
Derby Security Guide
Version 10.15

Derby Document build:
February 5, 2019, 8:13:52 AM (PST)

Version 10.15 Derby Security Guide

i

Contents
Copyright..4

License... 5

About this guide..9
Purpose of this guide..9
Audience... 9
How this guide is organized...9

Part One: Introduction to database security..11
Why databases need security.. 11

Vulnerabilities of unsecured databases...11
Threats to unsecured databases...11

Defenses against security threats... 12
Derby defenses against threats.. 12
Defenses outside of Derby..13

Defenses mapped to threats.. 14
Designing safer Derby applications...15
Security terminology... 15

Part Two: Configuring security for Derby..17
Basic security configuration tasks.. 17

Configuring security in an embedded environment...18
Configuring security in a client/server environment.. 18

Configuring database encryption...20
Requirements for Derby encryption.. 21
Working with encryption.. 21

Using signed jar files.. 27
Configuring SSL/TLS... 28

Creating a client key pair and certificate...29
Creating a server key pair and certificate... 29
Importing certificates... 29
Booting the server and connecting to it.. 30
Key and certificate handling..31
Starting the server with SSL/TLS..32
Running the client with SSL/TLS.. 33
Other server commands..33

Understanding identity in Derby.. 34
Users and authorization identifiers..34
Database Owner..35

Configuring user authentication.. 36
Configuring LDAP authentication.. 37
Configuring NATIVE authentication...41
Specifying authentication with a user-defined class..43
List of user authentication properties.. 45
Programming applications for Derby user authentication....................................46
Login failure exceptions with user authentication..47
Configuring Network Server authentication in special circumstances................. 47

Configuring user authorization.. 49
Configuring coarse-grained user authorization... 50
Configuring fine-grained user authorization.. 52

Configuring Java security...70
Basic engine security policy template... 71
Basic server security policy template..73

Version 10.15 Derby Security Guide

ii

Basic client security policy template... 76
Basic tools security policy template.. 77
Sample customized Java security policy file...79
Using a Java security policy file..81
Running the Network Server with a security manager..82
Running the Network Server without a security manager................................... 82

Restricting file permissions..82
Putting it all together.. 83

Starting a secured Network Server... 83
Creating and using a secure database... 84
Stopping the secured Network Server.. 85

Trademarks.. 86

Derby Security Guide

3

Apache Software FoundationDerby Security GuideApache Derby

Derby Security Guide

4

Copyright

Copyright 2004-2019 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Derby Security Guide

5

License

The Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,
 reproduction, and distribution as defined by Sections 1 through
 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized
 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under
 common control with that entity. For the purposes of this
 definition, "control" means (i) the power, direct or indirect,
 to cause the direction or management of such entity, whether by
 contract or otherwise, or (ii) ownership of fifty percent (50%)
 or more of the outstanding shares, or (iii) beneficial ownership
 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making
 modifications, including but not limited to software source code,
 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or
 Object form, that is based on (or derived from) the Work and
 for which the editorial revisions, annotations, elaborations,
 or other modifications represent, as a whole, an original work
 of authorship. For the purposes of this License, Derivative
 Works shall not include works that remain separable from, or
 merely link (or bind by name) to the interfaces of, the Work
 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or
 additions to that Work or Derivative Works thereof, that is
 intentionally submitted to Licensor for inclusion in the Work
 by the copyright owner or by an individual or Legal Entity
 authorized to submit on behalf of the copyright owner. For the
 purposes of this definition,
 "submitted" means any form of electronic, verbal, or written
 communication sent to the Licensor or its representatives,
 including but not limited to communication on electronic mailing
 lists, source code control systems, and issue tracking systems

Derby Security Guide

6

 that are managed by, or on behalf of, the Licensor for the
 purpose of discussing and improving the Work, but excluding
 communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a
 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal
 Entity on behalf of whom a Contribution has been received by
 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions
 of this License, each Contributor hereby grants to You a
 perpetual, worldwide, non-exclusive, no-charge, royalty-free,
 irrevocable copyright license to reproduce, prepare Derivative
 Works of, publicly display, publicly perform, sublicense, and
 distribute the Work and such Derivative Works in Source or
 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have
 made, use, offer to sell, sell, import, and otherwise transfer
 the Work, where such license applies only to those patent claims
 licensable by such Contributor that are necessarily infringed by
 their Contribution(s) alone or by combination of their
 Contribution(s) with the Work to which such Contribution(s) was
 submitted. If You institute patent litigation against any entity
 (including a cross-claim or counterclaim in a lawsuit) alleging
 that the Work or a Contribution incorporated within the Work
 constitutes direct or contributory patent infringement, then any
 patent licenses granted to You under this License for that Work
 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute
 must include a readable copy of the attribution notices
 contained within such NOTICE file, excluding those notices
 that do not pertain to any part of the Derivative Works, in
 at least one of the following places: within a NOTICE text
 file distributed as part of the Derivative Works; within the
 Source form or documentation, if provided along with the
 Derivative Works; or, within a display generated by the
 Derivative Works, if and wherever such third-party notices
 normally appear. The contents of the NOTICE file are for
 informational purposes only and do not modify the License.
 You may add Your own attribution notices within Derivative
 Works that You distribute, alongside or as an addendum to
 the NOTICE text from the Work, provided that such additional
 attribution notices cannot be construed as modifying the
 License.

 You may add Your own copyright statement to Your modifications

Derby Security Guide

7

 and may provide additional or different license terms and
 conditions for use, reproduction, or distribution of Your
 modifications, or for any such Derivative Works as a whole,
 provided Your use, reproduction, and distribution of the Work
 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state
 otherwise, any Contribution intentionally submitted for
 inclusion in the Work by You to the Licensor shall be under the
 terms and conditions of this License, without any additional
 terms or conditions. Notwithstanding the above, nothing herein
 shall supersede or modify the terms of any separate license
 agreement you may have executed with Licensor regarding such
 Contributions.

 6. Trademarks. This License does not grant permission to use the
 trade names, trademarks, service marks, or product names of the
 Licensor, except as required for reasonable and customary use
 in describing the origin of the Work and reproducing the content
 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or
 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
 determining the appropriateness of using or redistributing the
 Work and assume any risks associated with Your exercise of
 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and
 grossly negligent acts) or agreed to in writing, shall any
 Contributor be liable to You for damages, including any direct,
 indirect, special, incidental, or consequential damages of any
 character arising as a result of this License or out of the use
 or inability to use the Work (including but not limited to
 damages for loss of goodwill, work stoppage, computer failure or
 malfunction, or any and all other commercial damages or losses),
 even if such Contributor has been advised of the possibility of
 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by
 reason of your accepting any such warranty or additional
 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Derby Security Guide

8

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

Derby Security Guide

9

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

For more information about Derby, visit the Derby website at http://db.apache.org/derby/.
The website provides pointers to the Derby Wiki and other resources, such as the
derby-users mailing list, where you can ask questions about issues not covered in the
documentation.

Purpose of this guide
This guide provides information on securing Derby databases.

Derby provides several ways to protect the correctness and privacy of your data as
well as to prevent accidental or malicious misuse of the database software itself. This
guide explains how to improve the database security of applications and machines that
use Derby. It describes how to configure security for both embedded applications and
applications that use the Derby Network Server.

Audience
This guide is intended for software developers who already know some SQL and Java.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting books on those subjects.

How this guide is organized
This guide includes the following two parts.

Part One: Introduction to database security

• Why databases need security

Describes the vulnerabilities and threats that databases face.
• Defenses against security threats

Describes the kinds of defenses that databases can use.
• Defenses mapped to threats

Shows how the defenses available to databases map to the threats that they face.
• Designing safer Derby applications

Describes important techniques for securing databases.
• Security terminology

Provides a glossary of security terms used in this part.

Part Two: Configuring security for Derby

• Basic security configuration tasks

Lists basic tasks for configuring security in an embedded or client/server
environment.

• Configuring database encryption

Explains how to encrypt Derby databases.
• Using signed jar files

http://db.apache.org/derby/

Derby Security Guide

10

Explains how to use signed jar files in Derby databases.
• Configuring SSL/TLS

Explains how to use SSL/TLS to encrypt network traffic in a client/server
environment.

• Understanding identity in Derby

Describes the concepts of identity, users, and authorization identifiers in Derby.
• Configuring user authentication

Explains how to configure authentication, which determines whether someone is a
legal user.

• Configuring user authorization

Explains how to configure authorization, which determines what operations can be
performed by a user's identity.

• Configuring Java security

Explains how to use a Java security manager with Derby.
• Restricting file permissions

Explains how to take advantage of file system protections.
• Putting it all together

Shows how to enable all the available Derby defenses.

Derby Security Guide

11

Part One: Introduction to database security

This part of the manual provides a conceptual introduction to database security.

Why databases need security
An unsecured database has numerous vulnerabilities to different kinds of threats.

This section does not provide a complete list of these vulnerabilities and threats. No
survey of security concerns can hope to be complete. However, this section attempts to
list the major vulnerabilities and threats known today.

The remainder of this guide describes how you can combat these threats.

Vulnerabilities of unsecured databases

If you do not configure Derby security, you must be aware of the following vulnerabilities.

• Network JDBC: Network JDBC connections expose sensitive operations to use by
persons who may not have account privileges on the database machine.

• Cleartext traffic: By default, network traffic travels in cleartext.
• Unbounded growth: Tables can grow arbitrarily large.
• CPU hogging: Unbounded CPU cycles can be consumed by connection attempts,

SQL queries, and user code running in the database.
• Superusers: By default, all Derby users enjoy extensive powers to read and write in

all databases.
• Launch privileges: Derby procedural code executes with the operating system

privileges of the account that launched the virtual machine. This includes
system-supplied procedures as well as custom, user-coded procedures.

• User code: Arbitrary user code can execute in the Derby virtual machine by means
of user-coded functions and procedures.

• Open source: Derby's code itself is publicly visible as part of the Apache Derby
open source project. This means that an attacker can write subtle malware after
studying the code and file formats. Note that while closed source code enjoys the
advantage of "security by obscurity", openness can confer other, countervailing
security advantages.

Threats to unsecured databases

A threat is potential damage caused by an attacker using a technique to exploit a
vulnerability. We have already seen examples of Derby vulnerabilities. Examples of
damages, attackers, and techniques follow.

Significant damages include the following.

• Denial-of-service attacks: An attacker can monopolize resources on the host
machine. For instance, an attacker can launch a runaway procedure on the Derby
virtual machine, fill up the file system, or pepper the Derby server with incessant
connection requests.

• Theft: An attacker can read private information stored in a Derby database or
transmitted across the network. With enough privileges and by exploiting application
code visible on the classpath, an attacker can use Derby to read private information
stored elsewhere on the server machine or even on other machines inside the
firewall.

• Corruption: An attacker can modify or destroy information stored in a Derby
database or elsewhere inside the firewall.

Derby Security Guide

12

Attackers include the following.

• Insiders: These are privileged persons who enjoy access to systems inside
the firewall and maybe even to restricted machine rooms. Drunken System
Administrators and disgruntled co-workers can cause significant damage.

• Outsiders: These include politically motivated governments and guerillas,
commercially motivated businesses and criminals, and thrill-seeking attackers.

Techniques of attack include the following.

• SQL injection: This technique plagues applications that construct queries by
concatenating input from clients. A clever client can put SQL into these fields. That
SQL, not intended by the application, then runs inside the database.

• Man-in-the-middle: In this technique, the client believes that it is talking to the
server. In reality, the connection has been intercepted by another machine. The
device in the middle can examine and alter the traffic.

• Eavesdropping: This is a special case of the man-in-the-middle attack. The
attacker listens to the network traffic but does not interfere with it. An example of
this technique is password sniffing, in which a machine in the middle intercepts the
credentials handshake between client and server.

• Malware: This is a general term for viruses, worms, trojan horses, and other
intrusive or destructive code that can infect a machine.

• Probing: This is the technical equivalent of jiggling door handles to see what doors
are unlocked.

• Physical access: This refers to the low-tech, brute-force technique of gaining
physical access to a restricted area or machine and, for instance, exploiting
superuser powers that might be available from a system's console.

• Social engineering: This refers to the low-tech technique of gaining and abusing
the confidence of someone who has the keys.

Defenses against security threats
Defenses against threats can be divided into two categories.

• Derby defenses
• Other defenses

The following terms are useful in discussing these defenses.

• System Administrator: This is the person who configures Derby's system-wide
behavior. Typically, this is a highly privileged user responsible for allocating
machine resources, managing the network, configuring security, and actually
launching the Virtual Machine (VM).

• Database Owner: This is the person who creates and tends the databases needed
by a particular application. Of course, the Database Owner could be the System
Administrator.

• User: This is a person authorized to use an application. This includes end-users,
technical support engineers, and developers who maintain the application.

Derby defenses against threats

Derby provides numerous defenses against security threats.

These defenses are described in the following table.

Table 1. Derby defenses

Derby Security Guide

13

Defense Task Owner Description

Java security System Administrator Using a Java
SecurityManager and
policy file, the System
Administrator can restrict
the permissions granted
to user-written code. The
System Administrator can
also restrict the permissions
granted to Derby itself.

SSL/TLS System Administrator The System Administrator
can require that SSL/TLS
be used to encrypt network
traffic between Derby
clients and servers, along
the way raising an extra
authentication hurdle.

Encryption Database Owner A Database Owner can
require that the data for an
application be encrypted
before being stored on disk.
This makes it expensive to
steal and corrupt the data.

Authentication Database Owner Using usernames and
passwords, a Database
Owner can restrict access
to an application's data.

Coarse-grained
authorization

Database Owner A Database Owner can
divide an application's
users into three groups:
those with no privileges,
those with read-only
privileges, and those with
read-write privileges.

Fine-grained SQL
authorization

Database Owner By using SQL GRANT
and REVOKE statements,
a Database Owner can
further restrict access to
fine-grained pieces of data
and code.

Defenses outside of Derby

In addition to the defenses provided by Derby, you should take advantage of defenses
provided by your machine and intranet.

It is important to configure these defenses to protect Derby from attacks by both outsiders
and insiders.

• Firewalls: Limit network access to the machine that runs Derby.
• Accounts: Limit login access to the machine that runs Derby. Centrally administer

accounts using, for instance, an LDAP server.

Derby Security Guide

14

• Physical locks: Limit physical access to the machine that runs Derby.
• Secure traffic: Encrypt the traffic that flows on your internal network.
• File permissions: Restrict the file permissions granted to the account that launches

Derby.
• Quotas: Limit the file space and CPU that an account can consume.

Defenses mapped to threats
The following table maps defenses to examples of threats that they parry.

This matrix can help you decide whether you need to configure specific defenses.
Consult this table if you decide NOT to configure a defense -- make sure that you are still
shielded from the corresponding threats.

Table 2. Derby defenses

Defense Damages Attackers Techniques Vulnerabilities

Java security Theft,
corruption,
denial of
service

Insiders and
outsiders

Malware,
physical access

Network JDBC,
unbounded
growth, CPU
hogging, launch
privileges, user
code, open
source

SSL/TLS Theft and
corruption

Insiders and
outsiders

Man-in-the
middle,
eavesdropping,
physical access

Network JDBC,
cleartext traffic

Encryption Theft and
corruption

Chiefly insiders Physical access Open source

Authentication Theft,
corruption,
denial of
service

Insiders and
outsiders

Probing Superusers

Coarse-grained
authorization

Theft,
corruption,
denial of
service

Insiders and
outsiders

Probing Superusers

Fine-grained
SQL
authorization

Theft,
corruption,
denial of
service

Insiders and
outsiders

Probing Superusers

Firewalls Theft,
corruption,
denial of
service

Insiders and
outsiders

Probing Network JDBC

Accounts Theft,
corruption,
denial of
service

Insiders Man-in-the-
middle,
malware,
physical access

Launch
privileges, user
code

Derby Security Guide

15

Defense Damages Attackers Techniques Vulnerabilities

Physical locks Theft,
corruption,
denial of
service

Insiders Man-in-the-
middle,
malware,
physical access

Launch
privileges, user
code

Secure traffic Theft and
corruption

Insiders Man-in-the-
middle,
eavesdropping

Cleartext traffic

File
permissions

Theft,
corruption,
denial of
service

Insiders and
outsiders

Malware Launch
privileges, user
code, open
source

Designing safer Derby applications
The following tips should help you write and deploy safer applications that use Derby.

• Create a launch account: Create an operating system account for the System
Administrator. This will be the account that launches Derby. This account should not
be the operating system's superuser.

• Limit file permissions: Limit the file permissions of this System Administrator
account to just the directories that the application should be allowed to read and
write. Do not grant read or write access on these directories to any other operating
system accounts.

• Create a policy file: Write your own Java Security policy that restricts the
directories that Derby can access and the sockets on which it can accept
connections. See Configuring Java security for more information.

• Prevent JDBC leaks: Do not let JDBC connections leak outside your intranet's
firewall. If possible, design your application so that external clients talk to an
application server, which in turn communicates with Derby. Limit the JDBC
connections to communication between the application server and Derby.

• Protect against injection: Do not construct queries by concatenating strings that
are filled in by clients. To parameterize your queries, use JDBC ? parameters in
PreparedStatements.

• Deploy your shields: By default, enable all defenses mentioned in this section. If
you need to turn off a defense for performance reasons, then carefully consider how
you will protect your application from the threats which that defense parries.

Security terminology
In discussing Derby defenses, the following terms are useful.

attacker
A person or organization that seeks to compromise the security of a system.

damages
The harm done to a system by an attacker. Includes denial-of-service, theft of
secrets, and corruption of data.

Database Owner
The person who creates a database and configures its security.

insider
An attacker, such as a disgruntled co-worker, who operates inside the firewall and
enjoys the presumption of friendliness.

malware
A program that compromises security, such as a virus, worm, or spider.

Derby Security Guide

16

outsider
An attacker who operates outside the firewall.

System Administrator
The account that launches Derby and is responsible for configuring the security of the
Derby system.

technique
A mechanism for compromising the security of a system, such as man-in-the-middle
or SQL injection.

user
A person authorized to use a Derby application.

vulnerability
A feature of Derby that attackers can exploit in order to cause damage.

Derby Security Guide

17

Part Two: Configuring security for Derby

This part of the manual describes the specific tasks involved in securing Derby
databases.

Derby can be deployed in a number of ways and in a number of different environments,
ranging from a single-user deployment for small-scale development and testing to
a multi-user deployment of a large database. For all but the smallest deployments,
however, it is essential to make the Derby system secure.

To secure a Derby database or databases, take the following steps.

1. Understand the basic tasks involved in configuring security in a client-server
environment or an embedded environment.

See Basic security configuration tasks for details.
2. Encrypt your databases.

Derby provides ways to encrypt data stored on disk.

For more information about encryption, see Configuring database encryption.
3. Sign any jar files that you use in your databases.

Derby validates certificates for classes loaded from signed jar files.

For more information about using signed jar files, see Using signed jar files.
4. Encrypt network traffic with SSL/TLS.

SSL/TLS certificate authentication is also supported. See Configuring SSL/TLS for
details.

5. Understand the concept of identity in Derby.

See Understanding identity in Derby for details.
6. Configure authentication by setting up users and passwords.

Authentication determines whether someone is a legal user. It establishes a user's
identity. Derby verifies user names and passwords before permitting access to the
Derby system.

For more information about authentication, see Configuring user authentication.
7. Configure user authorization for the system.

Authorization determines what operations can be performed by a user's Derby
identity. Authorization grants users or roles permission to read a database or to
write to a database.

For more information about authorization, see Configuring user authorization.
8. Customize the default security policy.

For details, see Configuring Java security.
9. If necessary, restrict database file access to the operating system account that

started the JVM.

For details, see Restricting file permissions.

See the Derby Reference Manual for information about many security-related properties
and system procedures, as well as such statements as GRANT, REVOKE, CREATE
ROLE, DROP ROLE, CREATE PROCEDURE, and CREATE FUNCTION.

Basic security configuration tasks

Derby Security Guide

18

In most cases, you enable Derby security features through the use of properties. It is
important to understand the best way to set properties for your environment.

Derby does not come with a built-in superuser. For that reason, be careful to follow these
steps when you configure Derby for user authentication and user authorization.

1. When first working with security, work with system-level properties only so that
you can easily override them if you make a mistake. See "Scope of properties"
and "Setting system-wide properties" in the Derby Developer's Guide for more
information.

2. Be sure to create at least one valid user, and grant that user full (read-write) access.
For example, you might always want to create a user called sa with the password
derby while you are developing.

3. Test the authentication system while it is still configured at the system level. Be
absolutely certain that you have configured the system correctly before setting the
properties as database-level properties.

4. Before disabling system-level properties (by setting
derby.database.propertiesOnly to true), test that at least one database-level
read-write user (such as sa) is valid. If you do not have at least one valid user that
the system can authenticate, you will not be able to access your database.

Configuring security in an embedded environment

In an embedded environment, typically there is only one database per system, and there
are no administrative resources to protect databases.

To configure security in an embedded environment:
1. Encrypt the database when you create it.
2. Configure all security features as database-level properties. These properties are

stored in the database (which is encrypted). See "Scope of properties" and "Setting
database-wide properties" in the Derby Developer's Guide for more information.

3. Turn on protection for database-level properties so that they cannot be overridden
by system properties by setting the derby.database.propertiesOnly property
to true. See the Derby Reference Manual for details on this property.

4. To prevent unauthorized users from accessing databases once they are booted,
turn on user authentication and SQL authorization for the database. Use NATIVE
authentication or, alternatively, LDAP or a user-defined class.

5. Configure Java security for your environment.

The following figure shows how disk encryption protects data when the recipient might
not know how to protect data. It is useful for databases deployed in an embedded
environment.

Figure 1. Using disk encryption to protect data

Configuring security in a client/server environment

Derby Security Guide

19

This procedure requires a system with multiple databases and some administrative
resources.

1. Configure security features as system-level properties.
2. Provide administrative-level protection for the derby.properties file and Derby

databases. For example, you can protect these files and directories with operating
system permissions and firewalls.

3. Turn on user authentication for your system. All users must provide valid user
IDs and passwords to access the Derby system. Use NATIVE authentication (or,
alternatively, LDAP or a user-defined class).

> Important: It is also strongly recommended that production systems protect
network connections with SSL/TLS.

4. Configure fine-grained user authorization (SQL authorization) for your databases.
5. Configure Java security for your environment.

The following figure shows some of the Derby security mechanisms at work in a
client/server environment. User authentication is performed by accessing an LDAP
directory service. The data in the database is not encrypted in this trusted environment.

Figure 2. Using an LDAP directory service in a trusted environment

Network Server security

By default, the Derby Network Server listens only on the localhost. Clients must use the
localhost host name to connect.

By default, clients cannot access the Network Server from another host.
To enable connections from other hosts, set the derby.drda.host
property, or start the Network Server with the -h option in the java
org.apache.derby.drda.NetworkServerControl start command.

Derby Security Guide

20

In the following example, the server will listen only on the localhost, and clients cannot
access the server from another host:

java org.apache.derby.drda.NetworkServerControl start

In the following example, the server runs on the host machine
sampleserver.example.com and also listens for clients from other hosts. Clients
must specify the server in the URL or DataSource as sampleserver.example.com:

java org.apache.derby.drda.NetworkServerControl start \
-h sampleserver.example.com

To start the Network Server so that it will listen on all interfaces, start with an IP address
of 0.0.0.0, as shown in the following example:

java org.apache.derby.drda.NetworkServerControl start -h 0.0.0.0

A server that is started with the -h 0.0.0.0 option will listen to client requests that
originate from both localhost and from other machines on the network.

However, administrative commands (for example,
org.apache.derby.drda.NetworkServerControl shutdown) can run only on
the host where the server was started, even if the server was started with the -h option.

Configuring database encryption
Derby provides a way for you to encrypt your data on disk.

By default, Derby stores its data unencrypted in ordinary operating system files. An
attacker who can view those files can simply type them out, exposing all sorts of data
stored in string columns. Knowing Derby's file formats, a clever attacker could even view
numeric data stored in those files. Even worse, a clever attacker could change the data
itself.

Fortunately, Derby can encrypt databases. On a shared machine, that helps protect data
from other users, including disgruntled or curious superusers. Encryption helps protect
private financial data from thieves who physically steal your laptop.

Before encrypting a database, you need to make two choices:

• A boot password: This is the password that unlocks your encrypted data when you
want to use it.

• An encryption algorithm: This is a transformation
name as described in the API documentation
for the javax.crypto.Cipher class. Derby
encryption relies on the JCE libraries supplied
with the virtual machine. For more information
on those libraries, see the Java Cryptography
Architecture (JCA) Reference Guide
(http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/
CryptoSpec.html).

Here is a ij command that creates an encrypted database. Notice the
additional attributes in bold on the database creation URL: dataEncryption,
encryptionAlgorithm, and bootPassword. The URL string must be all on one line.

connect 'jdbc:derby:myEncryptedDatabaseName;create=true;
dataEncryption=true;encryptionAlgorithm=Blowfish/CBC/NoPadding;
bootPassword=mySuperSecretBootPassword';

http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

Derby Security Guide

21

Once you have created an encrypted database, you can work in it. After you shut down
the encrypted database, you can reconnect to it by simply supplying your boot password
in the connection URL, as shown in the following ij command:

connect 'jdbc:derby:myEncryptedDatabaseName;
bootPassword=mySuperSecretBootPassword';

Keep in mind that by booting a database with its boot password, you unlock the database
for the lifetime of the virtual machine. This means that other threads can connect to the
database without supplying the boot password. This situation lasts until the database
is explicitly shut down or the virtual machine exits. For a single-user, shrink-wrapped
application, this is generally not a problem. However, for a multi-user application, you
need to take steps to keep the data secure during the various stages of working with the
database:

1. Unlocking the database: The boot password is used to initially unlock encrypted
data. Once the Database Owner has unlocked the database, other users can
connect to it without supplying the boot password.

2. Working with the database: For that reason, you should configure Derby
authorization (see below) to restrict the users who may access the unlocked data.

3. Relocking the database: To relock your data, simply shut down the database.

The following sections provide detailed information about database encryption.

Note: Jar files stored in a database are not encrypted.

Requirements for Derby encryption

Derby supports disk encryption and requires an encryption provider.

An encryption provider implements the Java cryptography concepts. The Java Runtime
Environment (JRE) for Java SE includes Java Cryptographic Extensions (JCE, part of
the Java Cryptography Architecture) and one or more default encryption providers. For
more information, see the Java Cryptography Architecture (JCA) Reference Guide at
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html.

The JRE determines the default encryption provider as follows:

• The JRE's provider is the default.
• If your environment for some reason does not include a provider, it must be

specified.

Working with encryption

This section describes using encryption in Derby.

Encrypting databases on creation

You configure a Derby database for encryption when you create the database by
specifying attributes on the connection URL.

• To enable encryption, use the dataEncryption=true attribute.
• To provide a key for the encryption, specify either the bootPassword=key

attribute or the encryptionKey=key attribute.

The following connection URL specifies a boot password:

jdbc:derby:encryptedDB;create=true;dataEncryption=true;
bootPassword=DBpassword

The following URL specifies an encryption key:

jdbc:derby:encryptedDB;create=true;dataEncryption=true;
encryptionKey=6162636465666768

http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

Derby Security Guide

22

The default encryption algorithm is DES.

You can specify an encryption provider and/or encryption algorithm other
than the defaults by using the encryptionProvider=providerName and
encryptionAlgorithm=algorithm attributes. See Specifying an alternate encryption
provider and Specifying an alternate encryption algorithm for more information.

See the Derby Reference Manual for details on the connection URL attributes.

Encrypting an existing unencrypted database

You can encrypt an unencrypted Derby database by specifying attributes on the
connection URL when you boot the database. The attributes that you specify depend on
how you want the database encrypted.

• If the database is configured with log archival, you must disable log archival and
perform a shutdown before you can encrypt the database.

• If any global transactions are in the prepared state after recovery, the database
cannot be encrypted.

When you encrypt an existing, unencrypted database, you can specify whether
the database should be encrypted using a boot password (bootPassword=key)
or an external encryption key (encryptionKey=key). You can also
specify the encryptionProvider=providerName attribute and the
encryptionAlgorithm=algorithm attribute on the connection URL. The database
is configured with the specified encryption attributes, and all of the existing data in the
database is encrypted.

See the Derby Reference Manual for details on the connection URL attributes.

Encrypting a database is a time-consuming process because it involves encrypting all of
the existing data in the database. If the process is interrupted before completion, all the
changes are rolled back the next time the database is booted. If the interruption occurs
immediately after the database is encrypted but before the connection is returned to the
application, you might not be able to boot the database without the boot password or
external encryption key. In these rare circumstances, you should try to boot the database
with the boot password or the external encryption key.

Recommendation: Ensure that you have enough free disk space before you encrypt
a database. In addition to the disk space required for the current size of the database,
temporary disk space is required to store the old version of the data to restore the
database back to its original state if the encryption is interrupted or returns errors. All of
the temporary disk space is released back to the operating system after the database is
encrypted.

To encrypt an existing unencrypted database:

1. Specify the dataEncryption=true attribute and either the
encryptionKey=key attribute or the bootPassword=key attribute in a
connection URL and boot the database.

For example, to encrypt the salesdb database with the boot password
abc1234xyz, specify the following attributes in the URL:

jdbc:derby:salesdb;dataEncryption=true;bootPassword=abc1234xyz

If authentication and SQL authorization are both enabled, the credentials of
the Database Owner must be supplied as well, since encryption is a restricted
operation.

After you encrypt an existing, unencrypted database, be sure to check for
SQLWarnings. The encryption succeeded only if there were no SQLWarnings or
SQLExceptions.

Derby Security Guide

23

If you disabled log archival before you encrypted the database, create a new
backup of the database after the database is encrypted. For more information,
see the section "Backing up and restoring databases" in the Derby Server and
Administration Guide, particularly "Roll-forward recovery".

Creating a boot password

When you encrypt a database, you usually specify a boot password, which is an
alphanumeric string used to generate the encryption key. (You can also specify an
encryption key directly.)

The length of the encryption key depends on the algorithm used:

• AES (128, 192, and 256 bits)
• DES (the default) (56 bits)
• DESede (168 bits)
• All other algorithms (128 bits)

Note: The boot password should have at least as many characters as number of bytes
in the encryption key (56 bits=8 bytes, 168 bits=24 bytes, 128 bits=16 bytes). The
minimum number of characters for the boot password allowed by Derby is eight.

It is a good idea not to use words that would be easily guessed, such as a login name
or simple words or numbers. A boot password, like any password, should be a mix of
numbers and uppercase and lowercase letters.

You turn on and configure encryption and specify the corresponding boot password on
the connection URL for a database when you create it:

jdbc:derby:encryptionDB1;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe

Note: If you lose the boot password and the database is not currently booted, you will
not be able to connect to the database any more. (If you know the current boot password,
you can change it. See Encrypting databases with a new key.)
Specifying an alternate encryption provider:

You can specify an alternate provider when you create the database with the
encryptionProvider=providerName attribute.

You must specify the full package and class name of the provider, and you must also add
the libraries to the application's classpath.

-- using the the provider library bcprov-jdk15on-147.jar
-- available from www.bouncycastle.org
jdbc:derby:encryptedDB3;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe;
encryptionProvider=org.bouncycastle.jce.provider.BouncyCastleProvider;
encryptionAlgorithm=DES/CBC/NoPadding

-- using a provider available from
-- http://jce.iaik.tugraz.at/sic/Download
jdbc:derby:encryptedDB3;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe;
encryptionProvider=iaik.security.provider.IAIK;
encryptionAlgorithm=DES/CBC/NoPadding

Specifying an alternate encryption algorithm:

Derby supports the following encryption algorithms.

• DES (the default)
• DESede (also known as triple DES)
• Any encryption algorithm that fulfills the following requirements:

• It is symmetric

Derby Security Guide

24

• It is a block cipher, with a block size of 8 bytes
• It uses the NoPadding padding scheme
• Its secret key can be represented as an arbitrary byte array
• It requires exactly one initialization parameter, an initialization vector of type
javax.crypto.spec.IvParameterSpec

• It can use javax.crypto.spec.SecretKeySpec to represent its key

For example, the algorithm Blowfish implemented in the Java Cryptography
Extension (JCE) packages (javax.crypto.*) fulfills these requirements.

By Java convention, an encryption algorithm is specified like this:

algorithmName/feedbackMode/padding

The only feedback modes allowed are:

• CBC
• CFB
• ECB
• OFB

The only padding mode allowed is NoPadding.

By default, Derby uses the DES algorithm of DES/CBC/NoPadding.

To specify an alternate encryption algorithm when you create a database, use the
encryptionAlgorithm=algorithm attribute. If the algorithm you specify is not
supported by the provider you have specified, Derby throws an exception.

To specify the AES encryption algorithm with a key length other than the default of 128,
specify the encryptionKeyLength=length attribute. For example, you might specify
the following connection attributes:

jdbc:derby:encdbcbc_192;create=true;dataEncryption=true;
encryptionKeyLength=192;encryptionAlgorithm=AES/CBC/NoPadding;
bootPassword=Thursday

To use the AES algorithm with a key length of 192 or 256, you must use unrestricted
policy jar files for your JRE. You can obtain these files from your Java provider. They
might have a name like "Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files." If you specify a non-default key length using the default policy
jar files, a Java exception occurs.

Encrypting databases with a new key

You can apply a new encryption key to a Derby database by specifying a new boot
password or a new external key.

Encrypting a database with a new encryption key is a time-consuming process because
it involves encrypting all of the existing data in the database with the new encryption key.
If the process is interrupted before completion, all the changes are rolled back the next
time the database is booted. If the interruption occurs immediately after the database
is encrypted with the new encryption key but before the connection is returned to the
application, you might not be able to boot the database with the old encryption key. In
these rare circumstances, you should try to boot the database with the new encryption
key.

Recommendation: Ensure that you have enough free disk space before you encrypt
a database with a new key. In addition to the disk space required for the current size
of the database, temporary disk space is required to store the old version of the data
to restore the database back to its original state if the new encryption is interrupted or
returns errors. All of the temporary disk space is released back to the operating system
after the database is reconfigured to work with the new encryption key.

Derby Security Guide

25

To encrypt a database with a new encryption key:

1. Use the type of encryption that is currently used to encrypt the database:
• To encrypt the database with a new boot password key, use the
newBootPassword=newPassword attribute.

• To encrypt the database with a new external encryption key, use the
newEncryptionKey=key attribute.

If authentication and SQL authorization are both enabled, the credentials of the
Database Owner must be supplied, since reencryption is a restricted operation.

Encrypting databases with a new boot password:

You can apply a new boot password to a Derby database by specifying the
newBootPassword=newPassword attribute on the connection URL when you boot the
database.

• If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new boot password.

• If any global transactions are in the prepared state after recovery, the database
cannot be encrypted with a new boot password.

• If the database is currently encrypted with an external encryption key, use the
newEncryptionKey=key attribute to encrypt the database.

When you use the newBootPassword=newPassword attribute, a new encryption
key is generated internally by the engine, and the key is protected using the new boot
password. The newly generated encryption key encrypts the database, including the
existing data. You cannot change the encryption provider or encryption algorithm when
you apply a new boot password.

To encrypt a database with a new boot password:

1. Specify the newBootPassword=newPassword attribute in a URL and reboot the
database.

For example, if you use the following URL to reboot the salesdb database,
the database is encrypted with the new encryption key and is protected by the
password new1234xyz:

jdbc:derby:salesdb;bootPassword=abc1234xyz;newBootPassword=new1234xyz

If authentication and SQL authorization are both enabled, the credentials of the
Database Owner must be supplied as well, since reencryption is a restricted
operation.

After you change the boot password, be sure to check for SQLWarnings. The
change succeeded only if there were no SQLWarnings or SQLExceptions.

If you disabled log archival before you applied the new boot password, create
a new backup of the database after the database is reconfigured with the new
boot password. For more information, see the section "Backing up and restoring
databases" in the Derby Server and Administration Guide, particularly "Roll-forward
recovery".

Encrypting databases with a new external encryption key:

You can apply a new external encryption key to a Derby database by specifying the
newEncryptionKey=key attribute on the connection URL when you boot the database.

• If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new external encryption key.

Derby Security Guide

26

• If any global transaction are in the prepared state after recovery, the database
cannot be encrypted with a new encryption key.

• If the database is currently encrypted with a boot password, use the
newBootPassword=newPassword attribute to encrypt the database.

To encrypt a database with a new external encryption key:

1. Specify the newEncryptionKey=key attribute in a URL and reboot the database.

For example, if you use the following URL to reboot the salesdb database, the
database is encrypted with the new encryption key 6862636465666768:

jdbc:derby:salesdb;encryptionKey=6162636465666768;
newEncryptionKey=6862636465666768'

If authentication and SQL authorization are both enabled, the credentials of
the Database Owner must be supplied as well, since encryption is a restricted
operation.

After you change the encryption key, be sure to check for SQLWarnings. The
change succeeded only if there were no SQLWarnings or SQLExceptions.

If you disabled log archival before you applied the new encryption key, create a new
backup of the database after the database is reconfigured with the new encryption
key. For more information, see the section "Backing up and restoring databases" in
the Derby Server and Administration Guide, particularly "Roll-forward recovery".

Booting an encrypted database

If you create an encrypted database using the bootPassword=key attribute, you must
specify the boot password to reboot the database. If you create an encrypted database
using the encryptionKey=key attribute, you must specify the encryption key to reboot
the database.

Encrypted databases cannot be booted automatically along with all other system
databases on system startup (see "derby.system.bootAll" in the Derby Reference
Manual). Instead, you boot an encrypted database when you first connect to the
database.

Booting a database with the bootPassword=key attribute
To access an encrypted database called wombat that was created with the boot
password clo760uds2caPe, use the following connection URL:

jdbc:derby:wombat;bootPassword=clo760uds2caPe

Booting a database with the encryptionKey=key attribute
To access an encrypted database called flintstone that was created with the
attributes encryptionKey=c566bab9ee8b62a5ddb4d9229224c678 and
encryptionAlgorithm=AES/CBC/NoPadding, use the following connection URL:

jdbc:derby:flintstone;encryptionKey=c566bab9ee8b62a5ddb4d9229224c678

After the database is booted, all connections can access the database without the boot
password. Only a connection that boots the database requires the key.

For example, the following connections would boot the database and require the boot
password or encryption key, depending on what mechanism was used to encrypt the
database originally:

• The first connection to the database in the JVM session
• The first connection to the database after the database has been explicitly shut

down
• The first connection to the database after the system has been shut down and then

rebooted

Derby Security Guide

27

Note: The boot password and the encryption key are not meant to prevent unauthorized
connections to the database after the database is booted. To protect a database after it
has been booted, turn on user authentication (see Configuring user authentication).
Decrypting an encrypted database

You can return an encrypted database to an unencrypted state by specifying attributes on
the connection URL.

To decrypt an encrypted database, specify the decryptDatabase=true attribute in
conjunction with either the bootPassword=key attribute or the encryptionKey=key
attribute.

See the Derby Reference Manual for details on the connection URL attributes.

Recommendation: Ensure that you have enough free disk space before you decrypt a
database. In addition to the disk space required for the unencrypted size of the database,
temporary disk space is required to store the encrypted version of the data to restore
the database to its encrypted state if the decryption is interrupted or returns errors. All of
the temporary disk space is released back to the operating system after the database is
decrypted.

You must shut down the database before you decrypt it. An attempt to decrypt a booted
database has no effect.

If the database is configured with log archival, you must disable log archival in addition
to shutting down the database before you can decrypt the database. You should also
create a new backup of the database before you decrypt it, and create another after you
decrypt it. For more information, see the section "Backing up and restoring databases" in
the Derby Server and Administration Guide, particularly "Roll-forward recovery".

If any global transactions are in the prepared state after recovery, the database cannot
be decrypted.

If authentication and SQL authorization are both enabled, the credentials of the Database
Owner must be supplied as well, since decryption is a restricted operation.

After you decrypt the database, be sure to check for SQLWarnings. The decryption
succeeded only if there were no SQLWarnings or SQLExceptions.

Using signed jar files
In a Java SE environment, Derby can detect digital signatures on jar files. When
attempting to load a class from a signed jar file stored in the database, Derby will verify
the validity of the signature.

Note: The Derby class loader only validates the integrity of the signed jar file and verifies
that the certificate has not expired. Derby cannot ascertain whether the validity or identity
of declared signer is correct. To validate identity, use a Security Manager (that is, an
implementation of java.lang.SecurityManager). For details, see Configuring Java
security.

When loading classes from an application jar file in a Java SE environment, Derby
behaves as follows if the class is signed:

• Verifies that the jar file was signed using a X.509 certificate (that is, it can be
represented by the class java.security.cert.X509Certificate). If not,
throws an exception.

• Verifies that the digital signature matches the contents of the file. If not, throws an
exception.

• Checks that the set of signing certificates are all valid for the current date and time.
If any certificate has expired or is not yet valid, throws an exception.

Derby Security Guide

28

• Passes the array of certificates to the setSigners() method of
java.lang.ClassLoader. This allows security managers to obtain the list of
signers for a class (using java.lang.Class.getSigners) and then validate the
identity of the signers using the services of a Public Key Infrastructure (PKI).

For more information about signed jar files, see
http://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html.

Configuring SSL/TLS
By default, network traffic travels in cleartext between Derby clients and servers.

By using a man-in-the-middle ploy, a clever attacker can read all of the string data
shipped to and from the server. By knowing the Derby wire protocol, a clever attacker can
read numeric data too. Even worse, the man-in-the-middle can change the data while it is
traveling between the client and the server.

Fortunately, Derby can encrypt network traffic using the SSL/TLS (Secure Socket
Layer/Transport Layer Security) logic supplied with the virtual machine. As a side effect,
SSL/TLS raises an extra authentication hurdle too, involving peer authentication.

The term peer is used for the other part of the server-client communication: the server's
peer is the client, and the client's peer is the server.

SSL/TLS for Derby (both for client and for server) operates in three possible modes:

off
The default, no SSL/TLS encryption

basic
SSL/TLS encryption, no peer authentication

peerAuthentication
SSL/TLS encryption and peer authentication

Peer authentication may be set on the server, on the client, or on both. Peer
authentication means that the other side of the SSL/TLS connection is authenticated
based on a trusted certificate installed locally.

Before using this encryption technology, you will want to familiarize yourself
with SSL/TLS concepts such as key pairs and certificates, and with the
JDK's keytool application. You can find useful overviews of SSL/TLS at
Apache and Wikipedia (http://httpd.apache.org/docs/2.0/ssl/ssl_intro.html
and http://en.wikipedia.org/wiki/Secure_Sockets_Layer, respectively).
You can find keytool documentation for Unix and for Windows at
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html and
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html, respectively.

Network encryption requires the following setup steps:

1. Client certificates: Each client must generate a client key pair and certificate. The
client certificates must be loaded into the server's trust store.

2. Server certificate: The server must generate a server key pair and certificate. All of
the clients must load the server's certificate into their respective trust stores.

3. Server startup: The server must be booted with system properties and a startup
option that turn on SSL/TLS encryption.

4. Client startup: The client must be started with system properties that turn on
SSL/TLS encryption. In addition, an extra attribute is added to the JDBC connection
URL.

To use SSL/TLS to encrypt Derby's network traffic, the client must have a key store for
holding its own public/private key pair. The client must also have a trust store for holding
the server's certificate. If the key store and trust store do not already exist, the keytool

http://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
http://httpd.apache.org/docs/2.0/ssl/ssl_intro.html
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

Derby Security Guide

29

program will create them. Suppose that the client stores its public/private key pair in
~/vault/ClientKeyStore, and suppose that the client stores certificates from other
systems in ~/vault/ClientTrustStore.

Creating a client key pair and certificate

Follow these steps to create a client key pair and a client certificate.

1. Choose a password for the key store.

Suppose you choose the password secretClientPassword.
2. On the client system, issue the following command to create the client's

public/private key pair.

You will be prompted to enter the password plus some identifying information (your
input is marked bold):

keytool -genkey -alias MyClientName -keystore ~/vault/ClientKeyStore
Enter keystore password: secretClientPassword
What is your first and last name?
[Unknown]: MyFirstName MyLastName
What is the name of your organizational unit?
[Unknown]: Proofreading Department
What is the name of your organization?
[Unknown]: Name of my bookstore
What is the name of your City or Locality?
[Unknown]: New York
What is the name of your State or Province?
[Unknown]: NY
What is the two-letter country code for this unit?
[Unknown]: US
Is CN=MyFirstName MyLastName, OU=Proofreading Department, O=Name of
 my bookstore, L=New York, ST=NY, C=US correct?
[no]: yes

Enter key password for <MyClientName>
 (RETURN if same as keystore password):

3. Next, create a certificate for this client. Enter the command all on one line:

keytool -export -alias MyClientName \
-keystore ~/vault/ClientKeyStore -rfc -file ClientCertificate \
-storepass secretClientPassword

This command creates a file called ClientCertificate. Later, you will import
this file into the server's trust store.

Creating a server key pair and certificate

Follow these steps to create a server key pair and a server certificate.

1. On the server system, issue the following command to to create a server key pair in
a key store guarded by the secretServerPassword password:

keytool -genkey -alias MyServerName -keystore ~/vault/ServerKeyStore
Enter keystore password: secretServerPassword
...

2. Issue the following command (all on one line) to create a certificate named
ServerCertificate from this key:

keytool -export -alias MyServerName \
-keystore ~/vault/ServerKeyStore -rfc -file ServerCertificate \
-storepass secretServerPassword

Derby Security Guide

30

Importing certificates

Follow these steps to import each certificate into the other's trust store.

1. On the client, import the server certificate into the client's trust store:

keytool -import -alias favoriteServerCertificate \
-file ServerCertificate -keystore ~/vault/ClientTrustStore \
-storepass secretClientTrustStorePassword

2. On the server, import the client certificate into the server's trust store:

keytool -import -alias Client_1_Certificate \
-file ClientCertificate -keystore ~/vault/ServerTrustStore \
-storepass secretServerTrustStorePassword

Booting the server and connecting to it

Finally, boot the server and start the client.

The previous three topics covered the first two setup steps described in Configuring
SSL/TLS, creating client certificates and creating a server certificate, then importing
the certificates. This topic describes the remaining two steps, server startup and client
startup.

Every time that we bring up the server, we must remember to turn on network encryption.
We must set four VM properties that declare the locations and passwords for the server's
key store and trust store:

• javax.net.ssl.keyStore
• javax.net.ssl.keyStorePassword
• javax.net.ssl.trustStore
• javax.net.ssl.trustStorePassword

In addition, we specify the -ssl peerAuthentication startup option. The command
to start the server, therefore, looks something like this:

java -Djavax.net.ssl.keyStore=/Users/me/vault/ServerKeyStore \
-Djavax.net.ssl.keyStorePassword=secretServerPassword \
-Djavax.net.ssl.trustStore=/Users/me/vault/ServerTrustStore \
-Djavax.net.ssl.trustStorePassword=secretServerTrustStorePassword \
org.apache.derby.drda.NetworkServerControl start -p 8246 \
-ssl peerAuthentication

The -p 8246 option starts the server on a nondefault port (rather than the default port of
1527).

The final step is to bring up a client. As with server startup, we must tell the VM the
locations and passwords of the local key store and trust store. This example is a simple
ij script. Notice the extra ssl attribute on the connection URL. That attribute tells the
client to authenticate the server's identity using a certificate, and it tells the client that the
network traffic must be encrypted:

java -Djavax.net.ssl.trustStore=/Users/me/vault/ClientTrustStore \
-Djavax.net.ssl.trustStorePassword=secretClientTrustStorePassword \
-Djavax.net.ssl.keyStore=/Users/me/vault/ClientKeyStore \
-Djavax.net.ssl.keyStorePassword=secretClientPassword \
org.apache.derby.tools.ij
ij version 10.11
ij> connect
 'jdbc:derby://localhost:8246/testdb;create=true;ssl=peerAuthentication';
ij> select schemaName, authorizationID from sys.sysschemas;

You will get errors from ij if you do not specify the extra VM properties and/or if you do
not specify the ssl attribute on the connection URL. Here, for instance, is the output from
running ij without the VM properties and ssl attribute:

Derby Security Guide

31

java org.apache.derby.tools.ij
ij version 10.11
ij> connect 'jdbc:derby://localhost:8246/testdb;create=true';
ERROR 08006: A network protocol error was encountered and the connection
 has been
terminated: A PROTOCOL Data Stream Syntax Error was detected. Reason:
 0x3.
Plaintext connection attempt to an SSL enabled server?

When you want to administer the server (for instance, to bring it down), you will need to
specify the locations and passwords of a valid key store and trust store as well as the
extra ssl option on the server command line:

java -Djavax.net.ssl.trustStore=/Users/me/vault/ClientTrustStore \
-Djavax.net.ssl.trustStorePassword=secretClientTrustStorePassword \
-Djavax.net.ssl.keyStore=/Users/me/vault/ClientKeyStore \
-Djavax.net.ssl.keyStorePassword=secretClientPassword \
org.apache.derby.drda.NetworkServerControl shutdown -p 8246 \
-ssl peerAuthentication

Key and certificate handling

For SSL operation, the server always needs a key pair. If the server runs in peer
authentication mode (the server authenticates the clients), each client needs its own key
pair. In general, if one end of the communication wants to authenticate its partner, the
first end needs to install a certificate generated by the partner.

The key pair is located in a file which is called a key store, and the JDK's
SSL provider needs the system properties javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword to access the keystore.

The certificates of trusted parties are installed in a file called a trust store. The JDK's
SSL provider needs the system properties javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword to access the trust store.

Key pair generation

Key pairs are generated with keytool -genkey. The simplest way to generate a key
pair is to do the following:

keytool -genkey alias -keystore keystore

keytool will prompt for needed information, such as identity details and passwords.

Consult the JDK documentation for more information on keytool.

Certificate generation

Certificates are generated with keytool -export as follows:

keytool -export -alias alias -keystore keystore -rfc \
-file certificate-file

The certificate file may then be distributed to the relevant parties.

Certificate installation

Installation of a certificate in a trust store is done with keytool -import as follows:

keytool -import -alias alias -file certificate-file -keystore truststore

Examples

Generate the server key pair:

keytool -genkey -alias myDerbyServer -keystore serverKeyStore.key

Derby Security Guide

32

Generate a server certificate:

keytool -export -alias myDerbyServer -keystore serverKeyStore.key -rfc \
-file myServer.cert

Generate a client key pair:

keytool -genkey -alias aDerbyClient -keystore clientKeyStore.key

Generate a client certficate:

keytool -export -alias aDerbyClient -keystore clientKeyStore.key -rfc \
-file aClient.cert

Install a client certificate in the server's trust store:

keytool -import -alias aDerbyClient -file aClient.cert \
-keystore serverTrustStore.key

Install the server certificate in a client's trust store:

keytool -import -alias myDerbyServer -file myServer.cert \
-keystore clientTrustStore.key

Starting the server with SSL/TLS

For server SSL/TLS, a server key pair needs to be generated. If the server is going to do
client authentication, the client certificates need to be installed in the trust store.

These operations are described in Key and certificate handling.

SSL at the server side is activated with the property derby.drda.sslMode (default off)
or the -ssl option for the server start command.

Starting the server with basic SSL encryption

When the SSL mode is set to basic, the server will only accept SSL encrypted
connections.

The properties javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword need to be set with the proper values.

Example

java -Djavax.net.ssl.keyStore=serverKeyStore.key \
-Djavax.net.ssl.keyStorePassword=qwerty \
-jar derbyrun.jar server start -ssl basic

Starting a server which authenticates clients

When the server's SSL mode is set to peerAuthentication, the server authenticates
its clients' identity in addition to encrypting network traffic. In this situation, the server's
trust store must contain a certificate for each client which will connect.

The javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword
need to be set in addition to the properties above.

See Running the client with SSL/TLS for client settings when the server does client
authentication.

Example

java -Djavax.net.ssl.keyStore=serverKeyStore.key \
-Djavax.net.ssl.keyStorePassword=qwerty \
-Djavax.net.ssl.trustStore=serverTrustStore.key \
-Djavax.net.ssl.trustStorePassword=qwerty \

Derby Security Guide

33

-jar derbyrun.jar server start -ssl peerAuthentication

Running the client with SSL/TLS

Basic SSL encryption on the client is enabled either by the URL attribute ssl, the
property ssl, or the datasource attribute ssl set to basic.

Example

Connection c = getConnection("jdbc:derby://myhost:1527/db;ssl=basic");

Running a client which authenticates the server

If the client wants to authenticate the server, then the client's trust store must contain the
server's certificate. See Key and certificate handling.

Client SSL with server authentication is enabled by the URL attribute ssl or the
property ssl set to peerAuthentication. In addition, the system properties
javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword need to
be set.

Example

System.setProperty("javax.net.ssl.trustStore","clientTrustStore.key");
System.setProperty("javax.net.ssl.trustStorePassword","qwerty");
Connection c =
 getConnection("jdbc:derby://myhost:1527/db;ssl=peerAuthentication");

Running the client when the server does client authentication

If the server does client authentication, the client will need a key pair and a client
certificate which is installed in the server's trust store. See Key and certificate handling.

The client needs to set javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword.

Example

System.setProperty("javax.net.ssl.keyStore","clientKeyStore.key");
System.setProperty("javax.net.ssl.keyStorePassword","qwerty");
Connection c = getConnection("jdbc:derby://myhost:1527/db;ssl=basic");

Running the client when both parties do peer authentication

This is a combination of the last two variants.

Example

System.setProperty("javax.net.ssl.keyStore","clientKeyStore.key");
System.setProperty("javax.net.ssl.keyStorePassword","qwerty");
System.setProperty("javax.net.ssl.trustStore","clientTrustStore.key");
System.setProperty("javax.net.ssl.trustStorePassword","qwerty");
Connection c =
 getConnection("jdbc:derby://myhost:1527/db;ssl=peerAuthentication");

Other server commands

The other server commands (shutdown, ping, sysinfo, runtimeinfo,
logconnections, maxthreads, timeslice, trace, and tracedirectory) are
implemented as clients, and they behave exactly as clients with regards to SSL.

See Running the client with SSL/TLS for more information.

The SSL mode is set with the property derby.drda.sslMode or the server command
option -ssl.

Derby Security Guide

34

Examples

The following command will shut down an SSL-enabled server:

java -jar derbyrun.jar server shutdown -ssl basic

Similarly, if you have peerAuthentication on both sides, use the following command:

java -Djavax.net.ssl.keyStore=clientKeyStore.key \
-Djavax.net.ssl.keyStorePassword=qwerty \
-Djavax.net.ssl.trustStore=clientTrustStore.key \
-Djavax.net.ssl.trustStorePassword=qwerty \
-jar derbyrun.jar server shutdown -ssl peerAuthentication

Understanding identity in Derby
Derby provides two kinds of identity, system-wide identity and database-specific identity.

• System-wide identity: Currently, any legal system-wide identity enjoys authorization
to perform the following operations:

• Create databases
• Restore databases
• Shut down the Derby engine

• Database-specific identity: If you are a legal identity in a specific database, you may
enjoy the following rights:

• You can connect to that database, provided that coarse-grained connection
authorization has not been set to noAccess.

• You can shut down that database, encrypt it, and upgrade it, provided that you
are the Database Owner.

• You can create your own SQL objects and write data to your own tables,
provided that your coarse-grained connection authorization has not been set
to readOnlyAccess.

• You can access other SQL objects, provided that the owners have granted
you fine-grained SQL access to those objects, and provided you have not
been limited by coarse-grained readOnlyAccess.

The distinction between fine-grained SQL authorization and coarse-grained connection
authorization is described in Configuring user authorization.

Users and authorization identifiers

User names within the Derby system are known as authorization identifiers. The
authorization identifier is a string that represents the name of the user, if one was
provided in the connection request.

For example, the built-in function CURRENT_USER returns the authorization identifier for
the current user.

Once the authorization identifier is passed to the Derby system, it becomes an
SQL92Identifier. An SQL92Identifier -- the kind of identifier that represents
database objects such as tables and columns -- is case-insensitive (it is converted to all
caps) unless it is delimited with double quotes, is limited to 128 characters, and has other
limitations.

User names must be valid authorization identifiers even if user authentication is turned
off, and even if all users are allowed access to all databases.

For more information about SQL92Identifiers, see the Derby Reference Manual.

Derby Security Guide

35

Authorization identifiers, user authentication, and user authorization

When working with both user authentication and user authorization, you need to
understand how user names are treated by each system.

If you use an external authentication system such as LDAP, the conversion of the user's
name to an authorization identifier happens after authentication has occurred but before
user authorization has occurred. Imagine, for example, a user named Fred.

• Within the user authentication system, Fred is known as FRed. Your external user
authorization service is case-sensitive, so Fred must always type his name that
way.

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "FRed", "flintstone");

• Within the Derby user authorization system, Fred becomes a case-insensitive
authorization identifier. Fred is known as FRED.

Let's take a second example, where Fred has a slightly different name within the user
authentication system.

• Within the user authentication system, Fred is known as Fred!. You must now
put double quotes around the name, because it is not a valid SQL92Identifier.
(Derby knows to remove the double quotes when passing the name to the external
authentication system.)

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "\"Fred!\"", "flintstone");

• Within the Derby user authorization system, Fred becomes a case-sensitive
authorization identifier. Fred is known as Fred!.

As shown in the first example, your external authentication system may be
case-sensitive, whereas the authorization identifier within Derby may not be. If your
authentication system allows two distinct users whose names differ by case, delimit all
user names within the connection request to make all user names case-sensitive within
the Derby system. In addition, you must also delimit user names that do not conform to
SQL92Identifier rules with double quotes.

User names and schemas

User names can affect a user's default schema.

For information about user names and schemas, see "SET SCHEMA statement" in the
Derby Reference Manual.

Exceptions when using authorization identifiers

Specifying an invalid authorization identifier in a database user authorization property
raises an exception. Specifying an invalid authorization identifier in a connection request
raises an exception.

Database Owner

The term Database Owner refers to the current authorization identifier when the database
is created, that is, the user creating the database. If you use NATIVE authentication, or
if you manually enable or plan to enable SQL authorization, controlling the identity of the
Database Owner becomes important.

When a database is created, the Database Owner of that database is implicitly set to
the authorization identifier used in the connect operation that creates the database,
for example, by supplying the URL attribute "user". Note that this applies even if
authentication is not (yet) enabled. In SQL, the built-in functions USER and the
equivalent CURRENT_USER return the current authorization identifier.

Derby Security Guide

36

If the database is created without supplying a user (this is possible only if authentication
is not enabled), the Database Owner is set to the default authorization identifier, "APP",
which is also the name of the default schema. See "SET SCHEMA statement" in the
Derby Reference Manual for details.

The Database Owner has automatic SQL level permissions when SQL authorization is
enabled. For more information, see Configuring fine-grained user authorization.

To further enhance security, when both authentication and SQL authorization are
enabled for a database, Derby restricts some special powers to the Database Owner:
only the Database Owner is allowed to shut down the database, to encrypt or reencrypt
the database, or to perform a full upgrade of the database. These powers cannot be
delegated.

Attention: There is currently no way of changing the Database Owner once the
database is created. This means that if you plan to run with SQL authorization enabled,
you should make sure to create the database as the user you want to be the owner.

Configuring user authentication
By default, Derby runs without any credentials checking. This situation may be fine for
many shrink-wrapped, embedded applications. However, it means that anyone can
connect to an unsecured database and steal or corrupt the data there. Fortunately, it's
easy to frustrate these attacks by requiring authentication.

Derby provides support for user authentication and user authorization. User
authentication determines whether a user is a valid user. It establishes the user's identity.
User authorization determines what operations a user's established identity can perform.
You are strongly urged to implement both authentication and authorization on any
multi-user database used in production.

When user authentication is enabled, the user that requests a connection must provide
a valid name and password, which Derby verifies against the repository of users defined
for the system. After Derby authenticates the user as valid, user authorization determines
what operations the user can perform on the database to which the user is requesting a
connection.

Derby supports three kinds of authentication schemes:

LDAP
In this scheme, the customer points Derby at an external LDAP directory service.
The customer manages users with the external LDAP service, and Derby retrieves
credentials from LDAP. See Configuring LDAP authentication for more information.

NATIVE
In this scheme, user names and passwords are stored in a Derby database. See
Configuring NATIVE authentication for details.

User-defined
In this scheme, the customer provides all of the logic needed to authenticate users.
See Specifying authentication with a user-defined class for more information.

You can define a repository of users for a particular database or for an entire system,
depending on whether you use system-wide or database-wide properties.

A directory service stores names and attributes of those names. A typical use for a
directory service is to store user names and passwords for a computer system. Derby
uses the Java Naming and Directory Interface (JNDI) to interact with external directory
services that can provide authentication of users' names and passwords.

When Derby user authentication is enabled and Derby uses an external directory service,
the architecture looks something like that shown in the following figure. The application

Derby Security Guide

37

can be a single-user application with an embedded Derby engine or a multi-user
application server.

Figure 3. Derby user authentication using an external service

Derby always runs embedded in another Java application, whether that application is a
single-user application or a multiple-user application server or connectivity framework.

A database can be accessed by only one JVM at a time, so it is possible to deploy a
system in which the application in which Derby is embedded, not Derby, handles the
user authentication by connecting to an external directory service. The application can
be a single-user application with an embedded Derby engine or a multi-user application
server. The following figure shows this kind of deployment.

Figure 4. Application user authentication using an external service

Configuring LDAP authentication

You can allow Derby to authenticate users against an existing LDAP directory service
within your enterprise. LDAP (lightweight directory access protocol) provides an open
directory access protocol running over TCP/IP. An LDAP directory service can quickly
authenticate a user's name and password.

Derby Security Guide

38

The runtime library provided with the Java Development Kit (JDK) includes libraries
that allow you to access an LDAP directory service. See the API documentation for
the javax.naming.ldap package at http://docs.oracle.com/javase/8/docs/api/, the
LDAP section of the JNDI tutorial at http://docs.oracle.com/javase/tutorial/jndi/ldap/,
and the LDAP section of the JNDI specification at
http://docs.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/jndi.5.html#pgfId=999241.

To use an LDAP directory service, set derby.authentication.provider to LDAP
and specify appropriate permissions in your security policy file (see Configuring Java
security.

This section describes how to authenticate users with the OpenDS LDAP server.

Booting an LDAP server

To begin, launch the OpenDS QuickSetup JNLP (Java Web Start) installer, then follow
the installation steps to set up your directory server.

You can obtain the installer from https://opends.java.net/ by clicking the "Install with
QuickSetup" link.

As part of this installation, you will specify a password, which we will call
YOUR_SELECTED_PASSWORD.

Next, load some credentials into the directory server. Download this sample file of
credentials: http://today.java.net/today/2007/03/22/secArticle.LDIF. Now load it into
your directory server using the import-ldif tool in the bin directory of your OpenDS
installation. (Make sure that OpenDS is not running when you import credentials;
otherwise you will receive an error message indicating that the import utility cannot
acquire a lock over storage.)

import-ldif --backendID userRoot --ldifFile secArticle.LDIF

Now bring up the OpenDS server by running the start-ds script in the bin directory of
your OpenDS installation.

Setting up Derby to use your LDAP directory service

When specifying LDAP as your authentication service, you must specify what LDAP
server to use.

To connect to the OpenDS LDAP server, add the following lines to your Derby
configuration file, derby.properties. You may also want to store these properties in
your database and lock them down by setting the derby.database.propertiesOnly
property (see Configuring coarse-grained user authorization for an example of how to
lock down database properties):

derby.connection.requireAuthentication=true
derby.authentication.server=ldap://127.0.0.1:1389
derby.authentication.provider=LDAP
derby.authentication.ldap.searchAuthPW=YOUR_SELECTED_PASSWORD
derby.authentication.ldap.searchAuthDN=cn=Directory Manager
derby.authentication.ldap.searchBase=dc=example,dc=com
derby.authentication.ldap.searchFilter=objectClass=person

Finally, start ij in the directory where you created your derby.properties (this
ensures that embedded Derby will come up with the authentication settings listed above).
Run the following commands:

java org.apache.derby.tools.ij
ij version 10.11
ij> connect 'jdbc:derby:testdb;create=true;user=tquist;password=tquist';

Verify that authentication works by trying to connect again, this time with bad credentials:

http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/tutorial/jndi/ldap/
http://docs.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/jndi.5.html#pgfId=999241
https://opends.java.net/

Derby Security Guide

39

java org.apache.derby.tools.ij
ij version 10.11
ij> connect
 'jdbc:derby:testdb;create=true;user=tquist;password=badpassword';
ERROR 08004: Connection authentication failure occurred. Reason: Invalid
 authentication...

When you set the property derby.authentication.server, you can specify the
LDAP server using just the server name, the server name and its port number separated
by a colon, or an ldap URL as shown in the example. If you do not provide a full URL,
Derby will by default use unencrypted LDAP. To use SSL encrypted LDAP, specify a
URL that starts with ldaps://. For details on the derby.authentication.server
and derby.authentication.provider properties, see the Derby Reference Manual.

Note: If you run Java DB under a Java security manager, your policy file will need to
grant Derby the privilege to connect to the LDAP server. To see how to do this, consult
the policy file shown in Sample customized Java security policy file. Specifically, you will
need to grant java.net.SocketPermission to derby.jar, so that the Derby code is
allowed to contact the LDAP server to perform the authentication.

Guest access to search for DNs

In an LDAP system, users are hierarchically organized in the directory as a set of
entries. An entry is a set of name-attribute pairs identified by a unique name, called a DN
(distinguished name).

An entry is unambiguously identified by a DN, which is the concatenation of selected
attributes from each entry in the tree along a path leading from the root down to the
named entry, ordered from right to left. For example, a DN for a user might look like this:

cn=mary,ou=People,o=example.com

uid=mary,ou=People,o=example.com

The allowable entries for the name are defined by the entry's objectClass.

An LDAP client can bind to the directory (successfully log in) if it provides a user ID and
password. The user ID must be a DN, the fully qualified list of names and attributes. This
means that the user must provide a very long name.

Typically, the user knows only a simple user name (for example, the first part of the DN
above, mary). With Derby, you do not need the full DN, because an LDAP client (Derby)
can go to the directory first as a guest or even an anonymous user, search for the full DN,
then rebind to the directory using the full DN (and thus authenticate the user).

Derby typically initiates a search for a full DN before binding to the directory using the full
DN for user authentication. Derby does not initiate a search in the following cases:

• You have set derby.authentication.ldap.searchFilter to derby.user.
• A user DN has been cached locally for the specific user with the
derby.user.UserName property.

For more information, see "derby.authentication.ldap.searchFilter" in the
Derby Reference Manual.

Some systems permit anonymous searches; others require a user DN and password.
You can specify a user's DN and password for the search with the properties listed
below. In addition, you can limit the scope of the search by specifying a filter (definition of
the object class for the user) and a base (directory from which to begin the search) with
the properties listed below.

• derby.authentication.ldap.searchAuthDN (optional)

Derby Security Guide

40

Specifies the DN with which to bind (authenticate) to the server when searching
for user DNs. This parameter is optional if anonymous access is supported by your
server. If specified, this value must be a DN recognized by the directory service,
and it must also have the authority to search for the entries.

If not set, it defaults to an anonymous search using the root DN specified by the
derby.authentication.ldap.searchBase property. For example:

uid=guest,o=example.com
• derby.authentication.ldap.searchAuthPW (optional)

Specifies the password to use for the guest user configured above
to bind to the directory service when looking up the DN. If not set, it
defaults to an anonymous search using the root DN specified by the
derby.authentication.ldap.searchBase property.

myPassword
• derby.authentication.ldap.searchBase (optional)

Specifies the root DN of the point in your hierarchy from which to begin a guest
search for the user's DN. For example:

ou=people,o=example.com

To narrow the search, you can specify a user's objectClass.

• derby.authentication.ldap.searchFilter (optional)

Set derby.authentication.ldap.searchFilter to a logical expression that
specifies what constitutes a user for your LDAP directory service. The default value
of this property is objectClass=inetOrgPerson. For example:

objectClass=person

See the Derby Reference Manual for details on all these properties.

LDAP performance issues

For performance reasons, the LDAP directory server should be in the same LAN as
Derby. Derby does not cache the user's credential information locally and thus must
connect to the directory server every time a user connects.

Connection requests that provide the full DN are faster than those that must search for
the full DN.

LDAP restrictions

Derby does not support LDAP groups.

JNDI-specific properties for external directory services

Derby allows you to set a few advanced JNDI properties, which you can set in any of the
supported ways of setting Derby properties. Typically you would set these at the same
level (database or system) for which you configured the external authentication service.

The list of supported properties can be found in "Appendix A: JNDI
Standard Environment Properties" in the Java Naming and Directory API at
http://docs.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html. The
external directory service must support the property.

Each JNDI provider has its set of properties that you can set within the Derby system.

For example, you can set the property java.naming.security.authentication to
allow user credentials to be encrypted on the network if the provider supports it. You can
also specify that SSL be used with LDAP (LDAPS).

http://docs.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html

Derby Security Guide

41

Configuring NATIVE authentication

Derby's simplest authentication mechanism is NATIVE authentication.

When you use NATIVE authentication, user names and encrypted passwords are stored
in a database. You can specify a dedicated credentials database for this purpose, or you
can store the credentials in the same database you use for your application data. The
credentials are stored in the SYSUSERS system table of the database.

To configure NATIVE authentication, follow these steps.

1. Use the SYSCS_UTIL.SYSCS_CREATE_USER system procedure to add credentials
for the Database Owner. Remember that the Database Owner is the user who
created the database.

2. Add credentials for other users.
3. Shut down the database, then reboot it. When the database reboots, NATIVE

authentication is enabled.

For example, you can issue the following commands:

java org.apache.derby.tools.ij
ij version 10.11
ij> connect 'jdbc:derby:testdb;create=true;user=tquist';
ij> -- the Database Owner must be the first user you create
call SYSCS_UTIL.SYSCS_CREATE_USER('tquist', 'tquist');
0 rows inserted/updated/deleted
ij> -- now add other users
call SYSCS_UTIL.SYSCS_CREATE_USER('thardy', 'thardy');
0 rows inserted/updated/deleted
ij> call SYSCS_UTIL.SYSCS_CREATE_USER('jhallett', 'jhallett');
0 rows inserted/updated/deleted
ij> call SYSCS_UTIL.SYSCS_CREATE_USER('mchrysta', 'mchrysta');
0 rows inserted/updated/deleted
ij> -- shut down the database in order to turn on NATIVE authentication
connect 'jdbc:derby:testdb;shutdown=true';
ERROR 08006: Database 'testdb' shutdown.
ij> -- these connection attempts fail because of bad credentials
connect 'jdbc:derby:testdb;user=tquist';
ERROR 08004: Connection authentication failure occurred. Reason: Invalid
 authentication..
ij> connect 'jdbc:derby:testdb;user=thardy;password=tquist';
ERROR 08004: Connection authentication failure occurred. Reason: Invalid
 authentication..
ij> -- these connection attempts present good credentials, so they
 succeed
connect 'jdbc:derby:testdb;user=tquist;password=tquist';
ij(CONNECTION1)> connect 'jdbc:derby:testdb;user=thardy;password=thardy';
ij(CONNECTION2)> connect
 'jdbc:derby:testdb;user=jhallett;password=jhallett';
ij(CONNECTION3)> connect
 'jdbc:derby:testdb;user=mchrysta;password=mchrysta';

Enabling NATIVE authentication explicitly

You can turn on NATIVE authentication explicitly by using a property.

To do so, specify one of the following values for the
derby.authentication.provider property:

• NATIVE:credentialsDB

This value tells Derby to use credentialsDB, a dedicated database, to store user
credentials. This value must be set by using system-wide Java Virtual Machine
(JVM) properties or by using the derby.properties file; it cannot be set in
the database by using the SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
procedure. When this system-wide value is set, credentialsDB is used to

Derby Security Guide

42

authenticate all operations. If an individual database holds credentials for the
Database Owner, the global credentials database is used only to authenticate
system-wide operations such as engine shutdown.

The value of credentialsDB must be a valid name for a database.
• NATIVE:credentialsDB:LOCAL

This value tells Derby to use credentialsDB for system-wide operations, but to use
an individual database's SYSUSERS system table to authenticate connections to
that database. This value must be set by using system-wide JVM properties or by
using the derby.properties file; it cannot be set in the database by using the
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure.

See the Derby Reference Manual for details on the
derby.authentication.provider property.

Working with a credentials database

With NATIVE authentication, a database can become a credentials database in any of
several ways.

• When the database is being created, it is identified as the
credentials database by the system-level property setting
derby.authentication.provider=NATIVE:credentialsDB.

• When the database is being created, LOCAL authentication of
connections is specified by the system-level property setting
derby.authentication.provider=NATIVE:credentialsDB:LOCAL.

• When the database already exists, the Database Owner calls the
SYSCS_UTIL.SYSCS_CREATE_USER system procedure to store the Database
Owner's credentials in the database. If the Database Owner calls this procedure to
store another user's credentials first, an error is raised.

When a database becomes a credentials database, the following things happen:

• The value of derby.authentication.provider=NATIVE::LOCAL is stored in
the database, marking it as a credentials database.

• From this point forward, the value of derby.authentication.provider cannot
be overridden or changed for connections to this database.

• If the database is being newly created, the Database Owner's credentials (provided
in the connection arguments) are stored in the database's SYSUSERS system
table.

• All future connections to the database are authenticated against the credentials in
its SYSUSERS system table.

NATIVE authentication and other database properties

When NATIVE authentication is enabled, Derby behaves as
if the derby.connection.requireAuthentication and
derby.database.sqlAuthorization properties are also set.

That is, a user name and password must be specified whenever a user connects to
a database, and object owners control access to database objects. See Configuring
fine-grained user authorization for more information, and see NATIVE authentication and
SQL authorization example for an example of the use of NATIVE authentication.

For maximum security, the passwords that users specify when they connect to
databases have an expiration date that you can modify by using the property
derby.authentication.native.passwordLifetimeMillis. The password of
the Database Owner never expires. By default, ordinary user passwords expire after 31
days.

If a password is about to expire, or if the Database Owner's password is near what
would be the expiration date, Derby issues a warning that the password will soon expire

Derby Security Guide

43

(or, in the Database Owner's case, that the password is stale). By default, the warning
is issued if the password is due to expire in one-eighth of the password's lifetime.
For example, if the password has a 31-day lifetime, the warning will be issued 3.875
days before the expiration date. You can change this proportion by using the property
derby.authentication.native.passwordLifetimeThreshold.

Use the derby.authentication.builtin.algorithm property to
change the way passwords are encrypted when they are stored in the
SYSUSERS system table. The default algorithm is SHA-256. Two related
properties are derby.authentication.builtin.saltLength and
derby.authentication.builtin.iterations, which can be used to make the
hashed passwords harder for attackers to crack.

See the Derby Reference Manual for details on these properties.

Managing users and passwords

To manage users and passwords, Derby provides a group of system procedures.

• To create users for a database, the Database Owner calls
SYSCS_UTIL.SYSCS_CREATE_USER, which takes a user name and password
as arguments. This procedure can also be executed by a user or role to which the
Database Owner has granted sufficient privileges.

• To remove a user, the Database Owner calls SYSCS_UTIL.SYSCS_DROP_USER,
which takes one argument, the user name of the user. This procedure can also
be executed by a user or role to which the Database Owner has granted sufficient
privileges.

• To reset a forgotten or expired password, the Database Owner calls
SYSCS_UTIL.SYSCS_RESET_PASSWORD, with a user name and password as
arguments. This procedure can also be executed by a user or role to which the
Database Owner has granted sufficient privileges.

• To change a user's own password, any user can call the system procedure
SYSCS_UTIL.SYSCS_MODIFY_PASSWORD, which takes only one argument, the
password. Typically, a user calls this procedure when their password is about to
expire.

See the Derby Reference Manual for details on these procedures.

Converting an existing database to use NATIVE authentication

If you wish to apply NATIVE authentication to a database that was created without it, the
procedure is slightly different depending on whether you specify NATIVE:credentialsDB
or NATIVE:credentialsDB:LOCAL.

• If you specify NATIVE:credentialsDB, add users of the existing database to
the credentialsDB. For instance, if the old database was created without any
authentication, then its default user name is APP, and you could do the following:

CALL SYSCS_UTIL.SYSCS_CREATE_USER('app', 'app');
• If you plan to specify NATIVE:credentialsDB:LOCAL, first connect to the existing

database as its Database Owner using its old authentication scheme. Call
SYSCS_UTIL.SYSCS_CREATE_USER to add credentials for the Database Owner.
For example, if the existing database was created with no authentication, the
Database Owner is APP, and you would add credentials for APP as shown above.

Specifying authentication with a user-defined class

You can set the derby.authentication.provider property
to the full name of a class that implements the public interface
org.apache.derby.authentication.UserAuthenticator.

Derby Security Guide

44

By writing your own class that fulfills some minimal requirements, you can hook Derby
up to an external authentication service other than LDAP. To do so, specify an external
authentication service by setting the property derby.authentication.provider to a
class name that you want Derby to load at startup.

The class that provides the external authentication service must implement the public
interface org.apache.derby.authentication.UserAuthenticator and throw
exceptions of the type java.sql.SQLException where appropriate.

Using a user-defined class makes Derby adaptable to various naming and directory
services.

Example of setting a user-defined class

This is a very simple example of a class that implements the
org.apache.derby.authentication.UserAuthenticator interface.

import org.apache.derby.authentication.UserAuthenticator;
import java.io.FileInputStream;
import java.util.Properties;
import java.sql.SQLException;
/**
 * A simple example of a specialized Authentication scheme.
 * The system property 'derby.connection.requireAuthentication'
 * must be set to true, and 'derby.authentication.provider' must
 * contain the full class name of the overridden authentication
 * scheme, (that is, the name of this class).
 *
 * @see org.apache.derby.authentication.UserAuthenticator
 */
public class MyAuthenticationSchemeImpl implements
 UserAuthenticator {
 private static final String USERS_CONFIG_FILE = "myUsers.cfg";
 private static Properties usersConfig;

 // Constructor
 // We get passed some Users properties if the
 // authentication service could not set them as
 // part of the System properties.
 //
 public MyAuthenticationSchemeImpl() {
 }

 /* Static block where we load the users definition from a
 users configuration file. */
 static {
 /* Load users config file as Java properties.
 File must be in the same directory where
 Derby is started.
 Otherwise, full path must be specified. */
 FileInputStream in = null;
 usersConfig = new Properties();
 try {
 in = new FileInputStream(USERS_CONFIG_FILE);
 usersConfig.load(in);
 in.close();
 } catch (java.io.IOException ie) {
 // No Config file. Raise error message
 System.err.println(
 "WARNING: Error during Users Config file retrieval");
 System.err.println("Exception: " + ie);
 }
 }

 /**
 * Authenticate the passed-in user's credentials.
 * A more complex class could make calls
 * to any external users directory.

Derby Security Guide

45

 *
 * @param userName The user's name
 * @param userPassword The user's password
 * @param databaseName The database
 * @param info Additional jdbc connection info.
 * @exception SQLException on failure
 */
 public boolean authenticateUser(String userName,
 String userPassword,
 String databaseName,
 Properties info)
 throws SQLException {
 /* Specific Authentication scheme logic.
 If user has been authenticated, then simply return.
 If user name and/or password are invalid,
 then raise the appropriate exception.

 This example allows only users defined in the
 users config properties object.

 Check if the passed-in user has been defined for the system.
 We expect to find and match the property corresponding to
 the credentials passed in. */
 if (userName == null)
 // We do not tolerate 'guest' user for now.
 return false;

 /* Check if user exists in our users config (file)
 properties set.
 If we did not find the user in the users config set, then
 try to find if the user is defined as a System property. */
 String actualUserPassword;
 actualUserPassword = usersConfig.getProperty(userName);
 if (actualUserPassword == null)
 actualUserPassword = System.getProperty(userName);
 if (actualUserPassword == null)
 // No such passed-in user found
 return false;
 // Check if the password matches
 if (!actualUserPassword.equals(userPassword))
 return false;
 // Now, check if the user is a valid user of the database
 if (databaseName != null) {
 /* If database users restriction lists are present, then
 check if there is one for this database and if so,
 check if the user is a valid one for that database.
 For this example, the only user we authorize in database
 DarkSide is user 'DarthVader'. This is the only database
 users restriction list we have for this example.
 We authorize any valid (login) user to access the
 OTHER databases in the system.
 Note that database users ACLs could be set in the same
 properties file or a separate one and implemented as you
 wish. */
 if (databaseName.equals("DarkSide")) {
 // Check if user is a valid one
 if (!userName.equals("DarthVader"))
 // This user is not a valid one of the passed-in
 return false;
 }
 }
 // The user is a valid one in this database
 return true;
 }
}

List of user authentication properties

The following table summarizes the Derby properties related to user authentication.

Derby Security Guide

46

For details on these properties, see the Derby Reference Manual.

Table 3. User authentication properties

Property Name Use

derby.authentication.provider Specifies the kind of user
authentication to use.

derby.authentication.builtin.algorithmSpecifies the message digest
algorithm to use to protect the
passwords that are stored in the
database when using NATIVE
authentication.

derby.authentication.builtin.iterationsSpecifies the number of times to apply
the hash function specified by the
message digest algorithm.

derby.authentication.builtin.saltLengthSpecifies the number of bytes of
random salt that will be added to users'
credentials before hashing them.

derby.authentication.native.passwordLifetimeMillisSpecifies the number of milliseconds
that a password used for NATIVE
authentication remans valid.

derby.authentication.native.passwordLifetimeThresholdSpecifies the threshold that triggers
a password-expiration warning for
NATIVE authentication.

derby.connection.requireAuthenticationTurns on user authentication. If
NATIVE authentication is used, Derby
behaves as if this property is set to
TRUE.

derby.authentication.server For LDAP user authentication,
specifies the location of the server.

derby.authentication.ldap.searchAuthDN,
derby.authentication.ldap.searchAuthPW,
derby.authentication.ldap.searchFilter,
and derby.authentication.ldap.searchBase

Configures the way that DN searches
are performed.

derby.user.UserName Caches user DNs locally for LDAP
authentication when derby.authentication.ldap.searchFilter
is set to derby.user.

java.naming.* JNDI properties. See Appendix A in
the JNDI API reference (http://
docs.oracle.com/javase/1.5.0/docs/
guide/jndi/spec/jndi/properties.html)
for more information about these
properties.

Programming applications for Derby user authentication

To program user authentication into Derby applications, use the
DriverManager.getConnection call to specify the user name and password.

An application can provide the user name and password in the following ways.

http://docs.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html

Derby Security Guide

47

• Separately, as arguments to the following signature of the method:
getConnection(String url, String user, String password)

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "mary", "little7xylamb");

• As attributes to the database connection URL:

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB;user=mary;password=little7xylamb");

• By setting the user and password properties in a Properties object as with
other connection URL attributes:

Properties p = new Properties();
p.put("user", "mary");
p.put("password", "little7xylamb");
Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", p);

Note: The password is not encrypted. When you are using Derby in the context of a
server framework, the framework should be responsible for encrypting the password
across the network. If your framework does not encrypt the password, it is strongly
recommended that you protect network connections with SSL/TLS (see Configuring
SSL/TLS).

For information about the treatment of user names within the Derby system, see Users
and authorization identifiers.

Login failure exceptions with user authentication

If user authentication is turned on and a valid user name and password are not provided,
SQLException 08004 is raised.

ERROR 08004: Connection refused : Invalid authentication.

Configuring Network Server authentication in special circumstances

Some advanced Network Server configuration features may be useful in certain
situations.

Configuring Network Client authentication without SSL/TLS

If you do not encrypt network traffic with SSL/TLS, you can use properties to specify the
encryption of user names and passwords on the client side.

> Important: Using SSL/TLS is strongly recommended for production applications. Use
the properties only under unusual circumstances.

The securityMechanism=value property specifies a security mechanism for the
Derby Network Client. See the Derby Reference Manual for details on this property.

You can set the securityMechanism property in one of the following ways:

• When you are using the java.sql.DriverManager class, set
securityMechanism=value in a java.util.Properties object before you
invoke the form of the DriverManager.getConnection method that includes
the java.util.Properties parameter.

• When you are using the ClientDataSource interface to
create and deploy your own DataSource objects, invoke the
ClientDataSource.setSecurityMechanism method after you create a
ClientDataSource object.

The following table lists the security mechanisms that the Derby Network Client supports,
and the corresponding property value to specify to obtain this security mechanism. The

Derby Security Guide

48

default security mechanism is the user id only if no password is set. If the password is
set, the default security mechanism is both the user id and password. The default user is
APP if no other user is specified.

Table 4. Security mechanisms supported by the Derby Network Client

Security Mechanism securityMechanism Property Value Comments

User id and
password

ClientDataSource.CLEAR_TEXT_PASSWORD_SECURITY
(0x03)

Default if password is
set

User id
only

ClientDataSource.USER_ONLY_SECURITY
(0x04)

Default if password is
not set

Encrypted
user id and
encrypted
password

ClientDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY
(0x09)

Encryption requires a
JCE implementation
that supports the
Diffie-Hellman
algorithm with a public
prime of 256 bits.

Derby provides two ClientDataSource implementations. Use the
org.apache.derby.jdbc.ClientDataSource class on all supported Java SE
versions except Java SE 8 Compact Profile 2. On Java SE 8 Compact Profile 2, use the
org.apache.derby.jdbc.BasicClientDataSource40 class.

Configuring Network Server authentication without SSL/TLS

If you do not encrypt network traffic with SSL/TLS, you can use properties to specify the
encryption of user names and passwords on the Network Server side.

> Important: Using SSL/TLS is strongly recommended for production applications. Use
the properties only under unusual circumstances.

When you run Derby in embedded mode or when you use the Derby Network Server, you
can enable or disable server-side user authentication. (Enabling user authentication is
strongly recommended.) However, when you use the Network Server, the default security
mechanism (CLEAR_TEXT_PASSWORD_SECURITY) requires that you supply both the
user name and password.

In addition to the default user name and password
security mechanism,
org.apache.derby.jdbc.ClientDataSource.CLEAR_TEXT_PASSWORD_SECURITY,
Derby Network Server supports the following security properties:

• UserID:
org.apache.derby.jdbc.ClientDataSource.USER_ONLY_SECURITY

When you use this mechanism, you must specify only the user property. All other
mechanisms require you to specify both the user name and the password.

• Encrypted UserID and encrypted password: org.apache.derby.jdbc.ClientDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

When you use this mechanism, both password and user id are encrypted.

The user name that is specified upon connection is the default schema for the
connection, if a schema with that name exists. See the Derby Developer's Guide for more
information on schema and user names.

If you specify any other security mechanism, you will receive an exception.

To change the default, you can specify another security mechanism either as a property
or on the URL (using the securityMechanism=value attribute) when you make the

Derby Security Guide

49

connection. For details, see Configuring Network Client authentication without SSL/TLS
and "securityMechanism=value attribute" in the Derby Reference Manual.

Whether the security mechanism you specify for the client actually takes effect depends
upon the setting of the derby.drda.securityMechanism property for the Network
Server. If the derby.drda.securityMechanism property is set, the Network Server
accepts only connections that use the security mechanism specified by the property
setting. If the derby.drda.securityMechanism property is not set, clients can use
any valid security mechanism. For details, see "derby.drda.securityMechanism property"
in the Derby Server and Administration Guide.

Security mechanism options when user authentication is enabled on the Network
Server

When user authentication is enabled in Derby, you can use either of the following security
mechanisms.

• Clear text user name and password security, the default
• Encrypted user name and password security

Security mechanism options when user authentication is disabled on the Network
Server

When user authentication is turned off in Derby, you can use any of the security
mechanism options.

You must provide a user and password for all security mechanisms except
USER_ONLY_SECURITY. However, because user authentication is disabled in the Derby
server, the user name and password that you supply do not have to be among those
recognized as valid by Derby.

Enabling the encrypted user ID and password security mechanism

To use the encrypted user ID and password security mechanism, you need a Java
environment with a JCE (Java Cryptography Extension) that supports the Diffie-Hellman
algorithm with a public prime of 256 bits.

The Java Platform, Standard Edition (Java SE) requires a public prime of 512 bits or
more.

To use the encrypted user id and password security mechanism during JDBC connection
using the network client, specify the securityMechanism=value connection property.
Note: If an encrypted database is booted in the Network Server, users can connect to
the database without giving the bootPassword. The first connection to the database
must provide the bootPassword, but all subsequent connections do not need to supply
it. To remove access from the encrypted database, use the shutdown=true option to
shut down the database. See Configuring database encryption for more information.

Configuring user authorization
While authentication determines whether someone is a legal database user, authorization
determines what operations can be performed by a user's identity.

Once you have set up authentication, you can configure authorization.

Derby offers two kinds of authorization:

• Coarse-grained authorization, in which the Database Owner divides an
application's users into two groups. One group has full authority to read and write all
data. The other group merely has permission to read data.

Derby Security Guide

50

• Fine-grained authorization, in which the Database Owner and individual users
issue SQL GRANT/REVOKE statements to declare who can read or write specific
pieces of data and who can exercise specific application functions.

Configuring coarse-grained user authorization

You can manipulate coarse-grained access by using the builtin
procedure SYSCS_SET_DATABASE_PROPERTY to set the
database properties derby.database.fullAccessUsers and
derby.database.readOnlyAccessUsers.

The following example shows how to do this. The example assumes that you are reusing
the credentials-protected database you created in Configuring NATIVE authentication.
The example commands first set the read/write and read-only users and then verify that
the settings work correctly.

java org.apache.derby.tools.ij
ij> ij version 10.11
ij> connect 'jdbc:derby:testdb;user=tquist;password=tquist';
ij> --
-- Prevent our settings from being overridden on the
-- command line or in derby.properties.
--
call SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.database.propertiesOnly', 'true');
0 rows inserted/updated/deleted
ij> --
-- Now we can configure read/write and read-only users.
--
call SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.database.fullAccessUsers', 'tquist,mchrysta');
0 rows inserted/updated/deleted
ij> call SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.database.readOnlyAccessUsers', 'thardy,jhallett');
0 rows inserted/updated/deleted
ij> --
-- Next verify that a read/write user has those powers:
--
connect 'jdbc:derby:testdb;user=mchrysta;password=mchrysta';
ij(CONNECTION1)> create table mchrysta.t1(a varchar(20));
0 rows inserted/updated/deleted
ij(CONNECTION1)> insert into mchrysta.t1(a) values ('mchrysta');
1 row inserted/updated/deleted
ij(CONNECTION1)> select * from mchrysta.t1;
A

mchrysta

1 row selected
ij(CONNECTION1)> --
-- Finally, verify that a read-only user can read data but not write it:
--
connect 'jdbc:derby:testdb;user=thardy;password=thardy';
ij(CONNECTION2)> -- the user can select from public data
select count(*) from sys.systables;
1

24

1 row selected
ij(CONNECTION2)> -- but this user can't even create a table
create table thardy.t1(a varchar(20));
ERROR 25503: DDL is not permitted for a read-only connection, user or
 database.

Coarse-grained authorization details

Derby Security Guide

51

Use a CALL statement to call the SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
system procedure.

To specify multiple user IDs, use a comma-separated list, with no spaces between the
comma and the next user ID.

To specify read-write access for a user ID that contains special characters, use delimited
identifiers for the user ID. For example:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', '"Elena!"')

For extra security, you should configure the derby.database.propertiesOnly
property so that users cannot override database behavior using system-wide properties
specified on the command line or in the derby.properties file.

Read-only and full access permissions

The actions that users can perform on a Derby database with coarse-grained
authorization are determined by the type of access that users have to the database
objects.

The following table lists the actions that users can perform based on the type of access
that a user is granted on a database.
Table 5. Actions that are authorized by type of access

Action Read-only access Full access

Executing SELECT statements Yes Yes

Reading database properties Yes Yes

Loading database classes from jar files Yes Yes

Executing INSERT, UPDATE, or DELETE
statements

No Yes

Executing DDL statements No Yes

Adding or replacing jar files No Yes

Setting database properties No Yes

Setting the default connection access mode

You can use the derby.database.defaultConnectionMode property to specify the
default type of access that users have when they connect to the database.

The valid settings for the derby.database.defaultConnectionMode property are:
• noAccess
• readOnlyAccess
• fullAccess

If you do not specify a setting for the derby.database.defaultConnectionMode
property, the default access setting is fullAccess.

To set the default connection access mode, specify the access in a CALL statement. For
example:

To specify read-write access for the System Administrator user ID sa and read-only
access as the default for anyone else who connects to the database, issue these CALL
statements:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'sa')

Derby Security Guide

52

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode',
 'readOnlyAccess')

To specify read-write access for the user ID Fred and no access for other users, issue
these CALL statements:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'Fred')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode',
 'noAccess')

User authorization exceptions

SQL exceptions are returned when errors occur with coarse-grained user authorizations.

Derby validates the database properties when you set the properties. An exception is
returned if you specify an invalid value when you set these properties.

If a user attempts to connect to a database but is not authorized to connect to that
database, the SQLException 04501 is returned.

If a user with read-only access attempts to write to a database, the SQLException
08004 (connection refused) is returned.

Configuring fine-grained user authorization

You can use fine-grained user authorization, also called SQL standard authorization, to
restrict access to specific pieces of data.

You can use fine-grained authorization by itself or in conjunction with coarse-grained
authorization.

Fine-grained authorization, like coarse-grained authorization, requires that we
run Derby with authentication turned on. If you are using LDAP authentication,
then you will need to enable fine-grained authorization by setting the
derby.database.sqlAuthorization property to true.

The following example uses the same database you created in Configuring NATIVE
authentication, the database that relies on NATIVE authentication. If you use NATIVE
authentication, there is no need to set the derby.database.sqlAuthorization
property. NATIVE authentication automatically enables fine-grained authorization.

The example creates two tables. One table can be viewed by anyone. The other table
can be viewed only by specific users.

java org.apache.derby.tools.ij
ij version 10.11
ij> connect 'jdbc:derby:testdb;user=mchrysta;password=mchrysta';
ij> -- create and populate some tables
create table publicTable(a int);
0 rows inserted/updated/deleted
ij> create table restrictedTable(a int);
0 rows inserted/updated/deleted
ij> insert into publicTable(a) values (1);
1 row inserted/updated/deleted
ij> insert into restrictedTable(a) values(100);
1 row inserted/updated/deleted
ij> -- set up fine-grained checks
grant select on publicTable to public;
0 rows inserted/updated/deleted
ij> grant select on restrictedTable to thardy;
0 rows inserted/updated/deleted

Derby Security Guide

53

ij> --
--Now verify that thardy can view both tables...
--
connect 'jdbc:derby:testdb;user=thardy;password=thardy';
ij(CONNECTION1)> select * from mchrysta.publicTable;
A

1

1 row selected
ij(CONNECTION1)> select * from mchrysta.restrictedTable;
A

100

1 row selected
ij(CONNECTION1)> --
-- ...but other users can only view the public table:
--
connect 'jdbc:derby:testdb;user=jhallett;password=jhallett';
ij(CONNECTION2)> select * from mchrysta.publicTable;
A

1

1 row selected
ij(CONNECTION2)> select * from mchrysta.restrictedTable;
ERROR 42502: User 'JHALLETT' does not have SELECT permission on column
 'A' of
table 'MCHRYSTA'.'RESTRICTEDTABLE'.

You can also use the GRANT command to restrict write access to your tables, to control
who executes your functions and procedures, to limit who can add triggers to your tables,
and to limit who can create foreign keys referencing your tables. You can also control
users' ability to create, set, and drop roles.

Coarse-grained and fine-grained authorization are not mutually exclusive. You may
want to configure both. Using coarse-grained authorization, you can prevent truly
read-only users from creating and populating any table; this defends your database
against an unbounded growth vulnerability (see Vulnerabilities of unsecured databases.
Using additional fine-grained authorization checks prevents your read-write users from
accessing restricted data.

After the derby.database.sqlAuthorization property has been set to true, you
cannot set the property back to false.

You can set the derby.database.sqlAuthorization property as a system property
or as a database property. If you set this property as a system property before you create
the databases, all new databases will automatically have SQL authorization enabled:

derby.database.sqlAuthorization=true

If the databases already exist, you can set this property only as a database property:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.sqlAuthorization',
 'true')

Using fine-grained user authorization

When the SQL standard authorization mode is enabled, object owners can use the
GRANT and REVOKE SQL statements to set the user privileges for specific database
objects or for specific SQL actions. They can also use roles to administer privileges.

Derby Security Guide

54

The GRANT statement is used to grant specific privileges to users or to roles, or to grant
roles to users or to roles. The REVOKE statement is used to revoke privileges and role
grants. The grant and revoke privileges are:

• DELETE
• EXECUTE
• INSERT
• SELECT
• REFERENCES
• TRIGGER
• UPDATE

When a table, view, function, procedure, type, or aggregate is created, the person that
creates the object is referred to as the owner of the object. Only the object owner and the
Database Owner have full privileges on the object. No other users have privileges on the
object until the object owner grants privileges to them.

Another way of saying that privileges on objects belong to the owner is to call them
definer rights, as opposed to invoker rights. This is the terminology used by the SQL
standard.

See the Derby Reference Manual for more information on the GRANT and REVOKE
statements.

Public and individual user privileges

The object owner can grant and revoke privileges for specific users, for specific roles, or
for all users.

The keyword PUBLIC is used to specify all users. When PUBLIC is specified, the
privileges affect all current and future users. The privileges granted and revoked to
PUBLIC and to individual users or roles are independent. For example, suppose that
a SELECT privilege on table t is granted to both PUBLIC and to the user harry. The
SELECT privilege is later revoked from user harry, but user harry has access to table
t through the PUBLIC privilege.

Exception: When you create a view, trigger, or constraint, Derby first checks to
determine if you have the required privileges at the user level. If you have the user-level
privileges, the object is created and is dependent on that user-level privilege. If you
do not have the required privileges at the user level, Derby checks to determine if
you have the required privileges at the PUBLIC level. If you have the PUBLIC level
privileges, the object is created and is dependent on that PUBLIC level privilege. After
the object is created, if the privilege on which the object depends is revoked, the object is
automatically dropped. Derby does not try to determine if you have other privileges that
can replace the privileges that are being revoked.
Example 1

User zhi creates table t1 and grants SELECT privileges to user harry on table
t1. User zhi grants SELECT privileges to PUBLIC on table t1. User harry creates
view v1 with the statement SELECT * from zhi.t1. The view depends on the
user-level privilege that user harry has on t1. Subsequently, user zhi revokes
SELECT privileges from user harry on table t1. As a result, the view harry.v1 is
dropped.

Example 2
User anita creates table t1 and grants SELECT privileges to PUBLIC. User harry
creates view v1 with the statement SELECT * from anita.t1. The view depends
on the PUBLIC level privilege that user harry has on t1, since user harry does
not have user-level privileges on table t1 when he creates the view harry.v1.
Subsequently, user anita grants SELECT privileges to user harry on table
anita.t1. The view harry.v1 continues to depend on the PUBLIC level privilege

Derby Security Guide

55

that user harry has on t1. When user anita revokes SELECT privileges from
PUBLIC on table t1, the view harry.v1 is dropped.

See Privileges on views, triggers, constraints, and generated columns for more
information.

Privileges on views, triggers, constraints, and generated columns

Views, triggers, constraints, and generated columns operate with the privileges of the
owner of the view, trigger, constraint, or generated column.

For example, suppose that user anita wants to create a view using the following
statement:

CREATE VIEW s.v(vc1,vc2,vc3)
 AS SELECT t1.c1,t1.c2,f(t1.c3)
 FROM t1 JOIN t2 ON t1.c1 = t2.c1
 WHERE t2.c2 = 5

User anita needs the following privileges to create the view:

• Ownership of the schema s, so that she can create something in the schema
• Ownership of the table t1, so that she can allow others to see columns in the table
• SELECT privilege on column t2.c1 and column t2.c2
• EXECUTE privilege on function f

When the view is created, only user anita has the SELECT privilege on it. User anita
can grant the SELECT privilege on any or all of the columns of view s.v to anyone, even
to users that do not have the SELECT privilege on t1 or t2, or the EXECUTE privilege
on f. User anita then grants the SELECT privilege on view s.v to user harry. When
user harry issues a SELECT statement on the view s.v, Derby checks to determine if
user harry has the SELECT privilege on view s.v. Derby does not check to determine if
user harry has the SELECT privilege on t1 or t2, or the EXECUTE privilege on f.

Privileges on triggers, constraints, and generated columns work the same way as
privileges on views. When one of these objects is created, Derby checks that the owner
has the required privileges. Other users do not need to have those privileges to perform
actions on a view, trigger, constraint, or generated column.

If the required privileges are revoked from the owner of a view, trigger, constraint, or
generated column, the object is dropped as part of the REVOKE statement.

Another way of saying that privileges on objects belong to the owner is to call them
definer rights, as opposed to invoker rights. This is the terminology used by the SQL
standard.

Using SQL roles

When the SQL standard authorization mode is enabled, object owners can use the SQL
roles facility to administer privileges.

SQL roles are useful for administering privileges when a database has many users.
Roles provide a more powerful way to grant privileges to users' sessions than to grant
privileges to each user of the database, which easily becomes tedious and error-prone
when many users are involved. Roles do not in and of themselves give better database
security, but used correctly, they facilitate better security. Only the Database Owner can
create, grant, revoke, and drop roles. However, object owners can grant and revoke
privileges for those objects to and from roles, as well as to and from individual users and
PUBLIC (all users).

Note: Derby implements a subset of SQL roles. The fact that only the Database Owner
can create, grant, revoke, and drop roles is an implementation restriction.

Creating and granting roles

Derby Security Guide

56

Roles are available only when SQL authorization mode is enabled (that
is, when NATIVE authentication is being used, or when the property
derby.database.sqlAuthorization is explicitly set to TRUE).

Old databases must be fully upgraded to at least Release 10.5 before roles can be used.
See "Upgrades" in the Derby Developer's Guide for more information.

If SQL authorization mode is enabled, the Database Owner can use the CREATE ROLE
statement to create roles. The Database Owner can then use the GRANT statement to
grant a role to one or more users, to PUBLIC, or to another role.

A role A contains another role B if role B is granted to role A, or is contained in a role C
granted to role A. Privileges granted to a contained role are inherited by the containing
roles. So the set of privileges identified by role A is the union of the privileges granted to
role A and the privileges granted to any contained roles of role A.

For example, suppose the Database Owner issued the following statements:

create role reader;
create role updater;
create role taskLeaderA;
create role taskLeaderB;
create role projectLeader;
grant reader to updater;
grant updater to taskLeaderA;
grant updater to taskLeaderB;
grant taskLeaderA to projectLeader;
grant taskLeaderB to projectLeader;

The roles would then have the following containment relationships:

• The projectLeader role contains the taskLeaderA and taskLeaderB roles.
• The taskLeaderA and taskLeaderB roles both contain the updater role.
• The updater role contains the reader role.

In this case, the projectLeader role contains all the other roles and has all their
privileges. If the Database Owner then revokes updater from taskLeaderA,
projectLeader still contains that role through taskLeaderB.

The SYSCS_DIAG.CONTAINED_ROLES diagnostic table function can be used to
determine the set of contained roles for a role.

Cycles are not permitted in role grants. That is, if a role contains another role, you cannot
grant the container role to the contained role. For example, the following statement would
not be permitted:

grant projectLeader to updater;

Setting roles

When a user first connects to Derby, no role is set, and the CURRENT_ROLE function
returns null. During a session, the user can call the SET ROLE statement to set the
current role for that session. The role can be any role that has been granted to the
session's current user or to PUBLIC. To unset the current role, call SET ROLE with an
argument of NONE. At any time during a session, there is always a current user, but
there is a current role only if SET ROLE has been called with an argument other than
NONE. If a current role is not set, the session has only the privileges granted to the user
directly or to PUBLIC.

For example, if the Database Owner created and granted the roles shown in the previous
session, a user would have to issue a SET ROLE statement to have them take effect.
Suppose a user issued the following statement:

SET ROLE taskLeaderA;

Derby Security Guide

57

Assuming that the Database Owner had granted the taskLeaderA role to the user, the
user would be allowed to set the role as shown and would have all the privileges granted
to the taskLeaderA, updater, and reader roles.

To retrieve the current role identifier in SQL, call the CURRENT_ROLE function.

Within stored procedures and functions that contain SQL, the current role depends on
whether the routine executes with invoker's rights or with definer's rights, as specified
by the EXTERNAL SECURITY clause in the CREATE FUNCTION or CREATE
PROCEDURE statements in the Derby Reference Manual. During execution, the current
user and current role are kept on an authorization stack, which is pushed during a stored
routine call.

• Within routines that execute with invoker's rights, the following applies: initially,
inside a nested connection, the current role is set to that of the calling context. So
is the current user. Such routines may set any role granted to the invoker or to
PUBLIC.

• Within routines that execute with definer's rights, the following applies: initially,
inside a nested connection, the current role is NULL, and the current user is that of
the definer. Such routines may set any role granted to the definer or to PUBLIC.

Upon return from the stored procedure or function, the authorization stack is popped,
so the current role of the calling context is not affected by any setting of the role inside
the called procedure or function. If the stored procedure opens more than one nested
connection, these all share the same (stacked) current role (and user) state. Any dynamic
result set passed out of a stored procedure sees the current role (or user) of the nested
context.

Granting privileges to roles

Once a role has been created, both the Database Owner and the object owner can
grant privileges on tables and routines to that role. You can grant the same privileges
to roles that you can grant to users. Granting a privilege to a role implicitly grants
privileges to all roles that contain that role. For example, if you grant delete privileges
on a table to updater, every user in the updater, taskLeaderA, taskLeaderB,
and projectLeader role will also have delete privileges on that table, but users in the
reader role will not.

Revoking privileges from a role

Either the Database Owner or the object owner can revoke privileges from a role.

When a privilege is revoked from a role A, that privilege is no longer held by role A,
unless A otherwise inherits that privilege from a contained role.

If a privilege to an object is revoked from role A, a session will lose that privilege if it has
a current role set to A or a role that contains A, unless one or more of the following is
true:

• The privilege is granted directly to the current user
• The privilege is granted to PUBLIC
• The privilege is also granted to another role B in the current role's set of contained

roles
• The session's current user is the Database Owner or the object owner

Revoking roles

The Database Owner can use the REVOKE statement to revoke a role from a user, from
PUBLIC, or from another role.

When a role is revoked from a user, that session can no longer keep that role, nor can it
take on that role in a SET ROLE statement, unless the role is also granted to PUBLIC.

Derby Security Guide

58

If that role is the current role of an existing session, the current privileges of the session
lose any extra privileges obtained through setting that role.

The default drop behavior is CASCADE. Therefore, all persistent objects (constraints,
views and triggers) that rely on that role are dropped. Although there may be other
ways of fulfilling that privilege at the time of the revoke, any dependent objects are still
dropped. This is an implementation limitation. Any prepared statement that is potentially
affected will be checked again on the next execute. A result set that depends on a role
will remain open even if that role is revoked from a user.

When a role is revoked from a role, the default drop behavior is also CASCADE.
Suppose you revoke role A from role B. Revoking the role will have the effect of revoking
all additional applicable privileges obtained through A from B. Roles that contain B will
also lose those privileges, unless A is still contained in some other role C granted to B,
or the privileges come through some other role. See Creating and granting roles for an
example.

Dropping roles

Only the Database Owner can drop a role. To drop a role, use the DROP ROLE
statement.

Dropping a role effectively revokes all grants of this role to users and other roles.

Further information

For details on the following statements, functions, and system table related to roles, see
the Derby Reference Manual.

• CREATE ROLE statement
• SET ROLE statement
• DROP ROLE statement
• GRANT statement
• REVOKE statement
• CURRENT_ROLE function
• SYSCS_DIAG.CONTAINED_ROLES table function
• SYSROLES system table

Upgrading an old database to use SQL standard authorization

An old, unprotected database can be shielded with authentication and SQL authorization
later on.

Upgrading authentication and authorization

To protect a single-user database and convert it to a shared, multi-user database, simply
enable authentication and SQL authorization. To do this, first turn on user authentication
as described in Configuring user authentication. Make sure that you supply login
credentials for the Database Owner. In most single-user databases, the Database Owner
is APP. However, the Database Owner could be some other user if the original database
creation URL specified a user name; for details, see Database Owner. If you are unsure
about who owns the database, run the following query:

select authorizationid from sys.sysschemas where schemaname = 'SYS'

After enabling user authentication, turn on SQL authorization. To do this, connect to the
database as the Database Owner and issue the following command:

call syscs_util.syscs_set_database_property(
 'derby.database.sqlAuthorization', 'true')

Now shut down the database to activate the new value of
derby.database.sqlAuthorization. The next time you boot the database, it will be
protected by authentication and SQL authorization.

Derby Security Guide

59

Behavior of upgraded databases

You will notice the following behavior changes in your upgraded database:

• Data: Users can access data in their own schemas. However, users cannot access
data in schemas owned by other users. In particular, other users cannot access
data in schemas belonging to the Database Owner. The Database Owner may need
to GRANT access to that data.

• Database Maintenance: In a single-user database, anyone can run maintenance
procedures to backup/restore and import/export data. In the upgraded multi-user
database, only the Database Owner can perform these sensitive operations.

SQL standard authorization exceptions

SQL exceptions are returned when errors occur with SQL authorization.

The following errors can result from the CREATE ROLE statement:

• You cannot create a role if you are not the Database Owner. An attempt to do so
raises the SQLException 4251A.

• You cannot create a role if a role with that name already exists. An attempt to do so
raises the SQLException X0Y68.

• You cannot create a role name if there is a user by that name. An attempt to create
a role name that conflicts with an existing user name raises the SQLException
X0Y68.

• A role name cannot start with the prefix SYS (after case normalization). Use of the
prefix SYS raises the SQLException 4293A.

• You cannot create a role with the name PUBLIC (after case normalization). PUBLIC
is a reserved authorization identifier. An attempt to create a role with the name
PUBLIC raises SQLException 4251B.

The following errors can result from the DROP ROLE statement:

• You cannot drop a role if you are not the Database Owner. An attempt to do so
raises the SQLException 4251A.

• You cannot drop a role that does not exist. An attempt to do so raises the
SQLException 0P000.

The following errors can result from the SET ROLE statement:

• You cannot set a role if you are not the Database Owner. An attempt to do so raises
the SQLException 4251A.

• You cannot set a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot set a role when a transaction is in progress. An attempt to do so raises
the SQLException 25001.

• You cannot use NONE or a malformed identifier as a string or ? argument to SET
ROLE. An attempt to do so raises the SQLException XCXA0.

The following errors can result from the GRANT statement:

• You cannot grant a role if you are not the Database Owner. An attempt to do so
raises the SQLException 4251A.

• You cannot grant a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot grant the role "PUBLIC". An attempt to do so raises the SQLException
4251B.

• You cannot grant a role if doing so would create a circularity by granting a container
role to a contained role. An attempt to do so raises the SQLException 4251C.

The following errors can result from the REVOKE statement:

Derby Security Guide

60

• You cannot revoke a role if you are not the Database Owner. An attempt to do so
raises the SQLException 4251A.

• You cannot revoke a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot revoke the role "PUBLIC". An attempt to do so raises the
SQLException 4251B.

For all statements, an attempt to specify an identifier argument more than 128 characters
long raises the SQLException 42622.

For more information about exceptions, see "SQL error messages and exceptions" in the
Derby Reference Manual.

NATIVE authentication and SQL authorization example

This example consists of the program NativeAuthenticationExample.java, which
shows how to use Derby's NATIVE user authentication and SQL authorization with either
the embedded or the client driver.

See Configuring NATIVE authentication for information on NATIVE authentication. See
the other topics under Configuring user authorization for more information on using SQL
authorization.

The program does the following:

1. Uses a system property to set the authentication provider to
NATIVE:nativeAuthDB:LOCAL, meaning that nativeAuthDB is the credentials
database and that all user credentials are stored there.

2. If you are running the program using the client driver, starts the Network Server.
3. Creates a database named nativeAuthDB as the user sysadm, who is therefore

the Database Owner. Only the Database Owner has the right to set and read
database properties.

4. Calls the SYSCS_UTIL.SYSCS_CREATE_USER system procedure to create several
users: noacc, guest, and sqlsam. The user sysadm has already been created
automatically.

5. Creates the roles adder and viewer.
6. Grants the role adder to sqlsam, and grants the role viewer to guest.
7. Creates a table, accessibletbl, and inserts a value into it.
8. Grants SELECT and INSERT privileges on accessibletbl to adder.
9. Tries to connect to the database without supplying credentials, and fails, as

expected.
10. Connects to the database as a user who has not been granted any privileges. The

connection succeeds, but the user does not attempt to perform any operations,
since no operations would be permitted.

11. Connects to the database as guest, who has the role viewer.
12. Sets the current role to viewer; the user succeeds in executing a SELECT

statement on the table, but cannot execute an INSERT statement.
13. Connects to the database as sqlsam, who has the role adder.
14. Sets the current role to adder; the user succeeds in executing both a SELECT and

an INSERT statement, but is unable to execute a DELETE statement.
15. Using the connection of the Database Owner sysadm, deletes the table, the two

roles, and the three users created previously.
16. If you are running the program using the client driver, shuts down the Network

Server.
17. Closes the connection and shuts down Derby, using the Database Owner's

credentials.

The instructions for compiling and running the program are in the comment at the
beginning of the program. DERBY_LIB is the directory that contains the Derby jar files,
typically DERBY_HOME/lib.

Derby Security Guide

61

Source code for NativeAuthenticationExample.java

// does not use derby.properties

import java.io.PrintWriter;
import java.sql.*;

import org.apache.derby.drda.NetworkServerControl;

/*
 * <p>
 * This program showcases how SQL authorization is automatically turned
 * on when you run with NATIVE authentication. You can run this program
 * either embedded or client server.
 * </p>
 *
 * <p>
 * Here's how you compile the program:
 * </p>
 *
 * <pre>
 * javac -cp ${DERBY_LIB}/derbynet.jar NativeAuthenticationExample.java
 * </pre>
 *
 * <p>
 * Here's how you run the program embedded:
 * </p>
 *
 * <pre>
 * java -cp ${DERBY_LIB}/derby.jar:. NativeAuthenticationExample embedded
 * </pre>
 *
 * <p>
 * Here's how you run the program client/server:
 * </p>
 *
 * <pre>
 * java -cp \
 *
 ${DERBY_LIB}/derby.jar:${DERBY_LIB}/derbynet.jar:${DERBY_LIB}/
derbyclient.jar:. \
 * NativeAuthenticationExample client
 * </pre>
 */
public class NativeAuthenticationExample
{
 ///
 //
 // CONSTANTS
 //
 ///

 private static final String DB_NAME="nativeAuthDB";

 // stored as SYSADM
 private static final String DB_OWNER="sysadm";
 private static final String DB_OWNER_PASSWORD="shh123ihtybb87m";

 private static final String USER_WITHOUT_ROLE="NOACC";
 private static final String USER_WITHOUT_ROLE_PASSWORD="ajaxj3x9";

 private static final String READER="GUEST";
 private static final String READER_PASSWORD="java5w6x";

 private static final String WRITER="SQLSAM";
 private static final String WRITER_PASSWORD="light8q9bulb";

 private static final String EMBEDDED = "embedded";
 private static final String CLIENT = "client";

Derby Security Guide

62

 ///
 //
 // STATE
 //
 ///

 private boolean _runningEmbedded;
 private NetworkServerControl _server;

 ///
 //
 // ENTRY POINT
 //
 ///

 public static void main(String... args)
 {
 NativeAuthenticationExample demo = parseArgs(args);

 if (demo != null)
 {
 demo.execute();
 }
 else
 {
 println("Bad command line args.");
 }
 }

 private static NativeAuthenticationExample parseArgs(
 String... args)
 {
 if ((args == null) || (args.length != 1))
 {
 return null;
 }

 String mode = args[0];

 if (EMBEDDED.equals(mode))
 {
 return new NativeAuthenticationExample(true);
 }
 else if (CLIENT.equals(mode))
 {
 return new NativeAuthenticationExample(false);
 }
 else
 {
 return null;
 }
 }

 ///
 //
 // CONSTRUCTOR
 //
 ///

 private NativeAuthenticationExample(boolean runningEmbedded)
 {
 _runningEmbedded = runningEmbedded;
 }

 ///
 //
 // FEATURE SHOWCASE
 //
 ///

Derby Security Guide

63

 /**
 * Run all of the experiments
 */
 private void execute()
 {
 try
 {
 String authenticationProvider =
 "NATIVE:" + DB_NAME + ":LOCAL";

 // this turns on NATIVE authentication as well as
 // SQL authorization
 println("Setting authentication provider to " +
 authenticationProvider);
 System.setProperty("derby.authentication.provider",
 authenticationProvider);

 if (!_runningEmbedded)
 {
 startServer();
 }

 Connection dboConn = createDatabase();

 createUsers(dboConn);
 createRoles(dboConn);
 createTable(dboConn);

 tryToConnectWithoutCredentials(); //should fail

 // a valid user can connect even if they haven't been
 // assigned any roles
 getConnection(USER_WITHOUT_ROLE,
 USER_WITHOUT_ROLE_PASSWORD);

 verifyReaderPrivileges();
 verifyWriterPrivileges();

 println("Using Database Owner connection again");

 dropTable(dboConn);
 dropRoles(dboConn);
 dropUsers(dboConn);

 cleanUpAndShutDown();

 } catch (Exception e)
 {
 errorPrintAndExit(e);
 }
 }

 /**
 * Create more users. Note that the credentials for the Database
 * Owner were stored in the database automatically when the
 * database was created.
 */
 public void createUsers(Connection conn)
 throws SQLException
 {
 println("Storing some sample users in the database.");

 PreparedStatement ps = prepare
 (conn, "call syscs_util.syscs_create_user(?, ?)");

 createUser(ps, USER_WITHOUT_ROLE, USER_WITHOUT_ROLE_PASSWORD);
 createUser(ps, READER, READER_PASSWORD);
 createUser(ps, WRITER, WRITER_PASSWORD);

 ps.close();

Derby Security Guide

64

 }

 private void createUser(PreparedStatement ps, String userName,
 String password)
 throws SQLException
 {
 println("Creating user " + userName);
 ps.setString(1, userName);
 ps.setString(2, password);
 ps.execute();
 }

 /**
 * Create roles and grant them privileges.
 */
 private void createRoles(Connection conn)
 throws SQLException
 {
 println("Creating roles and granting privileges to them...");

 execute(conn, "CREATE ROLE adder");
 execute(conn, "CREATE ROLE viewer");

 execute(conn, "GRANT adder TO " + WRITER);
 execute(conn, "GRANT viewer TO " + READER);
 }

 /**
 * Create and populate a table and grant privileges related to it.
 */
 private void createTable(Connection conn)
 throws SQLException
 {
 println("Creating table accessibletbl...");
 execute(conn,
 "CREATE TABLE accessibletbl(textcol VARCHAR(6))");
 execute(conn, "INSERT INTO accessibletbl VALUES('hello')");

 println("Granting select/insert privileges to adder...");
 execute(conn,
 "GRANT SELECT, INSERT ON accessibletbl TO adder");

 println("Granting select privileges to viewer");
 execute(conn, "GRANT SELECT ON accessibletbl TO viewer");
 }

 /**
 * Drop users except for Database Owner.
 */
 public void dropUsers(Connection conn)
 throws SQLException
 {
 println("Dropping sample users from the database...");

 PreparedStatement ps = prepare
 (conn, "call syscs_util.syscs_drop_user(?)");

 dropUser(ps, USER_WITHOUT_ROLE);
 dropUser(ps, READER);
 dropUser(ps, WRITER);

 ps.close();
 }

 private void dropUser(PreparedStatement ps, String userName)
 throws SQLException
 {
 println("Dropping user " + userName);
 ps.setString(1, userName);
 ps.execute();

Derby Security Guide

65

 }

 /**
 * Drop roles.
 */
 private void dropRoles(Connection conn)
 throws SQLException
 {
 println("Dropping roles...");

 execute(conn, "DROP ROLE adder");
 execute(conn, "DROP ROLE viewer");
 }

 /**
 * Drop the table.
 */
 private void dropTable(Connection conn)
 throws SQLException
 {
 execute(conn, "DROP TABLE accessibletbl");
 }

 /**
 * Try to connect without supplying credentials
 */
 private void tryToConnectWithoutCredentials()
 throws Exception
 {
 println("Trying to connect without supplying credentials...");

 try {
 getConnection(null, null);
 println("ERROR: Unexpectedly connected to database " +
 DB_NAME);
 cleanUpAndShutDown();
 } catch (SQLException e)
 {
 if (e.getSQLState().equals("08004"))
 {
 println
 (
 "As expected, could not get a connection without " +
 "supplying credentials."
);
 } else
 {
 errorPrintAndExit(e);
 }
 }
 }

 /**
 * Verify that the READER user can select but not insert
 */
 private void verifyReaderPrivileges()
 throws Exception
 {
 Connection readerConn = getConnection(READER,
 READER_PASSWORD);

 println("Setting role to VIEWER");
 execute(readerConn, "SET ROLE VIEWER");

 readRow(readerConn); // should succeed

 try {
 writeRow(readerConn);
 println("ERROR: Unexpectedly allowed to insert into table"
);

Derby Security Guide

66

 cleanUpAndShutDown();
 } catch (SQLException e)
 {
 if (e.getSQLState().equals("42500"))
 {
 println("As expected, failed to insert row.");
 }
 else
 {
 errorPrintAndExit(e);
 }
 }

 readerConn.close();
 }

 /**
 * Verify that the WRITER can read and write but not delete
 */
 private void verifyWriterPrivileges()
 throws Exception
 {
 Connection writerConn = getConnection(WRITER,
 WRITER_PASSWORD);

 // set role to ADDER
 println("Setting role to ADDER");
 execute(writerConn, "SET ROLE ADDER");

 // should succeed
 readRow(writerConn);
 writeRow(writerConn);

 try {
 deleteRow(writerConn); // should fail

 println("ERROR: Unexpectedly allowed to DELETE.");
 cleanUpAndShutDown();
 } catch (SQLException e)
 {
 if (e.getSQLState().equals("42500"))
 {
 println("As expected, failed to delete rows.");
 }
 else
 {
 errorPrintAndExit(e);
 }
 }

 writerConn.close();
 }

 private void readRow(Connection conn) throws SQLException
 {
 PreparedStatement ps = prepare
 (conn, "SELECT * FROM sysadm.accessibletbl");
 ResultSet rs = ps.executeQuery();
 while(rs.next())
 {
 println
 ("Value of sysadm.accessibletbl/textcol = " +
 rs.getString(1));
 }
 rs.close();
 ps.close();
 }

 private void writeRow(Connection conn) throws SQLException
 {

Derby Security Guide

67

 execute(conn,
 "INSERT INTO sysadm.accessibletbl VALUES('guest')");
 }

 private void deleteRow(Connection conn) throws SQLException
 {
 execute(conn, "DELETE FROM sysadm.accessibletbl");
 }

 ///
 //
 // SQL HELPERS
 //
 ///

 /**
 * Execute a statement
 */
 private void execute(Connection conn, String text)
 throws SQLException
 {
 PreparedStatement ps = prepare(conn, text);

 ps.execute();
 ps.close();
 }

 /**
 * Prepare a statement
 */
 private PreparedStatement prepare(Connection conn, String text)
 throws SQLException
 {
 println(" Preparing: " + text);
 return conn.prepareStatement(text);
 }

 ///
 //
 // CONNECTION MANAGEMENT
 //
 ///

 /**
 * Create the database
 */
 private Connection createDatabase()
 throws SQLException
 {
 String connectionURL = getConnectionURL
 (DB_NAME, DB_OWNER, DB_OWNER_PASSWORD, true, false);

 println("Creating database via this URL: " + connectionURL);

 return DriverManager.getConnection(connectionURL);
 }

 /**
 * Shut down the engine and exit.
 */
 private void cleanUpAndShutDown()
 throws Exception
 {
 // Shut down the server before the engine. this is so that
 // we can authenticate the shutdown credentials in the
 // booted database.
 if (_server != null)
 {
 stopServer();
 }

Derby Security Guide

68

 // the engine should only be brought down locally
 _runningEmbedded = true;
 shutdownEngine();

 System.exit(1);
 }

 private void shutdownEngine()
 {
 String shutdownURL = getConnectionURL
 (null, DB_OWNER, DB_OWNER_PASSWORD, false, true);

 try
 {
 println("Shutting down engine via this URL: " +
 shutdownURL);
 DriverManager.getConnection(shutdownURL);
 } catch (SQLException se)
 {
 if (se.getSQLState().equals("XJ015"))
 {
 println("Derby engine shut down normally");
 }
 else
 {
 printSQLException(se);
 }
 }
 }

 /**
 * Get a connection to the database
 */
 private Connection getConnection(String userName, String password)
 throws SQLException
 {
 String connectionURL = getConnectionURL
 (DB_NAME, userName, password, false, false);

 println("Getting connection via this URL: " + connectionURL);

 return DriverManager.getConnection(connectionURL);
 }

 private String getConnectionURL(String dbName, String userName,
 String password, boolean createDB, boolean shutdownDB)
 {
 String connectionURL = _runningEmbedded ?
 "jdbc:derby:" :
 "jdbc:derby://localhost:1527/";

 if (dbName != null)
 {
 connectionURL = connectionURL + DB_NAME;
 }
 if (userName != null)
 {
 connectionURL = connectionURL + ";user=" + userName;
 }
 if (password != null)
 {
 connectionURL = connectionURL + ";password=" + password;
 }
 if (createDB)
 {
 connectionURL = connectionURL + ";create=true";
 }
 if (shutdownDB)
 {

Derby Security Guide

69

 connectionURL = connectionURL + ";shutdown=true";
 }

 return connectionURL;
 }

 ///
 //
 // SERVER MANAGEMENT
 //
 ///

 /**
 * Start the Derby server
 */
 private void startServer()
 throws Exception
 {
 _server = new NetworkServerControl(DB_OWNER,
 DB_OWNER_PASSWORD);

 println("Starting the Derby server...");
 _server.start(new PrintWriter(System.out));

 // pause to let the server come up
 Thread.sleep(5000L);
 }

 /**
 * Shut down the Derby server
 */
 private void stopServer()
 throws Exception
 {
 println("Stopping the Derby server...");
 _server.shutdown();

 // pause to let the server come down
 Thread.sleep(5000L);
 }

 ///
 //
 // DIAGNOSTIC PRINTING
 //
 ///

 /**
 * Report exceptions and exit.
 */
 private void errorPrintAndExit(Throwable e)
 {
 if (e instanceof SQLException)
 {
 printSQLException((SQLException) e);
 }
 else
 {
 println("A non-SQL error occurred.");
 e.printStackTrace();
 }

 System.exit(1);
 }

 /**
 * Print a list of SQLExceptions.
 */
 private void printSQLException(SQLException sqle)
 {

Derby Security Guide

70

 while (sqle != null)
 {
 println("\n---SQLException Caught---\n");
 println(" SQLState: " + (sqle).getSQLState());
 println(" Severity: " + (sqle).getErrorCode());
 println(" Message: " + (sqle).getMessage());

 sqle.printStackTrace();

 sqle = sqle.getNextException();
 }
 }

 /**
 * Print a diagnostic line to the console
 */
 private static void println(String text)
 {
 System.out.println(text);
 }
}

Configuring Java security
The Java security manager lets you reduce the damage that your application can do.

Using a security manager, the System Administrator can restrict how an application
cooperates with other applications running in the same virtual machine (VM) or
elsewhere on the same machine. When you run Derby under a security manager, you
can restrict the following:

• Backups: You control where the Derby engine writes and reads database backup
files.

• Imports and exports: You control where the engine imports data from and where it
exports data to.

• Jar files: You control where the engine obtains jar files of customer-coded
functions, procedures, types, and aggregates.

• Sockets: You control what machines can connect to the server and what machines
the server can connect to.

To take advantage of these powerful controls, first customize one of the template security
policies documented here. You can find these template security policies in the Derby
distribution in the demo/templates directory. Choose the policy which corresponds to
the Derby configuration which you are running:

• Customize Basic engine security policy template if you are embedding the Derby
engine in your application, that is, if you are running the smallest footprint, core
Derby configuration.

• Customize Basic server security policy template if you are running the Derby
network server.

• Customize Basic client security policy template if your application runs on a remote
machine and accesses Derby databases across a network.

• Customize Basic tools security policy template if you need to run Derby tools locally
on the same machine as your databases.

To customize these files, make the following edits:

• URLs: Replace the ${derby.install.url} variables with a URL pointing to the
directory that holds the Derby jar files. For example:

file:///Users/me/javadb/lib/

Derby Security Guide

71

Alternatively, you can set the ${derby.install.url} system property (via a -D
flag) when you boot the JVM.

• System home: Look for instances of the string ${derby.system.home}. Replace
them with the name of the directory that holds your derby.properties file.
Again, you can also set this system property when you boot the JVM.

• Tracing: Grant Derby the power to manage a directory tree that will hold server
trace information. Look for the ${derby.drda.traceDirectory} variable and
replace it with the directory where the server should write its diagnostic traces.
For more information on Derby tracing, see "Controlling tracing by using the trace
facility" in the Derby Server and Administration Guide. Again, you can also set this
system property when you boot the JVM.

• Backups/imports/jars: Look for the commented-out permissions related to
backup/restore, import/export, and jar file loading. If needed, uncomment these
permissions, replacing the directory references with secure locations in your local
file system, preferably locations which are owned by the database owner or the user
who booted the JVM.

• Sysinfo: When customizing the template tools policy, you should replace <<ALL
FILES>> with the directories which hold the jar files which appear on your
modulepath or classpath.

• Sockets: The template policy file accepts connection requests from all hosts.
You may want to restrict the template file's java.net.SocketPermission to
connections from a particular subdomain. For details, see the API documentation
for java.net.SocketPermission. In addition, if you are using LDAP
authentication, then you must grant derby.jar the privilege to connect to the
LDAP server.

This manual does not describe the Java security
manager in depth. For more information, see
http://docs.oracle.com/javase/8/docs/technotes/guides/security/. In particular, you may
want to read the Security Architecture paper
(http://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-
spec.doc.html) and the Default Policy Implementation and Policy File Syntax information
(http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html).

Basic engine security policy template

Customize this policy if your application embeds the Derby engine, running Derby and
application code in a single JVM process.

The embedded engine policy grants essential permissions to the engine and shared
modules.

grant codeBase "${derby.install.url}derbyshared.jar"
{
 // Needed to determine whether the JVM was booted with a module path.
 permission java.util.PropertyPermission "jdk.module.path", "read";

 // Need in order to read message localizations from other derby jars
 // when running with a module path.
 permission java.io.FilePermission "${derby.install.path}${/}-", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";

http://docs.oracle.com/javase/8/docs/technotes/guides/security/
http://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/spec/security-spec.doc.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html

Derby Security Guide

72

 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

};

grant codeBase "${derby.install.url}derby.jar"
{
 // These permissions are needed for everyday, embedded Derby usage.
 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission java.util.PropertyPermission "user.dir", "read";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";
 permission java.io.FilePermission "${derby.system.home}","read,write";
 permission java.io.FilePermission "${derby.system.home}${/}-",
 "read,write,delete";
 permission java.io.FilePermission
 "${derby.system.home}${/}derby.properties", "read";
 permission java.io.FilePermission "${derby.system.home}${/}derby.log",
 "read,write,delete";

 // Properties needed to determine if the VM is 32 or 64 bit.
 permission java.util.PropertyPermission "sun.arch.data.model", "read";
 permission java.util.PropertyPermission "os.arch", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "jmx", "control";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

 // Permissions needed for JMX based management and monitoring.
 permission javax.management.MBeanServerPermission "createMBeanServer";

 // Allows access to Derby's built-in MBeans, within the domain
 // org.apache.derby. Derby must be allowed to register and unregister
 these
 // MBeans. To fine tune this permission, see the javadoc of
 // javax.management.MBeanPermission or the JMX Instrumentation and
 Agent Specification.
 permission javax.management.MBeanPermission
 "org.apache.derby.*#[org.apache.derby:*]",
 "registerMBean,unregisterMBean";

 // Trusts Derby code to be a source of MBeans and to register these in
 the MBean server.
 permission javax.management.MBeanTrustPermission "register";

 // Optional permission needed for printing classpath information to
 derby.log.
 permission java.lang.RuntimePermission "getProtectionDomain";

 // The following permission must be granted for
 Connection.abort(Executor) to work.
 // Note that this permission must also be granted to outer
 (application) code domains.
 permission java.sql.SQLPermission "callAbort";

 // Needed by FileUtil#limitAccessToOwner.
 permission java.lang.RuntimePermission "accessUserInformation";
 permission java.lang.RuntimePermission "getFileStoreAttributes";

 // Needed to create a temp file in order to open a database in a jar
 file.

Derby Security Guide

73

 // permission java.io.FilePermission "${java.io.tmpdir}${/}-",
 "read,write,delete"

 // Customize the following permission in order to backup and restore
 // Derby databases to/from a secure branch of your file system,
 // preferably one owned by the database owner or the user who booted
 the JVM:
 // permission java.io.FilePermission "/Users/me/backups/-",
 "read,write"

 // Customize the following permission in order to export and import
 // tables to/from a secure branch of your file system,
 // preferably one owned by the database owner or the user who booted
 the JVM:
 // permission java.io.FilePermission "/Users/me/imports/-",
 "read,write"

 // Customize the following permission in order to load
 // jar files which contain user-written types, aggregates, functions,
 and procedures.
 // Those jar files should live in a secure branch of your file system,
 // preferably one owned by the database owner or the user who booted
 the JVM:
 // permission java.io.FilePermission "/Users/me/myJars/-", "read"

 // This permission lets a DBA reload the policy file while the server
 // is still running. The policy file is reloaded by invoking
 // the SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY() system procedure:
 // permission java.security.SecurityPermission "getPolicy"

 // This permission is needed to call DriverManager.deregisterDriver()
 // and unload the Derby classes:
 // permission java.sql.SQLPermission "deregisterDriver"

};

Basic server security policy template

Customize this policy if you run a Derby server, either standalone or embedded inside
your application.

This policy grants essential permissions to the server, tools, engine, and shared modules.

grant codeBase "${derby.install.url}derbyshared.jar"
{
 // Needed to determine whether the JVM was booted with a module path.
 permission java.util.PropertyPermission "jdk.module.path", "read";

 // Need in order to read message localizations from other derby jars
 // when running with a module path.
 permission java.io.FilePermission "${derby.install.path}${/}-", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

};

Derby Security Guide

74

grant codeBase "${derby.install.url}derby.jar"
{
 // These permissions are needed for everyday, embedded Derby usage.
 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission java.util.PropertyPermission "user.dir", "read";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";
 permission java.io.FilePermission "${derby.system.home}","read,write";
 permission java.io.FilePermission "${derby.system.home}${/}-",
 "read,write,delete";
 permission java.io.FilePermission
 "${derby.system.home}${/}derby.properties", "read";
 permission java.io.FilePermission "${derby.system.home}${/}derby.log",
 "read,write,delete";

 // Properties needed to determine if the VM is 32 or 64 bit.
 permission java.util.PropertyPermission "sun.arch.data.model", "read";
 permission java.util.PropertyPermission "os.arch", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "jmx", "control";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

 // Permissions needed for JMX based management and monitoring.
 permission javax.management.MBeanServerPermission "createMBeanServer";

 // Allows access to Derby's built-in MBeans, within the domain
 // org.apache.derby. Derby must be allowed to register and unregister
 these
 // MBeans. To fine tune this permission, see the javadoc of
 // javax.management.MBeanPermission or the JMX Instrumentation and
 Agent Specification.
 permission javax.management.MBeanPermission
 "org.apache.derby.*#[org.apache.derby:*]",
 "registerMBean,unregisterMBean";

 // Trusts Derby code to be a source of MBeans and to register these in
 the MBean server.
 permission javax.management.MBeanTrustPermission "register";

 // Optional permission needed for printing classpath information to
 derby.log.
 permission java.lang.RuntimePermission "getProtectionDomain";

 // The following permission must be granted for
 Connection.abort(Executor) to work.
 // Note that this permission must also be granted to outer
 (application) code domains.
 permission java.sql.SQLPermission "callAbort";

 // Needed by FileUtil#limitAccessToOwner.
 permission java.lang.RuntimePermission "accessUserInformation";
 permission java.lang.RuntimePermission "getFileStoreAttributes";

 // Needed to create a temp file in order to open a database in a jar
 file.
 // permission java.io.FilePermission "${java.io.tmpdir}${/}-",
 "read,write,delete"

 // Customize the following permission in order to backup and restore
 // Derby databases to/from a secure branch of your file system,

Derby Security Guide

75

 // preferably one owned by the database owner or the user who booted
 the JVM:
 // permission java.io.FilePermission "/Users/me/backups/-",
 "read,write"

 // Customize the following permission in order to export and import
 // tables to/from a secure branch of your file system,
 // preferably one owned by the database owner or the user who booted
 the JVM:
 // permission java.io.FilePermission "/Users/me/imports/-",
 "read,write"

 // Customize the following permission in order to load
 // jar files which contain user-written types, aggregates, functions,
 and procedures.
 // Those jar files should live in a secure branch of your file system,
 // preferably one owned by the database owner or the user who booted
 the JVM:
 // permission java.io.FilePermission "/Users/me/myJars/-", "read"

 // This permission lets a DBA reload the policy file while the server
 // is still running. The policy file is reloaded by invoking
 // the SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY() system procedure:
 // permission java.security.SecurityPermission "getPolicy"

 // This permission is needed to call DriverManager.deregisterDriver()
 // and unload the Derby classes:
 // permission java.sql.SQLPermission "deregisterDriver"

};

grant codeBase "${derby.install.url}derbytools.jar"
{
 // Access all properties using System.getProperties -
 // ij enumerates the properties in order to open connections
 // for any property set in ij.connection.* and set protocols
 // for any property in ij.protocol.*
 permission java.util.PropertyPermission "*", "read,write";

 // Needed by sysinfo. The file permission is needed to check the
 existence
 // of jars on the classpath. You can limit this permission to just the
 locations
 // which hold your jar files.
 permission java.util.PropertyPermission "user.*", "read";
 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "java.class.path", "read";
 permission java.util.PropertyPermission "java.runtime.version", "read";
 permission java.util.PropertyPermission "java.fullversion", "read";
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";
 permission java.io.FilePermission "<<ALL FILES>>", "read";

};

grant codeBase "${derby.install.url}derbynet.jar"
{
 // Needed by FileUtil#limitAccessToOwner.
 permission java.lang.RuntimePermission "accessUserInformation";
 permission java.lang.RuntimePermission "getFileStoreAttributes";
 permission java.util.PropertyPermission
 "derby.__serverStartedFromCmdLine", "read,write";

 // Needed for NetworkServerMBean access.
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "control,monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";

Derby Security Guide

76

 // Accept connections from any host. Derby is listening to the host
 interface
 // specified via the -h command line option to "NetworkServerControl
 start",
 // via the address parameter to the
 org.apache.derby.drda.NetworkServerControl
 // constructor in the API, or via the property derby.drda.host.
 // The default is localhost. You may want to restrict allowed hosts,
 // e.g. to hosts in a specific subdomain like "*.example.com".
 permission java.net.SocketPermission "*", "accept";

 // Allow the server to listen to the socket on the port specified with
 the
 // -p option to "NetworkServerControl start" on the command line, or
 with
 // the portNumber parameter to the NetworkServerControl constructor in
 the
 // API, or with the property derby.drda.portNumber. The default is
 1527.
 permission java.net.SocketPermission
 "localhost:${derby.security.port}", "listen";

 // Needed for server tracing.
 permission java.io.FilePermission "${derby.drda.traceDirectory}${/}-",
 "read,write,delete";

};

Basic client security policy template

Customize this policy if you run a client-side application, which connects to a Derby
server across a network.

This policy grants essential permissions to the client and shared modules.

grant codeBase "${derby.install.url}derbyshared.jar"
{
 // Needed to determine whether the JVM was booted with a module path.
 permission java.util.PropertyPermission "jdk.module.path", "read";

 // Need in order to read message localizations from other derby jars
 // when running with a module path.
 permission java.io.FilePermission "${derby.install.path}${/}-", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

};

grant codeBase "${derby.install.url}derbyclient.jar"
{
 // Modify this to be the server host instead of localhost.
 permission java.net.SocketPermission "localhost", "connect,resolve";

 // DERBY-2302: derbyclient.jar needs to be able to read the user.dir
 property in order to

Derby Security Guide

77

 // do tracing in that directory. Also, it needs read/write permissions
 in user.dir in order
 // to create the trace files in that directory.
 permission java.util.PropertyPermission "user.dir", "read";
 permission java.io.FilePermission "${user.dir}${/}-", "read,write";

 // DERBY-1883: Since some classes that are included in both derby.jar
 and
 // derbyclient.jar read properties, derbyclient.jar needs permission to
 read
 // derby.* properties to avoid failures when it is listed before
 derby.jar in
 // the classpath.
 permission java.util.PropertyPermission "derby.*", "read";

 // The following permission must be granted for
 Connection.abort(Executor) to work.
 // Note that this permission must also be granted to outer
 (application) code domains.
 permission java.sql.SQLPermission "callAbort";

};

Basic tools security policy template

Customize this policy if you run Derby tools against an embedded Derby engine.

This policy grants essential permissions to the tools, engine, and shared modules.

grant codeBase "${derby.install.url}derbyshared.jar"
{
 // Needed to determine whether the JVM was booted with a module path.
 permission java.util.PropertyPermission "jdk.module.path", "read";

 // Need in order to read message localizations from other derby jars
 // when running with a module path.
 permission java.io.FilePermission "${derby.install.path}${/}-", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

};

grant codeBase "${derby.install.url}derby.jar"
{
 // These permissions are needed for everyday, embedded Derby usage.
 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission java.util.PropertyPermission "user.dir", "read";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";
 permission java.io.FilePermission "${derby.system.home}","read,write";
 permission java.io.FilePermission "${derby.system.home}${/}-",
 "read,write,delete";
 permission java.io.FilePermission
 "${derby.system.home}${/}derby.properties", "read";
 permission java.io.FilePermission "${derby.system.home}${/}derby.log",
 "read,write,delete";

Derby Security Guide

78

 // Properties needed to determine if the VM is 32 or 64 bit.
 permission java.util.PropertyPermission "sun.arch.data.model", "read";
 permission java.util.PropertyPermission "os.arch", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "jmx", "control";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

 // Permissions needed for JMX based management and monitoring.
 permission javax.management.MBeanServerPermission "createMBeanServer";

 // Allows access to Derby's built-in MBeans, within the domain
 // org.apache.derby. Derby must be allowed to register and unregister
 these
 // MBeans. To fine tune this permission, see the javadoc of
 // javax.management.MBeanPermission or the JMX Instrumentation and
 Agent Specification.
 permission javax.management.MBeanPermission
 "org.apache.derby.*#[org.apache.derby:*]",
 "registerMBean,unregisterMBean";

 // Trusts Derby code to be a source of MBeans and to register these in
 the MBean server.
 permission javax.management.MBeanTrustPermission "register";

 // Optional permission needed for printing classpath information to
 derby.log.
 permission java.lang.RuntimePermission "getProtectionDomain";

 // The following permission must be granted for
 Connection.abort(Executor) to work.
 // Note that this permission must also be granted to outer
 (application) code domains.
 permission java.sql.SQLPermission "callAbort";

 // Needed by FileUtil#limitAccessToOwner.
 permission java.lang.RuntimePermission "accessUserInformation";
 permission java.lang.RuntimePermission "getFileStoreAttributes";

};

grant codeBase "${derby.install.url}derbytools.jar"
{
 // Access all properties using System.getProperties -
 // ij enumerates the properties in order to open connections
 // for any property set in ij.connection.* and set protocols
 // for any property in ij.protocol.*
 permission java.util.PropertyPermission "*", "read,write";

 // Needed by sysinfo. The file permission is needed to check the
 existence
 // of jars on the classpath. You can limit this permission to just the
 locations
 // which hold your jar files.
 permission java.util.PropertyPermission "user.*", "read";
 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "java.class.path", "read";
 permission java.util.PropertyPermission "java.runtime.version", "read";
 permission java.util.PropertyPermission "java.fullversion", "read";
 permission java.lang.RuntimePermission "getProtectionDomain";

Derby Security Guide

79

 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";
 permission java.io.FilePermission "<<ALL FILES>>", "read";

};

Sample customized Java security policy file

Here is a sample customized Java security policy file.

This example configures a server's permissions to allow network access and to allow
backup/restore, import/export, and the loading of user-written code:

grant codeBase "file:///Users/me/javadb/lib/derbyshared.jar"
{
 // Needed to determine whether the JVM was booted with a module path.
 permission java.util.PropertyPermission "jdk.module.path", "read";

 // Need in order to read message localizations from other derby jars
 // when running with a module path.
 permission java.io.FilePermission "${derby.install.path}${/}-", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

};

grant codeBase "file:///Users/me/javadb/lib/derby.jar"
{
 // These permissions are needed for everyday, embedded Derby usage.
 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission java.util.PropertyPermission "user.dir", "read";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";
 permission java.io.FilePermission "${derby.system.home}","read,write";
 permission java.io.FilePermission "${derby.system.home}${/}-",
 "read,write,delete";
 permission java.io.FilePermission
 "${derby.system.home}${/}derby.properties", "read";
 permission java.io.FilePermission "${derby.system.home}${/}derby.log",
 "read,write,delete";

 // Properties needed to determine if the VM is 32 or 64 bit.
 permission java.util.PropertyPermission "sun.arch.data.model", "read";
 permission java.util.PropertyPermission "os.arch", "read";

 // Gives permission for JMX to be used against Derby
 // but only if JMX authentication is not being used.
 // In that case the application would need to create
 // a whole set of fine-grained permissions to allow specific
 // users access to MBeans and actions they perform.
 permission org.apache.derby.shared.common.security.SystemPermission
 "jmx", "control";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "monitor";

Derby Security Guide

80

 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "monitor";

 // Permissions needed for JMX based management and monitoring.
 permission javax.management.MBeanServerPermission "createMBeanServer";

 // Allows access to Derby's built-in MBeans, within the domain
 // org.apache.derby. Derby must be allowed to register and unregister
 these
 // MBeans. To fine tune this permission, see the javadoc of
 // javax.management.MBeanPermission or the JMX Instrumentation and
 Agent Specification.
 permission javax.management.MBeanPermission
 "org.apache.derby.*#[org.apache.derby:*]",
 "registerMBean,unregisterMBean";

 // Trusts Derby code to be a source of MBeans and to register these in
 the MBean server.
 permission javax.management.MBeanTrustPermission "register";

 // Optional permission needed for printing classpath information to
 derby.log.
 permission java.lang.RuntimePermission "getProtectionDomain";

 // The following permission must be granted for
 Connection.abort(Executor) to work.
 // Note that this permission must also be granted to outer
 (application) code domains.
 permission java.sql.SQLPermission "callAbort";

 // Needed by FileUtil#limitAccessToOwner.
 permission java.lang.RuntimePermission "accessUserInformation";
 permission java.lang.RuntimePermission "getFileStoreAttributes";

 // Support backup/restore to/from a secure branch of the file system
 // owned by the user who booted the JVM:
 permission java.io.FilePermission "/Users/me/derby/dummy/backups/-",
 "read,write,delete";

 // Support export/import of tables to/from a secure branch of the file
 system
 // owned by the user who booted the JVM:
 permission java.io.FilePermission "/Users/me/derby/dummy/imports/-",
 "read,write,delete";

 // Support loading of jar files which contain user-written types,
 // aggregates, functions, and procedures when those jar files live
 // in a secure branch of the file system owned by the the user who
 booted the JVM:
 permission java.io.FilePermission /Users/me/derby/dummy/jars/-",
 "read";

};

grant codeBase "file:///Users/me/javadb/lib/derbytools.jar"
{
 // Access all properties using System.getProperties -
 // ij enumerates the properties in order to open connections
 // for any property set in ij.connection.* and set protocols
 // for any property in ij.protocol.*
 permission java.util.PropertyPermission "*", "read,write";

 // Needed by sysinfo. The file permission is needed to check the
 existence
 // of jars on the classpath. You can limit this permission to just the
 locations
 // which hold your jar files.
 permission java.util.PropertyPermission "user.*", "read";
 permission java.util.PropertyPermission "java.home", "read";
 permission java.util.PropertyPermission "java.class.path", "read";

Derby Security Guide

81

 permission java.util.PropertyPermission "java.runtime.version", "read";
 permission java.util.PropertyPermission "java.fullversion", "read";
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";

 permission java.io.FilePermission "/Users/me/javadb/lib/-", "read";

};

grant codeBase "file:///Users/me/javadb/lib/derbynet.jar"
{
 // Needed by FileUtil#limitAccessToOwner.
 permission java.lang.RuntimePermission "accessUserInformation";
 permission java.lang.RuntimePermission "getFileStoreAttributes";
 permission java.util.PropertyPermission
 "derby.__serverStartedFromCmdLine", "read,write";

 // Needed for NetworkServerMBean access.
 permission org.apache.derby.shared.common.security.SystemPermission
 "server", "control,monitor";
 permission org.apache.derby.shared.common.security.SystemPermission
 "engine", "usederbyinternals";

 // Accept connections from any host. Derby is listening to the host
 interface
 // specified via the -h command line option to "NetworkServerControl
 start",
 // via the address parameter to the
 org.apache.derby.drda.NetworkServerControl
 // constructor in the API, or via the property derby.drda.host.
 // The default is localhost. You may want to restrict allowed hosts,
 // e.g. to hosts in a specific subdomain like "*.example.com".
 permission java.net.SocketPermission "localhost:0-", "accept";

 // Allow the server to listen to the socket on the port specified with
 the
 // -p option to "NetworkServerControl start" on the command line, or
 with
 // the portNumber parameter to the NetworkServerControl constructor in
 the
 // API, or with the property derby.drda.portNumber. The default is
 1527.
 permission java.net.SocketPermission "localhost:1527", "listen";

 // Support the writing of traces into a branch of the file system
 // owned by the user who booted the JVM:
 permission java.io.FilePermission "Users/me/derby/dummy/traces${/}-",
 "read,write,delete";

};

Using a Java security policy file

You can bring up the Network Server with a security manager and a customized policy
file.

The following command line starts the Network Server with the policy file created in
Sample customized Java security policy file. It tells the server to authenticate users with
the NATIVE credentials stored in the testdb database created in Configuring NATIVE
authentication.

java -Djava.security.manager \
-Djava.security.policy=/Users/me/myServer.policy \

Derby Security Guide

82

-Dderby.authentication.provider=NATIVE:testdb \
org.apache.derby.drda.NetworkServerControl start -p 8246

If you start the Network Server without specifying a security manager, the Network Server
will install a default Java security manager that enforces a Basic policy.

To shut down the Network Server, use the following command:

java org.apache.derby.drda.NetworkServerControl shutdown \
-p 8246 -user tquist -password tquist

You will need to shut down the server before using the examples in Putting it all together.

Running the Network Server with a security manager

If you start the Network Server without specifying a security manager, the Network Server
installs a default Java security manager that enforces a Basic policy.

You are strongly encouraged to customize this policy to fit the security needs of your
application and its runtime environment.

You may also run the Network Server without a security manager, although this is not
recommended. Without a security manager in place, the Network Server should not
be deployed in such a manner as to allow for connections from untrusted networks. A
firewall or other security tool should be used in such a scenario.

A firewall or other security tool is also good practice in addition to running the Network
Server with a carefully-written security policy file.

The default policy is used if you boot the Network Server as your VM's entry point, using
a command like the following:

java org.apache.derby.drda.NetworkServerControl start ...

Some of your application code may run as procedures and functions that you have
declared using the CREATE PROCEDURE and CREATE FUNCTION statements. You
will need to add privileged blocks to your declared procedures and functions if they
perform sensitive operations, such as file and network I/O, classloading, system property
reading, and the like.

The Network Server attempts to install a security manager only if you start the server
as the entry point of your VM. The Network Server will not attempt to install a security
manager if you start the server from your application using the programmatic API
described in "Starting the Network Server from a Java application" in the Derby Server
and Administration Guide.

Running the Network Server without a security manager

You may override the Network Server's default installation of a security manager if, for
some reason, you need to run your application outside of the Java security protections.

CAUTION: You incur a severe security risk by opening up the server to all clients without
limiting access via user authentication and a security policy.

Use the -noSecurityManager option to force the Network Server to come up without a
security manager. For example:

java org.apache.derby.drda.NetworkServerControl start \
-h localhost -noSecurityManager

Restricting file permissions

Derby Security Guide

83

Additional file protections are available on some file systems, including Windows
NTFS, Unix, and Linux. You can configure Derby to take advantage of these extra file
protections.

By default, Derby creates new directories and files with the default permissions
of the operating system account that started the VM (the umask setting on Unix
and Linux). You can configure Derby to override those default permissions and to
restrict access to just that account. If you configure Derby this way, only that account
can access the directories and files created by Derby. You can configure this extra
protection by setting the following system property, either on the VM command line or in
derby.properties:

derby.storage.useDefaultFilePermissions=false

For more information, see "derby.storage.useDefaultFilePermissions" in the Derby
Reference Manual.

If you set this property, other operating system accounts will have no access to
directories or files created by Derby. This behavior can be helpful in enhancing default
security for database files.

The exact behavior is determined by two factors: how the Derby engine is
started, and the presence or absence and specified value of the property
derby.storage.useDefaultFilePermissions.

The following table shows how file access works. In this table,

• "Environment" means that access is controlled entirely by the JVM environment and
the file location only (that is, by the umask setting on UNIX and Linux systems and
by the default file permissions on Windows NTFS).

• "Restricted" means that Derby restricts access to the operating system account that
started the JVM.

The following table shows how file access works with various settings of the
derby.storage.useDefaultFilePermissions property.

Table 6. File access

Property
Setting

Server Started from
Command Line

Server Started
Programmatically

or Embedded

No property
specified

Restricted Environment

Property set to
true

Environment Environment

Property set to
false

Restricted Restricted

Putting it all together
This section shows how to enable all available Derby defenses.

This example uses Java security, SSL encryption, NATIVE authentication, and both
coarse-grained and fine-grained authorization.

Starting a secured Network Server

Derby Security Guide

84

Bring up the server, turning on SSL and Java security.

This example uses the customized security policy shown in Sample customized Java
security policy file. The command line first brings up the server, turning on SSL and
Java Security. It also tells the server that NATIVE credentials will be stored in the
mchrystaEncryptedDB database. That last directive causes the Database Owner's
credentials to be stored when mchrystaEncryptedDB is created.

java -Djavax.net.ssl.keyStore=/Users/me/vault/ServerKeyStore \
-Djavax.net.ssl.keyStorePassword=secretServerPassword \
-Djavax.net.ssl.trustStore=/Users/me/vault/ServerTrustStore \
-Djavax.net.ssl.trustStorePassword=secretServerTrustStorePassword \
-Dderby.storage.useDefaultFilePermissions=false \
-Dderby.authentication.provider=NATIVE:mchrystaEncryptedDB \
-Djava.security.manager \
-Djava.security.policy=/Users/me/myServer.policy \
org.apache.derby.drda.NetworkServerControl start -p 8246 \
-ssl peerAuthentication

Creating and using a secure database

Now the Database Owner creates an encrypted database, turns on coarse-grained
authorization, and creates some data that everyone can read but only he can write.

Fine-grained authorization is automatically turned on because we are using NATIVE
authentication.

Connection URLs are shown on multiple lines, but must be entered on one line.

java -Djavax.net.ssl.trustStore=/Users/me/vault/ClientTrustStore \
-Djavax.net.ssl.trustStorePassword=secretClientTrustStorePassword \
-Djavax.net.ssl.keyStore=/Users/me/vault/ClientKeyStore \
-Djavax.net.ssl.keyStorePassword=secretClientPassword \
org.apache.derby.tools.ij
ij version 10.9
ij> connect 'jdbc:derby://localhost:8246/mchrystaEncryptedDB;create=true;
user=mchrysta;password=mchrysta;dataEncryption=true;
encryptionAlgorithm=Blowfish/CBC/NoPadding;
bootPassword=mySuperSecretBootPassword;ssl=peerAuthentication';
ij> --
-- Prevent our authentication properties from being overridden on the
-- command line or in derby.properties.
--
call SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.database.propertiesOnly','true');
Statement executed.
ij> --
-- This time around, there is no need to add credentials for the database
-- owner. That is because the database owner's credentials were
-- automatically added when we created the NATIVE database, advertised to
-- the server by setting
-- -Dderby.authentication.provider=NATIVE:mchrystaEncryptedDB.
--
--call SYSCS_UTIL.SYSCS_CREATE_USER('mchrysta', 'mchrysta');

-- now add other users
call SYSCS_UTIL.SYSCS_CREATE_USER('thardy', 'thardy');
Statement executed.
ij> call SYSCS_UTIL.SYSCS_CREATE_USER('jhallett', 'jhallett');
Statement executed.
ij> call SYSCS_UTIL.SYSCS_CREATE_USER('tquist', 'tquist');
Statement executed.
ij> --
-- Turn on coarse-grained authorization
--
call SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.database.fullAccessUsers', 'tquist,mchrysta');

Derby Security Guide

85

Statement executed.
ij> call SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.database.readOnlyAccessUsers', 'thardy,jhallett');
Statement executed.
ij> --
-- Shut down the database and bring it back up. This will turn on NATIVE
-- authentication and fine-grained authorization.
--
connect 'jdbc:derby://localhost:8246/mchrystaEncryptedDB;shutdown=true;
user=mchrysta;password=mchrysta;ssl=peerAuthentication';
ERROR 08006: DERBY SQL error: SQLCODE: -1, SQLSTATE: 08006, SQLERRMC:
Database 'mchrystaEncryptedDB' shutdown.
ij> --
-- Reboot the encrypted, password-protected database.
--
connect 'jdbc:derby://localhost:8246/mchrystaEncryptedDB;user=mchrysta;
password=mchrysta;bootPassword=mySuperSecretBootPassword;
ssl=peerAuthentication';
ij(CONNECTION1)> --
-- Create some data and let everyone see it.
--
create table mchrysta.t1(a varchar(20));
0 rows inserted/updated/deleted
ij(CONNECTION1)> insert into mchrysta.t1(a) values ('mchrysta');
1 row inserted/updated/deleted
ij(CONNECTION1)> grant select on table mchrysta.t1 to public;
0 rows inserted/updated/deleted
ij(CONNECTION1)> --
-- Verify that another user can read the newly created data but not write
-- it:
--
connect 'jdbc:derby://localhost:8246/mchrystaEncryptedDB;user=tquist;
password=tquist;ssl=peerAuthentication';
ij(CONNECTION2)> --
-- Verify that this user can see the data ...
--
select * from mchrysta.t1;
A

mchrysta

1 row selected
ij(CONNECTION2)> --
-- ... but not write the data:
--
insert into mchrysta.t1(a) values ('tquist');
ERROR 42500: User 'TQUIST' does not have INSERT permission on table
'MCHRYSTA'.'T1'.

Stopping the secured Network Server

Now you can bring down the secured server.

java -Djavax.net.ssl.trustStore=/Users/me/vault/ClientTrustStore \
-Djavax.net.ssl.trustStorePassword=secretClientTrustStorePassword \
-Djavax.net.ssl.keyStore=/Users/me/vault/ClientKeyStore \
-Djavax.net.ssl.keyStorePassword=secretClientPassword \
org.apache.derby.drda.NetworkServerControl shutdown -p 8246 \
-user mchrysta -password mchrysta \
-ssl peerAuthentication

Derby Security Guide

86

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

	Cover
	Contents
	Copyright
	License
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	Part One: Introduction to database security
	Why databases need security
	Vulnerabilities of unsecured databases
	Threats to unsecured databases

	Defenses against security threats
	Derby defenses against
threats
	Defenses outside of
Derby

	Defenses mapped to threats
	Designing safer Derby
applications
	Security terminology

	Part Two: Configuring security for
Derby
	Basic security configuration tasks
	Configuring security in an embedded environment
	Configuring security in a client/server environment
	Network Server security

	Configuring database encryption
	Requirements for Derby
encryption
	Working with encryption
	Encrypting databases on creation
	Encrypting an existing unencrypted database
	Creating a boot password
	Specifying an alternate encryption provider
	Specifying an alternate encryption algorithm

	Encrypting databases with a new key
	Encrypting databases with a new boot password
	Encrypting databases with a new external encryption key

	Booting an encrypted database
	Decrypting an encrypted database

	Using signed jar files
	Configuring SSL/TLS
	Creating a client key pair and certificate
	Creating a server key pair and certificate
	Importing certificates
	Booting the server and connecting to it
	Key and certificate handling
	Starting the server with SSL/TLS
	Running the client with SSL/TLS
	Other server commands

	Understanding identity in
Derby
	Users and authorization identifiers
	Authorization identifiers, user authentication, and user
authorization
	User names and schemas
	Exceptions when using authorization identifiers

	Database Owner

	Configuring user authentication
	Configuring LDAP authentication
	Booting an LDAP server
	Setting up Derby to
use your LDAP directory service
	Guest access to search for DNs
	LDAP performance issues
	LDAP restrictions
	JNDI-specific properties for external directory services

	Configuring NATIVE authentication
	Enabling NATIVE authentication explicitly
	Working with a credentials database
	NATIVE authentication and other database properties
	Managing users and passwords
	Converting an existing database to use NATIVE authentication

	Specifying authentication with a user-defined class
	Example of setting a user-defined class

	List of user authentication properties
	Programming applications for
Derby user
authentication
	Login failure exceptions with user authentication
	Configuring Network Server authentication in special circumstances
	Configuring Network Client authentication without SSL/TLS
	Configuring Network Server authentication without SSL/TLS

	Configuring user authorization
	Configuring coarse-grained user authorization
	Read-only and full access permissions
	Setting the default connection access mode
	User authorization exceptions

	Configuring fine-grained user authorization
	Using fine-grained user authorization
	Privileges on views, triggers, constraints, and generated columns
	Using SQL roles
	Upgrading an old database to use SQL standard authorization
	SQL standard authorization exceptions
	NATIVE authentication and SQL authorization example

	Configuring Java security
	Basic engine security policy template
	Basic server security policy template
	Basic client security policy template
	Basic tools security policy template
	Sample customized Java security policy file
	Using a Java security policy file
	Running the Network Server with a security manager
	Running the Network Server without a security manager

	Restricting file permissions
	Putting it all together
	Starting a secured Network Server
	Creating and using a secure database
	Stopping the secured Network Server

	Trademarks

