
The ODMG API

by Brian McCallister

Table of contents

1 Introduction..2

2 Initializing ODMG...3

3 Persisting New Objects.. 3

4 Querying Persistent Objects...4

5 Updating Persistent Objects...4

6 Deleting Persistent Objects.. 4

Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API
(http://www.odmg.org/) . The ODMG API provides a higher-level API and query language
based interface over the PersistenceBroker API (../../docu/guides/pb-guide.html) .

More detailed information can be found in the ODMG-guide
(../../docu/guides/odmg-guide.html) and in the other reference guides
(../../docu/guides/summary.html) .

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product
{
/* Instance Properties */

private Double price;
private Integer stock;
private String name;

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...
}

The metadata descriptor for mapping this class is described in the mapping tutorial
(../../docu/tutorials/mapping-tutorial.html)

When using 1:1, 1:n and m:n references the ODMG-api need specific metadata settings on
relationship definition - more info see auto-xxx settings
(../../docu/guides/basic-technique.html#cascading) and repository file settings
(../../docu/guides/repository.html) .

As with the other tutorials, the source code for this tutorial is contained in the
tutorials-src.jar which can be downloaded here
(http://www.apache.org/dyn/closer.cgi/db/ojb/db-ojb-1.0.1/) . The source files are contained
in the org/apache/ojb/tutorial2/ directory.
You can try it out with the ojb-blank project which can be downloaded from the same place
and is described in the Getting started (../../docu/getting-started.html) section.

Further information about the OJB odmg-api implementation can be found in the ODMG
guide (../../docu/guides/odmg-guide.html) .

The ODMG API

Page 2
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

http://www.odmg.org/
../../docu/guides/pb-guide.html
../../docu/guides/odmg-guide.html
../../docu/guides/summary.html
../../docu/tutorials/mapping-tutorial.html
../../docu/guides/basic-technique.html#cascading
../../docu/guides/repository.html
http://www.apache.org/dyn/closer.cgi/db/ojb/db-ojb-1.0.1/
../../docu/getting-started.html
../../docu/guides/odmg-guide.html
../../docu/guides/odmg-guide.html

2. Initializing ODMG

The ODMG implementation needs to have a database opened for it to access. This is
accomplished via the following code:

Implementation odmg = OJB.getInstance();
Database db = odmg.newDatabase();
db.open("default", Database.OPEN_READ_WRITE);

/* ... use the database ... */

db.close();

This opens an ODMG Database using the name specified in metadata for the database --
"default" in this case. Notice the Database is opened in read/write mode. It is possible to
open it in read-only or write-only modes as well.

Once a Database has been opened it is available for use. Unlike PersistenceBroker
instances, ODMG Database instances are threadsafe and can typically be used for the
entire lifecycle of an application. There is no need to call the Database.close() method
until the database is truly no longer needed.

3. Persisting New Objects

Persisting an object via the ODMG API is handled by writing it to the peristence store within
the context of a transaction:

public static void storeProduct(Product product)
{
Implementation impl = OJB.getInstance();
Transaction tx = impl.newTransaction();
tx.begin();
tx.lock(product, Transaction.WRITE);
tx.commit();
}

The OJB.getInstance() function provides the ODMG Implementation instance
required for using the ODMG API. From here on out it is straight ODMG code that should
work against any compliant ODMG implementation.

Once the ODMG implementation has been obtained it is used to begin a transaction, obtain a
write lock on the Product, and commit the transaction. It is very important to note that all
changes need to be made within transactions in the ODMG API. When the transaction is
committed the changes are made to the database. Until the transaction is committed the
database is unaware of any changes -- they exist solely in the object model.

The ODMG API

Page 3
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

4. Querying Persistent Objects

The ODMG API uses the OQL query language for obtaining references to persistent objects.
OQL is very similar to SQL, and using it is very similar to use JDBC. The ODMG
implementation is used to create a query, the query is specifed, executed, and a list fo results
is returned:

public static Product findProductByName(String name) throws Exception
{
Implementation impl = OJB.getInstance();
Transaction tx = impl.newTransaction();
tx.begin();

OQLQuery query = impl.newOQLQuery();
query.create("select products from "

+ Product.class.getName()
+ " where name = $1");

query.bind(name);
DList results = (DList) query.execute();
Product product = (Product) results.iterator().next();

tx.commit();
return product;
}

5. Updating Persistent Objects

Updating a persistent object is done by modifying it in the context of a transaction, and then
committing the transaction:

public static void sellProduct(Product product, int number)
{
Implementation impl = OJB.getInstance();
Transaction tx = impl.newTransaction();
tx.begin();

tx.lock(product, Transaction.WRITE);
product.setStock(new Integer(product.getStock().intValue() - number));

tx.commit();
}

The sample code obtains a write lock on the object, binding it to the transaction, changes the
object, and commits the transaction. The newly modified Product now has a new stock
value.

6. Deleting Persistent Objects

The ODMG API

Page 4
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

Deleting persistent objects requires directly addressing the Database which contains the
persistent object. This can be obtained from the ODMG Implementation by asking for
it. Once retrieved, just ask the Database to delete the object. Once again, this is all done in
the context of a transaction.

public static void deleteProduct(Product product)
{
Implementation impl = OJB.getInstance();
Transaction tx = impl.newTransaction();

tx.begin();
Database db = impl.getDatabase(product);
db.deletePersistent(product);
tx.commit();
}

It is important to note that the Database.deletePerstient() call does not delete the
object itself, just the persistent representation of it. The transient object still exists and can be
used however desired -- it is simply no longer persistent.

The ODMG API

Page 5
Copyright © 2002-2004 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Initializing ODMG
	3 Persisting New Objects
	4 Querying Persistent Objects
	5 Updating Persistent Objects
	6 Deleting Persistent Objects

