Persistence Broker Tutorial

by Brian McCallister

1. The PersistenceBroker API

1.1. Introduction

The PersistenceBroker API provides the lowest level accessto OJB's persistence engine. While it is alow-level APl compared
to the OTM, ODMG, or JDO API'sit is still very straightforward to use.

The core class in the PersistenceBroker API isthe or g. apache. oj b. br oker . Per si st enceBr oker class. This class
provides the point of access for all persistence operationsin this API.

Thistutorial operates on a simple example class:

package org.apache.ojb.tutorials;
public class Product
/* Instance Properties */
private Doubl e price;
private |Integer stock;
private String name;l ean
[* artificial property used as primary key */
private Integer id;

/* Getters and Setters */

}
The metadata descriptor for mapping this class is described in the mapping tutorial

The source code for this tutoriad is available with the source distribution of OJB in the
src/test/org/ apache/ ojb/tutorials/ directory.

1.2. A First Look - Persisting New Objects

The most basic operation is to persist an object. Thisis handled very easily by just

obtaining aPer si st enceBr oker

begin the PB-transaction

storing the object viathe Per si st enceBr oker
commit transaction

. closing the Per si st enceBr oker

For example, the following function stores a single object of type Pr oduct .

gimswhE

public static void storeProduct(Product product)

Per si st enceBr oker broker = null;
try

Page 1

http://db.apache.org/ojb/docu/tutorials/mapping-tutorial.html
http://db.apache.org/ojb/PBExamples.txt

Persistence Broker Tutorial

br oker = Persi st enceBrokerFactory. def aul t Persi st enceBr oker () ;
br oker. begi nTransacti on();

br oker. st ore(product) ;

br oker. commi t Transacti on();

cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling

}

finally

{
if (broker !'= null) broker.close();

}

}

Two OJB classes are used here, the PersistenceBrokerFactory and the PersistenceBroker. The
Per si st enceBr oker Fact or y class manages the lifecycles of Per si st enceBr oker instances:. it creates them, pools
them, and destroys them as needed. The exact behavior is very configurable.

In this case we used the static Per si st enceBr oker Fact ory. def aul t Per si st enceBr oker () method to obtain an
instance of aPer si st enceBr oker to the default data source. Thisis most often how it is used if there is only one database
for an application. If there are multiple data sources, a broker may be obtained by name (using a PBKey instance as argument
inPer si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (pbKey)).

It is worth noting that the br oker . cl ose() cal ismade withinafinally {...} block. This ensures that the broker
will be closed, and returned to the broker pool, even if the function throws an exception.

To use this function, we just create aPr oduct and passit to the function:

Product product = new Product();

product . set Nane(" Spr ocket ") ;

product . setPrice(1.99);

product . set St ock(10) ;

st or ePr oduct (product);

Once aPer si st enceBr oker has been obtained, its Per si st enceBr oker . st or e(Obj ect) method is used to make

an object persistent.

Maybe you have noticed that there has not been an assignment to pr oduct . i d, the primary-key attribute. Upon storing
product OJB detects that the attribute is not properly set and assigns a unique id. This automatic assignment of unique Ids
for the attribute i d has been explicitly declared in the XML repository file, as we discussed in the..

If several objects need to be stored, this can be done within a transaction, as follows.

public static void storeProducts(Product[] products)
Per si st enceBr oker broker = null;
try
{

br oker = Persi st enceBrokerFact ory. def aul t Persi st enceBr oker () ;
br oker . begi nTransacti on();
for (int i = 0; i < products.length; i++)
br oker. store(products[i]);
br oker. commi t Transacti on();
cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker.abortTransaction();
/1 do nore exception handling

}
finally

Page 2

http://db.apache.org/ojb/docu/guides/repository.html

Persistence Broker Tutorial

if (broker !'= null) broker.close();

}

This contrived example stores all of the passed Product instances within a single transaction via the
Per si st enceBr oker . begi nTransacti on() and Persi stenceBroker.comm t Transaction(). These are
database level transactions, not object level transactions.

1.3. Querying Persistent Objects

Once objects have been stored to the database, it isimportant to be able to get them back. The PersistenceBroker API provides
two mechanisms for building queries, by using atemplate object, or by using specific criteria.

public static Product findByTenpl ate(Product tenplate)

{
Per si st enceBr oker broker = null;
Product result = null;
try
br oker = Persi stenceBroker Factory. def aul t Per si st enceBr oker () ;
QueryByCriteria query = new QueryByCriteria(tenplate);
result = (Product) broker.get QbjectByQuery(query);
}
finally
if (broker !'= null) broker.close();
return result;
}

This function findsaPr oduct by building a query against atemplate Pr oduct . The template should have any properties set
which should be matched by the query. Building on the previous example where a product was stored, we can now query for
that same product:

Product product = new Product();
product . set Nane(" Spr ocket ") ;
product . set Pri ce(new Doubl e(1.99));
product . set St ock(new I nt eger (10));
st or ePr oduct (product);

Product tenplate = new Product();
t enpl at e. set Nane(" Spr ocket ") ;
Product sanmeProduct = findByTenpl ate(tenpl ate);

In the above code snippet, pr oduct and samePr oduct will reference the same object (assuming there are no additional
products in the database with the name " Sprocket").

The template Pr oduct has only one of its properties set, the nanme property. The others are al null. Properties with null
values are not used to match.

An alternate, and more flexible, way to have specified a query via the PersistenceBroker API is by constructing the criteria on
the query by hand. The following function does this.

public static Collection getExpensiveLowSt ockProducts()
{

Per si st enceBr oker broker = null;

Col l ection results = nul | ;

try

{

br oker = Persi st enceBr oker Fact ory. def aul t Per si st enceBr oker () ;

Criteria criteria = new Criteria();
criteria.addLessOr Equal Than("stock”, new I nteger(20));

Page 3

Persistence Broker Tutorial

criteria.addG eat er Or Equal Than("price", new Doubl e(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getColl ectionByQuery(query);

b
finally
if (broker !'= null) broker.close();

} return results;

This function buildsa Cri t eri a object and uses it to set more complex query parameters - in this case greater-than and
less-than contraints. Looking at the first constraint put on the criteria, crit eri a. addLessOr Equal Than(" st ock™,
new | nt eger (10)); noticethe arguments. The first is the property name on the object being queried for. The second is an
| nt eger instance to be used for the comparison.

After the Cri t eri a has been built, the Quer yByCri t eri a constructor used is also different from the previous example.
In this case the criteria does not know the type of the object it is being used against, so the Cl ass must be specified to the

query.

Finally, notice that this example uses the Per si st enceBr oker . get Col | ecti onByQuery(...) method instead of
the Per si st enceBr oker . get Cbj ect ByQuer y(...) method used previously. Thisis used because we want all of the
results. Either form can be used with either method of constructing queries. In the case of the
Per si st enceBr oker . get Obj ect ByQuery(...) style query, the first matching object is returned, even if there are
multiple matching objects.

1.4. Updating Persistent Objects

The same mechanism, and method, is used for updating persistent objects as for inserting persistent objects. The same
Per si st enceBr oker . st or e(Obj ect) method is used to store a modified object as to insert a new one - the difference
between new and modified objectsisirrelevent to OJB.

This can cause some confusion for people who are very used to working in the stricter confines of SQL inserts and updates.
Basically, OJB will insert a new object into the relational store if the primary key, as specified in the O/R metadata is not in
use. If itisin use, it will update the existing object rather than create a new one.

This allows programmers to treat every object the same way in an object model, whether it has been newly created and made
persistent, or materialized from the database.

Typicaly, making changes to a peristent object first requires retrieving a reference to the object, so the typical update cycle,
unless the application caches objects, is to query for the object to modify, modify the object, and then store the object. The
following function demonstrates this behavior by "selling" a Product.

public static bool ean sel | OneProduct (Product tenplate)

{
Per si st enceBr oker broker = null;
bool ean i sSold = fal se;
try
{

broker = Persi stenceBroker Fact ory. def aul t Per si st enceBr oker () ;
QueryByCriteria query = new QueryByCriteria(tenplate);
Product result = (Product) broker.get Qbject ByQuery(query);

if (result !'= null)
{
br oker. begi nTransacti on();
result.set Stock(new I nteger(result.getStock().intValue() - 1));
broker.store(result);
/] alternative, nore performant
/1 broker.store(result, CbjectMdificationDefaultlnpl.UPDATE)

Page 4

Persistence Broker Tutorial

br oker. comi t Transacti on();
isSold = true;

}
cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker.abortTransaction();
/1 do nore exception handling

}

finally
if (broker !'= null) broker.close();

} return isSol d;

This function uses the same query-by-template and Per si st enceBr oker. st ore() API's examined previously, but it
uses the store method to store changes to the object it retrieved. It is worth noting that the entire operation took place within a
transaction.

1.5. Deleting Persistent Objects

Deleting persistent objects from the repository is accomplished via the Per si st enceBr oker . del et e() method. This
removes the persistent object from the repository, but does not affect any change on the object itself. For example:

public static void del et eProduct (Product product)

Per si st enceBr oker broker = null;
try
{

br oker = Persi stenceBrokerFact ory. def aul t Persi st enceBr oker () ;
br oker . begi nTransacti on();

br oker. del et e(product);

br oker. comi t Transacti on();

}
cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling

}

finally

{
if (broker !'= null) broker.close();

}

}
This method simply deletes an object from the database.

2. Notes on Using the PersistenceBroker API

2.1. Pooling PersistenceBrokers

The Per si st enceBr oker Fact ory pools Per si st enceBr oker instances. Using the
Per si st enceBr oker . cl ose() method releases the broker back to the pool under the default implementation. For this
reason the examplesin this tutorial all retrieve, use, and close a new broker for each logical transaction.

2.2. Transactions

Transactions in the PeristenceBroker APl are database level transactions. This differs from object level transactions. The
broker does not maintain a collection of modified, created, or deleted objects until a commit is called -- it operates on the
database using the databases transaction mechanism. If object level transactions are required, one ofthe higher level API's

Page 5

Persistence Broker Tutorial

(ODMG, JDO, or OTM) should be used.

2.3. Exception Handling

Most Per si st enceBr oker operations throw a or g. apache. oj b. br oker. Per si st enceBr oker Excepti on,
which isderived fromj ava. | ang. Runt i neExcept i on if an error occurs. This means that no try/catch block isrequired
but does not mean that it should not be used. This tutorial specifically does not catch exceptions all in order to focus more
tightly on the specifics of the API, however, best usage would be to include a try/catch/finally block around persistence
operations using the PeristenceBroker API.

Additionally, the closing of Per si st enceBr oker instancesis best handled in f i nal | y blocks in order to guarantee that
it is run, even if an exception occurs. If the Per si st enceBr oker. cl ose() isnot called then the application will leak
broker instances. The best way to ensure that it is always called is to always retrieve and use Per si st enceBr oker
instanceswithinatry {...} block, and alwaysclosethe brokerinafinally {...} block attachedtothetry {...}
block.

A better designed get Expensi veLowSt ockPr oduct s() method is presented here.

public static Collection betterGet Expensi veLowSt ockProduct s()
{

Per si st enceBr oker broker = null;
Col l ection results = nul | ;

try

{

br oker = Persi stenceBrokerFactory. def aul t Persi st enceBr oker () ;

Criteria criteria = new Criteria();
criteria.addLessOr Equal Than(" st ock™, new I nteger(20));
criteria.addG eat er O Equal Than("price", new Doubl e(100000. 0)) ;

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getColl ecti onByQuery(query);

catch (PersistenceBrokerException e)
/1 Handl e exception
%inally
if (broker !'= null) broker.close();

} return results;

Notice first that the Per si st enceBr oker is retrieved and used within the confines of atry {...} block. Assuming
nothing goes wrong the entire operation will execute there, all the way tother et urn resul ts; line Java guarantees that
finally {...} blockswill becalled before amethod returns, so the br oker . cl ose() method isonly included once, in
the final | y block. As an exception may have occured while attempting to retrieve the broker, a not-null test is first
performed before closing the broker.

Page 6

	1 The PersistenceBroker API
	1.1 Introduction
	1.2 A First Look - Persisting New Objects
	1.3 Querying Persistent Objects
	1.4 Updating Persistent Objects
	1.5 Deleting Persistent Objects

	2 Notes on Using the PersistenceBroker API
	2.1 Pooling PersistenceBrokers
	2.2 Transactions
	2.3 Exception Handling

