
How Delta Propagation Works in Native Client:

In order to propagate deltas, application classes that represent value types must derive
from gemfire::Delta abstract class publicly, in addition to deriving from
gemfire::Cacheable. Please see declaration for class SimpleDeltaExample in the
code snippet. Also, a corresponding java class for each C++/C# class must be registered
at the server and peer members of the distributed system. The java class must implement
the interfaces com.gemstone.gemfire.DataSerializable and
com.gemstone.gemfire.Delta, and the class must satisfy serialization requirements as
a DataSerializable type (refer to Section 17.2 ‘Data Serialization’ in GemStone
GemFire Enterprise Java Developer’s Guide).

N.B.: When delta propagation is used for a region, only one value type may be used
for the region i.e. the value objects for keys in the region must be objects of the same
class.

Put operation:
When a put operation is invoked on a key with an updated value, the client library
determines if the change in the value object can be represented by a delta by invoking
Delta::hasDelta(). If hasDelta() returns true, the delta for value object is obtained
by calling Delta::toDelta(). The serialized representation of the object’s delta is then
sent to the server, which applies the change by calling Delta.fromDelta() on the
object stored in the region entry for the key.

Get operation:
Get operation works in the same manner when the value types derive from
gemfire::Delta.

Notifications:
In case a client has subscribed for updates for a key, and delta is applied on the value for
the key in a server, the notification received by the client will contain the delta for the key
instead of the complete object. Delta is applied to the current value for the key in the
client’s cache, by invoking Delta::fromDelta() on the value object.

Code snippet of an application class that uses delta propagation:
For a complete example, please refer to the C++/C# QuickStart examples for delta
propagation.

C++ code snippet:

class SimpleDeltaExample: public Cacheable, public Delta {
 int counter;
 char bytes[1024];
 bool m_hasDelta;

 public:
 // Cacheable methods for serialization

 virtual int32_t classId() const = 0;
 void toData(DataOutput& output) const;
 Serializable* fromData(DataInput& input);

 // Delta methods
 virtual bool hasDelta() { return m_hasDelta; }
 virtual void toDelta(DataOutput& out) const
 {
 out.writeInt(counter);
 }
 virtual void fromDelta(DataInput& in) { in.readInt(counter); }

 //Helper methods
 void setDelta() { m_hasDelta = true; }
}

C# code snippet:

class SimpleDeltaExample: IGFSerializable, IGFDelta {

 private int counter;
 private char bytes[1024];

 // IGFSerializable methods for serialization
 public void ToData(DataOutput DataOut);
 public IGFSerializable FromData(DataInput DataIn);
 public UInt32 ClassId
 {
 get();
 }

 // Delta methods
 public bool HasDelta();
 public void ToDelta(DataOutput DataOut);
 public void FromDelta(DataInput DataIn);
}

Java code snippet:

class SimpleDeltaExample implements DataSerializable, Delta {
 // DataSerializable methods
 public void fromData(DataInput in) throws IOException
 {
 }

 public void toData(DataOutput out) throws IOException
 {
 }

 // Delta methods
 public boolean hasDelta()
 {
 // return boolean to indicate whether the object has delta
 }

 public void fromDelta(DataInput in) throws IOException

 {
 }

 public void toDelta(DataOutput out) throws IOException
 {
 }
}

Delta Propagation API

This section describes the interfaces, methods and classes for the Delta Propagation API.

This interface defines a contract between the application and Native Client.
The application must define its domain object types by publicly deriving from the classes
Cacheable and Delta to use the delta propagation feature. (C# classes must implement
the IGFSerializable and IGFDelta interfaces.)
Native Client then determines whether an application object contains a delta, to extract
the delta from an application object into DataOutput, and to generate a new application
object by applying a delta present in the DataInput object to an existing application
object. The difference in the object state is contained in the DataOutput and DataInput
instances.
Native Client does not provide for versioning, so the application type object must track
the changes that are made to the object.

The class Delta provides the following public methods:

a. boolean hasDelta()—This method returns a boolean value indicating if the
instance contains delta. If hasDelta returns false then full object will be sent.
Otherwise delta will be sent.

b. void toDelta(DataOutput& out)—This method is invoked at the delta sender-
side, on a new application object after Native Client determines the presence of a
delta by calling hasDelta on the object. The delta is written to the DataOutput
object provided by Native Client.

c. void fromDelta(DataInput& in)—This method is invoked at the delta receiver-
side, on an existing application object if the application is aware that the DataInput
represents a delta.

d. DeltaPtr clone()— This method is invoked when delta is applied via
notification for a subscription, on the existing application object. Native Client will
call this method to obtain clone of the existing object in order to apply delta and
replace it with the existing object in the cache. This facility is there to avoid in place
replace of existing data object. Cloning of objects is optional and can be configured
with the region attribute ‘cloning-enabled’.
To clone an object for a C# class, the class must implement the System.ICloneable
interface.

InvalidDeltaException
The InvalidDeltaException indicates that an error has occurred while processing a
delta at the receiver-side. Native Client catches this exception and re-sends the
corresponding full value to the receiver. When the exception is caught while applying
delta via notification for a subscription, the full object is obtained by the client from the
server.

Delta Propagation Properties

cloning-enabled: a boolean region attribute.

When the region attribute is set to true, deltas for the region are applied to cloned copies
of the values and then saved to the cache. When false, the values are modified in place.
The default value is true.
Your decision about whether to use cloning will be based on your data consistency
requirements, your listener requirements, and your performance needs.
Default implementation of clone method will return same object wrapped in smart
pointer.
Without cloning:
a. Data is more likely to end up in an inconsistent state from concurrent applications of

delta updates.
b. Listeners that receive delta-related events can’t see the old entry value. Native Client

modifies the entry in place and so loses its reference to the old value.

Errors in Delta Propagation:

For a put operation in client, if a server receives an InvalidDeltaException while
applying delta, or is unable to apply delta due to missing entry, the server sends
InvalidDeltaException in the response message to client. The client then re-sends the
full object to the server.

When delta cannot be applied via notification due to missing entry (eg caused by local
destroy or expiration), the client requests the full object.

Miscellaneous:

When a client region is cacheless, or conflation is enabled for subscriptions, the server
sends only full objects in notifications i.e. deltas are not sent in notifications that are
affected by these configurations.

