HOWTO - Use DB Sequences

by Brian McCallister

1. Introduction

It is easy to use OJB with with database generated sequences. Typically a table using database generated sequences will
autogenerate a unique id for afield as the default value for that field. This can be particularly useful if multiple applications
access the same database. Not every application will be using OJB and find it convenient to pull unique values from a high/low
table. Using a database managed sequence can help to enforce unique id's across applications all adding to the same database.
All of that said, care needs to be taken as using database generated sequences imposes some portability problems.

OJB includes a sequence manager implementation that is aware of database sequences and how to use them. It is known to
work against Oracle, SAP DB, and PostgreSQL. MySQL has its own sequence manager implementation because it is special.
This tutorial will build against PostgreSQL, but working against Oracle or SAP will work the same way.

Additional information on sequence managersis available in the Sequence Manager documentation.

2. The Sample Database

Before we can work with OJB against a database with a sequence, we need the database. We will create a simple table that
pullsits primary key from a sequence named 'Uniqueldentifier'.

CREATE TABLE t hi ngi e

(
nane VARCHAR(50),

i d | NTEGER DEFAULT NEXTVAL(' Uni queldentifier")
)

We must also define the sequence from which it is drawing values:

CREATE SEQUENCE Uni quel dentifi er;
So that we have the following table:

Tabl e "public.thingie"

Col um | Type | Modi fiers

________ de m e e e e e e e e e e e e e e m e e e mmmmmm o mmmm e — o — - = =
name | character varying(50) |

id | integer | default nextval (' Uniqueldentifier'::text)

If we manually insert some entries into thistable they will have their i d field set automagically.

I NSERT | NTO t hi ngi e (name) VALUES (' Fred');
I NSERT | NTO thingie (nane) VALUES ('WInma');
SELECT nane, id FROMthingi e;

nane | id

e - - - [R

Fred | O

Wim | 1

(2 rows)
3. Using OJB

Page 1

http://db.apache.org/ojb/docu/guides/sequencemanager.html

HOWTO - Use DB Sequences

3.1. The Database Repository Descriptor

The next step is to configure OJB to access our t hi ngi e table. We need to configure the corrct sequence manager in the
reposi t ory- dat abase. xni .

The default r eposi t or y- dat abase. xm uses the High/Low Sequence manager. We will delete or comment out that
entry, and replace it with the or g. apache. oj b. broker. util.sequence. SequenceManager Next Val | npl
manager. This manager will pull the next value from a named sequence and use it. The entry for our sequence manager in the
repository is:

<sequence- manager
cl assNane="or g. apache. oj b. broker. util . sequence. SequenceManager Next Val | mpl " />

This needs to be declared within the JDBC Connection descriptor, so an entire r eposi t or y- dat abase. xm might look
like:

<j dbc- connecti on-descri ptor
jcd-alias="default"
def aul t - connecti on="true"
pl at f or m=" Post gr eSQ_"
j dbc- I evel =" 2. 0"
driver="org. postgresqgl.Driver"
pr ot ocol =" dbc"
subpr ot ocol =" post gresql "
dbal i as="test"
user name="t ester"
passwor d=""
eager -rel ease="f al se"
bat ch- nrode="f al se"
useAut oComm t ="1"

i gnor eAut oConmi t Excepti ons="f al se"
>

<connect i on- poo
maxActive="21"
val i dati onQuery=""/>

<sequence- nanager

cl assNane="or g. apache. oj b. broker. util.sequence. SequenceManager Next Val | npl " />
</ j dbc- connecti on-descri pt or >

3.2. Defining a Thingie Class

For the sake of simplicity we will make avery basic Java Thingie:

public class Thingie

/** thingi e(name) */
private String nane;

[** thingie(id) */
private int id;

public String getName() { return this.nane; }
public void setName(String nanme) { this.name = nane; }

public int getld() { return this.id; }
}

We also need a class descriptor inr eposi t ory- user . xm that appears as follows:

<cl ass-descri ptor
cl ass="Thi ngi e"

Page 2

HOWTO - Use DB Sequences

t abl e="THI Nd E"

>

<fi el d-descri pt or
name="i d"
col um="1D"
j dbc-type="I| NTEGER'
pri marykey="true"
aut oi ncrenent ="t rue"
sequence- nane="Uni quel dentifier"
/>

<fi el d-descri pt or
nanme="nane"
col um=" NAME"
;dbc—type="VARCHAR'

>

</ cl ass-descri pt or >

Look over the i d field descriptor carefully. The aut oi ncr enent and sequence- nane attributes are important for
getting our desired behavior. These tell OJB to use the sequence manager we defined to auto-increment the the value in i d,
and they also tell the sequence manager which database sequence to use - in this case Uni quel denti fi er

We could allow OJB to create an extent-aware sequence and use it, however as we are working against a table that defaultsto a
specific named sequence, we want to make sure to pull values from that same sequence. Information on allowing OJB to create
its own sequencesis available in the Sequence Manager documentation.

3.3. Using Thingie
Just to demonstrate that this all works, here is a simple application that uses our Thingie.

i mport org.apache. oj b. br oker. Per si st enceBr oker
i nport org. apache. oj b. br oker . Per si st enceBr oker Fact ory;

public class ThingieDriver

{
public static void main(String [] args)
Per si st enceBr oker broker = PersistenceBrokerFactory. def aul t Persi st enceBr oker () ;
Thi ngi e thing = new Thingie();
Thi ngi e ot her Thi ng = new Thi ngi e();
t hi ng. set Nane(" Mabob") ;
ot her Thi ng. set Name(" Maj i g");
br oker. begi nTransacti on();
br oker. st ore(t hing);
br oker . st or e(ot her Thi ng) ;
br oker. commi t Transacti on();
Systemout.println(thing.getNane() + " : " + thing.getld());
System out. println(ot herThing.getNanme() + " : " + otherThing.getld());
br oker. cl ose();
}
}

When it isrun, it will create two Thingie instances, store them in the database, and report on their assigned i d values.

java -cp [...] ThingieDriver

Mabob : 2
Majig : 3

Page 3

http://db.apache.org/ojb/docu/guides/sequencemanager.html

	1 Introduction
	2 The Sample Database
	3 Using OJB
	3.1 The Database Repository Descriptor
	3.2 Defining a Thingie Class
	3.3 Using Thingie

