Deployment

by Thomas Mahler, Armin Waibel, Stephen Ting, Christophe Lombart, Lucy Zhao

1. Introduction
This section enumerates all things needed to deploy OJB in standalone or servlet based applications and j2ee-container.

2. Things needed for deploying OJB

2.1.1. The OJB binary jar archive

You need adb- o] b- <ver si on>. j ar file containing the compiled OJB library.

Thisjar files contains all OJB code neccessary in production level environments. It does not contain any test code. It also does
not contain any configuration data. You'll find this file in the lib directory of the binary distribution. If you are working with
the source distribution you can assemble the binary jar archive By calling

ant jar
This ant task generates the binary jar to the dist directory.

2.2. 2. Configuration data

OJB needs two kinds of configuration data:

1. Configuration of the OJB runtime environment. This datais stored in afile named QJB. pr operti es . Learn more about
thisfile here.

2. Configuration of the MetaData layer. Thisdatais stored in filenamed r eposi t ory. xm (and several included files).
L earn more about thisfile here.

These configuration files are read in through ClassL oader resource lookup and must therefore be placed on the classpath.

2.3. 3. External dependenciesthat do not comewith OJB

Some components of OJB depend on external libraries and components that cannot be shipped with OJB. You'll also need
these if you want to compile OJB from source. Hereis alist of these dependencies:
] 2ee.j ar
This is the main archive of the J2EE SDK. We recommend that you use the 1.3 version as the 1.4 is rather new
and not thoroughly tested yet with OJB.
jdo.jar, jdori*.jar
The JDO Reference implementation is required if you plan to use the JDO Api.

2.4. 4. Optional jar archivesthat comewith OJB

Some of jar filesinthel i b folder are only used during build-time or are only required by certain components of OJB, and so
they might need not to be needed in runtime environments.
Apart from wasting disk space they do no harm. If you don't care about disk space you just take all jarsfromthel i b folder.

Page 1

http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/docu/guides/ojb-properties.html
http://db.apache.org/ojb/docu/guides/ojb-properties.html
http://db.apache.org/ojb/repository.xml.txt
http://db.apache.org/ojb/docu/guides/repository.html
http://java.sun.com/j2ee/1.3/download.html#sdk
http://java.sun.com/products/jdo/

Deployment

If you do care, hereisthe list of jars you might omit during runtime:

ant-*.jar

These are the Apache Ant 1.6 jars.

antlr-[version].jar

ANTLR is a parser generator which is used in the ODMG component of OJB. If you only use the PB Api, then
you don't need this.

junit.jar

Junit for running the unit tests. You'll need this only if you're also writing unit tests for you app.
xerces.jar, xm-apis.jar

The Xerces XML parser. Since most newer JDK's ship with an XML parser, it is likely that you do not need
these files.

xal an. j ar

Xalan is used to generate the unit test report, so you'll probably don't need this.

j akart a-regexp-[version].jar

The Jakarta Reqular Expression library is only used when building OJB from source.

t orque- xxx.jar, velocity-xxx.jar

Torque is used to generate concrete databases from database-independent schema files. OJB uses it internally
to setup databases for the unit tests.

xdocl et-[version].jar, xjavadoc-[version].jar, xdoclet-ojb-nodule-[version].jar,
commons-col | ections-[version].jar

The XDoclet OJB module can be used to generate the repository metadata and Torque schema files from
Javadoc comments in the Java source files. It is however not required at runtime, so you can safely ignore
these files then.

2.5.5. Don't forget the JIDBC driver

The repository.xml defines JDBC Connections to your runtime databases. To use the declared JDBC drivers the respective jar
archives must also be present in the classpath. Refer to the documentation of your databases.

In the following sections | will describe how to deploy these items for specific runtime environments.

3. Deployment in standalone applications

Deploying OJB for standalone applications is most simple. If you follow these four steps your application will be up in a few
minutes.

1. Adddb-oj b-<versi on>.j ar to the classpath

2. placeQJB. properties andrepository.xn fileson the classpath
3.
4
4

Add the additional runtime jar archives to the classpath.

. Add your JDBC driversjar archive to the classpath.

. Deployment in servlet based applications

Generally speaking the four steps described in the previous section have to be followed also in Servlet / JSP based
environments.
The exact details may differ for your specific Servlet container, but the general concepts should be quite similar.

1.

Deploy db- oj b- <ver si on>. j ar with your servlet applications WAR file.
The WAR format specifies that application specific jars are to be placed in adirectory VEB- | NF/ | i b. Place
db- 0] b- <ver si on>. j ar tothisdirectory.

. Deploy QJB. properties andrepository.xm withyour serviet applications WAR file.

The WAR format specifies that Servlet classes are to be placed in adirectory VEB- | NF/ ¢l asses. The OJB
configuration files have to be in this directory.

Page 2

http://ant.apache.org/
http://www.antlr.org/
http://www.junit.org
http://xml.apache.org/xerces-j/
http://xml.apache.org/xalan-j/
http://jakarta.apache.org/regexp/index.html
http://db.apache.org/torque/
http://db.apache.org/ojb/docu/guides/xdoclet-module.html
http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/repository.xml.txt

Deployment

3. Add the additional runtime jar archivesto WEB- | NF/ | i b too.
4. Addyour JDBC driversjar archiveto VEB- | NF/ | i b.

By executing ant war you can generate a sample serviet application assembled to a valid WAR file. The resulting
0j b-servl et. war fileiswritten to the dist directory. Y ou can deploy this WAR file to your servlet engine or unzip it to
have alook at its directory structure.

you can also use thetarget war as a starting point for your own deployment scripts.

5. Deployment in EJB based applications

The above mentioned guidelines concerning jar files and placing of the OJB.properties and the repository.xml are valid for
EJB environments as well. But apart from these basic steps you'll have to perform some additional configurations to integrate
OJB into a managed environment.

The instructions to make OJB running within your application server should be similar for al server. So the following
instructions for JBoss should be useful for all user. E.g. most QJB. pr operti es file settings are the same for all application
Server.

There are some topics you should examine very carefully:

« Connection handling: Lookup DataSource from your AppServer, only these connections will be enlisted in running
transactions

« Caching: Do you need distributed caching?

e Locking: Do you need distributed locking (when using odmg-api)?

5.1. Configure OJB for managed environments considering as JBoss example

The following steps describe how to configure OJB for managed environments and deploy on a b conform Application
Server (JBoss) on the basis of the shipped ejb-examples. In managed environments OJB needs some specific properties.

5.1.1. 1. Adapt OJB.propertiesfile

If the PB-api is the only persistence API being used (no ODMG nor JDO) and it is only being used in a managed environment,
it is strongly recommended to use a special PersistenceBrokerFactory class, which enables PersistenceBroker instances to
participate in the running JTA transaction (e.g. this makes PBStatelL istener proper work in managed environments and enables
use of ‘autoSync' property in ObjectCacheDefaultimpl):

Per si st enceBr oker Fact or yCl ass=or g. apache. oj b. br oker. core. Per si st enceBr oker Fact or ySyncl npl
Don't use this setting in conjunction with any other top-level api (e.g. ODMG-api).

Your QJB. properti es file need the following additional settings to work within managed environments (apply to all used
api):

CbhnectionFactoryClass:
or g. apache. oj b. br oker . accessl ayer. Connect i onFact or yManagedI npl

4 set used application server TM access cl ass
JTATr ansact i onManager Cl ass=
or g. apache. oj b. ot mtransacti on. fact ory. JBossTr ansact i onManager Fact ory

A specific ConnectionFactory implementation was used to by-pass all forbidden method calls in managed environments.

The JTATransactionManagerClass set the used implementation class for transaction manager lookup, necessary for for

Page 3

http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/docu/guides/connection.html

Deployment

| avax. transacti on. Transacti onManager lookup to participate in running JTA transaction via
| avax. transacti on. Synchroni zat i on interface.

The ODMG-api needs some additional settings for use in managed environments (only needed when odmg-api was used):

#'6nly needed for odng-ap
| mpl enent ati onCl ass=or g. apache. oj b. odng. | npl enent ati onJTAI npl

#lbnly needed for odng-ap
QIBTxManager Cl ass=or g. apache. oj b. odng. JTATxManager

The ImplementationClass specify the ODMG base class implementation. In managed environments a specific implementation
is used, able to participate in JTA transactions.

The OJBTxManagerClass specify the used OJBTxManager implementation to manage the transaction synchronization in
managed enviroments.

Currently OJB integrate in managed environments via j avax. t ransacti on. Synchroni zati on interface. When the JCA adapter is finished (work in progress)
integration will be more smooth.

5.1.2. 2. Declare datasour cein therepository (repository _database) file and do additional configuration

Do only use Dat aSour ce from the application server to connect to your database (Local used connections do not participate
in JTA transaction).

We strongly recommend to use JBoss 3.2.2 or higher of the 3.x series of JBoss. With earlier versions of 3.x we got Statement/Connection resource problems when running some
gjb stress tests. As workaround we introduce a jboss specific attribute eager-release for version before 3.2.2, but it seems that this attribute can cause side-effects. Again, this
problem seemsto befixed in 3.2.2.

Define OJB to use a DataSource:

<! -- Datasource exanple -->
<j dbc- connecti on-descri pt or
jcd-alias="default"
def aul t - connecti on="t rue"
pl at f or m=" Sapdb"
j dbc- | evel =" 2. 0"
j ndi - dat asour ce- nane="j ava: Def aul t DS"
user name="sa"
passwor d=""
eager -rel ease="f al se"
bat ch- node="f al se"
useAut oComm t =" 0"
i gnor eAut oConmmi t Excepti ons="f al se"

<obj ect -cache cl ass="org. apache. oj b. br oker. cache. Obj ect CacheDef aul t | npl ">
<attribute attribute-nanme="tinmeout" attribute-val ue="900"/>
<attribute attribute-nane="autoSync" attribute-val ue="true"/>

</ obj ect - cache>

<sequence- manager cl assNane="org. apache. oj b. broker. util.sequence. SequenceManager Next Val | npl ">
</ sequence- nmanager >

</ j dbc- connecti on- descri pt or >

The attribute useAut oCommi t =" 0" is mandatory in managed environments, because it's in most cases not allowed to
change autoCommit state.

Page 4

Deployment

In managed environments you can't use the default sequence manager (SequenceManagerHighLowlmpl) of OJB. For alternative sequence manager implemetation see here.

5.1.3. [2b. How to deploy ojb test hsqldb databaseto jboss|

If you use hsgl database for testing you can easy setup the DB on jboss. After creating the database in OJB test directory with
ant prepare-testdb, take the generated .../target/test/QIB.script file and rename it to
defaul t.script. Then replace the jboss default.script file in
...ljboss-3.x.y/server/defaul t/db/hypersoni c withthisfile.

5.1.4. 3. Include all OJB configuration filesin classpath

Include the all needed OJB configuration filesin your classpath:

- OJB.properties

- repository.dtd

- repository.xml

- repository_internal.xml

- repository _database.xml,

- repository_eglb.xml (if you want to run the gjb examples)

To deploy the gjb-examples beans we include al configuration filesin agjb jar file - more info about this see below.

The repository.xml for the gjb-example beans look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<!-- This is a sanple netadata repository for the ObJectBridge
System Use this file as a tenplate for building your own
mappi ngs- - >

<l-- defining entities for include-files -->

<! DOCTYPE descriptor-repository SYSTEM "repository.dtd" [
<I ENTI TY dat abase SYSTEM "repository_ dat abase. xm ">
<IENTITY internal SYSTEM "repository internal.xm">
<IENTITY ejb SYSTEM "repository _ejb.xnm ">

| >

<descri ptor-repository version="1.0"
i sol ati on-1evel ="read-uncomitted">

<l-- include all used database connections -->
&dat abase;

<l-- include ojb internal nappings here -->
&i nt er nal

<l-- include mappi ngs for the EJB-exanples -->
&ej b;

</ descriptor-repository>

5.1.5. 4. Enclose all libraries OJB depend on
In most cases it is recommended to include all libraries OJB depend on in the application .ear/.sar or gb .jar file to make OJB
run and (re-)deployable. Here are the libraries needed to make the ojb sample session beans run on JBoss:

e Thejakartacommons librariesfiles (all commons-xxx.jar) from OJB /lib directory
e Theantlrjar file (antlr-xxx.jar) from OJB /lib directory

Page 5

http://db.apache.org/ojb/docu/guides/sequencemanager.html

Deployment

o jakarta-regexp-xxx.jar from OJB /lib directory
e [jakartaturbinejcsjar from OJB /lib directory, only if ObjectCacheJCSImpl was used]

(This was tested with jboss 3.2.2)

5.1.6. 5. Take care of caching

Very important thing is cache synchronization with the database. When using the ODMG-api or PB-api (with special PBF (see
1.) setting) it's possible to use all Gbj ect Cache implementations as long as OJB doesn't run in a clustered mode. When the
Obj ect CacheDef aul t | npl cache implementation was used it's recommended to enable the autoSync mode.

In clustered environments (OJB run on different AppServer nodes) you need a distributed ObjectCache or you should use a
local/empty cache like

Obj ect CacheCl ass=or g. apache. oj b. br oker. cache. Obj ect CachePer Br oker | npl
or

Cbj ect Cached ass=or g. apache. oj b. br oker. cache. Qbj ect CacheEnpt yI npl
The cache is pluggable, so you can write your own ObjectCache implementation to accomplish your expectations.

More info you can find in clustering and ObjectCache topic.

5.1.7. 6. Take care of locking

If the used api supports Object Locking (e.g. ODMG-api, PB-api does not), in clustered environments (OJB run on different
AppServer nodes) a distributed |ock management is mandatory.

5.1.8. 7. Put all together

Now put al files together. We keep the examples as simple as possible, thus we deploy only agb .jar file. Below you can find
a short instruction how to pack an ejb application .ear file including OJB.

Generate the gjb-examples described below or build your own gb .jar file including al beans, gb-jar.xml and appServer
dependend files. Then add all OJB configuration files, the db-ojb jar file and all libraries OJB depends on into thisgjb .jar file.
The structure of the gjb .jar file should now look like this:

/ QJB. properties
/repository.dtd

/[repository. xm

[al | used repository-XYZ. xm
| META- | NF

.../ Mani fest. nf
...lejb-jar.xmn
...ljboss.xm

[all ejb classes

[db-0j b-1. X. j ar
[all used libraries

5.1.9. 7b. Example: Deployablejar

For example the jar-file used to test the ejb-examples shipped with OJB, base on the db-ojb-XY-beans.jar file. This jar was
created when the g b-examples target was called.

The generated jar contains only the ejb-classes and the deployment-descriptor. We have to add additional jars (all libraries
used by OJB) and files (all configuration files) to make it deployable. The deployable db-ojb-XY-beans.jar should look like
this:

Page 6

http://db.apache.org/ojb/docu/guides/objectcache.html
http://db.apache.org/ojb/docu/howtos/howto-work-with-clustering.html
http://db.apache.org/ojb/docu/howtos/howto-work-with-clustering.html
http://db.apache.org/ojb/docu/guides/objectcache.html
http://db.apache.org/ojb/docu/guides/lockmanager.html

Deployment

/ QJB. properties

/[repository.dtd

/ repository. xm

/ reposi tory_dat abase. xni
[repository_ejb.xm

[repository_internal.xm
| NETA- | NF
.../ Mani fest. nf
...lejb-jar.xmn
...ljboss.xm

/org
...lapache (all ejb classes)

[db-0j b-1. X. j ar

[ant | r-XXX. | ar

/ conmons- beanuti | s- XXX j ar

/ conmons-col | ecti ons- XXX. j ar
/[commons- dbcp- XXX. j ar

[commons- | anf - XXX. j ar

/[commons- | oggi ng- XXX. j ar

/ commons- pool - XXX. j ar

[j akart a-regexp- XXX. j ar

Please pay attention on the configuration settings to make OJB work in managed environments (especially the OJB.properties
settings).

This example isn't a real world production example. Normally you will setup one or more enterprise archive files (.ear files) to bundle one or more complete J2EE (web)
applications. More about how to build an J2EE application using OJB see here.

The described example should be re-deployabl e/hot-deployable in JBoss.
If you will get any problems, please let me know. All suggestions ar e welcome!

5.1.10. 8. How to access OJB API?

In managed environments it is possible to access OJB in same way used in non-managed environments:

/| PB-api
Per si st enceBr oker broker = PersistenceBrokerFactory.create...

/ | ODMG- api
| mpl enent ati on odng = QJB. get | nst ance();

But it is recommended to bind OJB api access classes to JNDI and lookup the the api entry classes via INDI.

5.1.11. 9. OJB logging within JBoss

Jboss use |0g4j as standard logging api.
In summary, to use log4j logging with OJB within jBoss:
1) in OJB.properties set

Logger Gl ass=or g. apache. oj b. broker. util .| oggi ng. Log4j Logger | npl

There is no need for a separate logdj.properties file of OJB-specific logd] settings (in fact the OJB.properties setting
LoggerConfigFileisignored). Instead, the jBoss log4j configuration file must be used:

2) in IBOSS HOME/server/default/conf/log4j.xml,
define appenders and add categories to add or filter logging of desired OJB packages, following the numerous examples in that
file. For example,

Page 7

http://logging.apache.org/log4j/

Deployment

<cat egory nanme="org. apache. oj b">
<priority val ue="DEBUG' />
<appender -ref ref="CONSOLE"/ >
<appender-ref ref="FILE"/>

</ cat egory>

<cat egory name="org. apache. oj b. br oker . met adat a. Reposi t or yXnl Handl er " >
<priority val ue="ERROR' />
<appender -ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</ cat egory>

5.2. Example Session Beans

5.2.1. Introduction

The OJB source distribution was shipped with a bunch of sample session beans and client classes for testing. Please recognize
that we don't say that these examples show "best practices' of using OJB within enterprise java beans - it's only one way to
make it work.

To keep the examples as simple as possible we directly use the OJB main classes via static lookup or helper classes on each
g/bCreate() call. But we recommend to bind the OJB main classesin JNDI instead of direct use in the session beans.

5.2.2. Generate the sample session beans

The source code of the sample beansis stored in directory
[db- 0] b] / src/ ej b/ org/ apache/ oj b/ ej b
To generate the sample beans call

ant ej b- exanpl es

This ant target copies the bean sources to [db- 0j b] / t ar get / srcej b generates all needed bean classes and deployment
descriptor (by using xdoclet) to the same directory, compiles the sources and build an gb .jar file called
[db- 0] b] / di st/ db- 0] b- XXX-beans.jar. Test clients for the generated beans included in the
[db- 0] b] / di st/ db-0j b- XXX-client.jar.

To run xdoclet properly the following xdoclet jar filesneeded in[db- o] b] /I i b directory (xdoclet version 1.2xx or higher):

xdocl et - xxx. j ar

xdocl et - ej b- rodul e- xxx. j ar

xdocl et - j boss- nodul e- xxx. j ar

xdocl et -] mx- nodul e- xxx. j ar

xdocl et - web- nodul e- xxx. | ar

xdocl et - xj avadoc- nodul e- xxx. j ar

If you using a different application server than JBoss, you have to modifiy the xdoclet ant target in
[db- 0j b] / bui | d- ej b- exanpl es. xm to force xdoclet to generate the appServer specific files. See xdoclet

documentation for further information.

5.2.3. How to run test clientsfor PB/ ODMG - api

If the "extended gb .jar" file was successfully deployed we need a test client to invoke the gb-examples. As said above, the
g/b-examples target generates a test client jar too. It's called [db- 0] b] / di st/ db- 0j b- XXX-cl i ent .| ar and contains
junit based test clients for the PB-/ODMG-api.

The main test classes are:

« org.apache.ojb.ejb.AIIODMGTests
« org.apache.ojb.ejb.AlIPBTests

Page 8

http://xdoclet.sourceforge.net/

Deployment

OJB provide an ant target to run the client side bean tests. Include all needed appServer librariesin[db-oj b] /1i b (e.g. for
JBoss jbossall-client.jar do the job, beside the "j2ee jars"). To run the PB-api test clients (access running JBoss server with
default settings) call

ant ej b-exanpl es-run -Dclient.class=org. apache. oj b. ej b. Al | PBTest s
To run the test clients on an arbitrary appServer pass the INDI properties for naming context initalisation too, e.g.

« -Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
e -Djava.naming.provider.url="jnp://localhost:1099"
« -Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces"

Then the target call may looks like

ant ej b-exanpl es-run -Dclient.cl ass=org. apache. oj b. ej b. Al | PBTest s
-Djava. nam ng.factory.initial ="org.jnp.interfaces. Nam ngCont ext Fact ory"
- Dj ava. nam ng. provi der.url ="jnp://1 ocal host: 1099"
- Dj ava. nam ng. factory. url . pkgs="org. j boss. nam ng: org.j np.interfaces"

5.3. Packing an .ear file

Hereis an example of the .ear package structure. It is redeployable without having to restart JBoss.

5.3.1. The Package Structure
The package structure of the .ear file should look like:

[ejb.jar/

... EJBs

... META- | NF/
...... ej b-jar.xm
...... j boss. xm
...... MANI FEST. MF

/[web- app. war /
...JSP

... VEEB- | NF/
...... web. xn

/| META- | NF/
...application. xn

/oj b.jar

/[[ojb required runtime jar]

[QJB. properties
/repository.dtd
[respository_internal.xmn
[repository. xn

/ reposi tory_ dat abasel. xni
/ reposi tory_appl. xm

/ reposi tory_ dat abase2. xni
/ repository_app2. xmn

5.3.2. Make OJB API Resourcesavailable
There are two approaches to use OJB api in the gb.jar file:

1. To create a Manifest.mf file with classpath attribute that include all the runtime jar required by OJB (Very important to
include al required jar). The sample below works fine:

Cl ass-Path: db-o0jb-1.0.rc6.jar antlr-2.7.3.jar conmons-beanutils.jar
commons- col | ections. jar comons-dbcp-1.1.jar comons-I|ang-2.0.jar
comons- | oggi ng. j ar conmons-pool -1.1.j ar

Page 9

Deployment

j akart a-regexp-1.3.jar

If you to include the jar file under a directory of the ear file, says/ | i b/ db- 0j b-1. 0. rc6. j ar and etc. At the classpath attribute it will be something like: Cl ass- Pat h:
./1ib/db-0jb-1.0.rc6.jar and etc (The"." infrontisimportant)

2. To add therequired jar fileasa"java"' element in the application.xml file:

<modul e>

<java>antlr-2.7.3.jar</java>
</ modul e>
<nodul e>

<j ava>commons- beanutils.jar</java>
</ modul e>
<nodul e>

<j ava>commons- col | ections.jar</java>
</ modul e>
<nodul e>

<j ava>commons- dbcp-1.1.jar</java>
</ nodul e>
<modul e>

<j ava>commons- | ang- 2. 0. j ar</j ava>
</ modul e>
<nodul e>

<j ava>commons- | oggi ng. j ar</j ava>
</ modul e>
<nodul e>

<j ava>commons- pool -1. 1. jar</java>
</ modul e>
<nodul e>

<j ava>db-ojb-1.0.rc6.jar</java>
</ nodul e>

To use this approach, al the library had to be in the root of the ear.
(This was tested on Jboss 3.2.3)

5.4. Make OJB accessible via JNDI

Current bean examples do directly use OJB main classes, but it's also possible to make OJB accessible via INDI and use a
IJNDI-lookup to access OJB api'sin your beans.
To make the OJB api's accessible via INDI, you have bind them to JNDI. How to do this depends on the used environment.
The main classes/methods to bind are:
« PB-api:
Method or g. apache. o) b. br oker . cor e. Per si st enceBr oker Fact or yFact or y#i nst ance() returnsthe
used or g. apache. oj b. br oker. cor e. Per si st enceBr oker Fact or yl F. Make thisinstance accessible via
JNDI.
« ODMG-api:
Method or g. apache. oj b. odng. QJB#get | nst ance() returnsanew instance of the
or g. odng. | npl enent at i on instance. Open anew Dat abaseand make thisinstance and the Dat abase instance
accessible viaJNDI.

5.4.1. JBoss

In JBoss you can write mbean classes to bind OJB main/access classes to JNDI, similar to the Webl ogic example below.
Let JBoss know about the new mbeans, so declaretheminaj boss- servi ce. xnl file

Page 10

Deployment

5.4.2. Other Application Server

In other application server you can do similar steps to bind OJB main api classes to JNDI. For example in Weblogic you can
use startup class implementation (see below).

5.5. Instructions for Weblogic
1. Add the OJB jar files and depedenciesinto the Weblogic classpath
2. As usual create the connection pool and the datasource.

3. Prepare the OJB.properties file. Should be similar to jboss. Expect the following entry:

#'Veblogic Transacti on Manager Factory
JTATr ansact i onManager Cl ass=
or g. apache. oj b. broker . transacti on. t m Wbl ogi cTr ansact i onManager Fact ory

4. Modify the connection information in the repository.xml (specify the datasource name). SequenceManager implementation
depends on the used DB, more info see here:

<j dbc- connecti on-descri pt or

j cd-al i as="defaul t"

def aul t - connecti on="true"

pl at f or m=" Sapdb"

| dbc- | evel =" 2. 0"

| ndi - dat asour ce- nane="dat asour ce_denodb"
eager -rel ease="f al se"

bat ch- node="f al se"

useAut oConmi t =" 0"

i gnor eAut oConmi t Excepti ons="f al se"
>

<sequence- manager

cl assNanme="or g. apache. oj b. broker. uti |l . sequence. SequenceManager Next Val | npl " >
<attribute attribute-nane="grabSi ze" attri bute-val ue="20"/>

</ sequence- manager >

</ j dbc- connecti on-descri pt or >

The following step is only neccessary if you want to bind OJB main api classes to JNDI.

[5.] Compile the following classes (see at the end of this section) and add them to the weblogic classpath. This allows to access
the PB-api via JNDI lookup. Register via the weblogic console the startup class (see G bPbSt ar t up class below). The JNDI
name and the OJB.properties file path can be specified as parameters in this startup class.

To use the ODMG-api you have to write a similar startup class. This shouldn't be too complicated. Take a look in
or g. apache. oj b. j boss package (dir sr ¢/ connect or / mai n). Here you could find the jboss mbeans. All you have to
do is bound asimilar classto JNDI in weblogic.

Implement ODMGJ2EEFact or y Interface in your class bound this class to JNDI (in the gjb-examples the beans try to lookup
the | npl enment at i on instance via " ava: / o] b/ def aul t ODMG"). Your ODMGFactory class should implement this
method

public I nplementation getlnstance()

return QIBJ2EE 2. get | nstance();
}

Write a session bean similar to those provided for the JBOSS samples. It is aso possible to use the gb-example beans (doing
minor modifications when the INDI lookup should be used).

Page 11

http://db.apache.org/ojb/docu/guides/sequencemanager.html

Webolgic startup class
Write an OJB startup class to make OJB accessible via INDI can look like (I couldn't test this sample class, so don't know if it

will work :-)):

package org. apache. oj b. webl ogi c;

i mport

i mport
i mport

i mport
i mport
i mport

/**

* This

j avax. nam ng. *

or g. apache. oj b. br oker. core. Persi st enceBr oker Fact or yFact ory;
or g. apache. oj b. br oker. core. Persi st enceBr oker Fact oryl F;

webl ogi c. conmon. T3Ser vi cesDef ;

webl ogi ¢c. conmon. T3St art upDef;
java. util . Hashtabl e;

startup class created and binds an instance of a

* Persi stenceBrokerFactoryl F i nto JNDI

*/

public class G bPbStartup
i mpl ements T3StartupDef, g bPbFactory, Serializable

{

private String defaultPropsFile = "org/apache/ oj b/ webl ogi c/ QIB. properties";

public void setServices(T3Servi cesDef services)

{
}

publ i c PersistenceBrokerFactoryl F getlnstance()

return PersistenceBrokerFact oryFactory.instance();

public String startup(String nane, Hashtabl e args)

{

try

{

t hrows Exception

String | nd|hbne = (String) args.get("jndi name");
i f(jndiNa == null || jndi Nane.length() == 0)
Jnd|hbne = O bPbFact ory. DEFAULT_JNDI _NAME

S tring propsF|Ie = (String) args.get("propsfile");

if(propsFile == null || propsFile.length() == 0)

{ System set Property("QIB. properties", defaultPropsFile);
Llse

i System set Property("QIB. properties", propsFile);

Initial Context ctx = new Initial Context();
bi nd(ctx, jndi Name, this);

[/l return a nessage for |ogging
return "Bound QIB PersistenceBrokerFactorylF to " + jndi Nane;

}
cat ch(Exception e)
{

e.printStackTrace();
/1 return a nessage for |ogging
return "Startup Class error: inpossible to bind QJB PB factory";

Deployment

Page 12

Deployment

private void bind(Context ctx, String nanme, Object val)
t hr ows Nami ngExcepti on

Name n;
for(n = ctx.get NaneParser("").parse(nanme); n.size() > 1; n = n.getSuffix(1))

String ctxName = n.get(0);
try

ctx = (Context) ctx.|ookup(ctxNane);
}
cat ch(NameNot FoundExcept i on nanenot f oundexcepti on)

ctx = ctx.createSubcontext (ctxNane);

%tx.bind(n.get(O), val);
} }
The used OjbPbFactory interface:
package org. apache. oj b. webl ogi c;
i mport org.apache. oj b. broker. core. Persi st enceBr oker Fact oryl F;
public interface Q bPbFactory

public static String DEFAULT_JNDI _NAVE = "PBFactory";
publ i c Persi stenceBrokerFactoryl F getlnstance();

Page 13

	1 Introduction
	2 Things needed for deploying OJB
	2.1 1. The OJB binary jar archive
	2.2 2. Configuration data
	2.3 3. External dependencies that do not come with OJB
	2.4 4. Optional jar archives that come with OJB
	2.5 5. Don't forget the JDBC driver

	3 Deployment in standalone applications
	4 Deployment in servlet based applications
	5 Deployment in EJB based applications
	5.1 Configure OJB for managed environments considering as JBoss example
	5.1.1 1. Adapt OJB.properties file
	5.1.2 2. Declare datasource in the repository (repository_database) file and do additional configuration
	5.1.3 [2b. How to deploy ojb test hsqldb database to jboss]
	5.1.4 3. Include all OJB configuration files in classpath
	5.1.5 4. Enclose all libraries OJB depend on
	5.1.6 5. Take care of caching
	5.1.7 6. Take care of locking
	5.1.8 7. Put all together
	5.1.9 7b. Example: Deployable jar
	5.1.10 8. How to access OJB API?
	5.1.11 9. OJB logging within JBoss

	5.2 Example Session Beans
	5.2.1 Introduction
	5.2.2 Generate the sample session beans
	5.2.3 How to run test clients for PB / ODMG - api

	5.3 Packing an .ear file
	5.3.1 The Package Structure
	5.3.2 Make OJB API Resources available

	5.4 Make OJB accessible via JNDI
	5.4.1 JBoss
	5.4.2 Other Application Server

	5.5 Instructions for Weblogic

