specifies the protocol, as a String, for establishing connections and automatically loads
the appropriate driver. Protocol is the part of the database connection URL syntax
appropriate for your environment, including the JDBC protocol and the protocol specific to
Derby. For further information about the Derby database connection URL, see the Derby
Developer's Guide . Only Derby protocols are supported. Those protocols are listed in
ij.protocol .

Providing a protocol allows you to use a shortened database connection URL for
connections. You can provide only the database name instead of the full protocol. In
addition, you do not need to use the Driver command or specify a driver at start-up, since
the driver is loaded automatically.

If you name the protocol, you can refer to the protocol name in the Connect command.

Example

ij> protocol 'jdbc:derby:';
ij> connect 'sample';

Readonly
Syntax

READONLY { ON | OFF }

Description

Sets the current connection to a "read-only" connection, as if the current user were
defined as a readOnlyAccess user. (For more information about database authorization,
see the Derby Developer's Guide .)

Example

ij> connect 'jdbc:derby:menuDB';
ij> readonly on;
ij> SELECT * FROM menu;
COURSE |ITEM |PRICE

Copyright

34

entree |lamb chop |14
dessert |creme brulee |6
appetizer |baby greens |7
entree |lamb chop |14
entree |lamb chop |14
dessert |creme brulee |6
6 rows selected
ij> UPDATE menu set price = 3;
ERROR 25502: An SQL data change is not permitted for a read-only
connection, user or database.

Relative
Syntax

RELATIVE
int
Identifier

Description
Moves the cursor to the row that is int number of rows relative to the current row, then
fetches the row. The cursor must have been created with the Get Scroll Insensitive
Cursor command. It displays a banner and the values of the row.
Note: This command works only in a Java 2 Platform, Standard Edition, v 1.2 (J2SE) or
higher environment.

Example

ij> -- autocommit needs to be off so that the positioned update
ij> -- can see the cursor it operates against.
ij> autocommit off;
ij> get scroll insensitive cursor scrollCursor as
'SELECT * FROM menu FOR UPDATE OF price';
ij> last scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6
ij> previous scrollcursor;
COURSE |ITEM |PRICE

entree |lamb chop |14
ij> relative 1 scrollcursor;
COURSE |ITEM |PRICE

dessert |creme brulee |6

Remove
Syntax

REMOVE

Identifier

Description

Removes a previously prepared statement from ij. The identifier is the name by which the
statement was prepared. The statement is closed to release its database resources.

Example

Copyright

35

ij> prepare seeMenu as 'SELECT * FROM menu';
ij> execute seeMenu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |6

2 rows selected
ij> remove seeMenu;
ij> execute seeMenu;
IJ ERROR: Unable to establish prepared statement SEEMENU
ij>

Rollback
Syntax

ROLLBACK

Description

Issues a java.sql.Connection.rollback request. Use only if auto-commit is off. A
java.sql.Connection.rollback request undoes the currently active transaction and initiates
a new transaction.

Example

ij> autocommit off;
ij> INSERT INTO menu VALUES ('dessert', 'rhubarb pie', 4);
1 row inserted/updated/deleted
ij> SELECT * from menu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |7
appetizer |baby greens |7
dessert |rhubarb pie |4

4 rows selected
ij> rollback;
ij> SELECT * FROM menu;
COURSE |ITEM |PRICE

entree |lamb chop |14
dessert |creme brulee |7
appetizer |baby greens |7

3 rows selected
ij>

Run
Syntax

RUN

String

Description

Assumes that the value of the string is a valid file name, and redirects ij processing to
read from that file until it ends or an Exit command is executed. If the end of the file is
reached without ij exiting, reading will continue from the previous input source once the
end of the file is reached. Files can contain Run commands.

Copyright

36

ij prints out the statements in the file as it executes them.

Any changes made to the ij environment by the file are visible in the environment when
processing resumes.

Example

ij> run 'setupMenuConn.ij';
ij> -- this is setupMenuConn.ij
-- ij displays its contents as it processes file
ij> connect 'jdbc:derby:menuDB';
ij> autocommit off;
ij> -- this is the end of setupMenuConn.ij
-- there is now a connection to menuDB and no autocommit.
-- input will now resume from the previous source.
;
ij>

Set Connection
Syntax

SET CONNECTION

Identifier

Description

Allows you to specify which connection to make current when you have more than one
connection open. Use the Show Connections command to display open connections.

If there is no such connection, an error results and the current connection is unchanged.

Example

ij> protocol 'jdbc:derby:';
ij> connect 'sample' as sample1;
ij> connect 'newDB;create=true' as newDB;
ij (NEWDB)> show connections;
SAMPLE1 - jdbc:derby:sample
NEWDB* - jdbc:derby:newDB;create=true
* = current connection
ij(NEWDB)> set connection sample1;
ij(SAMPLE1)> disconnect all;
ij>

Show Connections
Syntax

SHOW CONNECTIONS

Description

If there are no connections, the command returns "No connections available".

Otherwise, the command displays a list of connection names and the URLs used to
connect to them. The currently active connection, if there is one, is marked with an * after
its name.

Example

Copyright

37

ij> connect 'sample' as sample1;
ij> connect 'newDB;create=true' as newDB;
ij(NEWDB)> show connections;
SAMPLE1 - jdbc:derby:sample
NEWDB* - jdbc:derby:newDB;create=true
* = current connection
ij(NEWDB)>

Wait For
Syntax

WAIT FOR

Identifier

Description

Displays the results of a previously started asynchronous command.

The identifier for the asynchronous command must have been used in a previous Async
command on this connection. The Wait For command waits for the SQL statement to
complete execution, if it has not already, and then displays the results. If the statement
returns a result set, the Wait For command steps through the rows, not the Async
command. This might result in further execution time passing during the result display.

Example

See Async .

Comment
Syntax

--
Text

Description

You can use a comment anywhere within an ij command and as permitted by the
underlying connection within SQL commands. The comment is ended at the first new line
encountered in the text.

Comments are ignored on input and have no effect on the output displayed.

Example

ij> -- this is a comment;
-- the semicolons in the comment are not taken as the end
-- of the command; for that, we put it outside the --:
;
ij>

Identifier
Syntax

Copyright

38

Identifier

Description

Some ij commands require identifiers. These ij identifiers are case-insensitive. They
must begin with a letter in the range A-Z, and can consist of any number of letters in the
range A-Z, digits in the range 0-9, and underscore (_) characters.

These identifiers exist within the scope of ij only and are distinct from any identifiers
used in SQL commands, except in the case of the Get Cursor command. The Get Cursor
command specifies a cursor name to use in creating a result set.

ij does not recognize or permit delimited identifiers in ij commands. They can be used
in SQL commands.

Example

These are valid ij identifiers:
foo1
exampleIdentifier12345
another_one

String
Syntax

'Text'

Description

Some ij commands require strings. ij strings are represented by the same literal
format as SQL strings and are delimited by single quotation marks. To include a single
quotation mark in a string, you must use two single quotation marks, as shown in the
examples below. ij places no limitation on the lengths of strings, and will treat
embedded new lines in the string as characters in the string.

Some ij commands execute SQL commands specified as strings. Therefore, you must
double any single quotation marks within such strings, as shown in the second example
below.

The cases of letters within a string are preserved.

Example

This is a string in ij And this is its value
'Mary''s umbrella' Mary's umbrella
'hello world' hello world

--returns Joe's
execute 'VALUES ''Joe''''s''';

ij errors
ij might issue messages to inform the user of errors during processing of statements.

ERROR SQLState

Copyright

39

When the underlying JDBC driver returns an SQLException, ij displays the
SQLException message with the prefix "ERROR SQLState". If the SQLException has no
SQLState associated with it, the prefix "ERROR (no SQLState)" is used.

WARNING SQLState

Upon completion of execution of any JDBC request, ij will issue a getWarnings request
and display the SQLWarnings that are returned. Each SQLWarning message is displayed
with the prefix "WARNING SQLState". If an SQLWarning has no SQLState associated
with it, the prefix "WARNING (no SQLState)" is used.

IJ ERROR

When ij runs into errors processing user commands, such as being unable to open the
file named in a Run command or not having a connection to disconnect from, it prints out
a message with the prefix "IJ ERROR".

IJ WARNING

ij displays warning messages to let the user know if behavior might be unexpected. ij
warnings are prefixed with "IJ WARNING".

JAVA ERROR

When an unexpected Java exception occurs, ij prints a message with the prefix "JAVA
ERROR".

Copyright

40

Using the bulk import and export procedures
You might want to import or export a large amount of data between files and the
database. Instead of having to use INSERT and SELECT statements, you can use Derby
procedures to import data directly from files into tables and to export data from tables into
files.

Bulk Import/Export overview
Derby provides import and export system procedures that you can use to import and
export data in delimited data file format.

• Use export procedures to write data from a database to one or more files that are
stored outside of the database. You can use a procedure to export data from a table
into a file or export data from a SELECT statement result into a file.

• Use import procedures to import data from a file into a table. If the target table
already contains data, you can replace or append to the existing data.

You can perform an Import or Export operation from ij or from within an SQL statement.

Options for running the import and export procedures

You can run the import/export procedures from within an SQL statement using ij or any
Java application.

Import/Export reads and writes only text files. Import does not support read-once streams
(live data feeds), because it reads the first line of the file to determine the number of
columns, then reads it again to import the data.
Note: These server-side utilities exhibit different behavior in client/server mode. Typically,
you use them to import data into and export data from a locally running Derby. However,
you can use the import/export procedures when Derby is running in a server framework if
you specify import and export files that are accessible to the server.

Bulk import/export requirements and considerations
The table must exist.

For you to import data into a table, the table must already exist in Derby. The table
does not have to be empty. If the table is not empty, bulk import performs single
inserts which results in slower performance.

Create indexes and primary key, foreign key, and unique constraints first.
To avoid a separate create index step, create indexes and primary keys on tables
before you import data. However, if your memory and disk spaces resources are
limited, you can build the indexes and primary keys after importing data.

Data types.
You can import and export only data of the non-binary, built-in data types. Derby
implicitly converts the strings to the data type of the receiving column. If any of the
implicit conversions fail, the whole import is aborted. For example, "3+7" cannot be
converted into an integer. An export that encounters a runtime error stops.
Note: You cannot import or export the binary data types: BLOB, CLOB, CHAR FOR
BIT DATA, VARCHAR FOR BIT DATA, or LONG VARCHAR FOR BIT DATA.

Locking during import.
Import procedures use the same isolation level as the connection in which they are
executed to insert data into tables. During import, the entire table is exclusively locked
irrespective of the isolation level.

Locking during export.
Export procedures use the same isolation level as the connection in which they are
executed to fetch data from tables.

Import behavior on tables with triggers.
The import procedure fires INSERT triggers when data is appended to the table. The
REPLACE option is not allowed when triggers are enabled on the table.

Copyright

41

Restrictions on the REPLACE option.
If a table that receives imported data already contains data, you can either replace or
append to the existing data. You can use the REPLACE option on tables that have
dependent tables, but the replaced data must maintain referential integrity, otherwise
the import operation will be rolled back. You cannot use the REPLACE option if the
table has enabled triggers.

Restrictions on tables.
You cannot use import procedures to import data into a system table or a declared
temporary table.

Bulk import and export
You can use import and export procedures which are executable from ij or any Java
program. You must have derbytools.jar in your classpath to use the import or export
procedures from ij.

To invoke an import or export procedure, you must be connected to the database into
which data is imported or from which data is exported. Because the procedures will issue
a COMMIT or a ROLLBACK statement, you should perform either a COMMIT or
ROLLBACK to complete all transactions and release all table-level locks prior to invoking
the import or export procedure. Other user applications that access the table with a
separate connection do not need to disconnect.

Note: Imports are transactional. If an error occurs during bulk import, all changes are
rolled back.

Bulk-Import

Derby provides two import procedures you can use to perform bulk-import operations:
1. To import data from a file to a table, use the

SYSCS_UTIL.SYSCS_IMPORT_TABLE procedure. The procedure definition is:

SYSCS_UTIL.SYSCS_IMPORT_TABLE (IN
schemaName
VARCHAR(128),
IN
tableName
VARCHAR(128), IN
fileName
VARCHAR(32672),
IN
columnDelimiter
CHAR(1), IN
characterDelimiter

CHAR(1),
IN
codeset
VARCHAR(128), IN
replace
SMALLINT)

No Result is returned from the procedure.
2. To import data from a file to a subset of columns in a table, use the

SYSCS_UTIL.SYSCS_IMPORT_DATA procedure. To import data to subset of
columns in a table, you specify insertColumns on the table into which data will be
imported and/or specify columnIndexes to import data fields from a file to columns
in a table. The procedure definition is:

SYSCS_UTIL.SYSCS_IMPORT_DATA (IN
schemaName
VARCHAR(128),
IN
tableName
VARCHAR(128), IN
insertColumns
VARCHAR(32672),
IN
columnIndexes

Copyright

42

VARCHAR(32672), IN
fileName
VARCHAR(32672),
IN
columnDelimiter
CHAR(1), IN
characterDelimiter

CHAR(1),
IN
codeset
VARCHAR(128), IN
replace
SMALLINT)

No result is returned from the procedure.

Arguments to the import procedure

• schemaName

Specifies the schema of the table. You can pass a NULL value to use the default
schema name.

• tableName

Specifies the table name of the table into which the data is to be imported. This
table cannot be a system table or a declared temporary table. The string must
exactly match case of the table name. Passing a null will result in an error.

• insertColumns

Specifies the comma separated column names of the table into which the data will
be imported. You can pass a NULL value to import into all columns of the table.

• columnIndexes

Specifies the comma separated column indexes (numbered from one) of the input
data fields that will be imported. You can pass a NULL value to use all input data
fields in the file.

• fileName

Specifies the file that contains the data to be imported. If the path is omitted, the
current working directory is used. The specified location of the file should refer to
the server side location if using the Network Server. Passing a null will result in an
error.

• columnDelimiter

Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can pass a NULL value to use the default value of
a comma.

• characterDelimiter

Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can pass a NULL value to use
the default value of a double quotation mark.

• codeset

Specifies the code set of the data in the input file. The code set name should be one
of the Java-supported character encoding sets. Data is converted from the specified
code set to the database code set (UTF-8). You can pass a NULL value to interpret
the data file in the same code set as the JVM in which it is being executed.

• replace

A non-zero value for the replace parameter will import in REPLACE mode, while a
zero value will import in INSERT mode. REPLACE mode deletes all existing data
from the table by truncating the table and inserts the imported data. The table
definition and the index definitions are not changed. You can only import with
REPLACE mode if the table already exists. INSERT mode adds the imported data

Copyright

43

to the table without changing the existing table data. Passing a null value will result
in an error.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the import procedure using all upper-case characters. If you created a
schema, table, or column name as a delimited identifier, you must pass the name to the
import procedure using the same case that was used when it was created.

Bulk-Export

Derby provides two export procedures you can use to perform bulk-export operations:
1. To export all the data from a table to a file, use the

SYSCS_UTIL.SYSCS_EXPORT_TABLE procedure. The procedure definition is:

SYSCS_UTIL.SYSCS_EXPORT_TABLE (IN
schemaName
VARCHAR(128),
IN
tableName
VARCHAR(128), IN
fileName
VARCHAR(32672),
IN
columnDelimiter
CHAR(1), IN
characterDelimiter
CHAR(1),
IN
codeset
VARCHAR(128))

No Result is returned from the procedure.
2. To export the result of a SELECT statement to a file, use the

SYSCS_UTIL.SYSCS_EXPORT_QUERY procedure. The procedure definition is:

SYSCS_UTIL.SYSCS_EXPORT_QUERY(IN
selectStatement
VARCHAR(32672),
IN
tableName
VARCHAR(128), IN
fileName
VARCHAR(32672),
IN
columnDelimiter
CHAR(1), IN
characterDelimiter
CHAR(1),
IN
codeset
VARCHAR(128))

No result is returned from the procedure.

Arguments to the export procedure

• schemaName

Specifies the schema of the table. You can pass a NULL value to use the default
schema name.

• selectStatement

Specifies the SELECT statement query that returns the data to be exported.
Passing a NULL value will result in an error.

• tableName

Specifies the table name of the table or view from which the data is to be exported.
This table cannot be a system table or a declared temporary table. The string must
exactly match the case of the table name. Passing a null will result in an error.

• fileName

Copyright

44

Specifies the file to which the data is to be exported. If the path is omitted, the
current working directory is used. If the name of a file that already exists is
specified, the export utility overwrites the contents of the file; it does not append the
information. The specified location of the file should refer to the server-side location
if using the Network Server. Passing a null will result in an error.

• columnDelimiter

Specifies a column delimiter. The specified character is used in place of a comma to
signify the end of a column. You can pass a NULL value to use the default value of
a comma.

• characterDelimiter

Specifies a character delimiter. The specified character is used in place of double
quotation marks to enclose a character string. You can pass a NULL value to use
the default value of a double quotation mark.

• codeset

Specifies the code set of the data in the export file. The code set name should be
one of the Java-supported character encoding sets. Data is converted from the
database code page to the specified code page before writing to the file. You can
pass a NULL value to write the data in the same code page as the JVM in which it is
being executed.

If you create a schema, table, or column name as a non-delimited identifier, you must
pass the name to the export procedure using all upper-case characters. If you created a
schema or table name as a delimited identifier, you must pass the name to the export
procedure using the same case that was used when it was created.

Examples of bulk import and export

All examples in this section are run using the ij utility.

The following example shows how to import data into the staff table in a sample database
from the myfile.del file.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE (null,'staff','myfile.del',null,null,
null,0);

The following example shows how to import data into the staff table in a sample database
from a delimited data file myfile.del . This example defines the percentage character
(%) as the string delimiter, and a semicolon as the column delimiter.

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE
(null,'staff','c:\output\myfile.del',';','%',
null,0);

The following example shows how to export data from the staff table in a sample
database to the file myfile.del .

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE
(null,'staff','myfile.del',null,null,null);

The following example shows how to export employee data in department 20 from the

Copyright

45

staff table in a sample database to the file awards.del.

CALL SYSCS_UTIL.SYSCS_EXPORT_QUERY ('select * from staff where dept=20',
'c:\output\awards.del',null,null,null);

The following example shows how to export data from the staff table to a delimited data
file myfile.del with the percentage character (%) as the character delimiter, and a
semicolon as the column delimiter from the staff table.

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE
(null,'staff','c:\output\myfile.del',';','%',
null);

Importing into tables with identity columns

You can use the SYSCS_UTIL.SYSCS_IMPORT_DATA procedure to import data into a
table that contains an identity column. If the identity column is defined as GENERATED
ALWAYS, an identity value is generated for a table row whenever the corresponding row
field in the input file does not contain a value for the identity column. When a
corresponding row field in the input file already contains a value for the identity column,
the row cannot be inserted into the table and the import operation will fail. To prevent
such scenarios, the following examples show how to specify arguments in the
SYSCS_UTIL.SYSCS_IMPORT_DATA procedure to ignore data for the identity column
from the file, and/or omit the column name from the insert column list.

If the REPLACE option is used during import, Derby resets its internal counter of the last
identity value for a column to the initial value defined for the identity column.

Consider the following table that contains an identity column, c2:

CREATE TABLE tab1 (c1 CHAR(30), c2 INT GENERATED ALWAYS AS IDENTITY, c3
REAL,
c4 CHAR(1))

• Suppose you want to import data into tab1 from a file myfile.del that does not
have identity column information and myfile.del contains three fields with the
following data:

Robert,45.2,J
Mike,76.9,K
Leo,23.4,I

To import data from myfile.del into the tab1 table, explicitly list the column
names for tab1 without the identity column c2 and execute the
SYSCS_UTIL.SYSCS_IMPORT_DATA procedure as follows:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4' , null,
'myfile.del',null, null,null,0)

• Suppose you want import data into tab1 from a file empfile.del that also has
identity column information and the file contains three fields with the following data:

Robert,1,45.2,J
Mike,2,23.4,I
Leo,3,23.4,I

To import data from empfile.del into the tab1 table, explicitly specify an insert
column list without the identity column c2 and specify the column indexes without

Copyright

46

identity column data and execute the SYSCS_UTIL.SYSCS_IMPORT_DATA
procedure as follows:

CALL SYSCS_UTIL.SYSCS_IMPORT_DATA (NULL, 'TAB1', 'C1,C3,C4' ,
'1,3,4',
'empfile.del',null, null,null,0)

Executing import/export procedures from JDBC
You can execute import and export procedures from a JDBC program. The following
code fragment shows how you might call the SYSCS_UTIL.SYSCS_EXPORT_TABLE
procedure from Java. In this example, the procedure exports the staff table data in the
default schema to the staff.dat file, using a percentage (%) character to specify a
column delimiter.

PreparedStatement ps=conn.prepareStatement("CALL
SYSCS_UTIL.SYSCS_EXPORT_TABLE
(?,?,?,?,?,?)");
ps.setString(1,null);
ps.setString(2,"STAFF");
ps.setString(3,"staff.dat");
ps.setString(4,"%");
ps.setString(5,null);
ps.setString(6,null);
ps.execute();

File format for input and output
The default file format is a delimited text file with the following characteristics:

• Rows are separated by a new line.
• Fields are separated by a comma (,)
• Character-based fields are delimited with double quotes (")

Before performing import or export operations, you must ensure that the chosen delimiter
character is not contained in the data to be imported or exported. If you chose a delimiter
character that is part of the data to be imported/exported unexpected errors might occur.
The following restrictions apply to column and character delimiters:

• Delimiters are mutually exclusive
• A delimiter cannot be a line-feed character, a carriage return, or a blank space.
• The default decimal point (.) cannot be a character delimiter.

The record delimiter is assumed to be a new-line character. The record delimiter should
not be used as any other delimiter.

Character delimiters are permitted with the character-based fields (CHAR, VARCHAR,
and LONG VARCHAR) of a file during import, any pair of character delimiters found
between the enclosing character delimiters is imported into the database. For example,
suppose you have the following character string:

"what a ""great"" day!"

The preceding character string gets imported into the database as:

What a "great" day!

During export, the rule applies in reverse. For example, suppose you have the following
character string:

"The boot has a 3" heel."

The preceding character string gets exported to a file as:

"The boot has a 3""heel."

The following example file shows four rows and four columns in default file format:

Copyright

47

1,abc,22,def
22,,,"a is a zero-length string, b is null"
13,"hello",454,"world"
4,b and c are both null,,

The export procedure outputs the following values:

1,"abc",22,"def"
22,,,"a is a zero-length string, b is null"
13,"hello",454,"world"
4,"b and c are both null",,

Treatment of NULLS
In a delimited file, a NULL value is exported as an empty field. The following example
shows the export of a four-column row in which the third column is NULL:

7,95,,Happy Birthday

Import works the same way; an empty field is imported as a NULL value.

CODESET values for import/export

Import and export procedures accept arguments to specify codeset values. You can
specify the codeset (character encoding) for import and export procedures to override the
system default. The following table contains a sample of character encoding supported
by JDK 1.x. To review the complete list of character encodings, refer to your Java
documentation.

Table1. Sample character encodings
This table contains sample character encodings supported by JDK1.x.

Character Encoding Explanation

8859_1 ISO Latin-1

8859_2 ISO Latin-2

8859_7 ISO Latin/Greek

Cp1257 Windows Baltic

Cp1258 Windows Vietnamese

Cp437 PC Original

EUCJIS Japanese EUC

GB2312 GB2312-80 Simplified Chinese

JIS JIS

KSC5601 KSC5601 Korean

MacCroatian Macintosh Croatian

MacCyrillic Macintosh Cyrillic

SJIS PC and Windows Japanese

UTF-8 Standard UTF-8

The following example shows how to specify UTF-8 encoding to export from the staff
table:

Copyright

48

CALL SYSCS_UTIL.SYSCS_EXPORT_TABLE
(NULL,'STAFF','staff.dat',NULL,NULL,'UTF-8')

The following example shows how to specify UTF-8 encoding to import from the staff
table:

CALL SYSCS_UTIL.SYSCS_IMPORT_TABLE
(NULL,'STAFF','staff.dat',NULL,NULL,'UTF-8',0)

Copyright

49

Storing jar files in a database
SQLJ.install_jar, SQLJ.remove_jar, and SQLJ.replace_jar, are a set of
procedures in the SQL schema that allow you to store jar files in the database.

Your jar file has a physical name (the name you gave it when you created it) and a Derby
name (the Derby identifier you give it when you load it into a particular schema). Its Derby
name is an SQL92Identifier; it can be delimited and must be unique within a schema. A
single schema can store more than one jar file.

Adding a Jar File
To add a jar file using SQL syntax:

CALL SQL.install_jar('
jarFilePath
', qualifiedJarName, 0)

Removing a jar file
To remove a jar file using SQL syntax:

CALL SQLJ.remove_jar ('
jarFilePath
', qualifiedJarName, 0)

Replacing a jar file
To replace a jar file using SQL syntax:

CALL SQLJ.replace_jar('
jarFilePath
', qualifiedJarName, 0)

• jarFilePath

The path and physical name of the jar file to add or use as a replacement. For
example:

d:/todays_build/tours.jar

• qualifiedJarName

The Derby name of the jar file, qualified by the schema name. Two examples:

MYSCHEMA.Sample1 -- a delimited identifier.

MYSCHEMA."Sample2"

Installing a jar example
• Complete SQL example for installing a jar:

CALL SQLJ.install_jar('d:\todays_build\tours.jar',
'APP."ToursLogic!"', 0);

Copyright

50

For more information about storing classes in a database, see the Derby Developer's
Guide .

Copyright

51

sysinfo
Use the sysinfo utility to display information about your Java environment and Derby
(including version information). To use sysinfo, either derby.jar or derbytools .jar must be
in your classpath.

java org.apache.derby.tools.sysinfo

sysinfo example

$ java org.apache.derby.tools.sysinfo
------------------ Java Information ------------------
Java Version: 1.4.2_07
Java Vendor: Sun Microsystems Inc.
Java home: c:\p4main\jdk142\jre
Java classpath: c:\Derby_10\lib\derby.jar;c:\Derby_10\lib\derbytools.jar;
c:\Derby_10\lib\derbyLocale_de_DE.jar;e:\Derby_10\lib\derbyLocale_es.jar;
e:\Derby_10\lib\derbyLocale_fr.jar;c:\Derby_10\lib\derbyLocale_it.jar;
e:\Derby_10\lib\derbyLocale_ja_JP.jar;e:\Derby_10\lib\derbyLocale_ko_KR.jar;
e:\Derby_10\lib\derbyLocale_pt_BR.jar;e:\Derby_10\lib\derbyLocale_zh_CN.jar;
e:\Derby_10\lib\derbyLocale_zh_TW.jar
OS name: Windows 2000
OS architecture: x86
OS version: 5.0
Java user name: user1
Java user home: C:\Documents and Settings\myhome
Java user dir: E:\p4main\systest\myrtst7
java.specification.name: Java Platform API Specification
java.specification.version: 1.4
--------- Derby Information --------
JRE - JDBC: J2SE 1.4.2 - JDBC 3.0
[c:\Derby_10\lib\derby.jar] 10.1.1.0 - (190628)
[c:\Derby_10\lib\derbytools.jar] 10.1.1.0 - (190628)
--
----------------- Locale Information -----------------
Current Locale : [English/United States [en_US]]
Found support for locale: [de_DE]

version: 10.1.1.0 - (190628)
Found support for locale: [es]

version: 10.1.1.0 - (190628)
Found support for locale: [fr]

version: 10.1.1.0 - (190628)
Found support for locale: [it]

version: 10.1.1.0 - (190628)
Found support for locale: [ja_JP]

version: 10.1.1.0 - (190628)
Found support for locale: [ko_KR]

version: 10.1.1.0 - (190628)
Found support for locale: [pt_BR]

version: 10.1.1.0 - (190628)
Found support for locale: [zh_CN]

version: 10.1.1.0 - (190628)
Found support for locale: [zh_TW]

When requesting help from Derby technical support or posting on the forum, include a
copy of the information provided by sysinfo.

Using sysinfo to check the classpath
sysinfo provides an argument (-cp) which can be used to test the classpath.

java org.apache.derby.tools.sysinfo -cp
[[embedded][server][client] [tools] [anyClass.class]]

If your environment is set up correctly, the utility shows output indicating success.

You can provide optional arguments with -cp to test different environments. Optional
arguments to -cp are:

Copyright

52

• embedded
• server
• client
• tools
• classname.class

If something is missing from your classpath, the utility indicates what is missing. For
example, if you neglected to include the directory containing the class named SimpleApp
to your classpath, the utility would indicate this when the following command line was
issued (type all on one line):

$ java org.apache.derby.tools.sysinfo -cp embedded SimpleApp.class
FOUND IN CLASS PATH:

Derby embedded engine library (derby.jar)

NOT FOUND IN CLASS PATH:

user-specified class (SimpleApp)
(SimpleApp not found.)

Copyright

53

dblook
Use the dblook utility to view all or parts of the Data Definition Language (DDL) for a
given database. You must place the Derby derbytools.jar file in the classpath
directory to use the dblook utility.

Using dblook
The syntax for the command to launch the dblook utility is:

java org.apache.derby.tools.dblook -d <databaseURL> [OPTIONS]

The value for databaseUrl is the complete URL for the database. Where appropriate, the
URL includes any connection attributes or properties that might be required to access the
database.

For example, to connect to the database 'myDB', the URL would simply be
'jdbc:derby:myDB'; to connect using the Network Server to a database
'C:\private\tmp\myDB' on a remote server (port 1527), the URL would be:

'jdbc:derby://localhost:1527/"C:\private\tmp\myDB"
;user=someusr;password=somepwd'

As with other Derby utilities, you must ensure that no other JVMs are started against the
database when you call the dblook utility, or an exception will occur and will print to the
dblook.log. If this exception is thrown, the dblook utility will quit. To recover, you
must ensure that no other Derby applications running in a separate JVM are connected to
the source database. These connections need to be shutdown. Once all existing JVMs
running against the database have been shutdown, the dblook utility will execute
successfully. You can also start the Derby Network server and run the dblook utility as a
client application while other clients are connected to the server.

dblook options

The dblook utility options include:

-z <schemaName>

specifies the schema to which the DDL should be restricted. Only objects with the
specified schema are included in the DDL file.

-t <tableOne> <tableTwo> ...
specifies the tables to which the DDL should be restricted. All tables with a name from
this list will be included in the DDL file subject to -z limitations, as will the DDL for any
keys, checks, or indexes on which the table definitions depend.

Additionally, if the statement text of any triggers or views includes a reference to any
of the listed table names, the DDL for that trigger/view will also be generated, subject
to -z limitations. If a table is not included in this list, then neither the table nor any of
its keys, checks, or indexes will be included in the final DDL. If this parameter is not
provided, all database objects will be generated, subject to -z limitations. Table
names are separated by whitespace.

-td
specifies a statement delimiter for SQL statements generated by dblook. If a
statement delimiter option is not specified, the default is the semicolon (';'). At the end
of each DDL statement, the delimiter is printed, followed by a new line.

Copyright

54

-o <filename>
specifies the file where the generated DDL is written. If this file is not specified, it
defaults to the console (i.e. standard System.out).

-append
prevents overwriting the DDL output ('-o' parameter, if specified) and "dblook.log"
files. If this parameter is specified, and execution of the dblook command leads to
the creation of files with names identical to existing files in the current directory,
dblook will append to the existing files. If this parameter is not set, the existing files
will be overridden.

-verbose
specifies that all errors and warnings (both SQL and internal to dblook) should be
echoed to the console (via System.err), in addition to being printed to the "dblook.log"
file. If this parameter is not set, the errors and warnings only go to the "dblook.log"
file.

-noview
specifies that CREATE VIEW statements should not be generated.

Generating the DDL for a database
The dblook utility generates all of the following objects when generating the DDL for a
database:

• Checks
• Functions
• Indexes
• Jar files
• Keys (primary, foreign, and unique)
• Schemas
• Stored procedures
• Triggers
• Tables
• Views

Note: When dblook runs against a database that has jar files installed, it will create a new
directory, called DERBYJARS, within the current directory, and that is where it will keep
copies of all of the jars it encounters. In order to run the generated DDL as a script, this
DERBYJARS directory must either 1) exist within the directory in which it was created, or
2) be moved manually to another directory, in which case the path in the generated DDL
file must be manually changed to reflect to the new location.

The dblook utility ignores any objects that have system schemas (for example, SYS,
SYSIBM), since DDL is not able to directly create nor modify system objects.

dblook examples

The following examples demonstrate how the various dblook utility options might be
specified from a command line. Each example is preceded by a brief description of how
the dblook utility behaves given the specified options.

Dump the DDL for everything in database 'sample' (in the current
directory)
to the console.
java org.apache.derby.tools.dblook -d jdbc:derby:sample

Dump the DDL for everything in database 'sample' (in the current
directory)
to the console,
and include error/warning messages (with the latter being printed via
System.err)
java org.apache.derby.tools.dblook

-d jdbc:derby:sample -verbose

Copyright

55

Dump the DDL for everything in database 'sample' (in the current
directory)
to a file called "myDB_DDL.sql" (in the current directory).
java org.apache.derby.tools.dblook -d jdbc:derby:sample -o myDB_DDL.sql

Dump the DDL for everything in database 'sample' (in a specified
directory)
to a file called "newDB.sql" (in a specified directory).
java org.apache.derby.tools.dblook -d
'jdbc:derby:c:\private\stuff\sample'

-o 'C:\temp\newDB.sql'

Dump the DDL for all objects in database 'sample' with schema 'SAMP'
to the console.
java org.apache.derby.tools.dblook -d jdbc:derby:sample -z samp

Dump the DDL for all objects in remote database 'sample' on
'localhost:1527'
with schema 'SAMP' to the console.
java org.apache.derby.tools.dblook -d

'jdbc:derby://localhost:1527/"C:\temp\sample";
user=someusr;password=somepwd' -z samp

Dump the DDL for all objects with schema 'SAMP' in database 'sample'
that are related to the table name 'My Table' to the console.
java org.apache.derby.tools.dblook -d jdbc:derby:sample -z samp -t "My
Table"

Dump the DDL for all objects in database 'sample' that are related
to either of the table names 'STAFF' or 'My Table' to the console.
java org.apache.derby.tools.dblook -d jdbc:derby:sample -t "My Table"
staff

Dump the DDL for all objects in database 'sample' to myDB_DDL.sql,
with no statement delimiter (i.e. leave off the default semi-colon),
and append to the output files if they are already there.
java org.apache.derby.tools.dblook -d jdbc:derby:sample

-o myDB_DDL.sql -td '' -append

Dump the DDL for all objects EXCEPT views in database 'sample'
to the console.
java org.apache.derby.tools.dblook -d jdbc:derby:sample -noview

Status messages are printed to the output (either a -o filename, if specified, or the
console) as SQL script comments. These status messages serve as headers to show
which types of database objects are being (or have been) processed by the dblook utility.

Copyright

56

Trademarks
The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Copyright

57

	Copyright
	About this guide
	Purpose of this document
	Audience
	How this guide is organized

	What are the Derby tools and utilities?
	Overview
	JVM and classpath for Derby tools
	Java 2 Platform, Standard Edition, Version 1.3
	Classpath

	About Derby databases
	JDBC basics
	JDBC drivers overview
	Database connection URLs

	Tools and localization
	About locales
	Database territory
	Specifying an alternate codeset
	Formatting display of locale-sensitive data

	Using ij
	Starting ij
	Starting ij using properties
	Getting started with ij
	Connecting to a Derby database
	Specifying the driver name and database connection URL

	Using ij commands
	Other uses for ij

	Running ij scripts

	ij properties reference
	ij.connection.connectionName
	ij.database
	ij.driver
	ij.maximumDisplayWidth
	ij.outfile
	ij.protocol
	ij.protocol.protocolName
	ij.showErrorCode
	ij.URLCheck
	derby.ui.codeset

	ij commands and errors reference
	ij commands
	Conventions for ij examples
	ij SQL command behavior
	ij command example

	Absolute
	After Last
	Async
	Autocommit
	Before First
	Close
	Commit
	Connect
	Disconnect
	Driver
	Elapsedtime
	Execute
	Exit
	First
	Get Cursor
	Get Scroll Insensitive Cursor
	Help
	Last
	LocalizedDisplay
	MaximumDisplayWidth
	Next
	Prepare
	Previous
	Protocol
	Readonly
	Relative
	Remove
	Rollback
	Run
	Set Connection
	Show Connections
	Wait For
	Comment
	Identifier
	String
	ij errors
	ERROR SQLState
	WARNING SQLState
	IJ ERROR
	IJ WARNING
	JAVA ERROR

	Using the bulk import and export procedures
	Bulk Import/Export overview
	Options for running the import and export procedures
	Bulk import/export requirements and considerations

	Bulk import and export
	Bulk-Import
	Arguments to the import procedure

	Bulk-Export
	Arguments to the export procedure

	Examples of bulk import and export
	Importing into tables with identity columns
	Executing import/export procedures from JDBC
	File format for input and output
	Treatment of NULLS
	CODESET values for import/export

	Storing jar files in a database
	Adding a Jar File
	Removing a jar file
	Replacing a jar file
	Installing a jar example

	sysinfo
	sysinfo example
	Using sysinfo to check the classpath

	dblook
	Using dblook
	dblook options
	Generating the DDL for a database
	dblook examples

	Trademarks

