The ODMG Lock Manager

by Thomas Mahler, Armin Waibel

1. What it does

The OJB ODMG implementation provides object level transactions as specified by the ODMG. This includes features like
registering objects to transactions, persistence by reachability (a toplevel object is registered to a transaction, and also all its
associated objects become registered implicitely) and as a very important aspect: object level locking.

Lockmanagement is needed to synchronize concurrent access to objects from multiple transactions (possibly from remote
machines).

An example: There are two transactions t x1 and t x2 running on different physical machines. Tx1 acquired a write lock on
an object obj with the globally unique identity oi d. Now also t x2 tries to get a write lock on an object obj ' (it's not the
same object as it resides in a different VM!) with the same identity oi d (an OJB Identity is unique accross VMs!). The OJB
LockManager is responsible for detecting this conflict and doesn't allow t x2 to obtain a write lock to prevent data
inconsistency.

The ODMG Api alows transactions to lock an object obj asfollows:
org. odng. Transacti on. | ock(Obj ect obj, int |ockMwdde),

where lockM ode defines the locking mode:

/** Read | ock node. */
public static final int READ = 1

[** Upgrade | ock node. */
public static final int UPGRADE = 2;

[** Wite | ock npbde. */
public static final int WR TE = 4;

A sample session could look as follows:

/1 get odng facade instance
| mpl enent ati on odng = QJB. get | nstance();

/| open dat abase

Dat abase db = odny. newDat abase() ;

db. open(" ; r eposi t ory. xm " ; , Dat abase. OPEN_READ WRI TE) ;
/| start a transaction

Transaction tx = odng. newlransaction();

t X. begi n();

MyCl ass nyCbject = ...

/1 | ock object for read access
t x.l ock(myQbj ect, Transaction. READ);

[/ now performread access on myQbj ect

/] 1ock object for wite access
tx. l ock(nyQbj ect, Transacti on. UPGRADE)

/1 now performwite access on nyQhj ect

Page 1

The ODMG Lock Manager

[/ finally commit transaction to nmake changes to myQbject persistent

tx.commt();

The ODMG specification does not say if locks must be acquired explicitely by client applications or may be acquired
implicitely. OJB provides implicit locking for the application programmers convenience: On commit of a transaction all
read-locked objects are checked for modifications. If a modification is detected, a write lock is acquired for the respective
object. If automatic acquisition of read- or write-lock failes, the transaction is aborted.

On locking an object to a transaction, OJB automatically locks all associated objects (as part of the persistence by reachability
feature) with the same locking level. If application use large object nets which are shared among severa transactions
acquisition of write-locks may be very difficult. Thus OJB can be configured to aquire only read-locks for associated objects.

Y ou can change this behaviour by modifying the file OJB.properties and changing the entry LockAssoci ati ons=WRI TE
toLockAssoci at i ons=READ.

The ODMG specification does not prescribe transaction isolationlevels or locking strategies to be used. Thus there are no AP
calls for setting isolationlevels. OJB provides four different isolationlevels that can be configured for each persistent class in
the XML repository.

The isolationlevel of aclass can be configured with the following attribute to a ClassDescriptor:

<Cl assDescri ptor isolation="read-unconitted" ...>

</ d assDescri pt or >

The four supported values are:
read-uncommitted
read-committed

repeatable-read
serializable

The semantics of these isolationlevelsis defined below.

2. How it works

To provide Lockmanagement in a massively distributed environment as the OJB client/server architecture, OJB implements a
LockManager that allows transaction coordination accross multiple threads, multiple VMs and even multiple physical
machines running OJB ODMG transactions. The Default Implementation of this LockManager uses a database table to store
locks. To make locks persistent allows to make them visible to all connected ODMG clients. Thus there is no need for an
additional LockManager server that is accessed from all ODMG clients.

The LockManager interface provides the following API:

public interface LockManager

/**

* aquires a readl ock for transaction tx on object obj.

* Returns true if successful, else fal se.

*/

public abstract bool ean readLock(Transactionlnmpl tx, Object obj);

/**

* aquires a witelock for transaction tx on object obj.

* Returns true if successful, else false.

*/

public abstract bool ean witelLock(Transactionlnpl tx, Object obj);

/**

* upgrades readl ock for transaction tx on object obj to a witelock.
* |f no readl ock existed a witelock is acquired anyway.
* Returns true if successful, else fal se.

Page 2

http://db.apache.org/ojb/docu/guides/ojb-properties.html

The ODMG Lock Manager

}

The lockmanager must allow and disalow locking according to the Transaction

*/

public abstract bool ean upgradelLock(Transactionlnpl tx, Cbject obj);

/**
* releases a lock for transaction tx on object obj.

* Returns true if successful, else false.
2

public abstract bool ean rel easeLock(Transactionlnpl tx, Cbject obj);

/**

* checks if there is a readlock for transaction tx on object obj.
* Returns true if so, else false.

*/

public abstract bool ean checkRead(Transacti onl npl tx, Object obj);

/**

* checks if there is a witelock for transaction tx on object obj.
* Returns true if so, else false.

*/

public abstract bool ean checkWite(Transactionlnpl tx, Object obj);

Isolationlevel specified for

obj . get A ass() in the XML RepositoryFile. It does so by applying a corresponding LockStrategy. LockStrategies are
selected by the LockStrategyFactory:

pri
pri
pri
pri
/**

*
*

*/

vate static LockStrategy readUncommitedStrategy =

new ReadUncomi ttedStrategy();
vate static LockStrategy readComm tedStrategy =

new ReadCommi ttedStrategy();
vate static LockStrategy readRepeatabl eStrategy =

new Repeat abl eReadSt rat egy() ;
vate static LockStrategy serializableStrategy =

new Seri al i zabl eStrategy();

otains a LockStrategy for Object obj. The Strategy to be used is
sel ected by evaluating the C assDescriptor of obj.getd ass().

@eturn LockStrategy

public static LockStrategy getStrategyFor(Object obj)
{

}

int isolationLevel = getlsolationLevel (obj.getd ass());
switch (isolationLevel)

case |sol ationLevel s. RW READ UNCOWM TTED:
return readUnconmni t edStrat egy;

case | sol ationLevel s. RW READ _COW TTED:
return readConmitedStrat egy;

case |sol ationLevel s. RW REPEATABLE READ:
return readRepeat abl eStrat egy;

case |sol ationLevel s. RW SERI ALI ZABLE:
return serializabl eStrategy;

defaul t:
return readUnconmi t edStr at egy;

}

The four LockStrategies implement different behaviour according to the underlying isolationlevel. The semantics of the
strategies are defined by the following table:

Nr. Name of Transactions Transaction-Isolationlevel
TestCase
Tx1 Tx2 ReadUncomResekCommiRegpeatableFSsaddizable
SingleReadldtk True True True True

Page 3

18

10

11

12

13

14

15

16

17

ReadThenRdad
R

UpgradeReaRlock
u

ReadThenWRte
W

SingleWritelagk

WriteThenRaAd
R

MultipleReadick R

UpgradeWithHExistingReadker

WriteWithExiRtingReader W

UpgradeWitiRultipleReadRers
U

WriteWithMuRipleReader®R
W
UpgradeWithRultipleReadersOnl
W

WriteWithMuRipleReadersOnl
w

ReadWithExidtingWriter R

MultipleWriteWgcks W

ReleaseReadR.ock

Rel W
ReleaseUpgtddelock

Rel W
ReleaseWritéMock

True

True

True

True

True

True

True

True

True

True

True

True

True

False

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

False

False

True

True

True

True

True

True

True

True

True

False

False

False

False

False

False

False

False

True

True

True

True

True

True

True

True

False

False

False

False

False

False

False

False

False

True

True

True

The ODMG Lock Manager

Page 4

The ODMG Lock Manager

Rel W
Acquire R
ReadLock
Acquire W
WriteLock
Upgrade U
Lock

Release Rel
Lock

The table is to be read as follows. The acquisition of asingle read lock on a given object (case 1) is allowed (returns True) for
al isolationlevels. To upgrade a single read lock (case 2) is also allowed for al isolationlevels. If there is already a write lock
on agiven object for tx1, it is not allowed (returns False) to obtain awrite lock from tx2 for all isolationlevels (case 14).

The isolationlevels can be simply characterized as follows:

Uncommitted Reads
Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining read locks is allowed even if
another transaction is writing to that object (case 13). (Thats why thislevel isaso called dirty reads)

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locks is alowed only if there is no write
lock on the given object (case 13).

Repeatable Reads
As commited reads, but obtaining a write lock on an object that has been locked for reading by another transaction is not
alowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object (case 6).

The proper behaviour of the LockStrategies is checked by JUnit TestCases that implement test methods for each of the 17
cases specified in the above table. (See code for classest est . 0] b. odng. LockTest XXX)

3. Locking in distributed environment
HHHHHHHER R TODO HHHHARHHHHET

4. Implement you own lock manager

The LockManager default implementation uses a database table to make locks globally visible to al connected clients. Thisis
afoolproof solution as it does not require a separate LockManager server. But it involves alot of additional database traffic, as
each lock check, acquisition or release results in database operations.

This may not be viable in some environments. Thus OJB allows to plug in user defined LockManagers implementing the
oj b. odng. | ocki ng. LockManager interface. OJB obtains its LockManager from the factory
oj b. odng. | ocki ng. LockManager Fact ory. This Factory can be configured to generate instances of a specific
implementation by changing the following entry in the configuration file OJB Propertiesfile:

LockManager Cl ass=0j b. odng. | ocki ng. LockManager Def aul t | npl

to:

Page 5

The ODMG Lock Manager

LockManager C ass=acne. com MyOmLockManager | npl .

Of course I'm interested in your solutions! |f you have implemented something interesting, just contact me.

Page 6

	1 What it does
	2 How it works
	3 Locking in distributed environment
	4 Implement you own lock manager

