
Repository File

by Thomas Mahler, Daren Drummond, Brian McCallister, Armin Waibel, Thomas Dudziak

1. Introduction - repository syntax

The syntax of the OJB repository xml files is defined by the repository.dtd.
The repository.dtd can be found here.

The actual repository metadta declaration is split up into several separate files, here is an excerpt of the most important files:

1. the repository.xml. Main file for metadata declaration. This file is split into several sub files using xml-Entity references.
2. the repository_database.xml. This file contains the mapping information for database/connection handling.
3. the repository_internal.xml. This file contains the mapping information for the OJB internal tables. These tables are used

for implementing SequenceManagers and persistent collections.
4. the repository_user.xml. This file contains mappings for the tutorial applications and may be used to hold further user

defined class mappings.
5. the repository_junit.xml. This file contains mapping information for common OJB JUnit regression test suite. In production

environments these tables are not needed.
6. other repository_junit_XYZ.xml

More specific junit test mapping. In production environments these tables are not needed.
7. There are some more files, for more information see comment in appropriate xml-file.

2. descriptor-repository

The descriptor-repository is the root element of a repository.xml file. It consists of one jdbc-connection-descriptor and at least
one class-descriptor element.

2.1. Elements

<!ELEMENT descriptor-repository (documentation?, attribute*,
jdbc-connection-descriptor*, class-descriptor*)>

The documentation element can be used to store arbitrary information.

The attribute element allows to add custom attributes, e.g. for passing arbitrary properties.

The jdbc-connection-descriptor element specifies a jdbc connection for the repository.

The class-descriptor element specify o/r mapping information for persistent class.

<!ELEMENT descriptor-repository (
documentation?,
attribute*,
jdbc-connection-descriptor*,
class-descriptor*)

>

2.2. Attributes

<!ATTLIST descriptor-repository

Page 1
Copyright © All rights reserved.

http://db.apache.org/ojb/repository.dtd.txt
http://db.apache.org/ojb/repository.xml.txt
http://db.apache.org/ojb/repository_database.xml.txt
http://db.apache.org/ojb/repository_internal.xml.txt
http://db.apache.org/ojb/repository_user.xml.txt
http://db.apache.org/ojb/repository_junit.xml.txt

version (1.0) #REQUIRED
isolation-level (read-uncommitted | read-committed | repeatable-read |

serializable | optimistic) "read-uncommitted"
proxy-prefetching-limit CDATA "50"

>

2.2.1. version

The version attribute is used to bind a repository.xml file to a given version of this dtd. A given OJB release will work properly
only with the repository version shipped with that relase. This strictness maybe inconvenient but it does help to avoid the most
common version conflicts.

2.2.2. isolation

The isolation attribute defines the default isolation level for class-descriptor that do not define a specific isolation level. This
isolation level is used within the ODMG-api and does not touch the isolation-level off the database.

2.2.3. proxy-prefetching-limit

The proxy-prefetching-limit attribute specifies a default value to be applied to all proxy instances. If none is specified a default
value of 50 is used. Proxy prefetching specifies how many instances of a proxied class should be loaded in a single query when
the proxy is first accessed.

<!ATTLIST descriptor-repository
version (1.0) #REQUIRED
isolation-level (read-uncommitted |

read-committed |
repeatable-read |
serializable |
optimistic) "read-uncommitted"

proxy-prefetching-limit CDATA "50"
>

3. jdbc-connection-descriptor

The jdbc-connection-descriptor element specifies a jdbc connection for the repository. It is allowed to define more than one
jdbc-connection-descriptor. All class-descriptor elements are independent from the jdbc-connection-descriptors. More info
about connection handling here.

3.1. Elements

<!ELEMENT jdbc-connection-descriptor (documentation?, attribute*,
object-cache?, connection-pool?, sequence-manager?)>

The object-cache element specifies the object-cache implementation class associated with this class.

A connection-pool element may be used to define connection pool properties for the specified JDBC connection.

Further a sequence-manager element may be used to define which sequence manager implementation should be used within
the defined connection.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT jdbc-connection-descriptor (
documentation?,
attribute*,
object-cache?,

Repository File

Page 2
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/connection.html
http://db.apache.org/ojb/docu/guides/objectcache.html

connection-pool?,
sequence-manager?)

>

3.2. Attributes

The jdbc-connection-descriptor element contains a bunch of required and implied attributes:

<!ATTLIST jdbc-connection-descriptor
jcd-alias CDATA #REQUIRED

default-connection (true | false) "false"
platform (Db2 | Hsqldb | Informix | MsAccess | MsSQLServer |

MySQL | Oracle | PostgreSQL | Sybase | SybaseASE |
SybaseASA | Sapdb | Firebird | Axion | NonstopSql |
Oracle9i | MaxDB) "Hsqldb"

jdbc-level (1.0 | 2.0 | 3.0) "1.0"
eager-release (true | false) "false"

batch-mode (true | false) "false"
useAutoCommit (0 | 1 | 2) "1"
ignoreAutoCommitExceptions (true | false) "false"

jndi-datasource-name CDATA #IMPLIED

driver CDATA #IMPLIED
protocol CDATA #IMPLIED
subprotocol CDATA #IMPLIED
dbalias CDATA #IMPLIED

username CDATA #IMPLIED
password CDATA #IMPLIED

>

3.2.1. jdbcAlias

The jcdAlias attribute is a shortcut name for the defined connection descriptor. OJB uses the jcd alias as key for the defined
connections.

3.2.2. default-connection

The default-connection attribute used to define if this connection should used as default connection with OJB. You could
define only one connection as default connection. It is also possible to set the default connection at runtime using
PersistenceBrokerFactory#setDefaultKey(...) method. If set true you can use a PB-api shortcut-method of the
PersistenceBrokerFactory to lookup PersistenceBroker instances.

Note:
If default-connection was not set at runtime, it is mandatory that username and password is set in repository file.

3.2.3. platform

The platform attribute is used to define the specific RDBMS Platform. This attribute corresponds to a
org.apache.ojb.broker.platforms.PlatformXXXImpl class. Supported databases see here. Default was Hsqldb.

3.2.4. jdbc-level

The jdbc-level attribute is used to specify the Jdbc compliance level of the used Jdbc driver. Allowed values are: 1.0, 2.0, 3.0.
Default was 1.0.

Repository File

Page 3
Copyright © All rights reserved.

3.2.5. eager-release

The eager-release attribute was adopt to solve a problem occured when using OJB within JBoss (3.0 <= version < 3.2.2, seems
to be fixed in jboss 3.2.2 and higher). Only use within JBoss. DEPRECATED attribute.

3.2.6. batch-mode

The batch-mode attribute allow to enable JDBC connection batch support (if supported by used database), 'true' value allows to
enable per-session batch mode, whereas 'false' prohibits it. PB.serviceConnectionManager.setBatchMode(...) method can be
used to switch on/off batch modus, if batch-mode was enabled. On PB.close() OJB switch off batch modus, thus you have to
do '...setBatchMode(true)' on each obtained PB instance again.

3.2.7. useAutoCommit

The useAutoCommit attribute allow to set how OJB uses the autoCommit state of the used connections. The default mode is 1.
When using mode 0 or 2 with the PB-api, you must use PB transaction demarcation.

• 0 - OJB ignores the autoCommit setting of the connection and does not try to change it. This mode could be helpful if the
connection won't let you set the autoCommit state (e.g. using datasources within an application server).

• 1 - Set autoCommit explicitly to true when a connection was created and temporary set to false when necessary (default
mode).

• 2 - Set autoCommit explicitly to false when a connection was created.

3.2.8. ignoreAutoCommitExceptions

If the ignoreAutoCommitExceptions attribute is set to true, all exceptions caused by setting autocommit state, will be ignored.
Default mode is false.

3.2.9. jndi-datasource-name

If a jndi-datasource-name for JNDI based lookup of Jdbc connections is specified, the four attributes driver, protocol,
subprotocol, and dbalias used for Jdbc DriverManager based construction of Jdbc Connections must not be declared.

3.2.10. username

The username and password attributes are used as credentials for obtaining a jdbc connections.
If users don't want to keep user/password information in the repository.xml file, they can pass user/password using a PBKey to
obtain a PersistenceBroker. More info see FAQ.

4. connection-pool

The connection-pool element specifies the connection pooling parameter. More info about the connection handling can be
found here.

<!ELEMENT connection-pool (documentation?)
>

Valid attributes for the connection-pool element are:

<!ATTLIST connection-pool
maxActive CDATA #IMPLIED
maxIdle CDATA #IMPLIED
maxWait CDATA #IMPLIED
minEvictableIdleTimeMillis CDATA #IMPLIED
numTestsPerEvictionRun CDATA #IMPLIED

Repository File

Page 4
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/faq.html
http://db.apache.org/ojb/docu/guides/connection.html
http://db.apache.org/ojb/docu/guides/connection.html

testOnBorrow (true | false) #IMPLIED
testOnReturn (true | false) #IMPLIED
testWhileIdle (true | false) #IMPLIED
timeBetweenEvictionRunsMillis CDATA #IMPLIED
whenExhaustedAction (0 | 1 | 2) #IMPLIED
validationQuery CDATA #IMPLIED
logAbandoned (true | false) #IMPLIED
removeAbandoned (true | false) #IMPLIED
removeAbandonedTimeout CDATA #IMPLIED

>

maxActive is the maximum number of connections that can be borrowed from the pool at one time. When non-positive, there is
no limit.

maxIdle controls the maximum number of connections that can sit idle in the pool at any time. When non-positive, there is no
limit

maxWait - the maximum time block to get connection instance from pool, after that exception is thrown. When non-positive,
block till last judgement

whenExhaustedAction

• 0 - fail when pool is exhausted
• 1 - block when pool is exhausted
• 2 - grow when pool is exhausted

testOnBorrow when true the pool will attempt to validate each object before it is returned from the pool.

testOnReturn set to true will force the pool to attempt to validate each object before it is returned to the pool.

testWhileIdle indicates whether or not idle objects should be validated. Objects that fail to validate will be dropped from the
pool.

timeBetweenEvictionRunsMillis indicates how long the eviction thread should sleep before "runs" of examining idle objects.
When non-positive, no eviction thread will be launched.

minEvictableIdleTimeMillis specifies the minimum amount of time that a connection may sit idle in the pool before it is
eligable for eviction due to idle time. When non-positive, no connection will be dropped from the pool due to idle time alone
(depends on timeBetweenEvictionRunsMillis > 0)

numTestsPerEvictionRun - the number of connections to examine during each run of the idle object evictor thread (if any)

validationQuery allows to specify a validation query used by the ConnectionFactory implementations using connection
pooling, to test a requested connection (e.g. "select 1 from dual") before leave the pool (used by ConnectionFactoryDBCPImpl
and ConnectionFactoryPooledImpl).
If not set, only connection.isClosed() will have been called before the connection was delivered.

logAbandoned is only supported when using org.apache.ojb.broker.accesslayer.ConnectionFactoryDBCPImpl
ConnectionFactory implementation. Then it is a flag to log stack traces for application code which abandoned a Statement or
Connection. Defaults to false. Logging of abandoned Statements and Connections adds overhead for every Connection open or
new Statement because a stack trace has to be generated.
DEPRECATED attribute!

removeAbandoned and removeAbandonedTimeout When using
org.apache.ojb.broker.accesslayer.ConnectionFactoryDBCPImpl ConnectionFactory implementation, the removeAbandoned
flag controls the removal of abandoned connections if they exceed the removeAbandonedTimeout. Set to true or false, default
false. If set to true a connection is considered abandoned and eligible for removal if it has been idle longer than the
removeAbandonedTimeout. Setting this to true can recover db connections from poorly written applications which fail to close
a connection.
DEPRECATED attributes!

Repository File

Page 5
Copyright © All rights reserved.

5. sequence-manager

The sequence-manager element specifies the sequence manager implementation used for key generation. All sequence
manager implementations shipped with OJB can be found in the org.apache.ojb.broker.util.sequence package. If no sequence
manager is defined, OJB uses the default one. More info about sequence key generation here.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT sequence-manager (
documentation?,
attribute*)

>

The className attribute represents the full qualified class name of the desired sequence manager implementation - it is
mandatory when using the sequence-manager element. All sequence manager implementations you find will under
org.apache.ojb.broker.util.sequence package named as SequenceManagerXXXImpl

More info about the usage of the Sequence Manager implementations can be found here.

<!ATTLIST sequence-manager
className CDATA #REQUIRED

>

6. object-cache

The object-cache element can be used to specify the ObjectCache implementation used by OJB. There are three levels of
declaration:

• in OJB.properties file, to declare the standard (default) ObjectCache implementation
• on jdbc-connection-descriptor level, to declare ObjectCache implementation on a per connection/user level
• on class-descriptor level, to declare ObjectCache implementation on a per class level

Note:
The priority of the declared object-cache elements are:
per class > per jdbc descriptor > standard

E.g. if you declare ObjectCache implementation 'my.cacheDef' as standard, set ObjectCache implementation 'my.cacheA' in
class-descriptor for class A and class B does not declare an object-cache element. Then OJB use 'my.cacheA' as ObjectCache
for class A and 'my.cacheDef' for class B.

<!ELEMENT object-cache (documentation?, attribute*)>

Use the custom-attribute element to pass implementation specific properties.

<!ATTLIST object-cache
class CDATA #REQUIRED

>

Attribute 'class' specifies the full qualified class name of the used ObjectCache implementation.

7. custom attribute

An attribute element allows arbitrary name/value pairs to be represented in the repository. See the repository.dtd for details on
which elements support it.

<!ELEMENT attribute EMPTY>

The attribute-name identifies the name of the attribute.

Repository File

Page 6
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/sequencemanager.html
http://db.apache.org/ojb/docu/guides/sequencemanager.html
http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/repository.dtd.txt

The attribute-value identifies the value of the attribute.

<!ATTLIST attribute
attribute-name CDATA #REQUIRED
attribute-value CDATA #REQUIRED

>

8. class-descriptor

For interfaces or abstract classes a class-descriptor holds a sequence of extent-class elements which specify the types
extending this class.
Concrete base classes may specify a sequence of extent-class elements, naming the derived classes.

For concrete classes it must have field-descriptors that describe primitive typed instance variables. References to other
persistent entity classes are specified by reference-descriptor elements. Collections or arrays attributes that contain other
persistent entity classes are specified by collection-descriptor elements
A class-descriptor may contain user defined custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT class-descriptor (
(

documentation?,
extent-class+,
attribute*) |

(
documentation?,
object-cache?,
extent-class*,
field-descriptor+,
reference-descriptor*,
collection-descriptor*,
index-descriptor*,
attribute*,
insert-procedure?,
update-procedure?,
delete-procedure?)

)
>

The class attribute contains the full qualified name of the specified class. As this attribute is of the XML type ID there can only
be one class-descriptor per class.

The isolation-level attribute specifies the transactional isolation to be used for this class on ODMG-level.

Note:
The isolation-level does not touch the jdbc-connection isolation level. It's completely independend from the database connection setting.

If the proxy attribute is set, proxies are used for all loading operations of instances of this class. If set to dynamic, dynamic
proxies are used. If set to another value this value is interpreted as the full-qualified name of the proxy class to use. More info
about using of proxies here.

The proxy-prefetching-limit attribute specifies a limit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The schema attribute may contain the database schema owning the table mapped to this class.

The table attribute speciefies the table name this class is mapped to.

The row-reader attribute may contain a full qualified class name. This class will be used as the RowReader implementation

Repository File

Page 7
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/advanced-technique.html#extents
http://db.apache.org/ojb/docu/guides/advanced-technique.html#extents
http://db.apache.org/ojb/docu/guides/basic-technique.html#using-proxy
http://db.apache.org/ojb/docu/guides/advanced-technique.html#using-rowreader

used to materialize instances of the persistent class.

The extends attribute ************TODO: description*************

The accept-locks attribute specifies whether implicit locking should propagate to this class. Currently relevant for the ODMG
layer only.

The optional initialization-method specifies a no-argument instance method that is invoked after reading an instance from a
database row. It can be used to do initialization and validations.

The optional factory-class specifies a factory class that that is to be used instead of a no argument constructor when new
objects are created. If the factory class is specified, then the factory-method also must be defined. It refers to a static
no-argument method of the factory class that returns a new instance.

The refresh attribute can be set to true to force OJB to refresh instances when loaded from cache. Means all field values
(except references) will be replaced by values retrieved from the database. It's set to false by default.

<!ATTLIST class-descriptor
class ID #REQUIRED
isolation-level (read-uncommitted | read-committed |

repeatable-read | serializable | optimistic) "read-uncommitted"
proxy CDATA #IMPLIED
proxy-prefetching-limit CDATA #IMPLIED
schema CDATA #IMPLIED
table CDATA #IMPLIED
row-reader CDATA #IMPLIED
extends IDREF #IMPLIED
accept-locks (true | false) "true"
initialization-method CDATA #IMPLIED
factory-class CDATA #IMPLIED
factory-method CDATA #IMPLIED
refresh (true | false) "false"

>

9. extent-class

An extent-class element is used to specify an implementing class or a derived class that belongs to the extent of all instances of
the interface or base class.

<!ELEMENT extent-class EMPTY>

The class-ref attribute must contain a fully qualified classname and the repository file must contain a class-descriptor for this
class.

<!ATTLIST extent-class
class-ref IDREF #REQUIRED

>

10. field-descriptor

A field descriptor contains mapping info for a primitive typed attribute of a persistent class.
A field descriptor may contain custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT field-descriptor (documentation?, attribute*)>

The id attribute is optional. If not specified, OJB internally sorts field-descriptors according to their order of appearance in
the repository file.
If a different sort order is intended the id attribute may be used to hold a unique number identifying the decriptors position in
the sequence of field-descriptors.

Repository File

Page 8
Copyright © All rights reserved.

Note:
The order of the numbers for the field-descriptors must correspond to the order of columns in the mapped table.

The name attribute holds the name of the persistent classes attribute. More info about persistent field handling.

The table attribute may specify a table different from the mapped table for the persistent class. (currently not implemented).

The column attribute specifies the column the persistent classes field is mapped to.

The jdbc-type attribute specifies the JDBC type of the column. If not specified OJB tries to identify the JDBC type by
inspecting the Java attribute by reflection - OJB use the java/jdbc mapping desribed here.

The primarykey specifies if the column is a primary key column, default value is false.

The nullable attribute specifies if the column may contain null values.

The indexed attribute specifies if there is an index on this column

The autoincrement attribute specifies if the values for the persistent attribute should be automatically generated by OJB. More
info about sequence key generation here.

The sequence-name attribute can be used to state explicitly a sequence name used by the sequence manager implementations.
Check the javadocs of the used sequence manager implementation to get information if this is a mandatory attribute. OJB
standard sequence manager implementations build a sequence name by its own, if the attribute was not set. More info about
sequence key generation here.

The locking attribute is set to true if the persistent attribute is used for optimistic locking. More about optimistic locking. The
default value is false.

The updatelock attribute is set to false if the persistent attribute is used for optimistic locking AND the dbms should update the
lock column itself. The default is true which means that when locking is true then OJB will update the locking fields. Can only
be set for TIMESTAMP and INTEGER columns.

The default-fetch attribute specifies whether the persistent attribute belongs to the JDO default fetch group.

The conversion attribute contains a fully qualified class name. This class must implement the interface
org.apache.ojb.accesslayer.conversions.FieldConversion. A FieldConversion can be used to
implement conversions between Java- attributes and database columns. More about field conversion.

The length attribute can be used to specify a length setting if required by the jdbc-type of the underlying database column.

The precision attribute can be used to specify a precision setting, if required by the jdbc-type of the underlying database
column.

The scale attribute can be used to specify a sclae setting, if required by the jdbc-type of the underlying database column.

The access attribute specifies the accessibility of the field. Fields marked as readonly are not to modified. readwrite marks
fields that may be read and written to. anonymous marks anonymous fields.
An anonymous field has a database representation (column) but no corresponding Java attribute. Hence the name of such a
field does not refer to a Java attribute of the class, but is used as a unique identifier only. More info about anonymous keys
here.

<!ATTLIST field-descriptor
id CDATA #IMPLIED
name CDATA #REQUIRED
table CDATA #IMPLIED
column CDATA #REQUIRED
jdbc-type (BIT | TINYINT | SMALLINT | INTEGER | BIGINT | DOUBLE |

Repository File

Page 9
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/advanced-technique.html#persistent-field
http://db.apache.org/ojb/docu/guides/jdbc-types.html
http://db.apache.org/ojb/docu/guides/sequencemanager.html
http://db.apache.org/ojb/api/index.html
http://db.apache.org/ojb/docu/guides/sequencemanager.html
http://db.apache.org/ojb/docu/faq.html#optimisticLocking
http://db.apache.org/ojb/docu/guides/jdbc-types.html#field-conversion
http://db.apache.org/ojb/docu/guides/advanced-technique.html#anonymous-keys
http://db.apache.org/ojb/docu/guides/advanced-technique.html#anonymous-keys

FLOAT | REAL | NUMERIC | DECIMAL | CHAR | VARCHAR |
LONGVARCHAR | DATE | TIME | TIMESTAMP | BINARY |
VARBINARY | LONGVARBINARY | CLOB | BLOB) #REQUIRED

primarykey (true | false) "false"
nullable (true | false) "true"
indexed (true | false) "false"
autoincrement (true | false) "false"
sequence-name CDATA #IMPLIED
locking (true | false) "false"
update-lock (true | false) "true"
default-fetch (true | false) "false"
conversion CDATA #IMPLIED
length CDATA #IMPLIED
precision CDATA #IMPLIED
scale CDATA #IMPLIED
access (readonly | readwrite | anonymous) "readwrite"

>

11. reference-descriptor

A reference-descriptor contains mapping info for an attribute of a persistent class that is not primitive but references another
persistent entity Object. More about 1:1 references here.

A foreignkey element contains information on foreign key columns that implement the association on the database level.

<!ELEMENT reference-descriptor (foreignkey+)>

The name attribute holds the name of the persistent classes attribute. Depending on the used PersistendField implementation,
there must be e.g. an attribute in the persistent class with this name or a JavaBeans compliant property of this name.

The class-ref attribute contains a fully qualified class name. This class is the Object type of the persistent reference attribute.
As this is an IDREF there must be a class-descriptor for this class in the repository too.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for this attribute.

The proxy-prefetch-limit attribute specifies a limit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The refresh attribute can be set to true to force OJB to refresh object references on instance loading.

Note:
This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects itself may provided by the cache. To
refresh the objects set the refresh attribute of class-descriptor.

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on loading the persistent
object. If set to false the reference attribute is set to null. In this case the user is responsible to fill the reference attribute.
More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on storing the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM, ODMG or JDO layer.

The auto-delete attribute specifies whether OJB automatically deletes this reference attribute on deleting the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM, ODMG or JDO layer.

Repository File

Page 10
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/basic-technique.html#one-to-one
http://db.apache.org/ojb/docu/guides/advanced-technique.html#persistent-field
http://db.apache.org/ojb/docu/guides/basic-technique.html#auto-retrieve
http://db.apache.org/ojb/docu/guides/basic-technique.html#cascading
http://db.apache.org/ojb/docu/guides/basic-technique.html#cascading

The otm-dependent attribute specifies whether the OTM layer automatically creates the referred object or deletes it if the
reference field is set to null. Also otm-dependent references behave as if auto-update and auto-delete were set to true, but the
auto-update and auto-delete attributes themself must be always set to false for use with OTM layer.

<!ATTLIST reference-descriptor
name CDATA #REQUIRED
class-ref IDREF #REQUIRED

proxy (true | false) "false"
proxy-prefetching-limit CDATA #IMPLIED
refresh (true | false) "false"

auto-retrieve (true | false) "true"
auto-update (true | false) "false"
auto-delete (true | false) "false"
otm-dependent (true | false) "false"

>

12. foreignkey

A foreignkey element contains information on a foreign-key persistent attribute that implement the association on the database
level.

<!ELEMENT foreignkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor used as a foreign key.

Note:
Exactly one of these attributes must be specified.

<!ATTLIST foreignkey
field-id-ref CDATA #IMPLIED
field-ref CDATA #IMPLIED

>

13. collection-descriptor

A collection-descriptor contains mapping info for a liCollection- or Array-attribute of a persistent class that contains persistent
entity Objects. See more about 1:n and m:n references.

The inverse-foreignkey elements contains information on foreign-key attributes that implement the association on the database
level.

The fk-pointing-to-this-class and fk-pointing-to-element-class elements are only needed if the Collection or array implements a
m:n association. In this case they contain information on the foreign-key columns of the intermediary table.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT collection-descriptor (
documentation?,
orderby*,
inverse-foreignkey*,
fk-pointing-to-this-class*,
fk-pointing-to-element-class*,
attribute*)>

The name attribute holds the name of the persistent classes attribute. More info about persistent field handling.

The collection-class may hold a fully qualified class name. This class must be the Java type of the Collection attribute. This
attribute must only specified if the attribute type is not a java.util.Collection (or subclass) or Array type. It is also

Repository File

Page 11
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/basic-technique.html#one-to-n
http://db.apache.org/ojb/docu/guides/basic-technique.html#m-to-n
http://db.apache.org/ojb/docu/guides/advanced-technique.html#persistent-field

possible to use non Collection or Array type user defined "collection" classes. More info see section manageable collection.

The element-class-ref attribute contains a fully qualified class name. This class is the Object type of the elements of persistent
collection or Array attribute. As this is an IDREF there must be a class-descriptor for this class in the repository too.

The orderby attribute may specify a field of the element class. The Collection or Array will be sorted according to the specified
attribute. The sort attribute may be used to specify ascending or descending order for this operation.

The indirection-table must specify the name of an intermediary table, if the persistent collection attribute implements a m:n
association.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for this attribute. More about
using proxy here.

The proxy-prefetch-limit attribute specifies a limit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The refresh attribute can be set to true to force OJB to refresh object references on instance loading.

Note:
This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects itself may provided by the cache. To
refresh the objects use the refresh attribute in class-descriptor.

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on loading the persistent
object. If set to false the reference attribute is set to null. In this case the user is responsible to fill the reference attribute.
More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on storing the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM, ODMG or JDO layer.

The auto-delete attribute specifies whether OJB automatically deletes this reference attribute on deleting the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM, ODMG or JDO layer.

The otm-dependent attribute specifies whether the OTM layer automatically creates collection elements that were included into
the collection, and deletes collection elements that were removed from the collection. Also otm-dependent references behave
as if auto-update and auto-delete were set to true, but the auto-update and auto-delete attributes themself must be always set to
false for use with OTM layer.

<!ATTLIST collection-descriptor
name CDATA #IMPLIED
collection-class CDATA #IMPLIED
element-class-ref IDREF #REQUIRED
orderby CDATA #IMPLIED
sort (ASC | DESC) "ASC"

indirection-table CDATA #IMPLIED

proxy (true | false) "false"
proxy-prefetching-limit CDATA #IMPLIED
refresh (true | false) "false"

Repository File

Page 12
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/advanced-technique.html#manageable-collection
http://db.apache.org/ojb/docu/guides/basic-technique.html#using-proxy
http://db.apache.org/ojb/docu/guides/basic-technique.html#auto-retrieve
http://db.apache.org/ojb/docu/guides/basic-technique.html#cascading
http://db.apache.org/ojb/docu/guides/basic-technique.html#cascading

auto-retrieve (true | false) "true"
auto-update (true | false) "false"
auto-delete (true | false) "false"
otm-dependent (true | false) "false"

>

14. inverse-foreignkey

A inverse-foreignkey element contains information on a foreign-key persistent attribute that implement the association on the
database level.

<!ELEMENT inverse-foreignkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor used as a foreign key.
Exactly one of these attributes must be specified.

<!ATTLIST inverse-foreignkey
field-id-ref CDATA #IMPLIED
field-ref CDATA #IMPLIED

>

15. fk-pointing-to-this-class

A fk-pointing-to-this-class element contains information on a foreign-key column of an intermediary table in a m:n scenario.

<!ELEMENT fk-pointing-to-this-class EMPTY>

The column attribute specifies the foreign-key column in the intermediary table that points to the class holding the collection.

<!ATTLIST fk-pointing-to-this-class
column CDATA #REQUIRED

>

16. fk-pointing-to-element-class

A fk-pointing-to-element-class element contains information on a foreign-key column of an intermediary table in a m:n
scenario.

<!ELEMENT fk-pointing-to-element-class EMPTY>

The column attribute specifies the foreign-key column in the intermediary table that points to the class of the collection
elements.

<!ATTLIST fk-pointing-to-element-class
column CDATA #REQUIRED

>

17. query-customizer

A query enhancer element to enhance the 1:n query, e.g. to modify the result objects of a query. More info about customizing
collection queries.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT query-customizer (
documentation?,
attribute*)>

<!ATTLIST query-customizer
class CDATA #REQUIRED

>

Repository File

Page 13
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/guides/advanced-technique.html#query-customizer
http://db.apache.org/ojb/docu/guides/advanced-technique.html#query-customizer

18. index-descriptor

An index-descriptor describes an index by listing its columns. It may be unique or not.

<!ELEMENT index-descriptor (documentation?, index-column+)>

<!ATTLIST index-descriptor
name CDATA #REQUIRED
unique (true | false) "false">

19. index-column

An index-column is just the name of a column in an index.

<!ELEMENT index-column (documentation?)>

<!ATTLIST index-column
name CDATA #REQUIRED>

20. Stored Procedure Support

OJB supports stored procedures for insert, update and delete operations. How to use stored procedures within OJB can be
found here.

20.1. insert-procedure

Identifies the procedure/function that should be used to handle insertions for a specific class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT insert-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include a return value, then do not specify a value for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor are to be passed to the
procedure/ function. If include-all-fields is 'true', any nested 'argument' elements will be ignored. In this case, values for all
field-descriptors will be passed to the procedure/function. The order of values that are passed to the procedure/function will
match the order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then values will be
passed to the procedure/function based on the information in the nested 'argument' elements.

<!ATTLIST insert-procedure
name CDATA #REQUIRED
return-field-ref CDATA #IMPLIED
include-all-fields (true | false) "false"

>

20.2. update-procedure

Identifies the procedure/function that should be used to handle updates for a specific class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

Repository File

Page 14
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/howtos/howto-work-with-stored-procedures.html
http://db.apache.org/ojb/docu/howtos/howto-work-with-stored-procedures.html

<!ELEMENT update-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include a return value, then do not specify a value for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor are to be passed to the
procedure/ function. If include-all-fields is 'true', any nested 'argument' elements will be ignored. In this case, values for all
field-descriptors will be passed to the procedure/function. The order of values that are passed to the procedure/function will
match the order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then values will be
passed to the procedure/function based on the information in the nested 'argument' elements.

<!ATTLIST update-procedure
name CDATA #REQUIRED
return-field-ref CDATA #IMPLIED
include-all-fields (true | false) "false"

>

20.3. delete-procedure

Identifies the procedure/function that should be used to handle deletions for a specific class-descriptor.

The nested runtime-argument and constant-argument elements define the argument list for the procedure/function as well as
the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT delete-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include a return value, then do not specify a value for this attribute.

The include-pk-only attribute indicates if all field-descriptors in the corresponding class-descriptor that are identified as being
part of the primary key are to be passed to the procedure/function. If include-pk-only is 'true', any nested 'argument' elements
will be ignored. In this case, values for all field-descriptors that are identified as being part of the primary key will be passed to
the procedure/function. The order of values that are passed to the procedure/function will match the order of field-descriptors
on the corresponding class-descriptor. If include-pk-only is false, then values will be passed to the procedure/ function based
on the information in the nested 'argument' elements.

<!ATTLIST delete-procedure
name CDATA #REQUIRED
return-field-ref CDATA #IMPLIED
include-pk-only (true | false) "false"

>

20.4. runtime-argument

Defines an argument that is passed to a procedure/function. Each argument will be set to a value from a field-descriptor or null.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT runtime-argument
(documentation?, attribute*)>

The field-ref attribute identifies the field-descriptor in the corresponding class-descriptor that provides the value for this

Repository File

Page 15
Copyright © All rights reserved.

argument. If this attribute is unspecified, then this argument will be set to null.

<!ATTLIST runtime-argument
field-ref CDATA #IMPLIED
return (true | false) "false"

>

20.5. constant-argument

Defines a constant value that is passed to a procedure/function.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT constant-argument
(documentation?, attribute*)>

The value attribute identifies the value that is passed to the procedure/ function.

<!ATTLIST constant-argument
value CDATA #REQUIRED

>

Repository File

Page 16
Copyright © All rights reserved.

	1 Introduction - repository syntax
	2 descriptor-repository
	2.1 Elements
	2.2 Attributes
	2.2.1 version
	2.2.2 isolation
	2.2.3 proxy-prefetching-limit

	3 jdbc-connection-descriptor
	3.1 Elements
	3.2 Attributes
	3.2.1 jdbcAlias
	3.2.2 default-connection
	3.2.3 platform
	3.2.4 jdbc-level
	3.2.5 eager-release
	3.2.6 batch-mode
	3.2.7 useAutoCommit
	3.2.8 ignoreAutoCommitExceptions
	3.2.9 jndi-datasource-name
	3.2.10 username

	4 connection-pool
	5 sequence-manager
	6 object-cache
	7 custom attribute
	8 class-descriptor
	9 extent-class
	10 field-descriptor
	11 reference-descriptor
	12 foreignkey
	13 collection-descriptor
	14 inverse-foreignkey
	15 fk-pointing-to-this-class
	16 fk-pointing-to-element-class
	17 query-customizer
	18 index-descriptor
	19 index-column
	20 Stored Procedure Support
	20.1 insert-procedure
	20.2 update-procedure
	20.3 delete-procedure
	20.4 runtime-argument
	20.5 constant-argument

