OJB Documentation

1.0JB
1.1. ObJectRelationalBridge - OJB

1.1.1. Summary

ObJectRelational Bridge (OJB) is an Object/Relational mapping tool that allows transparent persistence for Java Objects
against relational databases.

1.1.1.1. flexibility

OJB supports multiple persistence APIs to provide users with their API of choice:

e A full featured ODMG 3.0 compliant API. (See the ODMG Tutorial for an introduction.)

« A JDO compliant API. We currently provide a plugin to the JIDO Reference Implementation (RI). Combining the JDO RI
and our plugin provides aJDO 1.0 compliant o/r solution.
A full IDO implementation is scheduled for OJB 2.0. (See JDO tutorial for an introduction to the JDO programming
model.)

« An Object Transaction Manager (OTM) layer that contains all features that JDO and ODMG have in common. (See OTM
tutorial for details).

« A low-level PersistenceBroker API which serves asthe OJB persistence kernel. The OTM-, ODMG- and
JDO-implementations are build on top of this kernel.
This API can aso be used directly by applications that don't need full fledged object level transactions (See the Persistence
Broker Tutorial for details).

See the FAQ for adetailed view of the OJB layering.

1.1.1.2. scalability

OJB has been designed for a large range of applications, from embedded systems to rich client application to multi-tier J2EE
based architectures.

OJB integrates smoothly into J2EE Application servers. It supports INDI lookup of datasources. It ships with full JTA and
JCA Integration. OJB can be used within JSPs, Servlets and SessionBeans. OJB provides special support for Bean Managed
EntityBeans (BMP).

1.1.1.3. functionality

OJB uses an XML based Object/Relationa Mapping. The mapping resides in a dynamic MetaData layer which can be
manipulated at runtime through a ssmple Meta-Object-Protocol (MOP) to change the behaviour of the persistence kernel.

OJB provides several advanced O/R features like an Object Caching, lazy materialization through virtual proxies or a
distributed |ock-management with configurable Transaction-lsolation Levels. Optimistic and pessimistic Locking is supported.

OJB provides a flexible configuration and plugin mechanism that alows to select from set of predefined components or to
implement your own extensions and plugins.

A more complete featurelist can be found here.

Page 1

error:#site:odmg-tutorial
error:#site:jdo-tutorial
error:#site:otm-tutorial
error:#site:otm-tutorial
error:#site:pb-tutorial
error:#site:pb-tutorial
error:#site:faq/apis
error:#site:object-cache
error:#site:basic-technique/using-proxy
error:#site:lock-manager
error:#site:features

0OJB Documentation

L earn more about the OJB design principles in this document.

1.2. OJB - Features

1.2.1. Features

Support of standard and non-standard API's:

* PB api (non-standard)

OTM api (non-standard)

» ODMG api (standard)

e JDO api (standard)

The PersistenceBroker kernel api and al top-level api (ODMG, OTM, JDO) alows Java Programmers to store and retrieve
Java Objects in/from (any) JDBC-compliant RDBMS

Transparent persistence: Persistent classes don't have to inherit from a persistent base class or to implement an interface.
Scalable architecture that allows to build massively distributed and clustered systems.

Configurable persistence by reachability: All Objects associated to a persistent object by references can made persitent too.
Extremly flexible design with pluggable implementation of most service classes like PersistenceBroker, ObjectCache,
SequenceManager, RowReader, ConnectionFactory, ConnectionManager, IndirectionHandler, SQLGener ator,
JdbcAccess, ... and so on.

Quality assurance taken seriously: More than 600 JUnit-TestCases for regression tests. JUnit tests integrated into the build
scripts.

Mapping support for 1:1, 1:n and m:n associations.

Configurable collection queries to control loading of relationships. See QueryCustomizer.

Automatic and manual assignment of foreign key values.

The Object / Relational mapping is defined in an XML Repository. The mapping is completely dynamic and can be
manipulated at runtime for maximum flexibility

Easy use of multiple databases.

Configurable Lazy Materialization through Proxy support in the PersistenceBroker. The user can implement specific Proxy
classes or let OJB generate dynamic Proxies.

Support for Polymorphism and Extents. Y ou can use Interface-types and abstract classes as attribute typesin your
persistent classes. Queries are also aware of extents: A query against a baseclass or interface will return matches from
derived classes, even if they are mapped to different DB-tables

Support for Java Array- and Collection-attributes in persistent classes. The attribute-types can be Arrays,
java.util.Collection or may be user defined collections that implement the interface

oj b. br oker . Manageabl eCol | ecti on.

Sequence-Managing . The SequenceManager is aware of "extents" and maintains uniqueness of ids accross any number of
tables. Sequence Numbering can be declared in the mappping repository.

Native Database based Sequence Numbering is aso supported.

Reusing Prepared Statements, internal connection pooling.

Integrates smoothly in controlled environments like EJB containers

Full JTA and JCA (in progress) Integration.

Support for prefetched relationships to minimize the number of queries.

ODMG compliant API, aTutorial, and TestCases are included.

JDO 1.0.1 compliant API (based on jdori, native implementation in progress), a Tutorial, and TestCases are included.
Distributed L ockmanagement supporting four pessimistic Transaction Isolation Levels (uncommited or "dirty” reads,
commited reads, repeatable reads, serializable transactions).

Optimistic locking support. Users may declarei nt or | ong fieldsasversion attributesor j ava. sql . Ti nest anp
fields as timestamp attributes.

Support of distributed caches.

Comes along with fully functional demo applications running against HSQLDB.

Provides Commons-L ogaing and Log4J logging facilities.

Page 2

error:#site:links
error:#site:basic-technique
error:#site:test-suite
error:#site:basic-technique
error:#site:advanced-technique
error:#site:basic-technique/cascading
error:#site:basic-technique/linking
error:#site:metadata
error:#site:faq/multiple-databases
error:#site:basic-technique/using-proxy
error:#site:advanced-technique/polymorphism
error:#site:advanced-technique/types-for-associations
error:#site:sequence-manager
error:#site:connection
error:#site:deployment/j2ee-server
error:#site:query/prefetched-relationships
error:#site:odmg-tutorial
error:#site:jdo-tutorial
error:#site:lock-manager
error:#site:faq/optimistic-locking
error:#site:object-cache/distributed-cache
error:#ext:commons-logging
error:#ext:log4j

OJB Documentation

« 100 %: pure Java, Open Source, Apache License

- OQL is currently not fully implemented (Aggregations and Method Invocations)
- ODMG implicit locking is partly implemented but does currently not maintain transaction isolation properly. To achieve safe transaction isolation client application must use
explicit lock acquisition

1.3. Status

1.3.1. PB API (Persistence Broker API)
The PB APl implementation is stable.

1.3.2. OTM API (Object Transaction Manager API)
The OTM Object Transaction Manager APl isin beta status with this release.

1.3.3. ODMG API

The ODMG API implementation is stable, but there some known issues - see release-notes

OQL is currently not fully implemented (Aggregations and Method Invocations).
ODMG implicit locking is partly implemented but does currently not maintain transaction isolation properly. To achieve safe transaction isolation client application must use
explicit lock acquisition.
1.3.4.JDO API
By providing a plugin to the SUN JDO Reference Implementation we provide a complete JDO 1.0.1 prototype O/R mapping
tool. A complete Apache licensed JDO implementation is scheduled for OJB 2.0.
1.4. OJB - Mail Lists

1.4.1. Mailing Lists

These are the mailing lists that have been established for this project. For each list, there is a subscribe, unsubscribe, and an
archive link.

List Name Subscribe Unsubscribe Archive
Objectbridge User List | Subscribe Unsubscribe Archive
Objectbridge Subscribe Unsubscribe Archive

Developer List

1.5. OJB - Mail Archives

1.5.1. Mail Archives

archive provider | OJB User list OJB Developer | searchable remarks
list
GMANE gmane.comp.jakartaguitansezomp.jakartayeib.devel latest 600

postings available

Page 3

error:#ext:release-notes
error:#ext:ojb/mail/user/subscribe
error:#ext:ojb/mail/user/unsubscribe
error:#ext:ojb/archives/apache/user
error:#ext:ojb/mail/dev/subscribe
error:#ext:ojb/mail/dev/unsubscribe
error:#ext:ojb/archives/apache/dev
error:#ext:ojb/archives/gmane/user
error:#ext:ojb/archives/gmane/dev

0OJB Documentation

via web access.
Unlimited access
through nntp
(news reader)

Apache ojb-user@db.apachenfirglev@db.apacheyms --
The Mail Archive | gjb-user -- yes --

1.6. OJB - References and Testimonials
1.6.1. References and Testimonials

1.6.1.1. projectsusing OJB

Jakarta JetSpeed
Jetspeed is an Open Source implementation of an Enterprise Information Portal, using Javaand XML.
OJB will be the default persistence model within Jetspeed 2.

The Tammi project

Tammi is a IMX-based Java application development framework and run-time environment providing a service architecture
for J2EE server side Internet applications that are accessible from any device that supports HTTP including mobile (wireless)
handsets.

Future plansinclude integration of Apache OJB based persistence services to the framework.

The Object Console project

The Object Console is an open web based application meant for the administration of objects via the web. Any object that is
persistable by the ObJectRel ational Bridge (OJB) framework can be managed through this tool. In addition, this tool provides
administration functionality for the ObJectRelationa Bridge (OJB) framework itself.

Object Console uses Struts and OJB. It ships with full sourcecode and is thus a great source for learning Struts + OJB
techniques.

ThelntAct project

The IntAct project establishes a knowledgebase for protein-protein interaction data. It's hosted at EBI - European
Bioinformatics Institute, Cambridge.

IntAct uses OJB asits persistence layer.

Network for Earthquake Engineering Simulation

The NEES program will provide an unprecedented infrastructure for research and education, consisting of networked and
geographically distributed resources for experimentation, computation, model-based simulation, data management, and
communication.

OJB is used as the O/R mapping layer.

The OJB.NET project

OJB.NET is an object-to-relational persistence tool for the .NET platform. It enables applications to transparently store and
retrieve .NET objects using relational databases.

OJB.NET isaport ojb Apache OJB to the .NET platform

The OpenEMed project

OpenEMed is a set of distributed heathcare information service components built around the OMG distributed object
specifications and the HL 7 (and other) data standards and is written in Java for platform portability.

OpenEMed uses ODMG asiits persistence API. OJB is used as ODMG compliant O/R tool.

1.6.1.2. user testimonials

Page 4

error:#ext:ojb/archives/apache/user
error:#ext:ojb/archives/apache/dev
error:#ext:ojb/archives/mail-archive/user
error:#ext:jetspeed-2
error:#ext:tammi
error:#ext:ojbc
error:#ext:intact
error:#ext:nees
error:#ext:ojb-net
error:#ext:openemed

OJB Documentation

"We're using OJB in two production applications at the Northwest Alliance for Computational Science and Engineering
(NACSE). One is a data mining toolset, and the other is a massive National Science Foundation project that involves huge
amounts of data, and about 20 or 25 universities and research groups like mine.

In fact, 1've begun making OJB sort of a de-facto standard for NACSE java/database development. I've thrown out EJB's for
the most part and I've tried JDO from Castor, but I'm sticking with OJB. Maybe well reconsider JDO when the OJB
implementation is more complete.”

"We are planning a November 2003 production deployment with OJB and WE LOVE IT!! We have been in development on a
very data-centric application in the power industry for about 5 months now and OJB has undoubtedly saved us countless hours
of development time. We have received benefitsin the following areas:

-> Easily adapts to any data model that we've thrown at it. No problems mapping tables with compound keys, tables mapping
polymorphic relationships, identity columns, etc.

-> Seemlesly switches between target DB platforms. We develop and unit test on our local workstations with HSQLDB and
PostgreSQL, and deploy to DB2 using the Type 4 JDBC driver from IBM. Works grezat!

-> Makes querying a breeze with the PersistenceBroker AP

Overall we have found OJB to be very stable (and we've really tested it out quite a bit). The only issues we've got outstanding
at the moment is support for connections to multiple databases, but I've noticed in CV S that the OJB guys are already fixing
thisfor OJB 0.9.9."

"We've been using it in "production” for along time now, from about version 0.9.4, | believe. It has been very robust. We don't
use al of its features. We've only see to failures of our persistent store in about 9 months, and I'm not sure they were due to
OJB."

"S0 yes, we have made a quite useful mediumsized production website based on OJB (with JBoss, Jakarta Jetspeed, Jakarte
Turbine and Jakarta Jelly, three Tomcats, OpenSymhony OSCache and for the database MSSQL server, al running on
Win2000.) It is attracting between 600 and 9000 (peak) users a day, and runs smoothly for extended periods of time. And no, |
can not actually show you the wonders of the editorial interface of the content management system, because it is hidden behind
afirewall.

| feel OJB is quite useful in production, but you certainly have to know what you are doing and what you are trying to achieve
with it. And there have been some tricky aspects, but these could be solved by simple workarounds and small hacks.

The main thing about OJB is that AFAIK it has an overall clean design, and it far beats making your own database abstraction
layer and object/relational mapper. We certainly do not use all of it, only the Persistence Broker parts, so there was less to
learn. We love the virtual proxy and collection proxy concepts, the criteria objects for building queries, and the nice little
hidden features that you find when you start to learn the system."

"My Company is building medium to large scale, mission critical applications (100 - 5.000 concurrent users) for our
customers. Our largest customer is KarstadtQuelle, Europes largest retail company. The next big system that will go in
production (in June) isthe new logistics system for the stationary logistics of Karstadt.

Of course we are using OJB in those Systems! We have several OJB based systems now in production for over a year. We
never had any OJB related problemsin production.

Most problems we faced during development were related to the learning curve developers had to face who were new to O/R

mapping.”

"I've also worked with OJB on high-load situations in J2EE environments. We're using JRun and/or Orion with OJB in a
clustered/distributed environment. This is a National Science Foundation project called the Network for Earthquake
Engineering Simulation (NEES).

The only major problem that we ran into was the cache. JCS just isn't good, and hasn't seemed to get much better over the last
year. We ended up plugging in Tangosol's Coherence Clustered Cache into the system. We can also do write-behinds, and
buffered data caching that is queued for transaction. That's important to us because we're dealing with very expensive scientific
datathat _can't get lost if adb goes down. Some of these Tsunami experiments can get pretty expensive.

Otherwise, we use mostly the PersistenceBroker, and a little of the ODMG. Performance seems better on PB, but less
functional. It's not really that much of a problem anyway, because we can cheaply and quickly add app-serversto the cluster.”

Page 5

0OJB Documentation

1.7. Links and further readings

1.7.1. Summary

This page contains interesting links and recommended readings that will help to learn more about OJB concepts, related
projects, didactic material, research reports etc.

1.7.2. Design

OJB is based on avariety of conceptual sources. In this section I'll give a summary about the most prominent influences.

Craig Larmans Applying UML and Patterns

The Siemens Guys " Patter n-Oriented Softwar e Architecture”
Scott Amblersclassic paperson O/R mapping

The" Crossing Chasms' paper from Brown et. al.

. The GOF Design Patterns

(sorted by relevance)

gswbhE

1. The most important input came from Applying UML and Patterns. It contains a chapter describing the design of a
PersistenceBroker based approach persistence layer. His presentation contains a lot of other good ideas (e.g. usage of Proxies,
caching etc.) | implemented alot of histhings 1:1. Thisbook isamust have for all OJB developers!

2. Larman does not cover the dynamic metadata concept. He mentiones that such a thing would be possible, but does not go
into details. As| had been afan of Metal_evel architectures for quite awhile I wanted to have such athing in OJB too !!!

'
MOP

mop-qif
| took the concepts from the book Pattern-Oriented Software Architecture. They have a chapter on the Reflection pattern (aka
Open Implementation, Meta-L evel Architecture).
They even provide an example how to apply this pattern to a persistence layer.
There is another Architectural pattern from this book that | am using: The Microkernel pattern.
My ideawas to have akernel (the PersistenceBroker) that does all the hard work (O/R mapping, JDBC access, €tc.)
High Level object transaction frameworks like a ODMG or JDO implementations are clients to the PersistenceBroker kernel in
this concept!

3. | read Scott Amblers papers before starting OJB. Sure! There are several things in OJB that are from his classic The design
of arobust persistence layer and from his Mapping Objects To Relational Databases. Most prominent: The Per sistenceBroker
concept.

| incorporated the Query API from the OpenSource project COBRA that applies Amblers PersistentCriteria concept.

Reading Amblerspaper on thesetopicsisa must.

But IMO these are the only aspects of Amblers presentation that map directly to OJB. Here are the concepts that differ:

Amblers concept relies on a persistent base class.

caching is not covered by his design

his concept of OID does not fit for legacy databases with compound PKs.

The OJB proxy concept is quite different (Ambler has proxy functionality in his PersistentObject base class.)
OJB does not use Insert- and UpdateCriteria

OJB uses a different mapping approach (A full metadata layer)

Page 6

http://www.craiglarman.com/book_applying_2nd/Applying_2nd.htm
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://hillside.net/patterns/books/Siemens/book.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://www.ambysoft.com/
http://www.ambysoft.com/persistenceLayer.html
http://www.ambysoft.com/persistenceLayer.html
http://www.ambysoft.com/mappingObjects.html
http://www.kimble.easynet.co.uk/cobra/index.htm

OJB Documentation

4. For several detail questions (like mapping inheritance hierarchies) | consulted crossing chasms. This is also a very good
source for all O/R implementors.

5. For al the "small things' I'm using the common GOF patterns like Factory, Observer, Singleton, Proxy, Adaptor, State,
Command, etc.

Here is athesis describing concepts very similar to OJB.
As | read this paper | saw alot of thing inspired by OJB. It's giving a nice introduction into the PersistenceBroker pattern and
related topics.

The PARC software design area pioneering in Metalevel computation, aspect oriented programming etc.

1.7.3. Further readings on O/R mapping

ObjectArchitects O/R pattern page

JavaSkyL ine page on database integration

Barry and Associates page on O/R mapping

Portland Pattern Repository page on O/R

Martin Fowlers book "Pattern of Enterprise Application Architecture" covers many O/R patterns that can be found in OJB.
Here you will find an online catalog of these patterns.

1.7.4. Patterns

« TheHillside Pattern page
e The Portland Pattern Repository

1.7.5. OJB tutorials

The famous Beer4All Struts/OJB tutorial by Chuck Cavaness

A presentation on OJB held at the Atlanta Java Users Group by Chuck Cavaness
An extensive tutorial on OJB by John Carnell

Roberto Ghizzioli's tutorial on Struts, OJB. and nested tags

An introductory tutoria on the O'Reilly site.

1.7.6. Books covering OJB

« The O'Reilly book on Struts programming by Chuck Cavaness has a whole chapter about how to build an applications
model layers based on OJB. A must reading for everyone intending to use Struts and OJB. All source code from the book
can be found here: Struts Programming sources.

« There'sadso aWROX book on Struts + OJB All source code from the book can be found here; Professional Struts and OJB
SOurces.

« Enterprise Java Development on a Budget

2. Download
3. Development

3.1. Coding Standards

3.1.1. Coding Standards

This document describes a list of coding conventions that are required for code submissions to the project. By default, the
coding conventions for most Open Source Projects should follow the existing coding conventions in the code that you are
working on. For example, if the bracket is on the same line as the if statement, then you should write all your code to have that
convention.

Page 7

http://members.aol.com/kgb1001001/Chasms.htm
http://hillside.net/patterns/books/DPBook/DPBook.html
http://www2.parc.com/csl/groups/sda/projects.shtml
http://www.objectarchitects.de/ObjectArchitects/orpatterns/
http://www.javaskyline.com/database.html
http://www.service-architecture.com/object-relational-mapping/articles/
http://c2.com/cgi/wiki?ObjectRelationalMapping
http://www.martinfowler.com/eaaCatalog/
http://www.martinfowler.com/eaaCatalog/
http://hillside.net/patterns/
http://c2.com/cgi/wiki?CategoryPattern
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/struts-ojb.zip?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/cavaness-ajug-slides.pdf?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/ojb-dataccess.pdf?rev=HEAD
http://www.robertoghizzioli.it/jcomm/jcomm_tutorial.html
http://www.onjava.com/pub/a/onjava/2003/01/08/ojb.html
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://examples.oreilly.com/jakarta/
http://www.amazon.com/exec/obidos/tg/detail/-/1861007817/qid=1054655953/sr=8-1/ref=sr_8_1/103-9325116-6675068?v=glance&s=books&n=507846
http://web.wrox.com/download/code/professional/7817.zip
http://web.wrox.com/download/code/professional/7817.zip
http://www.amazon.com/exec/obidos/ASIN/1590591259/qid%3D1082279566/sr%3D11-1/ref%3Dsr%5F11%5F1/103-0814434-1236616

0OJB Documentation

If you commit code that does not follow these conventions, you areresponsible for also fixing your own code.

Below is a list of coding conventions that are specific to Turbine, everything else not specificially mentioned here should
follow the official Sun Java Coding Conventions.

1. Brackets should begin and end on a new line and should exist even for one line statements. Examples:

if (foo)

// code here

try
/1 code here
iatch (Exception bar)
/] code here
%inally

// code here

while (true)

// code here

}

2. Though it's considered okay to include spaces inside parens, the preference is to not include them. Both of the following are
okay:

if (foo)
or

if (foo)

3. 4 space indent. NO tabs. Period. We understand that many devel opers like to use tabs, but the fact of the matter is that in a
distributed development environment where diffs are sent to the mailing lists by both developers and the version control
system (which sends commit log messages), the use tabs makes it impossible to preserve legibility.

In Emacs-speak, this translates to the following command:
(setqg-default tab-wi dth 4 indent-tabs-nmode nil)

4. Unix linefeeds for al .java source code files. Other platform specific files should have the platform specific linefeeds.

5. JavaDoc MUST exist on all methods. If your code modifications use an existing class'method/variable which lacks
JavaDaoc, it isrequired that you add it. Thiswill improve the project as awhole.

6. The Jakarta/Turbine License MUST be placed at the top of each and every file.

7. If you contribute to a file (code or documentation), add yourself to the authors list at the top of the file. For java files the
preferred Javadoc format is:

@ut hor John Doe</ a>

8. All javafiles should have a @version tag like the one below.

Page 8

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

OJB Documentation

@ersion $ld: code-standards.xm ,v 1.1 2004/06/20 09:12:35 tondz Exp $
9. Import statements must be fully qualified for clarity.

i mport java.util.Arrayli st;
i mport java.util.Hashtabl e;

i mport org.apache. f 0o. Bar;
i mport org.apache. bar. Foo;

And not

i mport java.util.*;
i mport org. apache. f 0o. *;
i mport org.apache. bar. *;

X/Emacs users might appreciate thisin their .emacsfile.

(defun apache-j akarta-node ()
"The Java node specialization for Apache Jakarta projects."
(if (not (assoc "apache-jakarta" c-style-alist))
;; Define the Apache Jakarta cc-node style.
(c-add-styl e "apache-jakarta" '("java" (indent-tabs-node . nil))))

(c-set-style "apache-jakarta")
(c-set-offset 'substatenent-open 0 nil)
(setq node-nane "Apache Jakarta")
;5 Turn on syntax highlighting when X is running.
(if (boundp 'w ndow system
(progn (setq font-Iock-support-node 'l azy-I| ock-node)
(font-1ock-node t))))
;; Activate Jakarta node
(if (fboundp 'jde-node)
(add- hook 'j de- nbde- hook 'apache-j akart a- node)
(add- hook 'java- node- hook 'apache-j akart a- node))

Thanks for your cooperation.
4. Documentation
4.1. Documentation

4.1.1. Introduction
This section contains all documentation about OJB (except the wiki doc).

If you're new to OJB, we recommend that you start with reading the Getting Started section and the FAQ.

There are tools for building the metadata mapping files used by OJB. Information about them can be found here.

o Tutorias
Tutorials for the API's supported by OJB.
« Reference Guides
OJB reference guides.
e« Howto's
Howtao's provided by OJB users and committers.

Page 9

error:#ext:wiki-page
error:#site:getting-started
error:#site:faq
error:#site:large-metadata
error:#site:tutorials/summary
error:#site:guides/summary
error:#site:howto/summary

0OJB Documentation

e Testing
Info about OJB's quality assurance and test writing.

4.2. Frequently Asked Questions

4.2.1. Questions

1. General
Why OJB? Why do we need another O/R mapping tool ?
How is OJB related to ODMG and JDO?
Wheat are the OJB design principals?
Where can | |earn more about Object/Relational mapping in general ?
How OJB performance compares to native JDBC programming?
How OJB performance compares to other O/R mapping tools?
|s OJB ready for production environments?
2. Getting Started
Help! I'm having problems installing and using OJB!
Help! | still have serious problems installing OJB!
OJB does not start?
Does OJB support my RDBMS?
What are the OJB internal tables for?
What does the exception Could not borrow connection from pool mean?
Any tools help to generate the metadata files?
3. OJB api's
» What are the differences between the PersistenceBroker APl and the ODMG API? Which one should | usein my
applications?
e | don'tlike OQL, can | use the PersistenceBroker Queries within ODMG?
« TheOJB JDO implementation is not finished, how can | start using OJB?
4. Howto
How to use OJB with my RDBMS?
What are the best settings for maximal performance?
How to page and sort?
What about performance and memory usage if thousands of objects matching a query are returned as a Collection?
When isit helpful to use Proxy Classes?
How can | convert data between RDBMS and OJB?
How can | trace and/or profile SQL statements executed by OJB?
How does OJB manage foreign keys?
How does OJB manage 'null’ for primitive primary key?
How to lookup object by primary key?
Difference between getlteratorByQuery() and getCollectionByQuery()?
How can Collections of primitive typed elements be mapped?
How could class 'myClass represent a collection of 'myClass objects
How to lookup Per si st enceBr oker instances?
How to access ODMG?
Needed to put user/password of database connection in repository file?
Many different database user - How do they login?
How do | use multiple databases within OJB?
How does OJB handle connection pooling?
Can | directly obtainaj ava. sal . Connect i on within OJB?
Isit possible to perform my own sgl-queriesin OJB?
Start OJB without arepository file?
Connect to database at runtime?

Page 10

error:#site:testing/summary

OJB Documentation

Add new persistent objects metadata (cl ass- descri pt or) at runtime?

Global metadata changes at runtime?

Per thread metadata changes at runtime?

Isit possible to use OJB within EJB's?

Can OJB handle ternary (or higher) associations?

How to map alist of Strings

How to set up Optimistic L ocking

How to use OJB in acluster

How to work with the ObjectCacheEmptylmpl

JDO - Why must my persisten classimplement | avax. | do. spi . Per si st enceCapabl e?

4.2.2. Answers
4.2.2.1.1. General

1.1. Why OJB? Why do we need another O/R mapping tool?

here are some outstanding OJB features:

It'sfully ODMG 3.0 compliant

It will have afull IDO implementation

It's higly scalable (L oadbalanced Multiserver scenario)

It provides multiple APIs:

» Thefull fledged ODMG-API,

* TheJDO API (planned)

» and the PersistenceBroker API. This API provides a O/R persistence kernel which can be used to build higher level
APIs (like the ODMG and JDO Implementations)

« It'sableto handle multiple RDBM S simultaneoudly.

« ithasasdlick Metalevel Architecture: By changing the MetaData at runtime you can change the O/R mapping behaviour.
(E.G. turning on/off usage of Proxies.)

« It hasasimple CacheMechanismsthat isfully garbage collectable by usage of weak references.

« It hasasimple and clean pattern based design.

« It usesaconfigurable plugin concept. This allows to replace components (e.g. the ObjectCache) by user defined
Replacements.

« It hasamodular architecture (you can quite easily reuse some componentsin your own applicationsif you don't want to
use the whole thing:

The PersistenceBroker (e.g. to build your own PersistenceM anager)

The Query Interface as an abstract query syntax

The OQL Parser

The MetaData Layer

The JDBC Accesslayer

« It hasavery sharp focus: It's concerned with O/R mapping and nothing else.

Before making OJB an OpenSource project | had alook around at the emerging OpenSource O/R scene and was asking myself
if thereisreally aneed for yet another O/R tool. | came to the conclusion that there was a need for OJB because:

There was no ODMG/JDO compliant opensource tool available

There was no scalable opensource O/R tool available

there was no tool available with the idea of a PersistenceBroker Kernel that could be easiliy extended

The tools avail able had no dynamic MetaData architectures.

The tools available were not as clearly designed as | hoped, thus extending one of them would have been very difficult.

1.2. How isOJB related to ODMG and JDO?

Page 11

0OJB Documentation

ODMG is a standard API for Object Persistence specified by the ODMG consortium (www.odmg.org). JDO is Sun's API
specification for Object Persistence. ODMG may well be regarded as a Precursor to JDO. In fact JDO incorporates many ideas
from ODMG and several people who have been involved in the ODMG spec are now in the JDO team.

| assume JDO will have tremendous influence on OODBMS-, RDBMS-, J2EE-server and O/R-tool-vendors to provide
compliant products.

OJB wantsto provide first class support for JDO and ODMG APIs.

OJB currently contains of four main layers, each with its own API:

1. A low-level PersistenceBroker API which serves asthe OJB persistence kernel. The PersistenceBroker also provides a
scalable multi-server architecture that allows to used it in heavy-duty app-server scenarios.
This API can aso be used directly by applications that don't need full fledged object level transactions (see PB tutorial for
details).

2. An Object Transaction Manager (OTM) layer that contains all features that JDO and ODMG have in common as Object
level transactions, lock-management, instance lifecyle etc. (See OTM tutorial for details.) The OTM iswork in progress.

3. A full featured ODMG 3.0 compliant API. (See ODMG tutorial for an introduction.)
Currently this APl isimplemented on top the PersistenceBroker. Once the OTM layer isfinished ODMG will be
implemented on top of OTM.

4, A JDO compliant API. Thisiswork in progress. (See JDO tutorial for an introduction.)
Currently this APl isimplemented on top the PersistenceBroker. Once the OTM layer isfinished JDO will be implemented
on top of OTM.

The following graphics shows the layering of these APIs. Please note that the layers coloured in yellow are not yet
implemented.

OJB Layer

1.3. What arethe OJB design principals?

OJB has a"pattern driven” design. Please refer to this document for more details

1.4. Wherecan | learn more about Object/Relational mapping in general?

\We have alink list pointing to further readings.

1.5. How OJB performance compar esto native JDBC programming?

See page Performance.

1.6. How OJB performance comparesto other O/R mapping tools?

See page Performance.

1.7.1sOJB ready for production environments?

Depends on your production environment. If you want to program an aeroplane autopilot system you should not use Java at all.
(according to the official disclaimer).

But | assume we are talking about enterprise business applications, aren't we? And for such applicationsit's a clear yes. OJB is
used in production application since version 0.5. We have about 6.000 downloads each month (and growing) and a large user
base using it in awide spectrum of production scenarios.

We provide a regression test suite for Quality Assurance. Y ou can use this testsuite to check if OJB works smoothly in your
target environment. (see supported platforms documentation)

We aso provide a performance testsuite that compares OJB performance against native JDBC. This test will give you an
impression of the performance impact OJB will have in your target environment. (see Performance testsuite documentation)
OJB is also the persistence layer of choice in several books on programming J2EE based enterprise business systems. (see our

Page 12

error:#site:pb-tutorial
error:#site:otm-tutorial
error:#site:odmg-tutorial
error:#site:jdo-tutorial
error:#site:links/design
error:#site:links/more-or
error:#site:performance
error:#site:performance
error:#site:platform
error:#site:performance

OJB Documentation

links and references section)
Reference projects and user testimonials are listed here.

4.2.2.2. 2. Getting Started

2.1. Help! I'm having problemsinstalling and using OJB!

Please read the Getting Started document. OJB is a powerful and complex system - installing and configuring OJB is not a
trivial task. Be sureto follow all the steps mentioned in that document - don't skip any steps when first installing OJB on your
systems.

If you are having problems running OJB against your target database, read the respective platform documentation. Before you
try to deploy OJB to your environment, read the deployment guide.

2.2. Help! | still have serious problemsinstalling OJB!

The following answer is quoted from the OJB user-list. It is from areply to a user who had serious problems getting started
with OJB.

| would say it was stupid not to understand OJB. How can you know what another programmer wrote. |'ve been a Java
programmer for quite some time and | could show you stuff | wrote that | know you wouldn't understand. I'll just break it down
the best | can on what, where and why.

OJB is a data persistence layer for Java. I'll just use an example of how | use it. | have an RDMS. | would like to save Java
object states to this database and | would like to be able to search this information as well. If you serialize objects it's hard to
search and if you use SQL it won't work with any different database. Plus it's a mess having to work with all that SQL in your
code. And by using SQL you don't get to work with just Java objects. But, with OJB your separated from having to work
outside the object world and unlike serialization you can preform SQL like searches on your data. Also, there's things like
caching and connection pooling in OJB that help with performance. After setting up OJB you will use either PB-API or
ODMG or JDO to access your information in a object centric manner. PB API is a non-standard O/R mapping APl with many
features and great flexibility. All top-level API's like ODMG or JDO build on top of the PB-api. ODMG is a standard for the
api for accessing your data. That means you can use any ODMG compliant api if you don't want to use OJB. The JDO part is
like ODMG except it's the SUN JDO standard. | use ODMG because the JDO interface is not ready yet.

OJB is easy to use. I'll just break it down into two sides. There's the side your writing your code for your application and
there's the side that you configure to make OJB connect to your database. Starting with your application side, all that is needed
is to use the interface you wish. | use ODMG because JDO is not complete yet. Here's a link to the ODMG part with some
code for examples.

That's all you need on the application side. Next there's the configuration side. This is the one your fighting with. Here you
need to setup the core tables for OJB and you will define the classes you wish to store in your database.

First thing to do isto build the cvs's with the default database HSQL, because you know it will work. If you get past this point
you should have a working OJB compiled. Now if your using JDK 1.4 you will need to set in build.properties
JDBC=+JDBC30 and do a ant preprocess first. Next you will do a ant junit and this will build OJB and test everything for
you. If you get a build successful then your in business. Then you will want to run ant jar to create the OJB jar to put in your
/lib. You will need a couple other jars in you /lib directory to make it al work. See this page for those.
http://jakarta.apache.org/ojb/depl oyment.html

Next you will need some xml and configuration files in your class path for OJB. You will find those files under
{$0OJIB_base dir}/target/test/ojb. All the repository.xml's and OJB.properties for sure. With al these files in place with your
application you should be ready to use OJB and start writing your application.

Finally you will want to setup your connection to your database and define your classes you will be storing in your database. In
the repository.xmil file you can configure your JDBC parameters so OJB can connect to your database. Y ou will also need your
JDBC jar somewhere in your class path. Then you will define your classes in the repository _user.xml file. Look here for

Page 13

error:#site:links
error:#site:references
error:#site:getting-started
error:#site:platform
error:#site:deployment
error:#site:odmg-tutorial

0OJB Documentation

examples. http://jakarta.apache.org/ojb/tutorial1.ntml Note you will want to comment out the junit part in repository.xml
becauseit's just for testing.

The final thing to do isto make sure the OJB core tables are in your database. Look on this page for the core tables. These core
tables are used by OJB to store internal data while it's running. It needs these. Then there's the tables you define. The ones you
mapped in the repository _user.xml file.

Sorry if any of thisis off. OJB is growing so fast that it's hard to keep up with all changes. The order | gave the stepsin is just
how | would think it's understood better. Y ou can go in any order you want. The steps I've shown are mostly for deployment.
Hope this helps you understand OJB allittle better. I'm not sureif thisis what your wanting or not.

2.3. OJB doesnot start?

If you carefully attended the installing hints there may be something wrong with your metadata mapping defined in the
repository file or one the included sub files.

« Areyouincluded al configuration filesin classpath?
e On update to anew release, make sure you replaced all configuration files
« Check your metadata mapping - typos,... ?

If something going wrong while OJB read the metadata files you can enable debug log level for
or g. apache. oj b. br oker . net adat a. Reposi t or yXm Handl er and
or g. apache. oj b. br oker . net adat a. Connecti onDescri pt or Xm Handl er to get more detailed information.

If OJB default logging was used, change entries for these classes in OJB.properties file (this may change in future).

2.4. Does OJB support my RDBM S?
please refer to this document.

2.5. What arethe OJB internal tablesfor?
Please refer to this document.

2.6. What does the exception Could not borrow connection from pool mean?

There can be severa reasons

2.7. Any tools help to generate the metadata files?

Please refer to this document.

4.2.2.3. 3. OJB api's

3.1. What ar e the differences between the PersistenceBroker APl and the ODM G API? Which one should | usein my applications?

The PersistenceBroker (PB) provides aminimal API for transparent persistence:

O/R mapping

Retrieval of objects with asimple query interface from RDBMS
storing (insert, update) of objectsto RDBMS

deleting of objectsfrom RDBMS

Thisisall you need for simple applications as in tutorial 1.

Page 14

error:#site:platform
error:#ext:repository.xml
error:#ext:ojb.properties
error:#site:platform
error:#site:platform
error:#site:large-metadata

OJB Documentation

The OJB ODMG implementation uses the PB as its persistence kernel. But it provides much more functionality to the
application developer. ODMG isafull fledged API for Object Persistence, including:

« OQL Query interface

« real Object Transactions

« A Locking Mechanism for management of concurrent threads (apps) accessing the same objects
« predefined persistent capable Collections and Hashtables

Some examples explaining the implications of these functional differences:

1. Say you use the PB to query an object O that has a collection attribute col with five elements a,b,c,d,e. Next you delete
Objectsd and e from col and store O again with PersistenceBroker.store(O);

PB will store the remaining objects a,b,c. But it will not deleted and e ! If you then requery object O it will again contain
ab,cde!ll

The PB keeps no transactional state of the persistent Objects, thusit does not know that d and e have to be deleted. (asa
side note: deletion of d and e could aso be an error, as there might be references to them from other objects!!!)

Using ODMG for the above scenario will eliminate all trouble: Objects are registered to a transaction so that on commit of
the transaction it knows that d and e do not longer belong to the collection. the ODMG collection will not delete the objects
d and e but only the REFERENCES from the collection to those objects!

2. Say you have two threads (applications) that try to access and modify the same object O. The PB has no means to check
whether objects are used by concurrent threads. Thusit has no locking facilities. Y ou can get all kind of trouble by this
situation. The ODM G implementation has a L ockmanager that is capable of synchronizing concurrent threads. Y ou can
even use four transaction isolation levels:
read-uncommitted, read-committed, repeatable-read, serializable.

In my eyes the PB is a persistence kernel that can be used to build high-level PersistenceManagers like an ODMG or JDO
implementation. It can also be used to write simple applications, but you have to do all management things (locking, tracking
obj ects state, object transactions) on your own.

3.2.1 don't like OQL, can | usethe PersistenceBroker Querieswithin ODMG?
Y es you can! The ODMG implementation relies on PB Queriesinternally! Several users (including myself) are doing this.

If you have alook at the simple example below you will see how OJB Query objects can be used withing ODMG transactions.

The most important thing is to lock all objects returned by a query to the current transaction before starting manipulating these
objects.

Further on do not commit or close the obtained PB-instance, this will be done by the ODMG transaction ont x. commi t ()

/ tx.rollback().

Transaction tx = odng. newlransaction();
t x. begi n();

/] cast to get intern used PB instance
Per si st enceBr oker broker = ((HasBroker) tx).getBroker();

/1 build query
QueryByCriteria query = ...
/1 perform PB-query

Col [ection result = broker.getCollectionByQuery(query);
/| use result

tx.commt();

3.3. The OJB JDO implementation is not finished, how can | start using OJB?
| recommend to not use JDO now, but to use the existing ODMG api for the time being.

Page 15

0OJB Documentation

Migrating to JDO later will be smooth if you follow the following steps. | recommend to first divide your model layer into
Activity- (or Process-) classes and Entity classes.

Entity classes represent classes that must be made persistent at some point in time, say a"Customer” or a"Order" object. These
persistent classes and the repsective O/R mapping in repository.xml will remain unchanged.

Activities are classes that perform business tasks and work upon entities, e.g. "edit a Customer entry”, "enter a new Order"...
They implement (parts of) use cases.

Activities are driving transactions against the persistent storage.

| recommend to have a Transaction interface that your Activities can use. This Transaction interface can be implemented by
ODMG or by JDO Transactions (which are quite similar). The implementation should be made configurable to allow to switch
from ODMG to JDO later.

The most obvious difference between ODMG and JDO are the query languages. ODMG uses OQL, JDO define JDOQL. As
an OO developer you won't like both of them. | recommend to use the ojb Query objects that alow an abstract syntax
representation of queries. It is possible to use these queries within ODMG transactions and it will also be possible to use them
within JDO Transactions. (thisis contained in the FAQ too).

Using your own Transaction interface in conjunction with the OJB query api will provide a simple but powerful abstraction of
the underlying persistence layer.

We are using this concept to provide an abstract layer above OJB-ODMG, TopLink and LDAP servers in my company.
Making it work with OJB-JDO will be easy!

4.2.2.4. 4. Howto

4.1. How to use OJB with my RDBM S?

please refer to this document.

4.2. What arethe best settings for maximal performance?

See performance section.

4.3. How to page and sort?
Sorting can be configured by or g. apache. oj b. br oker. query. Criteri a:: orderBy(col um_nane).

There is no paging support in OJB. OJB is concerned with Object/Relational mapping and not with application specific
presentation details like presenting a scrollable page of items.

OJB returns query results as Collections or Iterators.

You can easly implement your partial display of result data by using an |Iterator as returned by
oj b. br oker . Persi st enceBroker::getlteratorByQuery(...).

4.4, What about performance and memory usage if thousands of objects matching a query arereturned asa Collection?

Y ou can do two things to enhance performance if you have to process queries that produce thousands of result objects:

1. Use getlteratorByQuery() rather than getCollectionByQuery(). The returned Iterator is lazy and does not materialize
Objects in advance. Objects are only materialized if you call the Iterators next() method. Thus you have total control about
when and how many Objects get materialized! Please see here for proper handling.

2. You can define Proxy Objects as placeholder for your persistent business objects. Proxys are lighweight objects that
contain only primary key information. Thus their materialization is not as expensive as afull object materialization. In your

Page 16

error:#site:platform
error:#site:performance

OJB Documentation

case thiswould result in a collection containing 1000 lighweight proxies. Materialization of the full objects does only occur
if the objects are accessed directly. Thus you can build similar lazy paging as with the Iterator. Y ou will find examplesin
the OJB test suite (src-distribution only: [db-ojb]/src/test). More info about Proxy object here.

The Perfomance of 1. will be better than 2. This approach will also work for VERY large resultsets, as there are no references
to result objects that would prevent their garbage collectability.

4.5. When isit helpful to use Proxy Classes?

Proxy classes can be used for "lazy loading" aka "lazy materialization”. Using Proxy classes can help you in reducing
unneccessary db lookups. Example:

Say you load a ProductGroup object from the db which contains a collection of 15 Article objects.

Without proxies all 15 Article objects are immediately loaded from the db, even if you are not interested in them but just want
to lookup the description-attribute of the ProductGroup object.

With a proxy class, the collection is filled with 15 proxy objects, that implement the same interface as the "real objects" but
contain only an OID and a void reference.

Once you access such a proxy object it loads its "real subject” by OID and del egates the method call to it.
have alook at section proxy usage of page basic technique.

4.6. How can | convert data between RDBM S and OJB?

For Example | have a DB column of type INTEGER but a class atribute of type boolean. How can | provide an automatic
mapping with OJB?

OJB provides a concept of ConversionStrategies that can be used for such conversion tasks. Have a look at the respective
document.

4.7. How can | trace and/or profile SQL statements executed by OJB?

OJB ships with out of the box support for P6Spy. P6Spy is a JDBC proxy. It delegates all JIDBC calls to the real JDBC driver
and traces all callsto alog file.

Inthefilebui | d. properti es you haveto set the switchuseP6Spy tot r ue in order to activate it:

The usSPGSpy switch deternmines if the tracing JDBC driver P6Spy

is used.

|f you enable this switch, you nust also edit the file

jakarta-oj b/src/test/org/apachel/ oj b/ spy. properties

to tell P6Spy which JDBC driver to use and where to wite the | og.
By default the HSQ.DB driver is used.
useP6Spy=t r ue

This setup uses P6Spy to trace and profile al executed SQL to afilet arget/test/ oj b/ spy. | og. It also measures the
time needed to execute each statement!

4.8. How does OJB manage foreign keys?
Automatically! you just define 1:1, 1:n or m:n associations in the repository_user.xml file. OJB does the rest!

Please refer to basic technigue and xml-metadata repository for details.

4.9. How does OJB manage 'null’ for primitive primary key?

Primitive values (int, long, ...) can't be nul | , so OJB interpret '0' as nul | for primitive PK/FK fields in persistent objects.

Page 17

error:#site:basic-technique/using-proxy
error:#site:basic-technique/using-proxy
error:#site:basic-technique
error:#site:jdbc-types
error:#site:jdbc-types
error:#site:basic-technique
error:#site:repository

0OJB Documentation

Thus primitive PK fields of persistent objects should never be represented by a'0' value in DB and never used as a sequence
key value.

Thisisonly true for primitive PK/FK fields (e.g. | nt eger (0) isalowed). All other fields have 'normal’ behavior.

4.10. How to lookup object by primary key?

Please see PB tutorial section.

4.11. Difference between getlterator ByQuery() and getCollectionByQuery()?

The first one returns an or g. apache. oj b. br oker. QJBI t er at or instance. The returned Iterator instance is lazy and
does not materialize Objects in advance. Objects are only materialized from the underlying query result set if you call the
Iterators next() method. If all objects materialized or the calling or g. apache. oj b. br oker . Per si st enceBr oker
instance was closed or transaction demarcations ends the Iterator instance release all used resources (e.g. used Statement and
ResultSet instances).

Method get Col | ecti onByQuer y() use an Iterator to materialize all objects first and then return the materialized objects
withinthej ava. uti | . Col | ecti on instance.

If method getlteratorByQuery() was used keep in mind that the used Iterator instance is only vaid as long as the used
or g. apache. oj b. br oker. Per si st enceBr oker instance ends transaction or be closed. So it is NOT possible to get an Iterator, close the PersistenceBroker and pass
the Iterator instance to a servlet or client. In that case useget Col | ecti onByQuery() .

4.12. How can Collections of primitive typed elements be mapped?

The first thing to ask is: How are these primitive typed elements (Strings are also treated as primitive types here) stored in the
database.

1) are they treated as ordinary domain objects and stored in a separate table?

2) are they serialized into a Varchar field?

3) are they stored as a comma separated varchar field?

4) is each element of the vector or array stored in a separate column? (this solution does only work for a fixed number of
elements!)

Follow these steps for solution 3):

a) smply define ordinary collection-descriptors as for every other collection of domain objects.

b) use the Object2ByteArrFieldConversion. See jdbc-types.html for details on conversion strategies.

C) use the StringV ector2V archarFieldConversion. See jdbc-types.html for details on conversion strategies.

d) provide afield-descriptor for each element.

4.13. How could class 'myClass represent a collection of 'myClass objects

OJB can handle such recursive associations without problems.

« add acollection attribute 'myClasses to the classmy G ass this collection will hold the associated ny Cl ass objects.
« you have to decide wether this assosciation is 1:n or m:n.
for 1:n you just need an additional foreignkey attribute in the MY _CLASS table. Of course you'll also need a matching
attribute in the classny d ass.
For am:n association you'll have to define aintermediary table to hold the mapping entries.
« defineacol | ection-descriptor taginthecl ass-descri ptor of nyC ass inrepository.xml. Follow the
stepsin basic technique on 1:n and m:n.

4.14. How to lookup PersistenceBroker instances?

Theor g. apache. oj b. br oker . Per si st enceBr oker Fact or y make several methods available:

Page 18

error:#site:sequence-manager
error:#site:sequence-manager
error:#site:pb-tutorial/find-by-pk
error:#site:basic-technique

OJB Documentation

publ i ¢ Persi stenceBroker createPersistenceBroker(PBKey key) throws PBFactoryException;

publ i ¢ Persi stenceBroker createPersistenceBroker(String jcdAlias, String user, String password)
t hr ows PBFact or yExcepti on;

publ i ¢ Persi stenceBroker defaultPersistenceBroker() throws PBFactoryExcepti on;

Method def aul t Persi st enceBroker() can be used if the attribute default-connection is set true in
jdbc-connection-descriptor. It's a convenience method, useful when only one database is used.

The standard way to lookup a broker instance isviaor g. apache. oj b. br oker . PBKey by specify jcdAlias (specified in
the repository file (or sub file)), user and passwd. If the user and password is already set in jdbc-connection-descriptor it is
possible to lookup the broker instance only be specify the jcdAliasin PBKey:

PBKey pbKey = new PBKey("myJcdAl i asNane");
Per si st enceBr oker broker = PersitenceBrokerFactory. createPersistenceBroker(pbKey);

See here too.

4.15. How to access ODM G?

Obtain a or g. odng. | npl enent ati on instance first, then create new or g. odng. Dat abase instance and open this
instance by setting the used jcd-alias name:

| mpl enent ati on odng = QJB. get | nstance();
Dat abase dat abase = odng. newbDat abase() ;
dat abase. open("j cdAl i asNane#user #passwor d", Dat abase. OPEN READ WRI TE) ;

The user and password separated by # hash only needed, when the user/passwd not specified in the connection metadata
(jdbc-connection-descriptor).
4.16. Needed to put user/password of database connection in repository file?

There is no need to put user/password in the repository file (more exact in the j dbc- connecti on-descri ptor). You
can pass thisinformation at runtime. See Many different database user - How do they login?.

Only if you want to use convenience Per si st enceBr oker lookup method of Per si st enceBr oker Fact ory, OJB
needs all database connection information in the configuration files. More details see repository file doc - section
|dbc-connection-descriptor def aul t - connect i on attribute

See |ookup PB api.
See |ookup ODMG api.

PBKey pbKey = new PBKey(j cdAlias, user, passwd);

Per si st enceBr oker broker = PersistenceBrokerFactory. creat ePersistenceBroker (pbKey);

[/ or using a conveni ence (when default-connection was set in jdbc-connection-descriptor)
Per si st enceBr oker broker = PersistenceBrokerFactory. def aul t Persi st enceBroker () ;

4.17. Many different database user - How do they login?

There are two ways to do that. Define for each user aj dbc- connecti on-descri pt or (unattractive way, because we
have to add each new user to repository file), or let OJB handle this for you.

For it define one j dbc- connecti on-descri ptor, now you can use the same j cdAl i as name with different
User / Passwor d. OJB copy thedefined j dbc- connecti on- descri pt or and replacetheuser nanme and passwor d
with the given User / Passwor d.

PersistenceBroker-api example:

PBKey user 1 = new PBKey(jcdAli as, usernanme, passwd);

Page 19

error:#site:repository/jdbc-connection-descriptor
error:#ext:repository_database.xml
error:#site:repository/jdbc-connection-descriptor
error:#site:repository
error:#site:repository

0OJB Documentation

Per si st enceBr oker broker =
Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (user _1);

ODMG-api example:

| npl enent ati on odng = QJB. getl nstance();
Dat abase db = odny. newDat abase() ;
db. open("j cdAl i as#user nane#passwd", Dat abase. OPEN_READ WRI TE) ;

Keep in mind, when the connect i on- pool element enables connection pooling, every user get its separate pool. See How
does OJB handle connection pooling?.

4.18. How do | use multiple databases within OJB?

Define for each database aj dbc- connecti on- descri pt or, use the different j cdAl i as names in the repositry file to
match the according database.

<j dbc- connecti on-descri pt or
jcd-alias="nmyFirstDb"

>
</j dbc- connect i on- descr i pt or >

<j dbc- connecti on-descri ptor
j cd-al i as="mySecondDb"

>
</] dbc- connect i on- descr i pt or >

OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee conform environment (or made work with an
JTA/JTS implementation).

4.19. How does OJB handle connection pooling?

Please have alook in section Connection Handling.

4.20. Can | directly obtain a java.sgl.Connection within OJB?

Please have alook in section Connection Handling.

4.21. Isit possible to perform my own sgl-queriesin OJB?

There are serveral waysin OJB to do that.
If you completely want to bypass the OJBquery-api see Can | directly obtain ajava.sgl.Connection within OJB?.
A more elegant way isto use a Quer yBy SQL object:

String sql =

"SELECT A. Artikel _Nr FROM Arti kel A, Kategorien PG

+ " WHERE A Kategorie_Nr = PG Kategorie_ Nr"

+ " AND PG Kategorie Nr = 2";

/1 get the QueryBySQ

Query g2 = QueryFactory. newQuery(Article.class, sql);

Iterator iter2 = broker.getlteratorByQuery(g2);
[l or
Col | ection col 2 = broker.get Col |l ecti onByQuery(qg2);

Page 20

error:#site:repository
error:#site:deployment/j2ee-server
error:#site:connection/connection-pooling
error:#site:connection/obtain-connection

OJB Documentation

4.22. Start OJB without a repository file?
See section M etadata Handling.

4.23. Connect to database at runtime?

See section M etadata Handling.

4.24. Add new persistent objects metadata (class-descriptor) at runtime?

See section M etadata Handling.

4.25. Global metadata changes at runtime?

Please see section M etadata Handling.

4.26. Per thread metadata changes at runtime?

Please see section M etadata Handling.

4.27. |sit possible to use OJB within EJB's?

Yes, see deployment instructions in the docs. Additional you can find some EJB example beans in package
org. apache. oj b. ej bunder [j akart a- oj b]/ src/ ej b.

4.28. Can OJB handleternary (or higher) associations?

Y es, that's possible. Here is an example. With aternary relationship there are three (or more) entities 'related' to each other. An
example would be Devel oper , Language and Pr oj ect .

Each entity is mapped to one table (DEVELOPER, LANGUAGE and PRQJ ECT). To represent the combinations of these entities
we need an additional bridge table (PROJECTRELATI ONSHI P)with three columns holding the foreign keys to the other
three tables (just like an m:n association is represented by an intermediary table with 2 columns).

To handle this table with OJB we have to define a class that is mapped on it. This Relationship class can then be used to
perform queries/updates as with any other persistent class. Here is the layout of this class:

public class ProjectRel ationship {
I nt eger devel operl d;
I nt eger | anguagel d;
I nt eger projectld;

Devel oper devel oper;
Language | anuage;
Proj ect project;

/[** setters and getters not shown for brevity**/

}
Here is the respective extract from the repository :

<cl ass-descri ptor
cl ass="Proj ect Rel ati onshi p"
t abl e=" PRQJECTRELATI ONSHI P"

<fi el d-descri pt or
nane="devel oper | d"
col um="DEVELOPER | D"
j dbc-t ype="1 NTEGER"

Page 21

error:#site:metadata/without-repository
error:#site:metadata/connect-at-runtime
error:#site:metadata/metadata-at-runtime
error:#site:metadata
error:#site:metadata
error:#site:deployment

0OJB Documentation

pri marykey="true"
/>
<fi el d-descri pt or
nanme="| anguagel d"
col umm="LANGUAGE | D"
j dbc-type="1| NTEGER'
pri marykey="true"
/>
<fi el d-descri pt or
nanme="proj ect | d"
col um="PRQJIECT_| D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
/>
<r ef erence- descri pt or
nane="devel oper"
cl ass-ref ="Devel oper™
>
<forei gnkey field-id-ref="devel operlid" />
</reference-descriptor>
<r ef erence- descri pt or
nane="1 anguage"
cl ass-ref ="Language"
>
<forei gnkey field-id-ref="1anguageld" />
</reference-descri ptor>
<r ef erence-descri pt or
nanme="proj ect"”
cl ass-ref="Project"
>
<forei gnkey field-ref="projectld" />
</reference-descri ptor>
</ cl ass-descri ptor>

Here is some sample code for storing arelationship :

Devel oper dev ; /] create or retrieve
Project proj ... ; Il create or retrieve
Language | ang ... ; Il create or retrieve

ProjectRel ati onship rel = new ProjectRel ati onshi p();
rel . set Devel oper (dev);
rel . set Language(| ang) ;
rel .setProject(proj);

br oker.store(r);
In the next code sample we are looking up all Projects that Developer "Bob" has donein "Java'.

Criteria criteria = new Criteria();

criteria.addEqual To("devel oper. nanme", " Bob");
cirteria.addEquat To("| anguage. nane", "Java");

Query g = new QueryByCriteria(ProjectRelationship.class, criteria, true);
Iterator iter = Broker.getlteratorByQuery(Qq);

/| now iterate over the collection and retrieve all projects:
whil e (iter.hasNext())
{

Proj ectRel ationship rel = (ProjectRelationship) iter.next();
Systemout.printlin(rel.getProject().toString());

Y ou could also have on the Project class-descriptor acol | ecti on-descri pt or that returns all relationships associated
with the Project. If it was call "projectRelationships’ the following would give you all projects that have a relationship with
"bob" and the language "java’.

Criteria criteria = new Criteria();

Page 22

OJB Documentation

criteria.addEqual To("projectRel ati onshi ps. devel oper. nane", "bob");
cirteria.addEquat To("proj ect Rel ati onshi ps. | anguage. nanme", "java");

Query g = new QueryByCriteria(Project.class, criteria, true);
Col | ection projects = Broker.getColl ectionByQuery(q);

Thisisthe layout of the Project class:

public class Project {
I nteger id;
String nane;
Col I ection projectRel ati onshi ps;

/** setters and getters not shown for brevity**/
Thisisthe class-descriptor of the Project class:

<cl ass-descri ptor
cl ass="Project"
t abl e=" PRQJECT"

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="I| NTEGER'
pri marykey="true"
/>
<fi el d-descri pt or
name="nane"
col um=" NAMVE"
/ j dbc-t ype=" VARCHAR"
>
<col | ecti on-descri pt or
nane="pr oj ect Rel ati onshi ps"
el ement - cl ass-ref ="Proj ect Rel ati onshi p"
>
<i nverse-foreignkey field-ref="projectld" />
</ col | ecti on-descri ptor>
</ cl ass-descri pt or>

4.29. How to map alist of Strings

Y ou can not map alist of Strings with a collection descriptor. A collection descriptor can only be used if the element classis a
persistent class too. But element-class-ref="java.lang.String" won't work, because it's no persistent entity class!

Follow these steps to provide a mapping for an attribute holding alist of Strings. Let's assume your persistent class has an
attributel i st OF St ri ngs holding alist of Strings:

protected Collection IistOFStrings;

The database table mapped to the persistent class has a colum LI ST_OF STRI NGS of type VARCHAR that is used to hold all
strings.

<fiel d-descriptor
nanme="1ist O Strings"
col um="LI ST_OF_STRI NGS"
j dbc-t ype=" VARCHAR'
conver si on=
;o.a.ojb.broker.accesslayer.conversions.StringVectorZVarcharFieIdCbnversion"
>

4.30. How to set up Optimistic L ocking

Optimistic locking use an additional column (Timestamp or Integer) which isincremented each time changes are committed to
the object, and is utilizied to determine whether an optimistic transaction should succeed or fail. Optimistic locking is fast,

Page 23

0OJB Documentation

because it checks data integrity only at update time.

1. Inyour table you need a dedicated column of type | NTEGER or TI MESTAMP. Say the column istyped as| NTEGER and
named VERSI ON_MAI NTAI NED_BY_QJB.
2. You then need a (possibly private) attribute in your java class corresponding to the column. Say the attribute is defined as:

private int versionMui ntai nedByQ b;
3. inrepository.xml you need a field-descriptor for this attribute. this field-descriptor must specify | ocki ng="t r ue"

4. The resulting field-descriptor will look as follows:

<fi el d-descri pt or
nane="ver si onMai nt ai nedByQ b"
col um="VERSI ON_MAI NTAI NED_BY_QJB"
j dbc-t ype="1 NTEGER"
' | ocki ng="true"
>

For further reference see also the repository documentation.

4.31. How touse OJB in a cluster

Q: I'm running a web site in a load-balanced/cluster environment. Multiple servlet engines (different VMS/HTTP sessions),
each running an OJB instance, against a single shared database. How should OJB be configured to get the concurrent servlet
engines synchronized properly?

transactional isolation and locking

If you are using the PersistenceBroker APl use optimistic locking (OL) to let OJB handle write conflicts. To use OL define a
TIMESTAMP or INTEGER column and the respective Java attribute for it. In the field-descriptor of this attribute set the
attribute locking="true".

If you are working with the ODMG API distributed pessemistic locking should be used, by setting the respective flag in
OJB.properties.

sequence numbers
Use a SequenceManager that is safe across multiple JVMs. The NextVa based SequenceManagers or any other
SequenceM anager based on database mechanisms will be fine.

caching
Y ou could use different caching implementations

1. Usethe EmptyCachelmpl to avoid any dirty reads. (But: The EmptyCache cannot handle cyclic structures on load!)
2. Usethe PerBrokerCache Implementation to avoid dirty reads.
3. Usethe OSCache cache implementation as distributed object cache.

There is also a complete howto document available that covers these topics.

4.32. How to work with the ObjectCacheEmptyl mpl

Q: | just tried to turn caching off by using ObjectCacheEmptylmpl setting in ObjectCacheClass, and it seems to continuously
loop through the SQL statement infinitely. The default works fine though.
Any ideas why this might be?

A: The Problem you seeisdueto circular referencesin your data. Say A references B and B has a backreference to A.

Now we load A from the DB. If autoretrieve="true" for the reference-descriptor defining the reference to B, OJB will also load
B. If autoretrieve="true" for the B-reference-descriptor describing the back-reference to A, OJB must retrieve A. And here is
the key point.

If we use the defaultcache A will be in the cache already, as it was loaded first. So OJB will simply lookup A from the cache.
No endless recursion!

But if we use the emptycache, A will not be cached. So OJB must load A from the DB. And then again B isretrieved, etc., etc.
There's you endless recursion.

Page 24

error:#site:repository/field-descriptor
error:#site:lock-manager
error:#site:sequence-manager
error:#site:object-cache
error:#site:clustering

OJB Documentation

In other words: A non-empty cache is needed to alow proper loading of circular references. (Other O/R tools like TopLink
work the same way).

If you still want to use the EmptyCachelmpl you should set autoretrieve="false" and load references explicitely by
broker.retrieveReference...).

4.33. JDO - Why must my persisten classimplement javax.jdo.spi.PersistenceCapable?

As specified by JDO all persistent classe must implement the interface | avax. j do. spi . Per si st enceCapabl e. If a
class does not implement this interface a JDO implementation does not know how to handleit.

On the other hand the JDO spec claims to provide transaparent persistence. That is no persistence class is required to
implement a specific interface or to be derived from a specia base class.

Sounds like a contradiction? It is! The JDO spec resolves this contradiction by stating that a JDO implemention is responsible
to add the methods required by j avax. j do. spi . Per si st enceCapabl e to the the user classes. This "injection" could
be achieved by Pre- or Post-processing. The strategy most implementations use is called "bytecode-enhancement”. This is a
postprocesing step that adds the required methods to the .class files of the persistent user classes.

The JDO Reference implementation also uses bytecode-enhancement. In order to enhance the Product class to implement the
| avax. j do. spi . Per si st enceCapabl e interface use the ant target "enhance-jdori" before launching the tutorials
application. Thisis documentated in the first section of tutorial4.html.

4.3. ObJectRelationalBridge - Getting Started

This document will guide you through the very first steps of setting up a project with OJB. To make this easier, OJB comes
with a blank project template called ojb-blank which you're encouraged to use. Y ou can download it here.

For the purpose of this guide, we'll be showing you how to setup the project for a simple application that handles products and
uses MySQL. Thisis continued later on in the next tutorial parts.

4.3.1. Acquiring ojb-blank

First off, OJB uses Ant to build, so please install it prior to using OJB. In addition, please make sure that the environment
variables ANT_HOME and JAVA HOVE are correctly set to the top-level folders of your Ant distribution and your JDK
Installation, respectively.

Next download the latest ojb-blank and OJB binary distributions. You can aso start with the source distribution rather than the
binary as the unit tests provide excellent sample code and you can build the ojb-blank project on your own with it.

The ojb-blank project contains al libraries necessary to get running. However, there may be additional libraries required when
you venture deeper into OJB's APIs. See herefor alist of additional libraries.

Most notably, you'll probably want to add the jdbc driver for you database unless you plan to use the embedded Hsgldb
database for which the ojb-blank project is pre-configured (including all necessary jars).

4.3.2. Contents of ojb-blank

Copy theoj b- bl ank. j ar fileto your project directory and unpack it via the command

j ar xvf oj b-bl ank.jar

This will unpack it into the oj b- bl ank directory under wherever you unpacked it from. You can move things out of that
directory into your project directory, or, more simply, rename the oj b- bl ank directory to be whatever you want your project
directory to be named.

After you unpacked the jar, you'll get the following directory layout:

\ 0j b- bl ank
.classpath
. proj ect

Page 25

error:#ext:ojb/binaries-version
error:#site:documentation/tutorials/summary
error:#ext:ant
error:#ext:ojb/binaries-version
error:#ext:ojb/source-version
error:#site:deployment/additional-jars
error:#ext:hsqldb
error:#ext:hsqldb

0OJB Documentation

bui | d. properti es
bui | d. xmn
\lib
\src
\j ava
\resour ces
\ schemn
\t est

Here's aquick rundown on what the individual directories and files are:

.classpath, .project

An Eclipse project for your convenience. You can simply import it into Eclipse via File -> Import... -> Existing
Project into Workspace.

build.xml, build.properties

The Ant build script and the build properties. These are described in more detail below.

lib

Contains the libraries necessary to compile and run your project. If you want to use a different database than
Hsqldb, then put the jars of your jdbc driver in here.

src/java

Put your java source code here.

src/resources

Contains the runtime configuration files for OJB. For more detail see below.

src/schema

Here you will find a schema containing tables that are required by certain components of OJB such as clustered
locking and OJB managed sequences. More information on these tables is available in the platform
documentation. The schema is in a database-independent format that can be used by Torque or commons-sd|
to create the database.

The ojb-blank project contains the runtime files of Torque 3.0.2, and provides a build target that can be invoked
on your schema (see below for details). Therefore, this directory also contains the build script of Torque, but
you won't need to invoke it directly.

src/java

Place your unit tests in here.

4.3.2.1. Sample project
For our sample project, we should rename the directory to something more fitting, like pr oduct manager .

Also, since were using MySQL, we put the MySQL jar of the jdbc driver, which is called something like
nmysql - connect or -j ava- [versi on] - st abl e-bi n.j ar,intothel i b subdirectory.

The only other thing missing is the source code, but since that's what the other tutorials are dealing with, we will silently
assumethat it is already present inthe sr ¢/ j ava subdirectory.
If you don't want to write the code yourself, you can use the code from one of the tutorials which you can download here.

Notethat if you do not intent to use JDO, then you should delete thefilesinthe oj b. apache. oj b. t ut ori al 5, otherwise you'll get compilation errors.

4.3.3. The build files

4.3.3.1. Configuration via build.properties

The next step is to adapt the build files, especialy the bui | d. properti es file to your environment. It basically contains
two sets of information, the database settings and the build configuration. While you shouldn't have to change the latter, the
database settings probably need to be adapted to suit your needs:

Page 26

error:#ext:eclipse
error:#site:platform
error:#site:platform
error:#ext:torque
error:#ext:jakarta/commons-sql
error:#ext:mysql/driver
error:#site:documentation/tutorials/summary
error:#ext:ojb/binaries-version

OJB Documentation

Property
jcdAlias

databaseName

databaseUser

databasePassword

dbmsName

jdbcRuntimeDriver

jdbcLevel

urlProtocol

urlSubprotocol

urlDbalias

torque.database

torque.database.createUrl

Purpose

The name of the connection. You should leave
the default value, which is def aul t .

This is the name of the database, per default
oj b_bl ank.

The user name for accessing the database
(default: sa). If you're using Torque to create the
database, then this user also requires sufficient
rights to create databases and tables.

Password for the user, per default empty.

The type of database, which is one of the
following:

Db2, Firebird, Hsqldb, Informix, MaxDB,
MsAccess, MsSQL, MySQL,Oracle (pre-9i
versions), Oracle9i, WLOracle9i (Oracle 9i or
above used from WebSphere), PostgreSQL,
Sapdb, Sybase (generic), SybaseASA,
SybaseASE.

Please note that this setting is case-sensitive.
Per default, Hsqldb is used, which is an
embedded database. All files required for this
database come with the ojb-blank project.

The fully-qualified classname of the jdbc driver.
For Hsqldb this is or g. hsql db. j dbcDri ver.

The jdbc level that the driver conforms to.
Please check the documentation of your jdbc
driver for this value, though most jdbc drivers
conform to version 2.0 at least.

For the Hsqldb jdbc driver this is 2.0.

The protocol of the database url (see below),
usually j dbc.

The sub-protocol of the database url which is
database- and driver-specific. For Hsqldb, you're
using hsql db.

This is the address that points the jdbc driver to
the database. For Hsqldb this is per default the
database name.

If you're using Torque to create the database,
then you have to set the database here (again).
Unfortunately, this value is different from the
dbnsNane which defines the database for OJB.
Currently, these values are defined:

axion, cloudscape, db2, db2400, hypersonic
(which is Hsqgldb), interbase (use for Firebird),
mssql, mysql, oracle, postgresql, sapdb, and
sybase.

Default value is hypersonic for use with
Hsqldb.

This specifies the url that Torque will use in
order to create the database. Depending on the
database, this may be the same as the normal

Page 27

error:#ext:hsqldb

access url (the default value), but for some
database this is different. Please check the
manual of your database for this url.

0OJB Documentation

If you know how the jdbc url for connecting to your database looks like, then you can derive the settings dat abaseNane,
dat abaseNane, dat abaseNane and dat abaseNane easily:

Assume thisurl isgiven as.
j dbc: nysql : / /1| ocal host : 3306/ nmyDat abase
then these properties are

Property
databaseName
urlProtocol
urlSubprotocol

urlDbalias

4.3.3.2. Building via build.xml

Value
nmyDat abase
j dbc
nysql
/11 ocal host/ nyDat abase

After setting up the build you're probably eager to actually build the project. Here's the actions that you can perform using the

Ant build filebui | d. xm :
Action (target in the build.xml file)
clean

compile

build

jar

xdoclet

setup-db

enhance-jdori

What it does
Cleans up all files from the previous build.

Compiles your java source files to
bui | d/ cl asses. Usually, you don't run this
target, but rather the next one which includes
the compilation step.

Compiles your java sources files (using the
compile action), and prepares the runtime
configuration files using the settings that you
specified in the bui | d. properti es file, most
notably the repository_database. xm
which will be located in the bui | d/ r esour ces
directory after the build.

After you run this action, your application is
ready to go (if the action ran successfully, of
course).

A convenience action that packs your
successfully build application into a jar.

Creates the runtime configuration files that
describe the repository, from javadoc comments
embedded in your java source files. Details on
how to this are given in the tutorials and in the
documentation of the XDoclet OJB module.

Creates the database and tables from a
database-independent schema using Torque.
You'll find more info on this schema in the
documentation of the XDoclet OJB module and
on the Torgue homepage.

This is a sample target that shows how a class

Page 28

error:#ext:repository_database.xml
error:#site:documentation/tutorials/summary
error:#site:xdoclet-module
error:#site:xdoclet-module
error:#ext:torque

OJB Documentation

meant to be persistent with JDO, is processed
by the JDO bytecode enhancer from the JDO
reference implementation. It uses the Product
class from the JDO tutorial (tutorial 5).

So, atypical build would be achieved with this Ant call:
ant build

If you want to create the database as well, and you have javadoc comments in your source code that describe the repository,
then you would call Ant thisway:

ant build setup-db

Thiswill perform in that order the actionsbui | d, xdocl et (invoked automatically from the next action) and set up- db.
Of course, you do not need to use Torque to setup your database, but it is a convenient way to do so.

4.3.3.3. Sample project
First we change the database properties to these values (assuming that Torque will be used to setup the database):

Property Value
jcdAlias We leave the default value of def aul t .
databaseName Since the application manages products, we call

the database pr oduct manager .

databaseUser This depends on your setup. For the purposes of
this guide, let's call him st eve.

databasePassword Again depending on your setup. How about
secret (you know that you should not use this
password in reality ?!).

dbmsName My SQL
jdbcRuntimeDriver Its called com nysql . j dbc. Dri ver.
jdbcLevel For the newer Mysql drivers this is 3.0.

urlProtocol

urlSubprotocol

The default of j dbc will do.

For MySQL, we're using mysql .

urlDbalias Assuming that the database runs locally on the
default port, we have
/11 ocal host/ ${ dat abaseNane}.

torque.database We want to use Torque, so we put nysql here.

torque.database.createUrl MySQL allows to create a database via jdbc.

The url that we should use to do so, is the

normal url used to access the database minus

the database name. So the value here is:

${url Protocol }: ${url SubProtocol }://Iocal host/.
Please note that the trailing slash is important.

Ok, now we have everything configured for building. The bui | d. pr operti es file now looks like this (the comments have
been removed for brevity):

| cdAl i as=def aul t
dat abaseNanme=pr oduct manager
dat abaseUser =st eve

Page 29

error:#ext:sun/jdo
error:#ext:sun/jdo
error:#site:jdo-tutorial

0OJB Documentation

dat abasePasswor d=secr et

dbrms Name=My SQL

j dbcLevel =3.

0

| dbcRunt i meDri ver =com nysql . j dbc. Dri ver
ur| Prot ocol =j dbc

ur | Subpr ot ocol =nmysql

ur | Dbal i as=//1 ocal host/ ${ dat abaseNane}

t or que. dat abase=nysql
t or que. dat abase. creat eUr | =${url Prot ocol }: ${ url Subprotocol }://1 ocal host/

j ar . name=pr oj ect nanager. j ar

source. dir=src

source.java. dir=${source.dir}/java

sour ce. resource. di r=${source. dir}/resources
source. test.dir=${source.dir}/test

sour ce. schema. di r =${ source. di r}/schema

bui | d. di r=bui I d
build.lib.dir=lib

bui | d. cl asses. di r=${bui | d. dir}
bui | d. resource. di r=${buil d.dir

/ cl asses/
}/ resour ces/

target. dir=target

Looks like we're ready for building. Again, we're assuming that the source code is already present. So we're invoking Ant now
in the top-level folder pr oduct nanager :

ant build setup-db
which should (assuming five java classes) produce an output like this

Bui | dfi |l e:

conpi | e:
[mkdi r]
[mkdi r]
[j avac]

bui | d:
[copy]

xdocl et :

oj bdocl et
oj bdocl et
o] bdocl et
o] bdocl et
o] bdocl et
oj bdocl et
oj bdocl et
oj bdocl et

set up- db:

bui | d. xmn

Created dir: /hone/steve/ projects/product manager/ buil d
Created dir: /hone/steve/ projects/product manager/buil d/ cl asses
Conpiling 5 source files to /hone/steve/projects/product manager/buil d/ cl asses

Copying 10 files to /home/steve/ projects/product manager/buil d/ resour ces

(XDocl et Mai n. st art 47) Runni ng <oj brepository/>
CGenerating ojb repository descriptor (build/resources//repository user.xm)
Type test. Project

Processed 5 types

Processed 5 types

(XDocl et Mai n. start 47) Runni ng <t orqueschenma/ >
CGenerating torque schema (buil d/resources//project-schema. xm)

Processed 5 types

check-use-cl asspat h:

check-run-onl y- on- schenma- change:

sql - check:

sql :
[echo]
[echo]
[echo]
[echo]
[echo]

I

| CGenerating SQ for YOUR Torque project!
| Wbo hoo!
I

Page 30

OJB Documentation

sgl - cl asspat h:
[torque-sgl] Using contextProperties file:
/ hone/ st evel proj ect s/ product manager/ bui | d. properties
torque-sql] Using cl asspath
torque-sql] Generating to file
/ hone/ st eve/ proj ect s/ product manager/ bui | d/ r esour ces/ report . product manager. sql . generati on
torque-sql] Parsing file: 'ojbcore-schema. xm"
torque-sqgl] (transform DTDResol ver 128) Resol ver: used database.dtd from
or g. apache. t or que. engi ne. dat abase. t r ansf or m package
torque-sql] Parsing file: 'project-schema. xm'
torque-sqgl] (transform DTDResol ver 140) Resol ver: used
http://jakarta.apache. org/turbi ne/ dtd/ dat abase. dtd

sqgl -t enpl at e:
cr eat e- db- check:

cr eat e- db:

t or que-dat a- nodel] Usi ng cl asspath

t or que-dat a- nodel] Generating to file

/ hone/ st eve/ proj ect s/ product manager/ bui | d/ resour ces/ cr eat e- db. sq

t orque-dat a- nodel] Parsing file: 'ojbcore-schema. xm'

t or que-dat a- nodel | (transform DTDResol ver 128) Resol ver: used database.dtd from

or g. apache. t or que. engi ne. dat abase. t ransf or m package

tor que-dat a- nodel] Parsing file: 'project-schema. xm'

t or que-dat a- nodel | (transform DTDResol ver 140) Resol ver: used
http://jakarta. apache. org/turbi ne/ dt d/ dat abase. dt d

[echo]
[echo] Executing the create-db.sql script
[echo]
[sql] Executing file:
/ hone/ st eve/ proj ect s/ product manager/ bui | d/ r esour ces/ cr eat e- db. sq
[sql] 2 of 2 SQ statenents executed successfully

i nsert-sql:
[torque-sqgl -exec] Qur new url -> jdbc:nmysql://1ocal host/product nanager
[torque-sqgl -exec] Executing file:

/ hone/ st evel proj ect s/ product manager/ bui | d/ r esour ces/ pr oj ect - schena. sql
[torque-sql -exec] Executing file:

/ hone/ st eve/ proj ect s/ product manager/ bui | d/ r esour ces/ oj bcor e- schena. sq
[torque-sqgl -exec] 50 of 50 SQL statenments executed successfully

BU LD SUCCESSFUL
That wasit. Y ou now have your database setup properly. Go on, have alook:

nysql -u steve product manager

nysql > show t abl es;
There, al tables for your project, as well as the tables required for some OJB functionality which we also used in the above

process (you can recognize them by their names which start with oj b_).
4.3.4. Theruntime configuration files

The last thing missing for actually running your project is to adapt the runtime configuration files used by OJB. There are
basically three sets of configuration that need to be provided: configuration of the OJB runtime, description of the database
connection, and description of the repository.

4.3.4.1. Configuring the OJB runtime

With the OJB.properties file and OJB-logaing.properties (both located in sr ¢/ r esour ces), you configure and finetune the
runtime aspects of OJB. For a simple application you'll probably won't have to change anything in them, though.

Page 31

error:#site:ojb-properties
error:#site:logging

0OJB Documentation

4.3.4.2. Configuring the database connection

For projects that use OJB, you configure the connections to the database via jdbc connection descriptors. These are usually
defined in afile called r eposi t ory _dat abase. xm (located in sr c/ r esour ces). In the ojb-blank project, the build
file will setup thisfilefor you and placeitinthebui | d/ r esour ces directory.

4.3.4.3. Configuring therepository

Finally you need to configure the repository. It consists of descriptors that define which java classes are mapped in what way
to which database tables, and it is typically contained in the r eposi t ory_user. xm file. This is the most complicated
configuration part which will be explained in much more detail in the rest of the tutorials.

An convenient way of creating the repository metadata is to use the XDoclet OJB module. Basically, you put specific Javadoc
comments into your source code, which are then processed by the build file (xdocl et and set up- db targets) and the
repository metadata and the database schema are generated.

4.3.4.4. Sample pr oj ect

Actually, there is not much to do here. For our simple sample application the default properties of OJB work just fine, so we
leave QJB. properti es and QJB- | oggi ng. properti es untouched.

Also, the build file generated the connection descriptor for us, and we were using the XDoclet OJB module and Torque to
generate the repository metadata and database for us. For instance, the processed connection descriptor (file
bui | d/ resour ces/ reposi tory_dat abase. xnl) lookslikethis:

<j dbc- connecti on- descri pt or
jcd-alias="default"
def aul t - connecti on="t rue"
pl at f or m=" My SQL"
j dbc-1 evel =" 3. 0"
driver="com nysql .jdbc. Driver"
pr ot ocol ="j dbc"
subpr ot ocol ="nysql "
dbal i as="//1 ocal host/ product manager "
user nane="st eve"
passwor d="secret"
eager -rel ease="fal se"
bat ch- node="f al se"
useAut oCommi t =" 1"
i gnor eAut oCommi t Excepti ons="f al se"

<obj ect-cache cl ass="org. apache. oj b. broker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-nanme="timeout" attribute-val ue="900"/>
<attribute attribute-nane="autoSync" attribute-val ue="true"/>

</ obj ect - cache>

<connect i on- poo
maxActi ve="21"
val i dati onQuery="" />

<sequence- manager cl assNanme="org. apache. oj b. broker. util.sequence. SequenceManager H ghLow npl ">
<attribute attribute-name="grabSi ze" attri bute-val ue="20"/>
<attribute attribute-name="autoNani ng" attribute-val ue="true"/>
<attribute attribute-name="gl obal Sequencel d" attri bute-val ue="fal se"/>
<attribute attribute-nanme="gl obal SequenceStart" attri bute-val ue="10000"/>

</ sequence- manager >

</ j dbc- connecti on-descri pt or >

If you're curious as to what this stuff means, check this reference guide.

The repository metadata (file bui | d/ r esour ces/ reposi tory_user. xm) startslike:

<cl ass-descri ptor
cl ass="product manager . Product "

Page 32

error:#site:repository/jdbc-connection-descriptor
error:#site:documentation/tutorials/summary
error:#site:xdoclet-module
error:#site:jdbc-connection-descriptor

OJB Documentation

t abl e=" Pr oduct "

<fi el d-descri pt or
name="name"
col um="nane"
j dbc-t ype=" VARCHAR'
| engt h="32"

>

</field-descriptor>

<fi el d-descri ptor
nane="price"
col um="price"
j dbc-t ype="FLOAT"

>

</fiel d-descriptor>

<fi el d-descri pt or
name="st ock"
col um="st ock"
j dbc-type="1 NTEGER'

>

</field-descriptor>

<fi el d-descri ptor
nane="i d"
col um="i d"
j dbc-t ype="1 NTEGER"
pri marykey="true"

>

</field-descriptor>

</ cl ass-descri pt or>

Now you should be able to run your application:

cd buil d/ resources

j ava product manager. Mai n

Of course, you'll need to setup the CLASSPATH before running your application. You'll should add all jars from the | i b
folder except the ones for Torque (torque-[version].jar, velocity-[version].jar and
commons-col | ections-[version].jar) and for the XDoclee OJB module (xdoclet-[version].jar,
Xj avadoc- [versi on].jar andxdocl et - oj b- nodul e-[versi on].jar).

It is important to note that OJB per default assumes the QJB. properti es and QJB- | oggi ng. properti es filesin the
directory where you're starting the application. Hence, we changed to the bui | d/ r esour ces directory before running the
application. This of course requires the compiled classes to be on the classpath, aswell (directory bui | d/ cl asses).

Per default, the same applies to the other configuration files (repository*. xnl) but you can change this in the
QIB. properti es file.
4.3.5. LearningMore

After you've have learned about building and configuring projects that use OJB, you should check out the tutorials to learn
how to specify your persistent classes and how to use OJB's APIs to perform database operations. The Mapping Tutorial in
particular shows you how to map your classes to tablesin an RDBMS.

4.4. Tutorials
4.4.1. Tutorial Summary

4.4.1.1. Tutorials

Here can be found a summary of al tutorials.

Page 33

error:#site:documentation/tutorials/summary
error:#site:mapping-tutorial

0OJB Documentation

Object-Relational Mapping

The Object-Relational Mapping tutorial walks though a basic metadata mapping for an object to arelational database.
The Persistence Broker AP

The PB tutorial demonstrates how to use the Per si st enceBr oker API which forms an object persistence kernel for
OJB. Whileit isthe lowest level API provided by OJB it is aso exceptionally easy to use.

The ODMG API

The ODMG API tutorial steps though using the ODMG 3.0 API provided by OJB. Thisis an industry standard AP
designed for Object Databases.

The JDO API

JDO isastandard API for accessing persistent objectsin Java. Thistutoria steps through how to use OJB's JDO plugin.
The Object Transaction Manager

The OTM is OJB's implementation of object level transactions. These are transactions independent of the underlying
relational database providing more efficient resource utilisation and extremely flexible locking semantics.

Further strongly recommended documentation for all beginners:

OJB Queries

This document explains the usage of the query syntax.

Basic O/R Technique

Thistutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and m:n relations, the auto-xxx
settings for references and proxy objects/collections.

Toolsto build large metadata mappings

Explains how to build large metadata mapping and present useful tools.

4.4.2. Mapping Tutorial

4.4.2.1. What isthe Object-Relational Mapping M etadata?

The O/R mapping metadata is the specific configuration information that specifies how to map classes to relational tables. In
OJB this is primarily accomplished through an xml document, the r eposi t ory. xm file, which contains all of the initial
mapping information.

The Product Class

This tutorial looks at mapping a simple class with no relations:

package org. apache.ojb.tutorials;
public class Product

[** product name */
private String nane;

/** price per item™*/
private Doubl e price;

/** stock of currently available itens */
private int stock;

}

This class has three fields, pri ce, stock, and nane, that need to be mapped to the database. Additionaly, we will
introduce one artificial field used by the database that has no real meaning to the class, an artificial key primary id:

[** Artificial primry-key */
private Integer id;

Page 34

error:#site:mapping-tutorial
error:#site:pb-tutorial
error:#site:odmg-tutorial
error:#site:jdo-tutorial
error:#site:otm-tutorial
error:#site:query
error:#site:basic-technique
error:#site:large-metadata

OJB Documentation

Including the primary-key attribute in the class definition is mandatory, but under certain conditions anonymous keys can also
be used to keep this database artifact hidden in the database. However, as access to an artifical unique identifier for a particular
object instance can be useful, particularly in web-based applications, this tutorial will expose it

The Database

OJB isvery flexible in terms of how it can map classes to database tables, however the simplest technique for mapping asingle
class to arelational database is to map the class to a single table, and each attribute on the class to a single column. Each row
will then represent a unigue instance of that class.

The DDL for such atable, for the Pr oduct class might look like:

CREATE TABLE Pr oduct

(
i d | NTEGER PRI MARY KEY,

nanme VARCHAR(100),
pri ce DOUBLE,
st ock | NTEGER

)

The individual field names in the database and class definition match here, but this is no requirement. They may vary
independently of each other as the metadata will specify what maps to what.

The Metadata

Ther eposi tory. xm document is split into several physical documents. Ther eposi tory_user. xm xml fileis used
to contain user-defined mappings. OJB uses the other ones for managing other metadata, such as database information.

In general each class will be defined withinacl ass- descri pt or element withfi el d- descri pt oy child elements for
each field. In addition the mapping of references and collections is described in the basic technique section. This tutorial sticks
to mapping asingle, simplistic, class.

The complete mapping for the Pr oduct classisasfollows:

<cl ass-descri pt or
cl ass="org. apache. oj b. tutorial s. Product "
t abl e="Pr oduct "

<fi el d-descri pt or
nane="i d"
col um="i d"
pri marykey="true"
aut oi ncrement ="t rue"

/>

<fi el d-descri pt or
name="name"
col um="nane"

/>

<fi el d-descri pt or
nane="price"
col um="price"

/>

<fi el d-descri pt or
name="st ock"
col um="st ock"

/>

</cl ass-descri ptor>

Examinethecl ass- descri pt or element. It has two attributes:
« class- Thisattributeis used to specify the fully-qualified Java class name for this mapping.

Page 35

error:#site:howto/anonymous-keys
error:#site:basic-technique

0OJB Documentation

« table- Thisattribute specifies which table is used to store instances of this class.

Other information can be specified here, such as proxies and custom row-readers as specified in the repository.xml
documentation.

Examine now the first fi el d- descri pt or element. This is used to describe the i d field of the Product class. Two
required attributes are specified:

e name - This specifies the name of the instance variable in the Java class.
e column - This specifies the column in the table specified for this class used to store the value.

In addition to those required attributes, notice that the first element specifies two optional attributes:

e primary-key - This attribute specifiesthat thisfield is the primary key for this class.
« autoincrement - Theaut oi ncr enent attribute specifies that the value will be automatically assigned by OJB sequence
manager. This might use a database supplied sequence, or, by default, an OJB generated value.

Using the XDoclet module

OJB provides an XDoclet module to make generating the repository descriptor and the corresponding table schema easier. An
XDoclet module basically processes custom JavaDoc tags in the source code, and generates files from them. In the case of
OJB, two types of files can be generated: the repository descriptor (r eposi t ory_user. xm) and a Torque schema which
can be used to create the tables in the database. This provides one important benefit: the descriptor and the database schema are
much more likely in sync with the code thus avoiding errors that are usually hard to find. Furthermore, the XDoclet module
contains some checks that find common mapping errors.

In the above example, the source code for Product class with JavaDoc tags would ook like:

package org. apache.ojb.tutorials;

/**

* @jb.class
*/

public class Product

/**

* Artificial primry-key

* @jb.field primrykey="true"

* aut oi ncr enent =" oj b"
*/

private Integer id;

/**

* product nane

*

* @jb.field | engt h="100"
*)

private String nane;

/**
* price per item
*
* @jb.field
S
private Double price;
/**
* stock of currently available itens
* @jb.field
*/

private int stock;

Page 36

error:#site:repository/class-descriptor
error:#site:repository/class-descriptor
error:#site:sequence-manager
error:#site:sequence-manager

OJB Documentation

As you can see, much of the stuff that is present in the descriptor (and the DDL) is generated automatically by the XDoclet
module, e.g. the table/column names and the jdbc-types. Of course, you can also specify them in the JavaDoc tags, e.g. if they
differ from the java names.

For details on OJB's JavaDoc tags and how to generate and use the mapping files please see the OJB XDoclet Module
documentation.

4.4.2.2. Advanced Topics

Relations

As most object models have relationships between objects, mapping specific types of relationships (1:1, 1:Many, Many:Many)
isimportant in mapping objects into arelational database. The basic technique tutorial discussesthisin great detail.

It is important to note that this metadata mapping can be modified at runtime through the
or g. apache. oj b. net adat a. Met adat aManager class.

Inheritence

OJB can map inheritence hierarchies using a variety of techniques discussed in the Extents and Polymorphism section of the
Advanced O/R Documentation

Anonymous Keys

This tutorial uses explicit keys mapped into the Java class. It is also possible to keep artificial keys completely hidden within
the database. The Anonymous Keys HOWTO explains how thisis accomplished.

Large Projects

Projects with small numbers of persistent classes can be mapped by hand, however, many projects can have hundreds, or even
thousands, of distinct classes which must be mapped. In these circumstances managing the class-database mapping by hand is
not viable. The How To Build Mappings HOWTO explores different tools which can be used for managing large-scale

mapping.

Custom JDBC Mapping

OJB maps Javatypes to JDBC types according to the JDBC Types table. Y ou can, however, define custom JDBC -> Java type
mappings via custom field conversions.

4.4.3. Persistence Broker Tutorial
4.4.3.1. The PersistenceBroker API

Introduction

The PersistenceBroker API provides the lowest level access to OJB's persistence engine. Whileit isalow-level APl compared
to the OTM, ODMG, or JDO API'sit is still very straightforward to use.

The core class in the PersistenceBroker API isthe or g. apache. oj b. br oker . Per si st enceBr oker class. This class
provides the point of access for all persistence operationsin this API.

Thistutorial operates on a simple example class:

package org.apache.ojb.tutorials;

Page 37

error:#site:xdoclet-module
error:#site:xdoclet-module
error:#site:basic-technique
error:#site:metadata
error:#ext:api/metadata-manager
error:#site:advanced-technique/polymorphism
error:#site:advanced-technique
error:#site:howto/anonymous-keys
error:#site:howto/large-metadata
error:#site:jdbc-types
error:#site:jdbc-types/field-conversion

0OJB Documentation

public class Product
/* Instance Properties */
private Doubl e price;
private Integer stock
private String nane; | ean
[* artificial property used as primary key */
private Integer id;

/* Getters and Setters */

}
The metadata descriptor for mapping this classis described in the mapping tutorial

The source code for this tutoriad is avalable with the source distribution of OJB in the
src/test/org/ apache/ oj b/tutorials/ directory.

A First Look - Persisting New Objects

The most basic operation is to persist an object. Thisis handled very easily by just

obtaining aPer si st enceBr oker

begin the PB-transaction

storing the object viathe Per si st enceBr oker
commit transaction

. closing the Per si st enceBr oker

For example, the following function stores a single object of type Pr oduct .

agrbhE

public static void storeProduct (Product product)

{
Per si st enceBr oker broker = null;
try
{
br oker = Persi stenceBroker Factory. def aul t Persi st enceBr oker () ;
br oker. begi nTransacti on();
br oker. st ore(product) ;
br oker. comi t Transacti on();
cat ch(Per si st enceBr oker Excepti on e)
i f(broker !'= null) broker.abortTransaction();
/1 do nore exception handling
}
finally
{
if (broker !'= null) broker.close();
}
}

Two OJB classes are used here, the PersistenceBrokerFactory and the PersistenceBroker. The
Per si st enceBr oker Fact or y class manages the lifecycles of Per si st enceBr oker instances: it creates them, pools
them, and destroys them as needed. The exact behavior is very configurable.

In this case we used the static Per si st enceBr oker Fact ory. def aul t Per si st enceBr oker () method to obtain an
instance of aPer si st enceBr oker to the default data source. Thisis most often how it is used if there is only one database
for an application. If there are multiple data sources, a broker may be obtained by name (using a PBKey instance as argument
inPer si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (pbKey)).

It is worth noting that the br oker . cl ose() cal ismadewithinafinally {...} block. This ensures that the broker

Page 38

error:#site:mapping-tutorial
error:#ext:PBExamples

OJB Documentation

will be closed, and returned to the broker pool, even if the function throws an exception.

To use thisfunction, we just create aPr oduct and passit to the function:

Product product = new Product();

product . set Nane(" Spr ocket ") ;

product . setPrice(1.99);

pr oduct . set St ock(10) ;

st or ePr oduct (product) ;

Once aPer si st enceBr oker has been obtained, its Per si st enceBr oker . st or e(Obj ect) method is used to make

an object persistent.

Maybe you have noticed that there has not been an assignment to pr oduct . i d, the primary-key attribute. Upon storing
product OJB detects that the attribute is not properly set and assigns a unique id. This automatic assignment of unique Ids
for the attribute i d has been explicitly declared in the XML repository file, as we discussed in the..

If several objects need to be stored, this can be done within a transaction, as follows.

public static void storeProducts(Product[] products)

{

Per si st enceBr oker broker = null;

try

{
broker = Persi stenceBrokerFactory. def aul t Persi st enceBr oker () ;
br oker. begi nTransacti on();
for (int i = 0; i < products.length; i++)
{

br oker. store(products[i]);

br oker. commi t Transacti on() ;

}

cat ch(Persi st enceBr oker Excepti on e)
i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling

}

finally

{
if (broker !'= null) broker.close();

}

}

This contrived example stores al of the passed Product instances within a single transaction via the
Per si st enceBr oker . begi nTransacti on() and Persi st enceBr oker.commt Transacti on(). These are
database level transactions, not object level transactions.

Querying Persistent Objects

Once objects have been stored to the database, it isimportant to be able to get them back. The PersistenceBroker API provides
two mechanisms for building queries, by using atemplate object, or by using specific criteria.

public static Product findByTenpl ate(Product tenplate)
{

Per si st enceBr oker broker = null;
Product result = null;

try

br oker = Persi stenceBrokerFact ory. def aul t Per si st enceBr oker () ;
QueryByCriteria query = new QueryByCriteria(tenpl ate);
result = (Product) broker.getObjectByQuery(query);

.
finally
{

Page 39

error:#site:repository
error:#site:query

0OJB Documentation

if (broker !'= null) broker.close();

} return result;

This function findsaPr oduct by building a query against atemplate Pr oduct . The template should have any properties set
which should be matched by the query. Building on the previous example where a product was stored, we can now query for
that same product:

Product product = new Product();
product . set Nane(" Sprocket ") ;
product . set Pri ce(new Doubl e(1.99));
product . set St ock(new I nt eger (10));
st or ePr oduct (product);

Product tenplate = new Product();

t enpl at e. set Nanme(" Spr ocket ") ;

Product sanmeProduct = findByTenpl ate(tenpl ate);

In the above code snippet, pr oduct and sanmePr oduct will reference the same object (assuming there are no additional
products in the database with the name " Sprocket").

The template Pr oduct has only one of its properties set, the nane property. The others are al null. Properties with null
values are not used to match.

An alternate, and more flexible, way to have specified a query via the PersistenceBroker APl is by constructing the criteria on
the query by hand. The following function does this.

public static Collection getExpensiveLowSt ockProducts()

Per si st enceBr oker broker = null;
Col l ection results = null;

try

{

br oker = Persi stenceBrokerFactory. def aul t Persi st enceBr oker () ;

Criteria criteria = new Criteria();
criteria.addLessO Equal Than("stock", new I nteger(20));
criteria.addG eat er O Equal Than("price", new Doubl e(100000. 0)) ;

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getColl ectionByQuery(query);

g
finally
if (broker !'= null) broker.close();

} return results;

This function buildsa Cri t eri a object and uses it to set more complex query parameters - in this case greater-than and
less-than contraints. Looking at the first constraint put on the criteria, criteri a. addLessOr Equal Than(" st ock",
new | nt eger (10)); noticethe arguments. The first isthe property name on the object being queried for. The second is an
| nt eger instance to be used for the comparison.

After the Cri t eri a has been built, the Quer yByCri t eri a constructor used is also different from the previous example.
In this case the criteria does not know the type of the object it is being used against, so the Cl ass must be specified to the

query.

Finally, notice that this example uses the Per si st enceBr oker . get Col | ecti onByQuery(...) method instead of
the Per si st enceBr oker . get Obj ect ByQuery(...) method used previoudly. Thisis used because we want all of the
results. Either form can be wused with ether method of constructing queries. In the case of the
Per si st enceBr oker . get Obj ect ByQuery(...) style query, the first matching object is returned, even if there are

Page 40

OJB Documentation

multiple matching objects.

Updating Persistent Objects

The same mechanism, and method, is used for updating persistent objects as for inserting persistent objects. The same
Per si st enceBr oker . st or e(Obj ect) method is used to store a modified object as to insert a new one - the difference
between new and modified objectsisirrelevent to OJB.

This can cause some confusion for people who are very used to working in the stricter confines of SQL inserts and updates.
Basically, OJB will insert a new object into the relational store if the primary key, as specified in the O/R metadata is not in
use. If itisin use, it will update the existing object rather than create a new one.

This allows programmers to treat every object the same way in an object model, whether it has been newly created and made
persistent, or materialized from the database.

Typically, making changes to a peristent object first requires retrieving a reference to the object, so the typical update cycle,
unless the application caches objects, is to query for the object to modify, modify the object, and then store the object. The
following function demonstrates this behavior by "selling" a Product.

public static bool ean sell OneProduct (Product tenplate)

Per si st enceBr oker broker = null;
bool ean i sSold = fal se;

try
{
br oker = Persi st enceBroker Fact ory. def aul t Persi st enceBr oker () ;

QueryByCriteria query = new QueryByCriteria(tenpl ate);
Product result = (Product) broker.getObjectByQuery(query);

if (result !'= null)

br oker. begi nTransacti on();

result.set Stock(new I nteger(result.getStock().intValue() - 1));
broker.store(result);

/1 alternative, nore performant

/1 broker.store(result, ObjectMdificationDefaultlnpl.UPDATE)
br oker. commi t Transacti on();

isSold = true;

}

}
cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker.abortTransaction();
/1 do nmore exception handling

I8
finally
if (broker !'= null) broker.close();

return isSold;

}

This function uses the same query-by-template and Per si st enceBr oker. st ore() API's examined previously, but it
uses the store method to store changes to the object it retrieved. It is worth noting that the entire operation took place within a
transaction.

Deleting Persistent Objects

Deleting persistent objects from the repository is accomplished via the Per si st enceBr oker . del et e() method. This
removes the persistent object from the repository, but does not affect any change on the object itself. For example:

public static void del et eProduct (Product product)

Page 41

0OJB Documentation

Per si st enceBr oker broker = null;
try
{

br oker = Persi stenceBrokerFact ory. def aul t Persi st enceBr oker () ;
br oker . begi nTransacti on() ;

br oker. del et e(product);

br oker. commi t Transacti on() ;

cat ch(Persi st enceBr oker Excepti on e)

i f(broker !'= null) broker. abortTransaction();
/1 do nmore exception handling

}

finally

{
if (broker !'= null) broker.close();

}

}
This method simply deletes an object from the database.

Find object by primary key

In some cases only the primary key values (single field or n-fields for composed primary keys) of an object are known. In OJB
you have several ways to request the whole object. It is possible to build a query as shown above, but the smarter solution is to
use Per si st enceBr oker #get Obj ect Byl dentity(ldentity oid).An ldentity object is a unique representation
of a persistence capable object based on the object primary key values and the top-level class (abstract class, interface or the
classitself, depending on the extent metadata mapping).

For example, to find an Product with an single primary key of '23' do

Identity oid = broker.serviceldentity().buildldentity(Product.class, new Integer(23));
Product product = (Product) broker.gethjectByldentity(oid);

4.4.3.2. Notes on Using the PersistenceBroker API

Pooling PersistenceBrokers

The Per si st enceBr oker Fact ory pools Per si st enceBr oker instances. Using the
Per si st enceBr oker . cl ose() method releases the broker back to the pool under the default implementation. For this
reason the examples in this tutorial all retrieve, use, and close a new broker for each logical transaction.

Transactions

Transactions in the PeristenceBroker APl are database level transactions. This differs from object level transactions. The
broker does not maintain a collection of modified, created, or deleted objects until a commit is called -- it operates on the
database using the databases transaction mechanism. If object level transactions are required, one ofthe higher level API's
(ODMG, JDO, or OTM) should be used.

Exception Handling

Most Per si st enceBr oker operations throw a or g. apache. oj b. br oker. Per si st enceBr oker Excepti on,
which isderived fromj ava. | ang. Runt i meExcept i on if an error occurs. This means that no try/catch block isrequired
but does not mean that it should not be used. This tutorial specifically does not catch exceptions all in order to focus more
tightly on the specifics of the API, however, best usage would be to include a try/catch/finally block around persistence
operations using the PeristenceBroker API.

Additionally, the closing of Per si st enceBr oker instancesis best handled in f i nal | y blocks in order to guarantee that
it is run, even if an exception occurs. If the Per si st enceBr oker. cl ose() isnot called then the application will leak

Page 42

error:#ext:identity
error:#site:advanced-technique/extents

OJB Documentation

broker instances. The best way to ensure that it is always called is to always retrieve and use Per si st enceBr oker
instanceswithinatry {...} block, and awaysclosethe brokerinafinally {...} block attachedtothetry {...}
block.

A better designed get Expensi veLowSt ockPr oduct s() method is presented here.

public static Collection betterGet Expensi veLowSt ockProduct s()
{

Per si st enceBr oker broker = null;
Col l ection results = nul | ;

try

{

br oker Per si st enceBr oker Fact ory. def aul t Per si st enceBr oker () ;

Criteria criteria = new Criteria();
criteria.addLessOr Equal Than("stock”, new Integer(20));
criteria.addG eat er Or Equal Than("price", new Doubl e(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getColl ectionByQuery(query);

cat ch (PersistenceBroker Exception e)

{
/1 Handl e exception

3
finally
if (broker !'= null) broker.close();

return results;

}

Notice first that the Per si st enceBr oker is retrieved and used within the confinesof atry {...} block. Assuming
nothing goes wrong the entire operation will execute there, all the way tother et urn resul ts; line Java guarantees that
finally {...} blockswill be called before amethod returns, so the br oker . cl ose() method isonly included once, in
the final | y block. As an exception may have occured while attempting to retrieve the broker, a not-null test is first
performed before closing the broker.

4.4.4. The ODMG API

4.4.4.1. Introduction

The ODMG AP is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API provides a higher-level AP
and query language based interface over the PersistenceBroker API.

Thistutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product

[* Instance Properties */

private Double price;

private Integer stock

private String nane;

[* artificial property used as primary key */
private Integer id;

[* Getters and Setters */

Page 43

error:#ext:odmg-group
error:#site:pb-tutorial

0OJB Documentation

}
The metadata descriptor for mapping this classis described in the mapping tutorial

The source code for this tutorid is avalable with the source distribution of OJB in the
src/test/org/apache/ oj b/ tutorial s/ directory.

4.4.4.2. Initializing ODM G

The ODMG implementation needs to have a database opened for it to access. Thisis accomplished viathe following code:

| mpl enent ati on odng = QJB. get | nst ance();
Dat abase db = odny. newDat abase() ;
db. open("defaul t", Database. OPEN READ WRI TE)

[* ... use the database ... */

db. cl ose();

This opens an ODMG Dat abase using the name specified in metadata for the database -- "default” in this case. Notice the
Dat abase isopened in read/write mode. It is possible to open it in read-only or write-only modes as well.

Once a Dat abase has been opened it is available for use. Unlike Per si st enceBr oker instances, ODMG Dat abase
instances are threadsafe and can typically be used for the entire lifecycle of an application. There is no need to call the
Dat abase. cl ose() method until the database is truly no longer needed.

4.4.4.3. Persisting New Objects
Persisting an object viathe ODMG API is handled by writing it to the peristence store within the context of atransaction:

public static void storeProduct (Product product)

{

I mpl enentation inpl = QJB. getlnstance();
Transaction tx = inpl.newlransaction();
t x. begi n();

tX. |l ock(product, Transaction.\WRl TE)
tx.commt();

The QJB. get | nst ance() function providesthe ODMG | npl enent at i on instance required for using the ODMG API.
From here on out it is straight ODMG code that should work against any compliant ODMG implementation.

Once the ODMG implementation has been obtained it is used to begin a transaction, obtain a write lock on the Pr oduct , and
commit the transaction. It is very important to note that all changes need to be made within transactions in the ODMG API.
When the transaction is committed the changes are made to the database. Until the transaction is committed the database is
unaware of any changes -- they exist solely in the object model.

4.4.4.4. Querying Persistent Objects

The ODMG API uses the OQL query language for obtaining references to persistent objects. OQL is very similar to SQL, and
using it isvery similar to use JDBC. The ODMG implementation is used to create a query, the query is specifed, executed, and
alist fo resultsis returned:

public static Product findProductByNane(String nane) throws Exception
{

I mpl ementation inmpl = QIB. getl nstance();

Transaction tx = i1 npl.newlransaction();

t x. begi n();

OQLQuery query = inpl.newOQLQuery();

query.create("sel ect products from™

Page 44

error:#site:mapping-tutorial

OJB Documentation

+ Product. cl ass. get Nane()
+ " where name = $1");
query. bi nd(nane) ;
DLi st results = (DList) query.execute();
Product product = (Product) results.iterator().next();

tx.commt();
return product;

4.4.4.5. Updating Persistent Objects

Updating a persistent object is done by modifying it in the context of a transaction, and then committing the transaction:

public static void sellProduct (Product product, int nunber)
{

I mpl enentation inpl = QJB. getl nstance();

Transaction tx = 1 npl.newlransaction();

t X. begi n();

t x. l ock(product, Transaction.\WRl TE)
product . set St ock(new I nt eger (product. get Stock().intValue() - nunber));

tx.commt();

The sample code obtains a write lock on the object, binding it to the transaction, changes the object, and commits the
transaction. The newly modified Pr oduct now hasanew st ock value.

4.4.4.6. Deleting Persistent Objects

Deleting persistent objects requires directly addressing the Dat abase which contains the persistent object. This can be
obtained from the ODMG | npl enrent at i on by asking for it. Once retrieved, just ask the Dat abase to delete the object.
Once again, thisis all done in the context of atransaction.

public static void del et eProduct (Product product)

I mpl enentation inpl = QJB. getlnstance();
Transaction tx = inpl.newlransaction();

t X. begi n();
Dat abase db = i npl . get Dat abase(product);

db. del et ePer si st ent (product);
tx.commt();

It is important to note that the Dat abase. del et ePer sti ent () cal does not delete the object itself, just the persistent
representation of it. The transient object still exists and can be used however desired -- it is simply no longer persistent.

4.4.4.7. Noteson Using the ODM G API

Transactions

The ODMG API uses object-level transactions, compared to the PersistenceBroker database-level transactions. An ODMG
Transact i on instance contains al of the changes made to the object model within the context of that transaction, and will
not commit them to the database until the ODMG Tr ansact i on iscommitted. At that point it will use a database transaction
to ensure atomicity of its changes.

L ocks

The ODMG specification includes several levels of locks and isolation. These are explained in much more detail in the Lock

Page 45

0OJB Documentation

Manager documentation.

In the ODMG API, locks obtained on objects are locked within the context of athread. Any object modified within the context
of a transaction will be stored with the transaction, however changes made to the same object by other threads will also be
stored. The ODMG locking conventions ensure that an object can only be modified within the transaction on the locking
thread.

Persisting Non-Transactional Objects

Frequently, objects will be modified outside of the context of an ODMG transaction, such as a data access object in a web
application. In those cases a persistent object can still be modified, but not directly through the OMG ODMG specification.
OJB provides an extension to the ODMG specification for instances such as this. Examine this code:

public static void persistChanges(Product product)

{
| mpl enentation inpl = QJB. getl nstance();
Transacti onExt tx = (Transacti onExt) inpl.newlransaction();
t x. begi n();
tx. markDi rty(product);
tx.commit();
}

In this function the product is modified outside the context of the transaction, and is then the changes are persisted within a
transaction. The Tr ansact i onExt . mar kDi rt y() method indicates to the Transaction that the passed object has been
modified, even if the Transaction itself sees no changes to the object.

4.4.5. IJDO Tutorial

4.4.5.1. Using the ObJectRelationalBridge JDO API

Introduction

This document demonstrates how to use ObjectRelationalBridge and the JDO APl in a simple application scenario. The
tutorial application implements a product catalog database with some basic use cases. The source code for the tutorial
application is shipped with the OJB source distribution and resides in the directory
[db-0j b] / src/jdori/org/apache/ ojb/tutorial5.

This document is not meant as a complete introduction to JDO. For more information see: Sun's JDO site.

OJB does not provide it's own JDO implementation yet. A full IDO implementation isin the scope of the 2.0 release.

For the time being we provide a plugin to the JDO reference implementation caled G bStore. The O bStore plugin resides in the package
org. apache. oj b. jdori.sql.

The work on the native OJB-JDO implementation has started. A first beta version is announce for OJB 1.1 version.

Running the Tutorial Application

To install and run the demo application please follow the following steps:

1. Download the JDO Reference Implementation from Sun's JDO site.
Extract the archiv to alocal directory and copy thefiles:
e jdori.jar
e jdo.jar
intothe OJB [db- oj b] / | i b directory.
2. Now compile the sources, setup the test database and perform bytecode enhancement by executing
ant with-jdori prepare-tutorials enhance-jdori

Page 46

error:#site:lock-manager
error:#ext:sun/jdo
error:#ext:sun/jdo

OJB Documentation

from the ojb toplevel directory.
3. Now you can start the tutorial application by executing bi n\t ut ori al 5 or bi n/tutori al 5. sh from the ojb
toplevel directory.

4.4.5.2. Using the JDO API in the UseCase | mplementations

As shown here OJB supports four different API's. The PersistenceBroker, the OTM layer, the ODMG implementation, and the
JDO implementation.

The PB tutorial implemented the sample application's use cases with the PersistenceBroker API. This tutorial will show how
the same use cases can be implemented using the JDO API.

Y ou can get more information about the JDO API at JDO javadocs.

Obtaining the JDO PersistenceM anager Object

In order to access the functionalities of the JDO API you have to deal with a special facade object that serves as the main entry
point to all JDO operations. Thisfacade is specified by the Interfacej avax. j do. Per si st enceManager .

A Vendor of a JDO compliant product must provide a specific implementation of the
| avax. j do. Per si st enceManager interface. JDO aso specifies that a JDO implementation must provide a
| avax. j do. Per si st enceManager Fact ory implementation that IS responsible for generating
| avax. j do. Per si st enceManager instances.

So if you know how to use the JDO API you only have to learn how to obtain the OJB specific PersistenceManagerFactory
object. Ideally thiswill be the only vendor specific operation.

In our tutorial application the Per si st enceManager Fact ory object is obtained in the constructor of the Application
class and reached to the use case implementations for further usage:

?ubl ic Application()

factory = null;
manager = nul | ;
try

{

/] create QJB specific factory:
factory = new Q bSt or ePM=() ;

}
catch (Throwabl e t)

Systemout.println("ERROR " + t.getMessage());
t.printStackTrace();

useCases = new Vector();

useCases. add(new UCLi st Al | Product s(factory
useCases. add(new UCEnt er NewPr oduct (f actory
useCases. add(new UCEdi t Product (factory));
useCases. add(new UCDel et ePr oduct (factory));
useCases. add(new UCQui t Appl i cation(factory));

)
)

}

The class org. apache. oj b.jdori.sqgl.Q bSt or ePM- is the 0oJB specific
| avax. j do. Per si st enceManager Fact or y implementation.

HH#HHH#HH TODO: Put information about the .jdo fil es #HHHHHHiHH

The Per si st enceManager Fact or y object isreached to the constructors of the UseCases. These constructors storeit in a
protected attribute f act or y for further usage.

Retrieving collections

Page 47

error:#site:index
error:#site:pb-tutorial
error:#ext:sun/jdo/javadoc

0OJB Documentation

The next thing we need to know is how this Implementation instance integrates into our persistence operations.

In the use case UCLi st Al | Product s we have to retrieve a collection containing all product entries from the persistent
store. To retrieve a collection containing objects matching some criteria we can use the JIDOQL query language as specified by
the JDO spec. In our use case we want to select all persistent instances of the class Products. In this case the query is quite
simple as it does not need any limiting search criteria

We use the factory to create a PersistenceManager instance in step one. In the second step we ask the PersistenceManager to
create a query returning all Product instances.

In the third step we perform the query and collect the results in a collection.

In the fourth step we iterate through the collection to print out each product matching our query.

public void apply()

{
/1 1. get a PersistenceManager instance
Per si st enceManager nmanager = factory. get Persi stenceManager () ;
Systemout.println("The list of available products:");
try
{
/1 clear cache to provoke query agai nst database
Per si st enceBr oker Fact ory.
def aul t Per si st enceBr oker (). cl ear Cache();
/1 2. start tx and form query
manager . current Transacti on() . begi n();
Query query = manager. newQuery(Product. cl ass);
/1 3. perform query
Col l ection all Products = (Coll ection)query.execute();
/1 4. nowiterate over the result to print each
/1 product and finish tx
java.util.lterator iter = allProducts.iterator();
if (! iter.hasNext())
{
Systemout. println("No Product entries found!");
}
while (iter.hasNext())
{
Systemout.println(iter.next());
manager . current Transaction().commt ();
}
catch (Throwable t)
{
t.printStackTrace();
finally
{
manager . cl ose();
}

Storing objects

Now we will have alook at the use case UCEnt er NewPr oduct . It works as follows: first create a new object, then ask the
user for the new product's data (productname, price and available stock). These data is stored in the new object's attributes.
This part is no different from the PB tutorial implementation. (Steps 1. and 2.)

Now we will store the newly created object in the persistent store by means of the JDO API. With JDO, all persistence
operations must happen within a transaction. So the third step is to ask the PersistenceManager object for a fresh

Page 48

error:#site:pb-tutorial

OJB Documentation

| avax. j do. Transact i on object to work with. Thebegi n() method starts the transaction.
We then have to ask the PersistenceM anager to make the object persistent in step 4.

In the last step we commit the transaction. All changes to objects touched by the transaction are now made persistent. As you
will have noticed there is no need to explicitly store objects as with the PersistenceBroker API. The Transaction object is
responsible for tracking which objects have been modified and to choose the appropriate persistence operation on commit.

public void apply()
{
/1 1. this will be our new object
Product newProduct = new Product ();
/1 2. nowread in all relevant information and fill the new object:
System out. println("please enter a new product");
String in = readLi neWthMessage("enter nanme:");
newPr oduct . set Nanme(i n);
in = readLi neWthMessage("enter price:")
newPr oduct . set Pri ce(Doubl e. par seDoubl e(|
in = readLi neWt hMessage("enter avail ab
newPr oduct . set St ock(I nteger. parselnt(in

)

;n);
f_stock:");

)

/1 3. create PersistenceManager and start transaction
Per si st enceManager manager = factory. get Persi stenceManager () ;

Transaction tx = null
t X = manager. current Transacti on();
t x. begi n();

/1 4. mark object as persistent
manager . makePer si st ent (newPr oduct) ;

// 5. commt transaction
tx.commt();

manager . cl ose();

}
Updating Objects
The UseCase UCEdi t Pr oduct allows the user to select one of the existing products and to edit it.

The user enters the products unique id. The object to be edited is looked up by thisid. (Steps 1., 2. and 3.) This lookup is
necessary as our application does not hold alist of all product objects.

The product is then edited (Step 4.).
In step five the transaction is commited. All changes to objects touched by the transaction are now made persistent. Because
we modified an existing object an update operation is performed against the backend database.
?ublic voi d appl y()
Per si st enceManager nanager = null;

/1 ask user which object should edited
String in = readLi neWthMessage("Edit Product with id:");

int id = Integer.parselnt(in);
Product toBeEdit ed,;

try

{

/1 1. start transaction
manager = factory. get Persi stenceManager();
manager . current Transacti on() . begi n();

// We don't have a reference to the sel ected Product.

Page 49

0OJB Documentation

/!l So we have to look it up first,

/1l 2. Build a query to | ook up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

/1 3. execute query
Collection result = (Collection) query.execute();
toBeEdited = (Product) result.iterator().next();

if (toBeEdited == null)
{

Systemout.println("did not find a matching instance...");
manager . current Transacti on().rol | back();
return;

}
/1l 4. edit the existing entry
Systemout. println("please edit the product entry");
n =
readLi neWt hMessage(
"enter nane (was " + toBeEdited.getName() + "):");
t oBeEdi t ed. set Name(in);
in =
readLi neWt hMessage(
"enter price (was " + toBeEdited.getPrice() + "):");
t oBeEdi t ed. set Pri ce(Doubl e. par seDoubl e(in));
in =
readLi neW t hMessage(
"enter avail able stock (was "
+ t oBeEdi t ed. get St ock()
+ "): ")
t oBeEdi t ed. set St ock(| nt eger. parselnt(in));

/1 5. conmit changes
manager . current Transaction().conmit ();

}

catch (Throwabl e t)
/1 rollback in case of errors
manager . current Transacti on().rol | back();
t.printStackTrace();

inally

manager . cl ose();

— A —h——

}
Deleting Objects

The UseCase UCDel et ePr oduct allows the user to select one of the existing products and to delete it from the persistent
storage.

The user enters the products unique id. The object to be deleted is looked up by thisid. (Steps 1., 2. and 3.) This lookup is
necessary as our application does not hold alist of all product objects.

In the fourth step we check if a Product matching to the id could be found. If no entry is found we print a message and quit the
work.

If a Product entry was found we delete it in step 5 by calling the PersistenceManager to delete the persistent object. On
transaction commit all changes to objects touched by the transaction are made persistent. Because we marked the Product entry
for deletion, a delete operation is performed against the backend database.

public void apply()
{

Page 50

OJB Documentation

Per si st enceManager nanager = null;

Transaction tx = null;

String in = readLi neWthMessage("Del ete Product with id:");
int id = Integer.parselnt(in);

try
{

/1 1. start transaction

manager = factory. getPersistenceManager();
tx = manager. current Transaction();

t x. begi n();

/1l 2. Build a query to | ook up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

/1l 3. execute query
Col lection result = (Collection) query.execute();

/[l 4. if no matching product was found, print a nessage
i f

(result.size() == 0)
{
Systemout.println("did not find a Product with id=" + id);
tx. rol I back();
manager . cl ose();
return;
}
/1 5. if a matching product was found, delete it
el se
{

Product toBeDeleted = (Product) result.iterator().next();
manager . del et ePer si st ent (t oBeDel et ed) ;

tx.commt();

manager . cl ose();

catch (Throwabl e t)
{

/1 rollback in case of errors
/1 broker . abort Transacti on();
tx. rol | back();
t.printStackTrace();

}

4.4.5.3. Conclusion

In this tutorial you learned to use the standard JDO API as implemented by the OJB system within a simple application
scenario. | hope you found this tutorial helpful. Any comments are welcome.

4.4.6. Object Transaction Manager Tutorial

44.6.1. The OTM API

Introduction

The Object Transaction Manager (OTM) iswritten as atool on which to implement other high-level object persistence APIs. It
is, however, very usable directly. It supports API's similar to the ODMG and PersistenceBroker API's in OJB. Several of its
idioms are designed around the fact that it is meant to have additional, client-oriented, API's built on top of it, however.

The OTMKi t is the initial access point to the OTM interfaces. The kit provides basic configuration information to the OTM
components used in your system. This tutorial will use the Si npl eKi t which will work well under most circumstances for
local transaction implementations.

Thistutorial operates on a simple example class:

Page 51

error:#site:odmg-tutorial
error:#site:pb-tutorial

0OJB Documentation

package org.apache.ojb.tutorials;
public class Product
/* Instance Properties */
private Doubl e price;
private |Integer stock
private String name;
/[* artificial property used as primary key */
private Integer id;

/* Getters and Setters */

}
The metadata descriptor for mapping this classis described in the mapping tutorial.

The source code for this tutoriad is available with the source distribution of OJB in the
src/test/org/apache/ oj b/ tutorial s/ directory.

Persisting New Objects

The starting point for using the OTM directly isto look at making a transient object persistent. This code will use three things,
an OTWKi t , an OTMConnect i on,andaTr ansact i on. The connection and transaction objects are obtained from the kit.

Initial access to the OTM client API'sis through the OTMKI t interface. We'll use the Si npl eKi t , an implementation of the
OT'MKi t suitable for most circumstances using local transactions.

public static void storeProduct (Product product) throws Locki ngException
{
OTWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul | ;
Transaction tx = null;
("
conn = kit.acquireConnection(PersistenceBrokerFactory. get Def aul t Key());
tx = kit.getTransaction(conn);
t x. begi n();
conn. makePer si st ent (pr oduct) ;
tx.commt();

}
catch (Locki ngException e)

if (tx.islnProgress()) tx.rollback();
t hrow e;

inally

conn. cl ose();

— A —h——

}

A kit is obtained and is used to obtain a connection. Connections are against a specific JCD alias. In this case we use the
default, but a named datasource could also be used, as configured in the metadata repository. A transaction is obtained from
the kit for the specific connection. Because multiple connections can be bound to the same transaction in the OTM, the
transaction needs to be acquired from the kit instead of the connection itself. The Si npl eKi t uses the commonly seen
transaction-per-thread idiom, but other kits do not need to do this.

Every persistence operation within the OTM needs to be executed within the context of a transaction. The JDBC concept of
implicit transactions doesn't exist in the OTM -- transactions must be explicit.

Page 52

error:#site:mapping-tutorial

OJB Documentation

Locks, on the other hand, are implicit in the OTM (though explicit locks are available). Theconn. makePer si stent (. .)
call obtainsawrite lock on pr oduct and will commit (insert) the object when the transaction is committed.

The Locki ngExcept i on will be thrown if the object cannot be write-locked in this transaction. Asit is atransient object to
begin with, this will probably only ever happen if it has been write-locked in another transaction already -- but this depends on
the transaction semantics configured in the repository metadata.

Finally, connections maintain resources so it isimportant to make sure they are closed when no longer needed.

Deleting Persistent Objects

Deleting a persistent object from the backing store (making a persistent object transient) is aimost identical to making it
persistent -- the difference is just in the conn. del etePersistent(product) cal instead of the
conn. makePer si st ent (pr oduct) call. The same notes about transactions and resources apply here.

public static void storeProduct(Product product) throws LockingException
{

OTWit kit = SinpleKit.getlnstance();

OTMConnecti on conn = nul |

Transaction tx = null;

try

{

conn = kit.acquireConnection(PersistenceBrokerFactory. getDefaul t Key());
tx = kit.getTransaction(conn);

t x. begi n();

conn. del et ePer si st ent (product);

tx.commt();

}
catch (Locki ngException e)

if (tx.islnProgress()) tx.rollback();
t hr ow e;

inally

conn. cl ose();

— A —h——

Querying for Objects

The OTM implements a transaction system, not a new client API. As such it supports two styles of query at present -- an
PersistenceBroker like query-by-criteria style querying system, and an ODMG OQL query system.

Information on constructing these types of queries is available in the PersistenceBroker and ODMG tutorias respectively.
Using those queries with the OTM is examined here.

A PB style query can be handled as follows:

public Iterator findByCriteria(Query query)
{

OWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |

Transaction tx = null;

try

{

conn = kit.acquireConnection(PersistenceBrokerFactory. get Def aul t Key());
tx = kit.getTransaction(conn);

t x. begi n();

Iterator results = conn.getlteratorByQuery(query);

tx.commt();

return results;

Page 53

error:#site:pb-tutorial
error:#site:odmg-tutorial

0OJB Documentation

inally

conn. cl ose();

— A —h——

}
Where, by default, a read lock is obtained on the returned objects. If a different lock is required it may be specified
specifically:

public lIterator findByCriteriaWthLock(Query query, int |ock)
{

OWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul |

Transaction tx = null;

try

{

conn = kit.acquireConnection(PersistenceBrokerFactory. get Def aul t Key());
tx = kit.getTransaction(conn);

t x. begi n();

Iterator results = conn.getlteratorByQuery(query, |ock);

tx.commt();

return results;

inally

conn. cl ose();

— A —h——

}
Theint| ock argument is one of the integer constantson or g. apache. oj b. ot m | ock. LockType:

LockType. NO_LOCK
LockType. READ _LOCK
LockType. WVRI TE_LOCK

OQL queries are also supported, as this somewhat more complex example demonstrates:

public lIterator findByOQL(String query, Object[] bindings) throws Exception
{
OWKit kit = SinpleKit.getlnstance();
OTMConnecti on conn = nul | ;
Transaction tx = null;
("
conn = kit.acquireConnection(PersistenceBrokerFactory. get Defaul t Key());
tx = kit.getTransaction(conn);
OQLQuery ogl = conn. newOQLQuery();
oql . creat e(query);
for (int i = 0; I < bindings.length; ++i)

oql . bi nd(bi ndi ngs[i]);
}
t x. begi n();
Iterator results = conn.getlterator ByOQLQuery(oql);
tx.commt();
return results;
}
catch (Querylnval i dException e)

if (tx.islnProgress()) tx.rollback();
t hrow new Exception("Invalid OQ expression given", e);

}
cat ch (QueryParamet er Count | nval i dExcepti on e)

if (tx.islnProgress()) tx.rollback();
t hrow new Exception("lncorrect nunmber of bindings given", e);

Page 54

OJB Documentation

cat ch (QueryParanet er Typel nval i dExcepti on e)

if (tx.islnProgress()) tx.rollback();
t hrow new Exception("Incorrect type of object given as binding", e);

inally

conn. cl ose();

— A ————

}

This function is, at its core, doing the same thing as the PB style queries, except that it constructs the OQL query, which
supports binding values in amanner similar to JDBC prepared statements.

The OQL style queries also support specifying the lock level the same way:

Iterator results = conn.getlteratorByOQLQuery(query, | ock);
M ore Sophisticated Transaction Handling

These examples are a bit simplistic as they begin and commit their transactions all in one go -- they are only good for
retrieving data. More often data will need to be retrieved, used, and committed back.

Only changes to persistent objects made within the bounds of a transaction are persisted. This means that frequently a query
will be executed within the bounds of an already established transaction, data will be changed on the objects obtained, and the
transaction will then be committed back.

A very convenient way to handle transactions in many applications is to start a transaction and then let any downstream code
be executed within the bounds of the transaction automatically. This is straightforward to do with the OTM using the
Si nmpl eKi t ! Takealook at avery dightly modified version of the query by criteria function:

public lterator noreRealisticQueryByCriteria(Qery query, int |ock)

{
Ot kit = S|aneK|t getlnstance()
OTMConnecti on conn = nm
Transaction tx = nul
("
conn = kit.acquireConnection(PersistenceBrokerFactory. get Def aul t Key());
tx = kit.getTransaction(conn);
bool ean auto = ! tx.islnProgress();
if (auto) tx.begin();
Iterator results = conn.getlteratorByQuery(query, |ock);
if (auto) tx.commt();
return results;
}
finally
{
conn. cl ose();
}
}

In this case the function looks to see if atransaction is already in progress and sets a boolean flag if it is, aut o. It then handles
transactions itself, or allows the already opened transaction to maintain control.

Because connections can be attached to existing transactions the Si npl eKi t can attach the new connection to the already
established transaction, allowing this function to work as expected whether there is a transaction in progress or not!

Client code using this function could then open a transaction, query for products, change them, and commit the changes back.
For example:

public void renaneW dget Exanpl e()

{
OTWKit kit = SinpleKit.getlnstance();

Page 55

0OJB Documentation

OTMConnecti on conn = nul |
Transaction tx = null;
("
conn = kit.acquireConnection(PersistenceBrokerFactory. getDef aul t Key());
tx = kit.getTransaction(conn);
t x. begi n();
Product sanple = new Product();
sanpl e. set Name("Wnder W dget");
Query query = QueryFactory. newQuer yByExanpl e(sanpl e) ;
I'terator wonder W dgets
= noreReal i sti cQueryByCriteria(query, LockType. WRl TE_LOCK);
whi | e (wonder W dget s. hasNext ())

Product wi dget = (Product) wonder W dgets. next ();
wi dget . set Nane("| nproved Wonder W dget");

tx.commt();
inally

conn. cl ose();

— A —h——

}

This sample renames a whole bunch of products from "Wonder Widget" to "Improved Wonder Widget" and stores them back.
It must makes the changes within the context of the transaction it obtained for those changes to be stored back to the database.
If the same iterator were obtained outside of a transaction, and the changes made, the changes would be made on the objects in
memory, but not in the database. Y ou can think of non-transaction objects as free immutabl e transfer objects.

This example also demonstrates two connections bound to the same transaction, as the r enameW dget Exanpl e(. . .)
function obtains a connection, and the noreReal i sti cQueryByCriteria(...) function obtains an additional
connection to the same transaction!

4.4.6.2. Notes on the Object Transaction Manager

Transactions

The Object Transaction Manager (OTM) is a transaction management layer for Java objects. It typically maps 1:1 to database
transactions behind the scenes, but thisis not actually required for the OTM to work correctly.

The OTM supports a wide range of transactional options, delimited in the LockManager documentation. While the lock
manager iswritte to the ODMG AP, the same locking rules apply at the OTM layer.

4.5. Reference Guides

4.5.1. Reference Guides

45.1.1. Reference Guides

Here can be found a summary with a explanation of al reference guides.
« OJB Queries

This document explains the usage of the query syntax.
« Basic O/R Technique
Thistutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and m:n relations, the auto-xxx
settings for references and proxy objects/collections.
« Platforms
What OJB requires from relational databases, and how to let it know which database to use.
« Logaing configuration

Page 56

error:#site:lock-manager
error:#site:query
error:#site:basic-technique
error:#site:platform
error:#site:logging

OJB Documentation

Details how to configure the logging within OJB.
« OJB.properties configuration
The details on how to modify OJB's behaviour. This includes changing pluggable components.
« JDBC Types
This document explains the standard mapping of JDBC types to Java classes.
« Repository Metadata
The specific details of OJB metadata.
« Advanced O/R Technique
This document explains some advanced O/R techniques like Polymorphism and "OJB Extents', Mapping Inheritance
Hierarchies, Nested Objects and so on.
e Metadata Handling
This document explains how the metadata xml file work and how the metadata information can be modified at runtime.
« Deployment
Specifics on what is required to deploy OJB, including deployment to EJB containers.
« Connection Handling
This document explains how OJB handlesthe Connect i on instances and how User's can step in.
e The Object Cache
Documentation on the different object caching implementations included with OJB.
e The Sequence Manager
How to use different sequence management strategies with OJB.
e Thel ock Manager
The ODMG API supports different lock management systems. This document explains the differences and how to make
use of them.
« 0OJB XDaoclet Module
Documentation for the OJB XDoclet module. The module can build mappings and schema.
« OJB Performance
A look at how OJB performs and how to use OJB's performance tests.

4.5.2. Platforms

4.5.2.1. how to use OJB with a specific relational database

OJB has been designed to smoothly integrate with any relational database that provides JDBC support. OJB can be configured
to use only JDBC 1.0 API callsto avoid problems with restrictions of several JDBC drivers.

It uses a limited SQL subset to avoid problems with restrictions of certain RDBMS. This design alows to keep the OJB code
generic and free from database specifics.

This document explains basic concepts and shows how OJB can be configured to run against a specific RDBMS.

If you not already have done so, then you also might want to have alook at the Getting Started section which presents a sample
skeleton project.

4.5.2.2. Basic Concepts

OJB internal tables

For certain features OJB relies on several internal tables that must be present in the target rdbms to allow a proper functioning.
If those features are not needed OJB can be safely run without any internal tables.

The following table lists al tables and their specific purpose.
Tablename Purpose

QIB_HL_SEQ Table for the high/low sequence manager.
If the built-in OJB sequence manager is not

Page 57

error:#site:ojb-properties
error:#site:jdbc-types
error:#site:repository
error:#site:advanced-technique
error:#site:metadata
error:#site:deployment
error:#site:connection
error:#site:object-cache
error:#site:sequence-manager
error:#site:lock-manager
error:#site:xdoclet-module
error:#site:performance
error:#site:getting-started

0OJB Documentation

used, this table is not needed.

QUB_LOCKENTRY This table is used to store Object locks if the
LockManager is run in distributed mode. Not needed
in singlevm mode.

QIB_NRM The "Named Roots Map". ODMG allows to bind
persistent objects to an user defined name.
The Named roots map is used to store these bindings.
It has NAME (String of arbitrary length) as primary
key and keeps the serialized OID of the persistent
object inthefield OID (String of arbitrary length).
If bind() and lookup() are not used in client apps, this
table is not needed

QB_DLI ST The table used for the ODMG persistent DList
collections.
If ODMG DLists are not used, this table is not
needed.

QIB_DLI ST_ENTRI ES stores the entries of DLists (a wrapper to objects

stored in the DList)
If ODMG DLists are not used, this table is not

needed.

QUB_DSET The table used to store ODMG persistent DSET
collections
If ODMG DSets are not used, this table is not
needed.

QUB_DSET_ENTRI ES Thistable stores the entries of DSets.
If ODMG DSets are not used, this table is not
needed.

QUB_DVAP The table use to store the ODMG persistent DMap
tables
If ODMG DMaps are not used, this table is not
needed.

QUB_DVAP_ENTRI ES The table containing the DMap entries. The Keys and

Values of the map can be arbitrary persistent objects.
If ODMG DMaps are not used, this table is not
needed.

OJB uses Torgue to create all required tables and data. Thus there isno SQL DDL file, but an XML file describing the tables
in format readable by Torque. The Torque DDL information for the interna tables resides in the file
src/ schema/ oj bcore-schema. xm .

The o/r mappings for these tables are contained in thefiler eposi tory_i nternal . xm .

If you want to have a look at how these files could be used, have alook at the the gjb-blank sample project which is already
prepared to use these files.

Tablesfor theregression testbed

It is recommended to run the OJB JUnit regression tests against your target database. Thus you will have to provide several

Page 58

error:#ext:torque
error:#site:getting-started

OJB Documentation

more tables, filled with the proper testdata.
The DDL information for these tablesresidesin thefilesr ¢/ schena/ oj bt est - schema. xmnl .
The testdatais defined in thefilesr ¢/ schena/ oj bt est - dat a. xm .

The o/r mappings for these tables are contained in thefiler eposi tory_junit. xm .

Tablesfor thetutorial applications

If you intend to run the OJB tutorial applications against your target database you will have to provide one extratable.
The DDL information for this table also residesin thefilesr ¢/ schema/ oj bt est - schema. xm .

The testdatais also defined in thefilesr ¢/ schema/ oj bt est - dat a. xm .

The o/r mappings for thistable is contained in thefiler eposi tory_user. xni .

4.5.2.3. The setup process

OJB provides a setup routine to generate the target database and to fill it with the required testdata. This routine is based on
Torque scripts and is driven from the build.xml file. This section describes how to useit.

Selecting a platform profile

OJB ships with support for several popular database platforms. The target platform is selected by the switch pr of i | e in the
file build.properties. Y ou can choose one out of the predefined profiles:

Wth the 'profile'" property you can choose the RDBMS platform QJB is using
inpl emented profiles:

#

profil e=hsql db

use the mesql db-JSQL.Connect profile for Mcrosoft SQ. Server and

you will automatically JSQConnect driver, fromhttp://ww.j-netdirect.com
MBAIRD: This is ny driver of preference for M5 SQL Server, | find the CEMd
MS driver to have some probl ens.

#pr of i | e=nssql db- ISQLConnect

#pr of i | e=mssql db- Opt a2000

#pr of i | e=nssql db- ns

#prof i | e=nysql

#pr of i | e=db2

#profil e=oracl e

#profi | e=or acl e9

#prof i | e=or acl e9i - Seropt o

#profi |l e=nsaccess

#pr of i | e=post gr esql

#profil e=i nform x

#pr of i | e=sybase

#pr of i | e=sapdb

#pr of i | e=maxdb

The profile switch activated inbui | d. properti es isusedto select aprofile file from the pr of i | e directory.
If you set pr of i | e=db2, thenthefilepr ofi | e/ db2. profil e isselected.
Thisfileisused by the Torque scriptsto set platform specific properties and to perform platform specific SQL operations.

editing the profile to point to your target db

The platform specific file pr of i | e/ xxx. prof i | e containslots of information used by Torque. Y ou can ignore most of it.
The only important part in thisfile is the section where the url to the target db is assembled, here is an snip of the DB2 profile:

0OJB Documentation

#
DATABASE SETTI NGS

JDBC connection settings. This is used by the JDBCToXM. task
that will create an XM. dat abase schema from JDBC net adat a.

These settings are al so used by the SQL Ant task to initialize
your Turbine systemw th the generated SQ..

dbmsNane = Db2

j dbcLevel = 1.0

url Protocol = jdbc
ur | Subpr ot ocol = db2
url Dbalias = QIB

creat eDat abaseUrl = ${url Protocol }: ${url Subprotocol }: ${ur| Dbal i as}

bui | dDat abaseUr| = ${url Protocol }: ${url Subprot ocol }: ${ur| Dbal i as}

dat abaseUr| = ${url Protocol }: ${url Subprot ocol }: ${ur| Doal i as}

dat abaseDri ver = COM i bm db2. j dbc. app. DB2Dr i ver

dat abaseUser = adnin

dat abasePassword = db2

dat abaseHost = 127.0.0.1

These settings result in a database URL j dbc: db2: QIB. If your production database is registered with the name
MY_PRODUCTI ON_DB you haveto edit theentry ur | DBal i as to:

url Dbal i as = MY_PRODUCTI ON_DB.

In this section you can also set application user name and password. Y ou can also enter a different jdbc driver class, to activate
adifferent driver.

Before progressing, please check that the jdbc driver class, named in the dat abaseDr i ver entry islocated on the classpath!
You can either edit the globa environment variable CLASSPATH or place the jdbc driver jar file into the
| akart a- o] b- xxx/ i b directory.

Executing the build script

Now everything should be prepared to launch the setup routine. This routine can be invoked by caling ant
prepare-testdb.

If you are prompted with aBUI LD SUCCESSFUL message after some time, everything is OK.

If you are prompted with aBUI LD FAI LED message after some time, something went wrong. This may have several reasons:

« You entered some incorrect settings. Please check the log messages to see what went wrong.

« Torque does not work properly against your target database. Torqueis very flexible and should be able to work against a
wide range of databases. But the code templates for each database may not be accurate. Please check the ojb-user
mailinglist archive if there are any failure reports for your specific database. Please also check if some contributed a fix
already. If you don't find anything please post your problem to the ojb user-list.

As a last resort you can try the following: Switch back to the default hsgldb profile and execute ant pr epar e-t est db
This will setup the default hsgldb database. And it will also generate SQL scripts that you may use to generate your database
manually.

The SQL scripts are generated to j akart a- oj b- xxx/target/ src/sgl. You can touch these scripts to match your
database specifics and execute them manually against your platform.

Verifying theinstallation
Now everything is setup to run the junit regression tests against your target database.

Execute

Page 60

OJB Documentation

ant junit
to see if everything works as expected. more information about the OJB Test Suite here. If you did not manage to set up the

target database with theant pr epar e-t est db you can use
ant junit-no-conpil e-no-prepar e torun thetestsuite without generation of the test database.

4.5.3. OJB.properties Configuration File

4.5.3.1. OJB Configuration

OJB provides two different configuration mechanisms:

1. An XML basedr eposi t ory. xm isused to define the Object/Relational Mapping. This Mapping istrandated into a
metadata dictionary at runtime. The metadata layer may also be manipulated at runtime through OJB API cals. Follow this
link to learn more about the XML repository.

2. A propertiesfile QJB. pr operti es that isresponsible for the configuration of the OJB runtime environment. It contains
information that does not change at runtime and does not contain O/R mapping related information.

The rest of this document details on this propertiesfile.

4.5.3.2. OJB.properties File
By default thisfileisnamed QJB. pr operti es andisloaded from the classpath by a J2EE compliant resource lookup:

Thread. current Thread() . get Cont ext Cl assLoader (). get Resource(get Fi |l enane());
The filename of the properties file can be changed by setting a Java system property. This can be done programmatically:

Syst em set Property(" QIB. properties", "nyOwmPropertiesFile.props");
or by setting a-D option to the JVM:

java -DQIB. properti es=myOmPropertiesFile. props ny.own. ojb. Application
All things that can be configured by OJB.properties are commented in the file itself. Have a look at the default version of this
file.

4.5.4. JDBC Types

4.5.4.1. Mapping of JDBC Typesto Java Types

OJB implements the mapping conventions for JDBC and Java types as specified by the JDBC 3.0 specification.
See the table below for details.

JDBC Type Java Type
CHAR String
VARCHAR String
LONGVARCHAR String
NUMERIC java.math.BigDecimal
DECIMAL java.math.BigDecimal
BIT boolean
BOOLEAN boolean
TINYINT byte

Page 61

error:#site:test-suite
error:#site:repository
error:#site:repository
error:#ext:ojb.properties
error:#ext:ojb.properties
error:#ext:ojb.properties

SMALLINT
INTEGER
BIGINT

REAL

FLOAT
DOUBLE
BINARY
VARBINARY
LONGVARBINARY
DATE

TIME
TIMESTAMP
CLOB

BLOB

ARRAY
DISTINCT
STRUCT

REF
DATALINK
JAVA_OBJECT

4.5.4.2. Type and Value Conversions

Introduction

short

int

long

float

double

double

byte[]

byte([]

byte[]

java.sgl.Date
java.sql.Time
java.sgl.Timestamp
Clob

Blob

Array

mapping of underlying type
Struct

Ref

java.net.URL

underlying Java class

0OJB Documentation

A typical problem with O/R tools is mismatching datatypes: a class from the domain model has an attribute of type boolean but

the corresponding database table stores this attribute in a column of type bit or int.

This example explains how OJB allows you to define FieldConver sions that do the proper translation of types and values.

The source code of this example is included in the OJB source distribution and resides in the test package

or g. apache. oj b. br oker.

The problem

Thetest classor g. apache. oj b. br oker. Arti cl e containsan attributei sSel | out Arti cl e of type boolean:

public class Article inplenents InterfaceArticle

protected int articleld;
protected String articl eNang;

/1 maps to db-colum Auslaufartikel of type int
prot ected bool ean isSelloutArticle;

Page 62

OJB Documentation

}

The coresponding table uses an int column (Ausl auf ar ti kel) to store this attribute:

CREATE TABLE Arti kel (

Artikel _Nr I NT PRI MARY KEY,

Arti kel name CHAR(60) ,
Li eferanten_Nr I NT,

Kat egori e_Nr | NT,

Li ef erei nhei t CHAR(30),
Ei nzel prei s DECI MAL
Lager best and | NT,

Best el | t eEi nhei ten | NT,

M ndest Best and | NT,

Ausl auf arti kel | NT

The Solution

OJB alows to use predefined (or self-written) FieldConversions that do the appropiate mapping. The Fi el dConver si on
interface declares two methods: j avaToSql (. ..) andsql ToJava(...):

/**

*
*

Fi el dConversi on declares a protocol for type and val ue
conver si ons between persistent classes attributes and the col ums

* of the RDBMS
* The default inplenentation does not nodify its input.
* QJB users can use predefined inplenentation and can al so
* build their own conversions that performarbitrary nappings.
* the mapping has to defined in the xm repository
* in the field-descriptor
*
* @ut hor Thormas Mahl er
*
/

public interface Fi el dConversion extends Serializable

}

/**

* convert a Java object to its SQ

* pendant, used for insert & update

*/

public abstract nbject javaToSql (Object source) throws Conversi onException
/**

* convert a SQL value to a Java (bject, used for SELECT

*/

public abstract Object sgl ToJava(Obj ect source) throws Conversi onException

The method Fi el dConver si on. sql ToJava() isacallback that is called within the OJB broker when Object attributes
are read in from JDBC result sets. If OJB detects that a FieldConversion is declared for a persistent classes attributes, it uses
the FieldConversion to do the marshalling of this attribute.

For the above mentioned problem of mapping an int column to a boolean attribute we can use the predefined FieldConversion
Bool ean2l nt Fi el dConver si on. Have alook at the code to see how it works:

public cl ass Bool ean2l nt Fi el dConversi on inpl enents Fi el dConver si on

{

private
private

private
private

/**

static |nteger
static |nteger

stati c Bool ean
stati c Bool ean

| _TRUE = new Integer(1);
| _FALSE = new I nteger(0);

B TRUE = new Bool ean(true);
B FALSE = new Bool ean(fal se);

Page 63

0OJB Documentation

: @ee Fiel dConver si on#j avaToSql (Obj ect)
puélic bj ect javaToSql (Obj ect source)
if (source instanceof Bool ean)
i f (source.equal s(B_TRUE))
return | _TRUE

el se

{
}
}

el se

return | _FALSE

return source;

}
/**

* @ee FieldConversion#sql ToJava(oj ect)
*/
public Object sql ToJava(hject source)

if (source instanceof I|nteger)
if (source.equal s(l_TRUE))
return B_TRUE
el se

return B_FALSE

el se

return source;

}
}

There are other helpful standard conversions defined in the package
or g. apache. oj b. broker . accessl ayer. conversions: Of course it is possble to map between
j ava.sql .date and java.util.date by usng a Converson. A vey interesting Conversion is the
Obj ect 2Byt eArr Fi el dConver si on it allowsto store inlined objects in varchar columns!

Coming back to our example, there is only one thing left to do: we must tell OJB to use the proper FieldConversion for the
Article class. This is done in the XML Repository. The field-descriptor alows to define a conver si on attribute declaring
the fully qualified FieldConversion class:

<I-- Definitions for test.ojb.broker.Article -->
<cl ass-descri pt or
cl ass="org. apache. oj b. br oker. Articl e"
pr oxy="dynam c"
tabl e="Arti kel "

<extent-cl ass class-ref="org. apache. oj b. br oker. BookArticle" />
<extent-cl ass class-ref="org. apache. oj b. broker. CdArticle" />

<fi el d-descri pt or
name="i sSel |l out Article"
col um="Ausl| auf arti kel "

Page 64

OJB Documentation

j dbc-t ype="1 NTEGER"
conver si on="or g. apache. oj b. br oker . accessl ayer.
conver si ons. Bool ean2l nt Fi el dConver si on"
/>

</ cl ass-descri ptor>

4.5.5. Repository File

4.5.5.1. Introduction - repository syntax

The syntax of the OJB repository xml files is defined by the repository.dtd.
The repository.dtd can be found here.

The actual repository metadta declaration is split up into several separate files, here is an excerpt of the most important files:

1.
2.
3.

6.

7.

the repository.xml. Main file for metadata declaration. Thisfileis split into several sub files using xml-Entity references.
the repository database.xml. This file contains the mapping information for database/connection handling.

the repository_internal .xml. This file contains the mapping information for the OJB internal tables. These tables are used
for implementing SequenceM anagers and persistent collections.

the repository_user.xml. This file contains mappings for the tutorial applications and may be used to hold further user
defined class mappings.

the repository_junit.xml. Thisfile contains mapping information for common OJB JUnit regression test suite. In production
environments these tables are not needed.

other repository_junit_XYZ.xml

More specific junit test mapping. In production environments these tables are not needed.

There are some more files, for more information see comment in appropriate xml-file.

4.5.5.2. descriptor-repository

The descriptor-repository is the root element of a repository.xml file. It consists of one jdbc-connection-descriptor and at |east
one class-descriptor element.

Elements

<! ELEMENT descriptor-repository (docunentation?, attribute*,

j dbc-connecti on-descriptor*, class-descriptor*)>

The documentation element can be used to store arbitrary information.

The attribute element allows to add custom attributes, e.g. for passing arbitrary properties.

The jdbc-connection-descriptor element specifies ajdbc connection for the repository.

The class-descriptor element specify o/r mapping information for persistent class.

<! ELEMENT descriptor-repository (

docunent ati on?,

attri bute*,

j dbc- connecti on-descri ptor*,
cl ass-descriptor*)

Attributes

<! ATTLI ST descri ptor-repository

version (1.0) #REQU RED

Page 65

error:#ext:ojb/repository.dtd
error:#ext:ojb/repository.xml
error:#ext:ojb/repository_database.xml
error:#ext:ojb/repository_internal.xml
error:#ext:ojb/repository_user.xml
error:#ext:ojb/repository_junit.xml

0OJB Documentation

i sol ation-level (read-unconmitted | read-comitted | repeatable-read
serializable | optimstic) "read-uncommtted"
proxy-prefetching-limt CDATA "50"

version

The version attribute is used to bind arepository.xml file to a given version of this dtd. A given OJB release will work properly
only with the repository version shipped with that relase. This strictness maybe inconvenient but it does help to avoid the most
common version conflicts.

isolation

The isolation attribute defines the default isolation level for class-descriptor that do not define a specific isolation level. This
isolation level is used within the ODMG-api and does not touch the isolation-level off the database.

proxy-pr efetching-limit

The proxy-prefetching-limit attribute specifies a default value to be applied to al proxy instances. If none is specified a default
value of 50 is used. Proxy prefetching specifies how many instances of a proxied class should be loaded in a single query when
the proxy is first accessed.

<! ATTLI ST descriptor-repository
versi on (1.0) #REQUI RED
i sol ation-1|evel (read-unconmmitted
read-conmmi tted
r epeat abl e-r ead
serial i zabl e
optimstic) "read-unconmtted"
proxy-prefetching-limt CDATA "50"

4.5.5.3. jdbc-connection-descriptor

The jdbc-connection-descriptor element specifies a jdbc connection for the repository. It is allowed to define more than one
jdbc-connection-descriptor. All class-descriptor elements are independent from the jdbc-connection-descriptors. More info
about connection handling here.

Elements

<! ELEMENT j dbc- connecti on-descri ptor (docunentation?, attribute*,
obj ect -cache?, connection-pool ?, sequence- nmanager ?) >

The object-cache element specifies the object-cache implementation class associated with this class.
A connection-pool element may be used to define connection pool properties for the specified JDBC connection.

Further a sequence-manager element may be used to define which sequence manager implementation should be used within
the defined connection.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT j dbc- connecti on-descri ptor (
docunent ati on?,
attri bute*,
obj ect - cache?
connect i on- pool ?,
sequence- manager ?)

Page 66

error:#site:connection
error:#site:object-cache

OJB Documentation

Attributes

The jdbc-connection-descriptor element contains a bunch of required and implied attributes:

<! ATTLI ST j dbc-connecti on-descri ptor
j cd-al i as CDATA #REQUI RED
defaul t-connection (true | false) "fal se”
platform (Db2 | Hsqgldb | Informi x | MsAccess | MsSQ.Server |
MSQ | Oacle | PostgreSQL | Sybase | SybaseASE |
SybaseASA | Sapdb | Firebird | Axion | NonstopSql |
Oracl e9i | MaxDB) "Hsql db"
jdbc-level (1.0] 2.0] 3.0) "1.0"
eager-rel ease (true | false) "fal se"
bat ch-node (true | false) "fal se"
useAut oCommit (0| 1| 2) "1"
i gnor eAut oComi t Exceptions (true | false) "fal se"

j ndi - dat asour ce- nane CDATA #| MPLI ED
dri ver CDATA #| MPLI ED

pr ot ocol CDATA #l MPLI ED

subpr ot ocol CDATA #| MPLI ED

dbal i as CDATA #l MPLI ED

user nanme CDATA #| MPLI ED
password CDATA #l MPLI ED

jdbcAlias

The jcdAlias attribute is a shortcut name for the defined connection descriptor. OJB uses the jcd alias as key for the defined
connections.

default-connection

The default-connection attribute used to define if this connection should used as default connection with OJB. You could
define only one connection as default connection. It is also possible to set the default connection at runtime using
PersistenceBroker Factory#setDefaultkey(...) method. If set true you can use a PB-gpi shortcut-method of the
PersistenceBroker Factory to lookup PersistenceBroker instances.

If default-connection was not set at runtime, it is mandatory that username and password is set in repository file.

platform

The platform attribute is used to define the specific RDBMS Platform. This attribute corresponds to a
org.apache.ojb.broker .platforms.Platfor mXXXImpl class. Supported databases see here. Default was Hsgldb.

jdbc-level

The jdbc-level attribute is used to specify the Jdbc compliance level of the used Jdbc driver. Allowed values are: 1.0, 2.0, 3.0.
Default was 1.0.

eager-release

The eager-release attribute was adopt to solve a problem occured when using OJB within JBoss (3.0 <= version < 3.2.2, seems

Page 67

0OJB Documentation

to be fixed in jboss 3.2.2 and higher). Only use within JBoss. DEPRECATED attribute.

batch-mode

The batch-mode attribute allow to enable JDBC connection batch support (if supported by used database), 'true’ value allows to
enable per-session batch mode, whereas ‘false’ prohibits it. PB.serviceConnectionManager.setBatchMode(...) method can be
used to switch on/off batch modus, if batch-mode was enabled. On PB.close() OJB switch off batch modus, thus you have to
do '...setBatchMode(true)' on each obtained PB instance again.

useAutoCommit
The useAutoCommit attribute allow to set how OJB uses the autoCommit state of the used connections. The default mode is 1.
When using mode O or 2 with the PB-api, you must use PB transaction demarcation.

e 0-0OJB ignoresthe autoCommit setting of the connection and does not try to change it. This mode could be helpful if the
connection won't let you set the autoCommit state (e.g. using datasources within an application server).

e 1- SetautoCommit explicitly to true when a connection was created and temporary set to false when necessary (default
mode).

e 2- SetautoCommit explicitly to false when a connection was created.

ignoreAutoCommitExceptions

If the ignoreAutoCommitExceptions attribute is set to true, all exceptions caused by setting autocommit state, will be ignored.
Default mode is false.

jndi-datasour ce-name
If a jndi-datasource-name for JNDI based lookup of Jdbc connections is specified, the four attributes driver, protocol,
subprotocol, and dbalias used for Jdbc DriverManager based construction of Jdbc Connections must not be declared.

username

The username and password attributes are used as credentials for obtaining a jdbc connections.
If users don't want to keep user/password information in the repository.xmil file, they can pass user/password using a PBKey to
obtain a PersistenceBroker. More info see FAQ.

4.5.5.4. connection-pool

The connection-pool element specifies the connection pooling parameter. More info about the connection handling can be
found here.

<! ELEMENT connecti on-pool (docunentation?)
>

Valid attributes for the connection-pool element are:

<! ATTLI ST connecti on- pool

maxAct i ve CDATA #I MPLI ED

max| dl e CDATA #1 MPLI ED

maxWai t CDATA #I MPLI ED

m nEvi ctableldl eTimeMIIlis CDATA #I MPLI ED

nunifest sPer Evi cti onRun CDATA #| MPLI ED

t est OnBor r ow (true | false) #l MPLIED
t est OnRet urn (true | false) #l MPLIED
test Wil eldle (true | false) #l MPLIED
ti meBet weenEvi cti onRunsM Il i s CDATA #| MPLI ED
whenExhaust edAct i on (0] 1] 2) # MPLIED
val i dat i onQuery CDATA #| MPLI ED

Page 68

error:#site:faq
error:#site:connection
error:#site:connection

OJB Documentation

| ogAbandoned (true | false) #l MPLIED
r enoveAbandoned (true | false) #l MPLIED
r enoveAbandonedTi meout CDATA #1 MPLI ED

>

maxActive is the maximum number of connections that can be borrowed from the pool at one time. When non-positive, thereis
no limit.

maxl dle controls the maximum number of connections that can sit idle in the pool at any time. When non-positive, there is no
limit

maxWait - the maximum time block to get connection instance from pool, after that exception is thrown. When non-positive,
block till last judgement

whenExhaustedAction

e 0-fall when pool isexhausted
e 1-block when pool is exhausted
e 2-grow when pool is exhausted

testOnBorrow when true the pool will attempt to validate each object before it is returned from the pool.
testOnReturn set to true will force the pool to attempt to validate each object beforeit is returned to the pool.

testWhileldle indicates whether or not idle objects should be validated. Objects that fail to validate will be dropped from the
pool.

timeBetweenEvictionRunsMillis indicates how long the eviction thread should sleep before "runs’ of examining idle objects.
When non-positive, no eviction thread will be launched.

minEvictableldleTimeMillis specifies the minimum amount of time that a connection may sit idle in the pool before it is
eligable for eviction due to idle time. When non-positive, no connection will be dropped from the pool due to idle time alone
(depends on timeBetweenEvictionRunsMillis > 0)

numTestsPer EvictionRun - the number of connections to examine during each run of the idle object evictor thread (if any)

validationQuery alows to specify a validation query used by the ConnectionFactory implementations using connection
pooling, to test a requested connection (e.g. "select 1 from dua™) before leave the pool (used by ConnectionFactoryDBCPImpl
and ConnectionFactoryPooledlmpl).

If not set, only connection.isClosed() will have been called before the connection was delivered.

logAbandoned is only supported when using org.apache.ojb.broker.accesslayer.ConnectionFactoryDBCPImpl
ConnectionFactory implementation. Then it is a flag to log stack traces for application code which abandoned a Statement or
Connection. Defaults to false. Logging of abandoned Statements and Connections adds overhead for every Connection open or
new Statement because a stack trace has to be generated.

DEPRECATED attribute!

removeAbandoned and removeAbandonedTimeout When using
org.apache.ojb.broker.accesslayer.ConnectionFactoryDBCPImpl ConnectionFactory implementation, the removeAbandoned
flag controls the removal of abandoned connections if they exceed the removeAbandonedTimeout. Set to true or false, default
false. If set to true a connection is considered abandoned and eligible for removal if it has been idle longer than the
removeAbandonedTimeout. Setting this to true can recover db connections from poorly written applications which fail to close
a connection.

DEPRECATED attributes!

4.5.5.5. sequence-manager

The sequence-manager element specifies the sequence manager implementation used for key generation. All sequence
manager implementations shipped with OJB can be found in the org.apache.ojb.broker.util.sequence package. If no sequence

Page 69

0OJB Documentation

manager is defined, OJB uses the default one. More info about sequence key generation here.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT sequence- nanager (
docunent ati on?,

attributer)
>

The className attribute represents the full qualified class name of the desired sequence manager implementation - it is
mandatory when using the sequence-manager element. All sequence manager implementations you find will under
org.apache.ojb.broker .util.sequence package named as SequenceManager XXXImpl

More info about the usage of the Sequence Manager implementations can be found here.

<! ATTLI ST sequence- manager
cl assNane CDATA #REQUI RED
>

4.5.5.6. obj ect-cache

The object-cache element can be used to specify the ObjectCache implementation used by OJB. There are three levels of
declaration:

e inOJB.propertiesfile, to declare the standard (default) ObjectCache implementation
 on jdbc-connection-descriptor level, to declare ObjectCache implementation on a per connection/user level
« on class-descriptor level, to declare ObjectCache implementation on a per class level

The priority of the declared object-cache elements are:
per class > per jdbc descriptor > standard

E.g. if you declare ObjectCache implementation 'my.cacheDef' as standard, set ObjectCache implementation 'my.cacheA' in
class-descriptor for class A and class B does not declare an object-cache element. Then OJB use 'my.cacheA' as ObjectCache
for class A and 'my.cacheDef’ for class B.

<! ELEMENT obj ect-cache (docunentation?, attribute*)>
Use the custom-attribute element to pass implementation specific properties.

<! ATTLI ST obj ect-cache

class CDATA #REQUI RED
>

Attribute 'class specifies the full qualified class name of the used ObjectCache implementation.

4.5.5.7. custom attribute

An attribute element allows arbitrary name/value pairs to be represented in the repository. See the repository.dtd for details on
which elements support it.

<! ELEMENT attribute EMPTY>
The attribute-name identifies the name of the attribute.

The attribute-value identifies the value of the attribute.

<I ATTLI ST attribute
attri but e- nane CDATA #REQUI RED
attri but e-val ue CDATA #REQUI RED

Page 70

error:#site:sequence-manager
error:#site:sequence-manager
error:#ext:ojb/ojb.properties
error:#ext:ojb/repository.dtd

OJB Documentation

>

4.5.5.8. class-descriptor

For interfaces or abstract classes a class-descriptor holds a sequence of extent-class elements which specify the types
extending this class.
Concrete base classes may specify a sequence of extent-class elements, naming the derived classes.

For concrete classes it must have field-descriptors that describe primitive typed instance variables. References to other
persistent entity classes are specified by reference-descriptor elements. Collections or arrays attributes that contain other
persistent entity classes are specified by collection-descriptor elements
A class-descriptor may contain user defined custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT cl ass-descriptor (
(
docunent ati on?,
ext ent - cl ass+
attribute*) |

docunent ati on?,

obj ect - cache?
extent - cl ass*,

fiel d-descriptor+,

ref erence-descriptor*,
col I ecti on-descri ptor*,
i ndex-descri ptor*,
attri bute*,

i nsert-procedure?,
updat e- pr ocedur e?,

del et e- procedure?)

)

>

The class attribute contains the full qualified name of the specified class. Asthis attribute is of the XML type ID there can only
be one class-descriptor per class.

The isolation-level attribute specifies the transactional isolation to be used for this class on ODMG-level.

The isolation-level does not touch the jdbc-connection isolation level. It's completely independend from the database connection setting.

If the proxy attribute is set, proxies are used for all loading operations of instances of this class. If set to dynamic, dynamic
proxies are used. If set to another value this value is interpreted as the full-qualified name of the proxy class to use. More info
about using of proxies here.

The proxy-prefetching-limit attribute specifies alimit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The schema attribute may contain the database schema owning the table mapped to this class.
The table attribute speciefies the table name this class is mapped to.

The row-reader attribute may contain a full qualified class name. This class will be used as the RowReader implementation
used to materialize instances of the persistent class.

The extends attribute ************TQDQ: desCription*** ****** %%

The accept-locks attribute specifies whether implicit locking should propagate to this class. Currently relevant for the ODMG
layer only.

Page 71

error:#site:advanced-technique/extents
error:#site:advanced-technique/extents
error:#site:basic-technique/using-proxy
error:#site:advanced-technique/using-rowreader

0OJB Documentation

The optional initialization-method specifies a no-argument instance method that is invoked after reading an instance from &
database row. It can be used to do initialization and validations.

The optional factory-class specifies a factory class that that is to be used instead of a no argument constructor when new
objects are created. If the factory class is specified, then the factory-method also must be defined. It refers to a static
no-argument method of the factory class that returns a new instance.

The refresh attribute can be set to true to force OJB to refresh instances when loaded from cache. Means all field values
(except references) will be replaced by values retrieved from the database. It's set to false by default.

<! ATTLI ST cl ass-descri ptor
class | D #REQUI RED
i solation-1evel (read-uncommtted | read-commtted
repeat abl e-read | serializable | optimstic) "read-uncommtted"
proxy CDATA #| MPLI ED
proxy-prefetching-limt CDATA #l MPLI ED
schema CDATA #| MPLI ED
t abl e CDATA #| MPLI ED
row reader CDATA #| MPLI ED
ext ends | DREF #| MPLI ED
accept-locks (true | false) "true"
initialization-nethod CDATA #l MPLI ED
factory-class CDATA #l MPLI ED
factory-nmet hod CDATA #l MPLI ED
refresh (true | false) "fal se"
>

4.5.5.9. extent-class

An extent-class element is used to specify an implementing class or a derived class that belongs to the extent of all instances of
the interface or base class.

<! ELEMENT ext ent-cl ass EMPTY>

The class-ref attribute must contain a fully qualified classname and the repository file must contain a class-descriptor for this
class.

<! ATTLI ST extent-cl ass
cl ass-ref | DREF #REQUI RED
>

4.5.5.10. field-descriptor

A field descriptor contains mapping info for a primitive typed attribute of a persistent class.
A field descriptor may contain custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT fi el d-descriptor (docunentation?, attribute*)>

The id attribute is optional. If not specified, OJB internally sorts field-descriptors according to their order of appearance in
the repository file.

If adifferent sort order is intended the id attribute may be used to hold a unique number identifying the decriptors position in
the sequence of field-descriptors.

The order of the numbers for the field-descri ptors must correspond to the order of columnsin the mapped table.

The name attribute holds the name of the persistent classes attribute. More info about persistent field handling.

Page 72

error:#site:advanced-technique/persistent-field

OJB Documentation

The table attribute may specify atable different from the mapped table for the persistent class. (currently not implemented).
The column attribute specifies the column the persistent classesfield is mapped to.

The jdbc-type attribute specifies the JDBC type of the column. If not specified OJB tries to identify the JDBC type by
inspecting the Java attribute by reflection - OJB use the javaljdbc mapping desribed here.

The primarykey specifiesif the column isaprimary key column, default value is false.
The nullable attribute specifies if the column may contain null values.
The indexed attribute specifiesif there is an index on this column

The autoincrement attribute specifies if the values for the persistent attribute should be automatically generated by OJB. More
info about sequence key generation here.

The sequence-name attribute can be used to state explicitly a sequence name used by the sequence manager implementations.
Check the javadocs of the used sequence manager implementation to get information if this is a mandatory attribute. OJB
standard sequence manager implementations build a sequence name by its own, if the attribute was not set. More info about
sequence key generation here.

The locking attribute is set to true if the persistent attribute is used for optimistic locking. More about optimistic locking. The
default valueisfalse.

The updatelock attribute is set to false if the persistent attribute is used for optimistic locking AND the doms should update the
lock column itself. The default is true which means that when locking is true then OJB will update the locking fields. Can only
be set for TIMESTAMP and INTEGER columns.

The default-fetch attribute specifies whether the persistent attribute belongs to the JDO default fetch group.

The conversion attribute contains a fully qualified class name. This class must implement the interface
or g. apache. oj b. accessl ayer. conversi ons. Fi el dConversi on. A FiedConversion can be used to
implement conversions between Java- attributes and database columns. More about field conversion.

The length attribute can be used to specify alength setting if required by the jdbc-type of the underlying database column.

The precision attribute can be used to specify a precision setting, if required by the jdbc-type of the underlying database
column.

The scale attribute can be used to specify a sclae setting, if required by the jdbc-type of the underlying database column.

The access attribute specifies the accessibility of the field. Fields marked as readonly are not to modified. readwrite marks
fields that may be read and written to. anonymous marks anonymous fields.

An anonymous field has a database representation (column) but no corresponding Java attribute. Hence the name of such &
field does not refer to a Java attribute of the class, but is used as a unique identifier only. More info about anonymous keys
here.

<! ATTLI ST fi el d-descri pt or

i d CDATA #l MPLI ED

name CDATA #REQUI RED

t abl e CDATA #| MPLI ED

col utm CDATA #REQUI RED

jdbc-type (BIT | TINYINT | SMALLINT | INTEGER | BIG NT | DOUBLE |
FLOAT | REAL | NUMERIC | DECIMAL | CHAR | VARCHAR |
LONGVARCHAR | DATE | TIME | TIMESTAMP | BI NARY |
VARBI NARY | LONGVARBI NARY | CLOB | BLOB) #REQUI RED

primarykey (true | false) "fal se"

nul l able (true | false) "true"

i ndexed (true | false) "fal se"

aut oi ncrenent (true | false) "fal se”

Page 73

error:#site:jdbc-types
error:#site:sequence-manager
error:#ext:javadoc
error:#site:sequence-manager
error:#site:faq/optimistic-locking
error:#site:jdbc-types/field-conversion
error:#site:anonymous-keys
error:#site:anonymous-keys

0OJB Documentation

sequence- name CDATA #| MPLI ED

| ocking (true | false) "fal se"

update-lock (true | false) "true"

default-fetch (true | false) "fal se"

conver si on CDATA #| MPLI ED

| engt h CDATA #l| MPLI ED

preci si on CDATA #l MPLI ED

scal e CDATA #l MPLI ED

access (readonly | readwite | anonynous) "readwite"
>

4.5.5.11. reference-descriptor

A reference-descriptor contains mapping info for an attribute of a persistent class that is not primitive but references another
persistent entity Object. More about 1:1 references here.

A foreignkey element contains information on foreign key columns that implement the association on the database level.

<! ELEMENT reference-descriptor (foreignkey+)>

The name attribute holds the name of the persistent classes attribute. Depending on the used PersistendField implementation,
there must be e.g. an attribute in the persistent class with this name or a JavaBeans compliant property of this name.

The class-ref attribute contains a fully qualified class name. This class is the Object type of the persistent reference attribute.
Asthisis an IDREF there must be a class-descriptor for this class in the repository too.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for this attribute.

The proxy-prefetch-limit attribute specifies a limit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The refresh attribute can be set to true to force OJB to refresh object references on instance loading.

This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects itself may provided by the cache. To
refresh the objects set the refresh attribute of class-descriptor.

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on loading the persistent
object. If set to false the reference attribute is set to null. In this case the user isresponsible to fill the reference attribute.
More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on storing the persistent object.
More info about the auto-XX X settings here.

This attribute must be set to false if using the OTM, ODMG or JDO layer.

The auto-del ete attribute specifies whether OJB automatically deletes this reference attribute on deleting the persistent object.
More info about the auto-XX X settings here.

This attribute must be set to false if using the OTM, ODMG or JDO layer.

The otm-dependent attribute specifies whether the OTM layer automatically creates the referred object or deletes it if the
reference field is set to null. Also otm-dependent references behave as if auto-update and auto-del ete were set to true, but the
auto-update and auto-del ete attributes themself must be always set to false for use with OTM layer.

Page 74

error:#site:basic-technique/one-to-one
error:#site:advanced-technique/persistent-field
error:#site:basic-technique/auto-retrieve
error:#site:basic-technique/cascading
error:#site:basic-technique/cascading

OJB Documentation

<! ATTLI ST ref erence-descri ptor
nane CDATA #REQUI RED
cl ass-ref | DREF #REQUI RED

proxy (true | false) "fal se"
proxy-prefetching-limt CDATA #l MPLI ED
refresh (true | false) "fal se"

auto-retrieve (true | false) "true"

aut o-update (true | false) "fal se"

auto-delete (true | false) "fal se"

ot m dependent (true | false) "fal se"
>

4.5.5.12. foreignkey

A foreignkey element contains information on a foreign-key persistent attribute that implement the association on the database
level.

<! ELEMENT f orei gnkey EMPTY>
The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor used as aforeign key.

Exactly one of these attributes must be specified.

<! ATTLI ST f orei gnkey
field-id-ref CDATA #l MPLI ED
field-ref CDATA #| MPLI ED

>

4.5.5.13. collection-descriptor

A collection-descriptor contains mapping info for aliCollection- or Array-attribute of a persistent class that contains persistent
entity Objects. See more about 1:n and m:n references.

The inver se-foreignkey elements contains information on foreign-key attributes that implement the association on the database
level.

The fk-pointing-to-this-class and fk-pointing-to-el ement-class elements are only needed if the Collection or array implements a
m:n association. In this case they contain information on the foreign-key columns of the intermediary table.

Use the custom+-attribute element to pass implementation specific properties.

<! ELEMENT col | ecti on-descriptor (
docunent ati on?,
or der by*,
i nverse-forei gnkey*,
fk-poi nting-to-this-class*,
f k- poi nting-to-el ement -cl ass*,
attribute*)>

The name attribute holds the name of the persistent classes attribute. More info about persistent field handling.

The collection-class may hold a fully qualified class name. This class must be the Java type of the Collection attribute. This
attribute must only specified if the attribute typeisnot aj ava. uti |l . Col | ecti on (or subclass) or Array type. It is aso
possible to use non Collection or Array type user defined "collection” classes. More info see section manageabl e collection.

The element-class-ref attribute contains a fully qualified class name. This class is the Object type of the elements of persistent
collection or Array attribute. Asthisis an IDREF there must be a class-descriptor for this classin the repository too.

The orderby attribute may specify afield of the element class. The Collection or Array will be sorted according to the specified

Page 75

error:#site:basic-technique/one-to-n
error:#site:basic-technique/m-to-n
error:#site:advanced-technique/persistent-field
error:#site:advanced-technique/manageable-collection

0OJB Documentation

attribute. The sort attribute may be used to specify ascending or descending order for this operation.

The indirection-table must specify the name of an intermediary table, if the persistent collection attribute implements a m:n
associ ation.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for this attribute. More about
using proxy here.

The proxy-prefetch-limit attribute specifies a limit to the number of elements loaded on a proxied reference. When the first
proxied element is loaded, a number up to the proxy-prefetch-limit will be loaded in addition.

The refresh attribute can be set to true to force OJB to refresh object references on instance loading.

This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects itself may provided by the cache. To
refresh the objects use the refresh attribute in class-descriptor.

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on loading the persistent
object. If set to false the reference attribute is set to null. In this case the user is responsible to fill the reference attribute.
More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on storing the persistent object.
More info about the auto-XX X settings here.

This attribute must be set to false if using the OTM, ODMG or JDO layer.

The auto-del ete attribute specifies whether OJB automatically deletes this reference attribute on deleting the persistent object.
More info about the auto-XX X settings here.

This attribute must be set to false if using the OTM, ODMG or JDO layer.

The otm-dependent attribute specifies whether the OTM layer automatically creates collection elements that were included into
the collection, and deletes collection elements that were removed from the collection. Also otm-dependent references behave
as if auto-update and auto-del ete were set to true, but the auto-update and auto-del ete attributes themself must be always set to
false for use with OTM layer.

<! ATTLI ST col | ecti on-descri ptor
name CDATA #| MPLI ED
col I ection-cl ass CDATA #l MPLI ED
el enent - cl ass-ref | DREF #REQUI RED
order by CDATA #l MPLI ED
sort (ASC | DESC) "ASC

i ndi recti on-tabl e CDATA #l MPLI ED

proxy (true | false) "fal se"
proxy-prefetching-Iimt CDATA #l MPLI ED
refresh (true | false) "fal se"

auto-retrieve (true | false) "true"

aut o-update (true | false) "fal se"

auto-del ete (true | false) "fal se”

ot m dependent (true | false) "fal se”
>

4.5.5.14. inver se-for eignkey

Page 76

error:#site:basic-technique/using-proxy
error:#site:basic-technique/auto-retrieve
error:#site:basic-technique/cascading
error:#site:basic-technique/cascading

OJB Documentation

A inverse-foreignkey element contains information on a foreign-key persistent attribute that implement the association on the
database level.

<! ELEMENT i nverse-forei gnkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor used as a foreign key.
Exactly one of these attributes must be specified.

<IATTL ST i nverse-forei gnkey
el d-id-ref CDATA #l MPLI ED
fleld ref CDATA #| MPLI ED
>

4.5.5.15. fk-pointing-to-this-class
A fk-pointing-to-this-class element contains information on aforeign-key column of an intermediary table in am:n scenario.

<! ELEMENT f k- poi nting-to-this-class EMPTY>
The column attribute specifies the foreign-key column in the intermediary table that points to the class holding the collection.

<! ATTLI ST fk-pointing-to-this-class
col um CDATA #REQUI RED
>

4.5.5.16. fk-pointing-to-element-class

A fk-pointing-to-element-class element contains information on a foreign-key column of an intermediary table in a m:n
scenario.

<! ELEMENT f k- poi nting-to-el enent-cl ass EMPTY>

The column attribute specifies the foreign-key column in the intermediary table that points to the class of the collection
elements.

<! ATTLI ST fk- poi nting-to-el enent-class
col um CDATA #REQUI RED
>

4.5.5.17. query-customizer

A query enhancer element to enhance the 1:n query, e.g. to modify the result objects of a query. More info about customizing
collection queries.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT query-custom zer (
docunent ati on?,
attribute*)>

<! ATTLI ST query-custom zer
cl ass CDATA #REQUI RED
>

4.5.5.18. index-descriptor

An index-descriptor describes an index by listing its columns. It may be unique or not.

<! ELEMENT i ndex-descri ptor (docunmentation?, index-colum+)>

<! ATTLI ST i ndex-descri pt or

Page 77

error:#site:advanced-technique/query-customizer
error:#site:advanced-technique/query-customizer

0OJB Documentation

name CDATA #REQUI RED
uni que (true | false) "fal se">

4.5.5.19. index-column

An index-column isjust the name of a column in an index.

<! ELEMENT i ndex- col unmm (docunentati on?) >

<! ATTLI ST i ndex-col um
name CDATA #REQUI RED>

4.5.5.20. Stored Procedur e Support

OJB supports stored procedures for insert, update and delete operations. How to use stored procedures within OJB can be
found here.

insert-procedure
| dentifies the procedure/function that should be used to handle insertions for a specific class-descriptor.
The nested argument elements define the argument list for the procedure/function as well as the source for each argument.

Use the custom+-attribute element to pass implementation specific properties.

<! ELEMENT i nsert-procedure
(docunentati on?, (runtine-argument | constant-argunent)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include a return value, then do not specify avalue for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor are to be passed to the
procedure/ function. If include-all-fields is 'true’, any nested ‘argument’ elements will be ignored. In this case, values for all
field-descriptors will be passed to the procedure/function. The order of values that are passed to the procedure/function will
match the order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then values will be
passed to the procedure/function based on the information in the nested ‘argument’ elements.

<! ATTLI ST i nsert-procedure

name CDATA #REQUI RED

return-field-ref CDATA #l MPLI ED

i nclude-all-fields (true | false) "fal se"
>

update-procedure
| dentifies the procedure/function that should be used to handle updates for a specific class-descriptor.
The nested argument elements define the argument list for the procedure/function as well as the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT updat e- pr ocedur e
(docunentati on?, (runtine-argunment | constant-argunent)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include areturn value, then do not specify avalue for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor are to be passed to the

Page 78

error:#site:stored-procedures
error:#site:stored-procedures

OJB Documentation

procedure/ function. If include-all-fields is 'true’, any nested ‘argument’ elements will be ignored. In this case, values for all
field-descriptors will be passed to the procedure/function. The order of values that are passed to the procedure/function will
match the order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then values will be
passed to the procedure/function based on the information in the nested ‘argument’ elements.

<! ATTLI ST updat e- pr ocedur e

name CDATA #REQUI RED

return-field-ref CDATA #l MPLI ED

i nclude-all-fields (true | false) "fal se"
>

delete-procedure
| dentifies the procedure/function that should be used to handle deletions for a specific class-descriptor.

The nested runtime-argument and constant-argument elements define the argument list for the procedure/function as well as
the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT del et e- procedur e
(docunentati on?, (runtine-argument | constant-argunent)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the procedure/function. If the
procedure/ function does not include areturn value, then do not specify avalue for this attribute.

The include-pk-only attribute indicates if all field-descriptors in the corresponding class-descriptor that are identified as being
part of the primary key are to be passed to the procedure/function. If include-pk-only is'true', any nested ‘argument’ elements
will be ignored. In this case, values for al field-descriptors that are identified as being part of the primary key will be passed to
the procedure/function. The order of values that are passed to the procedure/function will match the order of field-descriptors
on the corresponding class-descriptor. If include-pk-only is false, then values will be passed to the procedure/ function based
on the information in the nested 'argument’ elements.

<! ATTLI ST del et e- procedur e

name CDATA #REQUI RED

return-field-ref CDATA #l MPLI ED

i ncl ude-pk-only (true | false) "fal se"
>

runtime-argument
Defines an argument that is passed to a procedure/function. Each argument will be set to a value from a field-descriptor or null.

Use the custom-attribute element to pass implementation specific properties.

<! ELEMENT runti me- ar gunent
(docunentati on?, attribute*)>

The field-ref attribute identifies the field-descriptor in the corresponding class-descriptor that provides the value for this
argument. If this attribute is unspecified, then this argument will be set to null.

<! ATTLI ST runti me- ar gunent
field-ref CDATA #l MPLI ED
return (true | false) "fal se"
>

constant-ar gument

Defines a constant value that is passed to a procedure/function.

Page 79

0OJB Documentation

Use the custom+-attribute element to pass implementation specific properties.

<! ELEMENT const ant - ar gunent
(docunent ati on?, attribute*)>

The value attribute identifies the value that is passed to the procedure/ function.

<! ATTLI ST const ant - ar gunent

val ue CDATA #REQUI RED
>

4.5.6. Basic Technique

4.5.6.1. Mapping 1:1 associations

As a sample for a simple association we take the reference from an article to its productgroup.
This association is navigable only from the article to its productgroup. Both classes are modelled in the following class
diagram. This diagram does not show methods, as only attributes are relevant for the O/R mapping process.

ProductGroup Article
private Wector allArticlesinG roup protected int article |1d
private String de scription protected String article Name
private int groupld protected boolean isSe lloutArticle
private String grouphame protected int minimumitock

protected int orderedUnits

protected double price

protected Inte face ProductC roup productG roup
protected int productG roupld

protected int stock

protected int supplierid

protected String unit

1:1 association

The association is implemented by the attribute pr oduct Gr oup. To automatically maintain this reference OJB relies on
foreignkey attributes. The foreign key containing the gr oupl d of the referenced pr oduct gr oup is stored in the attribute
product G oupl d. Toavoid FK attribute in persistent object class see section about anonymous keys.

Thisisthe DDL of the underlying tables:

CREATE TABLE Arti kel
(

Arti kel Nr I NT NOT NULL PRI MARY KEY,
Arti kel nanme VARCHAR(60) ,

Li eferanten_ Nr | NT,

Kat egori e Nr | NT,

Li ef erei nhei t VARCHAR(30) ,

Ei nzel prei s FLOAT,

Lager best and | NT,

Best el | t eEi nhei ten | NT,

M ndest Best and | NT,

Ausl auf arti kel | NT

)
CREATE TABLE Kat egori en

Kat egori e_Nr I NT NOT NULL PRI MARY KEY,
Kat egor i eNane VARCHAR(20) ,
Beschr ei bung VARCHAR(60)

)
To declare the foreign key mechanics of this reference attribute we have to add a reference-descriptor to the class-descriptor of

Page 80

error:#site:advanced-technique/anonymous-keys

OJB Documentation

the Article class. This descriptor contains the following information:

« Theattribute implementing the association (nanme="pr oduct G- oup") is productGroup.

« Thereferenced object isof type (cl ass-ref =" or g. apache. oj b. br oker. Product G oup")
or g. apache. oj b. br oker. Product G oup.

« A reference-descriptor contains one or more foreignkey elements. These elements define foreign key attributes. The
element

<forei gnkey field-ref="product G oupld"/>
contains the name of the field-descriptor describing the foreignkey fields. The FieldDescriptor with the name
"productGroupld" describes the foreignkey attribute productGroupl d:

<fi el d-descri pt or
nanme="pr oduct G oupl d"
col um="Kat egori e_Nr"
j dbc-t ype="1 NTEGER"

See the following extract from the repository.xml file containing the Article ClassDescriptor:

<I-- Definitions for org.apache.ojb.ojb. broker.Article -->
<cl ass-descri ptor

cl ass="org. apache. oj b. br oker. Articl e"

pr oxy="dynam c"

tabl e="Arti kel "

<extent-cl ass class-ref="org. apache. oj b. br oker. BookArticle" />
<extent-cl ass class-ref="org. apache. oj b. broker. CdArticle" />
<fi el d-descri pt or
name="articl el d"
col um="Arti kel Nr"
j dbc-type="I| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
nane="articl eNane"
col um="Arti kel nane"
/ j dbc-t ype=" VARCHAR"
>

<fi el d-descri pt or
nane="supplierld"
col um="Li eferanten_Nr"
j dbc-type="1| NTEGER'

/>

<fi el d-descri pt or
nanme="pr oduct G oupl d"
col um="Kat egori e_Nr"
/ j dbc-t ype="1 NTEGER"
>

<référence-descriptor
nane="pr oduct G oup"

cl ass-ref="org. apache. oj b. br oker. Product G oup"
>

<forei gnkey field-ref="product G oupld"/>
</reference-descri ptor>
</ cl ass-descri pt or>
This example provides unidirectional navigation only. Bidirectional navigation may be added by including a reference from a
ProductGroup to a single Article (for example, a sample article for the productgroup). To accomplish this we need to perform
the following steps:

1. Addaprivate Article attribute named sanpl eArti cl e totheclass Pr oduct G oup.
2. Add aprivateint attribute named sanpl eAr ti cl el d to the ProductGroup class representing the foreign key. To avoid

Page 81

0OJB Documentation

FK attribute in persistent object class see section about anonymous keys.
3. Addacolumn SAMPLE_ARTI CLE I D | NT to thetable Kat egori en.
4. Add aFieldDescriptor for the foreignkey attribute to the ClassDescriptor of the Class ProductGroup:

<fiel d-descriptor
nane="sanpl eArticl el d"
col um="SAMPLE_ARTI CLE_I D'
j dbc-type="1| NTEGER'

[>

1. Add aReferenceDescriptor to the ClassDescriptor of the Class ProductGroup:

<r ef erence-descri pt or

>

nane="sanpl eArticl e"
cl ass-ref ="org. apache. oj b. broker. Articl e"

<forei gnkey field-ref="sanpleArticleld""/>

</ ref erence-descri ptor>

When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK

1:1 auto-xxx setting

General info about the aut 0- xxx and pr oxy attributes can be found here

auto-retrieve
See here

auto-update

none On updating or inserting of the main object with Per si st enceBr oker . store(...), thereferenced object will
NOT be updated by default. The reference will not be inserted or updated, the link to the reference (foreign key value to the
reference) on the main object will not be assigned automatically. The user hasto link the main object and to store the
reference before the main object to avoid violation of referential integrity.

link On updating or inserting of the main object with Per si st enceBr oker. store(. ..), the FK assignment on the
main object was done automatic. OJB reads the PK from the referenced object and sets these values as FK in main object.
But the referenced object remains untouched. If no referenced object isfound, the FK will be nullified. (Oninsertitis
allowed to set the FK without populating the referenced object)

object On updating or inserting of the main object with Per si st enceBr oker. store(. ..), thereferenced object
will be stored first, then OJB does the same asin link.

false Is equivalent to link.

true Is equivalent to object.

auto-delete

none On deleting an object with Per si st enceBr oker . del et e(...) thereferenced object will NOT be touched.
link I's equivalent to none.

object On deleting an object with Per si st enceBr oker . del et e(. . .) thereferenced object will be deleted too.
false Is equivalent to none.

true Is equivalent to object.

4.5.6.2. Mapping 1:n associations

We will take a different perspective from the previous exmaple for a 1:n association. We will associate multiple Articles with a
single ProductGroup. This association is navigable only from the ProductGroup to its Article instances. Both classes are
modelled in the following class diagram. This diagram does not show methods, as only attributes are relevant for the O/R
mapping process.

Page 82

error:#site:advanced-technique/anonymous-keys
error:#site:faq/primitive-null

OJB Documentation

ProductG roup
private YWectar allArticlesinG roup

Article

private String de scription
private int groupld
private String grouphame

protected int article1d

protected 5tring article Hame
protected boolean isSe lloutArticle
protected int minimumstock
protected int orderedUnits
protected double price

protected Inte face ProductG roup productG roup
protected int productG roupld
protected int stock

protected int supplierid
protected String unit

1:n association

The association is implemented by the Vect or attribute al | Arti cl esl nG oup on the ProductGroup class. As in the
previous example, the Article class contains a foreignkey attribute named productGroupld that identifies an Article's

ProductGroup. The Database table are the same as above.

To declare the foreign key mechanics of this collection attribute we must add a CollectionDescriptor to the ClassDescriptor of

the ProductGoup class. This descriptor contains the following information:
1. The attribute implementing the association (nanme="al | Arti cl esl nG oup")

2. Theclass of the elementsin the collection (el enent - cl ass-ref ="or g. apache. oj b. broker. Article")
3. The name of field-descriptor of the element class used as foreign key attributes are defined in inverse-foreignkey elements:

<i nverse-forei gnkey field-ref="product G oupld"/>

Thisisagain pointing to the field-descriptor for the attribute pr oduct Goupl d in class Article.
4. optional attributes to define the sort order of the retrieved collection: or der by="arti cl el d* sort="DESC'.

See the following extract from the repository.xml file containing the ProductGoup ClassDescriptor:

<l-- Definitions for org.apache. ojb. broker. Product G oup -->

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Product G oup"
t abl e="Kat egori en"

<fi el d-descri pt or
nanme="gr oupl d"
col um="Kat egori e _Nr"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
name="gr oupNane"
col um="Kat egor i eNane"
j dbc-t ype=" VARCHAR"

>
<fi el d-descri pt or
nane="descri pti on"
col um="Beschr ei bung"
j dbc-t ype=" VARCHAR"
>

<col | ecti on-descri pt or
nane="al | Articl esl nG oup"

el ement - cl ass-ref="org. apache. oj b. broker. Articl e"

orderby="articleld"
sort =" DESC'
>
<i nverse-forei gnkey field-ref="product G oupld"/>
</ col | ecti on-descri ptor>
</ cl ass-descri ptor>

Page 83

0OJB Documentation

With the mapping shown above OJB has two possibilities to load the Articles belonging to a ProductGroup:

1. loading all Articles of the ProductGroup immediately after loading the ProductGroup. This is done with two SQL-calls:
one for the ProductGroup and one for all Articles.

2. if Articleisaproxy (using proxy classes), OJB will only load the keys of the Articles after the ProductGroup. When
accessing an Article-proxy OJB will have to materialize it with another SQL-Call. Loading the ProductGroup and all it's
Articleswill thus produce n+2 SQL-calls: one for the ProductGroup, one for keys of the Articles and one for each Article.

Both approaches have their benefits and drawbacks:

« A.issuitable for asmall number of related objectsthat are easily instantiated. It's efficient regarding DB-calls. The major
drawback is the amount of dataloaded. For example to show alist of ProductGroups the Articles may not be needed.

« B.isbest used for alarge number of related heavy objects. This solution loads the objects when they are needed ("lazy
loading"). The price to pay isaDB-call for each object.

Further down a third solution using a single proxy for a whole collection will be presented to circumvent the described
drawbacks.

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the used type automatically, so
there is no need to declare it in the repository file. But in some cases the default behaviour of OJB is undesired. Please read
here for more information.

When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK

1:n auto-xxx setting
General info about the auto-xxx and proxy attributes can be found here.

auto-retrieve
See here

auto-update

« none On updating or inserting of the main object with Per si st enceBr oker. store(...),thereferenced objects are
NOT updated by default. The referenced objects will not be inserted or updated, the referenced objects will not be linked
(foreign key assignment on referenced objects) to the main object automatically. The user hasto link and to store the
referenced objects after storing the main object to avoid violation of referential integrity.

 link On updating or inserting of the main object with Per si st enceBr oker . store(...), thereferenced objects are
NOT updated by default. The referenced objects will not be inserted or updated, but the referenced objects will be linked
automatically (FK assignment) the main object.

« object On updating or inserting of the main object with Per si st enceBr oker. store(...),thereferenced objects
will be linked and stored automatically.

« falselsequivalenttolink.

« truelsequivalent to object.

auto-delete

« none On deleting an object with Per si st enceBr oker . del et e(. . .) thereferenced objects are NOT touched. This
may lead to violation of referential integrity if the referenced objects are childs of the main object. In this case the
referenced objects have to be deleted manually first.

link Is equivalent to none.

object On deleting an object with Per si st enceBr oker . del et e(. . .) thereferenced objectswill be deleted too.
false I's equivalent to none.

true Is equivalent to object.

4.5.6.3. Mapping m:n associations

Page 84

error:#site:advanced-technique/which-collection-type
error:#site:advanced-technique/which-collection-type
error:#site:faq/primitive-null

OJB Documentation

OJB provides support for manually decomposed m:n associations as well as an automated support for non decomposed m:n

associations.

Manual decomposition into two 1:n associations

Have alook at the following class diagram:

Person

-id :int

—firstname ; String
-laztname : String
—projects ; Collection
-roles : Collection

Project

-id : int

-title : 5tring

—-de =cription @ 5tring
-perzons ; Collection
-roles : Caollection

m:n association
We see atwo classes with a m:n association. A Person can work for an arbitrary number of Projects. A Project may have any
number of Persons associated to it.
Relational databases don't support m:n associations. They require to perform a manual decomposition by means of an
intermediary table. The DDL looks like follows:

CREATE TABLE PERSON (

I D I NT NOT NULL PRI MARY KEY,
FI RSTNAME VARCHAR(50),
LASTNAME VARCHAR(50)

);

CREATE TABLE PRQJECT (

I D I NT NOT NULL PRI MARY KEY,
TI TLE VARCHAR(50) ,
DESCRI PTI ON VARCHAR(250)

);

CREATE TABLE PERSON PRQIJECT (
PERSON I D I NT NOT NULL,
PROJIECT_I D | NT NOT NULL,
PRI MARY KEY (PERSON_| D, PRQIJECT_I D)

Ji
This intermediary table allows to decompose the m:n association into two 1:n associations. The intermediary table may also
hold additional information. For example, the role a certain person plays for a project:

CREATE TABLE PERSON PRQJECT (

PERSON I D | NT NOT NULL,
PROIECT_I D | NT NOT NULL,
ROLENAME VARCHAR(20) ,

) PRI MARY KEY (PERSON_|I D, PRQIECT_I D)
The decomposition is mandatory on the ER model level. On the object model level it is not mandatory, but may be a valid
solution. It is mandatory on the object level if the association is qualified (as in our example with a rolename). This will result
in the introduction of aassociation class. A class-diagram reflecting this decomposition looks like:

-laztname : String

-roles : Collection

-projects ; Callection

-p=rzon ; Person
-project : Project
—-rale Mame @ String

m:n association

Per=on Faole Project
-id :int 0 *® |-person_id : int 0. -id : int
-firstname : String -project_id : int -title : String

-description ; 5tring
-parsons ; Collection
-role s : Collaction

Page 85

0OJB Documentation

A Per son object has a Collection attribute r ol es containing Rol e entries. A Pr oj ect has a Collection attribute r ol es
containing Rol e entries. A Rol e hasreference attributes to its Per son andto its Pr oj ect .

Handling of 1:n mapping has been explained above. Thus we will finish this section with a short ook at the repository entries
for the classes or g. apache. oj b. br oker . Per son, or g. apache. oj b. br oker. Proj ect and
or g. apache. oj b. br oker . Rol e:

<I-- Definitions for org.apache. ojb. broker. Person -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . Per son"
t abl e=" PERSON"

<fi el d-descri pt or
nane="id"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"
/>
<fi el d-descri pt or
name="fi r st nane"
col um="FlI RSTNAME"
j dbc-t ype=" VARCHAR"
/>

<fi el d-descri ptor
nane="1 ast nane"
col um=" LASTNAME"
, j dbc-t ype=" VARCHAR"
>

<col | ecti on-descri ptor

name="r ol es"

el ement - cl ass-ref ="org. apache. oj b. br oker. Rol e"
>

<i nverse-forei gnkey field-ref="person_id"/>
</col | ecti on-descri ptor>

</ cl ass-descri ptor>

<!-- Definitions for org.apache. ojb. broker. Project -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . Proj ect™"
t abl e=" PRQJECT"

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"

/>

<fi el d-descri pt or
nane="title"
col um="TI TLE"

/ j dbc-t ype=" VARCHAR"

>

<fi el d-descri pt or
nane="descri pti on"
col utm=" DESCRI PTI ON"
j dbc-t ype=" VARCHAR'
/>

<col | ecti on-descri ptor

name="r ol es"

el ement - cl ass-ref ="org. apache. oj b. br oker. Rol e"
>

<i nverse-forei gnkey field-ref="project _id"/>
</ col |l ecti on-descri ptor>

Page 86

OJB Documentation

</ cl ass-descri pt or >

<I-- Definitions for org.apache.ojb. broker.Role -->
<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker . Rol e"
t abl e=" PERSON_PRQJECT"
>

<fi el d-descri pt or
nane="person_i d"
col um="PERSON | D"
j dbc-t ype="1 NTEGER"
pri marykey="true"

/>

<fi el d-descri pt or
nanme="proj ect _id"
col um="PRQJECT_| D"
j dbc-type="I| NTEGER'
pri marykey="true"

/>

<fi el d-descri pt or
nane="r ol eNane"
col um=" ROLENAME"

/ j dbc-t ype=" VARCHAR"

>

<ref erence-descri ptor

name="person"

cl ass-ref="org. apache. oj b. br oker. Per son"
>

<forei gnkey field-ref="person_id"/>
</reference-descri ptor>
<r ef erence-descri pt or

nanme="proj ect"

cl ass-ref="org. apache. oj b. br oker. Proj ect"
>

<forei gnkey field-ref="project_id"/>
</reference-descri ptor>

</ cl ass-descri pt or >

Support for Non-Decomposed m:n Mappings

If there is no need for an association class at the object level (we are not interested in role information), OJB can be configured
to do the m:n mapping transparently. For example, a Person does not have a collection of Rol e objects but only a Collection
of Proj ect objects (held in the attribute pr oj ect s). Projects also are expected to contain a collection of Per son objects
(hold in attribute per sons).

To tell OJB how to handle this m:n association the CollectionDescriptors for the Collection attributes pr oj ect s andr ol es
need additional information on the intermediary table and the foreign key columns pointing to the PERSON table and the
foreign key columns pointing to the PRQJECT table:

OJB supports a multiplicity of collection implementations, inter aia org. apache. oj b. broker. util . coll ecti ons. Renmoval Awar eCol | ecti on and
org. apache. oj b. broker. util.col |l ections. Renoval Awar eLi st . By default the removal aware collections were used. This cause problems in m:n relations
when aut o- updat e="true" or "object" andauto-del ete="fal se" or "none" is set, because objects deleted in the collection will be deleted on update of
main object. Thusit is recommended to use a NOT removal aware collection class in m:n relations using the collection-class attribute.

Example for setting a collection class in the collection-descriptor:

col | ection-cl ass="org. apache. oj b. broker. util.coll ecti ons. Manageabl eArraylLi st"
An full example for a non-decomposed m:n relation looks like:

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . Per son"
t abl e=" PERSON"

Page 87

error:#site:advanced-technique/manageable-collection
error:#site:repository/collection-descriptor

0OJB Documentation

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
nanme="fir st nane"
col um="FI RSTNANME"
/ j dbc-t ype=" VARCHAR"
>

<fi el d-descri pt or
name="1 ast nane"
col um=" LASTNANE"
j dbc-t ype=" VARCHAR"
/>

<col | ecti on-descri pt or
nane="proj ect s"
col l ection-cl ass="org. apache. oj b. broker. util.coll ecti ons. Manageabl eArrayLi st"
el ement - cl ass-ref ="org. apache. oj b. br oker. Proj ect"
auto-retrieve="true"
aut o- updat e="t rue"
i ndi rection-tabl e=" PERSON PRQJECT"

<f k- poi nti ng-to-this-class col um="PERSON | D'/ >
<f k- poi nti ng-to-el ement - cl ass col um="PRQIECT | D'/ >
</ col | ecti on-descri ptor>
</ cl ass-descri pt or>

<!-- Definitions for org.apache. ojb. broker. Project -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . Proj ect™"
t abl e=" PRQJECT"
>
<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
nane="title"
col um="TI TLE"
/ j dbc-t ype=" VARCHAR"
>

<fi el d-descri pt or
nane="descri pti on"
col utm=" DESCRI PTI ON"
j dbc-t ype=" VARCHAR'
/>

<col | ecti on-descri pt or
name="per sons"
col l ection-cl ass="org. apache. oj b. broker. util.coll ections. Manageabl eArrayLi st"
el ement - cl ass-ref ="org. apache. oj b. br oker . Per son"
auto-retrieve="true"
aut o- updat e="f al se"
i ndi recti on-tabl e=" PERSON PRQJECT"

<f k- poi nti ng-to-this-class colum="PRQECT |ID'/>
<f k- poi nti ng-to-el ement-cl ass col um="PERSON | D'/ >
</ col | ecti on-descri ptor>
</ cl ass-descri pt or>

That is all that needs to be configured! See the code in class or g. apache. oj b. br oker. M oNVappi ng for JUnit

Page 88

OJB Documentation

testmethods using the classes Per son, Pr oj ect and Rol e.

When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK

m:n auto-xxx setting

General info about the aut 0- xxx and pr oxy attributes can be found here

auto-retrieve
See here

auto-update

none On updating or inserting of the main object with Per si st enceBr oker. store(...),thereferenced objects are
NOT updated by default. The referenced objects will not be inserted or updated, the referenced objects will not be linked
(creation of FK entriesin the indirection table) automatically. The user has to store the main object, the referenced objects
and to link the m:n relation after storing of all objects. establishing the m:n relationship before storing main and referenced
objects may violate referential integrity.

link On updating or inserting of the main object with Per si st enceBr oker. store(...), thereferenced objects are
NOT updated by default. The referenced objects will not be inserted or updated, but the m:n relation will be linked
automatically (creation of FK entriesin the indirection table).

Make sure that the referenced objects exist in database before storing the main object with auto-update set link to avoid violation of referential integrity.

object On updating or inserting of the main object with Per si st enceBr oker. store(...),thereferenced objects
will be linked and stored automatically.

false Isequivalent to link.

true Is equivalent to object.

auto-delete

none On deleting an object with Per si st enceBr oker . del et e(. ..) thereferenced objects are NOT touched. The
corresponding entries of the main object in the indirection table will not be removed. This may lead to violation of
referential integrity depending on the definition of the indirection table.

link On deleting an object with Per si st enceBr oker . del et e(...) them:nreation will be unlinked (all entries of
the main object in the indirection table will be removed).

object On deleting an object with Per si st enceBr oker . del et e(. ..) al referenced objectswill be deleted too.
false Isequivalent to link.

true Is equivalent to object.

4.5.6.4. Setting Load, Update, and Delete Cascading

As shown in the sections on 1:1, 1:n and m:n mappings, OJB manages associations (or object references in Java terminology)
by declaring special Reference and Collection Descriptors. These Descriptor may contain some additional information that
modifies OJB's behaviour on object materialization, updating and deletion.

The behaviour depends on specific attributes

auto-retrieve - possible settings are false, true. If not specified in the descriptor the default valueistrue

auto-update - possible settings are none, link, object and deprecated [false, true]. If not specified in the descriptor the
default value isfalse

auto-delete - possible settings are none, link, object and deprecated [false, true]. If not specified in the descriptor the
default value isfalse

Page 89

error:#site:faq/primitive-null

0OJB Documentation

When using atop-level api (ODMG, OTM, JDO) it is mandatory to use the default auto-X XX settings (or don't specify the attributes) for proper work.
This may changein future.

The attribute auto-update and auto-delete are described in detail in the corresponding sections for 1:1, 1:n and m:n references.
The auto-retrieve setting is described below:

auto-retrieve setting

The aut o-retri eve atribute used in ref erence-descri ptor or col |l ecti on-descri pt or elements handles
the loading behaviour of references (1:1, 1:n and m:n):

« falself set false the referenced objects will not be materialized on object materialization. The user has to materialize the
n-side objects (or single object for 1:1) by hand using one of the following service methods of the
Per si st enceBr oker class:

Per si st enceBroker.retri eveRef erence(Obj ect obj, String attributeNane);
/] or
Per si st enceBroker.retrieveAl | Ref erences(Cbj ect obj);

The first method load only the specified reference, the second one loads all references declared for the given object.

Be careful when using "opposite" settings, e.g. if you declare a 1:1 reference with auto-retrieve="false" BUT auto-update="object" (or "true" or "link").
Before you can perform an update on the main object, you have to "retrieve" the 1:1 reference. Otherwise you will end up with an nullified reference enty in main object, because
OJB doesn't find the referenced object on update and assume the reference was removed.

« truelf set true the referenced objects (single reference or all n-side objects) will be automatic loaded by OJB when the
main object was materialized.

If OJB is configured to use proxies, the referenced objects are not materialized immmediately, but lazy loading proxy objects
are used instead.

In the following code sample, a reference-descriptor and a collection-descriptor are configured to use cascading retrieval (
auto-retrieve="true"), cascading insert/update (aut o- updat e="obj ect” or aut o-update="true") and
cascading delete (aut o- del et e="obj ect " or aut o- del et e="t r ue") operations:

<r ef erence-descri pt or

nane="pr oduct G oup”

cl ass-ref="org. apache. oj b. br oker. Product G oup"
auto-retrieve="true"

aut o- updat e="obj ect "

aut o- del et e="obj ect"
>

<forei gnkey field-ref="product G oupld"/>
</ ref erence-descriptor>

<col | ecti on-descri ptor
nane="al | Articl esl nG oup"
el ement - cl ass-ref ="org. apache. oj b. broker. Articl e"
auto-retrieve="true"
aut o- updat e="obj ect "
aut o- del et e="obj ect"
orderby="articleld"
sort =" DESC'
>
<i nverse-foreignkey field-ref="product G oupld"/>
</ col | ecti on-descri ptor>

Link references

If inref erence-descri ptor orcol |l ection-descri ptor the auto-update or auto-delete attributes are set to none,
OJB does not touch the referenced objects on insert, update or del ete operations of the main object. The user has to take care of

Page 90

OJB Documentation

the correct handling of referenced objects. When using referential integrity (who does not ?) it's essential that insert and del ete
operations are done in the correct sequence.

One important thing is assignment of the FK values. The assign of the FK valuesis transcribed with link referencesin OJB. In
1:1 references the main object has a FK to the referenced object, in 1:n references the referenced objects have FK pointing to
the main object and in non-decomposed m:n relations a indirection table containing FK values from both sides of the
relationship is used.

OJB provides some helper methods for linking references manualy (assignment of the FK) in
or g. apache. oj b. broker. uti | . Broker Hel per class.

public void |ink(Cbject obj, boolean insert)

public void unlink(Object obj)

publ i ¢ bool ean |ink(Cbject obj, String attributeNane, bool ean insert)
publ i ¢ bool ean unlink(Qbject obj, String attributeNane)

These methods are accessible viaor g. apache. oj b. br oker . Per si st enceBr oker :

Br oker Hel per bh = broker. servi ceBroker Hel per();

The link/unlink methods are only useful if you set auto-update/-delete to none. In al other cases OJB handles the link/unlink of references internally. It is also possible to set all
FK values by hand without using the link/unlink service methods.

Examples
Now we prepared for some example. Say class Movi e has an m:n reference with class Act or and we want to store an Movie
object with alist of Actor objects. The auto-update setting of collection-descriptor for Movie is none:

br oker. begi nTransacti on();
[/ store main object first
br oker . st ore(novi e) ;
/I now we store the right-side objects
Iterator it = novie.getActors().iterator();
?hile(it.hashbxt())

bj ect actor = it.next();

br oker. store(actor);

[/ now both side exist and we can |ink the references

br oker . servi ceBroker Hel per().link(novie, "actors", true);

/*

al ternative cal

br oker . servi ceBroker Hel per ().l ink(novie, true);

*

br oker. conmmi t Tr ansacti on();

First store the man object and the references, then use broker. servi ceBroker Hel per().link(novie,
"actors", true) tolink the main object with the references. In case of a m:n relation linking create all FK entries in the

indirection table.

In the next examples we want to manually delete a Pr oj ect object with a 1:n relation to class SubPr oj ect . In the
example, the Project object has load all SubProject objects and we want to delete the Project but don't want to delete the
referenced SubProjects too (don't ask if this make sense ;-)). SubProject has an FK to Project, so we first have to unlink the
reference from the main object to the references to avoid integrity constraint violation. Then we can del ete the main object:

br oker . begi nTransacti on();
[/ first unlink the n-side references
br oker . servi ceBr oker Hel per (). unlink(project, "subProjects");

/1| update the n-side references, store SubProjects with nullified FK
Iterator it = project.getSubProjects().iterator();

Page 91

0OJB Documentation

whi | e(it.hasNext())

SubPr oj ect subProject = (SubProject) it.next();
br oker. st ore(subProj ect) ;

}

[/ now del ete the main object
br oker . del et e(proj ect);
br oker. commi t Tr ansacti on() ;

4.5.6.5. Using Proxy Classes

Proxy classes can be used for "lazy loading" aka "lazy materialization”. Using Proxy classes can help you in reducing
unneccessary database |ookups.
There are two kind of proxy mechanisms available:

1. Dynamic proxies provided by OJB. They can simply be activated by setting certain switches in repository.xml. Thisisthe
solution recommemded for most cases.
2. User defined proxies. User defined proxies allow the user to write proxy implementations.

As it isimportant to understand the mechanics of the proxy mechanism | highly recommend to read this section before turning
to the next sections "using dynamic proxies', "using a single proxy for awhole collection" and "using a proxy for areference”,
covering dynamic proxies.

As a simple example we take a ProductGroup object pg which contains a collection of fifteen Article objects. Now we
examine what happens when the ProductGroup is loaded from the database:

Without using proxies al fifteen associated Article objects are immediately loaded from the db, even if you are not interested
in them and just want to lookup the description-attribute of the ProductGroup object.

If proxies are used, the collection is filled with fifteen proxy objects, that implement the same interface as the "real objects’ but
contain only an OID and a void reference. The fifteen article objects are not instantiated when the ProductGroup is initially
materialized. Only when a method is invoked on such a proxy object will it load its "real subject” and delegate the method call
to it. Using this dynamic delegation mechanism instantiation of persistent objects and database lookups can be minimized.

To use proxies, the persistent class in question (in our case the Article class) must implement an interface (for example
InterfaceArticle). This interface is needed to allow replacement of the proper Article object with a proxy implementing the
same interface. Have alook at the code:

public class Article inplenents InterfaceArticle
/** maps to db-colum "Artikel-N"; PrinmaryKey*/
protected int articleld;
/** maps to db-colum "Artikel name"*/
protected String articl eNaneg;
public int getArticleld()

return articleld;

public java.lang. String getArticl eNane()
{

return articl eNane;

}

public interface InterfaceArticle

public int getArticleld();

Page 92

OJB Documentation

public java.lang. String getArticl eNane();
| -

public class ArticleProxy extends Virtual Proxy inplenents InterfaceArticle
public ArticleProxy(ojb.broker.ldentity uniqueld, PersistenceBroker broker)

super (uni quel d, broker);

}
public int getArticleld()

—~

return real Subject().getArticleld();

ublic java.lang. String getArticl eName()
return real Subject().getArticleName();

rivate InterfaceArticle real Subject()

-~ —~— ~g —

try
return (InterfaceArticle) getReal Subject();
}
catch (Exception e)
{

return null;

}
}

The proxy is constructed from the identity of the real subject. All method calls are delegated to the object returned by
r eal Subj ect ().
This method uses getReal Subject() from the base class Virtual Proxy:

public Object getReal Subject() throws PersistenceBrokerException

return indirectionHandl er. get Real Subj ect () ;

}
The proxy delegates the the materialization work to its | ndi rect i onHandl er. If the rea subject has not yet been
materialized, a PersistenceBroker is used to retrieveit by its OID:

public synchroni zed Obj ect get Real Subject ()
t hrows Per si st enceBr oker Excepti on
{

if (real Subject == null)
mat eri al i zeSubj ect () ;
return real Subject;
private void materializeSubject()
t hr ows Per si st enceBr oker Excepti on

real Subj ect = broker. get Obj ectByldentity(id);
}

To tell OJB to use proxy objects instead of materializing full Article objects we have to add the following section to the XML
repository file:

<cl ass-descri ptor

Page 93

cl ass="or g. apache. oj b. broker. Articl e"

pr oxy="or g. apache. oj b. broker . Arti cl ePr oxy"

tabl e="Arti kel "
>

The following class diagram shows the rel ationships between all above mentioned classes:

VirtualProxy

<< Interface = =
Inte rface Article

+WirtualProsoyd

+ WirtualProsooid:)
+WirtualProzoyihandle ri)
+alreadyMate rialized(: boolean

+getRealtubject) : Object

+create ProxyiproxyC lazs:Clazs, realsubjectzide ntity:) : Object

+addTaosStockiin diff:int)
+getArticleldd :int 0
+getArticle Mame i : String

+getProductS roupl

+getStockvalue § : double

+zetArticle ldiin newhrticle d:int)

+ zetArticle Mame inewd rtiche Mame String)
+toStringd : String

Article Prosoy

0OJB Documentation

ProductG roup

—allArticle sInG roup : Wectar
-de scription : 5tring
-groupld :int

-grouphame : S5tring

+qetldd :int

+taString : String

+getMame i : String

+=zetMame fin groupMame String)
+gethllArtiche s List
+setldiin newalue:int

Article

+Article Proxy)

+Article Proxyiuniqueld:)

+Article Proxyihandler:)
+addToS5tockiin diff:int)
+getirticleld] :int

+gethrticle Name : String
+getProductC roupd
+getStockvalue) : double
-realsubjectd ; Inte face Article
+setArticle Idiin newArticle Id:int)
+ zetArticle Mame (newhrticle Mame String)

¥articleId : int

#article Mame : String
Fizte lloutArticle : boolean
Fminimumstack @ int
ForderedUnits : int

#price : double
F¥productGroupld : int
¥stock @ int

Fzupplierid : int

Funit : 5tring

Using Dynamic Proxies

+taString(: String

+addTaStackiin diff:int)

+getArticleldd :int

+getArticle Mame i : String

+getStockvalue § : double

+zatArticle ldiin newArticle Id:int)

+zetArticle Name (newhrticle Name String)
+getlzse lloutArticle § ; boolean
+getMinimumStock) :int
+getOrderedUnits0 @ int

+getPrice : double

+getProductG rouplf

+getProductC roupldi @ int

+getStockl :int

+getSupplierld(: int

+getUnitd : String

+zatlsse lloutArticle fin newls5e lloutArticle boolean)
+zatMinimumstockiin newMinimumStock:int)
+zetlrderedUnitslin newdrde redUnits:int)
+setPrice {in newPrice :double)

+zetProducts roupine wProducts roupe)
+zetProductG roupldiin newProductG roupld:int)
+setStackiin newStack:int)

+zetSupplie rldiin newSupplie rid:int)
+zetUnitinewlnit:5tring)

proxy image

The implementation of a proxy class is a boring task that repeats the same delegation scheme for each new class. To liberate
the developer from this unproductive job OJB provides a dynamic proxy solution based on the JDK 1.3 dynamic proxy
concept. (For JDK1.2 we ship a replacement for the required j ava. | ang. ref | ect classes. Credits for this solution to
ObjectMentor.) The basic idea of the dynamic proxy concept is to catch al method invocations on the not-yet materialized
(loaded from database) object. When a method is called on the object, Java directs this call to the invocation handler registered
for it (in OJB's case a class implementing the or g. apache. oj b. br oker. core. proxy. I ndi recti onHandl er

Page 94

OJB Documentation

interface). This handler then materializes the object from the database and replaces the proxy with the real object. By default
OJB uses the class or g. apache. oj b. br oker. core. proxy. | ndi recti onHandl er Def aul t | npl . If you are
interested in the mechanics have alook at this class.

To use adynamic proxy for lazy materialization of Article objects we have to declare it in the repository.xml file.

<cl ass-descri pt or
cl ass="org. apache. oj b. br oker. Articl e"
pr oxy="dynam c"
tabl e="Arti kel "

>

Just as with normal proxies, the persistent class in question (in our case the Article class) must implement an interface (for
example InterfaceArticle) to be able to benefit from dynamic proxies.

Using a Single Proxy for a Whole Collection

A collection proxy represents a whole collection of objects, where as a proxy class represents a single object.

The advantage of this concept is a reduced number of db-calls compared to using proxy classes. A collection proxy only needs
asingle db-call to materialize al it's objects. This happens the first time its content is accessed (ie: by calling iterator();). An
additional db-call is used to calculate the size of the collection if size() is called before loading the data. So collection proxy is
mainly used as a deferred execution of a query.

OJB uses three specific proxy classes for collections:

1. List proxiesare specificj ava. uti | . Li st implementations that are used by OJB to replace lists. The default set proxy
classisor g. apache. oj b. br oker. core. proxy. Li st ProxyDef aul t 1 npl

2. Set proxiesare specificj ava. uti | . Set implementations that are used by OJB to replace sets. The default set proxy
classisor g. apache. oj b. br oker. cor e. proxy. Set ProxyDef aul t | npl

3. Collection proxies are collection classes implementing the more genericj ava. uti | . Col | ecti on interface and are
used if the collection is neither alist nor a set. The default collection proxy classis
or g. apache. oj b. br oker. core. proxy. Col | ecti onProxyDef aul t 1 npl

Which of these proxy classis actually used, is determined by the col | ecti on- cl ass setting of this collection. If none is
specified in the repository descriptor, or if the specified class does not implement java.util.List nor
| ava. util . Set, then the generic collection proxy is used.

The following mapping shows how to use a collection proxy for arelationship:

<l-- Definitions for
or g. apache. oj b. br oker. Product G oupWt hCol | ecti onProxy -->
<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker . Product G oupW t hCol | ecti onPr oxy"
t abl e=" Kat egori en"
>
<fi el d-descri pt or
nane="gr oupl d"
col um="Kat egori e_Nr"
j dbc-t ype="1 NTEGER"
/ pri marykey="true"
>

<col | ecti on-descri ptor
nane="al | Articl esl nG oup"
el ement - cl ass-ref ="org. apache. oj b. broker. Articl e"
proxy="true"
>
<i nverse-forei gnkey field-ref="product G oupld"/>
</ col | ecti on-descri ptor>
</ cl ass-descri pt or>

Page 95

0OJB Documentation

The classes participating in this relationship do not need to implement a specia interface to be used in a collection proxy.

Although it is possible to mix the collection proxy concept with the proxy class concept, it is not recommended because it
Increases the number of database calls.

Using a Proxy for a Reference

A proxy reference is based on the origina proxy class concept. The main difference is that the ReferenceDescriptor defines
when to use a proxy class and not the ClassDescriptor.

In the following mapping the class ProductGroup is not defined to be a proxy class in its ClassDescriptor. Only for shown
relationship a proxy of ProductGroup should be used:

<!-- Definitions for org.apache.ojb. broker.ArticleWthReferenceProxy -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Arti cl eWt hRef er encePr oxy"
tabl e="Arti kel "

<fi el d-descri pt or
nane="articl el d"
col um="Arti kel Nr"
j dbc-type="I| NTEGER'
pri marykey="true"
aut oi ncrement ="t rue"
/>

<r ef erence-descri pt or

nane="pr oduct G oup"

cl ass-ref="org. apache. oj b. br oker. Product G oup"
proxy="true"
>

<forei gnkey field-ref="product G oupld"/>
</reference-descri ptor>
</ cl ass-descri ptor>
Because a proxy reference is only about the location of the definition, the referenced class must implement a specia interface
(See using proxy classes).

Customizing the proxy mechanism
Both the dynamic and the collection proxy mechanism can be customized by supplying a user-defined implementation.

For dynamic proxies you can provide your own invocation handler which implements the
or g. apache. oj b. broker. core. proxy. I ndi recti onHandl er interface. See OJB's default implementation
or g. apache. oj b. broker. core. proxy. I ndi recti onHandl er Def aul t | npl for details on how to implement
such an invocation handler.

Each of the three collection proxy classes can be replaced by a user-defined class. The only requirement is that such a class
implements both the corresponding interface (j ava. util . Col l ection,java.util.List,orjava.util. Set) as
well astheor g. apache. oj b. br oker . Manageabl eCol | ect i on interface.

Proxy implementations are configured in the ojb propertiesfile. These are the relevant settings:

The IndirectionHandl erCl ass entry defines the class to be used by QIB's proxies to
handl e nmet hod i nvocati ons

#

I ndi recti onHandl er ass=or g. apache. oj b. br oker . core. proxy. I ndi r ecti onHandl er Def aul t | npl

OJB Documentation

Li st Proxy

The ListProxyC ass entry defines the proxy class to be used for collections that
inplement the java.util.List interface.

#

Li st ProxyC ass=or g. apache. oj b. br oker . cor e. proxy. Li st ProxyDef aul t | npl

The Set ProxyC ass entry defines the proxy class to be used for collections that
inplement the java.util.Set interface.

#

Set Proxyd ass=or g. apache. oj b. br oker. cor e. pr oxy. Set ProxyDef aul t | npl

#

The Col | ecti onProxyCl ass entry defines the proxy class to be used for collections that
do not inplement java.util.List or java.util.Set.

#
Col | ecti onProxyC ass=or g. apache. oj b. br oker. cor e. proxy. Col | ecti onPr oxyDef aul t | npl

4.5.6.6. Type and Value Conversions

Say your database column contains INTEGER values but you have to use boolean attributes in your Domain objects. Y ou need
atype and value mapping described by a FieldConversion!

4.5.7. Advanced Technique

45.7.1. Introduction

4.5.7.2. Extents and Polymor phism

Working with inheritance hierarchies is a common task in object oriented design and programming. Of course, any Serious
Java O/R tool must support inheritance and interfaces for persistent classes. To demonstrate we will look at some of the JUnit
TestSuite classes.

There is a primary interface "InterfaceArticle”. This interface is implemented by "Article” and "CdArticle". There is also a
class "BookArticle" derived from "Article". (See the following class diagram for details)

Page 97

error:#site:jdbc-types

=<Interface>x
Inte face Article

public woid addTaoStock (int diff)
public int getArticle ldd

public 5tring getArticle Mame {
public Inte face ProductG roup getProductG roupd
public double getStockvalue

public void zetirticle ld{int newArticle Id)
public void zetArticle Hame String newAticle Hame)
public 5tring toS5tringQ

i

FA

0OJB Documentation

Article

CdArticle

protected int article|d

protected String article Name
protected boolean ishe lloutArticle
protected int minimumStock
protected int orde redUnits
protected double price

protected Inte face ProductS roup productG roup
protected int productG roupld
protected int stock

protected int supplierid
protected 5tring unit

private
private
private
private
private
private
private
private
private
private
private
private

private

int article |d

String article Mame
int iz5elloutArticle
int minimum=Stock
int orde rednits
double price

Inte face ProductS roup productG roup
int productt roupld
int stock

int supplie rid
String unit

String labe Iname
String musicians

EookArticle

private int article Id

private String article Mame
private int izhe lloutArticle
private int minimumsStock
private int orderedUnits
private double price
private Inte rface Product roup productG roup
private int productG roupld
private int stock

private int supplierid
private String unit

private String author
private String izbn

Polymor phism

polymorphism.gi

f

OJB alows us to use interfaces, abstract, or concrete base classes in queries, or in type definitions of reference attributes. A
Query against the interface | nt er f aceArti cl e must not only return objects of type Arti cl e but also of CdArticl e
and BookArticl e! The following test method searches for all objects implementing | nt erfaceArticl e with an
articl eNanme equal to "Hamlet". The Collection isfilled with one matching BookAr ti cl e object.

public void testCollectionByQuery() throws Exception
{

Criteria crit = new Criteria();

crit.addEqual To("articl eName",

"Hanl et") ;

Query q = QueryFactory. newQuery(InterfaceArticle.class, crit);

Col lection result = broker.getCollectionByQuery(q);

Systemout.println(result);

Page 98

OJB Documentation

assertNotNul | ("should return at |east one item', result);
assert True("should return at |least one itenl, result.size() > 0);

Of courseit is also possible to define reference attributes of an interface or baseclass type. In all above examples Article has a
reference attribute of type | nt er f acePr oduct G oup.

Extents

The query in the last example returned just one object. Now, imagine a query against the InterfaceArticle interface with no
selecting criteria. OJB returns all the objects implementing InterfaceArticle. 1.e. All Articles, BookArticles and CdArticles.
The following method prints out the collection of all InterfaceArticle objects:

public void testExtentByQuery() throws Exception
{

/1 no criteria signals to onmit a WHERE cl ause
Query q = QueryFactory. newQuery(lnterfaceArticle.class, null);
Col l ection result = broker.getCollectionByQuery(q);

System out . printl n(
"QIB proudly presents: The InterfaceArticle Extent\n" +result);

assertNot Nul | ("should return at |east one item', result);
assert True("should return at |least one itenm, result.size() > 0);

}

The set of al instances of a class (whether living in memory or stored in a persistent medium) is called an Extent in ODMG
and JDO terminology. OJB extends this notion dlightly, as all objects implementing a given interface are regarded as members
of the interface's extent.

In our class diagram we find:

1. two simple"one-class-only" extents, BookArticle and CdArticle.
2. A compound extent Article containing all Article and BookArticle instances.
3. Aninterface extent containing al Article, BookArticle and CdArticle instances.

There is no extra coding necessary to define extents, but they have to be declared in the repository file. The classes from the
above example require the following declarations:

1. "one-class-only" extents require no declaration
2. A declaration for the baseclass Article, defining which classes are subclasses of Article:

<l-- Definitions for org.apache.ojb.ojb. broker.Article -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Articl e"
proxy="dynam c"
tabl e="Arti kel "

<extent-cl ass cl ass-ref="org. apache. oj b. br oker. BookArticle" />
<extent-cl ass class-ref="org. apache. oj b. broker. CdArticle" />

é)élass-descriptor>
1. A declaration for InterfaceArticle, defining which classes implement this interface:

<l-- Definitions for org.apache.ojb. broker.InterfaceArticle -->
<cl ass-descriptor class="org.apache.ojb. broker.InterfaceArticle">
<extent-cl ass class-ref="org. apache. oj b. broker. Article" />
<extent-cl ass class-ref="org. apache. oj b. br oker. BookArticle" />
<extent-cl ass class-ref="org. apache. oj b. broker. CdArticle" />
</ cl ass-descri ptor>

Why is it necessary to explicitely declare which classes implement an interface and which classes are derived from a

baseclass? Of course it is quite simple in Java to check whether a class implements a given interface or extends some other
class. But sometimes it may not be appropiate to treat specia implementors (e.g. proxies) as proper implementors.

Page 99

0OJB Documentation

Other problems might arise because a class may implement multiple interfaces, but is only allowed to be regarded as member
of one extent.

In other cases it may be neccessary to treat certain classes as implementors of an interface or as derived from a base even if
they are not.

As an example, you will find that the ClassDescriptor for class org.apache.ojb.broker.Article in the repository.xml contains an
entry declaring class CdArticle as aderived class:

<I-- Definitions for org.apache.ojb.ojb. broker.Article -->
<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Articl e"
pr oxy="dynam c"
tabl e="Arti kel "

<extent-cl ass cl ass-ref="org. apache. oj b. br oker. BookArticle" />
<extent-class class-ref="org. apache. oj b. broker. CdArticle" />

</ciéés-descriptor>
4.5.7.3. Mapping I nheritance Hierar chies

In the literature on object/relational mapping the problem of mapping inheritance hierarchies to RDBMS has been widely
covered. Have alook at the following inheritance hierarchy:

A

int id
int somealue FroméA

B

int somevalue FromB

inheritance-1.gif
If we have to define database tables that have to contain these classes we have to choose one of the following solutions:

1. Map all classes onto one table. A DDL for the table would look like:

CREATE TABLE A EXTENT
(
I D | NT
SOVE_VALUE_FROM A | NT,
SOVE_VALUE_FROM B | NT

NOT NULL PRI MARY KEY,

)

2. Map each class to a distinct table and have all attributes from the base class in the derived class. DDL for the table could
look like:

CREATE TABLE A

(
I D I NT NOT NULL PRI MARY KEY,

Page 100

OJB Documentation

SOVE_VALUE_FROM A | NT

)

CREATE TABLE B

(
I D | NT
SOVE_VALUE_FROM A | NT,
SOVE_VALUE_FROM B | NT

NOT NULL PRI MARY KEY,

)
3. Map each class to a distinct table, but do not map base class fields to derived classes. Use joins to materialize over al tables
to materialize objects. DDL for the table would look like:

CREATE TABLE A

(
I D I NT NOT NULL PRI MARY KEY,

SOVE_VALUE_FROM A | NT
)
CREATE TABLE B

A 1D I NT NOT NULL,
SOMVE_VALUE_FROM B | NT

)
OJB provides direct support for all three approaches.

But it's currently not recommended to mix mapping strategies within the same hierarchy !

In the following we demonstrate how these mapping approaches can be implemented by using OJB.

Mapping All Classes on the Same Table
Mapping severa classes on one table works well under OJB. There isonly one special situation that needs some attention:

Say there is a baseclass AB with derived classes A and B. A and B are mapped on a table AB_TABLE. Storing A and B
objects to this table works fine. But now consider a Query against the baseclass AB. How can the correct type of the stored
objects be determined?

OJB needs a column of type CHAR or VARCHAR that contains the classname to be used for instantiation. This column must
be mapped on a specia attribute oj bConcr et eCl ass. On loading objects from the table OJB checks this attribute and
Instantiates objects of this type.

The criterion for oj bConcr et ed ass is statically added to the query in class Quer yFact ory and it therefore appears in the select-statement for each extent. This means
that mixing mapping strategies should be avoided.

There is sample code for this feature in the method
or g. apache. oj b. br oker . Per si st enceBr oker Test . t est Mappi ngToOneTabl e(). See the mapping details
in the following Class declaration and the respective mapping:

public abstract class AB

/** the special attribute telling QIB the object's concrete type.
* NOTE: this attribute MJUST be call ed oj bConcreted ass

*/

protected String oj bConcreted ass;

}

public class A extends AB

{

Page 101

0OJB Documentation

int id;
i nt soneVal ue;

?ublic A()

/1 QIB nmust know the type of this object
oj bConcreteC ass = A. cl ass. get Nanme() ;

}
}
<I-- Definitions for extent org.apache. ojb. broker.AB -->
<cl ass-descri ptor class="org. apache. oj b. br oker. AB" >
<extent-cl ass cl ass-ref="org. apache. oj b. br oker. A" />
<extent-cl ass class-ref="org. apache. oj b. broker.B" />
</ cl ass-descri ptor>
<I-- Definitions for org.apache.ojb. broker. A -->

<cl ass-descri pt or
cl ass="or g. apache. oj b. br oker . A"
t abl e="AB_TABLE"

<fi el d-descri pt or
nane="id"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"
/>
<fi el d-descri pt or
nanme="0j bConcr et eCl ass”
col umm=" CLASS NAME"
j dbc-t ype=" VARCHAR'
/>

<fi el d-descri pt or
nane="sonmeVal ue"
col um="VALUE "
/ j dbc-t ype="1 NTEGER"
>

</ cl ass-descri ptor>
The column CLASS_NAME is used to store the concrete type of each object.

If you cannot provide such an additional column, but need to use some other means of indicating the type of each object you
will require some additional programming:

You have to derive a Class from or g. apache. oj b. br oker. accessl ayer. RowReader Def aul t | npl and
overridee the method RowReader Def aul t | npl . sel ect C assDescri ptor() to implement your specific type
sel ection mechanism. The code of the default implementation looks like follows:

protected Cl assDescriptor sel ectCl assDescri ptor(Map row)
t hr ows Per si st enceBr oker Excepti on
{

/1l check if there is an attribute which tells us
/1l which concrete class is to be instantiated
Fi el dDescri ptor concreteC assFD =
m cl d. get Fi el dDescr i pt or ByNane(
Cl assDescri pt or. QJB_CONCRETE_CLASS) ;

if (concreteCd assFD == null)
return mcld;

el se

{
try

String concreteCl ass = (String) row. get(
concr et ed assFD. get Col unmNare()) ;
if (concreted ass == null |

Page 102

OJB Documentation

concreteC ass.trim().length() == 0)

t hr ow new Per si st enceBr oker Except i on(
"0j bConcreteC ass field returned null or O-length string");

}
el se
concreteC ass = concreteC ass.trin();
Cl assDescriptor result = mcld.getRepository().
get Descr i pt or For (concr et ed ass) ;
if (result == null)
result = mcld;
return result;
}
cat ch (PBFact or yExcepti on e)

t hr ow new Per si st enceBr oker Excepti on(e);

}
}

After implementing this class you must edit the ClassDescriptor for the respective class in the XML repository to specify the
usage of your RowReader |mplementation:

<cl ass-descri ptor
class="ny. Cbj ect”
t abl e=" M¥_OBJECT"

r ow- r eader =" nmy. own. RowReader | npl "

>
Y ou will learn more about RowReaders in the next section.

Mapping Each Classto a Distinct Table

This is the most simple solution. Just write a complete ClassDescriptor for each class that contains FieldDescriptors for al of
the attributes, including inherited attributes.

Mapping Classes on Multiple Joined Tables

Here are the definitions for the classes A and B:

public class A

[l primary key

int id;

/1 mapped to a colum in A TABLE
i nt sonmeVal ueFr omA;

}

public class B extends A
/1 idis primary key and serves also as foreign key referencing A id
int id;
/1 mapped to a colum in B_TABLE
i nt someVal ueFr onB;

The next code block contains the class-descriptors for the the classes A and B.

<I-- Definitions for org.apache. ojb. broker. A -->

Page 103

0OJB Documentation

<cl ass- descri pt or
cl ass="or g. apache. oj b. br oker . A"
tabl e="A TABLE"

<fi el d-descri ptor
nane="id"
col um="1D"
j dbc-type="I| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
nane="soneVal ueFr omA"
col um="VALUE "
j dbc-t ype="1| NTEGER"

</ cl ass-descri pt or>

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . B"
t abl e="B_TABLE"

<fi el d-descri pt or
nane="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
) aut oi ncrenent ="t rue"
>

<fi el d-descri pt or
nane="soneVal ueFr onB"
col um="VALUE "
/ j dbc-t ype="1 NTEGER"
>

<r ef erence-descri pt or nanme="super"
cl ass-ref="org. apache. oj b. br oker . A"
auto-retrieve="true"
aut o- updat e="t rue"
aut o- del et e="true"
>

<forei gnkey field-ref="id"/>
</reference-descri ptor>
</ cl ass-descri ptor>
As you can see from this mapping we need a special reference-descriptor that advises OJB to load the values for the inherited
attributes from class Aby aJOIN usingthe (B. i d == A. i d) foreign key reference.

Thename="super " isnot used to address an actual attribute of the class B but as a marker keyword defining the JOIN to the
baseclass.

Auto-update must be true to force insertion of A when inserting B. So have to define a auto-update true setting for this
reference-descriptor! In most casesit's also useful to enable auto-delete.

Be aware that this sample does not declare or g. apache. oj b. br oker . B to be an extent of or g. apache. oj b. br oker . A. Using extents here will lead to problems
(instatiating the wrong class) because the primary key is not unique within the hiearchy defined in the repository.

Attributes from the super-class A can be used the same way as attributes of B when querying for B. No path-expression is
needed in this case:

Criteria c = new Criteria();
c. addEqual To("soneVal ueFr omA", new | nteger (1
c. addEqual To("soneVal ueFronB", new | nteger (2

~——r

)
)

Page 104

OJB Documentation

Query q = QueryFactory. newQuery(B.class, c);
br oker . get Col | ecti onByQuery(q);

The above example is based on the assumption that the primary key attribute B. i d and its underlying column B_TABLE. | C
Is also used as the foreign key attribute.

Now let us consider a case where B_TABLE contains an additional foreign key column B_TABLE. A | D referencing
A TABLE. | D. Inthis case the layout for class B could look like follows:

public class B extends A

/[l idis the prinmary key
int id;

/1 alDis the foreign key referencing A id
int alD

/1 mapped to a colum in B_TABLE
i nt soneVal ueFr onB;

}
The mapping for B will then look like follows:

<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker . B"
t abl e="B_TABLE"
>
<fi el d-descri pt or
nanme="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
/ aut oi ncrenent ="t rue"
>

<fi el d-descri ptor
name="al D"
colum="A I D"
j dbc-type="1| NTEGER'
/>

<fi el d-descri pt or
name="someVal ueFr onB"
col um="VALUE "
/ j dbc-t ype="1| NTEGER"
>

<r ef erence-descri pt or nane="super"
cl ass-ref="org. apache. oj b. br oker . A" >
<forei gnkey field-ref="alD" />
</reference-descri ptor>
</ cl ass-descri pt or>

The mapping now contains an additional field-descriptor for the al D attribute.
Inthe" super " reference-descriptor the foreignkey f i el d- r ef attribute had to be changedto " al D" .
It isalso possible to have the extraforeign key column B_TABLE. A | D but without having aforeign key attribute in class B:

public class B extends A

[l id is the primary key
int id;

/1 mapped to a colum in B _TABLE
i nt soneVal ueFr onB;

Page 105

0OJB Documentation

We can use OJB's anonymous field feature to get everything working without the "al D' attribute. We keep the
field-descriptor for alD, but declare it as an anonymous field. We just have to add an attribute access="anonynous" to
the field-descriptor:

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker . B"
t abl e="B_TABLE"
>
<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
} aut oi ncrement ="t rue"
>

<fi el d-descri pt or
name="al D"
col um="A_|1D"
j dbc-t ype="1 NTEGER"
/ access="anonynous"
>

<fi el d-descri pt or
name="someVal ueFr onB"

col um="VALUE "
j dbc-t ype="1 NTEGER"
/>

<r ef erence-descri pt or name="super"
cl ass-ref="org. apache. oj b. br oker. A" >
<foreignkey field-ref="alD" />
</reference-descriptor>

</ cl ass-descri ptor>
Y ou can learn more about the anonymous fields feature in this howto and how it work here.

4.5.7.4. Using interfaceswith OJB

Sometimes you may want to declare class descriptors for interfaces rather than for concrete classes. With OJB this is no
problem, but there are a couple of things to be aware of, which are detailed in this section.

Consider this example hierarchy :

public interface A

String getDesc();

public class B inplenents A
[** primary key */
private |Integer id;
[** sample attribute */
private String desc;
public String getDesc()
{
return desc;
}
public void setDesc(String desc)

t his.desc = desc;

Page 106

error:#site:howto/anonymous-keys

OJB Documentation

}

public class C

{
[** primary key */
private Integer id;
[** foreign key */
private Integer ald;
/** reference */
private A obj;
public void test ()

String desc = obj.getDesc();
}

Here, class C references the interface A rather than B. In order to make this work with OJB, four things must be done:

« All features common to all implementations of A are declared in the class descriptor of A. Thisincludes references (with
their foreignkeys) and collections.

« Sinceinterfaces cannot have instance fields, it is necessary to use bean properties instead. This means that for every field
(including collection fields), there must be accessors (a get method and, if the field is not marked as
access="readonl y", aset method) declared in the interface.

e Since we're using bean properties, the appropriate
or g. apache. oj b. br oker. net adat a. fi el daccess. Per si st ent Fi el d implementation must be used (see
below). Thisclassis used by OJB to access the fields when storing/loading objects. Per default, OJB uses a direct access
implementation
(org. apache. oj b. broker. net adat a. fi el daccess. Persi stent Fi el dDi rect Accessl npl) which
requires actual fields to be present.

In our case, we need an implementation that rather uses the accessor methods. Since the Per si st ent Fi el d settingis
(currently) global, you have to check whether there are accessors defined for every field in the metadata. If yes, then you
can usetheor g. apache. oj b. br oker. net adat a. fi el daccess. Persi stent Fi el dl ntrospectorl|npl,
otherwise you'll have to resort to the

or g. apache. oj b. br oker. net adat a. fi el daccess. Per si st ent Fi el dAut oPr oxyl npl , which
determinesfor every field what type of field it is and then uses the appropriate strategy.

« |f at some place OJB hasto create an object of the interface, say as the result type of a query, then you have to specify
factory-class andf act or y- met hod for the interface. OJB then uses the specified class and (static) method to
create an uninitialized instance of the interface.

In our example, this would result in:

public interface A

{
void setld(lnteger id);
I nteger getld();
voi d setDesc(String desc);
String getDesc();
}

public class B inplenents A
[** primary key */
private |Integer id;

/[** sanmple attribute */
private String desc;
public String getld()
{

return id;

}
public void setld(Integer id)
{

Page 107

0OJB Documentation

this.id = id;
Lublic String getDesc()
: return desc;
Lublic voi d setDesc(String desc)

this.desc = desc;

}

}

public class C

{
[** primary key */
private |Integer id;
/[** foreign key */
private Integer ald;
/** reference */
private A obj;
public void test()

String desc = obj.getDesc();
}

public class AFactory
public static A createA()

return new B();

}
}

The class descriptors would look like:

<cl ass-descri ptor
cl ass="A"
tabl e="A TABLE"
factory-cl ass="AFactory"
fact ory- met hod="cr eat eA"

<extent-class class-ref="B"/>

<fi el d-descri pt or
nane="i d"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"

/>

<fi el d-descri pt or
nane="desc"
col um=" DESC"
j dbc-t ype=" VARCHAR"
| engt h="100"

/>

</ cl ass-descri ptor>

<cl ass-descri ptor
cl ass="B"
tabl e="B_TABLE"

<fi el d-descri pt or
nane="id"
col um="1D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"

Page 108

OJB Documentation

/>

<fi el d-descri pt or
name="desc"
col uim=" DESC"
j dbc-t ype=" VARCHAR'
| engt h="100"

/>

</ cl ass-descri pt or>

<cl ass-descri ptor
cl ass="C"
t abl e="C _TABLE"

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="1| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
nane="al d"
colum="A_I D'
j dbc-t ype="1 NTEGER"

<r ef erence-descri pt or nanme="obj"
class-ref="A">
<forei gnkey field-ref="ald" />
</reference-descri ptor>
</ cl ass-descri pt or>

One scenario where you might run into problems is the use of interfaces for nested objects. In the above example, we could
construct such a scenario if we remove the descriptors for A and B, as well as the foreign key field al d from class C and
change its class descriptor to:

<cl ass- descri ptor
cl ass="C"
t abl e=" C_TABLE"

<fi el d-descri ptor
name="i d"
col um="1D"
j dbc-type="1 NTEGER'
pri marykey="true"
aut oi ncrenment ="true"

/>

<fi el d-descri pt or
nane="obj : : desc"
col um=" DESC"
j dbc-t ype=" VARCHAR"
| engt h="100"

/>

</ cl ass-descri pt or>

The access to desc will work because of the usage of bean properties, but you will get into trouble when using dynamic
proxies for C. Upon materializing an object of type C, OJB will try to create the instance for the field obj which is of type A.
Of course, thisis an interface but OJB won't check whether there is class descriptor for the type of obj (in fact there does not
have to be one, and usually there isn't) because obj is not defined as a reference. As a result, OJB tries to instantiate an
interface, which of coursefails.

Currently, the only way to handle thisis to write a custom invocation handler that knows how to create an object of type A.

4.5.7.5. Change PersistentField Class

OJB supports a pluggable strategy to read and set the persistent attributes in the persistence capable classes. All strategy
implementation classes have to implement the interface

Page 109

error:#site:basic-technique/dynamic-proxy
error:#site:basic-technique/dynamic-proxy
error:#site:basic-technique/proxy-customization

0OJB Documentation

or g. apache. oj b. broker. net adat a. fi el daccess. Persi stent Fi el d. OJB provide a few implementation
classes which can be set in OJB.propertiesfile:

The PersistentFiel dC ass property defines the inplenmentation class

for PersistentField attributes used in the QJB MetaData | ayer.

By default the best perfornming attribute/refection based inplenentation
is selected (PersistentFieldD rectAccesslnpl).

- PersistentFiel dDi rect Accessl npl
is a high-speed version of the access strategies.
It does not cooperate with an AccessController
but accesses the fields directly. Persistent
attributes don't need getters and setters
and don't have to be declared public or protected
- PersistentFieldPrivil egedl npl
Sane as above, but does cooperate with AccessController and do not
suppress the java | anguage access check
- PersistentFi el dl nt rospector | npl
uses JavaBeans conpliant calls only to access persistent attributes.
No Reflection is needed. But for each attribute xxx there must be
public get Xxx() and set Xxx() nethods.
- Persi stent Fi el dDynaBeanAccessl npl
i npl enentati on used to access a property froma
or g. apache. commons. beanuti | s. DynaBean
- Persi stentFi el dAut oProxyl nmpl
for each field determ nes upon first access how to access this particular field
(directly, as a bean, as a dyna bean) and then uses that strategy

HHEFHHFHEHFHHFAHFHAHFHEHFHFEHFATEHFHHHHFHHEHE

Per si st ent Fi el dCl ass=or g. apache. oj b. br oker . net adat a. fi el daccess. Persi stent Fi el dDi rect Accessl npl

#Per si st ent Fi el dCl ass=or g. apache. oj b. br oker. met adat a. fi el daccess. Persi stent Fi el dPri vi | egedl npl

#Per si st ent Fi el dCl ass=or g. apache. o] b. br oker. net adat a. fi el daccess. Persi st ent Fi el dl ntrospect or | npl

#Per si st ent Fi el dCl ass=or g. apache. o] b. br oker. net adat a. fi el daccess. Persi st ent Fi el dDynaBeanAccessl| npl

#Per si st ent Fi el dCl ass=or g. apache. o] b. br oker. net adat a. fi el daccess. Per si st ent Fi el dAut oPr oxyl npl

#

E.g. if the PersistentFieldDirectAccessimpl is used there must be an attribute in the persistent class with this name, if the
PersistentFieldintrospectorimpl is used there must be a JavaBeans compliant property of this name. More info about the

individual implementation can be found in javadoc.

4.5.7.6. How do anonymous keyswork?

To play for safety it is mandatory to understand how this feature is working. In the HOWTO section is detailed described how
to use anoymous keys.

All involved classes can be found in or g. apache. oj b. br oker. net adat a. f i el daccess package. The classes used
for anonymous keys start with a Anonynous XYZ. j ava prefix.

Main class used for provide anonymous keys IS
or g. apache. oj b. broker . met adat a. fi el daccess. AnonynousPer si st ent Fi el d. Current implementation
use an object identity based weak HashMap. The persistent object identity is used as key for the anonymous key value. The
(Anonymous)PersistentField instance is associated with the FieldDescriptor declared in the repository.

This means that all anonymous key information will be lost when the object identity change, e.g. the persistent object will be
de-/serialized or copied. In conjuction with 1:1 references this will be no problem, because OJB can use the referenced object
to re-create the anonymous key information (FK to referenced object).

The use of anonymous keys in 1:n references (FK to main object) or for PK fields is only valid when object identity does not change, e.g. use in single VM without persistent
object serialization and without persistent object copying.

4.5.7.7. Using Rowr eader

Page 110

error:#ext:ojb/ojb.properties
error:#ext:javadoc
error:#site:howto/anonymous-keys
error:#site:howto/anonymous-keys

OJB Documentation

RowReaders provide a callback mechanism that allows to interact with the OJB load mechanism. All implementation classes
have to implement interface RowReader .

Y ou can specify the RowReader implementation in
« theQJB. properti es fileto set the standard used RowReader implementation

Set the standard RowReader inplementation. It is also possible to specify the
RowReader on cl ass-descriptor |evel.
RowReader Def aul t Cl ass=or g. apache. oj b. br oker. accessl ayer . RowReader Def aul t | npl

 within the class-descriptor to set the RowReader for a specific class.

RowReader setting on class-descriptor level will override the standard reader set in QJB. properti es file. If neither a
RowReader was set in OJB.properties file nor in class-descriptor was set, OJB use an default implementation.

To understand how to use them we must know some of the details of the load mechanism. To materialize objects from a rdbms
OJB uses Rslterators, that are essentially wrappers to JDBC ResultSets. Rslterators are constructed from queries against the
Database.

The method Rsl t er at or. next () isused to materialize the next object from the underlying ResultSet. This method first
checks if the underlying ResultSet is not yet exhausted and then delegates the construction of an Object from the current
ResultSet row to the method get Cbj ect Fr onResul t Set () :

prot ect ed Cbj ect get Cbj ect FronResultSet() throws PersistenceBroker Exception
if (getltenProxyC ass() != null)
{

/1 provide mrow with primary key data of current row
get Queryhj ect (). get G assDescri pt or (). get RowReader ()

. readPkVal uesFron{get RsAndStnt (). mrs, getRow());
/] assert: mrowis filled with primary key values from db
return get ProxyFronResul t Set();

el se

/1 0. provide mrow with data of current row
get Quer yQhj ect (). get Cl assDescri pt or (). get RowReader ()

. readObj ect ArrayFron(get RsAndStnt (). mrs, getRow());
[/l assert: mrowis filled fromdb

/1 1.read ldentity
Identity oid = getldentityFronResultSet();
oj ect result = null;

/1 2. check if Cbject is in cache. if so return cached version
result = getCache(). | ookup(oid);
%f (result == null)
/1 3. If Object is not in cache
/1l materialize Cbject with primtive attributes filled from
/1 current row
result = get QueryCbject().getC assDescriptor()
. get RowReader (). readObj ect Fron{ get Row()) ;
/1 result may still be null!
if (result !'= null)
{

synchroni zed (result)
{
get Cache() . enabl eMvat eri al i zati onCache();
get Cache().cache(oid, result);
/1 fill reference and collection attributes
Cl assDescriptor cld = get QueryQbj ect().get d assDescriptor ()

Page 111

error:#ext:api/row-reader
error:#ext:ojb.properties
error:#site:repository/class-descriptor

0OJB Documentation

. get Repository().getDescriptorFor(result.getd ass());
/1 don't force |oading of reference
final bool ean unforced = fal se;
/1 Maps ReferenceDescriptors to HashSets of owners
get Broker (). get Ref erenceBroker (). retri eveReferences(result, cld, unforced);
get Broker () . get Ref erenceBroker().retrieveCol |l ections(result, cld, unforced);
get Cache() . di sabl eMateri al i zati onCache();

}

else // nject is in cache

}

Cl assDescriptor cld = get QueryQObj ect (). getd assDescriptor ()

. get Repository().getDescriptorFor(result.getd ass());
/1 if refresh is required, update the cache instance fromthe db
if (cld.isA waysRefresh())

get Quer yhj ect (). get Cl assDescri ptor ()
. get RowReader (). refreshCbject(result, getRow));

get Broker (). refreshRel ati onshi ps(result, cld);

return result;

}
}

This method first uses a RowReader to instantiate a new object array and to fill it with primitive attributes from the current

ResultSet row.

The RowReader to be used for a Class can be configured in the XML repository with the attribute r ow- r eader . If no
RowReader is specified, the standard RowReader isused. The method r eadObj ect ArrayFron(.. .) of thisclasslooks

like follows:

public void readObj ect ArrayFrom Result Set rs, Cl assDescriptor cld, Map row)
{

try
{

Col lection fields = cld.getRepository().

wh
{

}

get Fi el dDescr | pt or sFor Mul ti MappedTabl e(cl d) ;

erator it = fields.iterator();
ile (i

t. hasNext ())

Fi el dDescriptor frmd = (Fi el dDescriptor) it.next();

Fi el dConversi on conversion = fnd. get Fi el dConversion();
bj ect val = JdbcAccess. get Obj ect FronCol um(rs, fnd);
row. put (f nd. get Col uymNane() , conversi on. sql ToJava(val));

catch (SQLException t)

t hr ow new Per si st enceBr oker Excepti on("Error reading fromresult set",t);

}
}

In the second step OJB checks if there is already a cached version of the object to materialize. If so the cached instance is
returned. If not, the object is fully materialized by first reading in primary attributes with the RowReader method
readCbj ect From(Map row, C assDescriptor descriptor) andinasecond step by retrieving reference- and
collection-attributes. The fully materilized Object is then returned.

public Cbject readObject FromMap row, C assDescriptor descriptor)

t hr ows Per si st enceBr oker Excepti on

/] allow to select a specific classdescriptor
Cl assDescriptor cld = selectC assDescri ptor(row, descriptor);
return buil dWthReflection(cld, row);

Page 112

error:#site:repository/class-descriptor

OJB Documentation

By implementing your own RowReader you can hook into the OJB materialization process and provide additional features.

Rowreader Example

Assume that for some reason we do not want to map a 1:1 association with a foreign key relationship to a different database
table but read the associated object 'inline' from some columns of the master object's table. This approach is also called 'nested
objects. The section nested objects contains a different and much simpler approach to implement nested fields.

The class org. apache. oj b. broker. ArticleWthStockDetail has a stockDetail attribute, holding a
referenceto a St ockDet ai | object. The class StockDetail is not declared in the XML repository. Thus OJB is not able to fill
this attribute by ordinary mapping techniques.

We have to define a RowReader that does the proper initialization. The Class
or g. apache. oj b. br oker. RowReader Test | npl extends the RowReaderDefaultimpl and overrides the
readQbj ect Fron(.. .) method asfollows:

public Object readObject From(Map row, C assDescriptor cld)
{

bj ect result = super.readojectFron{row, cld);
if (result instanceof ArticleWthStockDetail)
{

ArticleWthStockDetail art = (ArticleWthStockDetail) result;

bool ean sellout = art.isSelloutArticle;

int mnimum= art.n ni nuntt ock;

int ordered = art.orderedUnits;

int stock = art. stock;

String unit = art.unit;

St ockDet ail detail = new StockDetail (sellout, m nimm
ordered, stock, unit, art);

art.stockDetail = detail;
return art;

el se

{
return result;

}

}
To activate this RowReader the ClassDescriptor for the class ArticleWithStockDetail contains the following entry:

<cl ass-descri ptor
cl ass="org. apache. oj b. broker. Articl eWthSt ockDetail"
tabl e="Arti kel "
rowr eader =" or g. apache. oj b. br oker . RowReader Test | npl "
>

4.5.7.8. Nested Objects
In the last section we discussed the usage of a user written RowReader to implement nested objects. This approach has several
disadvantages.

1. Itisnecessary to write code and to have some understanding of OJB internals.
2. Theuser must take care that all nested fields are written back to the database on store.

This section shows that nested objects can be implemented without writing code, and without any further trouble just by a few
settings in the repository.xml file.

Theclassor g. apache. o] b. broker. Articl eWt hNest edSt ockDet ai | hasast ockDet ai | attribute, holding a
referenceto a St ockDet ai | object. The class StockDetail is not declared in the XML repository as afirst class entity class.

public class ArticleWthNestedStockDetail inplenents java.io.Serializable
{

Page 113

/**

* this attribute is not filled through a reference | ookup
* but with the nested fields feature

*/

protected StockDetail stockDetail

}
The StockDetail class has the following layout:
public class StockDetail inplenments java.io.Serializable
prot ected bool ean isSelloutArticle;
protected int m ni nuntt ock
protected int orderedUnits;
protected int stock

protected String unit;

}

Only precondition to make things work is that SockDetail needs a default constructor.

The nested fields semantics can simply declared by the following class- descriptor:

<cl ass-descri ptor
cl ass="org. apache. oj b. broker. Arti cl eWt hNest edSt ockDet ai | "
tabl e="Arti kel "
>
<fi el d-descri pt or
name="articl el d"
col um="Artikel Nr"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
nanme="arti cl eNane"
col um="Arti kel nane"
/ j dbc-t ype=" VARCHAR"
>

<fi el d-descri pt or
nane="supplierld"
col um="Li eferanten_Nr"
) j dbc-t ype="1 NTEGER"
>

<fi el d-descri pt or
nanme="pr oduct G oupl d"
col um="Kat egori e_Nr"
j dbc-t ype="1 NTEGER"
/>

<fi el d-descri pt or
name="stockDetail::unit"
col um="Li ef erei nhei t"
, j dbc-t ype=" VARCHAR"
>

<fi el d-descri pt or
nanme="price"
col um="Ei nzel prei s"
j dbc-type="FLOAT"

/>

<fi el d-descri pt or
nane="st ockDetail :: st ock"
col um="Lager best and"

0OJB Documentation

Page 114

OJB Documentation

j dbc-t ype="1 NTEGER"
/>

<fi el d-descri pt or
name="st ockDet ai | : : orderedUni ts"
col um="Best el | t eEi nhei t en"
j dbc-type="1 NTEGER"

/>

<fi el d-descri pt or
nane="st ockDet ai | : : m ni muntt ock"
col um="M ndest Best and"
/ j dbc-t ype="1 NTEGER"
>

<fi el d-descri pt or
name="st ockDetail::isSelloutArticle"
col um="Ausl auf arti kel "
j dbc-t ype="1 NTEGER"
conver si on="or g. apache. oj b. br oker . accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"
/>
</ cl ass-descri pt or>

That's all! Just add nested fields by using : : to specify attributes of the nested object. All aspects of storing and retrieving the
nested object are managed by OJB.

4.5.7.9. Instance Callbacks

OJB does provide transparent persistence. That is, persistent classes do not need to implement an interface or extent &
persistent baseclass.

For certain situations it may be neccesary to allow persistent instances to interact with OJB. This is supported by a simple
instance callback mechanism.

The interface or g. apache. oj b. Per si st enceBr oker Awar e provides a set of methods that are invoked from the
PersistenceBroker during operations on persistent instances:

public interface PersistenceBroker Anare

/**
* this method is called as the first operation within a call to
* Persi stenceBroker. store(Cbject pbAwareQbject), if
* the persistent object needs insert.
*/
public void beforelnsert(PersistenceBroker broker)
t hrows Persi st enceBr oker Excepti on

/**
* this method is called as the |ast operation within a call to
* Persi stenceBroker. store(Cbject pbAwareCbject), if
* the persistent object needs insert.
*/
public void afterlnsert(PersistenceBroker broker)
t hr ows Per si st enceBr oker Excepti on

/**
* this method is called as the first operation within a call to
* Persi stenceBroker. store(Cbject pbAwareQbject), if
* the persistent object needs update.
*/
public void beforeUpdat e(Persi st enceBroker broker)
t hrows Per si st enceBr oker Excepti on

/**
* this method is called as the |ast operation within a call to
* Persi stenceBroker. store(Cbject pbAwareQbject), if
* the persistent object needs update.
*/
public void afterUpdat e(Persi stenceBroker broker)

Page 115

}

t hrows Persi st enceBr oker Excepti on

/**
* this nmethod is called as the first operation within a call to
* Persi st enceBroker. del et e(Chj ect pbAwar ehj ect) .
*/
public void beforeDel et e(Persi st enceBroker broker)
t hr ows Per si st enceBr oker Excepti on

/**
* this method is called as the |last operation within a call to
* Persi st enceBroker. del et e(Obj ect pbAwar ehj ect) .
*/
public void afterDel et e(PersistenceBroker broker)
t hr ows Per si st enceBr oker Excepti on

/**
* this method is called as the |ast operation within a call to
* Per si st enceBroker. get Cbj ect ByXXX() or
* Per si st enceBroker. get Col | ecti onByXXX() .
*/
public void afterLookup(PersistenceBroker broker)
t hrows Persi st enceBr oker Excepti on

0OJB Documentation

If you want your persistent entity to perform certain operations after it has been stored by the PersistenceBroker you have to
perform the following steps:

1.
2.
3.

let your persistent entity class implement the interface Per si st enceBr oker Awar e.

provide empty implementations for all required mthods.

implement the method af t er Updat e(Per si st enceBr oker broker) and
afterl nsert (PersistenceBroker broker) toperformyour intended logic.

In the following "for demonstration only code” you see a class DBAut ol ncr enent ed that does not use the OJB sequence
numbering (more info here), but relies on a database specific implementation of autoincremented primary key values.
When the broker is storing such an instance the DB assigns an autoincrement value to the primary key column mapped to the

attribute m i d. The af t er St or e(Per si st enceBr oker

m_i d with thisvalue.

publ i c abstract class DBAutol ncrenent ed

{

i mpl enent s Per si st enceBr oker Anar e
private static final String |ID ATTRIBUTE NAME = "m.i d";
publ i ¢ void afterDel et e(PersistenceBroker broker)

publ i ¢ void afterLookup(PersistenceBroker broker)

publ i ¢ void afterUpdat e(Persi stenceBroker broker)

/**
* after storing a new instance reflect the
* aut oi ncrenent ed PK val ue
* pback into the PK attri bute.
2
public void afterlnsert(PersistenceBroker broker)
{
try
{

/1 renove object fromcache to ensure we are retrieving a

br oker) instance callback is used to update the the attribute

Page 116

error:#site:sequence-manager

OJB Documentation

}

/1 copy that is in sync with the database.
br oker. renmoveFr onCache(t hi s);

Class clazz = getd ass();
Cl assDescriptor cld = broker.getC assDescriptor(clazz);
PersistentField idField = cld
.get Fi el dDescri pt or ByNanme(| D_ATTRI BUTE_NANME)
.get PersistentField();
/1 retrieve the object again with a query
/1 on all non-id attributes.
hj ect object =
br oker. get Obj ect ByQuer y(
bui | dQuer yOnAl | Nonl dAttri butes(cl azz, cld));

if (object == null)
t hr ow new Per si st enceBr oker Excepti on(

"cannot assign IDto "
this

+

+

+ clazz

+ ")

+ because | ookup by attributes failed");

}

/] set id attribute with the val ue
/1 assigned by the database.
i dFi el d. set (this, idField.get(object));

public void beforeDel et e(Persi st enceBroker broker)

{
}

public void beforeStore(Persi stenceBroker broker)

{
}

/

* %

* returns a query that identifies an object by all its non-

* primary key attributes.

* NOTE: This method is only safe, if these values are unique!
*/

private Query buil dQueryOnAl |l Nonl dAttri but es(

Cl ass clazz,
Cl assDescri ptor cld)

/1l note: these are guaranteed to be in the sane order
Fi el dDescriptor[] fields = cld.getFiel dDescriptions();
oj ect[] values = cld.getAll Values(this);

Criterta crit = new Criteria();

for (int i =0; i < fields.length; i++)

if (!fields[i].getAttributeName().
equal s(1 D_ATTRI BUTE_NAME))

{
if (values[i] == null)
crit.addlsNull (fields[i].getAttributeName());
el se
crit.addEqual To(fields[i].getAttributeNanme(),
val ues[i]);
}
}

Page 117

0OJB Documentation

}

return QueryFactory. newQuery(clazz, crit);
}
4.5.7.10. Manageable Collection

In 1:n or m:n relations, OJB can handle j ava. uti | . Col | ecti on aswell as user defined collection classes as collection
attributes in persistent classes. See collection-descriptor.collection-class attribute for more information.

In order to collaborate with the OJB mechanisms these collection must provide a minimum protocol as defined by this
interface or g. apache. oj b. br oker . Manageabl eCol | ecti on.

public interface Manageabl eCol | ecti on extends java.io. Serializable
/**

* add a single nject to the Collection. This method is used during reading Collection el enents
* fromthe database. Thus it is is save to cast anCbject to the underlying el ement type of the

* coll ection.
*/

voi d oj bAdd(Qhj ect anObj ect);
/**

* adds a Collection to this collection. Used in reading Extents fromthe Database.
* Thus it is save to cast otherCollection to this.getd ass().

*/
voi d oj bAddAI | (Manageabl eCol | ecti on ot her Col | ecti on);
/**

* returns an lterator over all elements in the collection. Used during store and del ete
Oper ati ons.

* |f the inplenentor does not return an iterator over ALL elenents, QJB cannot store and delete
al |

* el enents properly.

*/

Iterator ojblterator();

/**

* A cal l back method to inplenent 'renoval -aware' (track renpved objects and del ete
* themby its own) collection inplenentations.

*/

public void afterStore(PersistenceBroker broker) throws PersistenceBrokerException

The methods have a prefix "ojb" that indicates that these methods are "technical” methods, required by OJB and not to be used
in business code.

In package or g. apache. oj b. broker. util. col | ecti ons can be found a bunch of pre-defined implementations of
or g. apache. oj b. br oker . Manageabl eCol | ecti on.

More info about which collection class to used here.

Types Allowed for Implementing 1:n and m:n Associations

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the used type automatically, so
there is no need to declare it in the repository file. There is also no additional programming required. The following types are
supported:

1. java.util.Collection, java.util.List, java.util.Vector asintheexampleabove. Internaly OJB
usesj ava. uti | . Vect or toimplement collections.

2. Arrays(seethefile Pr oduct G oupW t hArr ay).

3. User-defined collections (see the file Pr oduct G oupW t hTypedCol | ecti on). A typical application for this
approach are typed Collections.

Page 118

error:#site:basic-technique/one-to-n
error:#site:basic-technique/m-to-n
error:#site:repository/collection-descriptor

OJB Documentation

Here is some sample code from the Collection classAr t i cl eCol | ect i on. ThisCollection istyped, i.e. it accepts only
InterfaceArticle objects for adding and will return InterfaceArticle objectswith get (i nt 1 ndex) . Tolet OJB handle
such a user-defined Collection it must implement the callback interface Manageabl eCol | ect i on and the typed
collection class must be declared in the collection-descriptor using the collection-class attribute.

Manageabl eCol | ect i on provides hooks that are called by OJB during object materialization, updating and deletion.

public class ArticleCollection inplenments Manageabl eCol | ecti on
java.io. Serializable

{
private Vector el enents;
public ArticleCollection()
{
super();
el ements = new Vector ()
}
public void add(InterfaceArticle article)
el ements. add(article);
}
public InterfaceArticle get(int index)
return (InterfaceArticle) elements. get(index);
/**
* add a single hject to the Collection. This nmethod is
* used during reading Collection elenents fromthe
* database. Thus it is is save to cast an(bject
* to the underlying elenent type of the collection
*/
public void oj bAdd(java. |l ang. Obj ect anCbj ect)
el ements. add((InterfaceArticle) anthject);
}
/**
* adds a Collection to this collection. Used in reading
* Extents fromthe Database
* Thus it is save to cast otherCollection to this.getd ass().
*/
public void oj bAddAI I (
oj b. br oker . Manageabl eCol | ecti on ot her Col | ecti on)
el enent s. addAl | (
((ArticleCollection) otherCollection).elenents);
}
/**
* returns an Iterator over all elenments in the collection
* Used during store and del ete Operati ons.
*/
public java.util.lterator ojblterator()
return elenents.iterator();
}

And the collection-descriptor have to declare this class:

<col | ecti on-descri ptor

name="al | Articl esl nG oup"

el enent - cl ass-ref =" or g. apache. oj b. br oker. Articl e"

col | ection-cl ass="org. apache. oj b. broker. Articl eCol | ecti on"
auto-retrieve="true"

Page 119

0OJB Documentation

aut o- updat e="f al se"
aut o- del et e="t rue"
>

<i nver se-foreignkey field-ref="product Goupld"/>
</ col | ecti on-descri ptor>

Which collection-class type should be used?

Earlier in this section the or g. apache. oj b. br oker . Manageabl eCol | ect i on was introduced. Now we talk about
which type to use.

By default OJB use a removal-aware collection implementation. These implementations (classes prefixed with Removal...)
track removal and addition of elements.

This tracking allow the PersistenceBroker to delete elements from the database that have been removed from the collection
before a PB.store() operation occurs.

This default behaviour isundesired in some cases:

e Inm:nrelations, e.g. between Movie and Actor class. If an Actor was removed from the Actor collection of a Movie object
expected behaviour was that the Actor be removed from the indirection table, but not the Actor itself. Using aremoval
aware collection will remove the Actor too. In that case a simple manageable collection is recommended by set e.g.
col | ection-cl ass="org. apache. oj b. broker. util.col |l ections. Manageabl eArrayLi st" in
collection-descriptor.

 In 1:nrelations when the n-side objects be removed from the collection of the main object, but we don't want to remove
them itself (be careful with this, because the FK entry of the main object still exists - more info about linking here).

4.5.7.11. Customizing collection queries

Customizing the query used for collection retrieval allows a developer to take full control of collection mechanism. For
example only children having a certain attribute should be loaded. This is achieved by a QueryCustomizer defined in the
collection-descriptor of arelationship:

<col | ecti on-descri ptor
name="al | Arti cl esl nG oup"

<i nverse-forei gnkey field-ref="product G oupld"/>

<query-custom zer
cl ass="or g. apache. oj b. br oker. accessl ayer. Quer yCust oni zer Def aul t | npl ">
<attribute
attribute-nane="attr1"
attri but e-val ue="val uel"
/>
</ query-custom zer>

</ col | ection-descri ptor>

The query customizer must implement the interface or g. apache. oj b. br oker . accessl ayer. Quer yCust om zer.
This interface defines the single method below which is used to customize (or completely rebuild) the query passed as
argument. The interpretation of attribute-name and attribute-value read from the collection-descriptor is up to your
implementation.

*
*

Return a new Query based on the original Query, the
originator object and the additional Attributes

@ar am anObj ect the originator object
@ar am aBr oker the PersistenceBroker
@ar am aCod t he Col | ecti onDescri ptor
@aram aQuery the original 1:n-Query
@eturn Query the custom zed 1:n-Query

0% % X X X X X T

Page 120

error:#site:basic-technique/m-to-n
error:#site:basic-technique/m-to-n
error:#site:basic-technique/one-to-n
error:#site:basic-technique/linking

OJB Documentation

*
public Query custom zeQuery(Cbject anObj ect,
Per si st enceBr oker aBroker,
Col | ecti onDescri ptor aCod, Query aQuery);

The class org. apache. oj b. broker. accessl ayer. QueryCust om zer Def aul t I npl provides a default
implentation without any functionality, it simply returns the query.

4.5.7.12. M etadata runtime changes

This was described in metadata section.

4.5.8. 0JB Queries

4.5.8.1. Introduction

This tutorial describes the use of the different queries mechanisms. The sample code shown here is taken mainly from JUnit
test classes. The junit test source can be found under [db- oj b] / sr c/ t est inthe source distribution.

4.5.8.2. Query by Criteria

In this section you will learn how to use the query by criteriaa The classes are located in the package
or g. apache. oj b. br oker . query. Using query by criteriayou can either query for whole objects (ie. person) or you can
use report queries returning row data.

A query consists mainly of the following parts:

1. theclassof the objectsto be retrieved

2. alist of criteria

3. aDISTINCT flag

4. additional ORDER BY and GROUP BY

OJB offers a QueryFactory to create a new Query. Although the constructors of the query classes are public using the
QueryFactory isthe preferred way to create a new query.

Query q = QueryFactory. newQuery(Person. class, crit);
To create a DISTINCT-Query, simply add true as third parameter.

Query q = QueryFactory. newQuery(Person. class, crit, true);
Each criterion stands for a column in the SQL-WHERE-clause.

Criteria crit = new Criteria();

crit.addEqual To("upper (firstname)"”, "TOM);
crit.addEqual To("I ast nane", "hanks");

Query q = QueryFactory. newQuery(Person. class, crit);

This query will generate an SQL statement like this:

SELECT ... FROM PERSON VWHERE upper (FI RSTNAME) = "TOM' AND LASTNAME = "hanks";

OJB supports functions in field criteria ie. upper(firstname). When converting a field name to a database column name, the
function is added to the generated sgl. OJB does not and can not verify the correctness of the specified function, an illegal
function will produce an SglException.

Query Criteria

OJB provides selection criteria for aimost any SQL-comparator. In most cases you do not have to deal directly with the
implementing classes like Equal ToCriteria. The Criteria class provides factory methods for the appropriate classes. There are

Page 121

error:#site:metadata

0OJB Documentation

four kinds of factory methods:

create criteriato compare afield to avalue: ie. addEqua To("firstname”, "tom");

create criteriato compare afield to another field: ie. addEqual ToField("firstname”, "other_field");
create criteriato check null value: ie. addisNull("firstname");

create araw sql criteria: ie: addSql("REVERSE(name) like 're%o™);

The following list shows some of the factory methods to compare afield to avalue:

addEqualTo

addLike

addGreaterOrEqual Than

addGreaterThan

addLike

addBetween , this methods has two value parameters
addin , this method uses a Collection as value parameter
and of course there negative forms

This list shows some factory methods to compare afield to another field, all those methods end on ...field:

« addEqualToField
e addGreaterThanField
« and of course there negative forms

in/notin

Some databases limit the number of parametersin an IN-statement.
If the limit is reached OJB will split up the IN-Statement into multiple Statements, the limit is set to 3 for the following
sample:

SELECT ... FROM Arti kel A0 WHERE AO. Kategorie Nr IN(?, ?, ?)
OR AO. Kategorie Nr IN(? , ?) ORDER BY 7 DESC
The IN-limit for prefetch can be defined in OJB.properties:

The SqllnLinmit entry limts the nunber of values in IN-sql
statement, -1 for no limts. This hint is used in Criteria.
Sql I nLi i t =200

and / or

All selection criteria added to a criteria set using the above factory methods will be ANDed in the WHERE-clause. To get an
OR combination two criteria sets are needed. These sets are combined using addOrCriteria

Criteria critl = new Criteria();
critl.addLi ke("firstname", "%%);
critl.addLi ke("l astnane", "%4);
Criteria crit2 = new Criteria();
crit2.addEqual To("firstnanme", "hank");

critl.addOrCriteria(crit2);
Query q = QueryFactory. newQuery(Person.class, critl);

Col ection results = broker.getCollectionByQuery(q);
This query will generate an SQL statement like this:

SELECT ... VWHERE (FI RSTNAMVE LI KE "%%) AND LASTNAME
LI KE "%®6 OR FI RSTNAME = "hank"

negating the criteria

Page 122

OJB Documentation

A criteria can be negated to obtain NOT in the WHERE-clause:

Criteria critl = new Criteria();

critl.addLi ke("firstname", "%%);

critl.addLi ke("l ast nane", "%4);
critl.setNegative(true);

Col ection results = broker.getCollectionByQuery(q);

This query will generate an SQL statement like this:

SELECT ... WHERE NOT (FI RSTNAME LI KE "%0% AND LASTNAME LI KE " %P6)
ordering and grouping

The following methods of QueryByCriteria are used for ordering and grouping:

« addOrderByAscending(String anAttributeName);
« addOrderByDescending(String anAttributeName);
« addGroupBy(String anAttributeName); this method is used for report queries

Y ou can of course have multiple order by and group by clauses, simply repeat the addOrderBy.

crit = new Criteria();

query = new QueryByCriteria(Person.class, crit);

query. addOr der ByDescendi ng("i d");

query. addOr der ByAscendi ng("| ast nanme") ;

br oker . get Col | ecti onByQuery(query);

The code snippet will query all Persons and order them by attribute "id" descending and "lasthame" ascending. The query will

produce the following SQL -statement using column numbersin the ORDER BY clause:

SELECT AO. | D, AO. FI RSTNAME, AO. LASTNAME FROM
PERSON A0 ORDER BY 1 DESC, 3

When you use the column name "LASTNAME" instead of the attribute name "lasthame'
(query.addOrderBy("LASTNAME");), an additional column named "LASTNAME" without alias will be added.

SELECT AO. | D, AO. FI RSTNAME, AO. LASTNAME, LASTNAME FROM
PERSON A0 ORDER BY 1 DESC, 4

If there are multiple tables with a column "LASTNAME" the SQL -Statement will produce an error, so it's better to always use
attribute names.

subqueries

Subqueries can be used instead of valuesin selection criteria. The subquery should thus be a ReportQuery.
The following example queries all articles having a price greator or equal than the average price of articles named 'A%

Report QueryByCriteria subQuery;
Criteria subCrit = new Criteria();
Criteria crit = new Criteria();

subCrit.addLi ke("articl eNane", "A%W);
subQuery = QueryFactory. newReport Query(Article.class, subCrit);
subQuery. set Attri butes(new String[] { "avg(price)" });

crit.addG eat er O Equal Than("price", subQuery);
Query g = QueryFactory. newQuery(Article.class, crit);
Col ection results = broker.getCollectionByQuery(q);

It's also possible to build a subquery with attributes referencing the enclosing query. These attributes have to use a special
prefix Criteria. PARENT_QUERY_PREFIX.

Page 123

0OJB Documentation

The following example queries all product groups having more than 10 articles:

Report QueryByCriteria subQuery;
Criteria subCrit = new Criteria();
Criteria crit = new Criteria();

subCrit. addEqual ToFi el d(" product Groupl d", Criteria. PARENT _QUERY_PREFI X + "groupld");
subQuery = QueryFactory. newReport Query(Article.class, subCrit);
subQuery. set Attributes(new String[] { "count(productGoupld)" });

crit.addG eat er Than(subQuery, "10"); // MORE than 10 articles
crit.addLessThan("groupld”, new Integer(987654));
Query q = QueryFactory. newQuery(Product G oup.class, crit);

Col l ection results = broker.getCollectionByQuery(q);

Subqueries are not extent aware. Thusit's not possible to use an abstract class or an interface as search class of a subquery.

joins
Joins resulting from path expressions ("relationship.attribute") in criteria are automatically handled by OJB. Path expressions
are supported for all relationships 1:1, 1:n and m:n (decomposed and non-decomposed) and can be nested.

The following sample looks for all articles belonging to the product group "Liquors'. Article and product group are linked by
the relationship "productGroup” in class Article:

<!-- Definitions for org.apache.ojb.ojb. broker.Article -->
<cl ass-descri ptor
cl ass="or g. apache. oj b. broker. Articl e"
proxy="dynam c"
tabl e="Arti kel "

<r ef erence-descri pt or
nanme="pr oduct G oup"
cl ass-ref ="org. apache. oj b. br oker. Product G oup"
>
<forei gnkey field-ref="product G oupld"/>
</reference-descriptor>
</ cl ass-descri pt or>

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Product G oup"
pr oxy="or g. apache. oj b. br oker . Product G- oupPr oxy"
t abl e=" Kat egori en"

<fi el d-descri pt or
name="gr oupNanme"
col um="Kat egor i eNane"
j dbc-t ype=" VARCHAR"

/>

</ciéés—descriptor>
The path expression includes the 1:1 relationship "productGroup” and the attribute "groupName":
Criteria crit = new Criteria();

crit.addEqual To(" product G oup. gr oupNane", "Liquors");
Query q = QueryFactory. newQuery(Article.class, crit);

Col l ection results = broker.getCollectionByQuery(q);
If path expressions refer to a class having extents, the tables of the extent classes participate in the JOIN and the criteria is

Page 124

OJB Documentation

ORed. The shown sample queries al ProductGroups having an Article named 'F%'. The path expression 'allArticlesinGroup'
refers to the class Articles which has two extents: Books and CDs.

Criteria crit = new Criteria();
crit.addLi ke("all ArticleslnGoup.articleNane", "FW%);
QueryByCriteria g = QueryFactory. newQuery(Product Goup.class, crit, true);

Col ection results = broker.getCollectionByQuery(q);
This sample produces the following SQL:

SELECT DI STI NCT AO. Kat egori eName, AO. Kat egori e_Nr, AO. Beschr ei bung
FROM Kat egori en AO

INNER JO N Arti kel Al ON AO. Kat egori e_Nr=Al. Kat egori e_Nr

LEFT OQUTER JO N BOOKS A1EO0 ON AO. Kat egori e_Nr=A1EQ. Kat egori e_Nr
LEFT QUTER JO N CDS AL1E1 ON AO. Kat egori e_Nr=AlE1l. Kat egori e_Nr
WHERE Al. Arti kel name LIKE 'F% OR

ALEO. Arti kel name LIKE 'F% OR

ALEl. Arti kel name LIKE ' F%

OJB triesto do it's best to automatically use outer joins where needed. Thisis currently the case for classes having extents and

ORed criteria. But you can force the SQL Generator to use outer joins where you find it useful.
Thisis done by the method QueryByCriteria#setPathOuter Join(String).

Report QueryByCriteria query;
Criteria crit;
Iterator resultl, result?2;

crit = new Criteria();

query = new Report QueryByCriteria(Person.class, crit);
query.set Attri butes(new String[] { "id", "name", "vornane", "sun{konti.saldo)" });
query. addGroupBy(new String[]{ "id", "name", "vornane" });

resultl = broker.get Report QuerylteratorByQuery(query);

query. set Pat hQut er Joi n("konti ") ;
result2 = broker. get Report QuerylteratorByQuery(query),

Thefirst query will use an inner join for relationship "konti", the second an outer join.

user defined alias

This feature alows to have multiple aliases for the same table. The standard behaviour of OJB is to build one alias for one
relationship.

Suppose you have two classes Issue and Keyword and there is a 1:N relationship between them. Now you want to retrieve
Issues by querying on Keywords. Suppose you want to retrieve all Issues with keywords 'JOIN' and 'ALIAS. If these values
are stored in the attribute 'value' of Keyword, OJB generates a query that contains " Al.value = 'JOIN' AND Al.value =
'ALIAS " in the where-clause. Obvioudly, this will not work, no hits will occur because Al.value can not have more then 1
value at thetime!

For the examples below, suppose you have the following classes (pseudo-code):

cl ass Cont ai ner
int id
Col | ection all AbstractAttri butes

cl ass AbstractAttri bute
int id
inf ref_id
String nane
String val ue
Col l ection all Abstract Attri butes

Page 125

0OJB Documentation

OJB maps these classes to separate tables where it maps all AbstractAttributes using a collectiondescriptor to AbstractAttribute
using ref_id asinverse foreignkey on Container for the collection descriptor.
For demo purposes : AbstractAttribute also has a collection of abstract attributes.

Criteria critl = new Criteria();

critl.setAlias("conpany"); /1 set an alias
critl.addEqual To("al |l Abstract Attri butes. nane", "conpanyNanme");
critl.addEqual To("al | Abstract Attri butes. value", "iBanx");
Criteria crit2 = new Criteria();

crit2.setAlias("contact"); /] set an alias
crit2.addEqual To("al | Abstract Attri butes. nane", "contactPerson");
crit2.addLi ke("all AbstractAttri butes.val ue", "janssen");
Criteria crit3 = new Criteria();

crit3.addEqual To("al | Abstract Attri butes. nane", "size");
crit3.addG eaterThan("al | Abstract Attri butes. val ue”, new I nteger(500));
critl.addAndCriteria(crit?2);

critl.addAndCriteria(crit3);

q = QueryFactory. newQuery(Container.class, critl);
q. addOr der By(" conpany. val ue"); /1 user alias

The generated query will be as follows. Note that the alias name ‘company’ does not show up in the SQL.

SELECT DI STI NCT AO0. 1D, Al.VALUE
FROM CONTAI NER A0 | NNER JO N ABSTRACT_ATTRI BUTE Al
ON AO. I D=Al. REF_I D
I NNER JO N ABSTRACT_ATTRI BUTE A2
ON AO. I D=A2. REF_I D
I NNER JO N ABSTRACT_ATTRI BUTE A3
ON AO. ID=A3. REF_I D

WHERE ((AO0. NAME = 'conpanyName') AND (AO0.VALUE = 'iBanx')) AND
((AL.NAME = 'contactPerson') AND (Al.VALUE LIKE '% anssen%)) AND
(A2.NAME = 'size') AND (A2.VALUE = '500'))

ORDER BY 2

The next example uses areport query.

Criteria critl = new Criteria();

critl.setAlias("ALIASL");

critl.addEqual To("al | Abstract Attributes. all Abstract Attri butes. name", "xxxx");
critl.addEqual To("al |l AbstractAttributes. all Abstract Attri butes.value", "hello");

Criteria crit2 = new Criteria();

crit2.setAlias("ALI AS2");

crit2.addEqual To("al | Abstract Attri butes. nane", "yyyy");
crit2. addLi ke("al |l Abstract Attri butes. value", "");

critl.addAndCriteria(crit?2);
q = QueryFactory. newReport Query(Cont ai ner.class, critl);

String[] cols = { id, "ALIAS2. nane", "ALIAS2.name", "ALIAS1. name", "ALl|ASl. name" };
q.setAttributes(cls);

The generated query will be:

SELECT DI STINCT A0.1D, AL NAME, Al.VALUE, A2. NAME, A2.VALUE
FROM CONTAI NER A0 | NNER JO N ABSTRACT ATTRI BUTE Al
ON AO. | D=Al. REF_I D
I NNER JO N ABSTRACT_ATTRI BUTE A2
ON Al. | D=A2. REF_ID
WHERE ((A2.NAME = “xxxx') AND (A2.VALUE = 'hello')) AND
((AL.NAME = 'yyyy') AND (A2.VALUE LIKE '9%%)) AND

Page 126

OJB Documentation

ORDER BY 2

When you define an alias for a criteria, you have to make sure that all attributes used in this criteria belong to the same class. If you break this rule OJB will probably use a
wrong ClassDescriptor to resolve your attributes!

class hints

This feature allows the user to specify which class of an extent to use for a path-segment. The standard behaviour of OJB isto
use the base class of an extent when it resolves a path-segment.

In the following sample the path allArticleslnGroup points to class Article, this is defined in the repository.xml. Assume we
are only interested in ProductGroups containing CdArticles performed by Eric Clapton or Books authored by Eric Clapton, a
class hint can be defined for the path. This hint is defined by:

CriteriattaddPathClass("all ArticlesinGroup”, CdArticle.class);

[/
[/ find a ProductGoup with a CD or a book by a particular arti st
[/
t

String artistName = new String("Eric Capton");

critl = new Criteria();

critl.addEqual To("all Articl esl nG oup. nusi ci ans", artistNane);
critl.addPat hC ass("all Articl eslnGoup", CdArticle.class);
crit2 = new Criteria();

crit2.addEqual To("al |l Articl esl nG oup. author", artistNane);
crit2.addPat hC ass("all Articl esl nG oup”, BookArticle.class);
critl.addOrCriteria(crit2);

query = new QueryByCriteria(ProductGoup.class, critl);
br oker . get Cbj ect ByQuery(query);

This feature is also available in class QueryByCriteria but using it on Criteria-level provides additional flexibility. QueryByCriteria#taddPathClass is only useful for
ReportQueries to limit the class of the selected columns.

prefetched relationships

This feature can help to minimize the number of queries when reading objects with relationships. In our Testcases we have
ProductGroups with a one to many relationship to Articles. When reading the ProductGroups one query is executed to get the
ProductGroups and for each ProductGroup another query is executed to retrieve the Articles.

With prefetched relationships OJB tries to read all Articles belonging to the ProductGroups in one query. See further down
why one query is not always possible.

Criteria crit = new Criteria();
crit.addLessOr Equal Than("groupl d*, new Integer(5));

QueryByCriteria q = QueryFactory. newQuery(Product G oup. cl ass, crit);
q. addOr der ByDescendi ng(" groupl d");
q. addPr ef et chedRel ati onshi p("al |l Articl esl nG oup");

Col ection results = broker.getCollectionByQuery(q);
The first query reads all matching ProductGroups.

SELECT ... FROM Kat egorien A0 VWHERE
AO. Kat egorie_Nr <= ? ORDER BY 3 DESC

The second query retrieves Articles belonging to the ProductGroups read by the first query:

Page 127

0OJB Documentation

SELECT ... FROM Arti kel A0 WHERE AOQ. Kat egori e Nr
IN(?, ?2, ?, ?, ?) ORDER BY 7 DESC

After reading all Articlesthey are associated with their ProductGroup.

Thisfunction is not yet supported for relationships using Arrays.

Some databases limit the number of parameters in an IN-statement. If the limit is reached OJB will split up the second query
into multiple queries, the limit is set to 3 for the following sample:

SELECT ... FROM Arti kel A0 WHERE AOQ. Kat egori e Nr
IN(?, ?, ?) ORDER BY 7 DESC
SELECT ... FROM Arti kel A0 WHERE AOQ. Kat egori e_Nr

IN(?, ?) ORDER BY 7 DESC
The IN-limit for prefetch can be defined in OJB.properties SgllnLimit.

querying for objects

OJB queries return complete objects, that means all instance variables are filled and al "auto-retrieve' relationships are loaded.
Currently there's no way to retrieve partialy loaded objects (ie. only first- and lastname of a person).

More info about manipulation of metadata setting here.

Report Queries

Report queries are used to retrieve row data, not 'real’ business objects. A row is an array of Object. With these queries you can
define what attributes of an object you want to have in the row. The attribute names may also contain path expressions like
‘owner.address.street’. To define the attributes use ReportQuery #setAttributes(String[] attributes).

The following ReportQuery retrieves the name of the ProductGroup, the name of the Article etc. for al Articles named like
IICO OII:

Criteria crit = new Criteria();

Col l ection results = new Vector();

crit.addLi ke("articleNanme", "C®%);

Report QueryByCriteria q = QueryFactory. newReport Query(Article.class, crit);
q.setAttributes(new String[] { "product G oup.groupNane","articleld", "articleNane", "price" });

Iterator iter = broker.getReportQuerylteratorByQuery(q);
The ReportQuery returns an Iterator over a Collection of Object[4] ([String, Integer, String, Doublé]).

Limitations of Report Queries

ReportQueries should not be used with columns referencing classes with extents. Assume we want to select all ProductGroups
and summarize the amount and prize of items in stock per group. The class Article referenced by allArticleslnGroup has the
extents Books and CDs.

Criteria crit = new Criteria();

Col l ection results = new Vector();

Report QueryByCriteria q = QueryFactory. newReport Query(Product G oup. class, crit);
q.setAttributes(new String[] { "groupNane", "sunm(allArticleslnG oup.stock)",
"sum(al | ArticleslnGoup.price)" });

q. addG oupBy(" gr oupNane") ;

Iterator iter = broker.getReportQuerylteratorByQuery(q);
The ReportQuery looks quite reasonable, but it will produce an SQL not suitable for the task:

Page 128

error:#site:metadata

OJB Documentation

SELECT AO0. Kat egori eNane, sun{ AlL. Lager best and) , sun{ Al. Ei nzel prei s)
FROM Kat egori en A0

LEFT OUTER JO N arti kel Al ON AO. Kat egori e Nr=Al. Kat egori e Nr
LEFT OUTER JO N books A1E2 ON AO. Kat egori e Nr=Al1E2. Kat egori e _Nr
LEFT OQUTER JO N cds AlE1 ON AOQ. Kat egori e_Nr=AlEl. Kat egori e_Nr
GROUP BY AO. Kat egor i eNane

This SQL will select the columns "Lagerbestand” and "Einzelpreis’ from one extent only, and for ProductGroups having
Articles, Books and CDs the result is wrong!

As aworkaround the query can be "reversed”. Instead of selection the ProductGroup we go for the Articles:

Criteria crit = new Criteria();

Col l ection results = new Vector();

Report QueryByCriteria q = QueryFactory. newReport Query(Article.class, crit);
q.setAttributes(new String[] { "product G oup.groupNane", "sun{stock)", "sum(price)" });
q. addG oupBy(" pr oduct G- oup. gr oupNane") ;

This ReportQuery executes the following three selects (one for each concrete extent) and produces better results.

SELECT Al. Kat egori eNane, sun(A0. Lager best and) , sun(AO. Ei nzel prei s)
FROM arti kel A0

I NNER JO N Kat egorien Al ON AO. Kat egori e Nr=Al. Kat egori e_Nr

GROUP BY Al. Kat egori eNane

SELECT Al. Kat egori eName, sun(AO. Lager best and) , sunm(AO. Ei nzel preis)
FROM cds A0

I NNER JO N Kat egori en A1 ON AO. Kat egori e_Nr=Al. Kat egori e_Nr

GROUP BY Al. Kat egori eNane

SELECT Al. Kat egori eNane, sun(A0. Lager best and) , sun(AO. Ei nzel prei s)

FROM books A0

I NNER JO N Kat egorien Al ON AO. Kat egori e _Nr=Al. Kat egori e_Nr

GROUP BY Al. Kat egori eNane

Of course there's also a drawback here: the same ProductGroup may be selected several times, so to get the correct sum, the

results of the ProductGroup has to be added. In our sample the ProductGroup "Books" will be listed three times.

After listing so many drawbacks and problems, here's the SQL the produces the desired result. Thisis amanually created SQL,
not generated by OJB. Unfortunately it's not fully supported by some DBM S because of "union” and sub-selects.

sel ect Kat egori eNane, sun{l agerbestand), sun(einzel preis)
from

(
SELECT Al. Kat egori eNane, AO. Lager best and, AO. Ei nzel prei s

FROM arti kel A0

I NNER JO N Kat egorien Al ON AO. Kat egori e_Nr=Al. Kat egori e_Nr
uni on

SELECT Al. Kat egori eNane, AO. Lager best and, AO. Ei nzel prei s
FROM books A0

I NNER JO N Kat egori en A1 ON AO. Kat egori e_Nr=Al. Kat egori e_Nr
uni on

SELECT Al. Kat egori eNane, AO. Lager best and, AO. Ei nzel prei s
FROM cds A0

I NNER JO N Kat egorien Al ON AO. Kat egori e_Nr=Al. Kat egori e_Nr

)
group by kat egori eNane

4.5.8.3. ODMG OQL

4.5.8.4. JDO queries

Page 129

0OJB Documentation

4.5.9. Metadata handling

4.5.9.1. Introduction

To make OJB proper work information about the used databases (more info see connection handling) and sequence managers
is needed. Henceforth these metadata information is called connection metadata.

Further on OJB needs information about the persistent objects and object relations, henceforth this information is called
(persistent) object metadata.

All metadata information need to be stored in the OJB repository file.

The connection metadata are completely decoupled from the persistent object metadata. Thus it is possible to use the same
object metadata on different databases.
But it isalso possible to use different object metadata profiles .

In OJB there are several ways to make metadata information available:

« using xml configuration files parsed at start up by OJB
« set metadata instances at runtime by building metadata class instances at runtime
« parse additional xml configuration files (additional repository files) and merge at runtime

All classes used for managing metadata stuff can be find under or g. apache. oj b. br oker . net adat a. * -package.
The man class for metadata handling and entry point for metadata manipulation at runtime s
org. apache. oj b. br oker . net adat a. Met adat aManager .

4.5.9.2. When does OJB read metadata

By default all metadata is read at startup of OJB, when the first call to Per si st enceBr oker Fact ory (directly or by &
top-level api) or Met adat aManager classwas done.

OJB expects a repository file at startup, but it is also possible to start OJB without an repository file or only load connection
metadata and object metadata at runtime or what ever combination fit your requirements.

4.5.9.3. Connection metadata

The connection metadata encapsulate all information referring to used database and must be declared in OJB repository file.
For each database a jdbc-connection-descriptor must be declared. This element encapusaltes the connection specific metadata
information.

The JdbcConnectionDescriptor instances are managed by
org. apache. oj b. br oker . net adat a. Connecti onRepository

L oad and mer ge connection metadata

It is possible to load additional connection metadata at runtime and merge it with the existing one. The used repository files
have to be valid against the repository.dtd:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE descriptor-repository SYSTEM "repository.dtd">

<descri ptor-repository version="1.0" isolation-I|evel ="read-unconmitted">
<j dbc- connecti on- descri pt or
jcd-alias="runti ne"
pl at f or m=" Hsql db"
j dbc-1 evel =" 2. 0"
driver="org. hsql db. j dbcDri ver"
pr ot ocol =" dbc"

Page 130

error:#site:connection
error:#site:sequence-manager
error:#site:repository
error:#ext:api/metadata-manager
error:#site:repository
error:#site:repository
error:#site:repository/jdbc-connection-descriptor
error:#ext:api/connection-repository
error:#ext:repository.dtd

OJB Documentation

subpr ot ocol =" hsqgl db"
dbal i as="../QIB_Far Anay"
user nanme="sa"

passwor d=""

bat ch- node="f al se"

<obj ect - cache cl ass="org. apache. oj b. br oker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-nanme="tinmeout" attribute-val ue="900"/>
<attribute attribute-nanme="autoSync" attribute-val ue="true"/>

</ obj ect - cache>

<connect i on- poo
maxAct i ve="5"
whenExhaust edAct i on="0"

val i dati onQuery="sel ect count(*) from QIB_HL_ SEQ'
/>

<sequence- manager cl assNane="org. apache. oj b. broker. util.sequence. SequenceManager H ghLow npl " >
<attribute attribute-nanme="grabSi ze" attri bute-val ue="5"/>
</ sequence- manager >
</ j dbc- connecti on-descri ptor>

<l-- user/passwd at runtine required -->
<j dbc- connecti on- descri pt or
jcd-alias="mninal"
pl at f or m=" Hsql db"
j dbc- | evel =" 2. 0"
driver="org. hsql db. j dbcDri ver"
pr ot ocol =" dbc"
subpr ot ocol =" hsqgl db"
dbal i as="../ QIB_Far Away"
>

</ j dbc- connecti on-descri ptor>
</ descriptor-repository>

In the above additional repository file two new jdbc-connection-descriptor (new databases) runtime and minimal are declared,
to load and merge the additional connection metadata the MetadataManager was used:

/| get Metadat aManager instance
Met adat aManager mm = Met adat aManager . get | nst ance() ;

/] read connection netadata fromrepository file
Connecti onRepository cr = mmreadConnecti onRepository(“valid path/url to repository file");

/] merge new connection netadata with existing one
mm ner geConnect i onRepository(cr);

After the merge the access to the new databases is ready for use.

4.5.9.4. Persistent object metadata

The object metadata encapsulate all information referring to the persistent capable java objects and the associated tables in
database. Object metadata must be declared in OJB repository file.
Each persistence capable java object must be declared in a corresponding class-descriptor.

The ClassDescriptor instances are managed by or g. apache. oj b. br oker . net adat a. Descr i pt or Repository .
Per default OJB use only one global instance of this class - it's the repository file read at startup of OJB. But it is possible to
change the global use repository:

/| get Metadat aManager instance
Met adat aManager nm = Met adat aManager . get | nst ance() ;

mm set Descri pt or (myd obal Repository, true);

Page 131

error:#site:repository
error:#site:repository/class-descriptor
error:#ext:api/descriptor-repository

0OJB Documentation

L oad and merge object metadata

It is possible to load additional object metadata at runtime and merge it with the existing one. The used repository files have to
be valid against the repository.dtd:

An additional repository file may look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE descri ptor-repository SYSTEM "repository.dtd">

<descriptor-repository version="1.0" isolation-|evel ="read-uncomitted">

<cl ass-descri ptor
cl ass="org. my. \WQbj ect "
t abl e=" MY_OBJ"
>
<fi el d-descri pt or
name="i d"
col um="0BJ_I D"
j dbc-type="1 NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
/>

<fi el d-descri pt or
name="namnme"
col um=" NAME"

/j dbc- t ype=" VARCHAR"
>

</ cl ass-descri ptor>
</ descriptor-repository>

To load and merge the object metadata of the additional repository filesfirst read the metadata using the MetadataManager .

/] get Metadat aManager instance
Met adat aManager nm = Met adat aManager . get | nst ance() ;

/] read the additional repository file
Descri ptorRepository dr = nmreadDescri ptorRepository("valid path/url to repository file");

/] nmerge the new cl ass-descriptor with existing object netadata
mm ner geDescri pt or Reposi tory(dr);

It is also possible to keep the different object metadata for the same classes parallel by using metadata profiles .

Global object metadata changes

The MetadataManager provide several methods to read/set and manipulate object metadata.

Per default OJB use a global instance of class DescriptorRepository to manage all object metadata. This means that al
PersistenceBroker instances (kernel component used by all top-level api) use the same object metadata.

So changes of the object metadata (e.g. remove of a CollectionDescriptor instance from a ClassDescriptor) will be seen
immediately by all PersistenceBroker instances. Thisisin most cases not the favoured behaviour and OJB supports per thread
changes of object metadata.

Per thread metadata changes

Per default the manager handle one global Descriptor Repository for all calling threads (keep in mind PB-api is not threadsafe,
thus each thread use it's own PersistenceBroker instance), but it is ditto possible to use different metadata profiles in a per
thread manner - profiles means different instances of DescriptorRepository objects. Each thread/PersistenceBroker instance
can be associated with a specific Descriptor Repository instance. All made object metadata changes only will be seen by the

Page 132

error:#ext:repository.dtd
error:#ext:api/metadata-manager
error:#ext:api/metadata-manager
error:#ext:api/descriptor-repository
error:#ext:api/descriptor-repository

OJB Documentation

PersistenceBroker instances using the same DescriptorRepository instance. In theory each PersistenceBroker instance could be
associated with a separate instance of object metadata, but the recommended way is to use metadata profiles.

To enable the use of different Descriptor Repository instances for each thread do:

Met adat aManager nm = Met adat aManager . get | nst ance() ;
/] tell the nmanager to use per thread node
mm set Enabl ePer Thr eadChanges(true);

This can be done e.g. a start up or at runtime when it's needed. If method set Enabl ePer Thr eadChanges is set false
only the global Descriptor Repository was used. Now it's possible to use dedicated DescriptorRepository instances per thread:

/] e.g get a coppy of the gl obal repository
Descri ptorRepository dr = nm copyO™f G obal Repository();
/1 now we can mani pul ate the persistent object netadata of the copy

/| set the changed repository for current thread
mm set Descri ptor (dr);

[/ now let this thread | ookup a PersistenceBroker instance

[/ with the nodified netadata

[/ all other threads use still the gl obal object netadata

Per si st enceBr oker broker = PersistenceBrokerFactory. createPersistenceBroker (nyKey)

Set object metadata (setting of the DescriptorRepository) before lookup the PersistenceBroker instance for current thread, because the metadata was bound to the
PersistenceBroker instance at |ookup.

Object metadata profiles

M etadataM anager was shipped with a simple mechanism to add, remove and load different persistent objects metadata profiles
(different DescriptorRepository instances) in a per thread manner. Use method addProfile to add different persistent object
metadata profiles, method removeProfile to remove profiles and loadProfile load a profile for the calling thread.

/] get Metadat aManager instance
Met adat aManager nm = Met adat aManager . get | nst ance() ;

/1 enable per thread nbde if not done before
mm set Enabl ePer Thr eadChanges(true);

/| Load additional object netadata by parsing an repository file
Descri ptor Repository dr_1 nm r eadDescri pt or Reposi tory("pat hOr URLt oFi | e_1")
Descri pt or Repository dr_2 nm r eadDescri pt or Reposi tory("pat hOr URLt oFi | e_2")

/] add profiles

mm addProf i | e(" gl obal ", mm copyOf G obal Repository());
mm addProf il e("guest”, dr_1);

mm addProfil e("adm n", dr_2);

/1 now |l oad a specific profile

mm | oadProfil e("adm n");
br oker = Persi st enceBroker Fact ory. def aul t Per si st enceBr oker () ;

After the loadProfile call all PersistenceBroker instances will be associated with the admin profile.

Method |oadProfile only proper work if the per thread mode is enabled.

Reference runtime changes on per query basis

Page 133

0OJB Documentation

Changes of reference settings on a per query basis will be supported with next upcoming release 1.1

Pitfalls

OJB's flexibility of metadata handling demanded specific attention on object caching. If a global cache (shared permanent
cache) was used, be aware of side-effects caused by runtime metadata changes.

For example, using two metadata profiles A and B. In profile A al fields of a class are showed, in profile B only the 'name
filed' is showed. Thread 1 use profile A, thread 2 use profile B. It is obvious that a global shared cache will cause trouble.
4.5.9.5. Questions

Start OJB without a repository file?

It is possble to stat OJB without any repository file. In this case you have to declare the
| dbc- connecti on-descri ptor andcl ass-descri ptor at runtime. See Connect to database at runtime? and Add
new persistent objects (class-descriptors) at runtime? for more information.

Connect to database at runtime?

There are two possibilities to connect your database at runtime:

 load connection metadata by parsing additional repository files
 create the JdbcConnectionDescriptor at runtime

The first one is described in section load and merge connection metadata. For the second one a new instance of class
org. apache. oj b. broker . net adat a. JdbcConnect i onDescri ptor is needed. The prepared instance will be
passed to class ConnectionRepository:

Connect i onRepository cr = Met adat aManager. getl nstance().connecti onRepository();

JdbcConnecti onDescri ptor jcd = new JdbcConnecti onDescri ptor();
j cd. set JcdAl i as("t est Connection");

| cd. set User Nane("sa");

| cd. set PassWord("sa");

| cd. set DbAl i as("aAlias");

| cd. set Dbns(" aDat abase") ;

/[l the other required setter

// add new descri ptor
cr.addDescri ptor () cd);

[/ Now it's possible to obtain a PB-instance

PBKey key = new PBKey("test Connection", "sa", "sa");
Per si st enceBr oker broker = PersistenceBrokerFactory.
cr eat ePer si st enceBr oker (key) ;

Please read this section from beginning for further information.

Add new persistent objects metadata (class-descriptor) at runtime?

There are two possibilities to add new object metadata at runtime:

« load object metadata by parsing additional repository files
e Create new metadata objects at runtime

Thefirst oneis described in section load object metadata.

To Create and add new metadata objects a runtime we Create new

Page 134

error:#site:object-cache
error:#ext:api/jdbc-connection-descriptor
error:#site:metadata

OJB Documentation

org. apache. oj b. broker. net adat a. G assDescri pt or instances at runtime and using the Met adat aManager
to add them to OJB:

Descri ptor Repository dr = Met adat aManager . getl nstance() . get Repository();

Cl assDescriptor cld = new C assDescriptor(dr);
cl d. set C assOf oj ect (A. cl ass) ;
[/.... other setter

/| add the fields of the class

Fi el dDescriptor fd = new Fi el dDescriptor(cld, 1);
fd. set Persi stentFi el d(A cl ass, "sonmeAField");

cl d. addFi el dDescri ptor (fd);

/I now we add the the class descriptor
dr.set Cl assDescriptor(cld);

Please read this section from beginning for further information.

4.5.10. Deployment

4.5.10.1. Introduction
This section enumerates all things needed to deploy OJB in standalone or servlet based applications and j2ee-container.

4.5.10.2. Things needed for deploying OJB

1. The OJB binary jar archive

You need adb- 0] b- <ver si on>. j ar file containing the compiled OJB library.

Thisjar files contains all OJB code neccessary in production level environments. It does not contain any test code. It also does
not contain any configuration data. You'll find this file in the lib directory of the binary distribution. If you are working with
the source distribution you can assemble the binary jar archive By calling

ant jar
This ant task generates the binary jar to the dist directory.

2. Configuration data

OJB needs two kinds of configuration data:

1. Configuration of the OJB runtime environment. This datais stored in afile named QJB. pr operti es . Learn more about
thisfile here.

2. Configuration of the MetaData layer. This datais stored infilenamed r eposi t ory. xm (and severa included files).
L earn more about thisfile here.

These configuration files are read in through ClassL oader resource lookup and must therefore be placed on the classpath.

3. External dependenciesthat do not come with OJB

Some components of OJB depend on external libraries and components that cannot be shipped with OJB. You'll aso need
these if you want to compile OJB from source. Hereisalist of these dependencies:

| 2ee.j ar
This is the main archive of the J2EE SDK. We recommend that you use the 1.3 version as the 1.4 is rather new
and not thoroughly tested yet with OJB.

Page 135

error:#ext:api/class-descriptor
error:#site:metadata
error:#ext:ojb.properties
error:#site:ojb-properties
error:#site:ojb-properties
error:#ext:repository.xml
error:#site:repository
error:#ext:sun/j2ee-sdk

0OJB Documentation

jdo.jar, jdori*.jar
The JDO Reference implementation is required if you plan to use the JDO Api.

4. Optional jar archivesthat comewith OJB

Some of jar filesinthel i b folder are only used during build-time or are only required by certain components of OJB, and so
they might need not to be needed in runtime environments.

Apart from wasting disk space they do no harm. If you don't care about disk space you just take all jarsfromthel i b folder.

If you do care, hereisthe list of jars you might omit during runtime:

ant-*.jar

These are the Apache Ant 1.6 jars.

antlr-[version].jar

ANTLR is a parser generator which is used in the ODMG component of OJB. If you only use the PB Api, then
you don't need this.

junit.jar

Junit for running the unit tests. You'll need this only if you're also writing unit tests for you app.
xerces.jar, xm-apis.jar

The Xerces XML parser. Since most newer JDK's ship with an XML parser, it is likely that you do not need
these files.

xal an. j ar

Xalan is used to generate the unit test report, so you'll probably don't need this.

j akart a-regexp-[version].jar

The Jakarta Regular Expression library is only used when building OJB from source.

torque- xxx.jar, velocity-xxx.jar

Torque is used to generate concrete databases from database-independent schema files. OJB uses it internally
to setup databases for the unit tests.

xdocl et-[version].jar, Xjavadoc-[version].jar, xdoclet-ojb-nodule-[version].jar,
commons-col | ections-[version].jar

The XDoclet OJB module can be used to generate the repository metadata and Torque schema files from
Javadoc comments in the Java source files. It is however not required at runtime, so you can safely ignore
these files then.

5. Don't forget the JDBC driver

The repository.xml defines JDBC Connections to your runtime databases. To use the declared JDBC drivers the respective jar
archives must also be present in the classpath. Refer to the documentation of your databases.

In the following sections | will describe how to deploy these items for specific runtime environments.

4.5.10.3. Deployment in standalone applications

Deploying OJB for standalone applications is most simple. If you follow these four steps your application will be up in a few
minutes.

1. Adddb-oj b-<versi on>.j ar to the classpath

2. placeQJB. properties andrepository.xm fileson the classpath
3. Add the additional runtime jar archivesto the classpath.

4. Addyour JIDBC driversjar archiveto the classpath.

4.5.10.4. Deployment in servlet based applications

Generally speaking the four steps described in the previous section have to be followed also in Servliet / JSP based
environments.
The exact details may differ for your specific Servlet container, but the general concepts should be quite similar.

Page 136

error:#ext:sun/jdo
error:#ext:ant
error:#ext:antlr
error:#ext:junit
error:#ext:xml-apache/xerces
error:#ext:xml-apache/xalan
error:#ext:jakarta/regexp
error:#ext:torque
error:#site:xdoclet-module

OJB Documentation

1. Deploy db- 0j b- <ver si on>. j ar with your servlet applications WAR file.
The WAR format specifies that application specific jars are to be placed in adirectory VEB- | NF/ | i b. Place
db- 0] b- <ver si on>. j ar tothisdirectory.

2. Deploy QJB. properties andrepository. xm withyour serviet applications WAR file.
The WAR format specifies that Servlet classes are to be placed in adirectory VEB- | NF/ cl asses. The OJB
configuration files have to be in this directory.

3. Add the additional runtime jar archivesto WEB- | NF/ | i b too.

4. Addyour IDBC driversjar archiveto WEB- | NF/ | i b.

By executing ant war you can generate a sample serviet application assembled to a valid WAR file. The resulting
0j b-servl et. war fileiswritten to the dist directory. Y ou can deploy this WAR file to your servlet engine or unzip it to
have alook at its directory structure.

you can also use thetarget war as a starting point for your own deployment scripts.

4.5.10.5. Deployment in EJB based applications

The above mentioned guidelines concerning jar files and placing of the OJB.properties and the repository.xml are valid for
EJB environments as well. But apart from these basic steps you'll have to perform some additional configurations to integrate
OJB into a managed environment.

The instructions to make OJB running within your application server should be similar for al server. So the following
instructions for JBoss should be useful for all user. E.g. most QJB. pr opert i es file settings are the same for al application
server.

There are some topics you should examine very carefully:

« Connection handling: Lookup DataSource from your AppServer, only these connections will be enlisted in running
transactions

« Caching: Do you need distributed caching?

« Locking: Do you need distributed locking (when using odmg-api)?

Configure OJB for managed environments considering as JBoss example

The following steps describe how to configure OJB for managed environments and deploy on a b conform Application
Server (JBoss) on the basis of the shipped ejb-examples. In managed environments OJB needs some specific properties.

1. Adapt OJB.propertiesfile

If the PB-api isthe only persistence APl being used (no ODMG nor JDO) and it is only being used in a managed environment,
it is strongly recommended to use a specia PersistenceBrokerFactory class, which enables PersistenceBroker instances to
participate in the running JTA transaction (e.g. this makes PBStatel istener proper work in managed environments and enables
use of ‘autoSync' property in ObjectCacheDefaultimpl):

Per si st enceBr oker Fact or yCl ass=or g. apache. oj b. br oker. core. Per si st enceBr oker Fact or ySyncl npl
Don't use this setting in conjunction with any other top-level api (e.g. ODMG-api).

Your QJB. properti es file need the following additional settings to work within managed environments (apply to all used
api):

Connect i onFact oryC ass=
or g. apache. oj b. br oker . accessl ayer. Connecti onFact or yManagedI npl

Page 137

error:#ext:ojb.properties
error:#ext:repository.xml
error:#ext:ojb.properties
error:#ext:ojb.properties

0OJB Documentation

set used application server TM access cl ass
JTATr ansact i onManager Cl ass=
or g. apache. oj b. ot mtransacti on. fact ory. JBossTr ansact i onManager Fact ory

A specific ConnectionFactory implementation was used to by-pass all forbidden method calls in managed environments.

The JTATransactionManagerClass set the used implementation class for transaction manager lookup, necessary for for
| avax. transacti on. Transacti onManager lookup to participate in running JTA transaction via
j avax. transacti on. Synchroni zat i on interface.

The ODMG-api needs some additional settings for use in managed environments (only needed when odmg-api was used):

#lbnly needed for odng-ap
| mpl enent ati onCl ass=or g. apache. oj b. odnyg. | npl enent at i onJTAI npl

#'6nly needed for odng- api
QIBTxManager C ass=or g. apache. oj b. odng. JTATxManager

The ImplementationClass specify the ODMG base class implementation. In managed environments a specific implementation
is used, able to participate in JTA transactions.

The OJBTxManagerClass specify the used OJBTxManager implementation to manage the transaction synchronization in
managed enviroments.

Currently OJB integrate in managed environments via j avax. t ransacti on. Synchroni zati on interface. When the JCA adapter is finished (work in progress)
integration will be more smooth.

2. Declare datasourcein the repository (repository_database) file and do additional configuration

Do only use Dat aSour ce from the application server to connect to your database (Local used connections do not participate
in JTA transaction).

We strongly recommend to use JBoss 3.2.2 or higher of the 3.x series of JBoss. With earlier versions of 3.x we got Statement/Connection resource problems when running some

gjb stress tests. As workaround we introduce a jboss specific attribute eager-release for version before 3.2.2, but it seems that this attribute can cause side-effects. Again, this
problem seemsto be fixed in 3.2.2.

Define OJB to use a DataSource:

<! -- Datasource exanple -->
<j dbc- connecti on-descri ptor
jcd-alias="default"
def aul t - connecti on="true"
pl at f or m=" Sapdb”
j dbc- I evel =" 2. 0"
j ndi - dat asour ce- nane="j ava: Def aul t DS"
user nanme="sa"
passwor d=""
eager -rel ease="fal se"
bat ch- node="f al se"
useAut oConmmi t =" 0"
i gnor eAut oConmmi t Excepti ons="f al se"

<obj ect - cache cl ass="org. apache. oj b. br oker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-nanme="timeout" attribute-val ue="900"/>
<attribute attribute-nanme="autoSync" attribute-value="true"/>

</ obj ect - cache>

<sequence- manager cl assNane="org. apache. oj b. broker. util.sequence. SequenceManager Next Val | npl ">

Page 138

error:#site:connection

OJB Documentation

</ sequence- manager >

</ j dbc- connecti on-descri pt or >

The attribute useAut oCommi t =" 0" is mandatory in managed environments, because it's in most cases not allowed to
change autoCommit state.

In managed environments you can't use the default sequence manager (SeguenceManagerHighLowlmpl) of OJB. For alternative sequence manager implemetation see here.

[2b. How to deploy ojb test hsgldb database to jboss|

If you use hsgl database for testing you can easy setup the DB on jboss. After creating the database in OJB test directory with
ant prepare-testdb, take the generated .../target/test/QIB.script file and rename it to
defaul t. script. Then replace the jboss default.script file in
...ljboss-3.x.y/server/ defaul t/db/ hyper soni c with thisfile.

3. Include all OJB configuration filesin classpath

Include the all needed OJB configuration files in your classpath:

- OJB.properties

- repository.dtd

- repository.xml

- repository_internal .xml

- repository _database.xml,

- repository_elb.xml (if you want to run the /b examples)

To deploy the ejb-examples beans we include al configuration filesin agjb jar file - more info about this see below.

The repository.xml for the gjb-example beans |ook like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<I-- This is a sanple netadata repository for the ObJectBridge
System Use this file as a tenplate for building your own
mappi ngs- - >

<!-- defining entities for include-files -->

<! DOCTYPE descri ptor-repository SYSTEM "repository.dtd" [
<! ENTI TY dat abase SYSTEM "repository_database. xm ">
<IENTITY internal SYSTEM "repository_internal .xm">

< ENTITY ejb SYSTEM "repository_ejb.xmn ">

| >

<descri ptor-repository version="1.0"
i sol ati on-Ilevel ="read-unconm tted">

<I-- include all used database connections -->
&dat abase;

<l-- include ojb internal mappings here -->
& nt er nal

<!'-- include mappi ngs for the EJB-exanples -->
&ej b;

</ descriptor-repository>

4. Enclose all libraries OJB depend on

Page 139

error:#site:sequence-manager

0OJB Documentation

In most cases it is recommended to include all libraries OJB depend on in the application .ear/.sar or gb .jar file to make OJB
run and (re-)deployable. Here are the libraries needed to make the ojb sample session beans run on JBoss:

The jakarta commons libraries files (all commons-xxx.jar) from OJB /lib directory
The antlr jar file (antlr-xxx.jar) from OJB /lib directory

jakarta-regexp-xxx.jar from OJB /lib directory

[jakarta turbine jcs.jar from OJB /lib directory, only if ObjectCacheJCSImpl was used]

(This was tested with jboss 3.2.2)

5. Take care of caching

Very important thing is cache synchronization with the database. When using the ODMG-api or PB-api (with special PBF (see
1.) setting) it's possible to use all Obj ect Cache implementations as long as OJB doesn't run in a clustered mode. When the
Obj ect CacheDef aul t | mpl cache implementation was used it's recommended to enable the autoSync mode.

In clustered environments (OJB run on different AppServer nodes) you need a distributed ObjectCache or you should use a
local/empty cache like

Obj ect CacheCl ass=or g. apache. oj b. br oker. cache. Obj ect CachePer Br oker | npl
or

Cbj ect Cached ass=or g. apache. oj b. br oker. cache. Obj ect CacheEnpt yI npl
The cache is pluggable, so you can write your own ObjectCache implementation to accomplish your expectations.

More info you can find in clustering and ObjectCache topic.

6. Take care of locking

If the used api supports Object Locking (e.g. ODMG-api, PB-api does not), in clustered environments (OJB run on different
AppServer nodes) a distributed |ock management is mandatory.

7. Put all together

Now put al files together. We keep the examples as simple as possible, thus we deploy only agb .jar file. Below you can find
a short instruction how to pack an ejb application .ear file including OJB.

Generate the gjb-examples described below or build your own gb .jar file including al beans, gb-jar.xml and appServer
dependend files. Then add all OJB configuration files, the db-ojb jar file and all libraries OJB depends on into thisgjb .jar file.
The structure of the gjb .jar file should now look like this:

/ QJB. properties
/repository.dtd

/ repository. xm

[al | used repository-XYZ xm
| META- | NF

.../ Mani fest. nf
...lejb-jar.xm

.../ljboss. xm

[all ejb classes

[db-0j b-1. X jar
[all used libraries

7b. Example: Deployablejar

For example the jar-file used to test the glb-examples shipped with OJB, base on the db-ojb-XY-beansjar file. This jar was
created when the g/b-exampl es target was called.

Page 140

error:#site:object-cache
error:#site:howto/clustering
error:#site:howto/clustering
error:#site:object-cache
error:#site:lock-manager

OJB Documentation

The generated jar contains only the gb-classes and the deployment-descriptor. We have to add additiona jars (al libraries
used by OJB) and files (all configuration files) to make it deployable. The deployable db-ojb-XY-beans,jar should look like
this:

[QIB. properties
[repository.dtd

/[repository. xm

/ repository_dat abase. xm
[repository_ejb. xn

/[repository internal.xm
| META- | NF

.../ Mani fest.nf
...lejb-jar.xmn

.../l jboss. xm

/org
...lapache (all ejb classes)

/ db- 0j b- 1. X. j ar

[ant|r- XXX jar

[cormons- beanuti | s- XXX, j ar

/ commons- col | ecti ons- XXX. j ar
/ commons- dbcp- XXX. j ar

/ conmons- | anf - XXX, | ar

/ conmons- | oggi ng- XXX. j ar

/ conmons- pool - XXX. j ar

/] akart a-r egexp- XXX. j ar

Please pay attention on the configuration settings to make OJB work in managed environments (especially the OJB.properties
settings).

This example isn't a real world production example. Normally you will setup one or more enterprise archive files (.ear files) to bundle one or more complete J2EE (web)
applications. More about how to build an J2EE application using OJB see here.

The described example should be re-deployabl e/hot-deployable in JBoss.
If you will get any problems, please let me know. All suggestions ar e welcome!

8. How to access OJB API?

In managed environments it is possible to access OJB in same way used in non-managed environments:

/| PB-api
Per si st enceBr oker broker = PersistenceBrokerFactory.create...

/ | ODMG- api
| mpl enent ati on odng = QJB. get | nst ance();

But it is recommended to bind OJB api access classes to JNDI and |ookup the the api entry classes via JINDI.

9. OJB logging within JBoss

Jboss use |0g4)j as standard logging api.
In summary, to use log4j logging with OJB within jBoss:
1) in OJB.properties set

Logger Cl ass=or g. apache. oj b. broker. util .| oggi ng. Log4j Logger | npl

There is no need for a separate log4j.properties file of OJB-specific log4] settings (in fact the OJB.properties setting
LoggerConfigFileisignored). Instead, the jBoss log4j configuration file must be used:

Page 141

error:#ext:log4j

0OJB Documentation

2) in IBOSS _HOME/server/default/conf/log4j.xml,
define appenders and add categories to add or filter logging of desired OJB packages, following the numerous examplesin that
file. For example,

<cat egory nane="org. apache. oj b">
<priority val ue="DEBUG' />
<appender -ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</ cat egory>

<cat egory name="org. apache. oj b. br oker . met adat a. Reposi t or yXnl Handl er " >
<priority val ue="ERROR' />
<appender -ref ref="CONSOLE"/ >
<appender-ref ref="FILE"/>

</ cat egory>

Example Session Beans

Introduction

The OJB source distribution was shipped with a bunch of sample session beans and client classes for testing. Please recognize
that we don't say that these examples show "best practices' of using OJB within enterprise java beans - it's only one way to
make it work.

To keep the examples as simple as possible we directly use the OJB main classes via static lookup or helper classes on each
g/bCreate() call. But we recommend to bind the OJB main classesin JNDI instead of direct use in the session beans.

Generate the sample session beans

The source code of the sample beansis stored in directory
[db-0j b]/src/ ej b/ org/ apache/ oj b/ ej b
To generate the sample beans call

ant ej b- exanpl es

This ant target copies the bean sourcesto [db- 0j b] / t ar get / srcej b generates all needed bean classes and deployment
descriptor (by using xdoclet) to the same directory, compiles the sources and build an gb .jar file caled
[db- 0j b] / di st/ db- 0] b- XXX-beans.jar. Test clients for the generated beans included in the
[db- 0j b] / di st/ db-0j b- XXX-client.jar.

To run xdoclet properly the following xdoclet jar filesneeded in[db- oj b] /I i b directory (xdoclet version 1.2xx or higher):

xdocl et - xxx. j ar

xdocl et - ej b- nodul e- xxx. j ar

xdocl et - j boss- nodul e- xxx. j ar

xdocl et -] mx- nodul e- xxx. j ar

xdocl et - web- nodul e- xxx. j ar

xdocl et - xj avadoc- nodul e- xxx. j ar

If you using a different application server than JBoss, you have to modifiy the xdoclet ant target in
[db- 0j b] / bui | d- e] b- exanpl es. xm to force xdoclet to generate the appServer specific files. See xdoclet

documentation for further information.

How torun test clientsfor PB/ ODMG - api

If the "extended gjb .jar" file was successfully deployed we need a test client to invoke the ejb-examples. As said above, the
g b-examples target generates a test client jar too. It's called [db- 0j b] / di st/ db-0j b- XXX-cl i ent.] ar and contains
junit based test clients for the PB-/ODMG-api.

The main test classes are:

Page 142

error:#ext:xdoclet

OJB Documentation

« org.apache.ojb.jb.AIIODMGTests
« org.apache.ojb.gib.AlIPBTests

OJB provide an ant target to run the client side bean tests. Include all needed appServer librariesin[db-oj b] /1i b (e.g. for
JBoss jbossall-client.jar do the job, beside the "j2ee jars"). To run the PB-api test clients (access running JBoss server with
default settings) call

ant ej b-exanpl es-run -Dclient.class=org. apache. oj b. ej b. Al | PBTest s
To run the test clients on an arbitrary appServer pass the INDI properties for naming context initalisation too, e.g.

« -Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
e -Djava.naming.provider.url="jnp://localhost:1099"
« -Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces"

Then the target call may looks like

ant ej b-exanpl es-run -Dclient.cl ass=org. apache. oj b. ej b. Al | PBTest s

-Djava. nam ng.factory.initial ="org.jnp.interfaces. Nam ngCont ext Fact ory"
- Dj ava. nam ng. provi der.url ="jnp://1 ocal host: 1099"
- Dj ava. nam ng. factory. url . pkgs="org. j boss. nam ng: org.j np.interfaces"

Packing an .ear file

Hereis an example of the .ear package structure. It is redeployable without having to restart JBoss.

The Package Structure

The package structure of the .ear file should look like:

[ejb.jar/

...EJBs

... META- | NF/
...... ej b-jar.xm
...... j boss. xm
...... MANI FEST. MF

/ web- app. war /
...JSP

... VEB- | NF/
...... web. xn

/| META- | NF/
...application. xn

[oj b.|ar

[[ojb required runtime jar]

[QJB. properties
/repository.dtd
[respository_internal.xmn
/[repository. xn

/ reposi tory dat abasel. xni
/ repository appl. xm

/ reposi tory_ dat abase2. xni
/ repository_app2. xmn

Make OJB API Resources available
There are two approaches to use OJB api in the gib.jar file:

1. To create a Manifest.mf file with classpath attribute that include all the runtime jar required by OJB (Very important to
include all required jar). The sample below works fine:

Cl ass-Path: db-0jb-1.0.rc6.jar antlr-2.7.3.jar comobns-beanutils.jar

Page 143

0OJB Documentation

commons- col | ections. jar comons-dbcp-1.1.jar comons-I|ang-2.0.jar
comons- | oggi ng. j ar conmons-pool -1.1.jar
 akarta-regexp-1.3.jar

If you to include the jar file under adirectory of the ear file, says/ | i b/ db- 0j b-1. 0. rc6. j ar and etc. At the classpath attribute it will be something like: O ass- Pat h:
./1ib/db-0jb-1.0.rc6.jar and etc (The"." infrontisimportant)

2. To add the required jar file asa"java' element in the application.xml file:

<nodul e>

<java>antlr-2.7.3.jar</java>
</ modul e>
<nodul e>

<j ava>commons- beanutils.jar</java>
</ modul e>
<nodul e>

<j ava>commons-col | ections.jar</java>
</ modul e>
<modul e>

<j ava>comons- dbcp-1. 1. ar</java>
</ nodul e>
<nodul e>

<j ava>commons- | ang- 2. 0. j ar</j ava>
</ modul e>
<nodul e>

<j ava>commons- | oggi ng. j ar </ j ava>
</ modul e>
<nodul e>

<j ava>commons- pool -1. 1. jar</java>
</ modul e>
<modul e>

<j ava>db-oj b-1.0.rc6.jar</java>
</ nodul e>

To use this approach, al the library had to be in the root of the ear.

(This was tested on Jboss 3.2.3)

Make OJB accessible via INDI

Current bean examples do directly use OJB main classes, but it's also possible to make OJB accessible via INDI and use &
INDI-lookup to access OJB api'sin your beans.
To make the OJB api's accessible via JNDI, you have bind them to JNDI. How to do this depends on the used environment.
The main classes/'methods to bind are:
e PB-api:
Method or g. apache. oj b. br oker . core. Per si st enceBr oker Fact or yFact or y#i nst ance() returnsthe
used or g. apache. oj b. br oker . cor e. Per si st enceBr oker Fact or yl F. Make this instance accessible via
JNDI.
« ODMG-api:
Method or g. apache. oj b. odngy. QIB#get | nst ance() returnsanew instance of the
or g. odng. | npl enent at i on instance. Open anew Dat abaseand make this instance and the Dat abase instance
accessible via JNDI.

JBoss

In JBoss you can write mbean classes to bind OJB main/access classes to JINDI, similar to the Webl ogic example below.
Let JBoss know about the new mbeans, so declaretheminaj boss- servi ce. xni file

Page 144

OJB Documentation

Other Application Server

In other application server you can do similar steps to bind OJB main api classes to JNDI. For example in Weblogic you can
use startup class implementation (see below).

Instructionsfor Weblogic
1. Add the OJB jar files and depedenciesinto the Weblogic classpath
2. As usual create the connection pool and the datasource.

3. Prepare the OJB.properties file. Should be similar to jboss. Expect the following entry:

#'Veblogic Transacti on Manager Factory
JTATr ansact i onManager Cl ass=
or g. apache. oj b. broker . transacti on. t m Wbl ogi cTr ansact i onManager Fact ory

4. Modify the connection information in the repository.xml (specify the datasource name). SequenceManager implementation
depends on the used DB, more info see here:

<j dbc- connecti on-descri pt or

j cd-al i as="defaul t"

def aul t - connecti on="true"

pl at f or m=" Sapdb"

| dbc-1evel =" 2. 0"

| ndi - dat asour ce- nane="dat asour ce_denodb"
eager -rel ease="f al se"

bat ch- nrode="f al se"

useAut oConmi t =" 0"

i gnor eAut oConmi t Excepti ons="f al se"
>

<sequence- manager

cl assName="or g. apache. oj b. br oker. uti |l . sequence. SequenceManager Next Val | npl ">
<attribute attribute-nane="grabSi ze" attri bute-val ue="20"/>

</ sequence- manager >

</ j dbc- connecti on- descri pt or >

The following step is only neccessary if you want to bind OJB main api classes to JNDI.

[5.] Compile the following classes (see at the end of this section) and add them to the weblogic classpath. This allows to access
the PB-api via JINDI lookup. Register via the weblogic console the startup class (see G bPbSt ar t up class below). The JNDI
name and the OJB.properties file path can be specified as parameters in this startup class.

To use the ODMG-api you have to write a similar startup class. This shouldn't be too complicated. Take a look in
or g. apache. oj b. j boss package (dir sr ¢/ connect or / mai n). Here you could find the jboss mbeans. All you have to
do is bound asimilar classto JNDI in weblogic.

Implement ODMGJ2EEFact or y Interface in your class bound this class to JNDI (in the gjb-examples the beans try to lookup
the | npl enent at i on instance via " ava: / o] b/ def aul t ODMG"). Your ODMGFactory class should implement this
method

public I nplementation getlnstance()

return QIBJ2EE 2. get | nstance();
}

Write a session bean similar to those provided for the JBOSS samples. It is also possible to use the gjb-example beans (doing
minor modifications when the INDI lookup should be used).

Page 145

error:#site:sequence-manager

0OJB Documentation

Webolgic startup class
Write an OJB startup class to make OJB accessible via INDI can look like (I couldn't test this sample class, so don't know if it
will work :-)):

package org. apache. oj b. webl ogi c;
i mport javax. nam ng.*

i nport org. apache. oj b. br oker. cor e. Per si st enceBr oker Fact or yFact ory;
i mport org. apache. oj b. broker. core. Persi st enceBr oker Fact oryl F;

i mport webl ogi c. conmon. T3Ser vi cesDef ;
i mport webl ogi c. cormon. T3St ar t upDef ;
i mport java.util.Hashtabl e;

/**
* This startup class created and binds an instance of a
* Persi stenceBrokerFactoryl F i nto JNDI
x|
public class G bPbStartup
i mpl ements T3StartupDef, g bPbFactory, Serializable
{
private String defaultPropsFile = "org/apache/ oj b/ webl ogi c/ QIB. properties";
public void setServices(T3Servi cesDef services)
{
}
publ i c PersistenceBrokerFactoryl F getlnstance()

return PersistenceBrokerFact oryFactory.instance();

public String startup(String nane, Hashtabl e args)
t hrows Exception

{
try
{
String | nd|hbne = (String) args.get("jndi name");
i f(jndiNa == null || jndi Nane.length() == 0)
Jnd|hbne = O bPbFact ory. DEFAULT_JNDI _NAME
S tring propsF|Ie = (String) args.get("propsfile");
if(propsFile == null || propsFile.length() == 0)
{
System set Property("QIB. properties", defaultPropsFile);
}
el se
{
System set Property("QIB. properties", propsFile);
}
Initial Context ctx = new Initial Context();
bi nd(ctx, jndi Name, this);
[/l return a nessage for |ogging
return "Bound QIB PersistenceBrokerFactorylF to " + jndi Nane;
}
cat ch(Exception e)
{
e.printStackTrace();
/1 return a nessage for |ogging
return "Startup Class error: inpossible to bind QJB PB factory";
}
}

Page 146

OJB Documentation

private void bind(Context ctx, String nanme, Object val)
t hr ows Nami ngExcepti on

Name n;
for(n = ctx.get NaneParser("").parse(nanme); n.size() > 1; n = n.getSuffix(1))

String ctxName = n.get(0);
try

ctx = (Context) ctx.|ookup(ctxNane);
}
cat ch(NameNot FoundExcept i on nanenot f oundexcepti on)

ctx = ctx.createSubcontext (ctxNane);

%tx.bind(n.get(O), val);
} }
The used OjbPbFactory interface:
package org. apache. oj b. webl ogi c;
i mport org.apache. oj b. broker. core. Persi st enceBr oker Fact oryl F;
public interface Q bPbFactory

public static String DEFAULT_JNDI _NAVE = "PBFactory";
publ i c Persi stenceBrokerFactoryl F getlnstance();

}
4.5.11. OJB - Connection Handling

4.5.11.1. Introduction
In this section the connection handling within OJB will be described. OJB use two classes which share the connection
management:

e« oOrg.apache. oj b. broker. accessl ayer. Connecti onFactory
« o0rg.apache. oj b. broker. accessl ayer. Connecti onManager | F

4.5.11.2. ConnectionFactory

The or g. apache. oj b. br oker. accessl ayer. Connecti onFact ory interface implementation is a pluggable
component (via the OJB.properties file - more about the OJB.properties file here) responsible for creation/lookup and release
of connections.

public interface ConnectionFactory

{
Connecti on | ookupConnecti on(JdbcConnecti onDescriptor jcd) throws LookupException
voi d rel easeConnecti on(JdbcConnecti onDescriptor jcd, Connection con);
voi d rel easeAl | Resources();

}

To enable a specific ConnectionFactory implementation classin OJB.propertiesfile, set property ConnectionFactoryClass:

Connect i onFact or yCl ass=or g. apache. oj b. br oker . accessl ayer. Connect i onFact or yPool edl npl

OJB was shipped with a bunch of different implementation classes which can be used in different situations, e.g. creation of
connection instances is costly, so pooling of connection will increase performance.

To make it more easer to implement own ConnectionFactory classes an abstract base class called

Page 147

error:#ext:ojb.properties
error:#site:ojb-properties

0OJB Documentation

or g. apache. oj b. br oker. accessl ayer. Connecti onFact or yAbst ract | npl exists, most shipped
implementation classes inherited from this class.

All shipped implementation with support for connection pooling only pool direct obtained connections, DataSources will never be pooled.

ConnectionFactoryPooledl mpl

An ConnectionFactory implementation using commons-pool to pool the requested connections. On lookup call a connection
was borrowed from pool and returned on the release call. This implementation was used as default setting in OJB.properties
file.

This implementation allows a wide range off different settings, more info about the configuration properties can be found in
metadata repository connection-pool section.

ConnectionFactor yNotPooledI mpl

The name is programm, this implementation creates a new connection on each request and close it on release call. All
connection-pool settings are ignored by this implementation.

ConnectionFactoryM anagedi mpl

This is a specific implementation for use in managed environments like J2EE conform application server. In managed
environments it is mandatory to use DataSour ce provided by the application server.

All connection-pool settings are ignored by this implementation.

ConnectionFactoryDBCPImpl

An implementation using commons-dbcp to pool the connections.

This implementation allows a wide range off different settings, more info about the configuration properties can be found in
metadata repository connection-pool section.

4.5.11.3. ConnectionM anager

The or g. apache. oj b. broker. accessl ayer. Connecti onManager | F interface implementation is a pluggable
component (via the OJB.properties file - more about the OJB.properties file here) responsible for managing the connection
usage lifecycle and connection status (commit/rollback of connections).

public interface Connecti onManagerl|F
JdbcConnect i onDescri pt or get Connecti onDescri ptor();
Pl at f or m get Support edPl at f orn{) ;
bool ean i sAlive(Connection conn);
Connecti on get Connection() throws LookupExcepti on;
bool ean i sl nLocal Transacti on();
voi d | ocal Begi n();
void | ocal Commit();

voi d | ocal Rol | back();

Page 148

error:#ext:commons-pool
error:#ext:ojb.properties
error:#site:repository/connection-pool
error:#site:repository/connection-pool
error:#site:repository/connection-pool
error:#site:repository/connection-pool
error:#ext:commons-dbcp
error:#site:repository/connection-pool
error:#site:repository/connection-pool
error:#ext:ojb.properties
error:#site:ojb-properties

OJB Documentation

voi d rel easeConnection();

voi d set Bat chMbde(bool ean node) ;
bool ean i sBat chMbde();

voi d execut eBat ch();

voi d execut eBat chl f Necessary();

voi d cl earBatch();

}
The ConnectionManager was used by the PersistenceBroker to handle connection usage lifecycle.

4.5.11.4. Questions and Answers

How does OJB handle connection pooling?

OJB does connection pooling per default, expect for datasources. Datasources never will be pooled.

Responsible for managing the connections in 0oJB are implementations of the
or g. apache. oj b. broker . accessl ayer. Connecti onFactory.java interfacee. Thee ae severa
implementations shipped with 0oJB caled

or g. apache. oj b. br oker. accessl ayer. Connecti onFact or yXXXl npl . j ava. You can find among other
things a none pooling implementation and a implementation using jakarta-DBCP api.

To manage the connection pooling define in your jdbc-connection-descriptor a connection-pool element. Here you can specify
the properties for the used ConnectionFactory implementation. More common info see repository section or in repository.dtd.

Can | directly obtain a java.sgl.Connection within OJB?

The PB-api enabled the possibility to obtain a connection from the current used Per si st enceBr oker instance:

Per si st enceBr oker broker = PersistenceBrokerFactory. creat ePersi stenceBroker (nyKey);
br oker . begi nTransacti on();
[/ do sonething

Connection con = broker.serviceConnecti onManager (). get Connecti on();
/] performyour connction action and do nore
/] close the created statement and result set

br oker. conmmi t Tr ansacti on();
br oker. cl ose();

After obtain the connection with br oker . ser vi ceConnect i onManager (). get Connecti on() , the connection can
be used in a'normal’ way. The user is responsible for cleanup of created statements and result sets, so close statements and
result sets after use.

For read-only operations there is no need to start a PB-tx.

Do not commit the connection instance, thiswill be done by OJB when PersistenceBroker commit-/abortTransaction was called.
Never do aConnect i on. cl ose() cal on the obtained connection instance by hand!!
Thiswill be handled by the ConnectionFactory.

If no transaction is running, it is possible to release a connection after use by hand with call:

pBroker. servi ceConnecti onManager (). r el easeConnection();
This call cleanup the used connection and pass the instance to release method of ConnectionFactory (this will e.g. return

Page 149

error:#site:repository/jdbc-connection-descriptor
error:#site:repository/connection-pool
error:#site:repository
error:#ext:ojb/repository.dtd

0OJB Documentation

connection it to pool or closeit).
If you don't do any connection cleanup at the latest the connection will be released on PB.close() call.

Users who interested in this section also interested in 'Is it possible to perform my own sgl-queriesin OJB?.

4.5.12. The Object Cache

this document is not finished yet.

4.5.12.1. Introduction

OJB was shipped with severa ObjectCache implementations. All implementations can be found in
or g. apache. oj b. broker. cache package. To classify the different implementations we differ local cache and
shared/global cache (we use both terms synonymous) implementations.

« Local cache implementation mean that each instance use its own object map to manage cached objects.
« Shared/globa cache implementations share one (in most cases static) map to manage cached objects.

A distributed object cache implementation supports caching of objects across different VM.

4.5.12.2. Why a cache and how it works?
OJB provides a pluggable object cache provided by the Cbj ect Cache interface.

public interface bjectCache
{

/**

* Wite to cache.

*/

public void cache(ldentity oid, Object obj);
/**

* Lookup object from cache.

*/

public Object |ookup(ldentity oid);

/**

* Renpves an Cbject fromthe cache.

*/
public void renove(ldentity oid);

/ * %
* Cl ear the bject Cache.
=
public void clear();
}
Each PersistenceBroker instance using its own Cbj ect Cache instance. The Cbj ect Cache instances are created by the

Obj ect CacheFact ory class.

Each cache implementation holds Objects previously loaded or stored by the PersistenceBroker - dependend on the
implementation.
Using a Cache has several advantages.

« Itincreases performance as it reduces database lookups or/and object materialization. If an object islooked up by Identity
the associated PersistenceBroker instance, does not perform a SELECT against the database immediately but first looks up
the cache if the requested object is already loaded. If the object is cached it is returned as the lookup result. If it is not
cached a SELECT is performed.

Page 150

error:#site:faq/performSQL
error:#site:howto/clustering

OJB Documentation

Other queries were performed against the database, but before an object from the ResultSet was materialized the object
identity was looked up in cache. If not found the whole object was materialized.

« Italowsto perform circular lookups (as by crossreferenced objects) that would result in non-terminating loops without
such acache.

4.5.12.3. How to change the used ObjectCache implementation

The obj ect - cache element/property can be used to specify the ObjectCache implementation used by OJB. There are three
levels of declaration:

in OJB.properties file, to declare the standard (default) ObjectCache implementation. The declared ObjectCache
implementation was initialized with default properties, it's not possible to pass additional configuration properties on this level
of declaration.

The Obj ect CacheC ass entry tells QIB which concrete instance Cache
inplementation is to be used

Obj ect CacheC ass=or g. apache. oj b. br oker. cache. Obj ect CachePer Br oker | npl
#

on jdbc-connection-descriptor level , to declare ObjectCache implementation on a per connection/user level. Additional
configuration properties can be passed by using attribute element entries:

<j dbc- connecti on-descriptor ...>

<obj ect - cache cl ass="org. apache. oj b. br oker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-name="tineout" attribute-val ue="900"/>

<attribute attribute-name="useAut oSync" attri bute-val ue="true"/>

</ obj ect - cache>

é)jdbc-connection-descriptor>

on class-descriptor level , to declare ObjectCache implementation on a per class level. Additional configuration properties can
be passed by using attribute element entries:

<cl ass- descri ptor

cl ass="or g. apache. oj b. broker. util. sequence. H ghLowSequence"

tabl e="QIB_HL_SEQ'

>

<obj ect - cache cl ass="or g. apache. oj b. br oker . cache. Obj ect CacheEnpt yl npl " >
</ obj ect - cache>

</ cl ass-descri pt or>

The priority of the declared object-cache elements are:
per class > per jdbc-connection-descriptor > standard

E.g. if you declare ObjectCache 'DefaultCache’ as standard and set ObjectCache 'CacheA’ in class-descriptor for class A and
class B does not declare an object-cache element. Then OJB use 'CacheA' as ObjectCache for class A and 'DefaultCache’ for
class B.

4.5.12.4. Shipped cache implementations

ObjectCacheDefaultl mpl

Per default OJB use a shared reference based Obj ect Cache implementation. It's a really fast cache but there are a few
drawbacks. There is no transaction isolation, when thread one modify an object, thread two will see the modification when

Page 151

error:#ext:ojb.properties
error:#site:repository/jdbc-connection-descriptor
error:#site:repository/class-descriptor

0OJB Documentation

lookup the same object or use a reference of the same object. If you rollback/abort a transaction the corrupted objects will not
be removed from the cache (when using PB-api, top-level api may support automatic cache synchronization). Y ou have to do
thisusing

br oker . removeFr onCache(obj) ;

/1 or (using ldentity object)
hj ect Cache cache = broker. servi ceObj ect Cache();
cache. renove(oi d);

by your own or enable the useAutoSync property (more info see below).

Thisimplementation use Sof t Ref er ence to wrap al cached objects. If the cached object was not longer referenced by your
application but only by the cache, it can be reclaimed by the garbage collector.

As we don't know when the garbage collector reclaims the freed objects, it is possible to set ati meout property. So an
cached object was only returned from cache if it was not garbage collected and was not timed out.

To enable this Cbj ect Cache implementation

<obj ect -cache cl ass="org. apache. oj b. br oker. cache. Ghj ect CacheDef aul t | npl ">
<attribute attribute-nanme="timeout" attribute-val ue="600"/>
</ obj ect - cache>

Implementation configuration properties:
Property Key Property Values

timeout Lifetime of the cached objects in seconds. If
expired, the cached object was discarded -
default was 900 sec. When set to -1 the lifetime
of the cached object depends only on GC and
do never get timed out.

autoSync If set true all cached/looked up objects within a
PB-transaction are traced. If the the
PB-transaction was aborted all traced objects
will be removed from cache. Default is false.

NOTE: This does not prevent "dirty-reads’ by
concurrent threads (more info see above).

It's not a smart solution for keeping cache in sync
with DB but should do the job in most cases.

E.g. if you lookup 1000 objects within a transaction
and modify one object and then abort the transaction,
1000 objects will be passed to cache, 1000 objects
will be traced and all 1000 objects will be removed
from cache. If you read these objects without tx or in
a former tx and then modify one object in a tx and
abort the tx, only one object was traced/removed.

cachingKeyType Determines how the key was build for the
cached objects:
0 - Identity object was used as key, this was the
default setting.
1 - Idenity + jcdAlias name was used as key.
Useful when the same object metadata model
(DescriptorRepository instance) are used for
different databases (JdbcConnectionDescriptor)
2 - ldentity + model (DescriptorRepository) was
used as key. Useful when different metadata
model (DescriptorRepository instance) are used
for the same database. Keep in mind that there

Page 152

OJB Documentation

was no synchronization between cached objects
with same Identity but different metadata model.
3 - all together (Idenity + jcdAlias + model)

Recommendation:

If you take care of cache synchronization and be aware of dirty reads, thisimplementation is useful for read-only or less update
centric classes.

ObjectCachePer BrokerImpl

Thislocal cache implementation allows to have dedicated caches per PersistenceBroker instance. All calls are delegated to the
cache associated with the current broker instance. When the broker

o doescommit atransaction
« does abort/rollback atransaction
« wasclosed (returned to pool)

the cache was cleared. So no dirty reads will occur, because each thread use it's own PersistenceBroker instance. No corrupted
objects will be found in cache, because the cache was cleared after use.

ObjectCacheJCSImpl
A shared Obj ect Cache implementation using a JCS region for each classname. More info see turbine-JCS.

ObjectCacheEmptylmpl
Thisisan 'empty’ ObjectCache implementation. Useful when caching was not desired.

This implementaion does not support circular References. Be careful when using thisimplementaion with references (this may change in further versions).

ObjectCacheOSCachel mpl
A implementation using OpenSymphony's OSCache. More info see in Clustering HOWTO.

Moreimplementations...

Additional ObjectCache implementations can be found in org.apache.ojb.broker.cache package.

4.5.12.5. Distributed ObjectCache?

If OJB was used in a clustered enviroment it is mandatory to distribute all shared cached objects across different VM. More
information how to realize such a cache see here.

4.5.12.6. Implement your own cache

The OJB cache implementations are quite simple but do a good job for most scenarios. If you need a more sophisticated cache
(eg. with MRU memory management strategies) you'll write your own implementation of the interface
oj b. br oker. cache. (bj ect Cache.

Integration of your implementation in OJB is easy since the object cache is a pluggable component. All you have to do, is to
declareitinthe QJB. pr opert i es file by setting the Qbj ect CacheC ass property.

Of course we interested in your solutions! If you have implemented something interesting, just contact us.

Page 153

error:#ext:jakarta/jcs
error:#site:howto/clustering
error:#site:clustering
error:#site:guides/ojb-properties

0OJB Documentation

4.5.12.7. CacheFilter feature

What does cachefiltering mean
TODO

Default CacheFilter implementations
TODO

I mplement your own filter
TODO

4.5.12.8. Future prospects
TODO

4.5.13. Sequence M anager

4.5.13.1. The OJB Sequence Manager

All sequence manager implementations you will find under the or g. apache. oj b. br oker . uti | . sequence package
using the following naming convention SequenceManager XXXI npl .

Automatical assignment of unique values

As mentioned in mapping tutorial OJB provides a mechanism to automatic assign unique values for primary key attributes.
You just have to enable the aut oi ncr enent attribute in the respective FieldDescriptor of the XML repository file as
follows:

<cl ass-descri ptor
class="ny. Article"
t abl e=" ARTI CLE"

>

<fi el d-descri pt or
nanme="articl el d"
col um="ARTI CLE | D"
j dbc-t ype="1 NTEGER"
pri marykey="true"
/aut oi ncrenment ="t rue"
>

</ cl ass-descri pt or >

This definitions contains the following information:
The attributear t i cl el d is mapped on the table's column ARTI CLE_| D. The JDBC Type of this columnis| NTEGER. This
isaprimary key column and OJB shall automatically assign unique values to this attribute.

This mechanism works for all whole-numbered column types like BIGINT, INTEGER, SMALLINT,... and for CHAR,
VARCHAR coliumns. This mechanism helps you to keep your business logic free from code that computes unique Ids for
primary key attributes.

For ce computation of unique values

By default OJB triggers the computation of unique ids during calls to PersistenceBroker.store(...). Sometimes it will be
necessary to have the ids computed in advance, before a new persistent object was written to database. This can be done by
simply obtaining the Identity of the respective object as follows:

Identity oid = broker.serviceldentity().buildldentity(Cbject newPersistentbject);

Page 154

error:#site:mapping-tutorial
error:#site:repository/field-descriptor

OJB Documentation

This creates an |dentity object for the new persistent object and set al primary key values of the new persistent object - But it
only worksif aut oi ncr enent isenabled for the primary key fields.

Force computation of unique values is not allowed when using database based Identity columns for primary key generation (e.g via ldentity column supporting sequence
manager), because the real PK vaue is at the earliest available after database insert operation. If you nevertheless force PK computing, OJB will use an temporary dummy PK
vauein the Identity object and this may lead to unexpeted behavior.

Info about lookup persistent objects by primary key fields see here.

How to change the sequence manager ?

To enable a gpecific SequenceManager implementation declare an sequence- manager within the
| dbc- connecti on-descri ptor element in the repository file. If no sequence- manager was specified in the
| dbc-connecti on-descriptor, OJB wuse a default sequence manager implementation (default was
SequenceManager HighLowl mpl).

Further information you could find in the repository.dtd section sequence-manager el ement.

Examplej dbc- connecti on- descri pt or using sequence- manager tag:

<j dbc- connecti on-descri pt or
jcd-alias="farAnay"
pl at f or m=" Hsql db"
j dbc- 1 evel =" 2. 0"
driver="org. hsql db. j dbcDri ver"
pr ot ocol =" dbc"
subpr ot ocol =" hsqgl db"
dbal i as="../ QIB_Far Away"
user nane="sa"
passwor d=""
bat ch- node="f al se"

<connect i on- poo

maxActi ve="5"

whenExhaust edActi on="0"

val i dati onQuery="sel ect count(*) from QIB_HL_SEQ'
/>

<sequence- manager cl assNane="org. apache. oj b. broker. util
sequence. SequenceManager Hi ghLow npl " >
<attribute attribute-nanme="grabSi ze" attribute-val ue="5"/>
<attribute attribute-nanme="gl obal Sequencel d"
attri but e-val ue="fal se"/ >
<attribute attribute-nane="gl obal SequenceStart"
attri but e-val ue="10000"/ >
</ sequence- manager >
</ j dbc- connecti on-descri pt or >
The mandatory cl assNane attribute needs the full-qualified class name of the desired sequence-manager implementation. If
a implementation needs configuration properties you pass them using at t r i but e tags with at t r i but e- nanme represents
the property name and at t r i but e- val ue the property value. Each sequence manager implementation shows all properties
on the according javadoc page.

SequenceM anager implementations

Source code of al SeguenceManager implementations can be found in
or g. apache. oj b. broker . util . sequence package.
If you still think something is missing you can just write your own sequence manager implementation.

Page 155

error:#ext:api/identity
error:#site:pb-tutorial/find-by-pk
error:#site:repository
error:#ext:repository.dtd

0OJB Documentation

High/L ow sequence manager

Per default OJB internally uses a High/Low algorithm based sequence manager for the generation of unique ids, as described
in Mapping Objects To Relational Databases.

This implementation is called o) b. broker. uti | . sequence. SequenceManager H ghLow npl and is able to
generate IDs unigque to a given object and all extent objects declarated in the objects class descriptor.

If you ask for an uid using an interface with several implementor classes, or a baseclass with several subclasses the returned
uid have to be unique accross all tables representing objects of the extent in question (more see here).

It's also possible to use this implementation in a global mode, generate global unique id's.

<sequence- manager cl assNane=
"org. apache. oj b. broker. util.sequence. SequenceManager H ghLow npl " >

<attribute attribute-nanme="grabSi ze" attri bute-val ue="20"/>
<attribute attribute-nanme="gl obal Sequencel d"
attribute-val ue="fal se"/ >
<attribute attribute-nane="gl obal SequenceStart"
attri bute-val ue="10000"/ >
<attribute attribute-nanme="aut oNam ng"
attribute-val ue="true"/>
</ sequence- manager >

With property gr abSi ze you set the size of the assigned ids (default was 20).

If property gl obal Sequencel d was set t rue you will get global unique ids over al persistent objects. Default was
fal se.
The attribute gl obal SequenceSt art define the start value of the global id generation (default was 10000).

This sequence manager implementation supports user defined sequence-names to manage the sequences. The attribute
aut oNam ng defineif sequence names should be build automatic if nonefoundinfi el d- descri ptor.

If set 'true OJB try to build a sequence name automatic if none found in field-descriptor and set this name as
sequence- nane in field-descriptor (see more). If set 'false’ OJB throws an exception if none sequence name was found in
field-descriptor (default was 'true').

Limitations:

- do not use in managed environments when connections were enlisted in running transactions, e.g. when using DataSources
of an application server

- if set connection-pool attribute 'whenExhaustedAction' to 'block’ (wait for connection if connection-pool is exhausted), under
heavy load this sequence manager implementation can block application.

- superfluously to mention, do not use if other non-OJB applications insert objects too

In-Memory sequence manager

Another sequence manager implementation is a In-Memory version called
oj b. broker. util.sequence. SequenceManager | nMenor yl npl .

Only the first time an uid was requested for a object, the manager query the database for the max value of the target column -
al following request were performed in memory. This implementation ditto generate unique ids across all extents, using the
same mechanism as the High/L ow implementation.

<sequence- manager cl assName="or g. apache. oj b. broker. uti |
sequence. SequenceManager | nMenor yl mpl " >
<attribute attribute-nanme="aut oNani ng"
attribute-val ue="true"/>
</ sequence- manager >

For attribute aut oNam ng see

This sequence manager implementation supports user defined sequence-names to manage the sequences (see more) or if not

Page 156

error:#ext:ambysoft

OJB Documentation

setinfi el d-descri ptor itisdoneautomatic.

Thisisthe fastest standard sequence manager implementation, but has some Limitations:
- do not usein clustered environments
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert objects too

Database sequences based implementation

If your database support sequence key generation (e.g. Oracle, SAP DB, PostgreSQL) you could use the
SequenceManager Next Val | npl implementation let your database generate the requested ids.

<sequence- manager cl assNanme="org. apache. oj b. broker. util

sequence. SequenceManager Next Val | npl ">

<attribute attribute-nane="aut oNani ng"
attribute-val ue="true"/>

</ sequence- nanager >
Attribute aut oNam ng default was 'true. If set 'true’ OJB try to build a sequence name automatic if none found in
field-descriptor and set this generated name as sequence- nane in field-descriptor.
If set 'false’ OJB throws an exception if none sequence name was found in field-descriptor, ditto OJB does NOT try to create a

database sequence entry when for given sequence name no database sequence could be found.

When using this sequence manager it is possible to define a sequence-namef i el d- descri pt or attribute in the repository
file for each autoincrement/pk field. If you don't specify a sequence name, the sequence manager try to build a extent-aware
sequence name on its own - except you set attribute aut oNami ng to 'false, then an exception will be thrown.

Keep in mind that in this case you are responsible to be aware of extents. Thus you have to use the same sequence- nane
attribute value for all extents, even if the extents were mapped to different database tables.

See usage of the sequence- nane attribute:

<cl ass- descri ptor
cl ass="org. apache. oj b. br oker. sequence. SMbat abaseSequence"
t abl e=" SM_TAB_DATABASE SEQUENCE"
>
<fi el d-descri pt or
nane="seql d"
col um="SEQ | D'
j dbc-type="1 NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
sequence- nanme="TEST SEQUENCE"
/>

</c|éééldescriptor>
Limitations:
- none known

Database sequences based high/low implementation

Based on the sequence manager implementation described above, but use a high/low algorithm to avoid database access.

<sequence- manager cl assNanme="org. apache. oj b. broker. util
sequence. SequenceManager SeqHi Lol npl " >
<attribute attribute-nane="grabSi ze" attri bute-val ue="20"/>
<attribute attribute-nane="aut oNam ng"
attribute-val ue="true"/>
</ sequence- nanager >

With the property gr abSi ze you set the size of the assigned ids. For attribute aut oNam ng see.

This sequence manager implementation supports user defined sequence-names to manage the sequences (see more) or if not

Page 157

0OJB Documentation

setinfi el d-descri ptor itisdoneautomatic.

Limitations:
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert objects too

Oracle-style sequencing

(By Ryan Vanderwerf et al.) This solution will give those seeking an oracle-style sequence generator a final answer (Identity
columns really suck). If you are using multiple application servers in your environment, and your database does not support
read locking like Microsoft SQL Server, thisisthe only safe way to guarantee unique keys (HighL owSequenceManager WILL
give out duplicate keys, and corrupt your data).

The SequenceManager St or edPr ocedur el npl implementation enabled database sequence key generation in &
Oracle-style for all databases (e.g. MSSQL, MySQL, DB2, ...).

First add anew table QJB_NEXTVAL _SEQto your database.

CREATE TABLE OJB_NEXTVAL_SEQ

SEQ NAME VARCHAR(150) NOT NULL,
MAX_KEY | NTEGER,
CONSTRAI NT SYS_PK_QJB_NEXTVAL PRI MARY KEY(SEQ NAME)

)

You will also need a stored procedure caled oj b_next val _pr oc that will take care of giving you a guaranteed unique
sequence number.
Hereis an example for the stored procedure you need to use sequencing for MSSQL server:

CREATE PROCEDURE QJB_NEXTVAL_PROC
@EQ NAME var char (150)
AS

decl are @MKAX_KEY BI G NT

-- return an error if sequence does not exi st

-- so we will know if soneone truncates the table
set @WX KEY = 0

UPDATE QJB_NEXTVAL_SEQ
SET @M®BX_KEY = MAX_KEY = MAX_KEY + 1
WHERE SEQ NAME = @SEQ NAVE

if @WAX KEY = 0
select 1/0

el se

sel ect @MAX_KEY
RETURN @/KX_KEY

You have to adapt this script if MSSQL was not used (We are interested in scripts for other databases). Last, enable this
sequence manager implementation:

<sequence- manager cl assNane="or g. apache. oj b. broker. util.
sequence. SequenceManager St or edPr ocedur el npl " >
<attribute attribute-nanme="aut oNanm ng"
attribute-value="true"/>
</ sequence- manager >

For attribute autoNaming see .

This sequence manager implementation supports user defined sequence-names to manage the sequences (see maore) or if not
setinfi el d-descri pt or itisdone automatic.

Limitations:
- currently none known

Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

Page 158

OJB Documentation

For those users you are using SQL Server 7.0 and up, the uniqueidentifier was introduced, and allows for your rows Primary
Keysto be GUID's that are guaranteed to be unigue in time and space.

However, this type is different than the Identity field type, whereas there is no way to programmatically retrieve the inserted
value. Most implementations when using the wu.i. field type set a default value of "newid()". The
SequenceM anagerM SSQL Guidimpl class manages this process for you as if it was any normal generated sequence/identity
field.

Assuming that your PK on your table is set to ‘uniqueidentifier', your field-description would be the same as using any other
SequenceM anager:

<fiel d-descriptor
nanme="gui d"
col um="docunent file_ guid"
j dbc-t ype=" VARCHAR'
pri marykey="true"
aut oi ncrenent ="t rue"
/>

Note that the jdbc-typeisaVARCHAR, and thus the attribute (in this case 'guid’) on your class should be a String (SQL Server
does the conversion from the String representation to the binary representation when retrieved/set).

Y ou a'so need to turn on the SequenceManager in your jdbc-connection-descriptor like this:

<sequence- manager
cl assNane="or g. apache. oj b. broker. util . sequence. SequenceManager MsSSQ.Gui dI npl "
[>

Limitations:

-Thiswill only work with SQL Server 7.0 and higher as the uniqueidentifier type was not introduced until then.

This works well in situations where other applications might be updated the database as well, because it guarantees (well, as
much as Microsoft can guarantee) that there will be no collisions between the Guids generated.

I dentity based sequence manager

This sequence manager implementation supports database Identity columns (supported by MySQL, MsSQL, HSQL, ...). When
using identity columns we have to do atrick to make the sequence manager work.

OJB identify each persistence capable object by a unique ojb-ldentity object. These ojb-Identity objects were created using the
sequence manager instance to get UID's. Often these ojb-ldentity objects were created before the persistence capable object
was written to database.

When using Identity columns it is not possible to retrieve the next valid UID before the object was written to database. As
recently as the real object was written to database, you can ask the DB for the last generated UID. Thus in
SequenceM anagerNativel mpl we have to do atrick and use a 'temporary' UID till the object was written to database.

So, if it's possible try to avoid using ldentity columns in your database model. If not use this sequence manager
implementation to as aworkaround for the Identity problem.

To enable this sequence manager implementation set in your j dbc- connect i on- descri ptor:

<sequence- manager
cl assNane="or g. apache. oj b. broker. uti |l . sequence. SequenceManager Nati vel npl ">
</ sequence- nanager >

To declare the identity column in the repository.xml file add pri mar ykey="true", aut oi ncrenment ="true" and
access="r eadonl y" tothefield-descriptor for your table's primary key identity column.

<fiel d-descriptor

Page 159

0OJB Documentation

nane="i dentifier"
col um="NATI VE_ | D"

j dbc-type="BI G NT"
pri marykey="true"
aut oi ncrenment ="t rue"
access="readonl y"/ >

Limitations:
- The Identity columns have to start with value >= 1 and should never be negative.
- Use of Identity columnsis not extent awar e (This may change in further versions). More info here.

How to write my own sequence manager ?

Very easy to do, just write a implementation class of the interface
or g. apache. oj b. broker. util . sequence. SequenceManager . 0oJB use a factory (
SequenceManager Fact or y) to obtain sequence manager instances.

This Factory can be configured to generate instances of your specific implementation by adding asequence- nanager tag
inthej dbc- connecti on-descri ptor.

<sequence- manager cl assNane="ny. SequenceManager WI npl ">
</ sequence- manager >

That'sit!

If your sequence manager implementation was derived from
org. apache. oj b. broker. util.sequence. Abstract SequenceManager it's easy to pass configuration
properties to your implementation using at t r i but e tags.

<sequence- manager cl assNane="ny. SequenceManager WYl npl ">
<attribute attribute-name="nyProperty" attribute-value="test"/>
</ sequence- manager >

With

public String getConfigurationProperty(String key, String defaultVal ue)
method get the propertiesin your implementation class.

Of course we interested in your solutions! If you have implemented something interesting, just contact us.

Questions

When using sequence-name attribute in field-descriptor ?

Most SequenceManager implementations based on sequence names. If you want retain control of sequencing use your own
sequence- nane attribute in the fi el d-descri ptor. In that case you are reponsible to use the same name across
extents (see more info about extents and polymorphism). Per default the sequence manager build its own extent aware
sequence name with an simple algorithm (see
org. apache. oj b. broker. util . sequence. SequenceManager Hel per #bui | dSequenceNane) if necessary.

In most cases this should be sufficient. If you have a very complex data model and you will do many metadata changes in the
repository file in future, then it could be better to explicit use sequence- nanes inthefi el d- descri pt or. See more

avoid pitfals.

What to hell does extent aware mean?

Say we have a abstract base class Ani mal and two classes Dog and Cat which extend Ani mal . For each non-abstract class

Page 160

error:#site:advanced-technique/polymorphism

OJB Documentation

we create a separate database table.

We will be able to do aquery like give me all animals. Thus the uid's of Dog and Cat objects must be unique across the tables
of both classes or else you may not get availd query result.

The reason for this behaviour is the or g. apache. oj b. br oker. I denti ty class implementation (this may change in
further versions).

How could | prevent auto-build of the sequence-name?

All shipped SequenceManager implementations which using sequence names for UID generation, support by default
auto-build (autoNaming) of the sequence name if none wasfound inthef i el d- descri pt or.

To prevent this, all relevant SM implementations support a aut oNam ng property - set via attri but e element. If set
f al se OJB doesn't try to build sequence names automatic.

<sequence- manager cl assNane="XYZ">
" <attribute attri but e- nane="aut oNam ng" attri bute-val ue="true"/>
é)éequence-nanager>

Sequence manager handling using multiple databases

If you use multiple databases you have to declare a sequence manager in each j dbc- connecti on- descri ptor. If you
don't specify a seguence manager 0oJB use the default one (currently
oj b. broker. util.sequence. SequenceManager H ghLow npl).

One sequence manager with multiple databases?

OJB was intended to use a sequence manager per database. But it shouldn't be complicated to realize a global sequence
manager solution by writing your own SequenceManager implementation.

Can | get direct accessto the sequence manager ?

That's no problem:

Per si st enceBr oker broker =
Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (myPBKey) ;
SequenceManager sm = broker. servi ceSequenceManager () ;

bfbker.close();

If you use aut oi ncrement =t rue in your fi el d-descri ptor, there is no reason to obtain UID directly from the
sequence manager or to handle UID in your object model.

Don't use SequenceM anagerFactory#getSequenceM anager(PersistenceBroker broker), this method returns a new sequence manager instance for the given broker instance and
not the current used SM instance of the given PersistenceBroker instance]

Any known pitfalls?

« When enable a sequence manager implementation based on sequence-name attributes and if the name was not set as an
atributeinthef i el d- descri pt or (see), an simple algorithm was used to build the sequence name.
The algorithm try to get the top-level class of the field's enclosing class, if no top-level class was found, the table name of
the field's enclosing class was used. If atop-level class was found, the first found extent class table name was used as
sequence name.
When using base classed/interfaces with extent classes based on different database tables and the ext ent - cl ass entries
in repository often change, the algorithm could be corrupted, because the first found extent class's table name could be
change.

Page 161

0OJB Documentation

To avoid this, remove the implementation internal sequence name entry (e.g. OJB_HL _SEQ table entry when using the
Hi/Lo implementation, or remove the database sequence entry when using the 'Nextval' implementation) in that case, or use
custom sequence name attributes in the field descriptor.

4.5.14. OJB logging configuration

45.14.1. Logging in OJB

For generating log messages, OJB provides its own, simplistic logging component PoorMansL oggerlmpl, but is also able to
use the two most common Java logging libraries, commons-logging (which is actually a wrapper around several logging
components) and Log4j. In addition, it is also possible to define your own logging implementation.

Per default, OJB usesits own PoorMansl oggerlmpl which does not require configuration and printsto st dout .

4.5.14.2. L ogging configuration within OJB

How and when OJB deter mineswhat kind of logging to use

Logging is the first component of OJB that isinitialized. If you access any component of OJB, logging will be initialized first
before that component is doing anything else. Therefore, you'll have to provide for the configuration of logging before you
access OJB in your program (thisis mostly relevant if you plan to initialize OJB at runtime as is described below). Please note
that logging configuration is independent of the configuration of other parts of OJB, namely the runtime (via OJB.properties)
and the database/repository (viarepository.xml).

These are the individual steps OJB performs in order to initialize the logging component:

1. First, OJB checks whether the system property or g. apache. oj b. broker. util .| oggi ng. Logger. cl ass is
set. If specified, this property gives the fully qualified class name of the logger class (a class implementing the Logger
interface). Along with this property, another property is then read which may specify a propertiesfile for thislogger class,
org. apache. oj b. broker. util .| oggi ng. Logger. confi gFil e.

2. If this property is not set, then OJB triesto read thefile QJB- | oggi ng. pr operti es. The name and path of thisfile
can be changed by setting the runtime property of the same name. See below for the contents of thisfile.

3. For backwards compatibility, OJB next triesto read the logging settings from the file OJB.properties which is the normal
runtime configuration file of OJB. Again, the name and path of this file can be changed by setting the runtime property of
the same name. Thisfile may contain the same entriesasthe QJB- | oggi ng. properti es file.

4. If thethe QIB. pr operti es filedoes not contain logging settings, next it is checked whether the commons-logging log
property or g. apache. commons. | oggi ng. Log or the commons-logging log factory system property
or g. apache. commons. | oggi ng. LogFact ory isset. If that's the case, OJB will use commons-logging for its
logging purposes.

5. Next, OJB checks for the presence of the Log4j propertiesfilel og4j . properti es. If itisfound, the OJB uses Log4j
directley (without commons-logging).

6. Finaly, OJB triesto find the commons-logging properties file commons- | oggi ng. pr operti es which when found
directs OJB to use commons-logging for its logging.

7. 1f none of the aboveistrue, or if the specified logger class could not be found or initialized, then OJB defaultsto its
Poor MansLogger | npl logger which simply logsto st dout .

The only OJB component whose logging is not initialized this way, is the boot logger which is used by logging component
itself and a few other core components. It will (for obvious reasons) always use PoorManslL oggerlmpl and therefore log to
st dout . You can define the log level of the boot logger viathe QJB. boot LogLevel system property. Per default, WARN
Is used.

Configuration of logging for the individual components

Regardless of the logging implementation that is used by OJB, the configuration is generally similar. The individual logging

Page 162

error:#ext:api/poor-mans-logger
error:#ext:jakarta/commons-logging
error:#ext:log4j
error:#ext:api/poor-mans-logger
error:#site:ojb-properties
error:#site:repository
error:#ext:api/logger
error:#site:ojb-properties
error:#ext:api/poor-mans-logger

OJB Documentation

implementations mainly differ in the syntax and in the configuration of the format of the output and of the output target (where
to log to). See below for specific details and examples.

In general, you specify a default log level and for every component (usually a class) that should log differently, the amount and
level of detail that islogged about that component. These are the levels.

DEBUG

Messages that express what OJB is currently doing. This is the most detailed debugging level

INFO

Informational messages

WARN

Warnings that may denote potentional problems (this is the default level)

ERROR

As the name says, this level is for errors which means that some action could not be completed successfully
FATAL

Fatal errors which usually prevent an application from continuing

The levels DEBUG and INFO usually result in a lot of log messages which will reduce the performance of the application.
Therefore these level s should only be used when necessary.

There are two specia loggers to be aware of. The boot logger is the logger used by the logging component itself as well as &
few other core components. It will therefore always use the PoorMansl oggerlmpl logging implementation. Y ou can configure
itslogging level viathe QJB. boot LogLevel system property.

The default logger is denoted in the QJB- | oggi ng. properti es file by the keyword DEFAULT instead of the class
name. It is used by components that don't require their own logging configuration (usualy because they are rather small
components).

4.5.14.3. L ogging configuration via configuration files

OJB-logging.properties

This file usualy Specifies which logging implementation to use using the
or g. apache. oj b. broker . util .| oggi ng. Logger. cl ass property, and which properties file this logger has (if
any) using the or g. apache. oj b. broker. util .| oggi ng. Logger. confi gFi | e property. You should also use

this file to specify log levels for OJB's components if you're not using Log4j or commons-logging (which have their own
configuration files).

A typical QIB- | oggi ng. properti es filelookslike this:

Whi ch | ogger to use
or g. apache. oj b. broker . util .| oggi ng. Logger. cl ass=or g. apache. oj b. broker. util .| oggi ng. Poor MansLogger | npl

Configuration file of the |ogger
#or g. apache. oj b. broker. util .| oggi ng. Logger. confi gFi |l e=

G obal default log level used for all logging entities if not specified
ROOT. LogLevel =ERROR

The | og |l evel of the default | ogger
DEFAULT. LogLevel =WARN

Logger for PersistenceBrokerlnmpl class
or g. apache. oj b. br oker . cor e. Per si st enceBr oker | npl . LogLevel =WARN

Logger for RepositoryXm Handl er, useful for debuggi ng parsing of repository.xn!
or g. apache. oj b. br oker . met adat a. Reposi t or yXm Handl er . LogLevel =\WARN

commons-logging.properties

Page 163

error:#ext:api/poor-mans-logger

0OJB Documentation

Thisfileisused by commons-logaing. For details on its structure see here.

An example cormons- | oggi ng. properti es filewould be:

Use Log4j
or g. apache. conmons. | oggi ng. Log=or g. apache. conmons. | oggi ng. i npl . Log4JLogger

Configuration file of the |og
| og4j . configuration=l og4j.properties

Since commons-logging provides the same function as the logging component of OJB, it will likely be used as OJB's logging component in the near future.

log4j .properties

The commons-logging configuration file. Details can be found here.

A samplelog4j configuration is:

Root |ogging level is WARN, and we're using two | ogging targets
| og4j . root Cat egor y=WARN, Al, A2

AL is set to be Consol eAppender sending its output to System out
| og4j . appender . Al=or g. apache. | og4j . Consol eAppender

Al uses PatternLayout
| og4j . appender . Al. | ayout =or g. apache. | og4j . Patt er nLayout
| 0g4j . appender. Al. | ayout . ConversionPattern=%5r %5p [%] %{2} - %?n

Appender A2 wites to the file "org.apache. ojb. | og"
| 0g4] . appender. A2=or g. apache. | 0og4j . Fi | eAppender
| 0g4j . appender. A2. Fi | e=or g. apache. oj b. | og

Truncate the log file if it al eady exists.
| og4j . appender . A2. Append=f al se

A2 uses the PatternlLayout.
| og4j . appender. A2. | ayout =or g. apache. | og4j . Patt er nLayout
| og4j . appender. A2. | ayout . ConversionPattern=%5r %5p [%] %{2} - %m

Speci al |1 ogging directives for individual conponents

| 0g4j . | ogger. or g. apache. oj b. br oker . met adat a. Reposi t or yXm Handl er =DEBUG
| 0g4j . | ogger. or g. apache. oj b. br oker. accessl ayer. Connect i onManager =l NFO
| og4j .| ogger. or g. apache. oj b. odng=I NFO

Whereto put the configuration files

OJB and the different logging implementations usually ook up their configuration files in the classpath. So for instance, OJB
searches for the QJB- | oggi ng. properti es filedirectly in any of the entries of the classpath, directories and jar files. If
the classpath contains in that order sonme-1i brary.jar, db-o0j b.jar, and ., then it will first search in the two jars
(which themselves contain a directory structure in which OJB will search only in the root), and lastly in the current directory
(which only happensif . ispart of the classpath) but not in sub directories of it.

For applications, this classpath can easily be set either as an environment variable CLASSPATH or by using the commandline
switch - cl asspat h when invoking the java executable.

For web applications however, the server will define the classpath. There are specific folders in the webapp structure that are
always part of the webapp's classpath. The one that is normally used to store configuration files, isthe cl asses folder:

[fol der contai ni ng webapps]\
mywebapp\

Page 164

error:#ext:jakarta/commons-logging
error:#ext:jakarta/commons-logging/configuration
error:#ext:log4j
error:#ext:log4j/configuration

OJB Documentation

VAEB- | NF\
[i b\
cl asses\ <-- Put your configuration files here

4.5.14.4. L ogging configuration at runtime

Sometimes you want to configure OJB completely at runtime (within your program). How to do that for logging depends on
the used logging implementation, but you can usually configure them via system properties. The only thing to keep in mind is
that logging in OJB isinitialized as soon as you use one of its components, so you'll have to define the properties prior to using
any OJB parts.

With system properties (which are accessible via Syst em get Property() from within a Java program) you can aways
define the following OJB logging settings:

org. apache. oj b. broker. util .| oggi ng. Logger. cl ass
Which logger OJB shall use
or g. apache. oj b. broker. util .| oggi ng. Logger.configFile

The config file of the logger

QJB- 1 oggi ng. properties

The path to the logging properties file, default is QJB- | oggi ng. properties

QJB. properties

The path to the OJB properties file (which may contain logging settings), default is QJB. pr operti es
or g. apache. commons. | oggi ng. Log

Use commons-logging with the specified log implementation

or g. apache. cormons. | oggi ng. LogFact ory

Use commons-logging with the specified log factory

| og4j . configuration

When using Log4j directly or via commons-logging, this is the Log4j configuration file (default is
| og4j . properties)

In addition, all Log4j properties (e.g. | og4j . r oot Cat egor y) can be specified as system properties.

4.5.14.5. Defining your own logger

It is rather easy to use your own logger. All you need to do is to provide a class that implements the interface Logger. Besides
the actual log methods (debug, info, warn, error, fatal) this interface defines a method voi d
configure(Configuration) which is used to initialize the logger with the logging properties (as contained in
QJB- | oggi ng. properties).

Because commons-logging performs a similar function to the OJB logging component, it is likely that it will be used as such in the near future. Therefore you're encouraged to
also implement the Log interface which is nearly the same as the Logger interface.

4.5.15. The ODMG L ock Manager

4.5.15.1. What it does

The OJB ODMG implementation provides object level transactions as specified by the ODMG. This includes features like
registering objects to transactions, persistence by reachability (a toplevel object is registered to a transaction, and also all its
associated objects become registered implicitely) and as a very important aspect: object level locking.

Lockmanagement is needed to synchronize concurrent access to objects from multiple transactions (possibly from remote
machines).

An example: There are two transactions t x1 and t x2 running on different physical machines. Tx1 acquired a write lock on
an object obj with the globally unique identity oi d. Now also t x2 tries to get a write lock on an object obj ' (it's not the

Page 165

error:#ext:api/logger
error:#ext:jakarta/commons-logging/api-log
error:#ext:api/logger

0OJB Documentation

same object as it resides in a different VM!) with the same identity oi d (an OJB Identity is unique accross VMs!). The OJB
LockManager is responsible for detecting this conflict and doesn't allow t x2 to obtain a write lock to prevent data
inconsistency.

The ODMG Api allows transactions to lock an object obj asfollows:
or g. odng. Transacti on. | ock(Cbj ect obj, int | ockMde),

where lockM ode defines the locking mode:

[** Read | ock node. */
public static final int READ = 1;

[** Upgrade | ock node. */
public static final int UPGRADE = 2;

[** Wite | ock node. */
public static final int WRI TE = 4;

A sample session could look as follows:

/1 get odng facade instance
| mpl enent ati on odng = QJB. get | nst ance();

/| open dat abase
Dat abase db = odngy. newDat abase() ;
db. open(" ; r eposi t ory. xm " ;, Dat abase. OPEN_READ WRI TE) ;

[/ start a transaction
Transaction tx = odng. newlransaction();
t x. begi n();

MyCl ass nyCbject = ...

/1 | ock object for read access
tx. l ock(nyCbj ect, Transacti on. READ);

/1 now performread access on nmyQbj ect

/1 lock object for wite access
t x.l ock(myQbj ect, Transacti on. UPGRADE) ;

/1 now performwite access on ny(Qhj ect

[/ finally comrmit transaction to nmake changes to myQbject persistent

tx.commit();

The ODMG specification does not say if locks must be acquired explicitely by client applications or may be acquired
implicitely. OJB provides implicit locking for the application programmers convenience: On commit of a transaction all
read-locked objects are checked for modifications. If a modification is detected, a write lock is acquired for the respective
object. If automatic acquisition of read- or write-lock failes, the transaction is aborted.

On locking an object to atransaction, OJB automatically locks all associated objects (as part of the persistence by reachability
feature) with the same locking level. If application use large object nets which are shared among severa transactions
acquisition of write-locks may be very difficult. Thus OJB can be configured to aquire only read-locks for associated objects.

Y ou can change this behaviour by modifying the file OJB.properties and changing the entry LockAssoci ati ons=WRI TE
to LockAssoci at i ons=READ.

The ODMG specification does not prescribe transaction isolationlevels or locking strategies to be used. Thus there are no AP
cals for setting isolationlevels. OJB provides four different isolationlevels that can be configured for each persistent class in
the XML repository.

Theisolationlevel of a class can be configured with the following attribute to a ClassDescriptor:

Page 166

error:#site:ojb-properties

OJB Documentation

<Cl assDescri ptor isolation="read-unconitted" ...>

</CIéééDescriptor>
The four supported values are:

e read-uncommitted
e read-committed

e repeatable-read

e sarializable

The semantics of these isolationlevels is defined bel ow.

4.5.15.2. How it works

To provide Lockmanagement in a massively distributed environment as the OJB client/server architecture, OJB implements &
LockManager that allows transaction coordination accross multiple threads, multiple VMs and even multiple physical
machines running OJB ODMG transactions. The Default Implementation of this LockManager uses a database table to store
locks. To make locks persistent allows to make them visible to all connected ODMG clients. Thus there is no need for an
additional LockManager server that is accessed from all ODMG clients.

The LockManager interface provides the following API:

public interface LockManager

/**
* aquires a readl ock for transaction tx on object obj.
* Returns true if successful, else false
*/
public abstract bool ean readLock(Transactionlnpl tx, Object obj);

/**
* aquires a witelock for transaction tx on object obj.
* Returns true if successful, else false
*/
public abstract bool ean witelLock(Transactionlnpl tx, Object obj);

/**
* upgrades readl ock for transaction tx on object obj to a witelock.
* | f no readl ock existed a witelock is acquired anyway.
* Returns true if successful, else false
*/
public abstract bool ean upgradelLock(Transactionlnpl tx, Cbject obj);

/**

* rel eases a |lock for transaction tx on object obj.

* Returns true if successful, else false

*/

public abstract bool ean rel easeLock(Transactionlnpl tx, Cbject obj);
/**

* checks if there is a readlock for transaction tx on object obj.

* Returns true if so, else false

*/

public abstract bool ean checkRead(Transacti onl npl tx, Object obj);

/**

* checks if there is a witelock for transaction tx on object obj.
* Returns true if so, else fal se

*/

public abstract bool ean checkWite(Transactionlnpl tx, Object obj);

The lockmanager must alow and disalow locking according to the Transaction Isolationlevel specified for
obj . get A ass() in the XML RepositoryFile. It does so by applying a corresponding LockStrategy. LockStrategies are

Page 167

selected by the L ockStrategyFactory:

private static LockStrategy readUnconmmitedStrategy =

new ReadUncomi ttedStrategy();

private static LockStrategy readConmnitedStrategy =
new ReadConmittedStrategy();

private static LockStrategy readRepeatabl eStrategy =

/**

new Repeat abl eReadSt rat egy() ;
private static LockStrategy serializableStrategy =
new Seri al i zabl eStrategy();

* (pntains a LockStrategy for Cbject obj.

*
*
*

*/

public static LockStrategy getStrategyFor(Object obj)
{

}

sel ected by evaluating the C assDescriptor of obj.getd ass().

@eturn LockStrategy

i nt

}

The Strategy to be used is

i sol ati onLevel = getlsol ationLevel (obj.getd ass());
switch (isolationLevel)

case |sol ati onLevel s. RW READ UNCOWM TTED:
return readUncomn t edStr at egy;
case |sol ati onLevel s. RW READ COW TTED:
return readConmit edStrat egy;
case |sol ationLevel s. RW REPEATABLE READ:
return readRepeat abl eStrat egy;
case |sol ationLevel s. RW SERI ALI ZABLE:
return serializabl eStrategy;

def aul t :

return readUnconmni t edStr at egy;

0OJB Documentation

The four LockStrategies implement different behaviour according to the underlying isolationlevel. The semantics of the

strategies are defined by the following table:

18

Nr.

Name of Transactions
TestCase

Tx1 Tx2
SingleReadldek

ReadThenRdad
R

UpgradeReaRlock
U

ReadThenWHRte
w

SingleWritelagk

WriteThenRaad
R

ReadUncomRasedCommiRep eatableSsaddizable

True

True

True

True

True

True

Transaction-Isolationlevel

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

Page 168

OJB Documentation

6 MultipleReadick R True True True False
7 UpgradeWithExistingReadler True True False False
8 WriteWithExiBtingReader W True True False False
9 UpgradeWitiRultipleReadRers True True False False
U
10 WriteWithMuRipleReader®R True True False False
w
11 UpgradeWitHRultipleReadersOnl True True False False
W
12 WriteWithMuRipleReadersonl True True False False
w
13 ReadWithExMtingWriter R True False False False
14 MultipleWritegcks w False False False False
15 ReleaseReadock True True True True
Rel w
16 ReleaseUpgtddelock True True True True
Rel W
17 ReleaseWrité\ock True True True True
Rel w
Acquire R
ReadLock
Acquire W
WriteLock
Upgrade U
Lock

Release Rel
Lock

The table is to be read as follows. The acquisition of a single read lock on a given object (case 1) is allowed (returns True) for
al isolationlevels. To upgrade a single read lock (case 2) is also allowed for al isolationlevels. If there is already a write lock
on agiven object for tx1, it is not allowed (returns False) to obtain awrite lock from tx2 for all isolationlevels (case 14).

Page 169

0OJB Documentation

Theisolationlevels can be simply characterized as follows:

Uncommitted Reads
Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining read locks is alowed even if
another transaction iswriting to that object (case 13). (Thats why thislevel isalso called dirty reads)

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locks is alowed only if there is no write
lock on the given object (case 13).

Repeatable Reads
As commited reads, but obtaining a write lock on an object that has been locked for reading by another transaction is not
alowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object (case 6).

The proper behaviour of the LockStrategies is checked by JUnit TestCases that implement test methods for each of the 17
cases specified in the above table. (See code for classest est . 0] b. odng. LockTest XXX)

4.5.15.3. Locking in distributed environment

SR TODO FHHEH R

4.5.15.4. Implement you own lock manager

The LockManager default implementation uses a database table to make locks globally visible to al connected clients. Thisis
afoolproof solution as it does not require a separate LockManager server. But it involves alot of additional database traffic, as
each lock check, acquisition or release results in database operations.

This may not be viable in some environments. Thus OJB alows to plug in user defined LockManagers implementing the
oj b. odng. | ocki ng. LockManager interface. OJB obtains its LockManager from the factory
oj b. odng. | ocki ng. LockManager Fact ory. This Factory can be configured to generate instances of a specific
implementation by changing the following entry in the configuration file OJB Propertiesfile:

LockManager C ass=0j b. odng. | ocki ng. LockManager Def aul t | npl
to:

LockManager Cl ass=acmne. com MyOwmnLockManager | npl .

Of course I'm interested in your solutions! If you have implemented something interesting, just contact me.

4.5.16. XDoclet OJB module documentation

4.5.16.1. Acquiring and building

The XDoclet OJB module is part of OJB source. As such, the source of the module is part of the OJB source tree and can be
found in directory src/xdoclet. Likewise, binary versions of the module and the required libraries (xjavadoc, xdoclet) are to be
found in thelib folder.

In order to build the XDoclet OJB module from source, you'll need a source distribution of XDoclet version 1.2, either a
source distribution from the sourceforge download site or a CVS checkout/drop. See the XDoclet website at
http://xdoclet.sourceforge.net/install.html for details.

Page 170

error:#ext:xdoclet/install

OJB Documentation

Building with a XDoclet source distribution

Unpack the source distribution of XDoclet which is contained in a file
xdocl et - src- <ver si on>. <ar chi ve-f or mat > somewhere. If you unpacked it side-by-side of OJB, you'll get a
directory layout similar to:

\ xdocl et-1.2
\config
\core
\lib

\ db-0j b
\ bi n
\contrib

The XDoclet OJB moduleisthen build using the bui | d- xdocl et - nodul e. xm ant script:

ant -Dxdoclet.src.dir=../xdoclet-1.2 -f buil d-xdocl et-npdul e. xn

The build process will take some time, and after successful compilation the three jars xj avadoc- <ver si on>.j ar,
xdocl et - <ver si on>. j ar, and xdocl et - oj b- nodul e- <ver si on>. j ar are copied to the library directory of
OJB.

Building with a XDoclet CV S checkout
When checking out from CVS (thexdocl et - al | target), you'll get adirectory like:

\ xdocl et -al |
\ xdocl et
\config
\core

\ xdocl et gui

\ xj avadoc
\db-0j b

\ bin

\contrib

Building is XDoclet OJB module is performed by calling:

ant -Dxdoclet.src.dir=../xdoclet-all/xdoclet -f build-xdoclet-nodul e. xm
Since thisis the default structure assumed by the build script, this can be shortend to:

ant -f buil d-xdocl et - nodul e. xni

Other build options

The build script for the XDoclet OJB module uses the OJB build properties so the following line added to the
bui | d. properti es filein the OJB root directory allows to omit the - Dxdocl et . src. di r=<xdocl et src dir>
commandline option:

xdocl et . src. di r=<xdocl et src dir>

4.5.16.2. Usage

Using the XDoclet OJB module is rather easy. Put the module jar along with the xdoclet and xjavadc jars in a place where ant
will find it, and then invoke it in your build file like:

Page 171

0OJB Documentation

<target nane="repository-files">
<t askdef name="oj bdocl et"
cl assnane="xdocl et . nmodul es. oj b. g bDocl et Task"
cl asspat href ="bui | d- cl asspat h" >
<0j bdocl et destdir="./build">
<fileset dir="./src"/>
<oj brepository destinationFile="repository_user.xm"/>
<t orqueschema dat abaseNanme="test" destinati onFil e="project-schema. xm "/ >
</ oj bdocl et >
</target>
The XDoclet OJB module has two sub tasks, oj br eposi t ory and t or queschena, which generate the OJB repository
part containing the user descriptors and the torque table schema, respectively. Please note that the XDoclet OJB module (like
al xdoclet tasks) expects the directory structure of its input java source files to match their package structure. In this regard it
issimilar to thej avac ant task.
Due to a bug in XDoclet, you should not call the oj bdocl et task more than once in the same t askdef scope. So, each

0j bdocl et call should beinitsown target with aleadingt askdef .

Themain o] bdocl et task hastwo attributes:

destdir

The destination directory where generated files will be placed.

checks : none | basic | strict (default)

The amount of the checks performed. Per default, st ri ct checks are performed which means that for instance
classes specified in an attribute (e.g. col | ecti on-cl ass, rowr eader etc.) are loaded from the classpath
and checked. So in this mode it is necessary to have OJB as well as the processed classes on the classpath
(using the cl asspat hr ef attribute of the t askdef ant task above). If this is for some reason not possible,
then use basi ¢ which performs most of the checks but does not load classes from the classpath. none does
not perform any checks so use it with care and only if really necessary (in this case it would be helpful if you
would post the problem to the ojb-user mailing list).

The oj br eposi t or y subtask has the following attributes:

destinationFile

Specifies the output file. The defaultis r eposi tory_user. xn .
verbose : true | false (default)

Whether the task should output some information about its progress.

Thet or queschena subtask has these attributes:

databaseName

This attribute gives the name of the database for torque (required).

destinationFile

The output file, default is pr oj ect - schenma. xm .

dtdUrl

Allows to specify the url of the torque dtd. This is necessary e.g. for XML parsers that have problems with the
default dtd url (http://jakarta.apache.org/turbine/dtd/database.dtd), or when using a newer version of torque.
generateForeignkeys : true (default) | false

Whether foreignkey tags are generated in the torque database schema.

verbose : true | false (default)

Whether the task outputs some progress information.

The cl asspat hr ef attribute in the taskdef can be used to define the classpath for xdoclet (containing the xdoclet and ojb
module jars), e.g. via:

<pat h i d="buil d-cl asspat h">
<fileset dir="lib">
<i ncl ude nanme="**/*_jar"/>
</fil eset>
</ pat h>

Page 172

OJB Documentation

Using the generated torque schema is a bit more tricky. The easiest way is to use the bui | d-t or que. xm script which is
part of OJB. Include the lib subdirectory of the OJB distribution which also includes torque (e.g. in bui | d- cl asspat h as
shown above). You will also want to use your OJB settings (if you're using the gjb-blank project, then only
bui | d. properti es), soinclude them at the beginning of the build script if they are not already there:

<property file="build.properties"/>
Now you can create the database with ant calls similar to these:

<target name="init-db" depends="repository-files">
<l-- Torque's build file -->
<property nane="torque. buil dFi | e"
val ue="buil d-torque. xm "/ >

<l-- The nanme of the database which we're taking fromthe profile -->
<property nane="tor que. proj ect"”
val ue="${dat abaseNane}"/ >

<I-- Were the schemas (your project and, if required, ojb's internal tables) are -->
<property name="torque.schena.dir"
val ue="src/ schem"/ >

<l-- Build directory of Torque -->
<property nane="tor que. output.dir"
val ue="bui l d"/ >

<l-- Torque will put the generated sql here -->
<property nane="torque.sql.dir"
val ue="${torque. output.dir}"/>

<l-- Torque shall use the classpath (to find the jdbc driver etc.) -->
<property nane="t or que. useC asspat h"
val ue="true"/>

<l-- Wiich jdbc driver to use (again fromthe profile) -->
<property nane="t or que. dat abase. dri ver"
val ue="${j dbcRunti meDriver}"/>

<l-- The url used to build the database; note that this nmay be different
fromthe url to access the database (e.g. for MWSQ) -->
<property nane="t or que. dat abase. bui | dUr| "
val ue="${url Protocol }: ${url Subprot ocol }: ${url Dbal i as}"/ >

<I-- Now we're generating the database sql -->

<ant dir="."
antfile="${torque. buildFile}"
target="sql ">

</ ant >

<l-- Next we create the database -->

<ant dir="."
antfile="${torque. buildFile}"
target ="creat e-db" >

</ ant >

<l-- And the tables -->

<ant dir="."
antfile="${torque. buildFile}"
target="insert-sqgl">

</ ant >

</target>

As you can see, the major problem of using Torque is to correctly setup Torque's build properties.
One important thing to note here is that the latter two calls modify the database and in the process remove any existing data, so

use them with care. Similar to the above targets, you can use the additional targets dat adunp for storing the data currently in
the database in an XML file, and dat asql for inserting the data from an XML file into the database.

Page 173

error:#site:getting-started

0OJB Documentation

Also, these steps are only valid for the torque that is delivered with OJB, but probably not for newer or older versions.

4.5.16.3. Tag reference

Interfaces and Classes
ojb.class
ojb.extent-class
ojb.modify-inherited
ojb.object-cache
ojb.index
ojb.delete-procedure
ojb.insert-procedure
ojb.update-procedure
ojb.constant-argument
ojb.runtime-argument
Fields and Bean properties

ojb.field
References

ojb.reference
Collections

ojb.collection
Nested objects

ojb.nested
ojb.modify-nested

4.5.16.4. Interfaces and Classes

ojb.class

The ojb.class tag marks interfaces and classes that shall be present in the repository descriptor. This includes types that are
used as reference targets or as collection elements, but for instance not abstract base classes not used el sewhere.

Attributes:

attributes

Optionally contains attributes of the class as a comma-separated list of name-value pairs.

determine-extents : true (default) | false

When set to t r ue, then the XDoclet OJB module will automatically determine all extents (ojb-relevant sub
types) of this type. If set to f al se, then extents need to be specified via the gjb.extent-class class tag (see
below).

documentation

Optionally contains documentation on the class.

generate-table-info : true (default) | false

This attribute controls whether the type has data and should therefore get a torque table descriptor. When set to
f al se, no field, reference or collection descriptors are generated.

include-inherited : true (default) | false

Determines whether base type fields/references/collections with the appropriate tags (ojb.field, ojb.reference,
ojb.collection) will be included in the descriptor and table definition of this class. Note that all base type
fields/references/collections with an appropriate tag are included regardless of whether the base types have the
ojb.class tag or not.

table

The name of the table used for this type. Is only used when table info is generated. If not specified, then the

Page 174

OJB Documentation

short name of the type is used.

The following cl ass- descri pt or attributes are also supported in the ojb.class tag and will be written directly to the
generated class descriptor (see the repository.dtd for their meaning):

« accept-locks

« factory-class

« factory-method
 initialization-method
« isolation-level

¢ proxy
e proxy-prefetching-limit
e refresh

e row-reader
Example: (from the unit tests)

/**
* @jb.class generate-tabl e-info="fal se"
*/
public abstract class AbstractArticle inplenents InterfaceArticle, java.io.Serializable

/**

* @jb.class table="Artikel"
* proxy="dynam c"

* i ncl ude-i nherited="true"

* docunent ati on="This is inmportant docunmentation on the Article class."
* attri but es="col or =bl ue, si ze=bi g"

*/

public class Article extends AbstractArticle inplenents InterfaceArticle, java.io.Serializable

The Abstract Arti cl e class will have an class descriptor in the repository file, but no field, reference or collection
descriptors. The Arti cl e class however will not only have descriptors for its own fields/references/collections but also for
those inherited from Abst ract Arti cl e. Also, its table definition in the torque file will be called "Artikel", not "Article".
The resulting class descriptors look like:

<cl ass- descri pt or

cl ass="or g. apache. oj b. br oker. Abstract Arti cl e"
>

<extent-cl ass class-ref="org. apache. oj b. broker. Article"/>
</ cl ass-descri ptor>

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Articl e"
pr oxy="dynam c"
tabl e="Arti kel "

<docunent ati on>This is inportant docunmentation on the Article class.</docunentation>
<attribute attribute-name="col or" attribute-val ue="bl ue"/ >

<attribute attribute-nane="size" attribute-val ue="big"/>
</ cl ass-descri ptor>

ojb.extent-class

Use the oj b.extent-class to explicitly specify extents (direct persistent sub types) of the current type. The class-ref attribute
contains the fully qualified name of the class. However, these tags are only evaluated if the deter mine-extents attribute of the
ojb.classtagissettof al se.

Page 175

0OJB Documentation

Attributes:

class-ref
The fully qualified name of the sub-class (required).

Example:

/**

* @jb.class determ ne-extents="fal se"

* generate-tabl e-i nfo="fal se"

* @jb.extent-class class-ref="org.apache. oj b. broker. CdArticle"

*/

public abstract class AbstractCdArticle extends Article inplenents java.io. Serializable

which resultsin:

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Abstract CdArticl e"
>

<extent-cl ass class-ref="org. apache. oj b. broker. CdArticle"/>
</ cl ass-descri pt or>

ojb.modify-inherited

Allows to modify attributes of inherited fields/references/collections (normally, all attributes are used without modifications)
for this and all sub types. One special case is the specification of an empty value which leads to a reset of the attribute value.
As aresult the default value is used for this attribute.

Attributes: All of gjb.field, ojb.reference, and gjb.collection (with the exception of indirection-table and remote-foreignkey),
and also:

ignore : true | false (default)

Specifies that this feature will be ignored in this type (but only in the current type, not in subtypes).
name

The name of the field/reference/collection to modify (required).

Example:

/ * *

* @jb.class table="Artikel"

* @jb. modi fy-inherited name="product G oup"”
* proxy="true"

* aut o- updat e="obj ect "
*/

public class ArticleWthReferenceProxy extends Article
produces the class descriptor

<cl ass-descri ptor
cl ass="org. apache. oj b. br oker. Arti cl eWt hRef er encePr oxy"
tabl e="Arti kel "

<ref erence-descri ptor
nane="pr oduct G oup"
cl ass-ref="org. apache. oj b. br oker. Product G oup"
proxy="true"
aut o- updat e="obj ect "

<docunentation>this is the reference to an articles productgroup</docunentati on>
<attribute attribute-name="color" attribute-val ue="red"/>
<attribute attribute-nanme="size" attribute-value="tiny"/>
<f orei gnkey field-ref="product G oupld"/>
</reference-descriptor>

Page 176

OJB Documentation

</ cl ass-descri ptor>

ojb.object-cache

The 0j b.object-cache tag allows to specify the ObjectCache implementation that OJB uses for objects of this class (instead of
the one defined in the jdbc connection descriptor or in the oj b. properti es file). Classes specified with this tag have to
implement the or g. apache. oj b. br oker . cache. Cbj ect Cache interface. Note that object cache specifications are
not inherited.

Attributes:

attributes

Optionally contains attributes of the object cache as a comma-separated list of name-value pairs.
class

The fully qualified name of the object cache class (required).

documentation

Optionally contains documentation on the object cache specification.

Example:

/**

* @jb.class

* @j b. obj ect-cache cl ass="org. apache oj b. br oker . cache. Obj ect CachePerBrokerI npl "
docunent ati on="Sone i nportant docunentation"

*/

public class Somed ass inplenments Serializable

}
and the class descriptor

<cl ass- descri ptor
cl ass="SomedC ass"
t abl e=" Sonmed ass"

<obj ect -cache cl ass="org. apache. oj b. br oker. cache. Gbj ect CachePer Br oker | npl " >
<docunent ati on>Sone i nportant docunentati on</ docunent ati on>
</ obj ect - cache>

</ cl ass-descri pt or>

ojb.index

The ojb.index tag is used to define possibly unique indices for the class. An index consists of at least one field of the class
(either locally defined or inherited, anonymous or explicit). There is an default index (without a name) that is made up by all
fields that have the indexed attribute set to t r ue. All other indices have to be defined via the ojb.index tag. In contrast to the
indexed attribute, indices defined via the ojb.index tag are not inherited.

Attributes:

documentation

Optionally contains documentation on the index.

fields

The fields that make up the index separated by commas (required).

name

The name of the index (required). If there are multiple indices with the same name, then only the first one is
used (all others are ignored).

unique : true | false (default)

Page 177

0OJB Documentation

Whether the index is unique or not.
Example:

/**

* @jb.class table="SITE"
* @j b.index name="NAVE_UN QUE"

* uni que="true"
* fiel ds="nane"
*/
public class Site inplenments Serializable
/**
* @jb.field i ndexed="true"
*/
private |Integer nr;
/**
* @jb.field col unm="NAME"
* | engt h="100"
*/

private String namne;

}
the class descriptor

<cl ass-descri ptor
cl ass="org. apache. oj b. odng. shared. Si t e"

t abl e="SI TE"
>
<fi el d-descri pt or
name="nr"
col um="nr"

j dbc-t ype="1 NTEGER"
i ndexed="t rue"

>

</fiel d-descriptor>

<fi el d-descri pt or
name="name"
col um=" NAMVE"
j dbc-t ype=" VARCHAR"
| engt h="100"

>

</fiel d-descriptor>

<i ndex- descri pt or
name=" NAME_UN QUE"
uni que="true"
>
<i ndex- col unm name="NAME"/ >
</i ndex-descri pt or>
</ cl ass-descri ptor>

and the torque table schema

<t abl e nane="SI TE">

<col um nane="nr"
j avaName="nr"
t ype="1 NTEGER"

/>

<col um nane=" NANMVE"
j avaName="nane"
t ype=" VARCHAR'
si ze="100"

/>

<i ndex>
<i ndex- col um nane="nr"/>

Page 178

OJB Documentation

</ i ndex>
<uni que nanme="NAME_UNI QUE" >
<uni que- col um nane=" NAME"/ >
</ uni que>
</t abl e>

ojb.delete-procedure
Declares a database procedure that is used for deleting persistent objects.

Attributes:

arguments

A comma-separated list of the names of constant or runtime arguments specified in the same class.
attributes

Optionally contains attributes of the procedure as a comma-separated list of name-value pairs.
documentation

Optionally contains documentation on the procedure.

include-pk-only : true | false (default)

Whether all fields of the class that make up the primary key, shall be passed to the procedure. If settot r ue
then the arguments value is ignored.

name

The name of the procedure (required).

return-field-ref

Identifies a field of the class that will receive the return value of the procedure. Use only if the procedure has a
return value.

Example:
/ * %

* @jb.class

* @j b. del et e- procedure nanme="DELETE PRCC"

* argunent s="argl, ar g2"

* return-field-ref="attr2"

* docunent ati on="Son® i nportant docunentation"”
* @j b. const ant - ar gunent nane="ar gl1"

* val ue="0"

*

@ij b. runti ne-argunent nane="ar g2"
field-ref="attr1"

*

*/
public class Somed ass

[** @jb.field */
private Integer attrl
[** @jb.field */
private String attr2;

}
leads to the class descriptor

<cl ass-descri ptor
cl ass="SonmeC ass"
t abl e=" Somed ass"

<fi el d-descri pt or
nanme="attr1"
col um="attr1"
j dbc-t ype="1 NTEGER"
>
</fiel d-descriptor>
<fi el d-descri pt or
name="attr2"

Page 179

0OJB Documentation

col um="attr2"
j dbc-t ype=" VARCHAR"
| engt h="254"

>

</field-descriptor>

édélete—procedure
nanme=" DELETE PRCC'
return-field-ref="attr2"

<docunent ati on>Sone i nmportant docunentati on</ docunent ati on>
<const ant - ar gunent
val ue="0"
>
</ const ant - ar gunent >
<runti me- ar gunent
field-ref="attr2"
>

</runti nme-argunment >
</ del et e- pr ocedur e>
</ cl ass-descri ptor>

ojb.insert-procedure
| dentifies the database procedure that shall be used for inserting objects into the database.

Attributes:

arguments

Comma-separated list of names of constant or runtime arguments that are specified in the same class.
attributes

Contains optional attributes of the procedure in a comma-separated list of name-value pairs.

documentation

Contains optional documentation on the procedure.

include-all-fields : true | false (default)

Specifies whether all persistent fields of the class shall be passed to the procedure. If so, then the arguments
value is ignored.

name

The name of the procedure (required).

return-field-ref

The persistent field that receives the return value of the procedure (should only be used if the procedure returns
a value).

For an example see constant argument.

ojb.update-procedure
The database procedure that will be used for updating persistent objects in the database.

Attributes:

arguments

A comma-separated list of names of constant or runtime arguments in the same class.

attributes

The optional attributes of the procedure in a comma-separated list of name-value pairs.

documentation

Optional documentation on the procedure.

include-all-fields : true | false (default)

Whether all persistent fields of the class shall be passed to the procedure in which case the arguments value is
ignored.

Page 180

OJB Documentation

name
Name of the database procedure (required).

return-field-ref

A persistent field that will receive the return value of the procedure (only to be used if the procedure returns a
value).

For an example see runtime argument.

ojb.constant-ar gument

A constant argument for a database procedure. These arguments are referenced by the procedure tags in the arguments
attribute via their names.

Attributes:

attributes

Optionally contains attributes of the argument.

documentation

Optionally contains documentation on the argument.

value

The constant value.

name

The identifier of the argument to be used the arguments attribute of a procedure tag (required).

Example:

*

/
@j b. cl ass
@j b. i nsert-procedure name="I| NSERT_PRCC"
argunment s="ar g"
@j b. const ant - ar gunent nane="arg"
val ue="Sone val ue"
attri but es="nane=val ue"

* %k X X X F X

/
public class Sonmed ass

{

}
will result in the class descriptor

<cl ass- descri ptor
cl ass="SomeC ass"
t abl e=" Somed ass"

Eihsert—procedure
name="| NSERT_PRCC"
>
<const ant - ar gunent
val ue="Sonme val ue"
>
<attribute attribute-nanme="nanme" attribute-val ue="val ue"/>
</ const ant - ar gunent >
</insert-procedure>
</ cl ass-descri ptor>

ojb.runtime-ar gument

An argument for a database procedure that is backed by a persistent field. Similar to constant arguments the name is important
for referencing by the procedure tags in the ar guments attribute.

Page 181

0OJB Documentation

Attributes:

attributes

Contains optionally attributes of the argument.

documentation

Optionally contains documentation on the argument.

field-ref

The persistent field that delivers the value. If unspecified, then in the procedure call nul | will be used.
name

Identifier of the argument for using it in the arguments attribute of a procedure tag (required).

return

If the field receives a value (?).

Example:
/ * %
* @jb.class
* @j b. updat e- pr ocedur e nanme="UPDATE_PRCC"
* argunment s="ar g"
* @jb. runtinme-argunent name="arg"
*

field-ref="attr"
docunent ati on="Sone document ati on"

*

*/
public class Sonmed ass

[** @jb.field */
private Integer attr;

}
will result in the class descriptor

<cl ass- descri ptor
cl ass="SonmedC ass"
t abl e=" Sonmed ass"

<fi el d-descri pt or
name="attr"
colum="attr"
j dbc-type="| NTEGER'

>

</fiel d-descriptor>

%Ubdate-procedure
nanme=" UPDATE_PRCC"
>
<runti me- ar gunent
val ue="attr"
>

<docunent at i on>Sonme docunent ati on</ docunent ati on>
</ runti ne-argunent >
</ updat e- pr ocedur e>
</ cl ass-descri pt or>

4.5.16.5. Fields and Bean properties

ojb.field

Fields or accessor methods (i.e. get/is and set methods) for properties are marked with the ojb.field tag to denote a persistent
field. When a method is marked, then the corresponding bean property is used for naming purposes (e.g. "value' for a method
get Val ue()). The XDoclet OJB module ensures that a field is not present more than once, therefore it is safe to mark both

Page 182

OJB Documentation

fields and their accessors. However, in that case the three ojb.field tags are required to have the same attributes.
Dueto abug in XDoclet, you currently cannot processf i nal ortransi ent fields.

Marked fields are used for descriptor generation in the same type (if it has an gjb.class tag) and all sub types with the gjb.class
tag having the include-inherited attribute set tot r ue.

It is aso possible to use the ojb.field tag at the class level (i.e. in the JavaDoc comment of the class). In this case, the tag is
used to define an anonymous field, e.g. a"field" that has no counterpart in the class but exists in the database. For anonymous
fields, both the name and the jdbc-type attributes are required, and the access attribute is ignored (it defaults to the value
anonynous). Beside these differences, anonymous fields are handled like other fields, (e.g. they result in field-descriptor
entries in the repository descriptor, and in columns in the table schema, and they are inherited and can be modified via the
ojb.modify-inherited tag.

The XDoclet OJB module orders the fields in the repository descriptor and table schema according to the following rules:

1. Fields (anonymous and non-anonymous) from base types/nested objects and from the current file that have an id, sorted by
theid value. If fields have the sameid, then they are sorted following the rules for fields without an id.

2. Fields (anonymous and non-anonymous) from base types/nested objects and from the current file that have no id, in the
order they appear starting with the farthest base type. Per class, the anonymous fields come first, followed by the
non-anonymous fields.

Attributes:

access : readonly | readwrite (default)

Specifies the accessibility of the field. r eadonl y marks fields that are not to modified. r eadwr i t e marks fields
that may be read and written to. Anonymous fields do not have to be marked (i.e. anonynous value) as the
position of the ojb.field tag in the class JavaDoc comment suffices.

attributes

Optionally contains attributes of the field as a comma-separated list of name-value pairs.

autoincrement : none (default) | ojb | database

Defines whether this field gets its value automatically. If oj b is specified, then OJB fills the value using a
sequence manager. If the value is dat abase, then the column is also defined as aut ol ncr enent in the
torque schema (i.e. the database fills the field), and in the repository descriptor, the field is marked as
access='readonl y' (ifitisn'tan anonymous field). The dat abase value is intended to be used with the

or g. apache. oj b. broker. util. sequence. SequenceManager Nat i vel npl sequence manager. For
details, see the Sequence Manager documentation.

The default value is none which means that the field is not automatically filled.

column

The name of the database column for this field. If not given, then the name of the attribute is used.

conversion

The name of the class to be used for conversion between the java type of the field (e.g. j ava. | ang. Bool ean
orjava. util . Dat e) and the java type for the JDBC type (e.g. j ava. | ang. | nt eger orj ava. sql . Dat e).
Conversion classes must implement the

or g. apache. oj b. br oker. accessl ayer. conver si ons. Fi el dConver si on interface. If no explicit JDBC
type is defined and the java type has no defined conversion (see below), then per default the

or g. apache. oj b. br oker . accessl ayer. conver si ons. Qbj ect 2Byt eArr Fi el dConver si on
conversion class is used.

Default conversion is also used for the following java types when no jdbc type is given (default type is used
instead), and no conversion is specified:

Java type Default conversion

org. apache. oj b. broker. util.GJ D or g. apache. oj b. broker. accessl ayer. conversi ons. GUI D2St ri ngFi el dCo

documentation
Optionally contains documentation on the field.

Page 183

id

0OJB Documentation

An integer specifying the position in the repository descriptor and table schema. For the placement rules see

above.

jdbc-type : BIT | TINYINT | SMALLINT | INTEGER | BIGINT | DOUBLE | FLOAT | REAL | NUMERIC
DECIMAL | CHAR | VARCHAR | LONGVARCHAR | DATE | TIME | TIMESTAMP | BINARY | VARBINARY |

LONGVARBINARY | CLOB | BLOB | STRUCT | ARRAY | REF | BOOLEAN | DATALINK

The JDBC type for the column. The XDoclet OJB module will automatically determine a jdbc type for the field if
none is specified. This means that for anonymous fields, the jdbc-type attribute is required. The automatic

mapping performed by the XDoclet OJB module from java type to jdbc type is as follows:

Java type
bool ean BIT
byt e TI NYI NT
short SMVALLI NT
i nt | NTEGER
| ong Bl G NT
char CHAR
fl oat REAL
doubl e FLOAT
j ava. | ang. Bool ean BIT
java. |l ang. Byt e TI NYI NT
j ava. | ang. Short SMALLI NT
j ava. | ang. | nt eger | NTEGER
j ava. |l ang. Long Bl G NT
j ava. |l ang. Char act er CHAR
j ava. | ang. Fl oat REAL
j ava. | ang. Doubl e FLOAT
java.lang. String VARCHAR
java.util.Date DATE
java.sql . Date DATE
java.sql . Tinme TI VE
j ava. sql . Ti mest amp TI MESTAMP
java. sqgl . Bl ob BLOB
java.sqgl.C ob CLOB
j ava. sql . Ref REF
java. sql . Struct STRUCT
j ava. mat h. Bi gDeci nal DECI MAL
org. apache. oj b. broker. util.GUJ D VARCHAR

Page 184

OJB Documentation

For any other type (including array types) the default mapping is to LONGVARBI NARY using the
Obj ect 2Byt eAr r Fi el dConver si on conversion (see conver sion attribute above).

length
The length of the column which might be required by the jdbc type in some databases. This is the reason that
for some jdbc types, the XDoclet OJB module imposes default lengths if no length is specified:

Jdbc type Default length
CHAR 1
VARCHAR 254
name
The name of the field. This attribute is required for anonymous fields, otherwise it is ignored.
precision
scale

The precision and scale of the column if required by the jdbc type. They are usually used in combination with
the DECI MAL and NUVERI Ctypes, and then specifiy the number of digits before (precision) and after (scale)
the comma (excluding the plus/minus sign). Due to restrictions in some databases (e.g. MySQL), the XDoclet
0OJB module imposes default values for some types if none are specified:

Jdbc type Default values for precision, scale
DECI MAL 20, 0 (this corresponds to the range of | ong
where the longest number is
-9223372036854775808).
NUMERI C 20,0

For other types, if only the precision is specified, the scale defaultsto O. If only scale is specified, precision defaultsto 1.

Other attributes supported in the ojb.field tag that have the same meaning as in the repository descriptor (and partly in the
torgue table schema) are:

default-fetch
indexed
locking
nullable
primarykey
sequence-name
update-lock

Examples:

*

@j b.field col um="Ausl aufartikel"
j dbc-t ype="1 NTEGER"
conver si on="or g. apache. oj b. br oker . accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"
i d="10"

* attri but es="col or=green, si ze=snal | "

*/

prot ected bool ean isSelloutArticle;

will result in the following field descriptor:

/

* ¥ F F X

<fiel d-descriptor
nane="isSel | out Article"
col um="Ausl auf arti kel "
j dbc-t ype="1 NTEGER"
conver si on="or g. apache. oj b. br oker . accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"

Page 185

0OJB Documentation

<attribute attribute-nane="col or" attribute-val ue="green"/>
<attribute attribute-nane="size" attribute-value="small"/>
</field-descriptor>

The column descriptor looks like:

<t abl e name="Arti kel ">

<col unm name="Ausl auf arti kel "
j avaNanme="isSel | out Articl e"
t ype="1 NTEGER'

/>

</t abl e>
An anonymous field is declared like this:

*

/
@j b. cl ass tabl e="TABLE F"
i ncl ude-inherited="fal se"
@j b.field nanme="el D"
colum="E I D"
j dbc-t ype="1 NTEGER"
@j b. reference cl ass-ref="org. apache. oj b. br oker . E"
auto-retrieve="true"
aut o- updat e="obj ect "
aut o- del et e="obj ect"
f orei gnkey="el D'

* %k X ok X X X X F F

*

*/
public class F extends E inplenments Serializable

In this case an anonymous field is declared and also used as the foreignkey of an anonymous reference. The corresponding
class descriptor looks like:

<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker . F"
t abl e="TABLE F"

<fi el d-descri pt or
name="el D'
col um="E_I D'
j dbc-t ype="1 NTEGER"
access="anonynous"
>
</field-descriptor>

<r ef erence-descri pt or
name="super"
cl ass-ref ="org. apache. oj b. br oker . E"
auto-retrieve="true"
aut o- updat e="obj ect "
aut o- del et e="obj ect"
>
<forei gnkey field-ref="elD'/>
</reference-descri ptor>
</ cl ass-descri pt or >

Here the anonymous field and reference (which implicitly refersto super) are used to establish the super-subtype relationship
between E and F on the database level. For details on this see the advanced technigue section.

4.5.16.6. References

ojb.reference

Page 186

error:#site:advanced-technique

OJB Documentation

Similar to fields, references (java fields or accessor methods) are marked with the ojb.reference tag. We have a reference
when the type of the java field is itself a persistent class (has an gjb.class tag) and therefore the java field represents an
association. This means that the referenced type of an association (or the one specified by the class-ref attribute, see below) is
required to be present in the repository descriptor (it has the gjb.class tag).

Foreign keys of references are also declared in the torque table schema (see example below).

OJB currently requires that the referenced type has at least one field used to implement the reference, usually some id of an
integer type.

A reference can be stated in the JavaDoc comment of the class (anonymous reference), but in this case it silently refer to
super (see the example of gjb.field) which can be used to establish an inheritance relationship. Note that anonymous
references are not inherited (in contrast to anonymous fields and normal references).

Attributes:

attributes

Optionally contains attributes of the reference as a comma-separated list of name-value pairs.

class-ref

Allows to explicitly specify the referenced type. Normally the XDoclet OJB module searches the type of the field
and its sub types for the nearest type with the gjb.class tag. If the type is specified explicitly, then this type is
used instead. For anonymous references, the class-ref has to specified as there is no field to determine the
type from.

Note that the type is required to have the gjb.class tag.

documentation

Optionally contains documentation on the reference.

foreignkey

Contains one or more foreign key fields separated by commas (required). The foreign key fields are fields with
the gjb.field tag in the same class as the reference, which implement the association, i.e. contains the values of
the primarykeys of the referenced object.

Other supported attributes (see repository.dtd for their meaning) written directly to the repository descriptor file:

auto-delete
auto-retrieve
auto-update
otm-dependent

proxy
proxy-prefetching-limit
refresh

Example:

publ i c abstract class AbstractArticle inplenments InterfaceArticle, java.io.Serializable

protected InterfaceProduct Goup product G oup;
/**

* @jb.reference class-ref="org. apache. oj b. br oker. Product G oup"
* f or ei gnkey="pr oduct G oupl d"

* docunentation="this is the reference to an articles productgroup”
* attributes="col or=red, size=tiny"
*/
protected InterfaceProduct G oup product G oup;
/**
* @jb.field
*/

protected int product Goupld;

}
Here the java type is | nt er f acePr oduct G- oup athough the repository reference uses the sub type Pr oduct G- oup.

Page 187

0OJB Documentation

The generated reference descriptor looks like:

<fiel d-descriptor
nanme="pr oduct G oupl d"
col um="Kat egori e_Nr"
j dbc-t ype="1 NTEGER"
>
</field-descriptor>
<r ef erence-descri pt or
nanme="pr oduct G- oup"
cl ass-ref="org. apache. oj b. br oker. Product G oup"

<docunentation>this is the reference to an articles productgroup</docunentation>
<attribute attribute-name="color" attribute-val ue="red"/>
<attribute attribute-nane="size" attribute-value="tiny"/>
<forei gnkey field-ref="product G oupld"/>
</ ref erence-descri ptor>

In the torque table schemafor the Ar t i cl e class, the foreign key for the product group is explicitly declared:

<t abl e name="Arti kel ">

<col um nane="Kat egori e _Nr"
j avaName="pr oduct G oupl d"
t ype="1 NTEGER'

/>

<f orei gn- key forei gnTabl e="Kat egori en">
<reference | ocal ="Kategorie Nr" foreign="Kategorie Nr"/>
</ foreign-key>
</t abl e>

For an example of an anonymous reference, see the examples of gjb.field.
4.5.16.7. Collections

ojb.collection

Persistent collections which implement 1:n or m:n associations are denoted by the ojb.collection tag. If the collection is an
array, then the XDoclet OJB module can determine the element type automatically (analogous to references). Otherwise the
type must be specified using the element-class-r ef attribute. m:n associations are also supported (collections on both sides) via
the indirection-table, foreignkey and remote-foreignkey attributes.

Attributes:

attributes

Optionally contains attributes of the collection as a comma-separated list of name-value pairs.
collection-class

Specifies the class that implements the collection. This attribute is usually only required if the actual type of the
collection object shall be different from the variable type.

Collection classes that implement j ava. uti | . Col | ecti on can be handled by OJB as-is so specifying them
is not necessary. For the types that do not, the XDoclet OJB module checks whether the collection field type
implements the or g. apache. oj b. br oker. Manageabl eCol | ect i on interface, and if so, generates the
collection-class attribute automatically.

documentation

Optionally contains documentation on the collection.

element-class-ref

Allows to explicitly specify the type of the collection elements. Note that the type is required to have the

ojb.class tag.
foreignkey

Page 188

OJB Documentation

Contains one or more foreign key field or columns separated by commas (required).

If the collection implements an 1:n association, then this attribute specifies the fields in the element type that
implement the association on the element side, i.e. they refer to the primary keys of the class containing this
collection. Note that these fields are required to have the gjb.field tag.

When the collection is one part of an m:n association (e.g. with an indirection table), this attribute specifies the
columns in the indirection table that point to the type owning this collection. This attribute is required of both
collections. If the other type has no explicit collection, use the remote-foreignkey attribute to specify the foreign
keys for the other type.

indirection-table

Gives the name of the indirection table used for m:n associations. The XDoclet OJB module will create an
appropriate torque table schema. The specified foreign keys are taken from the foreignkey attribute in this
class and the corresponding collection in the element class, or if the element class has no collection, from the
remote-foreignkey attribute of this collection. The XDoclet OJB module associates the foreignkeys (in the
order they are stated in the foreignkey/ remote-foreignkey attributes) to the ordered primarykey fields (for the
ordering rules see the gjb.field tag), and use ther jdbc type (and length setting if necessary) of these primarey
keys for the columns.

orderby

Contains the fields used for sorting the collection and, optionally, the sorting order (either ASC or DESC for
ascending or descending, respectively) as a comma-separated list of name-value pairs. For instance,

fiel d1=DESC, fi el d2, fi el d3=ASC specifies three fields after which to sort, the first one in descending
order and the other two in ascending order (which is the default and can be omitted).

guery-customizer

Specifies a query customizer for the collection. The type is required to implement

or g. apache. oj b. br oker . accessl ayer. Quer yCust om zer.

guery-customizer-attributes

Specifies attributes for the query customizer. This attribute is ignored if no query customizer is specified for this
collection.

remote-foreignkey

Contains one or more foreign key columns (separated by commas) in the indirection table pointing to the
elements. Note that this field should only be used if the other type does not have a collection itself which the
XDoclet OJB module can use to retrieve the foreign keys. This attribute is ignored if used with 1:n collections
(no indirection table specified).

The same attributes as for references are written directly to the repository descriptor file (see repository.dtd) :

auto-delete
auto-retrieve
auto-update
otm-dependent

proxy
proxy-prefetching-limit
refresh

Examples:

*

/
@j b. col l ection el enent-cl ass-ref="org. apache. oj b. broker. Article"

f or ei gnkey="product G oupl d"

auto-retrieve="true"

aut o- updat e="11i nk"

aut o- del et e="obj ect"

or der by="pr oduct G oupl d=DESC"

guery-cust om zer ="or g. apache. oj b. br oker. accessl ayer. Quer yCust oni zer Def aul t | npl "

qguery-custom zer-attri butes="attrl=val uel”

* Ok X ok X X X X F F

~

Page 189

0OJB Documentation

private ArticleCollection allArticleslnGoup;
The corresponding collection descriptor is:

<col | ecti on-descri ptor
nane="al | Articl esl nG oup"
el ement - cl ass-ref ="org. apache. oj b. broker. Articl e"
col I ection-cl ass="org. apache. oj b. broker. Articl eCol | ecti on"
auto-retrieve="true"
aut o- updat e="11i nk"
aut o- del et e="obj ect"

<or der by name="product G oupl d" sort="DESC"'/ >
<i nverse-forei gnkey field-ref="product G oupld"/>
<query-custom zer cl ass="org. apache. oj b. broker. accessl ayer. QueryCust om zer Def aul t | npl ">
<attribute attribute-name="attr1" attri bute-val ue="val uel"/>
</ query-custom zer >
</ col | ecti on-descri ptor>

An m:n collection is defined using the indir ection-table attribute:

/**
* @jb.class generate-tabl e-info="fal se"
*/
public abstract class BaseContentlnpl inplenents Content
/**
* @jb.collection el ement-cl ass-ref="org. apache. oj b. broker. Qualifier"

* auto-retrieve="true"
* aut o- updat e="11i nk"
* aut o- del et e="none"
* i ndirection-tabl e=" CONTENT_QUALI FI ER"
* f or ei gnkey="CONTENT_| D"
* renot e- f or ei gnkey="QUALI FI ER_| D"
*/
private List qualifiers;
}
/**

* @j b.class tabl e=" NEWS"
*/

public class News extends BaseContent| npl

{
}

/**

* @jb.class generate-tabl e-info="fal se"
*/
public interface Qualifier extends Serializable

}

The BaseCont ent | npl has a m:n association to the Qual i fi er interface. for the BaseCont ent | npl class, this
association is implemented via the CONTENT I D column (specified by the foreignkey) in the indirection table
CONTENT_QUALI FI ER. Usually, both ends of an m:n association have a collection implementing the association, and for
both ends the foreignkey specifies the indirection table column pointing to the class at this end. The Qual i fi er interface
however does not contain a collection which could be used to determine the indirection table column that implements the
association from its side. So, this column is also specified in the BaseCont ent | npl class using the remote-foreignkey
attribute. The class descriptors are:

<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker . BaseCont ent | npl "
>

Page 190

OJB Documentation

<extent-cl ass class-ref="org.apache. oj b. br oker. News"/ >
</ cl ass-descri pt or >

<cl ass-descri ptor
cl ass="or g. apache. oj b. br oker. News"
t abl e=" NEWS"

<col | ecti on-descri ptor
name="qual i fi ers"
el ement - cl ass-ref="org. apache. oj b. broker. Qualifier"
i ndirection-tabl e=" CONTENT_QUALI FI ER"
auto-retrieve="true"
aut o- updat e="11i nk"
aut o- del et e="none"

<f k- poi nting-to-this-class colum="CONTENT | D'/ >
<f k- poi nti ng-to-el ement - cl ass col um="QUALI FIER I D'/ >
</ col | ecti on-descri ptor>
</ cl ass-descri pt or>

<cl ass-descri ptor
cl ass="org. apache. oj b. broker. Qual i fier"
>

<extent-cl ass class-ref="org. apache. oj b. broker. BaseQual i fierlnmpl"/>
</ cl ass-descri pt or>
As can be seen, the collection definition is inherited in the News class and the two indirection table columns pointing to the
ends of the m:n associaton are correctly specified.

4.5.16.8. Nested aobjects

ojb.nested

The features of a class can be included in another class by declaring afield of that type and using this tag. The XDoclet OJB
module will then add every tagged feature (i.e. fields/bean properties with gjb.field, ojb.reference or gjb.collection tag, or even
with ojb.nested) from the type of the field to the current class descriptor. It is not required that the field's type has the gjb.class
tag, though.

All attributes of the features are copied (even primarykey) and modified if necessary (e.g. the foreignkey of a reference is
adjusted accordingly). For changing an attribute use the ojb.modify-nested tag.

For an example of nesting, see the example of ojb.modify-nested.

ojb.modify-nested
Similar to ojb.modify-inherited, this tag allows to modify attributes of a nested feature.

Attributes: All of gjb.field, ojb.reference, and gjb.collection (with the exception of indirection-table and remote-for eignkey),
and also:

ignore : true | false (default)

Specifies that this feature will not be nested.

name

The name of the field/reference/collection to modify (required). Use here the name of the feature in the nested

type.
Example:

The two classes:

Page 191

public class NestedObject inplenments java.io.Serializable

[** @jb.field primrykey="true" */
protected int id;

[** @jb.field */
prot ect ed bool ean hasVal ue;

[** @jb.field */
protected int containerld;

/**

* @jb.reference foreignkey="containerld"
*/

prot ect ed Cont ai ner Cbj ect cont ai ner

}

[** @jb.class */
public class Contai nerQbject inplenents java.io. Serializable

/**

* @jb.field primrykey="true"

* aut oi ncr enent =" oj b"
* id="1"

*/

protected int id;

[** @jb.field id="2" */
protected String namne;

/**
* @j b. nested

* @j b. nodi fy- nest ed name="hasVal ue"
* j dbc-t ype="1 NTEGER"

*

0OJB Documentation

conver si on="or g. apache. oj b. br oker. accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"
* 3 n

* @jb. nodi fy-nested nanme="id"

* pri mar ykey=""
*/

prot ect ed Nest edObj ect nestedj;

}
result in the one class descriptor

<cl ass-descri ptor
cl ass="Cont ai ner Cbj ect "
t abl e=" Cont ai ner Obj ect ™

<fi el d-descri pt or
name="i d"
col um="i d"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
name="name"
col um="nane"
j dbc-t ype=" VARCHAR'
| engt h="24"
/>
<fi el d-descri pt or
nane="nest edObj : : hasVal ue"
col um="nest edCbj _hasVal ue"

Page 192

OJB Documentation

j dbc-t ype="1 NTEGER"

, conver si on="or g. apache. oj b. br oker . accessl ayer. conver si ons. Bool ean2l nt Fi el dConver si on"

>

<fi el d-descri pt or
nane="nest edCbj : :i d"
col utm="nest edCbj _i d"
j dbc-type="1 NTEGER'

/>

<fi el d-descri pt or
nane="nest edCbj : : cont ai ner| d"
col um="nest edCbj _cont ai ner|d"
j dbc-t ype="1 NTEGER"

<ref erence-descri ptor
nane="nest edbj : : cont ai ner"

cl ass-ref ="Cont ai ner Obj ect™
>

<f orei gnkey fiel d-ref="nestedCbj::containerld"/>
</reference-descri ptor>

</c|ééé-descriptor>
and the table descriptor

<t abl e nanme="Cont ai ner bj ect " >
<col um nane="id"
j avaNanme="i d"
t ype="1 NTEGER"
pri maryKey="true"
requi red="true"

<col um nane="nane"
j avaNanme="nane"
t ype=" VARCHAR'
si ze="24"

<col um nanme="nest edObj hasVal ue"
t ype="1 NTEGER"

/>

<col um nane="nest edCbj i d"
t ype="1 NTEGER"

/>

<col um name="nest edObj _cont ai ner|d"
t ype="1 NTEGER'
/>

<f orei gn- key forei gnTabl e=\"Cont ai ner Cbj ect\">\n"+
<reference | ocal =\"nestedObj containerld\" foreign=\"id\"/>\n"+
</foreign-key>\n"+
</t abl e>
Note how one ojb.modify-nested tag changes the type of the nested hasVal ue field, add aconver si on and specifies the
position for it. The other modification tag removesthe pr i mar ykey status of the nested i d field.

4.5.17. OJB Performance

4.5.17.1. Introduction

" Thereisno such thing as a free lunch.”
(North American proverb)

Object/relational mapping tools hide the details of relational databases from the application developer. The developer can
concentrate on implementing business logic and is liberated from caring about RDBM S related coding with JIDBC and SQL.

O/R mapping tools alow to separate business logic from RDBMS access by forming an additional software layer between

Page 193

0OJB Documentation

business logic and RDBMS. Introducing new software layers always eats up additional computing resources.
In short: the price for using O/R tools is performance.

Software architects have to take in account this tradeoff between programming comfort and performance to decide if it is
appropiate to use an O/R tool for a specific software system.

This document describes the OJB Performance Test Suite which was created to lighten the decision between native JDBC,
OJB (the different OJB API's) and other O/R mapper.

4.5.17.2. The Performance Test Suite

The OJB Performance Test Suite allows to compare OJB against native JDBC programming against your RDBMS of choice
and run OJB in a virtual multithreaded environment. Further on it is possible to compare OJB against any O/R mapping tool
using a simple framework.

All tests are integrated in the OJB build script, you only need to perform the according ant target:
ant target

The following 'targets exist:

« perf-test multithreaded performance/stress test of PB/OTM/ODMG api against native JDBC
« performance older single threaded test, OJB APl implementations (PB, ODMG) against native JDBC
« [perfornmance3 multithreaded test against two different databases - devel opers test]

By changing the JdbcConnectionDescriptor in the configuration files you can point to your specific RDBMS. Please refer to
this document for details.

4.5.17.3. Interpreting test results

Interpreting the result of these benchmarks carefully will help to decide whether using OJB is viable for specific application
scenarios or if native JDBC programming should be used for performance reasons.

Take care of compareable configuration properties when run performance tests with different O/R tools.

If the decision made to use an O/R mapping tool the comparison with other tools helps to find the best one for the thought
scenario. But performance shouldn't be the only reason to take a specific O/R tool. There are many other pointsto consider:

- Usability of the supported API's

- Flexibility of the framework

- Scalahility of the framework

- Community support

- The different licences of Open Source projects
- efcetera ...

4.5.17.4. How OJB compar esto native JDBC programming?

OJB is shipped with tests compares native JDBC with ODMG and PB-API implementation. This part of the test suite is
integrated into the OJB build mechanism.
A single client test you can invoke it by typing ant per f or mance or ant perf or mance.

If running OJB out of the box the tests will be performed against the Hypersonic SQL shipped with OJB. A typical output
looks like follows:

per f or mance:
[ojb] .[performance] |INFQO Test for PB-api
[o]j b] [performance] | NFQ
[ojb] [performance] INFG inserting 2500 Objects: 3257 msec

Page 194

error:#site:platform

OJB Documentation

ojb
oj b
o] b
o] b
o] b
oj b
ojb
ojb
ojb
ojb
ojb
ojb
ojb
oj b
o] b
o] b
o] b
oj b
ojb

per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance

[ojb] Tine: 18,964

[0jb] OK (1 test)

j dbc] . [performance]
j dbc per f or mance
j dbc per f or mance
] dbc per f or mance
] dbc per f or mance
] dbc per f or mance
| dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
] dbc per f or mance
] dbc per f or mance
] dbc per f or mance
| dbc per f or mance
j dbc per f or mance
j dbc per f or mance
j dbc per f or mance
[jdbc] Tinme: 18,363

[jdbc] OK (1 test)

odny
odny
odng
odny
odny
odny
odny
odny
odny
odnyg
odny
odny
odny
odny
odng
odny
odny
odny

. [per f or mance]

per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance
per f or mance

I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO

| NFO. Test for

I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO

updati ng
qgueryi ng
qgueryi ng
fetching
del eti ng

i nserting 2500 Objects:
updati ng 2500 (bjects:
qgueryi ng 2500 Objects:
qgueryi ng 2500 Objects:
fetching 2500 Objects:
del eti ng 2500 Cbj ects:

i nserting 2500 Objects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 oj ects:
2500 nj ects:

updati ng
qgueryi ng
qgueryi ng
fetching
del eti ng

i nserting 2500 Objects:
2500 nj ects:
2500 nj ects:
2500 oj ects:
2500 nj ects:
2500 nj ects:

updati ng
qgueryi ng
gueryi ng
fetchi ng
del eti ng

inserting 2500 Cbjects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:

updati ng
queryi ng
queryi ng
fetching
del eti ng

i nserting 2500 Objects:
2500 vj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:

updati ng
qgueryi ng
qgueryi ng
fetchi ng
del eting

2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:

nati ve JDBC

I NFO Test for ODMG api

I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO
I NFO

i nserting 2500 Qbjects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:

updati ng
gueryi ng
qgueryi ng
f et chi ng
del eting

inserting 2500 Cbjects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 nj ects:
2500 oj ects:

updati ng
qgueryi ng
qgueryi ng
fetching
del eti ng

i nserting 2500 Objects:
updati ng 2500 (bjects:

1396 msec
1322 nmsec
26 nsec

495 nsec
592 msec

869 msec
1567 nsec
734 msec
20 nsec
288 nsec
447 msec

979 nsec
1240 nsec
741 msec
18 msec
289 msec
446 nsec

651 nsec
775 msec
616 msec
384 msec
49 nsec
213 msec

508 nsec
686 nsec
390 nsec
360 nsec
46 nsec
204 nsec

538 msec
775 msec
384 msec
360 msec
48 nsec
204 nsec

12151 nsec
2937 msec
4691 nsec
2239 msec
1633 msec
1815 msec

2483 nsec
2868 nsec
3272 nsec
2223 nsec
1038 nsec
1717 nsec

2666 msec
2841 msec

Page 195

0OJB Documentation

[odng] [performance] |INFOQO querying 2500 Objects: 2092 nsec
[odng] [performance] |INFOQO querying 2500 Objects: 2161 nsec
[odng] [performance] INFO fetching 2500 Objects: 1036 nsec
[odng] [performance] INFO del eting 2500 Objects: 1741 nsec

[odmg] Tinme: 55,186
Some notes on these test results;

* You see aconsistently better performance in the second and third run. thisis caused by warming up effects of VM and
OJB.

« PB and native JDBC need about the same time for the three runs although JDBC performance is better for most operations.
thisis caused by the second run of the querying operations. In the second run OJB can load al objects from the cache, thus
the time is much shorter. Hence the interesting result: if you have an application that has alot of lookups, OJB can be
faster than a native JDBC application!

« ODMG ismuch slower than PB or IDBC. Thisis due to the complex object level transaction management it is doing.

e You can seethat for HSQLDB operations like insert and update are much faster with JDBC than with PB (60% and more).
Thisratio is so high, because HSQL DB is much faster than ordinary database servers (asit'sinmemory). If you work
against Oracle or DB2 the percentual OJB overhead is going down alot (10 - 15 %), as the database latency is much longer
than the OJB overhead.

It's easy to change target database. Please refer to this document for details.
Also it's possible to change the number of test objects by editing the ant-target in build.xml.

Another test compares PB-api,ODMG-api and native JDBC you can find next section.

4.5.17.5. OJB performance in multi-threaded environments

This test was created to check the performance and stability of the supported API's (PB-api, ODMG-api, JDO-api) in a
multithreaded environment. Also this test compares the api's and native JDBC.
Running this test out of the box (a virgin OJB version against hsgl) shouldn't cause any problems. To run the JDO-api test too,
see JDO tutorial and comment in the test in target per f - t est inbui | d. xm

A test for IDO API is missed.

Per default OJB use hsgl as database, by changing the JdbcConnectionDescriptor in the repository.xml file you can point to
your specific RDBMS. Please refer to this document for details.

To run the multithreaded performance test call

ant perf-test
A typical output of this test looks like (OJB against hsgl server, 2-tier, 100 MBit network):

oj b QIB PERFORVMANCE TEST SUMMARY

oj b] 10 concurrent threads, handl e 2000 objects per thread
ojb - performance node

oj b APl Period Total Insert Fetch Update Delete
ojg [sec] [sec] [nsec] [nsec] [nmsec] [nsec]
O] B] mmmm
oj b JDBC 7.786 7.374 3951 76 2435 911
oj b PB 9.807 8. 333 5096 121 2192 922
oj b ODMG 19.562 18.205 8432 1488 5064 3219
oj b OTM 24.953 21.272 10688 223 4326 6033

[0j b] PerfTest takes 191 [sec]

Page 196

error:#site:jdo-tutorial
error:#site:platform

OJB Documentation

To change the test properties go to target per f -t est inthebui | d. xm file and change the program parameter.

The test needs five parameter:

- A comma separated list of the test implementation classes (no blanks!)

- The number of test loops

- The number of concurrent threads

- The number of managed objects per thread

- The desired test mode. f al se means run in performance mode, t r ue means run in stress mode (useful only for developer
to check stability).

<t arget name="perf-test" depends="prepare-testdb”
description="Si npl e performance benchmark and stress test for PB- and ODMG api ">
<java fork="yes" cl assname="org. apache. oj b. performance. Perf Mai n"
dir="${build.test}/oj b" tasknane="ojb" failonerror="true" >
<cl asspath refid="runti ne-cl asspath"/>

<l-- conma separated list of the PerfTest inplenentations -->
<arg val ue=

"org. apache. oj b. br oker . QJBPer f Test $JdbcPer f Test , \

or g. apache. oj b. br oker. QIBPer f Test $PBPer f Test , \

or g. apache. o] b. br oker. QIBPer f Test $ODMGPer f Test , \

or g. apache. o] b. br oker. QIBPer f Test $OTMPer f Test "

/>

<I-- test |oops, default was 3 -->

<arg val ue="3"/>

<I-- perforned threads, default was 10 -->

<arg val ue="10"/>

<I'-- nunber of managed objects per thread, default was 2000 -->

<arg val ue="2000"/>

<l-- if 'false' we use performance node, 'true' we do run in stress node -->

<arg val ue="fal se"/ >

<jvmarg val ue="- Xns128ni'/ >
<jvmar g val ue="- Xnx256ni'/ >

</java>

<l-- do sonme cl eanup -->

<ant target="copy-testdb"/>
</target>

4.5.17.6. How OJB comparesto other O/R mapping tools?

Many user ask this question and there is more than one answer. But OJB was shipped with a simple performance "framework"
(independend from OJB) which alows a rudimentarily comparision of OJB with other (java-based) O/R mapping tools.
All involved classes can be found in dirctory [db-ojb]/src/test in package or g. apache. oj b. per f or mance.

Call ant perf-test-jar tobuild thejar file contain all necessary classes to set up atest with an arbitrary O/R mapper.
After the build, the db- oj b- XXX- per f or mance. j ar canbefoundin[db- oj b] / di st directory.

Stepsto set up thetest for other O/R frameworks:

e Implement aclass derived from Per f Test

e Implement aclass derived from Per f Handl| e

e [If persistent objects used within your mapping tool must be derived from a specific base class or must be implement a
specific interface write your own persistent object class by implementing Per f Art i cl e interface and override method
#newPer f Arti cl e() inyour Per f Handl e implementation class.
Otherwise adefault implementation of Per f Art i cl e was used]

That'sit!

You can find a example implementation called or g. apache. oj b. br oker . QJBPer f Test in the test-sources directory
under [db- 0] b] / src/test (when using source-distribution). This implementation class is used to compare performance

Page 197

error:#ext:api/perf-test
error:#ext:api/perf-handle
error:#ext:api/perf-article
error:#ext:api/perf-article

0OJB Documentation

of the PB-API, ODMG-API, OTM-api and native JDBC.

See more section multi-threaded performance. QJBPer f Test is made up of inner classes. At each case two inner classes
represent atest for one api (as described above).

Run thetest

Y ou have two possibilities to run the test:

a) Integration in the OJB build script

Add the full qualified class name of your PerfTest implementation class to the per f - t est target of the OJB bui | d. xm
file, add all necessary jar filesto[db- oj b] /| i b. The working directory of thetestis[db- oj b] /target/test/ oj b.
b) Run PerfMain

It's possible to run the test using or g. apache. oj b. per f or mance. Per f Mai n.

j ava -cl asspath CLASSPATH or g. apache. oj b. perfor mance. Per f Mai n

[conma separated |ist of PerfTest inplenentation classes, no bl anks!]
[nunber of test | oops]

[nunmber of threads]

[nunber of insert/fetch/delete | oops per thread]

[boolean - run in stress node if set true,

run in performance node if set false, default false]

For example:

j ava -cl asspath CLASSPATH ny. A PerfTest, ny.B PerfTest 3 10 2000 fal se

Thiswill use A Per f Test and B_Per f Test and perform three loops each loop run 10 threads and each thread operate on
2000 objects. The test run in performance mode.

Take care of compareable configuration properties when run performance tests with different O/R tools (caching, locking,
sequence key generation, connection pooling, ...).

Please, don't start flame war s by posting performance results to mailing lists made with this simple test. This test was created for OJB QA and to give a clue how good or bad
QOJB performs, NOT to start discussion like XY is 12% faster then XZ!!.

4.5.17.7. What arethe best settings for maximal performance?

We don't know, that depends from the environment OJB runs (hardware, database, driver, application server, ...). But there are
some settings which affect the performance:

The API you use, e.g. PB-api is much faster then the ODM G-api. See which API for more information.
ConnectionFactory implementation / Connection pooling. See connection pooling for more information.
PersistentField class implementation.See OJB.properties section 'PersistentFieldClass for more information.
Used sequence manager implementation. See sequence manager for more information.

Use of batch mode (when supported by the DB). See repository.dtd element 'jdbc-connection-descriptor’ for more
information.

« PersistenceBroker pool size. See OJB.properties for more information.

To test the different settings use the tests of the performance test suite.

4.6. Howto's
4.6.1. Howto's Summary

4.6.1.1. Howto's

Here can be found a summary of all Howto documentation submitted by OJB Users and Devel opers.

Page 198

error:#site:faq/api-differences
error:#site:faq
error:#ext:ojb.properties
error:#site:sequence-manager
error:#ext:repository.dtd
error:#ext:ojb.properties

OJB Documentation

How to build large metadata mappings
Using anonymous keys for cleaner objects
Using native database sequences

Using Oracle LOB's

Using OJB in aclustered environment
Working with stored procedures

4.6.2. How to build O/R mapping meta data files

4.6.2.1. How to build O/R mapping files
Writing the repository.xml file for only afew classes can easily be done manually with the text or xml editor of your choice.

But keeping the repository in sync with the java codebase and the database gets more difficult if several hundred classes and
large developer teams are invol ved.

This page contains tips how to integrate mapping tools and code-generators into your build process.

4.6.2.2. classification of O/R related transformations
Let's start with a classification of the source transformation problems that devel opers have to face in an O/R environment.

Typica development environments contain some or all of the following artefacts:

« A UML model containing at least class diagrams of the persistent classes. All modern UML tools can export to the XMl
standard format.

Other tools, such as Torque, also use a model based approach but use different model file formats (typicaly XML based)
Java source code for the persistent classes. The Java source code can possibly be enhanced with xdoclet tags.

The OJB repository.xml file. Thisfile contains all the class-descriptors for the persistent classes.

The database. This could be an online DB or a DDL script representing the database tables. The database contains all tables
used to store instances of the persistent classes.

The technigue you will use depends alot on the problem you have to solve, on the methodology and the tool chain you have in
use, which of transformations between those artefacts fit to your devel opment process.

1. Forward engineering from XMI: A UML model in XMI format with class diagrams of your persistent classes exists and
is used as the master source (model driven approach). Java code, repository.xml and DDL for the database tables have to
be generated from this model.

2. Forward engineering from Torque: A model of the persistent entity classes existsin form of a Torque. XML file. Java
code, repository.xml and DDL for the database tables have to be generated from this model.

3. Forward engineering from the repository.xml: The OJB repository.xml fileis used amodel format. Java code and DDL
for the database tables have to be generated from this model.

4. Xdoclet transformation from Java code: Java code for the persistent classes exists and contains special comment tags in
the Xdoclet ojb-module format. Repository.xml and DDL for the database tables have to be generated from the java files
via Xdoclet transformation.

5. Reverseengineering from database: Thereis adatabase with existing tables or aDDL script. Java code and
repository.xml have to be generated from the database.

These transformations are depicted in the following graphics. The numbers close to the arrows correspond to the numbers in
the above enumeration. All related transformations have the same colour.
mapping tools image

In the following sections we will have a closer look at each of these transformations an discuss tools that provide support each
approach.

4.6.2.3. Forward engineering from XM

Page 199

error:#site:howto/large-metadata
error:#site:howto/anonymous-keys
error:#site:howto/db-sequences
error:#site:howto/use-lobs
error:#site:howto/clustering
error:#site:howto/stored-procedures

0OJB Documentation

This approach is recommended if you start from scratch with a new project and have to deal with alarge number of persistent
classes. This approach works best when there are no restrictions regarding the database, like integration of legacy tables.

Forward engineering from XMI fits perfectly into a model driven architecture (MDA) software development process.

Tool support

AXGen

AXgen isacode generator using XMl asinput and Velocity templates for transformation.

The power of AXgenisinitssmplicity. You don't have to understand complicated structure of your XMI file to write an
XSLT stylsheet for transformation. AXgen uses nsuml to deal with the xmi file, which gives access to the Metamodel in an
objectoriented way.

Further AXgen makes use of Jakartas Velocity. Velocity is avery sophisticated Java-based template engine. This means
that inside your templates you can call Java methods. Feel free to write templates that generate anything you want.

Our motive for AXgen isto generate Java Classes for usein a O/R Mapping tool that allows transparent persistence for
Java Objects against relational databases. Therefore AXgen comes with a bundle of ready to use templates for generating
ObJectRelational Bridge (OJB) specific stuff like:

» Entity Classes

* XML Repository

» SQL script to build the DB scheme

AndroM DA

AndroMDA is a code generator framework - it takes a Unified Modeling Language (UML) model from a CASE-tool in
XMI format and generates custom components. It comes with a set of sample templates that generate classes attributed
with XDoclet tags. One build step later, the XDoclet tool generates full-blown components that can readily be deployed in
the JBoss application server (and the other serversthat XDoclet can feed).

Page 200

error:#ext:axgen
error:#ext:andromda

OJB Documentation

e —

!

&

<Xmiz=
</xmi>

UML Model

CASE tool
(Poseidon, Rose, Together)

AndroMDA

-@-
]

Templates
andromeda image

Software components

S &

O
O

o

> &

AVA

O

Currently AndroM DA provides no special support for OJB. But by tagging classes with tags of the XDoclet OJB module it
ispossibleto useit asafull forward engineering engine.
« Searching the Sourceforge project list for "XMI" returns along list of projects dealing with code generation. It may be a
good ideato check if you find atool that matches your requirements.

4.6.2.4. Forward engineering from Torque

Torque

Torque is a persistence layer. Torgque includes a generator to generate all the database resources required by your application
and includes a runtime environment to run the generated classes.

Torque was developed as part of the Turbine Framework. It is now decoupled and can be used by itself. Starting with version
2.2 Turbine uses the decoupled Torque.

Torque uses a single XML database schema to generate the SQL for your target database and Torque's Peer-based object
relation model representing your XML database schema.

Y ou can use devaki-nextobjects to create the model for your application.
OJB uses Torgue's generator engine to setup the testbed database and feed it with initial data.

Page 201

error:#ext:torque
error:#ext:devaki

0OJB Documentation

Besides the SQL generation facilities Torque also provides specia support for OJB related transformations. It provides the
following two ant targets:
e 0jb-model
generates a simple object model for ojb
e 0jb-repository
generates the repository for ojb
A completelist of all availableTorque targets can be found at the Torque Generator site.

4.6.2.5. Forward engineering from repository.xml

There is currently no tool available that directly supports this model. It is not difficult to implement an XSLT stylesheet that
transforms the OJB repository.xml directly into DDL Statements.

An even ssimpler approach could be to transform the repository.xml file into a Torque xml file. DDL can then be generated by
the Torgue engine.
If you write such an XSLT file please tell us about it!

4.6.2.6. XDoclet transfor mation from Java code

XDaoclet
XDoclet is a code generation engine. It enables Attribute-Oriented Programming for java. In short, this means that you can add
more significance to your code by adding meta data (attributes) to your java sources. Thisisdone in special JavaDoc tags.

OJB was shipped with its own xdoclet-module.

XDoclet will parse your source files and generate many artifacts such as XML descriptors and/or source code from it. These
files are generated from templates that use the information provided in the source code and its JavaDoc tags.

XDoclet lets you apply Continuous Integration in component-oriented development. Developers should concentrate their
editing work on only one Java source file per component.

XDoclet originated as atool for creating EJBs, it has evolved into a general-purpose code generation engine. XDoclet consists
of acore and a constantly growing number of modules.

4.6.2.7. Reverse engineering from database

e Druid
Druid isatool that allows users to create databases in a graphical way. The user can add or import tables, fields, foldersto
group tables and can modify most of the database options that follow the SQL-92 standard. In addition to sgl options, the
user can document each table and each field with HTML information. It is distributed with modules for generating Java
classes, OJB metadata, and JDO metadata.

« |mpart Eclipse Plugin for OJB
The Impart Eclipse plugin is based on the OJB ReverseDB Tool and provides the same functionality (and also some
additional goodies). It ships as a plugin to the Eclipse IDE. It provides a very convenient GUI that integrates smoothly into
the Eclipse platform.

« RDBS2J
RDBS2Jis a GUI based mapping tool from relational database scheme to persistent java classes which use JDO as
persi stence mechanism. The mapping can be modified by the GUI.
The current version is designed to create code for OJB.
The ODMG and the JDO interface are supported. RDBS2J creates the *.jdo files and the repository _user.xml, which are
needed by OJB.

« TheOJB ReverseDB tool
OJB ships with a simple reverse engineering tool that allows to connect to aRDBMS via JDBC and to take the tables from

Page 202

error:#ext:torque/gen
error:#ext:xdoclet
error:#site:xdoclet-module
error:#ext:druide
error:#ext:impart
error:#ext:rdbs2j

OJB Documentation

the database catalog as input.
Thistool provides anice GUI to generate Java classes and the matching repository.xmil file.
Y ou can invoke the ReverseDB tool with the ANT target r ever se- db.

The ReverseDB tool is not up to date - any help is welcome.

4.6.3. HOWTO - Use Anonymous K eys

4.6.3.1. Why Do We Need Anonymous K eys?

The core difference between referential integrity in Java and in an RDBMS lies in where the specific referential information is
maintained. Java, and most modern OO languages, maintain referential integrity information in the runtime environment.
Actual object relationships are maintained by the virtual machine so that the symbolic variable used in the application is
dereferenced it will in fact provide access to the object instance which it is expected to provide access to. There is no need for
amanual lookup or search across the heap for the correct object instance. Entity reference integrity is maintained and handled
for the programmer by the environment.

Relational databases, on the other, purposefully place the referential integrity and lookups into the problem domain - that is the
problem they are designed to solve. An RDBMS presumes you can design something more efficient for your specific
circumstances than the JVM does (you trust its ability to do object lookups in the heap is sufficiently efficient). Asan RDBMS
has a much larger heap equivalent it is designed to not operate under that assumption (mostly). So, in an RDBMS the concept
of specific foreign keys exists to maintain the referential integrity.

In crossing the object to relationa entity barrier there is a mismatch between the referential integrity implementations. Java
programmers do not want to have to maintain both object referential integrity and key referential integrity analogous to

{

Foo child = new SomeQt her FooType() ;
Foo parent = new SoneFooType();

chi | d. set Par ent (parent);

chil d. set Parent | d(parent.getld());

}
This is double the work required - you set up the object relationship, then set up the key relationship. OJB knows about the
relationship of the objects, thusit is only needed to do

Foo child = new Foo();
Foo parent = new Foo();
chi | d. set Par ent (parent);

}

OJB can provide transparent key relationship maintenance behind the scenes for 1:1 relations via anonymous access fields. As
object relationships change, the relationships will be propogated into the key values without the Java object ever being aware
of arelational key being in use. This means that the java object does not need to specify a FK field for the reference.

Without use of anonymous keys class Foo have to look like:

cl ass Foo
I nt eger id;
I nt eger f kParent Foo;
Foo parent;

/1 optional getter/setter

Page 203

error:#site:basic-technique/one-to-one

0OJB Documentation

When using anonymous keys the FK field will become obsolete:

cl ass Foo

I nteger id;
Foo parent;

/1 optional getter/setter

Under specific conditionsit's also possible to use anonymous keys for other relations or primary keys. More info in advanced-technique section.

4.6.3.2. How it works
To play for safety it is mandatory to understand how this feature is working. More information how it works please see here.

4.6.3.3. Using Anonymous K eys
Now we can start using of the anonymous key feature. In this section the using is detailed described on the basis of an example.

The Code

Take the following classes designed to model a particular problem domain. They may do it reasonably well, or may not.
Presume they model it perfectly well for the problem being solved.

public class Desk
{

private Finish finish;

/** Contains Drawer instances */
private List drawers;

private int number O Legs;
private |Integer id;

public Desk()

this.drawers = new ArraylList();

}
public List getDrawers()

—~

return this.drawers;

ublic int getNunberOf Legs()

return this. number O Legs;

ublic void set Nunmber Of Legs(i nt num

t hi s. nunber Of Legs = num

ublic Finish getFinish()

return this.finish;

ublic void setFinish(Finish finish)

~T -~ o~ —~ ~p -~ ~ —

this.finish = finish;

Page 204

error:#site:advanced-technique/anonymous-keys
error:#site:advanced-technique/anonymous-keys

OJB Documentation

public class Drawer
/[** Contains Thing instances */
private List stufflnDrawer;
private Integer id;
public List getStufflnDrawer()
{

return this.stufflnDrawer;

}
public Drawer ()

this.stufflnDrawer = new Arraylist();

public class Finish
private String wood;
private String col or;
private |Integer id;
public String getWod()

return this.wood;

}
public void setWod(String wood)

—~

t hi s. wood = wood;

ublic String getCol or()

return this.color;

ublic void setColor(String col or)

this.color = color;

—~ ~p —~— o~ -

}
public class Thing
{

private String nane;
private Integer id;

public String getName()

return this.nane;

public void setName(String nane)

t hi s. name = nane;

}
}

A Desk will typically reference multiple drawers and one finish.

The Database

Page 205

0OJB Documentation

When we need to store our instances in a database we use afairly typical table per class persistance model.

CREATE TABLE fi ni sh
(

i d | NTEGER PRI MARY KEY,
wood VARCHAR(255) ,
col or VARCHAR(255)

CREATE TABLE desk
(

id | NTEGER PRI MARY KEY,

num | egs | NTEGER,

finish_id | NTEGER,

FOREI GN KEY (finish_id) REFERENCES fi ni sh(id)
)

CREATE TABLE dr awer

(
id | NTEGER PRI MARY KEY,

desk_id | NTEGER,
FOREI GN KEY (desk_id) REFERENCES desk(i d)

) ;
CREATE TABLE t hi ng

(
id | NTEGER PRI MARY KEY,
name VARCHAR(255) ,
drawer i d | NTEGER,
FOREI GN KEY (drawer i d) REFERENCES drawer (i d)

1

At the database level the possible relationships need to be explicitely defined by the foreign key constraints. These model all
the possible object relationships according to the domain model (until generics enter the Java language for the collections AP,
thisis technically untrue for the classes used here).

The Repository Configuration

When we go to map the classes to the database, it is almost a one-to-one property to field mapping. The exception here is the
primary key on each entity. This is meaningless information in Java, so we would like to keep it out of the object model.
Anonymous access keys allow us to do that.

The repository.xml must know about the database columns used for referentia integrity, but OJB can maintain the foreign key
relationships behind the scenes - freeing the developer to focus on more accurate modeling of her objects to the problem,
instead of the the persistance mechanism. Doing thisis aso very simple - in the repository.xml file mark the field descriptors
withaaccess="anonynous" attribute.

<cl ass-descri ptor
cl ass="Desk"
t abl e="desk" >

<fi el d-descri pt or
nane="i d"
col um="i d"
j dbc-t ype="1| NTEGER"
pri marykey="true"
aut oi ncrenment ="t rue"
/>

<fi el d-descri pt or
nane="nunber Of Legs"
col um="num | egs"
;dbc-type:"lNTEGER‘

>

<fi el d-descri pt or

Page 206

OJB Documentation

nanme="fini shl d"

col um="finish_id"

j dbc-t ype="1 NTEGER"
access="anonynous" />

<col | ecti on-descri pt or

name="dr awer s"

el enent - cl ass-ref ="Drawer"

>

<i nverse-foreignkey field-ref="deskld"/>
</ col | ecti on-descri ptor>

<ref erence-descri pt or
name="fini sh"
cl ass-ref="Fi ni sh">
<forei gnkey field-ref="finishld"/>
</reference-descri ptor>
</ cl ass-descri pt or>

<cl ass-descri ptor
cl ass="Fi ni sh"
t abl e="fini sh">

<fi el d-descri pt or
nane="i d"
col um="i d"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"
/>

<fi el d-descri pt or
nanme="wood"
col um="wood"
j dbc-t ype=" VARCHAR"
si ze=" 255"
/>

<fi el d-descri pt or
nane="col or"
col um="col or"
j dbc-t ype=" VARCHAR'
si ze=" 255"
/>

</ cl ass-descri pt or>

<cl ass-descri ptor
cl ass="Dr awer"
t abl e="dr awer ">

<fi el d-descri pt or
name="i d"
col um="i d"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrenent ="t rue"
/>
<fi el d-descri pt or
nanme="deskl d"
col um="desk_i d"
j dbc-t ype="1 NTEGER"
?ccess:"anonynnus"
>
<col | ecti on-descri pt or
name="st uf f | nDr awner "
el ement - cl ass-ref ="Thi ng"
>
<i nverse-foreignkey field-ref="drawerld"/>
</ col | ecti on-descri ptor>
</ cl ass-descri pt or>

Page 207

0OJB Documentation

<cl ass- descri ptor
cl ass="Thi ng"
t abl e="t hi ng" >

<fi el d-descri ptor
nane="id"
col um="i d"
j dbc-t ype="1 NTEGER"
pri marykey="true"
aut oi ncrement ="t rue"
/>
<fi el d-descri pt or
name="nanme"
col um="nane"
j dbc-t ype=" VARCHAR"
si ze="255"
/>
<fi el d-descri ptor
nane="dr awer | d"
col um="dr awer _i d"
j dbc-t ype="1 NTEGER"
?ccess:"anonynnus"
>
</ cl ass-descri ptor>
Look first at the class descriptor for the Thing class. Notice the field-descriptor with the name attribute "drawerld". This field
Is labeled as anonymous access. Because it is anonymous access OJB will not attempt to assign the value here to a "drawerld"
field or property on the Thing class. Normally the name attribute is used as the Java name for the attribute, in this caseit is not.

The nameis still required because it is used as an indicated for references to this anonymous field.

In the field descriptor for Drawer, look at the collection descriptor with the name stuffinDrawer. This collection descriptor
references a foreign key with the fi el d-ref ="drawer | d". This reference is to the anonymous field descriptor in the
Thing descriptor. The field-ref matches to the name in the descriptor whether or not the name also maps to the Java attribute
name. Thisdual use of nanme can be confusing - be careful.

The same type mapping that is used for the collection descriptor in the Drawer descriptor is also used for the 1:1 reference
descriptor in the Desk descriptor.

The primary keys are populated into the objects asit is generally a good practice to not implement primary keys as anonymous
access fields. Primary keys may be anonymous-access but references will get lost if the cacheis cleared or the persistent object
IS serialized.

4.6.3.4. Benefits and Drawbacks

There are both benefits and drawbacks to using anonymous field references for maintaining referential integrity between Java
objects and database relations. The most immediate benefit is avoiding semantic code duplication. The second major benefit is
avoiding cluttering class definitions with persistance mechanism artifacts. In a well layered application, the persistance
mechanism will not really need to be so obvious in the object model implementation. Anonymous fields helpt o achieve this -
thereby making persistence mechanisms more flexible. Moving to a different one becomes easier.

4.6.4. HOWTO - Use DB Sequences

4.6.4.1. Introduction

It is easy to use OJB with with database generated sequences. Typically a table using database generated sequences will
autogenerate a unique id for afield as the default value for that field. This can be particularly useful if multiple applications
access the same database. Not every application will be using OJB and find it convenient to pull unique values from a high/low
table. Using a database managed sequence can help to enforce unique id's across applications all adding to the same database.
All of that said, care needs to be taken as using database generated sequences imposes some portability problems.

Page 208

OJB Documentation

OJB includes a sequence manager implementation that is aware of database sequences and how to use them. It is known to
work against Oracle, SAP DB, and PostgreSQL. MySQL has its own sequence manager implementation because it is special.
This tutorial will build against PostgreSQL, but working against Oracle or SAP will work the same way.

Additional information on sequence managersis available in the Sequence Manager documentation.

4.6.4.2. The Sample Database

Before we can work with OJB against a database with a sequence, we need the database. We will create a simple table that
pullsits primary key from a sequence named 'Uniqueldentifier'.

CREATE TABLE t hi ngi e

(name VARCHAR(50),

id | NTEGER DEFAULT NEXTVAL(' Uni queldentifier")
)

We must also define the sequence from which it is drawing values.

CREATE SEQUENCE Uni quel dentifi er;
So that we have the following table:

Tabl e "public.thingie"

Col um | Type | Modi fi ers

________ o
name | character varying(50) |

id | integer | default nextval (' Uni queldentifier'::text)

If we manually insert some entriesinto this table they will have their i d field set automagically.

I NSERT | NTO t hi ngi e (name) VALUES (' Fred');
I NSERT | NTO t hi ngi e (nanme) VALUES ('WInm');
SELECT nane, id FROMt hingi e;

nane | id

e - - - [

Fred | O

Wim | 1

(2 rows)

4.6.4.3. Using OJB

The Database Repository Descriptor

The next step is to configure OJB to access our t hi ngi e table. We need to configure the corrct sequence manager in the
reposi t ory- dat abase. xni .

The default r eposi t or y- dat abase. xm uses the High/Low Sequence manager. We will delete or comment out that
entry, and replace it with the or g. apache. oj b. broker. util.sequence. SequenceManager Next Val | npl
manager. This manager will pull the next value from a named sequence and use it. The entry for our sequence manager in the
repository is:

<sequence- manager
cl assNane="or g. apache. oj b. broker. util. sequence. SequenceManager Next Val | mpl " />

This needs to be declared within the JDBC Connection descriptor, so an entire r eposi t or y- dat abase. xm might look
like:

<j dbc- connecti on-descri ptor

Page 209

error:#site:sequence-manager

0OJB Documentation

jcd-alias="default"

def aul t - connecti on="t rue"

pl at f or m=" Post gr eSQ."

j dbc- | evel =" 2. 0"

driver="org. postgresql.Driver"
pr ot ocol =" dbc"

subpr ot ocol =" post gresql "

dbal i as="test"

user name="tester"

passwor d=""

eager -rel ease="fal se"

bat ch- node="f al se"

useAut oCommi t =" 1"

i gnor eAut oCommi t Excepti ons="f al se"

>
<connecti on- poo
maxAct i ve="21"
val i dationQuery=""/>
<sequence- manager

cl assNane="or g. apache. oj b. broker. util . sequence. SequenceManager Next Val | mpl " />
</ j dbc- connecti on- descri pt or >

Defining a Thingie Class
For the sake of simplicity we will make avery basic Java Thingie:

public class Thingie

{
/** thingi e(name) */
private String nane;
[** thingie(id) */
private int id;
public String getNane() { return this.nane; }
public void setName(String nanme) { this.name = nane; }
public int getld() { return this.id; }
}

We also need a class descriptor inr eposi t ory-user. xm that appears asfollows:

<cl ass-descri ptor
cl ass="Thi ngi e"
t abl e=" THI NG E"
>
<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="1NTEGER'
pri marykey="true"
aut oi ncrement ="t rue"
sequence- name="Uni quel denti fier"
/>
<fi el d-descri pt or
name="nane"
col utm=" NANME"
;dbc-type:"VARCHAR‘
>

</ cl ass-descri ptor>

Look over the i d field descriptor carefully. The aut oi ncr ement and sequence- nane attributes are important for
getting our desired behavior. These tell OJB to use the sequence manager we defined to auto-increment the the value in i d,
and they also tell the sequence manager which database sequence to use - in thiscase Uni quel denti fi er

Page 210

OJB Documentation

We could allow OJB to create an extent-aware sequence and use it, however as we are working against a table that defaultsto &
specific named sequence, we want to make sure to pull values from that same sequence. Information on allowing OJB to create
Its own sequences is available in the Sequence Manager documentation.

Using Thingie
Just to demonstrate that this al works, here is a simple application that uses our Thingie.

I mport org.apache. oj b. br oker. Per si st enceBr oker
i mport org. apache. oj b. br oker. Per si st enceBr oker Fact ory;

public class ThingieDriver
public static void main(String [] args)
Per si st enceBr oker broker = PersistenceBrokerFactory. defaul t PersistenceBroker();

Thi ngi e thing = new Thingi e();
Thi ngi e ot her Thi ng = new Thi ngi e();

t hi ng. set Nane(" Mabob") ;
ot her Thi ng. set Nane(" Maj i g");

br oker . begi nTransacti on();
br oker. st ore(thing);

br oker. st or e(ot her Thi ng) ;
br oker. commi t Transacti on();

Systemout.prin
Systemout.prin
br oker. cl ose();

thing.getNane() + " : " + thing.getld());
ot her Thi ng. getNane() + " : " + otherThing.getld());

— —

I n(
I n(

}
}

When it isrun, it will create two Thingie instances, store them in the database, and report on their assigned i d values.
java -cp [...] ThingieDriver

Mabob : 2

Majig : 3

4.6.5. HOWTO - Work with LOB Data Types

4.6.5.1. Using Oracle LOB Data Typeswith OJB

Introduction

In a lot of applications there is a need to store large text or binary objects into the database. The definition of large usually
means that the object's size is beyond the maximum length of a character field. In Oracle this means the objects to be stored
can grow to > 4 KB each.

Depending on the application you are developing your "large objects’ may either be in the range of some Kilobytes (for
example when storing text-only E-Mails or regular XML documents), but they may also extend to several Megabytes (thinking
of any binary data such aslarger graphics, PDFs, videos, etc.).

In practice, the interface between your application and the database used for fetching and storing of your "large objects’ needs
to be different depending on the expected size. While it is probably perfectly acceptable to handle XML documents or E-Mails
in memory as a string and always completely retrieve or store them in one chunk this will hardly be a good idea for video files
for example.

ThisHOWTO will explain:

Page 211

error:#site:sequence-manager

0OJB Documentation

1. Why you would want to store large objectsin the database
2. Oracle LARGE versus LOB datatypes
3. LOB handling in OJB using JDBC LOB types

This tutorial presumes you are familiar with the basics of OJB.

4.6.5.2. Backgrounder: Large objectsin databases

This section is meant to fill in non-DBA people on some of the topics you need to understand when discussing large objectsin
databases.

Your database: The most expensive file system?

Depending on background some people tend to store anything in a database while others are biased against that. As databases
use a file system for physical storage anyway, why would it make sense to store pictures, videos and the like as a large object
in a database rather that just create a set of folders and store them right into the database.

When listening to Oracle's marketing campaingns one might get the impression that there is no need to have plain filesystems
anymore and that they all will vanish and be replaced by Oracle database servers. If that happened this would definitely boast
Oracl€e's revenues, but at the same time make I T cost in companies explode.

But there are applications where it in fact makes sense to have the database take care of unstructured data that you would
otherwise just store in a file. The most common criteria for storing non-relational data in the database instead of storing it
directly into the file system is whenever there is a strong link between this non-relatinal and some relational data.

Typical examples for that would be:

1. Picturesor videos of housesin area estate agent's offer database
2. E-Mailsrelated to a customer's order

If you are not storing these objects into the database you would need to create a link between the relational and the
non-relational data by saving filenames in the database. This means that you application is responsible for managing this weak
link in any respect. In order to make sure your application will be robust you need to make sure in your own code that

1. When creating a new record you create a valid and unique filename for storing the object.
2. When deleting arecord you delete the corresponding file as well
3. When accessing thefile referred to in the record you double-check the file is there and no locked

(There might be other, more subtle implications.)

All thisis done for you by the database in case you choose to store your objects there. In addition to that, when discussing text
data, a database might come with an option to automatically index the stored text documents for easy retrievel. This would
alow you to perform an SQL seach such as "give me al customers that ever referred to the project foo in an email”. (In
Oracle you need to install the InterMedia option, aka Oracle Text in order to get this extra functionality. Several vendors have
also worked on technologies that allowed to seach rich content such as PDFs files, pictures or even sound or video stored in a
database from SQL..)

Oracle LARGE versus L OB datatypes

Some people are worried about the efficiency of storing large objects in databases and the implications on performance. They
are not necessarily entirely wrong in fearing that storing large objects in databases might be problematic the best or might
require a lot of tweaks to parameters in order to be able to handle the large objects. It al depends on how a database
implements storing large objects.

Oracle comes with two completely different mechanisms for that:

1. LARGE objects
2. LOB objects

Page 212

OJB Documentation

When comparing the LARGE datatypes such as (*fixme*) to the LOB datatypes such as CLOB, BLOB, NCLOB (*fixme*)
they don't read that different at first. But there is a huge difference in how they are handled both internally inside the database
as well when storing and retrieving from the database client.

LARGE fields are embedded directly into the table row. This has some consegquences you should be aware of :

1. If your record is made up of 5 VARCHAR fields with a maximum length of 40 bytes each and one LONGVARCHAR and
you store 10 MB into the LONGVARCHAR column, your database row will extent to 10.000.200 bytes or roughly 10 MB.

2. The database always reads or writes the entire row. So if you do a SELECT on the VARCHAR fieldsin order to display
their content in a user interface as a basis for the user to decide if he or she will need the content of the LONGVARCHAR
at all the database will already have fetched all the 10 MB. If you SELECT and display 25 records each witha10 MB
object in it thiswill mean about 250 MB of 1/0.

3. When storing or fetching such arow you need to make sure your fetch buffer is sized appropriately.

In practice this cannot be efficient. It might work as long as you stay in the KB range, but you will most likely run into trouble
as soon as it gets into the MBs per record. Additionally, there are more limitations to the concept of LONG datatypes such as
limiting the number of them you can have in one row and how you can index them. This is probably why Oracle decided to
deprecate LONG datatypes in favor of LOB columns.

A lot of non-Oracle-DBA people believe that LOB means "large OBject" because some other vendors have used the term
BLOB for "Binary Large OBject" in their products. Thisis not only wrong but - even worse - misleading, because people are
asking: "What's the difference between large and long?* (Bear with all non native English speakers here, please!)

Instead, LOB stands for Locator OBject which exactly describes what is is. It is a pointer to the place where the actual data
itself is stored. This locator will need only occupy some bytes in the row thus not harming row size at all. So all the issues
discussed above vanish immediatelly. For the sake of simplicity think of a LOB as a pointer to afile on the databases internal
file system that stores the actual content of that field. (Oracle might use plain files or different mechanisms in their
Implementation, we don't have to care.)

But as there is aways a trade-off while LOBs are exstremely handy inside a row, they are more complex to store and retrieve.
As opposed to al other column types their actual content stays where it is even if you transfer the row from the database to the
client. All that goes over the wire in that case will be atoken representing the actual LOB column content.

In order to read the content or to write LOB content it needs to open a separate stream connection over the network that can be
read from or written to similar to a file on a network file system. JDBC (starting at version *fixme*) comes with special
objects such as java.sgl.Blob and java.sgl.Clob to access the content of LOBSs that do not represent character arrays or strings
but streams!

4.6.5.3. Large Objectsin OJB

After having skipped the above Backgrounder (in case you do Oracle administration for a living) of having read and
understood it (hopefully appliesto the rest of us) now that you've most likely decided to go for LOBs and forget about LONGs
how is this handled with OJB?

Strategy 1. Using streamsfor LOB |/O

HHHIHHHHHHE 10 e written #HHHHHEH

Strategy 2: Embedding OJB content in Java objects
HHHHHHHHHHE 10 be written #HHHHHHH

Querying CL OB content
HHHHHHEHEHE 10 De wrritten sHHHHHH

Page 213

0OJB Documentation

4.6.6. HOWTO - Use OJB in clustered environments

4.6.6.1. How to use OJB in cluster ed environments

Object/Relational Bridge will work fine in environments that require robustness features such as load-balancing, failover, and
clustering. However, there are some important steps that you need to take in order for your data to be secure, and to prevent
isolation failures. These steps are outlined below.

| have tested this in a number of environments, and with Servlet engines and J2EE environments. If you run into problems,
please post questions to the OJB users mail list.

This outline for clustering is based on an email from the OJB Users Mail List: Thisisthat mail.

4.6.6.2. Three stepsto clustering your OJB application

A lot of people keep asking for robust ways to run their OJB engines in multi-VM or clustered environments. This email
covers how to do that safely and securely using Open Symphony's OSCache caching product.

OSCache is a high-performance, robust caching product that supports clustering. I've been using it for a while in production
and it is excellent.

Back to the Topic: There are three main things that you should do in order to make your OJB application ready for using a
cache in amulti-VM or distributed environment.
First: Take care of the sequence manager

that you define within jdbc-connection-descriptor element in your repository.xml file. If none was set OJB use per default the
SequenceManager H ghLow npl sequence manager implementation.

As of Release Candidate 5 (rc5), you can use SequenceManagerHighLowlmpl in distributed (non-managed) environments. The SequenceManagerHighL owlmpl now supportsiits
own optimistic locking that makes the implementation cluster aware by versioning an entry in the OJB_HL_SEQ table.

However, the SequenceM anagerHighLowlImpl has not been heavily tested in clustered environments, so if you want absolute
security use an sequence manager implementation which delegates key generation to database.

If your database supports database based sequence key generation (like PostgreSQL, Oracle, ...) it's recommended to use
SequenceManager Next Val | npl (supports database based sequence keys). Using this sequence manager will prevent
conflictsin multi-vm or clustered environments. More about sequence manager here.

Handling sequence names

If you are using SequenceManager Next Val | npl you have two possibilities:

« Doit by your own:
» Create a sequence object in your database.
» An Oracle sequence lookslike: "create sequence ackSequence increment by 1 start with 1;"
» A Postgres sequence looks like: "CREATE SEQUENCE ackSequence START 1"
» For other databases you're on your own.
* Totell OJB to usethat sequence for your table add in your repository.xml the sequence name to the field-descriptor for
your table's primary key field:

<fiel d-descri ptor
name="ackl D"

col utm="ACKI D"

j dbc-t ype="1 NTEGER"

Page 214

error:#ext:ojb/archives/mail-archive/user/clustering-link
error:#site:repository/jdbc-connection-descriptor
error:#site:sequence-manager

OJB Documentation

pri marykey="true"

aut oi ncrenent ="true"
sequence- nane="ackSequence"
[>

« Let OJB do that job for you:
The SequenceManager Next Val | npl implementation create the sequence in database automatic if none was found. If
you don't want to declare asequence- nane attribute in your field-descriptor, you can enable an automatic sequence
name building by setting a specific custom-attribute , then SequenceManager Next Val | npl build an internal
sequence name if none was found.

<sequence- manager cl assNanme="org. apache. oj b. broker. util.sequence. SequenceManager Next Val | npl ">
<attribute attribute-name="aut oNanm ng" attri bute-val ue="true"/>
</ sequence- manager >

More about sequence manager here.

Second: Enable optimistic locking

Y ou need to secure the data at the database. Thomas Mahler (lead OJB developer and considerable ORM guru) recommended
in one email that you use the Optimistic Locking feature that is provided by OJB when using the PB API in a clustered
environment. Sounds good to me. To do this you need to do three small steps:

When using one of the top-level APl in most cases Pessimistic (Object) Locking is supported. In that case it is recommended to use a distributed lock management instead of
optimistic locking. More information about ODMG API and L ocking here.

« Add adatabase column to your table that is either an INTEGER or aTIMESTAMP
« Addthefield to your javaclass, and getter/setter methods (depends on the used PersistentField implementation):

private |Integer ackOptLock;
public | nteger get AckOptLock()

{
return ackOpt Lock;
}

public void set AckOpt Lock(| nteger ackOptLock)
{
thi s. ackOpt Lock = ackOpt Lock;

}
e Add the column to your table in your repository:

<fi el d-descri pt or
nanme="ackOpt Lock"
col umm=" ACKOPTLOCK"
j dbc-type="1 NTEGER'
| ocki ng="true"/>

Now OJB will handle the locking for you. No explicit transactional code necessary!

Do The Cache

You're basically in good shape at this point. Now you've just got to set up OSCache to work with OJB. Here are the steps for
that:

e Download OSCache from OSCache. Add the oscache-2.0.x.jar to your project so that it isin your classpath (for
Servlet/J2EE users place in your WEB-INF/lib directory). Y ou will also need commons-collections,jar and
commons-logging.jar, if you don't aready have them.

« Download JavaGroups from JavaGroups. Add the javagroups-all.jar to your classpath (for Servlet/J2EE users place in your
WEB-INF/lib directory).

Page 215

error:#site:repository/custom-attribute
error:#site:sequence-manager
error:#site:lock-manager
error:#site:advanced-technique/persistent-field
error:#ext:oscache
error:#ext:javagroups

In your OJB.properties file change the ObjectCacheClass property to be the following:
bj ect Cached ass=org. nacse. j | i b. Obj ect CacheOSCachel npl
To make OSCache the default used cache implementation. More info about object caching here.

0OJB Documentation

Add oscache.properties from your OSCache distribution to your project so that it isin the classpath (for Servlet/J2EE users

place in your WEB-INF/classes directory). Open the file and make the following changes:
1. Addthefollowing lineto the CACHE LISTENERS section of your oscache.propertiesfile:

cache. event .| i st ener s=com opensynphony. oscache. pl ugi ns. cl ust er support. JavaG oups

2. Addthefollowing line at the end of the oscache.properties file (your network must support multicast):

cache.cluster.mul ticast.ip=231.12.21. 132

Add the following class to your project (feel free to change package name, but make sure that you specify the full qualified

class name in OJB.propertiesfile). You can find source of this class under
db- oj b/ contri b/ src/ Obj ect CacheOSCachel npl .
Source for Gbj ect CacheOSCachel npl :

public class Obj ect CacheGSCachel npl i npl ements Obj ect Cache
{

private static General CacheAdm ni strator adm n = new General CacheAdm ni strator();
private static final int NO REFRESH = CacheEntry. | NDEFI Nl TE_EXPI RY,

publ i c Obj ect CacheOsCachel npl ()
{

}
publ i c Obj ect CacheGSCachel npl (Per si st enceBr oker broker, Properties prop)
%
public void cache(ldentity oid, Cbject obj)
{ try
this.remove(oid);
adm n. put I nCache(oi d.toString(), obj);
Latch(Exception e)
} t hrow new Runti meCacheExcepti on(e. get Message());
}

public Object |ookup(ldentity oid)
{

try
{

return adm n. get FromCache(oid.toString(), NO REFRESH)

}
cat ch(Exception e)

admi n. cancel Updat e(oi d.toString());
return null;

}
}

public void renove(ldentity oid)
try
adm n. flushEntry(oid.toString());
%atch(Exception e)

t hrow new Runti neCacheExcepti on(e. get Message());

}

Page 216

error:#site:object-cache

OJB Documentation

public void clear()
if(admin !'= null)
try
admi n. flushAl | ();
}catch(Exception e)

t hrow new Runti meCacheException(e);

}

}
}

You'reready to go!' Now just create two instances of your application and see how they communicate at the cache level. Very
cool.

4.6.6.3. Notes

« For J2EE/Servlet users: | have tested this on a number of different application servers. If you're having problems with your
engine, post an email to the OJB Users mail list.

e OSCache also supports IM S for clustering here, which | haven't covered. If you either don't have access to a multicast
network, or just plain like IMS, please refer to the OSCache documentation for help with that, see OSCache Clustering
with IMS).

« | have aso tested this with Tangosol Coherence. Please refer to this Blog entry for that setup: Coherence Setup

e (OJB aso has shipswith JCS. Feel freeto try that one out on your own.

4.6.7. HOWTO - Stored Procedure Support

4.6.7.1. Introduction

OJB supports the use of stored procedures to handle the basic DML operations (INSERT, UPDATE, and DELETE). This
document will describe the entries that you'll need to add to your repository in order to get OJB to utilize stored procedures
instead of ‘traditional' INSERT, UPDATE or DELETE statements.

Please note that there will be references to 'stored procedures' throughout this document. However, thisis just a simplification
for the purposes of this document. Any place you see a reference to 'stored procedure’, you can assume that either a stored
procedure or function can be used.

Information presented in this document includes the following:

Basic repository entries

Common attributes for all procedure descriptors

An overview of the insert procedure, update procedure and delete procedure descriptors.
Information about the argument descriptors that are supported for all procedure

A simple example and a more complex example

4.6.7.2. Repository entries

For any persistable class (i.e. "com.myproject.Customer") where you want to utilize stored procedures to handle persistence
operations instead of traditional DML statements (i.e. INSERT, UPDATE or DELETE), you will need to include one or more
of the following descriptors within the corresponding class-descriptor for the persistable class.

 insert-procedure -identifiesthe stored procedure that isto be used whenever a class needs to be inserted into the
database.

e updat e- procedur e - identifies the stored procedure that is to be used whenever a class needs to be updated in the
database.

Page 217

error:#ext:oscache/os-clustering
error:#ext:oscache/os-clustering
error:#ext:tangosol-blog

0OJB Documentation

« del et e-procedur e - identifies the stored procedure that is to be used whenever a class needs to be removed from the
database.

All of these descriptors must be nested within the class-descriptor that they apply to. Here is an example of a simple
class-descriptor that includes each of the procedure descriptors listed above:

<cl ass-descriptor class="com myproject.Custoner"” table="CUSTOVER'>
<field-descriptor colum="I1D" jdbc-type="DECI MAL" nane="id" primarykey="true"/>
<field-descriptor colum="NAME" jdbc-type="VARCHAR' nanme="nane"/>
<i nsert - procedure nanme="CUSTOVER_PKG ADD" >
<runtinme-argunment field-ref="id" return="true"/>
<runtinme-argunment field-ref="nane"/>
</insert-procedure>
<updat e- pr ocedur e nanme="CUSTOVER PKG CHG' >
<runtime-argunment field-ref="id"/>
<runtime-argunent field-ref="nane"/>
</ updat e- pr ocedur e>
<del et e- pr ocedur e nane="CUSTOVER PKG CHG'>
<runtime-argunment field-ref="id"/>
</ del et e- pr ocedur e>
</ cl ass-descri pt or>

4.6.7.3. Common attributes

All three procedure descriptors have the following attributes in common:

« nane - Thisisthe name of the stored procedure that is to be used to handle the specific persistence operation.

« return-field-ref -Thisidentifiesthefield in the class where the return value from the stored procedure will be
stored. If this attribute is blank or not specified, then OJB will assume that the stored procedure does not return a value and
will format the SQL command accordingly.

The basic syntax that is used to call a procedure that has a return value looks something like this:

{?= call & t;procedure-name>[& t;argl>, & t;arg2>, ...]}
The basic syntax that is used to call a procedure that does not include a return value looks something like this:

{call & t;procedure-nanme>[& t;argl>, & t;arg2>, ...]}

When OJB assembles the SQL to call a stored procedure, it will use the value of the 'name' attribute in place of
'procedure-name’ in these two examples.

In addition, if the procedure descriptor includes a value in the 'return-field-ref' attribute that is 'valid', then the syntax that OJB
builds will include the placeholder for the result parameter.

The previous section referred to the idea of a'valid' value in the 'return-field-ref' attribute. A value is considered to be 'valid' if
it meets the following criteria:

e Thevaueisnot blank
e Thereisafield-descriptor with a'name' that matches the value in the 'return-field-ref' attribute.

If the 'return-field-ref' attribute is not 'valid', then the placeholder for the result parameter will not be included in the SQL that
OJB assembles.

4.6.7.4. insert-procedure

The insert-procedure descriptor identifies the stored procedure that should be used whenever a class needs to be inserted into
the database. In addition to the common attributes listed earlier, the insert-procedure includes the following attribute:
 include-al-fields

This attribute provides an efficient mechanism for passing all attributes of a persistable class to a stored procedure. If this
attribute is set to true, then OJB will ignore any nested argument descriptors. Instead, OJB will assume that the argument list

Page 218

OJB Documentation

for the stored procedure includes arguments for all attributes of the persistable class and that those arguments appear in the
same order as the field-descriptors for the persistable class.

The default value for this attribute is 'false'.

If the field-descriptors in your repository do not ‘align’ exactly with the argument list for the stored procedure, or you want to maintain explicit control over the values that are
passed to the stored procedure, then either set the 'include-all-fields' attribute to false' or leave it off the insert-procedure descriptor.

4.6.7.5. update-procedure

The update-procedure descriptor identifies the stored procedure that should be used whenever a class needs to be updated in
the database. In addition to the common attributes listed earlier, the update-procedure includes the following attribute:

« include-al-fields

This attribute provides the same capabilities and has the same caveats as the include-all-fields attribute on the insert-procedure
descriptor.

4.6.7.6. delete-procedure

The delete-procedure descriptor identifies the stored procedure that should be used whenever a class needs to be deleted from
the database. In addition to the common attributes listed earlier, the delete-procedure includes the following attribute:

 include-pk-only
This attribute provides an efficient mechanism for passing all of the attributes that make up the primary key for a
persistable class to the specified stored procedure. If this attribute is set to true, then OJB will ignore any nested argument
descriptors. Instead, OJB will assume that the argument list for the stored procedure includes arguments for all attributes
that make up the primary key for the persistable class (i.e. those field-descriptors where the ‘primary-key' attribute is set to
'true’). OJB will also assume that those arguments appear in the same order as the corresponding field-descriptors for the
persistable class.
The default value for this attribute is 'false'.

If the field-descriptors in your repository that make up the primary key for a persistable class do not 'align’ exactly with the argument list for the stored procedure, or you want to
maintain explicit control over the values that are passed to the stored procedure, then either set the ‘include-pk-only" attribute to ‘false’ or leave it off the delete-procedure
descriptor.

4.6.7.7. Argument descriptors

Argument descriptors are the mechanism that you will use to tell OJB two things:

1. How many placeholders should be included in the argument list for a stored procedure?
2. What value should be passed for each of those arguments?

There are two types of argument descriptors that can be defined in the repository:

« runtime arguments used to set a stored procedure argument equal to avalue that is only known at runtime.
« constant arguments used to set a stored procedure argument equal to constant value.

Y ou may notice that there is no argument descriptor specifically designed to pass a null value to the procedure. This capability
Is provided by the runtime argument descriptor.

The argument descriptors are essentially the 'mappings between stored procedure arguments and their runtime values. Each
procedure descriptor can include O or more argument descriptorsin it's definition.

After reading that last comment, you may wonder why OJB allows you to configure a procedure descriptor with no argument
descriptors since the primary focus of OJB is to handle object persistence. How could OJB perform any sort persistence

Page 219

0OJB Documentation

operation using a stored procedure that did not involve the passage of at least one value to the stored procedure? To be honest,
it is extremely unlikely that you would ever set up a procedure descriptor with no argument descriptors. However, since there
IS no minimum number of arguments required for a stored procedure, we did not want to implement within OJB a requirement
on the number of arguments that was more restrictive than the limits imposed by most/all database systems.

runtime-argument descriptors
A runtime-argument descriptor is used to set a stored procedure argument equal to avalue that is only known at runtime.

Two attributes can be specified for each runtime-argument descriptor:

o field-ref
The 'field-ref* attribute identifies the specific field descriptor that will provide the argument's value. If this attribute is not
specified or does not resolve to avalid field-descriptor, then a null value will be passed to the stored procedure.

e return
The 'return’ attribute is used to determine if the argument is used by the stored procedure as an 'output’ argument.
If this attribute is set to true, then the corresponding argument will be registered as an output parameter. After execution of
the stored procedure, the value of the argument will be 'harvested' from the CallableStatement and stored in the attribute
identified by the field-ref attribute.
If this attribute is not specified or set to false, then OJB assumes that the argument is simply an ‘input' argument, and it will
do nothing special to the argument.

constant-argument descriptors
A constant-argument descriptor is used to set a stored procedure argument equal to constant value.

There is one attribute that can be specified for the constant-argument descriptor:

« value
The 'value' attribute identifies the value for the argument.

4.6.7.8. A simple example

This section provides background information and a simple example that illustrates how OJB's support for stored procedures
can be utilized.

The background information covers the following topics:

e Thebasic requirements

« The database objects including the table that will be manipulated, the sequence that will be used by the stored procedures
to assign primary key falues, the insert and update triggers that maintain the four "audit’ columns and the package that
provides the stored procedures that will handle the persistence operations.

Click here to skip the background information and go straight to the implementation.

The basic requirements

These are the requirements that must be satisfied by our example

1. All insert, update and del ete operations are to be performed by stored procedures.

2. All primary key values are to be by the stored procedure that handles the insert operation. The value that is assigned should

be reflected in the object that ‘triggered’ the insert operation.

3. For auditing purposes, all tables will include the following set of columns:
» USER_CREATED - Thiswill contain theid of the user who created the record
» DATE_CREATED - The date on which the record was created created
 USER_UPDATED - Theid of the user who last modified the record

Page 220

OJB Documentation

* USER_UPDATED - The date on which the record was last modified

In addition to the inclusion of these columns on each table, the following requirements related to these columns had to be

supported:

1. Thevalues of the two date-related audit columns were to be maintained at the database level viainsert and update
triggers.
» Theinsert trigger will set both DATE_CREATED and DATE_UPDATED to the current system date.
* Theupdatetrigger will set DATE_UPDATED to the current system date. The update trigger will also ensure that the

original value of DATE_CREATED is never modified.

2. Thevalues of the two user-related audit columns are to be maintained at the database level viainsert and update
triggers.
* Theinsert and update triggers will ensure that USER_CREATED and USER_UPDATED are appropriately popul ated.
» Theupdate trigger will ensure that the original value of USER_CREATED is never modified.

3. Any changesthat are made by the insert or update triggers to any of the four 'audit' columns had to be reflected in the
object that caused the insert or update operation to occur.

The database obj ects

The database objects that are described in this section utilize Oracle specific syntax. However, you should not infer from this
that the stored procedure support provided by OJB can only be used to access data that is stored in an Oracle database. In
reality, stored procedures can be used for persistence operations in any database that supports stored procedures.

The table that will be manipulated,

The sequence that will be used by the stored procedures to assign primary key values

The insert and update triggers that maintain the four 'audit' columns

The package that provides the stored procedures that will handle the persistence operations.

Click here to skip the information about the database objects and go straight to the implementation.

The CUSTOMER table

This example will deal exclusively with persistence operations related to the a table named 'CUSTOMER' that is built using
the following DDL.:

CREATE TABLE CUSTOVER

(1D NUVBER(18) NOT NULL

, NAVE VARCHAR2(50) NOT NULL
USER_CREATED VARCHAR2(30)
DATE_CREATED DATE
USER_UPDATED VARCHAR2(30)

, DATE_UPDATED DATE

5 CONSTRAI NT PK_CUSTOVER PRI MARY KEY (D)

The sequence

This sequence will be used to assign unique values to CUSTOMER. | D.

CREATE SEQUENCE CUSTOMER_SEQ

Theinsert and updatetriggers

These two triggers will implement al of the requirements listed above that are related to the four audit columns:

CREATE OR REPLACE TRI GGER CUSTOMER_| TR
BEFORE | NSERT ON CUSTOMVER

FOR EACH ROW

BEG N

- Popul ate the audit dates

Page 221

0OJB Documentation

SELECT SYSDATE, SYSDATE
I NTO : NEW DATE_CREATED, : NEW DATE_UPDATED
FROM DUAL;

-- Make sure the user created colum is popul at ed.

I F : NEW USER_CREATED | S NULL

THEN

SELECT SYS_CONTEXT(' USERENV' , ' TERM NAL')
I NTO : NEW USER_CREATED
FROM DUAL;

END | F;

-- Make sure the user updated colum is popul at ed.

I F : NEW USER_UPDATED IS NULL

THEN

SELECT SYS_CONTEXT(' USERENV' , "' TERM NAL')
I NTO : NEW USER_UPDATED
FROM DUAL;

END | F;

END;

/

CREATE OR REPLACE TRI GGER CUSTOMER UTR
BEFORE UPDATE ON CUSTOVER

FOR EACH ROW

BEG N

-- Popul ate the date updated

SELECT SYSDATE
I NTO : NEW DATE_UPDATED
FROM DUAL;

-- Make sure the user updated colum is popul at ed.
| F : NEW USER_UPDATED | S NULL
THEN
SELECT SYS_CONTEXT(' USERENV' , ' TERM NAL')
| NTO : NEW USER_UPDATED
FROM DUAL;
END | F;

-- Make sure the date/user created are never changed
SELECT : OLD. DATE_CREATED, : OLD. USER_CREATED

I NTO : NEW DATE_CREATED, : NEW USER_CREATED

FROM DUAL;

END;

/

The package

This Oracle package will handle all INSERT, UPDATE and DELETE operations involving the CUSTOVER table.

CREATE OR REPLACE PACKACGE CUSTOMER _PKG AS

-- This procedure should be used to add a record to the CUSTOVER t abl e.

PROCEDURE ADD (Al D IN QUT CUSTOMER. | DATYPE
, ANAMVE I'N CUSTOVER. NAVE% YPE
, AUSER CREATED I N OQUT CUSTOMER. USER CREATEDYA YPE
, ADATE_CREATED I N OQUT CUSTOMER. DATE_CREATEDY YPE
, AUSER _UPDATED I N OQUT CUSTOVER. USER UPDATEDYA YPE
, ADATE_UPDATED I N OUT CUSTOVER. DATE_UPDATEDYIYPE) ;

Page 222

OJB Documentation

-- This procedure shoul d be used to change a record on the CUSTOMER tabl e.

PROCEDURE CHANGE (Al D I'N CUSTOVER. | DY YPE
ANAME I'N CUSTOVER. NAVE% YPE
AUSER_CREATED | N QUT CUSTOVER. USER CREATEDY YPE

AUSER _UPDATED | N QUT CUSTOVER. USER UPDATEDY YPE

: ADATE_CREATED | N QUT CUSTOVER. DATE_CREATEDY YPE
: ADATE_UPDATED | N OQUT CUSTOVER. DATE_UPDATEDY@ YPE) ;

-- This procedure should be used to delete a record fromthe CUSTOVER tabl e.
PROCEDURE DELETE (AI D I N CUSTOVER. | DYYPE) ;

END CUSTOVER_PKG

/

CREATE OR REPLACE PACKAGE BODY CUSTOMER_PKG AS

-- This procedure should be used to add a record to the CUSTOVER t abl e.
PROCEDURE ADD (AID IN OUT CUSTOVER. | DY YPE
, ANANMVE IN CUSTOVER. NAMEYA YPE
, AUSER_CREATED I N OUT CUSTOVER. USER CREATEDY YPE
, ADATE_CREATED I N OUT CUSTOVER. DATE CREATEDYA YPE
, AUSER UPDATED I N OUT CUSTOMVER. USER UPDATEDYG YPE
, ADATE_UPDATED I N QUT CUSTOVER. DATE UPDATEDYA YPE)
IS
NEW SEQUENCE_1 CUSTOVER. | DY YPE;
BEA N
SELECT CUSTOMVER_SEQ NEXTVAL
| NTO NEW SEQUENCE_1
FROM DUAL;
| NSERT | NTO CUSTOMER (| D, NAME, USER CREATED, USER UPDATED)
VALUES (NEW SEQUENCE 1, ANAME, AUSER CREATED, AUSER UPDATED)
RETURNI NG | D, USER CREATED, DATE_CREATED, USER UPDATED, DATE_UPDATED
I NTO Al D, AUSER CREATED, ADATE CREATED, AUSER UPDATED, ADATE_ UPDATED;
END ADD;

-- This procedure shoul d be used to change a record on the CUSTOMER tabl e.

PROCEDURE CHANGE (Al D I'N CUSTOVER. | DY YPE
, ANAMVE I'N CUSTOVER. NAVE% YPE
, AUSER CREATED I N QUT CUSTOVER. USER CREATEDX YPE
, ADATE_CREATED I N QUT CUSTOVER. DATE_CREATEDX YPE
, AUSER _UPDATED I N QUT CUSTOVER. USER_UPDATEDX YPE
, ADATE_UPDATED I N OQUT CUSTOVER. DATE_UPDATEDYA YPE)
I'S
BEG N
UPDATE CUSTOVER

SET NAME = ANAME
, USER CREATED = USER CREATED
, USER _UPDATED = AUSER UPDATED
VWHERE | D Al D
RETURNI NG USER_CREATED, DATE_CREATED, USER UPDATED, DATE_UPDATED
I NTO AUSER_CREATED, ADATE_CREATED, AUSER UPDATED, ADATE_UPDATED;
END CHANGE;

-- This procedure should be used to delete a record fromthe CUSTOVER t abl e.

PROCEDURE DELETE (AID I N CUSTOVER. | DYWI'YPE)

IS
BEG N
DELETE
FROM CUSTOMER
VWHERE | D = Al D,
END DELETE;

END CUSTOMER_PKG
/

P ease note the following about the structure of the CUSTOVER _PKG package:

Page 223

0OJB Documentation

e TheAl Dargument that is passed to the the ADD procedure isdefined as| N OUT. This alows the procedure to return the
newly assigned | Dto the caller.

« Inthe ADD and CHANGE procedures, the arguments that correspond to the four ‘audit' columns are defined as1 N OUT.
This allows the procedure to return the current value of these columnsto the ‘caller'.

The implementation

Getting OJB to utilize the stored procedures described earlier in this document is as simple as adding a few descriptors to the
repository. Here is a class-descriptor related to the CUSTOVER table that includes all of the necessary descriptors.

<cl ass-descriptor class="com nyproject. Custoner" tabl e="CUSTOVER' >
<fi el d-descriptor colum="1D" jdbc-type="DECI MAL" nanme="id" prinmarykey="true"/>
<fi el d-descri ptor col um="NAMVE" jdbc-type="VARCHAR' nane="nane"/>
<fi el d-descri ptor col um="USER CREATED' jdbc-type="VARCHAR' nane="user Created"/>
<fi el d-descri ptor col um="DATE CREATED"' | dbc-type="TlI MESTAMP' nane="dat eCreated"/ >
<fi el d-descri ptor col um="USER UPDATED"' jdbc-type="VARCHAR' nane="user Updat ed"/ >
<fi el d-descri ptor col um="DATE_UPDATED"' j dbc-type="TlI MESTAMP' nane="dat eUpdat ed"/ >
<i nsert-procedure name="CUSTOVER PKG ADD'>
<runtinme-argunment field-ref="id" return="true"/>
<runtinme-argunment field-ref="nane"/>
<runtine-argunment field-ref="userCreated" return="true"/>
<runtine-argunment field-ref="dateCreated" return="true"/>
<runtinme-argunent field-ref="userUpdated" return="true"/>
<runtime-argunent field-ref="dateUpdated" return="true"/>
</insert-procedure>
<updat e- pr ocedur e nane="CUSTOVER PKG. CHG'>
<runtime-argunment field-ref="id"/>
<runtime-argument field-ref="name"/>
<runtime-argunment field-ref="userCreated" return="true"/>
<runtinme-argunment field-ref="dateCreated" return="true"/>
<runtinme-argunment field-ref="userUpdated" return="true"/>
<runtinme-argunment field-ref="dateUpdated" return="true"/>
</ updat e- pr ocedur e>
<del et e- procedur e nane="CUSTOVER PKG. CHG'>
<runtime-argunment field-ref="id"/>
</ del et e- pr ocedur e>
</ cl ass-descri pt or>

Some things to note about this class-descriptor:

1. Intheinsert-procedure descriptor, the first runtime-argument descriptor correspnds to the "AID" argument that is passed to
the CUSTOMER _PKG.ADD routine. The "return™" attribute on this runtime-argument is set to "true”. With this
configuration, OJB will 'harvest' the value that is returned by the CUSTOMER_PKG.ADD stored procedure and store the
valuein the"id" attribute on the com.myproject.Customer class.

2. In both the insert-procedure and update-procedure descriptors, the runtime-argument descriptors that correspond to the four
‘audit’ columns all have the "return” argument set to "true". This allows any updates that are made by the procedure or the
insert/update triggers to be reflected in the " Customer” object that caused the insert/update operation to occur.

4.6.7.9. A complex example

This example builds upon the simple example that was presented earlier by introducing some additional requirements beyond
those that were specified in the simple example. Some of these additional requirements may seem a little contrived. To be
honest, they are. The only purpose of these additional requirements is to create situations that illustrate how the additional
capabilities provided by OJB's support for stored procedures can be utilized.

The additional requirements for this example include the following:

« All procedures will include two additional arguments. These two new arguments will be added to the end of the argument
list for all existing procedures.
* ASOURCE_SYSTEM- identifies the system that initiated the persistence operation. Thiswill provide a higher level of
audit tracking capability. In our example, thiswill always be "SAMPLE".
» ACOST_CENTER - identifies the 'cost center' that should be charged for the persistence operation. In our example, this

Page 224

OJB Documentation

argument will always be null.
« Forall "ADD" and "CHG" stored procedures, the value that was assigned to the "DATE_UPDATED" column will no
longer be returned to the caller viaan "IN OUT" argument. Instead, it will be returend to the caller viathe procedure's
return value.

Based on these new requirements, the class-descriptor for the "com.myproject.Customer” class will 1ook like this. The specific
changes are detailed below.

<cl ass-descriptor class="com nyproject.Custoner” table="CUSTOVER'>
<fiel d-descriptor colum="1D" jdbc-type="DECI MAL" name="id" primarykey="true"/>
<fi el d-descri ptor col um="NAVE" jdbc-type="VARCHAR' nane="nanme"/>
<fi el d-descriptor colum="USER_CREATED' jdbc-type="VARCHAR' nanme="user Created"/>
<fi el d-descri ptor col um="DATE _CREATED"' | dbc-type="TlI MESTAMP' nane="dat eCreated"/ >
<fi el d-descri ptor col um="USER UPDATED"' | dbc-type="VARCHAR' nane="user Updat ed"/ >
<fi el d-descri ptor col um="DATE UPDATED"' | dbc-type="TlI MESTAMP' nane="dat eUpdat ed"/ >
<i nsert-procedure name="CUSTOVER PKG. ADD"
return-field-ref="dateUpdated"> <!-- See note 1 -->
<runtinme-argunment field-ref="id" return="true"/>
<runtinme-argunent field-ref="nanme"/>
<runtime-argunent field-ref="userCreated" return="true"/>
<runtime-argunent field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtinme-argunment field-ref="dateUpdated"/> <!-- See note 2 -->
<const ant - ar gunent val ue="SAMPLE"/> <!-- See note 3 -->
<runtine-argunment/> <!-- See note 4 -->
</insert-procedure>
<updat e- pr ocedur e nane="CUSTOVER_PKG. CHG'
return-field-ref="dateUpdated"> <!-- See note 1 -->
<runtime-argunment field-ref="id"/>
<runtinme-argunent field-ref="nanme"/>
<runtime-argunent field-ref="userCreated" return="true"/>
<runtime-argunent field-ref="dateCreated" return="true"/>
<runtime-argunment field-ref="userUpdated" return="true"/>
<runtinme-argunment field-ref="dateUpdated"/> <!-- See note 2 -->
<const ant - ar gunent val ue="SAMPLE"/> <!-- See note 3 -->
<runtine-argunment/> <!-- See note 4 -->
</ updat e- pr ocedur e>
<del et e- procedur e nane="CUSTOVER PKG. CHG'>
<runtine-argunment field-ref="id"/>
<const ant - ar gunent val ue="SAMPLE"/> <!-- See note 3 -->
<runtime-argunment/> <!-- See note 4 -->
</ del et e- pr ocedur e>
</ cl ass-descri pt or>

Here are an explanation of each modification:

« Notel: Thevauethat isreturned by the"ADD" and "CHG" stored procedures will now be stored in the "dateUpdated"
attribute on the "com.myproject.Customer” class.

« Note2: Sincethe ADATE_UPDATED argument is no longer defined asan "IN OUT" argument, we have removed the
"return” attribute from the corresponding runtime-argument descriptor.

« Note 3: Thisisthefirst of two new arguments that were added to the argument list of each procedure. This argument
represents the 'source system’, the system that initiated the persistence operation. In our example, we will always pass a
value of 'SAMPLE'.

« Note4: Thisisthe second of two new arguments that were added to the argument list of each procedure. This argument
represents the 'cost center' that should be charged for the persistence operation. In our example, we have no cost center, so
we need to pass anull value. Thisis accomplished by including a ‘runtime-argument’ descriptor that has no ‘field-ref'
specified.

4.7. Testing

4.7.1. Testing Summary

Page 225

0OJB Documentation

4.7.1.1. Testing
Here can be found a summary of all (maybe nearly all) documentation about how OJB does testing (a JUnit baseed test suite)
and how to write new tests.

e TheOJB test suite
« How to writetests

4.7.2. OJB JUnit Test Suite

4.7.2.1. Introduction

Building an Object/Relational mapping tool with support for multiple API's is really error prone. To create a solid and stable
software, the most awful thing in programmers life has to be done - Testing.

Quality assurance taken seriously! OJB and provide specific tests for each supported API. Currently more than 600 test cases
for regression tests exist. Astesting framework JUnit was used.

4.7.2.2. How to run the Test Suite
If the platform depended settings are done, the test suite can be started with the ant target:

ant junit
If compiling of the sources should be skipped use

ant junit-no-conpile
If you did not manage to set up the target database with theant pr epar e-t est db you can use

ant junit-no-conpil e-no-prepare
to run the testsuite without generation of the test database (and without compiling).

After running the regression tests you should see a console output as follows:

j uni t - no- conpi | e- no- prepare:
junit] Running org. apache. oj b. broker. Al | Tests
junit] Tests run: 382, Failures: 0, Errors: 0, Tine elapsed: 50, 843 sec

junit] Running org.apache. oj b. odng. Al | Tests
junit] Tests run: 193, Failures: 0, Errors: 0, Tine elapsed: 16,243 sec

junit] Runni ng org.apache. oj b. soda. Al |l Tests
junit] Tests run: 3, Failures: 0, Errors: 0, Tine elapsed: 8,392 sec

junit] Running org.apache.ojb.otmAll Tests

junit] Tests run: 79, Failures: 0, Errors: 0, Time elapsed: 21,871 sec

| uni t-no-conpil e:

junit:

BU LD SUCCESSFUL

Total time: 3 minutes 58 seconds

We aim at shipping that releases have no failures and errors in the regression tests! If the Junit tests report errors or failures

something does not work properly! There may be several reasons.

* You made amistake in configuration (OJB was shipped with settings pass all tests). See platform, OJB.properties,
repository file, .

« Your database doesn't support specific features used by the tests

« Evil hex

« BuginOJB

Page 226

error:#ext:junit
error:#site:testing/test-suite
error:#site:testing/test-write
error:#ext:junit
error:#site:platform
error:#site:platform
error:#site:ojb-properties
error:#site:repository

OJB Documentation

JUnit writes alog-file for each tested API. You can find thelogs under [db- oj b] / t ar get / t est . Thelog files named like
t est s- XXX. t xt . Thetest logs show in detail what's going wrong.

In such a case please check again if you followed al the above steps. If you still have problems you might post a request to the
OJB user mailinglist.

4.7.2.3. What about known issues?

All major known issues are listed in the release-notes file.
The tests reproduce open bugs will be skipped on released OJB versions. It is possible to enable these tests to see all failing test
cases of the shipped version by changing aflagin[db- oj b] / bui | d. properti es file

it

If "true', junit tests nmarked as known issue in the junit-test

source code (see QJBTestCase class for nore detailed info) will be

ski pped. Default value is '"true'. For devel opnent 'false' is recommended,
because this will show unsol ved probl ens.

QJB. ski p. i ssues=true

4.7.2.4. Donate own testsfor OJB Test Suite
Details about donate own test to OJB you can find here.

4.7.3. OJB - Write Tests

4.7.3.1. Introduction

As described in test suite section OJB emphasise quality assurance and provide a huge test suite. But it isimpossible to cover
al parts of OJB with tests and OJB will never be perfect (of course it's nearly perfect ;-)), thus if you miss atest or found an
bug don't hesitate, write your own test and send it to the lists or attach it in the bug report.

4.7.3.2. How towritea new Test

Before start writing your own test case please pay attention of these rules.

The Test Class

All test classes have to inherit from or g. apache. oj b. j uni t . QIBTest Case and have to provide a static main method
to start the Junit test:

public class MyTest extends QIBTest Case
public static void main(String[] args)

String[] arr = {MyTest.cl ass. get Nane() };
junit.textui.Test Runner. main(arr);

public void test M/FirstOne()
{

{
In package or g. apache. oj b. j uni t can be found some test classes for specifc circumstances:

e« org.apache.ojb.junit.PBTest Case - Provideapublic
or g. apache. oj b. br oker . Per si st enceBr oker field.

« org.apache.ojb.junit. ODMGTest Case - Provide public or g. odng. | npl enent at i on and
or g. odng. Dat abase fields.

Page 227

error:#ext:ojb/release-notes
error:#site:test-write
error:#site:test-suite
error:#site:mail-lists
error:#ext:bugtracker

0OJB Documentation

e« o0rg.apache.ojb.junit.JUnitExtensions - Provide base classes for write multithreaded test classes. More info
see javadoc comment of this class.

A test case for the PB-API may look like:

public class ReferenceRunti meSetti ngTest extends PBTest Case
public static void main(String[] args)

String[] arr = {ReferenceRunti neSettingTest.cl ass. get Name()};
junit.textui.Test Runner. main(arr);

public void testChangeRef erenceSetting()

Cl assDescriptor cld = broker.getC assDescri pt or (Mai nQbj ect . cl ass) ;
/1 and so on
}
The PersistenceBroker cleanup is done by PBTestCase.

Persistent Objectsused by Test

We recommend to introduce separate persistent objects for each TestCase class. In test suite two concepts are used:

« Include your persistent objects as public static classes in your test class.
« Separate your test class in an independent package and include the test case and all persistent object classesin this new
package.

Test Class M etadata

Currently all test specific object metadata (class-descriptor used for tests) are shared among several xml files. The naming
conventionisreposi tory_junit_XXX. xnl . Thus metadata for new tests should be included in one of the existing junit
repository (sub) files or writen in an new separate one and included in repository main file.

<! DOCTYPE descriptor-repository PUBLIC
"-// Apache Software Foundation//DTD QJB Repository//EN
"repository.dtd"

<IENTI TY dat abase SYSTEM "repository_database. xm ">
<IENTITY internal SYSTEM "repository_internal.xm">
<! ENTITY user SYSTEM "repository_user.xm ">

<l-- here the junit include files begin -->

<IENTITY junit SYSTEM "repository_junit.xm ">

<! ENTITY junit_odng SYSTEM "repository_junit_odng. xm ">

<IENTITY junit_otm SYSTEM "repository junit_otm xm ">

<IENTITY junit _ref SYSTEM "repository junit _reference.xn ">
<IENTITY junit _meta seq SYSTEM "repository junit_meta seq. xm ">
<IENTITY junit_nodel SYSTEM "repository junit_nodel.xnl">
<IENTITY junit_cloneabl e SYSTEM "repository junit_cl oneable.xnm ">

<IENTITY junit_nyfirsttest SYSTEM "repository junit_nyfirsttest.xm">

| >

<descri ptor-repository version="1.0" isolation-|evel ="read-unconmitted"
proxy-prefetching-limt="50">

<l-- include all used database connections -->
&dat abase;

<l-- include ojb internal nmappings here -->

& nternal ;

<I-- include user defined mappings here -->

Page 228

error:#site:test-suite

OJB Documentation

&user ;

<I-- include mappings for JUnit tests -->

<l-- This could be renoved (with <IENTITY entry),
if junit test suite was not used

-->

& unit;

& uni t _odny;

& unit_otm

& unit_ref;

& unit_meta_seq;

& uni t _nodel ;

& unit_cl oneabl e;

& unit_nyfirsttest;

5. All

Page 229

	1 OJB
	1.1 ObJectRelationalBridge - OJB
	1.1.1 Summary
	1.1.1.1 flexibility
	1.1.1.2 scalability
	1.1.1.3 functionality

	1.2 OJB - Features
	1.2.1 Features

	1.3 Status
	1.3.1 PB API (Persistence Broker API)
	1.3.2 OTM API (Object Transaction Manager API)
	1.3.3 ODMG API
	1.3.4 JDO API

	1.4 OJB - Mail Lists
	1.4.1 Mailing Lists

	1.5 OJB - Mail Archives
	1.5.1 Mail Archives

	1.6 OJB - References and Testimonials
	1.6.1 References and Testimonials
	1.6.1.1 projects using OJB
	1.6.1.2 user testimonials

	1.7 Links and further readings
	1.7.1 Summary
	1.7.2 Design
	1.7.3 Further readings on O/R mapping
	1.7.4 Patterns
	1.7.5 OJB tutorials
	1.7.6 Books covering OJB

	2 Download
	3 Development
	3.1 Coding Standards
	3.1.1 Coding Standards

	4 Documentation
	4.1 Documentation
	4.1.1 Introduction

	4.2 Frequently Asked Questions
	4.2.1 Questions
	4.2.2 Answers
	4.2.2.1 1. General
	4.2.2.1.1 1.1. Why OJB? Why do we need another O/R mapping tool?
	4.2.2.1.2 1.2. How is OJB related to ODMG and JDO?
	4.2.2.1.3 1.3. What are the OJB design principals?
	4.2.2.1.4 1.4. Where can I learn more about Object/Relational mapping in general?
	4.2.2.1.5 1.5. How OJB performance compares to native JDBC programming?
	4.2.2.1.6 1.6. How OJB performance compares to other O/R mapping tools?
	4.2.2.1.7 1.7. Is OJB ready for production environments?

	4.2.2.2 2. Getting Started
	4.2.2.2.1 2.1. Help! I'm having problems installing and using OJB!
	4.2.2.2.2 2.2. Help! I still have serious problems installing OJB!
	4.2.2.2.3 2.3. OJB does not start?
	4.2.2.2.4 2.4. Does OJB support my RDBMS?
	4.2.2.2.5 2.5. What are the OJB internal tables for?
	4.2.2.2.6 2.6. What does the exception Could not borrow connection from pool mean?
	4.2.2.2.7 2.7. Any tools help to generate the metadata files?

	4.2.2.3 3. OJB api's
	4.2.2.3.1 3.1. What are the differences between the PersistenceBroker API and the ODMG API? Which one should I use in my applications?
	4.2.2.3.2 3.2. I don't like OQL, can I use the PersistenceBroker Queries within ODMG?
	4.2.2.3.3 3.3. The OJB JDO implementation is not finished, how can I start using OJB?

	4.2.2.4 4. Howto
	4.2.2.4.1 4.1. How to use OJB with my RDBMS?
	4.2.2.4.2 4.2. What are the best settings for maximal performance?
	4.2.2.4.3 4.3. How to page and sort?
	4.2.2.4.4 4.4. What about performance and memory usage if thousands of objects matching a query are returned as a Collection?
	4.2.2.4.5 4.5. When is it helpful to use Proxy Classes?
	4.2.2.4.6 4.6. How can I convert data between RDBMS and OJB?
	4.2.2.4.7 4.7. How can I trace and/or profile SQL statements executed by OJB?
	4.2.2.4.8 4.8. How does OJB manage foreign keys?
	4.2.2.4.9 4.9. How does OJB manage 'null' for primitive primary key?
	4.2.2.4.10 4.10. How to lookup object by primary key?
	4.2.2.4.11 4.11. Difference between getIteratorByQuery() and getCollectionByQuery()?
	4.2.2.4.12 4.12. How can Collections of primitive typed elements be mapped?
	4.2.2.4.13 4.13. How could class 'myClass' represent a collection of 'myClass' objects
	4.2.2.4.14 4.14. How to lookup PersistenceBroker instances?
	4.2.2.4.15 4.15. How to access ODMG?
	4.2.2.4.16 4.16. Needed to put user/password of database connection in repository file?
	4.2.2.4.17 4.17. Many different database user - How do they login?
	4.2.2.4.18 4.18. How do I use multiple databases within OJB?
	4.2.2.4.19 4.19. How does OJB handle connection pooling?
	4.2.2.4.20 4.20. Can I directly obtain a java.sql.Connection within OJB?
	4.2.2.4.21 4.21. Is it possible to perform my own sql-queries in OJB?
	4.2.2.4.22 4.22. Start OJB without a repository file?
	4.2.2.4.23 4.23. Connect to database at runtime?
	4.2.2.4.24 4.24. Add new persistent objects metadata (class-descriptor) at runtime?
	4.2.2.4.25 4.25. Global metadata changes at runtime?
	4.2.2.4.26 4.26. Per thread metadata changes at runtime?
	4.2.2.4.27 4.27. Is it possible to use OJB within EJB's?
	4.2.2.4.28 4.28. Can OJB handle ternary (or higher) associations?
	4.2.2.4.29 4.29. How to map a list of Strings
	4.2.2.4.30 4.30. How to set up Optimistic Locking
	4.2.2.4.31 4.31. How to use OJB in a cluster
	4.2.2.4.32 4.32. How to work with the ObjectCacheEmptyImpl
	4.2.2.4.33 4.33. JDO - Why must my persisten class implement javax.jdo.spi.PersistenceCapable?

	4.3 ObJectRelationalBridge - Getting Started
	4.3.1 Acquiring ojb-blank
	4.3.2 Contents of ojb-blank
	4.3.2.1 Sample project

	4.3.3 The build files
	4.3.3.1 Configuration via build.properties
	4.3.3.2 Building via build.xml
	4.3.3.3 Sample project

	4.3.4 The runtime configuration files
	4.3.4.1 Configuring the OJB runtime
	4.3.4.2 Configuring the database connection
	4.3.4.3 Configuring the repository
	4.3.4.4 Sample project

	4.3.5 Learning More

	4.4 Tutorials
	4.4.1 Tutorial Summary
	4.4.1.1 Tutorials

	4.4.2 Mapping Tutorial
	4.4.2.1 What is the Object-Relational Mapping Metadata?
	4.4.2.1.1 The Product Class
	4.4.2.1.2 The Database
	4.4.2.1.3 The Metadata
	4.4.2.1.4 Using the XDoclet module

	4.4.2.2 Advanced Topics
	4.4.2.2.1 Relations
	4.4.2.2.2 Inheritence
	4.4.2.2.3 Anonymous Keys
	4.4.2.2.4 Large Projects
	4.4.2.2.5 Custom JDBC Mapping

	4.4.3 Persistence Broker Tutorial
	4.4.3.1 The PersistenceBroker API
	4.4.3.1.1 Introduction
	4.4.3.1.2 A First Look - Persisting New Objects
	4.4.3.1.3 Querying Persistent Objects
	4.4.3.1.4 Updating Persistent Objects
	4.4.3.1.5 Deleting Persistent Objects
	4.4.3.1.6 Find object by primary key

	4.4.3.2 Notes on Using the PersistenceBroker API
	4.4.3.2.1 Pooling PersistenceBrokers
	4.4.3.2.2 Transactions
	4.4.3.2.3 Exception Handling

	4.4.4 The ODMG API
	4.4.4.1 Introduction
	4.4.4.2 Initializing ODMG
	4.4.4.3 Persisting New Objects
	4.4.4.4 Querying Persistent Objects
	4.4.4.5 Updating Persistent Objects
	4.4.4.6 Deleting Persistent Objects
	4.4.4.7 Notes on Using the ODMG API
	4.4.4.7.1 Transactions
	4.4.4.7.2 Locks
	4.4.4.7.3 Persisting Non-Transactional Objects

	4.4.5 JDO Tutorial
	4.4.5.1 Using the ObJectRelationalBridge JDO API
	4.4.5.1.1 Introduction
	4.4.5.1.2 Running the Tutorial Application

	4.4.5.2 Using the JDO API in the UseCase Implementations
	4.4.5.2.1 Obtaining the JDO PersistenceManager Object
	4.4.5.2.2 Retrieving collections
	4.4.5.2.3 Storing objects
	4.4.5.2.4 Updating Objects
	4.4.5.2.5 Deleting Objects

	4.4.5.3 Conclusion

	4.4.6 Object Transaction Manager Tutorial
	4.4.6.1 The OTM API
	4.4.6.1.1 Introduction
	4.4.6.1.2 Persisting New Objects
	4.4.6.1.3 Deleting Persistent Objects
	4.4.6.1.4 Querying for Objects
	4.4.6.1.5 More Sophisticated Transaction Handling

	4.4.6.2 Notes on the Object Transaction Manager
	4.4.6.2.1 Transactions

	4.5 Reference Guides
	4.5.1 Reference Guides
	4.5.1.1 Reference Guides

	4.5.2 Platforms
	4.5.2.1 how to use OJB with a specific relational database
	4.5.2.2 Basic Concepts
	4.5.2.2.1 OJB internal tables
	4.5.2.2.2 Tables for the regression testbed
	4.5.2.2.3 Tables for the tutorial applications

	4.5.2.3 The setup process
	4.5.2.3.1 Selecting a platform profile
	4.5.2.3.2 editing the profile to point to your target db
	4.5.2.3.3 Executing the build script
	4.5.2.3.4 Verifying the installation

	4.5.3 OJB.properties Configuration File
	4.5.3.1 OJB Configuration
	4.5.3.2 OJB.properties File

	4.5.4 JDBC Types
	4.5.4.1 Mapping of JDBC Types to Java Types
	4.5.4.2 Type and Value Conversions
	4.5.4.2.1 Introduction
	4.5.4.2.2 The problem
	4.5.4.2.3 The Solution

	4.5.5 Repository File
	4.5.5.1 Introduction - repository syntax
	4.5.5.2 descriptor-repository
	4.5.5.2.1 Elements
	4.5.5.2.2 Attributes
	4.5.5.2.2.1 version
	4.5.5.2.2.2 isolation
	4.5.5.2.2.3 proxy-prefetching-limit

	4.5.5.3 jdbc-connection-descriptor
	4.5.5.3.1 Elements
	4.5.5.3.2 Attributes
	4.5.5.3.2.1 jdbcAlias
	4.5.5.3.2.2 default-connection
	4.5.5.3.2.3 platform
	4.5.5.3.2.4 jdbc-level
	4.5.5.3.2.5 eager-release
	4.5.5.3.2.6 batch-mode
	4.5.5.3.2.7 useAutoCommit
	4.5.5.3.2.8 ignoreAutoCommitExceptions
	4.5.5.3.2.9 jndi-datasource-name
	4.5.5.3.2.10 username

	4.5.5.4 connection-pool
	4.5.5.5 sequence-manager
	4.5.5.6 object-cache
	4.5.5.7 custom attribute
	4.5.5.8 class-descriptor
	4.5.5.9 extent-class
	4.5.5.10 field-descriptor
	4.5.5.11 reference-descriptor
	4.5.5.12 foreignkey
	4.5.5.13 collection-descriptor
	4.5.5.14 inverse-foreignkey
	4.5.5.15 fk-pointing-to-this-class
	4.5.5.16 fk-pointing-to-element-class
	4.5.5.17 query-customizer
	4.5.5.18 index-descriptor
	4.5.5.19 index-column
	4.5.5.20 Stored Procedure Support
	4.5.5.20.1 insert-procedure
	4.5.5.20.2 update-procedure
	4.5.5.20.3 delete-procedure
	4.5.5.20.4 runtime-argument
	4.5.5.20.5 constant-argument

	4.5.6 Basic Technique
	4.5.6.1 Mapping 1:1 associations
	4.5.6.1.1 1:1 auto-xxx setting

	4.5.6.2 Mapping 1:n associations
	4.5.6.2.1 1:n auto-xxx setting

	4.5.6.3 Mapping m:n associations
	4.5.6.3.1 Manual decomposition into two 1:n associations
	4.5.6.3.2 Support for Non-Decomposed m:n Mappings
	4.5.6.3.3 m:n auto-xxx setting

	4.5.6.4 Setting Load, Update, and Delete Cascading
	4.5.6.4.1 auto-retrieve setting
	4.5.6.4.2 Link references

	4.5.6.5 Using Proxy Classes
	4.5.6.5.1 Using Dynamic Proxies
	4.5.6.5.2 Using a Single Proxy for a Whole Collection
	4.5.6.5.3 Using a Proxy for a Reference
	4.5.6.5.4 Customizing the proxy mechanism

	4.5.6.6 Type and Value Conversions

	4.5.7 Advanced Technique
	4.5.7.1 Introduction
	4.5.7.2 Extents and Polymorphism
	4.5.7.2.1 Polymorphism
	4.5.7.2.2 Extents

	4.5.7.3 Mapping Inheritance Hierarchies
	4.5.7.3.1 Mapping All Classes on the Same Table
	4.5.7.3.2 Mapping Each Class to a Distinct Table
	4.5.7.3.3 Mapping Classes on Multiple Joined Tables

	4.5.7.4 Using interfaces with OJB
	4.5.7.5 Change PersistentField Class
	4.5.7.6 How do anonymous keys work?
	4.5.7.7 Using Rowreader
	4.5.7.7.1 Rowreader Example

	4.5.7.8 Nested Objects
	4.5.7.9 Instance Callbacks
	4.5.7.10 Manageable Collection
	4.5.7.10.1 Types Allowed for Implementing 1:n and m:n Associations
	4.5.7.10.2 Which collection-class type should be used?

	4.5.7.11 Customizing collection queries
	4.5.7.12 Metadata runtime changes

	4.5.8 OJB Queries
	4.5.8.1 Introduction
	4.5.8.2 Query by Criteria
	4.5.8.2.1 Query Criteria
	4.5.8.2.1.1 in / not in
	4.5.8.2.1.2 and / or
	4.5.8.2.1.3 negating the criteria

	4.5.8.2.2 ordering and grouping
	4.5.8.2.3 subqueries
	4.5.8.2.4 joins
	4.5.8.2.5 user defined alias
	4.5.8.2.6 class hints
	4.5.8.2.7 prefetched relationships
	4.5.8.2.8 querying for objects
	4.5.8.2.9 Report Queries
	4.5.8.2.9.1 Limitations of Report Queries

	4.5.8.3 ODMG OQL
	4.5.8.4 JDO queries

	4.5.9 Metadata handling
	4.5.9.1 Introduction
	4.5.9.2 When does OJB read metadata
	4.5.9.3 Connection metadata
	4.5.9.3.1 Load and merge connection metadata

	4.5.9.4 Persistent object metadata
	4.5.9.4.1 Load and merge object metadata
	4.5.9.4.2 Global object metadata changes
	4.5.9.4.3 Per thread metadata changes
	4.5.9.4.4 Object metadata profiles
	4.5.9.4.5 Reference runtime changes on per query basis
	4.5.9.4.6 Pitfalls

	4.5.9.5 Questions
	4.5.9.5.1 Start OJB without a repository file?
	4.5.9.5.2 Connect to database at runtime?
	4.5.9.5.3 Add new persistent objects metadata (class-descriptor) at runtime?

	4.5.10 Deployment
	4.5.10.1 Introduction
	4.5.10.2 Things needed for deploying OJB
	4.5.10.2.1 1. The OJB binary jar archive
	4.5.10.2.2 2. Configuration data
	4.5.10.2.3 3. External dependencies that do not come with OJB
	4.5.10.2.4 4. Optional jar archives that come with OJB
	4.5.10.2.5 5. Don't forget the JDBC driver

	4.5.10.3 Deployment in standalone applications
	4.5.10.4 Deployment in servlet based applications
	4.5.10.5 Deployment in EJB based applications
	4.5.10.5.1 Configure OJB for managed environments considering as JBoss example
	4.5.10.5.1.1 1. Adapt OJB.properties file
	4.5.10.5.1.2 2. Declare datasource in the repository (repository_database) file and do additional configuration
	4.5.10.5.1.3 [2b. How to deploy ojb test hsqldb database to jboss]
	4.5.10.5.1.4 3. Include all OJB configuration files in classpath
	4.5.10.5.1.5 4. Enclose all libraries OJB depend on
	4.5.10.5.1.6 5. Take care of caching
	4.5.10.5.1.7 6. Take care of locking
	4.5.10.5.1.8 7. Put all together
	4.5.10.5.1.9 7b. Example: Deployable jar
	4.5.10.5.1.10 8. How to access OJB API?
	4.5.10.5.1.11 9. OJB logging within JBoss

	4.5.10.5.2 Example Session Beans
	4.5.10.5.2.1 Introduction
	4.5.10.5.2.2 Generate the sample session beans
	4.5.10.5.2.3 How to run test clients for PB / ODMG - api

	4.5.10.5.3 Packing an .ear file
	4.5.10.5.3.1 The Package Structure
	4.5.10.5.3.2 Make OJB API Resources available

	4.5.10.5.4 Make OJB accessible via JNDI
	4.5.10.5.4.1 JBoss
	4.5.10.5.4.2 Other Application Server

	4.5.10.5.5 Instructions for Weblogic

	4.5.11 OJB - Connection Handling
	4.5.11.1 Introduction
	4.5.11.2 ConnectionFactory
	4.5.11.2.1 ConnectionFactoryPooledImpl
	4.5.11.2.2 ConnectionFactoryNotPooledImpl
	4.5.11.2.3 ConnectionFactoryManagedImpl
	4.5.11.2.4 ConnectionFactoryDBCPImpl

	4.5.11.3 ConnectionManager
	4.5.11.4 Questions and Answers
	4.5.11.4.1 How does OJB handle connection pooling?
	4.5.11.4.2 Can I directly obtain a java.sql.Connection within OJB?

	4.5.12 The Object Cache
	4.5.12.1 Introduction
	4.5.12.2 Why a cache and how it works?
	4.5.12.3 How to change the used ObjectCache implementation
	4.5.12.4 Shipped cache implementations
	4.5.12.4.1 ObjectCacheDefaultImpl
	4.5.12.4.2 ObjectCachePerBrokerImpl
	4.5.12.4.3 ObjectCacheJCSImpl
	4.5.12.4.4 ObjectCacheEmptyImpl
	4.5.12.4.5 ObjectCacheOSCacheImpl
	4.5.12.4.6 More implementations ...

	4.5.12.5 Distributed ObjectCache?
	4.5.12.6 Implement your own cache
	4.5.12.7 CacheFilter feature
	4.5.12.8 Future prospects

	4.5.13 Sequence Manager
	4.5.13.1 The OJB Sequence Manager
	4.5.13.1.1 Automatical assignment of unique values
	4.5.13.1.2 Force computation of unique values
	4.5.13.1.3 How to change the sequence manager?
	4.5.13.1.4 SequenceManager implementations
	4.5.13.1.4.1 High/Low sequence manager
	4.5.13.1.4.2 In-Memory sequence manager
	4.5.13.1.4.3 Database sequences based implementation
	4.5.13.1.4.4 Database sequences based high/low implementation
	4.5.13.1.4.5 Oracle-style sequencing
	4.5.13.1.4.6 Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing
	4.5.13.1.4.7 Identity based sequence manager

	4.5.13.1.5 How to write my own sequence manager?
	4.5.13.1.6 Questions
	4.5.13.1.6.1 When using sequence-name attribute in field-descriptor?
	4.5.13.1.6.2 What to hell does extent aware mean?
	4.5.13.1.6.3 How could I prevent auto-build of the sequence-name?
	4.5.13.1.6.4 Sequence manager handling using multiple databases
	4.5.13.1.6.5 One sequence manager with multiple databases?
	4.5.13.1.6.6 Can I get direct access to the sequence manager?
	4.5.13.1.6.7 Any known pitfalls?

	4.5.14 OJB logging configuration
	4.5.14.1 Logging in OJB
	4.5.14.2 Logging configuration within OJB
	4.5.14.2.1 How and when OJB determines what kind of logging to use
	4.5.14.2.2 Configuration of logging for the individual components

	4.5.14.3 Logging configuration via configuration files
	4.5.14.3.1 OJB-logging.properties
	4.5.14.3.2 commons-logging.properties
	4.5.14.3.3 log4j.properties
	4.5.14.3.4 Where to put the configuration files

	4.5.14.4 Logging configuration at runtime
	4.5.14.5 Defining your own logger

	4.5.15 The ODMG Lock Manager
	4.5.15.1 What it does
	4.5.15.2 How it works
	4.5.15.3 Locking in distributed environment
	4.5.15.4 Implement you own lock manager

	4.5.16 XDoclet OJB module documentation
	4.5.16.1 Acquiring and building
	4.5.16.1.1 Building with a XDoclet source distribution
	4.5.16.1.2 Building with a XDoclet CVS checkout
	4.5.16.1.3 Other build options

	4.5.16.2 Usage
	4.5.16.3 Tag reference
	4.5.16.4 Interfaces and Classes
	4.5.16.4.1 ojb.class
	4.5.16.4.2 ojb.extent-class
	4.5.16.4.3 ojb.modify-inherited
	4.5.16.4.4 ojb.object-cache
	4.5.16.4.5 ojb.index
	4.5.16.4.6 ojb.delete-procedure
	4.5.16.4.7 ojb.insert-procedure
	4.5.16.4.8 ojb.update-procedure
	4.5.16.4.9 ojb.constant-argument
	4.5.16.4.10 ojb.runtime-argument

	4.5.16.5 Fields and Bean properties
	4.5.16.5.1 ojb.field

	4.5.16.6 References
	4.5.16.6.1 ojb.reference

	4.5.16.7 Collections
	4.5.16.7.1 ojb.collection

	4.5.16.8 Nested objects
	4.5.16.8.1 ojb.nested
	4.5.16.8.2 ojb.modify-nested

	4.5.17 OJB Performance
	4.5.17.1 Introduction
	4.5.17.2 The Performance Test Suite
	4.5.17.3 Interpreting test results
	4.5.17.4 How OJB compares to native JDBC programming?
	4.5.17.5 OJB performance in multi-threaded environments
	4.5.17.6 How OJB compares to other O/R mapping tools?
	4.5.17.7 What are the best settings for maximal performance?

	4.6 Howto's
	4.6.1 Howto's Summary
	4.6.1.1 Howto's

	4.6.2 How to build O/R mapping meta data files
	4.6.2.1 How to build O/R mapping files
	4.6.2.2 classification of O/R related transformations
	4.6.2.3 Forward engineering from XMI
	4.6.2.4 Forward engineering from Torque
	4.6.2.5 Forward engineering from repository.xml
	4.6.2.6 XDoclet transformation from Java code
	4.6.2.7 Reverse engineering from database

	4.6.3 HOWTO - Use Anonymous Keys
	4.6.3.1 Why Do We Need Anonymous Keys?
	4.6.3.2 How it works
	4.6.3.3 Using Anonymous Keys
	4.6.3.3.1 The Code
	4.6.3.3.2 The Database
	4.6.3.3.3 The Repository Configuration

	4.6.3.4 Benefits and Drawbacks

	4.6.4 HOWTO - Use DB Sequences
	4.6.4.1 Introduction
	4.6.4.2 The Sample Database
	4.6.4.3 Using OJB
	4.6.4.3.1 The Database Repository Descriptor
	4.6.4.3.2 Defining a Thingie Class
	4.6.4.3.3 Using Thingie

	4.6.5 HOWTO - Work with LOB Data Types
	4.6.5.1 Using Oracle LOB Data Types with OJB
	4.6.5.1.1 Introduction

	4.6.5.2 Backgrounder: Large objects in databases
	4.6.5.2.1 Your database: The most expensive file system?
	4.6.5.2.2 Oracle LARGE versus LOB datatypes

	4.6.5.3 Large Objects in OJB
	4.6.5.3.1 Strategy 1: Using streams for LOB I/O
	4.6.5.3.2 Strategy 2: Embedding OJB content in Java objects
	4.6.5.3.3 Querying CLOB content

	4.6.6 HOWTO - Use OJB in clustered environments
	4.6.6.1 How to use OJB in clustered environments
	4.6.6.2 Three steps to clustering your OJB application
	4.6.6.2.1 First: Take care of the sequence manager
	4.6.6.2.1.1 Handling sequence names

	4.6.6.2.2 Second: Enable optimistic locking
	4.6.6.2.3 Do The Cache

	4.6.6.3 Notes

	4.6.7 HOWTO - Stored Procedure Support
	4.6.7.1 Introduction
	4.6.7.2 Repository entries
	4.6.7.3 Common attributes
	4.6.7.4 insert-procedure
	4.6.7.5 update-procedure
	4.6.7.6 delete-procedure
	4.6.7.7 Argument descriptors
	4.6.7.7.1 runtime-argument descriptors
	4.6.7.7.2 constant-argument descriptors

	4.6.7.8 A simple example
	4.6.7.8.1 The basic requirements
	4.6.7.8.2 The database objects
	4.6.7.8.3 The CUSTOMER table
	4.6.7.8.4 The sequence
	4.6.7.8.5 The insert and update triggers
	4.6.7.8.6 The package
	4.6.7.8.7 The implementation

	4.6.7.9 A complex example

	4.7 Testing
	4.7.1 Testing Summary
	4.7.1.1 Testing

	4.7.2 OJB JUnit Test Suite
	4.7.2.1 Introduction
	4.7.2.2 How to run the Test Suite
	4.7.2.3 What about known issues?
	4.7.2.4 Donate own tests for OJB Test Suite

	4.7.3 OJB - Write Tests
	4.7.3.1 Introduction
	4.7.3.2 How to write a new Test
	4.7.3.2.1 The Test Class
	4.7.3.2.2 Persistent Objects used by Test
	4.7.3.2.3 Test Class Metadata

	5 All

