
OJB - Connection Handling

by Armin Waibel

1. Introduction

In this section the connection handling within OJB will be described. OJB use two classes which share the connection
management:

• org.apache.ojb.broker.accesslayer.ConnectionFactory
• org.apache.ojb.broker.accesslayer.ConnectionManagerIF

2. ConnectionFactory

The org.apache.ojb.broker.accesslayer.ConnectionFactory interface implementation is a pluggable
component (via the OJB.properties file - more about the OJB.properties file here) responsible for creation/lookup and release
of connections.

public interface ConnectionFactory
{

Connection lookupConnection(JdbcConnectionDescriptor jcd) throws LookupException;

void releaseConnection(JdbcConnectionDescriptor jcd, Connection con);

void releaseAllResources();
}

To enable a specific ConnectionFactory implementation class in OJB.properties file, set property ConnectionFactoryClass:

ConnectionFactoryClass=org.apache.ojb.broker.accesslayer.ConnectionFactoryPooledImpl

OJB was shipped with a bunch of different implementation classes which can be used in different situations, e.g. creation of
connection instances is costly, so pooling of connection will increase performance.

To make it more easier to implement own ConnectionFactory classes an abstract base class called
org.apache.ojb.broker.accesslayer.ConnectionFactoryAbstractImpl exists, most shipped
implementation classes inherited from this class.

Note:
All shipped implementation with support for connection pooling only pool direct obtained connections, DataSources will never be pooled.

2.1. ConnectionFactoryPooledImpl

An ConnectionFactory implementation using commons-pool to pool the requested connections. On lookup call a connection
was borrowed from pool and returned on the release call. This implementation was used as default setting in OJB.properties
file.

This implementation allows a wide range off different settings, more info about the configuration properties can be found in
metadata repository connection-pool section.

2.2. ConnectionFactoryNotPooledImpl

Page 1
Copyright © All rights reserved.

http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/docu/guides/ojb-properties.html
http://jakarta.apache.org/commons/pool/
http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/docu/guides/repository.html#connection-pool
http://db.apache.org/ojb/docu/guides/repository.html#connection-pool


The name is programm, this implementation creates a new connection on each request and close it on release call. All
connection-pool settings are ignored by this implementation.

2.3. ConnectionFactoryManagedImpl

This is a specific implementation for use in managed environments like J2EE conform application server. In managed
environments it is mandatory to use DataSource provided by the application server.

All connection-pool settings are ignored by this implementation.

2.4. ConnectionFactoryDBCPImpl

An implementation using commons-dbcp to pool the connections.

This implementation allows a wide range off different settings, more info about the configuration properties can be found in
metadata repository connection-pool section.

3. ConnectionManager

The org.apache.ojb.broker.accesslayer.ConnectionManagerIF interface implementation is a pluggable
component (via the OJB.properties file - more about the OJB.properties file here) responsible for managing the connection
usage lifecycle and connection status (commit/rollback of connections).

public interface ConnectionManagerIF
{

JdbcConnectionDescriptor getConnectionDescriptor();

Platform getSupportedPlatform();

boolean isAlive(Connection conn);

Connection getConnection() throws LookupException;

boolean isInLocalTransaction();

void localBegin();

void localCommit();

void localRollback();

void releaseConnection();

void setBatchMode(boolean mode);

boolean isBatchMode();

void executeBatch();

void executeBatchIfNecessary();

void clearBatch();
}

The ConnectionManager was used by the PersistenceBroker to handle connection usage lifecycle.

4. Questions and Answers

4.1. How does OJB handle connection pooling?

OJB - Connection Handling

Page 2
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/repository.html#connection-pool
http://db.apache.org/ojb/docu/guides/repository.html#connection-pool
http://jakarta.apache.org/commons/dbcp/
http://db.apache.org/ojb/docu/guides/repository.html#connection-pool
http://db.apache.org/ojb/docu/guides/repository.html#connection-pool
http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/docu/guides/ojb-properties.html


OJB does connection pooling per default, expect for datasources. Datasources never will be pooled.

Responsible for managing the connections in OJB are implementations of the
org.apache.ojb.broker.accesslayer.ConnectionFactory.java interface. There are several
implementations shipped with OJB called
org.apache.ojb.broker.accesslayer.ConnectionFactoryXXXImpl.java. You can find among other
things a none pooling implementation and a implementation using jakarta-DBCP api.

To manage the connection pooling define in your jdbc-connection-descriptor a connection-pool element. Here you can specify
the properties for the used ConnectionFactory implementation. More common info see repository section or in repository.dtd.

4.2. Can I directly obtain a java.sql.Connection within OJB?

The PB-api enabled the possibility to obtain a connection from the current used PersistenceBroker instance:

PersistenceBroker broker = PersistenceBrokerFactory.
createPersistenceBroker(myKey);
broker.beginTransaction();
// do something

Connection con = broker.serviceConnectionManager().getConnection();
// perform your connction action and do more

broker.commitTransaction();
broker.close();

Note:
Do not commit the connection instance, this will be done by OJB when PersistenceBroker commit-/abortTransaction was called.

If no transaction was running, it is possible to release connection after use by hand:

pBroker.serviceConnectionManager().releaseConnection();

This call cleanup the used connection and pass the instance to release method of ConnectionFactory (this will e.g. return
connection it to pool or close it). If you don't do any connection cleanup at the latest the connection will be released on
PB.close() call.

Note:
Never do a Connection.close() call on the obtained connection instance by hand!!
This will be handled by the ConnectionFactory.

Users who interested in this section also interested in 'Is it possible to perform my own sql-queries in OJB?'.

OJB - Connection Handling

Page 3
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/repository.html#jdbc-connection-descriptor
http://db.apache.org/ojb/docu/guides/repository.html#connection-pool
http://db.apache.org/ojb/docu/guides/repository.html
http://db.apache.org/ojb/repository.dtd.txt
http://db.apache.org/ojb/docu/faq.html#performSQL

	1 Introduction
	2 ConnectionFactory
	2.1 ConnectionFactoryPooledImpl
	2.2 ConnectionFactoryNotPooledImpl
	2.3 ConnectionFactoryManagedImpl
	2.4 ConnectionFactoryDBCPImpl

	3 ConnectionManager
	4 Questions and Answers
	4.1 How does OJB handle connection pooling?
	4.2 Can I directly obtain a java.sql.Connection within OJB?


