
Platforms

by Thomas Mahler

1. how to use OJB with a specific relational database

OJB has been designed to smoothly integrate with any relational database that provides JDBC support. OJB can be configured
to use only JDBC 1.0 API calls to avoid problems with restrictions of several JDBC drivers.
It uses a limited SQL subset to avoid problems with restrictions of certain RDBMS. This design allows to keep the OJB code
generic and free from database specifics.

This document explains basic concepts and shows how OJB can be configured to run against a specific RDBMS.

2. Basic Concepts

2.1. OJB internal tables

For certain features OJB relies on several internal tables that must be present in the target rdbms to allow a proper functioning.
If those features are not needed OJB can be safely run without any internal tables.

The following table lists all tables and their specific purpose.

Tablename Purpose

OJB_HL_SEQ Table for the high/low sequence manager.
If the built-in OJB sequence manager is not
used, this table is not needed.

OJB_LOCKENTRY This table is used to store Object locks if the
LockManager is run in distributed mode. Not needed
in singlevm mode.

OJB_NRM The "Named Roots Map". ODMG allows to bind
persistent objects to an user defined name.
The Named roots map is used to store these bindings.
It has NAME (String of arbitrary length) as primary
key and keeps the serialized OID of the persistent
object in the field OID (String of arbitrary length).
If bind() and lookup() are not used in client apps, this
table is not needed

OJB_DLIST The table used for the ODMG persistent DList
collections.
If ODMG DLists are not used, this table is not
needed.

OJB_DLIST_ENTRIES stores the entries of DLists (a wrapper to objects
stored in the DList)
If ODMG DLists are not used, this table is not
needed.

Page 1
Copyright © All rights reserved.

OJB_DSET The table used to store ODMG persistent DSET
collections
If ODMG DSets are not used, this table is not
needed.

OJB_DSET_ENTRIES This table stores the entries of DSets.
If ODMG DSets are not used, this table is not
needed.

OJB_DMAP The table use to store the ODMG persistent DMap
tables
If ODMG DMaps are not used, this table is not
needed.

OJB_DMAP_ENTRIES The table containing the DMap entries. The Keys and
Values of the map can be arbitrary persistent objects.
If ODMG DMaps are not used, this table is not
needed.

OJB uses Torque to create all required tables and data. Thus there is no SQL DDL file, but an XML file describing the tables
in format readable by Torque. The Torque DDL information for the internal tables resides in the file
src/schema/ojbcore-schema.xml.

The o/r mappings for these tables are contained in the file repository_internal.xml.

2.2. Tables for the regression testbed

It is recommended to run the OJB JUnit regression tests against your target database. Thus you will have to provide several
more tables, filled with the proper testdata.

The DDL information for these tables resides in the file src/schema/ojbtest-schema.xml.

The testdata is defined in the file src/schema/ojbtest-data.xml.

The o/r mappings for these tables are contained in the file repository_junit.xml.

2.3. Tables for the tutorial applications

If you intend to run the OJB tutorial applications against your target database you will have to provide one extra table.

The DDL information for this table also resides in the file src/schema/ojbtest-schema.xml.

The testdata is also defined in the file src/schema/ojbtest-data.xml.

The o/r mappings for this table is contained in the file repository_user.xml.

3. The setup process

OJB provides a setup routine to generate the target database and to fill it with the required testdata. This routine is based on
Torque scripts and is driven from the build.xml file. This section describes how to use it.

3.1. Selecting a platform profile

OJB ships with support for several popular database platforms. The target platform is selected by the switch profile in the
file build.properties. You can choose one out of the predefined profiles:

Platforms

Page 2
Copyright © All rights reserved.

http://db.apache.org/torque/

With the 'profile' property you can choose the RDBMS platform OJB is using
implemented profiles:
#
profile=hsqldb
use the mssqldb-JSQLConnect profile for Microsoft SQL Server and
you will automatically JSQLConnect driver, from http://www.j-netdirect.com/
MBAIRD: This is my driver of preference for MS SQL Server, I find the OEM'd
MS driver to have some problems.
#profile=mssqldb-JSQLConnect
#profile=mssqldb-Opta2000
#profile=mssqldb-ms
#profile=mysql
#profile=db2
#profile=oracle
#profile=oracle9i
#profile=oracle9i-Seropto
#profile=msaccess
#profile=postgresql
#profile=informix
#profile=sybase
#profile=sapdb
#profile=maxdb

The profile switch activated in build.properties is used to select a profile file from the profile directory.
If you set profile=db2, then the file profile/db2.profile is selected.
This file is used by the Torque scripts to set platform specific properties and to perform platform specific SQL operations.

3.2. editing the profile to point to your target db

The platform specific file profile/xxx.profile contains lots of information used by Torque. You can ignore most of it.
The only important part in this file is the section where the url to the target db is assembled, here is an snip of the DB2 profile:

--
#
D A T A B A S E S E T T I N G S
#
--
JDBC connection settings. This is used by the JDBCToXML task
that will create an XML database schema from JDBC metadata.
These settings are also used by the SQL Ant task to initialize
your Turbine system with the generated SQL.
--

dbmsName = Db2
jdbcLevel = 1.0
urlProtocol = jdbc
urlSubprotocol = db2
urlDbalias = OJB

createDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
buildDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseDriver = COM.ibm.db2.jdbc.app.DB2Driver
databaseUser = admin
databasePassword = db2
databaseHost = 127.0.0.1

These settings result in a database URL jdbc:db2:OJB. If your production database is registered with the name
MY_PRODUCTION_DB you have to edit the entry urlDBalias to:
urlDbalias = MY_PRODUCTION_DB.

In this section you can also set application user name and password. You can also enter a different jdbc driver class, to activate
a different driver.

Platforms

Page 3
Copyright © All rights reserved.

Before progressing, please check that the jdbc driver class, named in the databaseDriver entry is located on the classpath!
You can either edit the global environment variable CLASSPATH or place the jdbc driver jar file into the
jakarta-ojb-xxx/lib directory.

3.3. Executing the build script

Now everything should be prepared to launch the setup routine. This routine can be invoked by calling ant
prepare-testdb .

If you are prompted with a BUILD SUCCESSFUL message after some time, everything is OK.

If you are prompted with a BUILD FAILED message after some time, something went wrong. This may have several reasons:

• You entered some incorrect settings. Please check the log messages to see what went wrong.
• Torque does not work properly against your target database. Torque is very flexible and should be able to work against a

wide range of databases. But the code templates for each database may not be accurate. Please check the ojb-user
mailinglist archive if there are any failure reports for your specific database. Please also check if some contributed a fix
already. If you don't find anything please post your problem to the ojb user-list.

As a last resort you can try the following: Switch back to the default hsqldb profile and execute ant prepare-testdb
This will setup the default hsqldb database. And it will also generate SQL scripts that you may use to generate your database
manually.

The SQL scripts are generated to jakarta-ojb-xxx/target/src/sql. You can touch these scripts to match your
database specifics and execute them manually against your platform.

3.4. Verifying the installation

Now everything is setup to run the junit regression tests against your target database.

Execute

ant junit

to see if everything works as expected. more information about the OJB Test Suite here. If you did not manage to set up the
target database with the ant prepare-testdb you can use
ant junit-no-compile-no-prepare to run the testsuite without generation of the test database.

Platforms

Page 4
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/testing/testsuite.html

	1 how to use OJB with a specific relational database
	2 Basic Concepts
	2.1 OJB internal tables
	2.2 Tables for the regression testbed
	2.3 Tables for the tutorial applications

	3 The setup process
	3.1 Selecting a platform profile
	3.2 editing the profile to point to your target db
	3.3 Executing the build script
	3.4 Verifying the installation

