
The Object Cache

by Armin Waibel, Thomas Mahler

FIXME (arminw):
this document is not finished yet.

1. Introduction

OJB was shipped with several ObjectCache implementations. All implementations can be found in
org.apache.ojb.broker.cache package. To classify the different implementations we differ local cache and
shared/global cache (we use both terms synonymous) implementations.

• Local cache implementation mean that each instance use its own object map to manage cached objects.
• Shared/global cache implementations share one (in most cases static) map to manage cached objects.

A distributed object cache implementation supports caching of objects across different JVM.

2. Why a cache and how it works?

OJB provides a pluggable object cache provided by the ObjectCache interface.

public interface ObjectCache
{

/**
* Write to cache.
*/
public void cache(Identity oid, Object obj);

/**
* Lookup object from cache.
*/
public Object lookup(Identity oid);

/**
* Removes an Object from the cache.
*/
public void remove(Identity oid);

/**
* Clear the ObjectCache.
*/
public void clear();

}

Each PersistenceBroker instance using its own ObjectCache instance. The ObjectCache instances are created by the
ObjectCacheFactory class.

Each cache implementation holds Objects previously loaded or stored by the PersistenceBroker - dependend on the
implementation.
Using a Cache has several advantages:

• It increases performance as it reduces database lookups or/and object materialization. If an object is looked up by Identity
the associated PersistenceBroker instance, does not perform a SELECT against the database immediately but first looks up
the cache if the requested object is already loaded. If the object is cached it is returned as the lookup result. If it is not

Page 1
Copyright © All rights reserved.

http://db.apache.org/ojb/docu/howtos/howto-work-with-clustering.html


cached a SELECT is performed.
Other queries were performed against the database, but before an object from the ResultSet was materialized the object
identity was looked up in cache. If not found the whole object was materialized.

• It allows to perform circular lookups (as by crossreferenced objects) that would result in non-terminating loops without
such a cache.

3. How to change the used ObjectCache implementation

The object-cache element/property can be used to specify the ObjectCache implementation used by OJB. There are three
levels of declaration:

in OJB.properties file, to declare the standard (default) ObjectCache implementation. The declared ObjectCache
implementation was initialized with default properties, it's not possible to pass additional configuration properties on this level
of declaration.

#-------------------------------------------------------------------
# Object cache
#-------------------------------------------------------------------
# The ObjectCacheClass entry tells OJB which concrete instance Cache
# implementation is to be used.
ObjectCacheClass=org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl
#

on jdbc-connection-descriptor level , to declare ObjectCache implementation on a per connection/user level. Additional
configuration properties can be passed by using attribute element entries:

<jdbc-connection-descriptor ...>
...
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="useAutoSync" attribute-value="true"/>
</object-cache>
...
</jdbc-connection-descriptor>

on class-descriptor level , to declare ObjectCache implementation on a per class level. Additional configuration properties can
be passed by using attribute element entries:

<class-descriptor
class="org.apache.ojb.broker.util.sequence.HighLowSequence"
table="OJB_HL_SEQ"
>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheEmptyImpl">
</object-cache>
...
</class-descriptor>

Note:
The priority of the declared object-cache elements are:
per class > per jdbc-connection-descriptor > standard

E.g. if you declare ObjectCache 'DefaultCache' as standard and set ObjectCache 'CacheA' in class-descriptor for class A and
class B does not declare an object-cache element. Then OJB use 'CacheA' as ObjectCache for class A and 'DefaultCache' for
class B.

4. Shipped cache implementations

4.1. ObjectCacheDefaultImpl

The Object Cache

Page 2
Copyright © All rights reserved.

http://db.apache.org/ojb/OJB.properties.txt
http://db.apache.org/ojb/docu/guides/repository.html#jdbc-connection-descriptor
http://db.apache.org/ojb/docu/guides/repository.html#class-descriptor


Per default OJB use a shared reference based ObjectCache implementation. It's a really fast cache but there are a few
drawbacks. There is no transaction isolation, when thread one modify an object, thread two will see the modification when
lookup the same object or use a reference of the same object. If you rollback/abort a transaction the corrupted objects will not
be removed from the cache (when using PB-api, top-level api may support automatic cache synchronization). You have to do
this using

broker.removeFromCache(obj);

// or (using Identity object)
ObjectCache cache = broker.serviceObjectCache();
cache.remove(oid);

by your own or enable the useAutoSync property (more info see below).

This implementation use SoftReference to wrap all cached objects. If the cached object was not longer referenced by your
application but only by the cache, it can be reclaimed by the garbage collector.
As we don't know when the garbage collector reclaims the freed objects, it is possible to set a timeout property. So an
cached object was only returned from cache if it was not garbage collected and was not timed out.

To enable this ObjectCache implementation

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">
<attribute attribute-name="timeout" attribute-value="600"/>

</object-cache>

Implementation configuration properties:

Property Key Property Values

timeout Lifetime of the cached objects in seconds. If
expired, the cached object was discarded -
default was 900 sec. When set to -1 the lifetime
of the cached object depends only on GC and
do never get timed out.

autoSync If set true all cached/looked up objects within a
PB-transaction are traced. If the the
PB-transaction was aborted all traced objects
will be removed from cache. Default is false.

NOTE: This does not prevent "dirty-reads" by
concurrent threads (more info see above).

It's not a smart solution for keeping cache in sync
with DB but should do the job in most cases.
E.g. if you lookup 1000 objects within a transaction
and modify one object and then abort the transaction,
1000 objects will be passed to cache, 1000 objects
will be traced and all 1000 objects will be removed
from cache. If you read these objects without tx or in
a former tx and then modify one object in a tx and
abort the tx, only one object was traced/removed.

cachingKeyType Determines how the key was build for the
cached objects:
0 - Identity object was used as key, this was the
default setting.
1 - Idenity + jcdAlias name was used as key.
Useful when the same object metadata model
(DescriptorRepository instance) are used for
different databases (JdbcConnectionDescriptor)
2 - Identity + model (DescriptorRepository) was

The Object Cache

Page 3
Copyright © All rights reserved.



used as key. Useful when different metadata
model (DescriptorRepository instance) are used
for the same database. Keep in mind that there
was no synchronization between cached objects
with same Identity but different metadata model.
3 - all together (Idenity + jcdAlias + model)

Recommendation:
If you take care of cache synchronization and be aware of dirty reads, this implementation is useful for read-only or less update
centric classes.

4.2. ObjectCachePerBrokerImpl

This local cache implementation allows to have dedicated caches per PersistenceBroker instance. All calls are delegated to the
cache associated with the current broker instance. When the broker

• does commit a transaction
• does abort/rollback a transaction
• was closed (returned to pool)

the cache was cleared. So no dirty reads will occur, because each thread use it's own PersistenceBroker instance. No corrupted
objects will be found in cache, because the cache was cleared after use.

4.3. ObjectCacheJCSImpl

A shared ObjectCache implementation using a JCS region for each classname. More info see turbine-JCS.

4.4. ObjectCacheEmptyImpl

This is an 'empty' ObjectCache implementation. Useful when caching was not desired.

Note:
This implementaion does not support circular References. Be careful when using this implementaion with references (this may change in further versions).

4.5. ObjectCacheOSCacheImpl

A implementation using OpenSymphony's OSCache. More info see in Clustering HOWTO.

4.6. More implementations ...

Additional ObjectCache implementations can be found in org.apache.ojb.broker.cache package.

5. Distributed ObjectCache?

If OJB was used in a clustered enviroment it is mandatory to distribute all shared cached objects across different JVM. More
information how to realize such a cache see here.

6. Implement your own cache

The OJB cache implementations are quite simple but do a good job for most scenarios. If you need a more sophisticated cache
(e.g. with MRU memory management strategies) you'll write your own implementation of the interface
ojb.broker.cache.ObjectCache.
Integration of your implementation in OJB is easy since the object cache is a pluggable component. All you have to do, is to
declare it in the OJB.properties file by setting the ObjectCacheClass property.

The Object Cache

Page 4
Copyright © All rights reserved.

http://jakarta.apache.org/turbine/jcs/index.html
http://db.apache.org/ojb/docu/howtos/howto-work-with-clustering.html
http://db.apache.org/ojb/docu/howtos/howto-work-with-clustering.html
http://db.apache.org/ojb/docu/guides/ojb-properties.html


Note:
Of course we interested in your solutions! If you have implemented something interesting, just contact us.

7. CacheFilter feature

What does cache filtering mean
TODO

Default CacheFilter implementations
TODO

Implement your own filter
TODO

8. Future prospects

TODO

The Object Cache

Page 5
Copyright © All rights reserved.


	1 Introduction
	2 Why a cache and how it works?
	3 How to change the used ObjectCache implementation
	4 Shipped cache implementations
	4.1 ObjectCacheDefaultImpl
	4.2 ObjectCachePerBrokerImpl
	4.3 ObjectCacheJCSImpl
	4.4 ObjectCacheEmptyImpl
	4.5 ObjectCacheOSCacheImpl
	4.6 More implementations ...

	5 Distributed ObjectCache?
	6 Implement your own cache
	7 CacheFilter feature
	8 Future prospects

