
Copyright © 2009 The Apache Software Foundation. All rights reserved.

MapReduce Tutorial

Table of contents

1 Purpose... 2

2 Prerequisites..2

3 Overview.. 2

4 Inputs and Outputs... 3

5 Example: WordCount v1.0.. 3

 5.1 Source Code..3

 5.2 Usage...6

 5.3 Bundling a data payload with your application..7

 5.4 Walk-through.. 8

6 MapReduce - User Interfaces.. 9

 6.1 Payload..9

 6.2 Job Configuration..15

 6.3 Task Execution & Environment... 15

 6.4 Job Submission and Monitoring... 25

 6.5 Job Input... 27

 6.6 Job Output...28

 6.7 Other Useful Features... 30

7 Example: WordCount v2.0.. 37

 7.1 Source Code..37

 7.2 Sample Runs... 43

 7.3 Highlights..44

MapReduce Tutorial

Page 2Copyright © 2009 The Apache Software Foundation. All rights reserved.

1 Purpose

This document comprehensively describes all user-facing facets of the Hadoop MapReduce
framework and serves as a tutorial.

2 Prerequisites

Make sure Hadoop is installed, configured and running. See these guides:

• Single Node Setup for first-time users.
• Cluster Setup for large, distributed clusters.

3 Overview

Hadoop MapReduce is a software framework for easily writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of
nodes) of commodity hardware in a reliable, fault-tolerant manner.

A MapReduce job usually splits the input data-set into independent chunks which are
processed by the map tasks in a completely parallel manner. The framework sorts the outputs
of the maps, which are then input to the reduce tasks. Typically both the input and the
output of the job are stored in a file-system. The framework takes care of scheduling tasks,
monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the same, that is, the MapReduce
framework and the Hadoop Distributed File System (HDFS) are running on the same set of
nodes. This configuration allows the framework to effectively schedule tasks on the nodes
where data is already present, resulting in very high aggregate bandwidth across the cluster.

The MapReduce framework consists of a single master JobTracker and one slave
TaskTracker per cluster-node. The master is responsible for scheduling the jobs'
component tasks on the slaves, monitoring them and re-executing the failed tasks. The slaves
execute the tasks as directed by the master.

Minimally, applications specify the input/output locations and supply map and reduce
functions via implementations of appropriate interfaces and/or abstract-classes. These, and
other job parameters, comprise the job configuration. The Hadoop job client then submits
the job (jar/executable etc.) and configuration to the JobTracker which then assumes the
responsibility of distributing the software/configuration to the slaves, scheduling tasks and
monitoring them, providing status and diagnostic information to the job-client.

Although the Hadoop framework is implemented in JavaTM, MapReduce applications need
not be written in Java.

• Hadoop Streaming is a utility which allows users to create and run jobs with any
executables (e.g. shell utilities) as the mapper and/or the reducer.

http://hadoop.apache.org/common/docs/current/single_node_setup.html
http://hadoop.apache.org/common/docs/current/cluster_setup.html
http://hadoop.apache.org/hdfs/docs/current/index.html
api/org/apache/hadoop/streaming/package-summary.html

MapReduce Tutorial

Page 3Copyright © 2009 The Apache Software Foundation. All rights reserved.

• Hadoop Pipes is a SWIG- compatible C++ API to implement MapReduce applications

(non JNITM based).

4 Inputs and Outputs

The MapReduce framework operates exclusively on <key, value> pairs, that is, the
framework views the input to the job as a set of <key, value> pairs and produces a set of
<key, value> pairs as the output of the job, conceivably of different types.

The key and value classes have to be serializable by the framework. Several serialization
systems exists; the default serialization mechanism requires keys and values to implement the
Writable interface. Additionally, the key classes must facilitate sorting by the framework; a
straightforward means to do so is for them to implement the WritableComparable interface.

Input and Output types of a MapReduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine* -> <k2, v2> -> reduce -> <k3,
v3> (output)

Note that the combine phase may run zero or more times in this process.

5 Example: WordCount v1.0

Before we jump into the details, lets walk through an example MapReduce application to get
a flavour for how they work.

WordCount is a simple application that counts the number of occurences of each word in a
given input set.

This example works with a pseudo-distributed (Single Node Setup) or fully-distributed
(Cluster Setup) Hadoop installation.

5.1 Source Code

WordCount.java

1. package org.myorg;

2.

3. import java.io.IOException;

4. import java.util.*;

5.

6. import org.apache.hadoop.fs.Path;

7. import org.apache.hadoop.conf.*;

api/org/apache/hadoop/mapred/pipes/package-summary.html
http://www.swig.org/
api/org/apache/hadoop/io/Writable.html
api/org/apache/hadoop/io/WritableComparable.html
http://hadoop.apache.org/common/docs/current/single_node_setup.html
http://hadoop.apache.org/common/docs/current/cluster_setup.html

MapReduce Tutorial

Page 4Copyright © 2009 The Apache Software Foundation. All rights reserved.

WordCount.java

8. import org.apache.hadoop.io.*;

9. import org.apache.hadoop.mapreduce.*;

10. import org.apache.hadoop.mapreduce.lib.input.*;

11. import org.apache.hadoop.mapreduce.lib.output.*;

12. import org.apache.hadoop.util.*;

13.

14. public class WordCount extends Configured implements Tool {

15.

16. public static class Map

17. extends Mapper<LongWritable, Text, Text, IntWritable> {

18. private final static IntWritable one = new IntWritable(1);

19. private Text word = new Text();

20.

21. public void map(LongWritable key, Text value, Context context)

22. throws IOException, InterruptedException {

23. String line = value.toString();

24. StringTokenizer tokenizer = new StringTokenizer(line);

25. while (tokenizer.hasMoreTokens()) {

26. word.set(tokenizer.nextToken());

27. context.write(word, one);

28. }

29. }

30. }

31.

32. public static class Reduce

33. extends Reducer<Text, IntWritable, Text, IntWritable> {

MapReduce Tutorial

Page 5Copyright © 2009 The Apache Software Foundation. All rights reserved.

WordCount.java

34. public void reduce(Text key, Iterable<IntWritable> values,

35. Context context) throws IOException, InterruptedException {

36.

37. int sum = 0;

38. for (IntWritable val : values) {

39. sum += val.get();

40. }

41. context.write(key, new IntWritable(sum));

42. }

43. }

44.

45. public int run(String [] args) throws Exception {

46. Job job = new Job(getConf());

47. job.setJarByClass(WordCount.class);

48. job.setJobName("wordcount");

49.

50. job.setOutputKeyClass(Text.class);

51. job.setOutputValueClass(IntWritable.class);

52.

53. job.setMapperClass(Map.class);

54. job.setCombinerClass(Reduce.class);

55. job.setReducerClass(Reduce.class);

56.

57. job.setInputFormatClass(TextInputFormat.class);

58. job.setOutputFormatClass(TextOutputFormat.class);

59.

MapReduce Tutorial

Page 6Copyright © 2009 The Apache Software Foundation. All rights reserved.

WordCount.java

60. FileInputFormat.setInputPaths(job, new Path(args[0]));

61. FileOutputFormat.setOutputPath(job, new Path(args[1]));

62.

63. boolean success = job.waitForCompletion(true);

64. return success ? 0 : 1;

65. }

66.

67. public static void main(String[] args) throws Exception {

68. int ret = ToolRunner.run(new WordCount(), args);

69. System.exit(ret);

70. }

71. }

72.

5.2 Usage

Assuming HADOOP_HOME is the root of the installation and HADOOP_VERSION is the
Hadoop version installed, compile WordCount.java and create a jar:

$ mkdir wordcount_classes
$ javac -classpath ${HADOOP_HOME}/hadoop-core-
${HADOOP_VERSION}.jar:${HADOOP_HOME}/hadoop-mapred-
${HADOOP_VERSION}.jar:${HADOOP_HOME}/hadoop-hdfs-
${HADOOP_VERSION}.jar -d wordcount_classes WordCount.java
$ jar -cvf /user/joe/wordcount.jar -C wordcount_classes/ .

Assuming that:

• /user/joe/wordcount/input - input directory in HDFS
• /user/joe/wordcount/output - output directory in HDFS

Sample text-files as input:

$ bin/hadoop fs -ls /user/joe/wordcount/input/
/user/joe/wordcount/input/file01
/user/joe/wordcount/input/file02

MapReduce Tutorial

Page 7Copyright © 2009 The Apache Software Foundation. All rights reserved.

$ bin/hadoop fs -cat /user/joe/wordcount/input/file01
Hello World Bye World
$ bin/hadoop fs -cat /user/joe/wordcount/input/file02
Hello Hadoop Goodbye Hadoop

Run the application:

$ bin/hadoop jar /user/joe/wordcount.jar org.myorg.WordCount /
user/joe/wordcount/input /user/joe/wordcount/output

Output:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2

5.3 Bundling a data payload with your application

Applications can specify a comma-separated list of paths which would be present in the
current working directory of the task using the option -files. The -libjars option
allows applications to add jars to the classpaths of the maps and reduces. The option -
archives allows them to pass comma separated list of archives as arguments. These
archives are unarchived and a link with name of the archive is created in the current working
directory of tasks. The mechanism that provides this functionality is called the distributed
cache. More details about the command line options surrounding job launching and control
of the distributed cache are available at Hadoop Commands Guide.

Hadoop ships with some example code in a jar precompiled for you; one of these is (another)
wordcount program. Here's an example invocation of the wordcount example with -
libjars, -files and -archives:
hadoop jar hadoop-examples.jar wordcount -files cachefile.txt
-libjars mylib.jar -archives myarchive.zip input output Here,
myarchive.zip will be placed and unzipped into a directory by the name "myarchive.zip"

Users can specify a different symbolic name for files and archives passed through -files and -
archives option, using #.

For example, hadoop jar hadoop-examples.jar wordcount -
files dir1/dict.txt#dict1,dir2/dict.txt#dict2 -archives
mytar.tgz#tgzdir input output Here, the files dir1/dict.txt and dir2/dict.txt can
be accessed by tasks using the symbolic names dict1 and dict2 respectively. And the archive
mytar.tgz will be placed and unarchived into a directory by the name tgzdir.

http://hadoop.apache.org/common/docs/current/commands_default.html

MapReduce Tutorial

Page 8Copyright © 2009 The Apache Software Foundation. All rights reserved.

The distributed cache is also described in greater detail further down in this tutorial.

5.4 Walk-through

This section describes the operation of the WordCount application shown earlier in this
tutorial.

The Mapper implementation (lines 16-30), via the map method (lines 21-29), processes one
line at a time, as provided by the specified TextInputFormat (line 57). It then splits the
line into tokens separated by whitespaces, via the StringTokenizer, and emits a key-
value pair of < <word>, 1>.

For the given sample input the first map emits:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

The second map emits:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

We'll learn more about the number of maps spawned for a given job, and how to control
them in a fine-grained manner, a bit later in the tutorial.

WordCount also specifies a combiner (line 54). Hence, the output of each map is passed
through the local combiner (which is same as the Reducer as per the job configuration) for
local aggregation, after being sorted on the keys.

The output of the first map:
< Bye, 1>
< Hello, 1>
< World, 2>

The output of the second map:
< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>

The Reducer implementation (lines 32-43), via the reduce method (lines 34-42) just
sums up the values, which are the occurence counts for each key (i.e. words in this example).

Thus the output of the job is:
< Bye, 1>
< Goodbye, 1>

api/org/apache/hadoop/mapreduce/Mapper.html
api/org/apache/hadoop/mapreduce/lib/input/TextInputFormat.html
api/org/apache/hadoop/mapreduce/Reducer.html
api/org/apache/hadoop/mapreduce/Reducer.html

MapReduce Tutorial

Page 9Copyright © 2009 The Apache Software Foundation. All rights reserved.

< Hadoop, 2>
< Hello, 2>
< World, 2>

The run method specifies various facets of the job, such as the input/output paths (passed
via the command line), key/value types, input/output formats etc., in the Job. It then calls
the Job.waitForCompletion() (line 63) to submit the job to Hadoop and monitor its
progress.

We'll learn more about Job, Mapper, Tool and other interfaces and classes a bit later in
the tutorial.

6 MapReduce - User Interfaces

This section provides a reasonable amount of detail on every user-facing aspect of the
MapReduce framwork. This should help users implement, configure and tune their jobs in a
fine-grained manner. However, please note that the javadoc for each class/interface remains
the most comprehensive documentation available; this is only meant to be a tutorial.

Let us first take the Mapper and Reducer classes. Applications typically extend them to
provide the map and reduce methods.

We will then discuss other core classes including Job, Partitioner, Context,
InputFormat, OutputFormat, OutputCommitter and others.

Finally, we will wrap up by discussing some useful features of the framework such as the
DistributedCache, IsolationRunner etc.

6.1 Payload

Applications typically extend the Mapper and Reducer classes to provide the map and
reduce methods. These form the core of the job.

6.1.1 Mapper

Mapper maps input key/value pairs to a set of intermediate key/value pairs.

Maps are the individual tasks that transform input records into intermediate records. The
transformed intermediate records do not need to be of the same type as the input records. A
given input pair may map to zero or many output pairs.

The Hadoop MapReduce framework spawns one map task for each InputSplit generated
by the InputFormat for the job. An InputSplit is a logical representation of a unit
of input work for a map task; e.g., a filename and a byte range within that file to process.
The InputFormat is responsible for enumerating the InputSplits, and producing a
RecordReader which will turn those logical work units into actual physical input records.

api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/mapreduce/Job.html#waitForCompletion(boolean)
api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/mapreduce/Mapper.html
api/org/apache/hadoop/util/Tool.html
api/org/apache/hadoop/mapreduce/Mapper.html
api/org/apache/hadoop/mapreduce/Reducer.html
api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/mapreduce/Partitioner.html
api/org/apache/hadoop/mapreduce/MapContext.html
api/org/apache/hadoop/mapreduce/InputFormat.html
api/org/apache/hadoop/mapreduce/OutputFormat.html
api/org/apache/hadoop/mapreduce/OutputCommitter.html
api/org/apache/hadoop/mapreduce/Mapper.html
api/org/apache/hadoop/mapreduce/InputSplit.html
api/org/apache/hadoop/mapreduce/InputFormat.html
api/org/apache/hadoop/mapreduce/RecordReader.html

MapReduce Tutorial

Page 10Copyright © 2009 The Apache Software Foundation. All rights reserved.

Overall, Mapper implementations are specified in the Job, a client-side class that describes
the job's configuration and interfaces with the cluster on behalf of the client program.
The Mapper itself then is instantiated in the running job, and is passed a MapContext
object which it can use to configure itself. The Mapper contains a run() method which
calls its setup() method once, its map() method for each input record, and finally its
cleanup() method. All of these methods (including run() itself) can be overridden with
your own code. If you do not override any methods (leaving even map as-is), it will act as the
identity function, emitting each input record as a separate output.

The Context object allows the mapper to interact with the rest of the Hadoop
system. It includes configuration data for the job, as well as interfaces which
allow it to emit output. The getConfiguration() method returns a
Configuration which contains configuration data for your program. You
can set arbitrary (key, value) pairs of configuration data in your Job, e.g. with
Job.getConfiguration().set("myKey", "myVal"), and then retrieve this data
in your mapper with Context.getConfiguration().get("myKey"). This sort of
functionality is typically done in the Mapper's setup() method.

The Mapper.run() method then calls map(KeyInType, ValInType, Context)
for each key/value pair in the InputSplit for that task. Note that in the WordCount
program's map() method, we then emit our output data via the Context argument, using its
write() method.

Applications can then override the Mapper's cleanup() method to perform any required
teardown operations.

Output pairs do not need to be of the same types as input pairs. A given input pair
may map to zero or many output pairs. Output pairs are collected with calls to
Context.write(KeyOutType, ValOutType).

Applications can also use the Context to report progress, set application-level status
messages and update Counters, or just indicate that they are alive.

All intermediate values associated with a given output key are subsequently
grouped by the framework, and passed to the Reducer(s) to determine the
final output. Users can control the grouping by specifying a Comparator via
Job.setGroupingComparatorClass(Class). If a grouping comparator is not
specified, then all values with the same key will be presented by an unordered Iterable to
a call to the Reducer.reduce() method.

The Mapper outputs are sorted and partitioned per Reducer. The total number of
partitions is the same as the number of reduce tasks for the job. Users can control which keys
(and hence records) go to which Reducer by implementing a custom Partitioner.

api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/mapreduce/MapContext.html
api/org/apache/hadoop/conf/Configuration.html
api/org/apache/hadoop/conf/Configuration.html
api/org/apache/hadoop/mapreduce/Mapper.html#setup(org.apache.hadoop.mapreduce.Mapper.Context)
api/org/apache/hadoop/mapreduce/Mapper.html#run(org.apache.hadoop.mapreduce.Mapper.Context)
api/org/apache/hadoop/mapreduce/Mapper.html#cleanup(org.apache.hadoop.mapreduce.Mapper.Context)
api/org/apache/hadoop/mapreduce/TaskInputOutputContext.html#write(KEYOUT,%20VALUEOUT)
api/org/apache/hadoop/mapreduce/Job.html#setGroupingComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapreduce/Partitioner.html

MapReduce Tutorial

Page 11Copyright © 2009 The Apache Software Foundation. All rights reserved.

Users can optionally specify a combiner, via Job.setCombinerClass(Class), to
perform local aggregation of the intermediate outputs, which helps to cut down the amount of
data transferred from the Mapper to the Reducer.

The intermediate, sorted outputs are always stored in a simple (key-len, key, value-len,
value) format. Applications can control if, and how, the intermediate outputs are to be
compressed and the CompressionCodec to be used via the Job.

6.1.1.1 How Many Maps?

The number of maps is usually driven by the total size of the inputs, that is, the total number
of blocks of the input files.

The right level of parallelism for maps seems to be around 10-100 maps per-node, although
it has been set up to 300 maps for very cpu-light map tasks. Task setup takes awhile, so it is
best if the maps take at least a minute to execute.

Thus, if you expect 10TB of input data and have a blocksize of 128MB, you'll end up with
82,000 maps, unless the mapreduce.job.maps parameter (which only provides a hint to
the framework) is used to set it even higher. Ultimately, the number of tasks is controlled by
the number of splits returned by the InputFormat.getSplits() method (which you
can override).

6.1.2 Reducer

Reducer reduces a set of intermediate values which share a key to a (usually smaller) set of
values.

The number of reduces for the job is set by the user via
Job.setNumReduceTasks(int).

The API of Reducer is very similar to that of Mapper; there's a run() method that
receives a Context containing the job's configuration as well as interfacing methods
that return data from the reducer itself back to the framework. The run() method calls
setup() once, reduce() once for each key associated with the reduce task, and
cleanup() once at the end. Each of these methods can access the job's configuration data
by using Context.getConfiguration().

As in Mapper, any or all of these methods can be overridden with custom implementations.
If none of these methods are overridden, the default reducer operation is the identity
function; values are passed through without further processing.

The heart of Reducer is its reduce() method. This is called once per key; the
second argument is an Iterable which returns all the values associated with that
key. In the WordCount example, this is all of the 1's or other partial counts associated

api/org/apache/hadoop/mapreduce/Job.html#setCombinerClass(java.lang.Class)
api/org/apache/hadoop/io/compress/CompressionCodec.html
api/org/apache/hadoop/mapreduce/InputFormat.html#getSplits(org.apache.hadoop.mapreduce.JobContext)
api/org/apache/hadoop/mapreduce/Reducer.html
api/org/apache/hadoop/mapreduce/Job.html#setNumReduceTasks(int)
api/org/apache/hadoop/mapreduce/Reducer.html#run(org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/ReduceContext.html
api/org/apache/hadoop/mapreduce/Reducer.html#setup(org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/Reducer.html#reduce(KEYIN,%20java.lang.Iterable,%20org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/Reducer.html#cleanup(org.apache.hadoop.mapreduce.Reducer.Context)

MapReduce Tutorial

Page 12Copyright © 2009 The Apache Software Foundation. All rights reserved.

with a given word. The Reducer should emit its final output (key, value) pairs with the
Context.write() method. It may emit 0, 1, or more (key, value) pairs for each input.

Reducer has 3 primary phases: shuffle, sort and reduce.

6.1.2.1 Shuffle

Input to the Reducer is the sorted output of the mappers. In this phase the framework
fetches the relevant partition of the output of all the mappers, via HTTP.

6.1.2.2 Sort

The framework groups Reducer inputs by keys (since different mappers may have output
the same key) in this stage.

The shuffle and sort phases occur simultaneously; while map-outputs are being fetched they
are merged.

Secondary Sort

If equivalence rules for grouping the intermediate keys are required to be different from
those for grouping keys before reduction, then one may specify a Comparator via
Job.setGroupingComparatorClass(Class). Since this can be used to control how intermediate
keys are grouped, these can be used in conjunction to simulate secondary sort on values.

6.1.2.3 Reduce

In this phase the reduce(MapOutKeyType, Iterable<MapOutValType>,
Context) method is called for each <key, (list of values)> pair in the grouped
inputs.

The output of the reduce task is typically written to the FileSystem via
Context.write(ReduceOutKeyType, ReduceOutValType).

Applications can use the Context to report progress, set application-level status messages
and update Counters, or just indicate that they are alive.

The output of the Reducer is not sorted.

6.1.2.4 How Many Reduces?

The right number of reduces seems to be 0.95 or 1.75 multiplied by (<no. of nodes> *
mapreduce.tasktracker.reduce.tasks.maximum).

With 0.95 all of the reduces can launch immediately and start transfering map outputs
as the maps finish. With 1.75 the faster nodes will finish their first round of reduces and
launch a second wave of reduces doing a much better job of load balancing.

api/org/apache/hadoop/mapreduce/Job.html#setGroupingComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapreduce/Reducer.html#reduce(KEYIN,%20java.lang.Iterable,%20org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/Reducer.html#reduce(KEYIN,%20java.lang.Iterable,%20org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/fs/FileSystem.html
api/org/apache/hadoop/mapreduce/Counters.html

MapReduce Tutorial

Page 13Copyright © 2009 The Apache Software Foundation. All rights reserved.

Increasing the number of reduces increases the framework overhead, but increases load
balancing and lowers the cost of failures.

The scaling factors above are slightly less than whole numbers to reserve a few reduce slots
in the framework for speculative-tasks and failed tasks.

6.1.2.5 Reducer NONE

It is legal to set the number of reduce-tasks to zero if no reduction is desired.

In this case the outputs of the map-tasks go directly to the FileSystem, into the output
path set by setOutputPath(Path). The framework does not sort the map-outputs before
writing them out to the FileSystem.

6.1.2.6 Mark-Reset

While applications iterate through the values for a given key, it is possible to mark the
current position and later reset the iterator to this position and continue the iteration process.
The corresponding methods are mark() and reset().

mark() and reset() can be called any number of times during the iteration cycle. The
reset() method will reset the iterator to the last record before a call to the previous
mark().

This functionality is available only with the new context based reduce iterator.

The following code snippet demonstrates the use of this functionality.

Source Code

public void reduce(IntWritable key, Iterable<IntWritable> values, Context
context) throws IOException, InterruptedException {

 MarkableIterator<IntWritable> mitr = new
MarkableIterator<IntWritable>(values.iterator());

 // Mark the position

 mitr.mark();

 while (mitr.hasNext()) {

 i = mitr.next();

 // Do the necessary processing

 }

api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setOutputPath(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.fs.Path)

MapReduce Tutorial

Page 14Copyright © 2009 The Apache Software Foundation. All rights reserved.

 // Reset

 mitr.reset();

 // Iterate all over again. Since mark was called before the first

 // call to mitr.next() in this example, we will iterate over all

 // the values now

 while (mitr.hasNext()) {

 i = mitr.next();

 // Do the necessary processing

 }

}

6.1.3 Partitioner

Partitioner partitions the key space.

Partitioner controls the partitioning of the keys of the intermediate map-outputs. The key
(or a subset of the key) is used to derive the partition, typically by a hash function. The
total number of partitions is the same as the number of reduce tasks for the job. Hence this
controls which of the m reduce tasks the intermediate key (and hence the record) is sent to for
reduction.

HashPartitioner is the default Partitioner.

6.1.4 Reporting Progress

Via the mapper or reducer's Context, MapReduce applications can report progress, set
application-level status messages and update Counters.

Mapper and Reducer implementations can use the Context to report progress or just
indicate that they are alive. In scenarios where the application takes a significant amount
of time to process individual key/value pairs, this is crucial since the framework might
assume that the task has timed-out and kill that task. Another way to avoid this is to set the
configuration parameter mapreduce.task.timeout to a high-enough value (or even set
it to zero for no time-outs).

Applications can also update Counters using the Context.

Hadoop MapReduce comes bundled with a library of generally useful mappers, reducers, and
partitioners in the org.apache.hadoop.mapreduce.lib package.

api/org/apache/hadoop/mapreduce/Partitioner.html
api/org/apache/hadoop/mapreduce/lib/partition/HashPartitioner.html
api/org/apache/hadoop/mapreduce/Counters.html
api/org/apache/hadoop/mapreduce/lib/package-summary.html

MapReduce Tutorial

Page 15Copyright © 2009 The Apache Software Foundation. All rights reserved.

6.2 Job Configuration

The Job represents a MapReduce job configuration. The actual state for this object is written
to an underlying instance of Configuration.

Job is the primary interface for a user to describe a MapReduce job to the Hadoop
framework for execution. The framework tries to faithfully execute the job as described by
Job, however:

• Some configuration parameters may have been marked as final by administrators and
hence cannot be altered.

• While some job parameters are straight-forward to set (e.g.
setNumReduceTasks(int)), other parameters interact subtly with the rest
of the framework and/or job configuration and are more complex to set (e.g.
mapreduce.job.maps).

The Job is typically used to specify the Mapper, combiner (if any), Partitioner,
Reducer, InputFormat, OutputFormat and OutputCommitter implementations.
Job also indicates the set of input files (setInputPaths(Job, Path...) /addInputPath(Job, Path))
and (setInputPaths(Job, String) /addInputPaths(Job, String)) and where the output files
should be written (setOutputPath(Path)).

Optionally, Job is used to specify other advanced facets of the job such as
the Comparator to be used, files to be put in the DistributedCache,
whether intermediate and/or job outputs are to be compressed (and
how), debugging via user-provided scripts, whether job tasks can be
executed in a speculative manner (setMapSpeculativeExecution(boolean))/
(setReduceSpeculativeExecution(boolean)) , maximum number of
attempts per task (setMaxMapAttempts(int)/setMaxReduceAttempts(int)) ,
percentage of tasks failure which can be tolerated by the job
(Job.getConfiguration().setInt(Job.MAP_FAILURES_MAX_PERCENT, int)/
Job.getConfiguration().setInt(Job.REDUCE_FAILURES_MAX_PERCENT, int)), etc.

Of course, users can use Job.getConfiguration() to get access to the underlying
configuration state, and can then use set(String, String)/get(String, String) to set/get arbitrary
parameters needed by applications. However, use the DistributedCache for large
amounts of (read-only) data.

6.3 Task Execution & Environment

The TaskTracker executes the Mapper/ Reducer task as a child process in a separate
jvm.

The child-task inherits the environment of the parent TaskTracker. The user can specify
additional options to the child-jvm via the mapreduce.{map|reduce}.java.opts

api/org/apache/hadoop/conf/Configuration.html
api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/conf/Configuration.html#FinalParams
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html#setInputPaths(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.fs.Path...)
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html#addInputPath(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html#setInputPaths(org.apache.hadoop.mapreduce.Job,%20java.lang.String)
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html#addInputPaths(org.apache.hadoop.mapreduce.Job,%20java.lang.String)
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setOutputPath(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapreduce/Job.html#setMapSpeculativeExecution(boolean)
api/org/apache/hadoop/mapreduce/Job.html#setReduceSpeculativeExecution(boolean)
api/org/apache/hadoop/mapreduce/Job.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapreduce/Job.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/conf/Configuration.html#set(java.lang.String, java.lang.String)
api/org/apache/hadoop/conf/Configuration.html#get(java.lang.String, java.lang.String)

MapReduce Tutorial

Page 16Copyright © 2009 The Apache Software Foundation. All rights reserved.

configuration parameter in the job configuration such as non-standard paths for the run-
time linker to search shared libraries via -Djava.library.path=<> etc. If the
mapreduce.{map|reduce}.java.opts parameters contains the symbol @taskid@ it
is interpolated with value of taskid of the Map or Reduce task.

Here is an example with multiple arguments and substitutions, showing jvm GC logging, and
start of a passwordless JVM JMX agent so that it can connect with jconsole and the likes to
watch child memory, threads and get thread dumps. It also sets the maximum heap-size of
the map and reduce child jvm to 512MB & 1024MB respectively. It also adds an additional
path to the java.library.path of the child-jvm.

<property>
 <name>mapreduce.map.java.opts</name>
 <value>
 -Xmx512M -Djava.library.path=/home/mycompany/lib -
verbose:gc -Xloggc:/tmp/@taskid@.gc
 -Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false
 </value>
</property>

<property>
 <name>mapreduce.reduce.java.opts</name>
 <value>
 -Xmx1024M -Djava.library.path=/home/mycompany/lib -
verbose:gc -Xloggc:/tmp/@taskid@.gc
 -Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false
 </value>
</property>

In addition the mapreduce.{map|reduce}.env properties can be used to add
environment variables to the Map or Reduce child process.

6.3.1 Configuring Memory Requirements For A Job

MapReduce tasks are launched with some default memory limits that are provided by the
system or by the cluster's administrators. Memory intensive jobs might need to use more than
these default values. Hadoop has some configuration options that allow these to be changed.
Without such modifications, memory intensive jobs could fail due to OutOfMemory errors
in tasks or could get killed when the limits are enforced by the system. This section describes
the various options that can be used to configure specific memory requirements.

MapReduce Tutorial

Page 17Copyright © 2009 The Apache Software Foundation. All rights reserved.

• mapreduce.{map|reduce}.java.opts: If the task requires more Java heap
space, this option must be used. The value of this option should pass the desired heap
using the JVM option -Xmx. For example, to use 1G of heap space, the option should be
passed in as -Xmx1024m. Note that other JVM options are also passed using the same
option. Hence, append the heap space option along with other options already configured.

• mapreduce.{map|reduce}.ulimit: The slaves where tasks are run could be
configured with a ulimit value that applies a limit to every process that is launched on the
slave. If the task, or any child that the task launches (like in streaming), requires more
than the configured limit, this option must be used. The value is given in kilobytes. For
example, to increase the ulimit to 1G, the option should be set to 1048576. Note that this
value is a per process limit. Since it applies to the JVM as well, the heap space given to
the JVM through the mapreduce.{map|reduce}.java.opts should be less than
the value configured for the ulimit. Otherwise the JVM will not start.

• mapreduce.{map|reduce}.memory.mb: In some environments, administrators
might have configured a total limit on the virtual memory used by the entire process
tree for a task, including all processes launched recursively by the task or its children,
like in streaming. More details about this can be found in the section on Monitoring
Task Memory Usage in the Cluster SetUp guide. If a task requires more virtual memory
for its entire tree, this option must be used. The value is given in MB. For example,
to set the limit to 1G, the option should be set to 1024. Note that this value does not
automatically influence the per process ulimit or heap space. Hence, you may need to set
those parameters as well (as described above) in order to give your tasks the right amount
of memory.

• mapreduce.{map|reduce}.memory.physical.mb: This parameter is similar
to mapreduce.{map|reduce}.memory.mb, except it specifies how much physical
memory is required by a task for its entire tree of processes. The parameter is applicable
if administrators have configured a total limit on the physical memory used by all
MapReduce tasks.

As seen above, each of the options can be specified separately for map and reduce tasks. It is
typically the case that the different types of tasks have different memory requirements. Hence
different values can be set for the corresponding options.

The memory available to some parts of the framework is also configurable. In map and
reduce tasks, performance may be influenced by adjusting parameters influencing the
concurrency of operations and the frequency with which data will hit disk. Monitoring the
filesystem counters for a job- particularly relative to byte counts from the map and into the
reduce- is invaluable to the tuning of these parameters.

Note: The memory related configuration options described above are used only for
configuring the launched child tasks from the tasktracker. Configuring the memory options

http://hadoop.apache.org/common/docs/current/cluster_setup.html#Configuring+Memory+Parameters+for+MapReduce+Jobs
http://hadoop.apache.org/common/docs/current/cluster_setup.html#Configuring+Memory+Parameters+for+MapReduce+Jobs

MapReduce Tutorial

Page 18Copyright © 2009 The Apache Software Foundation. All rights reserved.

for daemons is documented under Configuring the Environment of the Hadoop Daemons
(Cluster Setup).

6.3.2 Map Parameters

A record emitted from a map and its metadata will be serialized into a buffer. As described
in the following options, when the record data exceed a threshold, the contents of this buffer
will be sorted and written to disk in the background (a "spill") while the map continues to
output records. If the remainder of the buffer fills during the spill, the map thread will block.
When the map is finished, any buffered records are written to disk and all on-disk segments
are merged into a single file. Minimizing the number of spills to disk can decrease map time,
but a larger buffer also decreases the memory available to the mapper.

Name Type Description

mapreduce.task.io.sort.mb int The cumulative size of the
serialization and accounting
buffers storing records emitted
from the map, in megabytes.

mapreduce.map.sort.spill.percent float This is the threshold for the
accounting and serialization
buffer. When this percentage of
the io.sort.mb has filled, its
contents will be spilled to disk in
the background. Note that a higher
value may decrease the number
of- or even eliminate- merges, but
will also increase the probability
of the map task getting blocked.
The lowest average map times are
usually obtained by accurately
estimating the size of the map
output and preventing multiple
spills.

Other notes

• If the spill threshold is exceeded while a spill is in progress, collection will continue until
the spill is finished. For example, if mapreduce.map.sort.spill.percent is
set to 0.33, and the remainder of the buffer is filled while the spill runs, the next spill will
include all the collected records, or 0.66 of the buffer, and will not generate additional
spills. In other words, the thresholds are defining triggers, not blocking.

• A record larger than the serialization buffer will first trigger a spill, then be spilled
to a separate file. It is undefined whether or not this record will first pass through the
combiner.

http://hadoop.apache.org/common/docs/current/cluster_setup.html#Configuring+the+Environment+of+the+Hadoop+Daemons

MapReduce Tutorial

Page 19Copyright © 2009 The Apache Software Foundation. All rights reserved.

6.3.3 Shuffle/Reduce Parameters

As described previously, each reduce fetches the output assigned to it by the Partitioner
via HTTP into memory and periodically merges these outputs to disk. If intermediate
compression of map outputs is turned on, each output is decompressed into memory. The
following options affect the frequency of these merges to disk prior to the reduce and the
memory allocated to map output during the reduce.

Name Type Description

mapreduce.task.io.sort.factor int Specifies the number of segments
on disk to be merged at the same
time. It limits the number of open
files and compression codecs
during the merge. If the number of
files exceeds this limit, the merge
will proceed in several passes.
Though this limit also applies
to the map, most jobs should be
configured so that hitting this limit
is unlikely there.

mapreduce.reduce.merge.inmem.thresholdint The number of sorted map outputs
fetched into memory before
being merged to disk. Like the
spill thresholds in the preceding
note, this is not defining a unit of
partition, but a trigger. In practice,
this is usually set very high (1000)
or disabled (0), since merging in-
memory segments is often less
expensive than merging from disk
(see notes following this table).
This threshold influences only the
frequency of in-memory merges
during the shuffle.

mapreduce.reduce.shuffle.merge.percentfloat The memory threshold for fetched
map outputs before an in-memory
merge is started, expressed as a
percentage of memory allocated
to storing map outputs in memory.
Since map outputs that can't fit
in memory can be stalled, setting
this high may decrease parallelism
between the fetch and merge.
Conversely, values as high as 1.0
have been effective for reduces

MapReduce Tutorial

Page 20Copyright © 2009 The Apache Software Foundation. All rights reserved.

Name Type Description

whose input can fit entirely
in memory. This parameter
influences only the frequency of
in-memory merges during the
shuffle.

mapreduce.reduce.shuffle.input.buffer.percentfloat The percentage of memory-
relative to the maximum
heapsize as typically specified in
mapreduce.reduce.java.opts-
that can be allocated to storing
map outputs during the shuffle.
Though some memory should be
set aside for the framework, in
general it is advantageous to set
this high enough to store large and
numerous map outputs.

mapreduce.reduce.input.buffer.percentfloat The percentage of memory relative
to the maximum heapsize in which
map outputs may be retained
during the reduce. When the
reduce begins, map outputs will
be merged to disk until those that
remain are under the resource
limit this defines. By default,
all map outputs are merged to
disk before the reduce begins to
maximize the memory available
to the reduce. For less memory-
intensive reduces, this should be
increased to avoid trips to disk.

Other notes

• If a map output is larger than 25 percent of the memory allocated to copying map outputs,
it will be written directly to disk without first staging through memory.

• When running with a combiner, the reasoning about high merge thresholds and large
buffers may not hold. For merges started before all map outputs have been fetched, the
combiner is run while spilling to disk. In some cases, one can obtain better reduce times
by spending resources combining map outputs- making disk spills small and parallelizing
spilling and fetching- rather than aggressively increasing buffer sizes.

• When merging in-memory map outputs to disk to begin the reduce, if an
intermediate merge is necessary because there are segments to spill and at least

MapReduce Tutorial

Page 21Copyright © 2009 The Apache Software Foundation. All rights reserved.

mapreduce.task.io.sort.factor segments already on disk, the in-memory
map outputs will be part of the intermediate merge.

6.3.4 Directory Structure

The task tracker has local directory, ${mapreduce.cluster.local.dir}/
taskTracker/ to create localized cache and localized job. It can define multiple local
directories (spanning multiple disks) and then each filename is assigned to a semi-random
local directory. When the job starts, task tracker creates a localized job directory relative to
the local directory specified in the configuration. Thus the task tracker directory structure
looks as following:

• ${mapreduce.cluster.local.dir}/taskTracker/distcache/ : The
public distributed cache for the jobs of all users. This directory holds the localized public
distributed cache. Thus localized public distributed cache is shared among all the tasks
and jobs of all users.

• ${mapreduce.cluster.local.dir}/taskTracker/$user/distcache/
: The private distributed cache for the jobs of the specific user. This directory holds the
localized private distributed cache. Thus localized private distributed cache is shared
among all the tasks and jobs of the specific user only. It is not accessible to jobs of other
users.

• ${mapreduce.cluster.local.dir}/taskTracker/$user/jobcache/
$jobid/ : The localized job directory
• ${mapreduce.cluster.local.dir}/taskTracker/$user/

jobcache/$jobid/work/ : The job-specific shared directory. The tasks can
use this space as scratch space and share files among them. This directory is exposed
to the users through the configuration property mapreduce.job.local.dir.
It is available as System property also. So, users (streaming etc.) can call
System.getProperty("mapreduce.job.local.dir") to access the
directory.

• ${mapreduce.cluster.local.dir}/taskTracker/$user/
jobcache/$jobid/jars/ : The jars directory, which has the job jar file
and expanded jar. The job.jar is the application's jar file that is automatically
distributed to each machine. Any library jars that are dependencies of the application
code may be packaged inside this jar in a lib/ directory. This directory is extracted
from job.jar and its contents are automatically added to the classpath for each
task. The job.jar location is accessible to the application through the API Job.getJar()
. To access the unjarred directory, Job.getJar().getParent() can be called.

• ${mapreduce.cluster.local.dir}/taskTracker/$user/
jobcache/$jobid/job.xml : The job.xml file, the generic job configuration,
localized for the job.

api/org/apache/hadoop/mapreduce/task/JobContextImpl.html#getJar()

MapReduce Tutorial

Page 22Copyright © 2009 The Apache Software Foundation. All rights reserved.

• ${mapreduce.cluster.local.dir}/taskTracker/$user/
jobcache/$jobid/$taskid : The task directory for each task attempt. Each
task directory again has the following structure :
• ${mapreduce.cluster.local.dir}/taskTracker/$user/

jobcache/$jobid/$taskid/job.xml : A job.xml file, task localized
job configuration, Task localization means that properties have been set that are
specific to this particular task within the job. The properties localized for each
task are described below.

• ${mapreduce.cluster.local.dir}/taskTracker/$user/
jobcache/$jobid/$taskid/output : A directory for intermediate
output files. This contains the temporary map reduce data generated by the
framework such as map output files etc.

• ${mapreduce.cluster.local.dir}/taskTracker/$user/
jobcache/$jobid/$taskid/work : The curernt working directory of
the task. With jvm reuse enabled for tasks, this directory will be the directory on
which the jvm has started

• ${mapreduce.cluster.local.dir}/taskTracker/$user/
jobcache/$jobid/$taskid/work/tmp : The temporary directory
for the task. (User can specify the property mapreduce.task.tmp.dir
to set the value of temporary directory for map and reduce tasks. This defaults
to ./tmp. If the value is not an absolute path, it is prepended with task's
working directory. Otherwise, it is directly assigned. The directory will be
created if it doesn't exist. Then, the child java tasks are executed with option
-Djava.io.tmpdir='the absolute path of the tmp dir'.
Pipes and streaming are set with environment variable, TMPDIR='the
absolute path of the tmp dir'). This directory is created, if
mapreduce.task.tmp.dir has the value ./tmp

6.3.5 Task JVM Reuse

Jobs can enable task JVMs to be reused by specifying the job configuration
mapreduce.job.jvm.numtasks. If the value is 1 (the default), then JVMs are not
reused (i.e. 1 task per JVM). If it is -1, there is no limit to the number of tasks a JVM
can run (of the same job). One can also specify some value greater than 1 using the api
Job.getConfiguration().setInt(Job.JVM_NUM_TASKS_TO_RUN, int).

6.3.6 Configured Parameters

The following properties are localized in the job configuration for each task's execution:

MapReduce Tutorial

Page 23Copyright © 2009 The Apache Software Foundation. All rights reserved.

Name Type Description

mapreduce.job.id String The job id

mapreduce.job.jar String job.jar location in job directory

mapreduce.job.local.dir String The job specific shared scratch
space

mapreduce.task.id String The task id

mapreduce.task.attempt.id String The task attempt id

mapreduce.task.ismap boolean Is this a map task

mapreduce.task.partition int The id of the task within the job

mapreduce.map.input.file String The filename that the map is
reading from

mapreduce.map.input.start long The offset of the start of the map
input split

mapreduce.map.input.length long The number of bytes in the map
input split

mapreduce.task.output.dir String The task's temporary output
directory

Note: During the execution of a streaming job, the names of the "mapred" parameters are
transformed. The dots (.) become underscores (_). For example, mapreduce.job.id becomes
mapreduce.job.id and mapreduce.job.jar becomes mapreduce.job.jar. To get the values in a
streaming job's mapper/reducer use the parameter names with the underscores.

6.3.7 Task Logs

The standard output (stdout) and error (stderr) streams of the task are read by the
TaskTracker and logged to ${HADOOP_LOG_DIR}/userlogs

6.3.8 Distributing Libraries

The DistributedCache can also be used to distribute both jars and native libraries for use in
the map and/or reduce tasks. The child-jvm always has its current working directory added
to the java.library.path and LD_LIBRARY_PATH. And hence the cached libraries
can be loaded via System.loadLibrary or System.load. More details on how to load shared
libraries through distributed cache are documented under Building Native Hadoop Libraries.

http://java.sun.com/javase/6/docs/api/java/lang/System.html#loadLibrary(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/lang/System.html#load(java.lang.String)
http://hadoop.apache.org/common/docs/current/native_libraries.html#Loading+Native+Libraries+Through+DistributedCache

MapReduce Tutorial

Page 24Copyright © 2009 The Apache Software Foundation. All rights reserved.

6.3.9 Job Credentials

In a secure cluster, the user is authenticated via Kerberos' kinit command. Because of
scalability concerns, we don't push the client's Kerberos' tickets in MapReduce jobs. Instead,
we acquire delegation tokens from each HDFS NameNode that the job will use and store
them in the job as part of job submission. The delegation tokens are automatically obtained
for the HDFS that holds the staging directories, where the job files are written, and any
HDFS systems referenced by FileInputFormats, FileOutputFormats, DistCp, and the
distributed cache. Other applications require to set the configuration "mapreduce.job.hdfs-
servers" for all NameNodes that tasks might need to talk during the job execution. This is a
comma separated list of file system names, such as "hdfs://nn1/,hdfs://nn2/". These tokens
are passed to the JobTracker as part of the job submission as Credentials.

Similar to HDFS delegation tokens, we also have MapReduce delegation tokens. The
MapReduce tokens are provided so that tasks can spawn jobs if they wish to. The tasks
authenticate to the JobTracker via the MapReduce delegation tokens. The delegation token
can be obtained via the API in JobClient.getDelegationToken. The obtained token must then
be pushed onto the credentials that is there in the JobConf used for job submission. The API
Credentials.addToken can be used for this.

The credentials are sent to the JobTracker as part of the job submission process. The
JobTracker persists the tokens and secrets in its filesystem (typically HDFS) in a file within
mapred.system.dir/JOBID. The TaskTracker localizes the file as part job localization.
Tasks see an environment variable called HADOOP_TOKEN_FILE_LOCATION
and the framework sets this to point to the localized file. In order to launch jobs
from tasks or for doing any HDFS operation, tasks must set the configuration
"mapreduce.job.credentials.binary" to point to this token file.

The HDFS delegation tokens passed to the JobTracker during job submission are are
cancelled by the JobTracker when the job completes. This is the default behavior unless
mapreduce.job.complete.cancel.delegation.tokens is set to false in the JobConf. For
jobs whose tasks in turn spawns jobs, this should be set to false. Applications sharing
JobConf objects between multiple jobs on the JobClient side should look at setting
mapreduce.job.complete.cancel.delegation.tokens to false. This is because the Credentials
object within the JobConf will then be shared. All jobs will end up sharing the same tokens,
and hence the tokens should not be canceled when the jobs in the sequence finish.

Apart from the HDFS delegation tokens, arbitrary secrets can also be passed during the job
submission for tasks to access other third party services. The APIs JobConf.getCredentials
or JobContext.getCredentials() should be used to get the credentials object and then
Credentials.addSecretKey should be used to add secrets.

For applications written using the old MapReduce API, the Mapper/Reducer classes need
to implement JobConfigurable in order to get access to the credentials in the tasks. A

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/security/Credentials.html
api/org/apache/hadoop/mapred/jobclient/getdelegationtoken
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/security/Credentials.html#addToken(org.apache.hadoop.io.Text, org.apache.hadoop.security.token.Token)
api/org/apache/hadoop/mapred/JobConf.html#getCredentials()
api/org/apache/hadoop/mapreduce/JobContext.html#getcredentials
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/security/Credentials.html#addSecretKey(org.apache.hadoop.io.Text, byte[])
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/security/Credentials.html#addSecretKey(org.apache.hadoop.io.Text, byte[])
api/org/apache/hadoop/mapred/jobconfigurable

MapReduce Tutorial

Page 25Copyright © 2009 The Apache Software Foundation. All rights reserved.

reference to the JobConf passed in the JobConfigurable.configure should be stored. In the
new MapReduce API, a similar thing can be done in the Mapper.setup method. The api
JobConf.getCredentials() or the api JobContext.getCredentials() should be used to get the
credentials reference (depending on whether the new MapReduce API or the old MapReduce
API is used). Tasks can access the secrets using the APIs in Credentials

6.4 Job Submission and Monitoring

The Job is the primary interface by which user-job interacts with the JobTracker.

Job provides facilities to submit jobs, track their progress, access component-tasks' reports
and logs, get the MapReduce cluster's status information and so on.

The job submission process involves:
1. Checking the input and output specifications of the job.
2. Computing the InputSplit values for the job.
3. Setting up the requisite accounting information for the DistributedCache of the job,

if necessary.
4. Copying the job's jar and configuration to the MapReduce system directory on the

FileSystem.
5. Submitting the job to the JobTracker and optionally monitoring it's status.

User can view the history log summary for a given history file using the following command
$ bin/hadoop job -history history-file
This command will print job details, failed and killed tip details.
More details about the job such as successful tasks and task attempts made for each task can
be viewed using the following command
$ bin/hadoop job -history all history-file

User can use OutputLogFilter to filter log files from the output directory listing.

Normally the user creates the application, describes various facets of the job via Job, and
then uses the waitForCompletion() method to submit the job and monitor its progress.

6.4.1 Job Control

Users may need to chain MapReduce jobs to accomplish complex tasks which cannot be
done via a single MapReduce job. This is fairly easy since the output of the job typically goes
to distributed file-system, and the output, in turn, can be used as the input for the next job.

However, this also means that the onus on ensuring jobs are complete (success/failure) lies
squarely on the clients. In such cases, the various job-control options are:

• Job.waitForCompletion() : Submits the job and returns only after the job has
completed.

api/org/apache/hadoop/mapred/jobconfigurable/configure
api/org/apache/hadoop/mapreduce/mapper/setup
api/org/apache/hadoop/mapred/JobConf.html#getCredentials()
api/org/apache/hadoop/mapred/JobConf.html#getCredentials()
api/org/apache/hadoop/mapreduce/JobContext.html#getcredentials
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/security/Credentials.html
api/org/apache/hadoop/mapred/OutputLogFilter.html
api/org/apache/hadoop/mapreduce/Job.html#waitForCompletion(boolean)

MapReduce Tutorial

Page 26Copyright © 2009 The Apache Software Foundation. All rights reserved.

• Job.submit() : Only submits the job;, then poll the other methods of Job such
as isComplete(), isSuccessful(), etc. to query status and make scheduling
decisions.

• Job.getConfiguration().set(Job.END_NOTIFICATION_URL, String)
: Sets up a notification upon job-completion, thus avoiding polling.

6.4.2 Job Authorization

Job level authorization and queue level authorization are enabled on the cluster, if the
configuration mapreduce.cluster.acls.enabled is set to true. When enabled,
access control checks are done by (a) the JobTracker before allowing users to submit jobs to
queues and administering these jobs and (b) by the JobTracker and the TaskTracker before
allowing users to view job details or to modify a job using MapReduce APIs, CLI or web
user interfaces.

A job submitter can specify access control lists for viewing or modifying a job
via the configuration properties mapreduce.job.acl-view-job and
mapreduce.job.acl-modify-job respectively. By default, nobody is given access in
these properties.

However, irrespective of the job ACLs configured, a job's owner, the user who started the
cluster and cluster administrators (mapreduce.cluster.administrators) and
queue administrators of the queue to which the job was submitted to (acl-administer-
jobs) always have access to view and modify a job.

A job view ACL authorizes users against the configured mapreduce.job.acl-view-
job before returning possibly sensitive information about a job, like:

• job level counters
• task level counters
• tasks's diagnostic information
• task logs displayed on the TaskTracker web UI
• job.xml showed by the JobTracker's web UI

Other information about a job, like its status and its profile, is accessible to all users, without
requiring authorization.

A job modification ACL authorizes users against the configured mapreduce.job.acl-
modify-job before allowing modifications to jobs, like:

• killing a job
• killing/failing a task of a job
• setting the priority of a job

These view and modify operations on jobs are also permitted by the queue level
ACL, "acl-administer-jobs", configured via mapred-queue-acls.xml. The caller

api/org/apache/hadoop/mapreduce/Job.html#submit()

MapReduce Tutorial

Page 27Copyright © 2009 The Apache Software Foundation. All rights reserved.

will be able to do the operation if he/she is part of either queue admins ACL or
job modification ACL or the user who started the cluster or a cluster administrator
(mapreduce.cluster.administrators).

The format of a job level ACL is the same as the format for a queue level ACL as defined in
the Cluster Setup documentation.

6.5 Job Input

InputFormat describes the input-specification for a MapReduce job.

The MapReduce framework relies on the InputFormat of the job to:
1. Validate the input-specification of the job.
2. Split-up the input file(s) into logical InputSplit instances, each of which is then

assigned to an individual Mapper.
3. Provide the RecordReader implementation used to glean input records from the

logical InputSplit for processing by the Mapper.

The default behavior of file-based InputFormat implementations, typically sub-classes
of FileInputFormat, is to split the input into logical InputSplit instances based on the
total size, in bytes, of the input files. However, the FileSystem blocksize of the input files
is treated as an upper bound for input splits. A lower bound on the split size can be set via
mapreduce.input.fileinputformat.split.minsize.

Clearly, logical splits based on input-size is insufficient for many applications since
record boundaries must be respected. In such cases, the application should implement a
RecordReader, who is responsible for respecting record-boundaries and presents a record-
oriented view of the logical InputSplit to the individual task.

TextInputFormat is the default InputFormat.

If TextInputFormat is the InputFormat for a given job, the framework detects input-
files with the .gz extensions and automatically decompresses them using the appropriate
CompressionCodec. However, it must be noted that compressed files with the above
extensions cannot be split and each compressed file is processed in its entirety by a single
mapper.

6.5.1 InputSplit

InputSplit represents the data to be processed by an individual Mapper.

Typically InputSplit presents a byte-oriented view of the input, and it is the
responsibility of RecordReader to process and present a record-oriented view.

FileSplit is the default InputSplit. It sets mapreduce.map.input.file to the path
of the input file for the logical split.

http://hadoop.apache.org/common/docs/current/cluster_setup.html#Configuring+the+Hadoop+Daemons
api/org/apache/hadoop/mapreduce/InputFormat.html
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html
api/org/apache/hadoop/mapreduce/lib/input/TextInputFormat.html
api/org/apache/hadoop/mapreduce/InputSplit.html
api/org/apache/hadoop/mapreduce/lib/input/FileSplit.html

MapReduce Tutorial

Page 28Copyright © 2009 The Apache Software Foundation. All rights reserved.

6.5.2 RecordReader

RecordReader reads <key, value> pairs from an InputSplit.

Typically the RecordReader converts the byte-oriented view of the input, provided
by the InputSplit, and presents a record-oriented to the Mapper implementations
for processing. RecordReader thus assumes the responsibility of processing record
boundaries and presents the tasks with keys and values.

6.6 Job Output

OutputFormat describes the output-specification for a MapReduce job.

The MapReduce framework relies on the OutputFormat of the job to:
1. Validate the output-specification of the job; for example, check that the output directory

doesn't already exist.
2. Provide the RecordWriter implementation used to write the output files of the job.

Output files are stored in a FileSystem.

TextOutputFormat is the default OutputFormat.

6.6.1 Lazy Output Creation

It is possible to delay creation of output until the first write attempt by using
LazyOutputFormat. This is particularly useful in preventing the creation of zero byte files
when there is no call to output.collect (or Context.write). This is achieved by calling the
static method setOutputFormatClass of LazyOutputFormat with the intended
OutputFormat as the argument. The following example shows how to delay creation of
files when using the TextOutputFormat

import
org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat;
LazyOutputFormat.setOutputFormatClass(job,
TextOutputFormat.class);

6.6.2 OutputCommitter

OutputCommitter describes the commit of task output for a MapReduce job.

The MapReduce framework relies on the OutputCommitter of the job to:
1. Setup the job during initialization. For example, create the temporary output directory for

the job during the initialization of the job. Job setup is done by a separate task when the
job is in PREP state and after initializing tasks. Once the setup task completes, the job
will be moved to RUNNING state.

api/org/apache/hadoop/mapreduce/RecordReader.html
api/org/apache/hadoop/mapreduce/OutputFormat.html
api/org/apache/hadoop/mapreduce/lib/output/LazyOutputFormat.html
api/org/apache/hadoop/mapreduce/lib/output/LazyOutputFormat.html
api/org/apache/hadoop/mapreduce/OutputCommitter.html

MapReduce Tutorial

Page 29Copyright © 2009 The Apache Software Foundation. All rights reserved.

2. Cleanup the job after the job completion. For example, remove the temporary output
directory after the job completion. Job cleanup is done by a separate task at the end of the
job. Job is declared SUCCEDED/FAILED/KILLED after the cleanup task completes.

3. Setup the task temporary output. Task setup is done as part of the same task, during task
initialization.

4. Check whether a task needs a commit. This is to avoid the commit procedure if a task
does not need commit.

5. Commit of the task output. Once task is done, the task will commit it's output if required.
6. Discard the task commit. If the task has been failed/killed, the output will be cleaned-up.

If task could not cleanup (in exception block), a separate task will be launched with same
attempt-id to do the cleanup.

FileOutputCommitter is the default OutputCommitter. Job setup/cleanup tasks
occupy map or reduce slots, whichever is free on the TaskTracker. And JobCleanup task,
TaskCleanup tasks and JobSetup task have the highest priority, and in that order.

6.6.3 Task Side-Effect Files

In some applications, component tasks need to create and/or write to side-files, which differ
from the actual job-output files.

In such cases there could be issues with two instances of the same Mapper or
Reducer running simultaneously (for example, speculative tasks) trying to open
and/or write to the same file (path) on the FileSystem. Hence the application-
writer will have to pick unique names per task-attempt (using the attemptid, say
attempt_200709221812_0001_m_000000_0), not just per task.

To avoid these issues the MapReduce framework, when the
OutputCommitter is FileOutputCommitter, maintains a special
${mapreduce.output.fileoutputformat.outputdir}/_temporary/
_${taskid} sub-directory accessible via ${mapreduce.task.output.dir}
for each task-attempt on the FileSystem where the output of the task-
attempt is stored. On successful completion of the task-attempt, the files in
the ${mapreduce.output.fileoutputformat.outputdir}/
temporary/${taskid} (only) are promoted to
${mapreduce.output.fileoutputformat.outputdir}. Of course, the
framework discards the sub-directory of unsuccessful task-attempts. This process is
completely transparent to the application.

The application-writer can take advantage of this feature by creating any side-files
required in ${mapreduce.task.output.dir} during execution of a task via
FileOutputFormat.getWorkOutputPath(), and the framework will promote them similarly for
succesful task-attempts, thus eliminating the need to pick unique paths per task-attempt.

api/org/apache/hadoop/mapreduce/lib/output/FileOutputCommitter.html
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapreduce.TaskInputOutputContext)
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapreduce.TaskInputOutputContext)

MapReduce Tutorial

Page 30Copyright © 2009 The Apache Software Foundation. All rights reserved.

Note: The value of ${mapreduce.task.output.dir}
during execution of a particular task-attempt is actually
${mapreduce.output.fileoutputformat.outputdir}/_temporary/
_{$taskid}, and this value is set by the MapReduce framework. So, just create any side-
files in the path returned by FileOutputFormat.getWorkOutputPath() from MapReduce task
to take advantage of this feature.

The entire discussion holds true for maps of jobs with reducer=NONE (i.e. 0 reduces) since
output of the map, in that case, goes directly to HDFS.

6.6.4 RecordWriter

RecordWriter writes the output <key, value> pairs to an output file.

RecordWriter implementations write the job outputs to the FileSystem.

6.7 Other Useful Features

6.7.1 Submitting Jobs to Queues

Users submit jobs to Queues. Queues, as collection of jobs, allow the system to provide
specific functionality. For example, queues use ACLs to control which users who can submit
jobs to them. Queues are expected to be primarily used by Hadoop Schedulers.

Hadoop comes configured with a single mandatory queue, called 'default'. Queue names are
defined in the mapred.queue.names property of the Hadoop site configuration. Some
job schedulers, such as the Capacity Scheduler, support multiple queues.

A job defines the queue it needs to be submitted to through the
mapreduce.job.queuename property. Setting the queue name is optional. If a job is
submitted without an associated queue name, it is submitted to the 'default' queue.

6.7.2 Counters

Counters represent global counters, defined either by the MapReduce framework or
applications. Each Counter can be of any Enum type. Counters of a particular Enum are
bunched into groups of type Counters.Group.

Applications can define arbitrary Counters (of type Enum); get a Counter
object from the task's Context with the getCounter() method, and then call the
Counter.increment(long) method to increment its value locally. These counters are
then globally aggregated by the framework.

6.7.3 DistributedCache

DistributedCache distributes application-specific, large, read-only files efficiently.

api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapreduce.TaskInputOutputContext)
api/org/apache/hadoop/mapreduce/RecordWriter.html
capacity_scheduler.html
api/org/apache/hadoop/mapreduce/Counters.html
api/org/apache/hadoop/mapreduce/Counter.html
api/org/apache/hadoop/mapreduce/TaskInputOutputContext.html#getCounter(java.lang.Enum)
api/org/apache/hadoop/mapreduce/Counter.html#increment(long)
api/org/apache/hadoop/filecache/DistributedCache.html

MapReduce Tutorial

Page 31Copyright © 2009 The Apache Software Foundation. All rights reserved.

DistributedCache is a facility provided by the MapReduce framework to cache files
(text, archives, jars and so on) needed by applications.

Applications specify the files to be cached via urls (hdfs://) in the Job. The
DistributedCache assumes that the files specified via hdfs:// urls are already present on
the FileSystem.

The framework will copy the necessary files to the slave node before any tasks for the job are
executed on that node. Its efficiency stems from the fact that the files are only copied once
per job and the ability to cache archives which are un-archived on the slaves.

DistributedCache tracks the modification timestamps of the cached files. Clearly the
cache files should not be modified by the application or externally while the job is executing.

DistributedCache can be used to distribute simple, read-only data/text files and more
complex types such as archives and jars. Archives (zip, tar, tgz and tar.gz files) are un-
archived at the slave nodes. Files have execution permissions set.

The files/archives can be distributed by setting the property mapred.cache.
{files|archives}. If more than one file/archive has to be distributed, they
can be added as comma separated paths. The properties can also be set by APIs
DistributedCache.addCacheFile(URI,conf)/ DistributedCache.addCacheArchive(URI,conf)
and DistributedCache.setCacheFiles(URIs,conf)/
DistributedCache.setCacheArchives(URIs,conf) where URI is of the form hdfs://
host:port/absolute-path#link-name. In Streaming, the files can be distributed
through command line option -cacheFile/-cacheArchive.

Optionally users can also direct the DistributedCache to symlink the
cached file(s) into the current working directory of the task via the
DistributedCache.createSymlink(Configuration) api. Or by setting the configuration property
mapreduce.job.cache.symlink.create as yes. The DistributedCache will use
the fragment of the URI as the name of the symlink. For example, the URI hdfs://
namenode:port/lib.so.1#lib.so will have the symlink name as lib.so in task's
cwd for the file lib.so.1 in distributed cache.

The DistributedCache can also be used as a rudimentary software distribution
mechanism for use in the map and/or reduce tasks. It can be used to distribute both jars
and native libraries. The DistributedCache.addArchiveToClassPath(Path, Configuration)
or DistributedCache.addFileToClassPath(Path, Configuration) api can be used to cache
files/jars and also add them to the classpath of child-jvm. The same can be done by setting
the configuration properties mapreduce.job.classpath.{files|archives}.
Similarly the cached files that are symlinked into the working directory of the task can be
used to distribute native libraries and load them.

api/org/apache/hadoop/filecache/DistributedCache.html#addCacheFile(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addCacheFile(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addCacheArchive(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheFiles(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheArchives(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheArchives(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#createSymlink(org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#createSymlink(org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addArchiveToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addFileToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)

MapReduce Tutorial

Page 32Copyright © 2009 The Apache Software Foundation. All rights reserved.

6.7.3.1 Private and Public DistributedCache Files

DistributedCache files can be private or public, that determines how they can be shared on
the slave nodes.

• "Private" DistributedCache files are cached in a local directory private to the user whose
jobs need these files. These files are shared by all tasks and jobs of the specific user
only and cannot be accessed by jobs of other users on the slaves. A DistributedCache
file becomes private by virtue of its permissions on the file system where the files are
uploaded, typically HDFS. If the file has no world readable access, or if the directory
path leading to the file has no world executable access for lookup, then the file becomes
private.

• "Public" DistributedCache files are cached in a global directory and the file access is
setup such that they are publicly visible to all users. These files can be shared by tasks
and jobs of all users on the slaves. A DistributedCache file becomes public by virtue of
its permissions on the file system where the files are uploaded, typically HDFS. If the
file has world readable access, AND if the directory path leading to the file has world
executable access for lookup, then the file becomes public. In other words, if the user
intends to make a file publicly available to all users, the file permissions must be set to
be world readable, and the directory permissions on the path leading to the file must be
world executable.

The DistributedCache tracks modification timestamps of the cache files/archives.
Clearly the cache files/archives should not be modified by the application or externally while
the job is executing.

Here is an illustrative example on how to use the DistributedCache:
// Setting up the cache for the application 1. Copy the requisite files to the FileSystem:
$ bin/hadoop fs -copyFromLocal lookup.dat /myapp/lookup.dat
$ bin/hadoop fs -copyFromLocal map.zip /myapp/map.zip
$ bin/hadoop fs -copyFromLocal mylib.jar /myapp/mylib.jar
$ bin/hadoop fs -copyFromLocal mytar.tar /myapp/mytar.tar
$ bin/hadoop fs -copyFromLocal mytgz.tgz /myapp/mytgz.tgz
$ bin/hadoop fs -copyFromLocal mytargz.tar.gz /myapp/
mytargz.tar.gz
2. Setup the job
Job job = new Job(conf);
job.addCacheFile(new URI("/myapp/lookup.dat#lookup.dat"));
job.addCacheArchive(new URI("/myapp/map.zip"));
job.addFileToClassPath(new Path("/myapp/mylib.jar"));
job.addCacheArchive(new URI("/myapp/mytar.tar"));
job.addCacheArchive(new URI("/myapp/mytgz.tgz"));

MapReduce Tutorial

Page 33Copyright © 2009 The Apache Software Foundation. All rights reserved.

job.addCacheArchive(new URI("/myapp/mytargz.tar.gz"));
3. Use the cached files in the {@link org.apache.hadoop.mapreduce.Mapper}
or {@link org.apache.hadoop.mapreduce.Reducer}:
public static class MapClass extends Mapper<K, V, K, V> {
 private Path[] localArchives;
 private Path[] localFiles;
 public void setup(Context context) {
 // Get the cached archives/files
 localArchives = context.getLocalCacheArchives();
 localFiles = context.getLocalCacheFiles();
 }
 public void map(K key, V value, Context context) throws
IOException {
 // Use data from the cached archives/files here
 // ...
 // ...
 context.write(k, v);
 }
}

6.7.4 Tool

The Tool interface supports the handling of generic Hadoop command-line options.

Tool is the standard for any MapReduce tool or application. The application should
delegate the handling of standard command-line options to GenericOptionsParser via
ToolRunner.run(Tool, String[]) and only handle its custom arguments.

The generic Hadoop command-line options are:
-conf <configuration file>
-D <property=value>
-fs <local|namenode:port>
-jt <local|jobtracker:port>

6.7.5 IsolationRunner

IsolationRunner is a utility to help debug MapReduce programs.

To use the IsolationRunner, first set keep.failed.tasks.files to true (also
see keep.tasks.files.pattern).

Next, go to the node on which the failed task ran and go to the TaskTracker's local
directory and run the IsolationRunner:

api/org/apache/hadoop/util/Tool.html
api/org/apache/hadoop/util/GenericOptionsParser.html
api/org/apache/hadoop/util/ToolRunner.html#run(org.apache.hadoop.util.Tool, java.lang.String[])
api/org/apache/hadoop/util/ToolRunner.html#run(org.apache.hadoop.util.Tool, java.lang.String[])
api/org/apache/hadoop/mapred/IsolationRunner.html

MapReduce Tutorial

Page 34Copyright © 2009 The Apache Software Foundation. All rights reserved.

$ cd <local path> /taskTracker/$user/jobcache/$jobid/
${taskid}/work
$ bin/hadoop org.apache.hadoop.mapred.IsolationRunner ../
job.xml

IsolationRunner will run the failed task in a single jvm, which can be in the debugger,
over precisely the same input.

6.7.6 Profiling

Profiling is a utility to get a representative (2 or 3) sample of built-in java profiler for a
sample of maps and reduces.

User can specify whether the system should collect profiler information for some of the tasks
in the job by setting the configuration property mapreduce.task.profile. The value
can be set using the api Job.setProfileEnabled(boolean). If the value is set true, the task
profiling is enabled. The profiler information is stored in the user log directory. By default,
profiling is not enabled for the job.

Once user configures that profiling is needed, she/he can use the configuration property
mapreduce.task.profile.{maps|reduces} to set the ranges of MapReduce tasks
to profile. The value can be set using the api Job.setProfileTaskRange(boolean,String). By
default, the specified range is 0-2.

User can also specify the profiler configuration arguments by setting the configuration
property mapreduce.task.profile.params. The value can be specified using the
api Job.setProfileParams(String). If the string contains a %s, it will be replaced with the
name of the profiling output file when the task runs. These parameters are passed to the
task child JVM on the command line. The default value for the profiling parameters is -
agentlib:hprof=cpu=samples,heap=sites,force=n,thread=y,verbose=n,file=
%s

6.7.7 Debugging

The MapReduce framework provides a facility to run user-provided scripts for debugging.
When a MapReduce task fails, a user can run a debug script, to process task logs for
example. The script is given access to the task's stdout and stderr outputs, syslog and jobconf.
The output from the debug script's stdout and stderr is displayed on the console diagnostics
and also as part of the job UI.

In the following sections we discuss how to submit a debug script with a job. The script file
needs to be distributed and submitted to the framework.

6.7.7.1 How to distribute the script file:

The user needs to use DistributedCache to distribute and symlink the script file.

api/org/apache/hadoop/mapreduce/Job.html#setProfileEnabled(boolean)
api/org/apache/hadoop/mapreduce/Job.html#setProfileTaskRange(boolean,%20java.lang.String)
api/org/apache/hadoop/mapreduce/Job.html#setProfileParams(java.lang.String)
mapred_tutorial.html#DistributedCache

MapReduce Tutorial

Page 35Copyright © 2009 The Apache Software Foundation. All rights reserved.

6.7.7.2 How to submit the script:

A quick way to submit the debug script is to set values for the properties
mapreduce.map.debug.script and mapreduce.reduce.debug.script, for
debugging map and reduce tasks respectively. These properties can also be set by using APIs
Job.getConfiguration().set(Job.MAP_DEBUG_SCRIPT, String) and
Job.getConfiguration().set(Job.REDUCE_DEBUG_SCRIPT, String).
In streaming mode, a debug script can be submitted with the command-line options -
mapdebug and -reducedebug, for debugging map and reduce tasks respectively.

The arguments to the script are the task's stdout, stderr, syslog and jobconf files. The debug
command, run on the node where the MapReduce task failed, is:
$script $stdout $stderr $syslog $jobconf

Pipes programs have the c++ program name as a fifth argument for the command. Thus for
the pipes programs the command is
$script $stdout $stderr $syslog $jobconf $program

6.7.7.3 Default Behavior:

For pipes, a default script is run to process core dumps under gdb, prints stack trace and gives
info about running threads.

6.7.8 JobControl

JobControl is a utility which encapsulates a set of MapReduce jobs and their dependencies.

6.7.9 Data Compression

Hadoop MapReduce provides facilities for the application-writer to specify compression for
both intermediate map-outputs and the job-outputs i.e. output of the reduces. It also comes
bundled with CompressionCodec implementation for the zlib compression algorithm. The
gzip file format is also supported.

Hadoop also provides native implementations of the above compression codecs for reasons
of both performance (zlib) and non-availability of Java libraries. For more information see
the Native Libraries Guide.

6.7.9.1 Intermediate Outputs

Applications can control compression of intermediate map-outputs via the
Job.getConfiguration().setBoolean(Job.MAP_OUTPUT_COMPRESS,
bool) api and the CompressionCodec to be used via the
Job.getConfiguration().setClass(Job.MAP_OUTPUT_COMPRESS_CODEC,
Class, CompressionCodec.class) api.

api/org/apache/hadoop/mapred/jobcontrol/package-summary.html
api/org/apache/hadoop/io/compress/CompressionCodec.html
http://www.zlib.net/
http://www.gzip.org/
http://hadoop.apache.org/common/docs/current/native_libraries.html

MapReduce Tutorial

Page 36Copyright © 2009 The Apache Software Foundation. All rights reserved.

6.7.9.2 Job Outputs

Applications can control compression of job-outputs via the
FileOutputFormat.setCompressOutput(Job, boolean) api and the CompressionCodec to
be used can be specified via the FileOutputFormat.setOutputCompressorClass(Job, Class)
api.

If the job outputs are to be stored in the SequenceFileOutputFormat, the required
SequenceFile.CompressionType (i.e. RECORD / BLOCK - defaults to RECORD)
can be specified via the SequenceFileOutputFormat.setOutputCompressionType(Job,
SequenceFile.CompressionType) api.

6.7.10 Skipping Bad Records

Hadoop provides an option where a certain set of bad input records can be skipped when
processing map inputs. Applications can control this feature through the SkipBadRecords
class.

This feature can be used when map tasks crash deterministically on certain input. This
usually happens due to bugs in the map function. Usually, the user would have to fix these
bugs. This is, however, not possible sometimes. The bug may be in third party libraries, for
example, for which the source code is not available. In such cases, the task never completes
successfully even after multiple attempts, and the job fails. With this feature, only a small
portion of data surrounding the bad records is lost, which may be acceptable for some
applications (those performing statistical analysis on very large data, for example).

By default this feature is disabled. For enabling it, refer to
SkipBadRecords.setMapperMaxSkipRecords(Configuration, long) and
SkipBadRecords.setReducerMaxSkipGroups(Configuration, long).

With this feature enabled, the framework gets into 'skipping mode'
after a certain number of map failures. For more details, see
SkipBadRecords.setAttemptsToStartSkipping(Configuration, int). In
'skipping mode', map tasks maintain the range of records being processed.
To do this, the framework relies on the processed record counter. See
SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS and
SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS. This counter enables the
framework to know how many records have been processed successfully, and hence, what
record range caused a task to crash. On further attempts, this range of records is skipped.

The number of records skipped depends on how frequently the processed record counter
is incremented by the application. It is recommended that this counter be incremented
after every record is processed. This may not be possible in some applications that
typically batch their processing. In such cases, the framework may skip additional
records surrounding the bad record. Users can control the number of skipped records

api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setCompressOutput(org.apache.hadoop.mapreduce.Job,%20boolean)
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setCompressOutput(org.apache.hadoop.mapreduce.Job,%20boolean)
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setOutputCompressorClass(org.apache.hadoop.mapreduce.Job,%20java.lang.Class)
api/org/apache/hadoop/mapreduce/lib/output/SequenceFileOutputFormat.html
api/org/apache/hadoop/mapreduce/lib/output/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapreduce/lib/output/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapred/SkipBadRecords.html
api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setAttemptsToStartSkipping(org.apache.hadoop.conf.Configuration, int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setAttemptsToStartSkipping(org.apache.hadoop.conf.Configuration, int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_MAP_PROCESSED_RECORDS
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_MAP_PROCESSED_RECORDS
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_REDUCE_PROCESSED_GROUPS
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_REDUCE_PROCESSED_GROUPS

MapReduce Tutorial

Page 37Copyright © 2009 The Apache Software Foundation. All rights reserved.

through SkipBadRecords.setMapperMaxSkipRecords(Configuration, long) and
SkipBadRecords.setReducerMaxSkipGroups(Configuration, long). The framework tries
to narrow the range of skipped records using a binary search-like approach. The skipped
range is divided into two halves and only one half gets executed. On subsequent failures, the
framework figures out which half contains bad records. A task will be re-executed till the
acceptable skipped value is met or all task attempts are exhausted. To increase the number of
task attempts, use Job.setMaxMapAttempts(int) and Job.setMaxReduceAttempts(int).

Skipped records are written to HDFS in the sequence file format, for later analysis. The
location can be changed through SkipBadRecords.setSkipOutputPath(conf, Path).

7 Example: WordCount v2.0

Here is a more complete WordCount which uses many of the features provided by the
MapReduce framework we discussed so far.

This example needs the HDFS to be up and running, especially for the
DistributedCache-related features. Hence it only works with a pseudo-distributed
(Single Node Setup) or fully-distributed (Cluster Setup) Hadoop installation.

7.1 Source Code

WordCount2.java

1. package org.myorg;

2.

3. import java.io.*;

4. import java.util.*;

5.

6. import org.apache.hadoop.fs.Path;

7. import org.apache.hadoop.filecache.DistributedCache;

8. import org.apache.hadoop.conf.*;

9. import org.apache.hadoop.io.*;

10. import org.apache.hadoop.mapreduce.*;

11. import org.apache.hadoop.mapreduce.lib.input.*;

12. import org.apache.hadoop.mapreduce.lib.output.*;

13. import org.apache.hadoop.util.*;

api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapreduce/Job.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapreduce/Job.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setSkipOutputPath(org.apache.hadoop.mapred.JobConf, org.apache.hadoop.fs.Path)
http://hadoop.apache.org/common/docs/current/single_node_setup.html
http://hadoop.apache.org/common/docs/current/cluster_setup.html#Fully-Distributed+Operation

MapReduce Tutorial

Page 38Copyright © 2009 The Apache Software Foundation. All rights reserved.

WordCount2.java

14.

15. public class WordCount2 extends Configured implements Tool {

16.

17. public static class Map

18. extends Mapper<LongWritable, Text, Text, IntWritable> {

19.

20. static enum Counters { INPUT_WORDS }

21.

22. private final static IntWritable one = new IntWritable(1);

23. private Text word = new Text();

24.

25. private boolean caseSensitive = true;

26. private Set<String> patternsToSkip = new HashSet<String>();

27.

28. private long numRecords = 0;

29. private String inputFile;

30.

31. public void setup(Context context) {

32. Configuration conf = context.getConfiguration();

33. caseSensitive = conf.getBoolean("wordcount.case.sensitive", true);

34. inputFile = conf.get("mapreduce.map.input.file");

35.

36. if (conf.getBoolean("wordcount.skip.patterns", false)) {

37. Path[] patternsFiles = new Path[0];

38. try {

39. patternsFiles = DistributedCache.getLocalCacheFiles(conf);

MapReduce Tutorial

Page 39Copyright © 2009 The Apache Software Foundation. All rights reserved.

WordCount2.java

40. } catch (IOException ioe) {

41. System.err.println("Caught exception while getting cached files: "

42. + StringUtils.stringifyException(ioe));

43. }

44. for (Path patternsFile : patternsFiles) {

45. parseSkipFile(patternsFile);

46. }

47. }

48. }

49.

50. private void parseSkipFile(Path patternsFile) {

51. try {

52. BufferedReader fis = new BufferedReader(new FileReader(

53. patternsFile.toString()));

54. String pattern = null;

55. while ((pattern = fis.readLine()) !
= null) {

56. patternsToSkip.add(pattern);

57. }

58. } catch (IOException ioe) {

59. System.err.println("Caught exception while parsing the cached file '"

60. + patternsFile + "' : " + StringUtils.stringifyException(ioe));

61. }

62. }

63.

64. public void map(LongWritable key, Text value, Context context)

MapReduce Tutorial

Page 40Copyright © 2009 The Apache Software Foundation. All rights reserved.

WordCount2.java

65. throws IOException, InterruptedException {

66. String line = (caseSensitive) ?

67. value.toString() : value.toString().toLowerCase();

68.

69. for (String pattern : patternsToSkip) {

70. line = line.replaceAll(pattern, "");

71. }

72.

73. StringTokenizer tokenizer = new StringTokenizer(line);

74. while (tokenizer.hasMoreTokens()) {

75. word.set(tokenizer.nextToken());

76. context.write(word, one);

77. context.getCounter(Counters.INPUT_WORDS).increment(1);

78. }

79.

80. if ((+
+numRecords % 100) == 0) {

81. context.setStatus("Finished processing " + numRecords

82. + " records " + "from the input file: " + inputFile);

83. }

84. }

85. }

86.

87. public static class Reduce

88. extends Reducer<Text, IntWritable, Text, IntWritable> {

89. public void reduce(Text key, Iterable<IntWritable> values,

MapReduce Tutorial

Page 41Copyright © 2009 The Apache Software Foundation. All rights reserved.

WordCount2.java

90. Context context) throws IOException, InterruptedException {

91.

92. int sum = 0;

93. for (IntWritable val : values) {

94. sum += val.get();

95. }

96. context.write(key, new IntWritable(sum));

97. }

98. }

99.

100. public int run(String[] args) throws Exception {

101. Job job = new Job(getConf());

102. job.setJarByClass(WordCount2.class);

103. job.setJobName("wordcount2.0");

104.

105. job.setOutputKeyClass(Text.class);

106. job.setOutputValueClass(IntWritable.class);

107.

108. job.setMapperClass(Map.class);

109. job.setCombinerClass(Reduce.class);

110. job.setReducerClass(Reduce.class);

111.

112. // Note that these are the default.

113. job.setInputFormatClass(TextInputFormat.class);

114. job.setOutputFormatClass(TextOutputFormat.class);

115.

MapReduce Tutorial

Page 42Copyright © 2009 The Apache Software Foundation. All rights reserved.

WordCount2.java

116. List<String> other_args = new ArrayList<String>();

117. for (int i=0; i < args.length; +
+i) {

118. if ("-
skip".equals(args[i])) {

119. DistributedCache.addCacheFile(new Path(args[+
+i]).toUri(),

120. job.getConfiguration());

121. job.getConfiguration().setBoolean("wordcount.skip.patterns", true);

122. } else {

123. other_args.add(args[i]);

124. }

125. }

126.

127. FileInputFormat.setInputPaths(job, new Path(other_args.get(0)));

128. FileOutputFormat.setOutputPath(job, new Path(other_args.get(1)));

129.

130. boolean success = job.waitForCompletion(true);

131. return success ? 0 : 1;

132. }

133.

134. public static void main(String[] args) throws Exception {

135. int res = ToolRunner.run(new Configuration(), new WordCount2(), args);

136. System.exit(res);

137. }

138. }

MapReduce Tutorial

Page 43Copyright © 2009 The Apache Software Foundation. All rights reserved.

7.2 Sample Runs

Sample text-files as input:

$ bin/hadoop fs -ls /user/joe/wordcount/input/
/user/joe/wordcount/input/file01
/user/joe/wordcount/input/file02
$ bin/hadoop fs -cat /user/joe/wordcount/input/file01
Hello World, Bye World!
$ bin/hadoop fs -cat /user/joe/wordcount/input/file02
Hello Hadoop, Goodbye to hadoop.

Run the application:

$ bin/hadoop jar /user/joe/wordcount.jar
org.myorg.WordCount2 /user/joe/wordcount/input /user/joe/
wordcount/output

Output:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
Bye 1
Goodbye 1
Hadoop, 1
Hello 2
World! 1
World, 1
hadoop. 1
to 1

Notice that the inputs differ from the first version we looked at, and how they affect the
outputs.

Now, lets plug-in a pattern-file which lists the word-patterns to be ignored, via the
DistributedCache.

$ hadoop fs -cat /user/joe/wordcount/patterns.txt
\.
\,
\!
to

Run it again, this time with more options:

$ bin/hadoop jar /user/joe/wordcount.jar org.myorg.WordCount2
-Dwordcount.case.sensitive=true /user/joe/wordcount/

MapReduce Tutorial

Page 44Copyright © 2009 The Apache Software Foundation. All rights reserved.

input /user/joe/wordcount/output -skip /user/joe/wordcount/
patterns.txt

As expected, the output:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
Bye 1
Goodbye 1
Hadoop 1
Hello 2
World 2
hadoop 1

Run it once more, this time switch-off case-sensitivity:

$ bin/hadoop jar /user/joe/wordcount.jar org.myorg.WordCount2
-Dwordcount.case.sensitive=false /user/joe/wordcount/
input /user/joe/wordcount/output -skip /user/joe/wordcount/
patterns.txt

Sure enough, the output:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
bye 1
goodbye 1
hadoop 2
hello 2
world 2

7.3 Highlights

The second version of WordCount improves upon the previous one by using some features
offered by the MapReduce framework:

• Demonstrates how applications can access configuration parameters in the setup
method of the Mapper (and Reducer) implementations (lines 31-48).

• Demonstrates how the DistributedCache can be used to distribute read-only
data needed by the jobs. Here it allows the user to specify word-patterns to skip while
counting (line 119).

• Demonstrates the utility of the Tool interface and the GenericOptionsParser to
handle generic Hadoop command-line options (line 135).

• Demonstrates how applications can use Counters (line 77) and how they can set
application-specific status information via the Context instance passed to the map (and
reduce) method (line 81).

MapReduce Tutorial

Page 45Copyright © 2009 The Apache Software Foundation. All rights reserved.

Java and JNI are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

	Table of contents
	1 Purpose
	2 Prerequisites
	3 Overview
	4 Inputs and Outputs
	5 Example: WordCount v1.0
	5.1 Source Code
	5.2 Usage
	5.3 Bundling a data payload with your application
	5.4 Walk-through

	6 MapReduce - User Interfaces
	6.1 Payload
	6.1.1 Mapper
	6.1.1.1 How Many Maps?

	6.1.2 Reducer
	6.1.2.1 Shuffle
	6.1.2.2 Sort
	6.1.2.2.1 Secondary Sort

	6.1.2.3 Reduce
	6.1.2.4 How Many Reduces?
	6.1.2.5 Reducer NONE
	6.1.2.6 Mark-Reset
	6.1.2.6.1 Source Code

	6.1.3 Partitioner
	6.1.4 Reporting Progress

	6.2 Job Configuration
	6.3 Task Execution & Environment
	6.3.1 Configuring Memory Requirements For A Job
	6.3.2 Map Parameters
	6.3.3 Shuffle/Reduce Parameters
	6.3.4 Directory Structure
	6.3.5 Task JVM Reuse
	6.3.6 Configured Parameters
	6.3.7 Task Logs
	6.3.8 Distributing Libraries
	6.3.9 Job Credentials

	6.4 Job Submission and Monitoring
	6.4.1 Job Control
	6.4.2 Job Authorization

	6.5 Job Input
	6.5.1 InputSplit
	6.5.2 RecordReader

	6.6 Job Output
	6.6.1 Lazy Output Creation
	6.6.2 OutputCommitter
	6.6.3 Task Side-Effect Files
	6.6.4 RecordWriter

	6.7 Other Useful Features
	6.7.1 Submitting Jobs to Queues
	6.7.2 Counters
	6.7.3 DistributedCache
	6.7.3.1 Private and Public DistributedCache Files

	6.7.4 Tool
	6.7.5 IsolationRunner
	6.7.6 Profiling
	6.7.7 Debugging
	6.7.7.1 How to distribute the script file:
	6.7.7.2 How to submit the script:
	6.7.7.3 Default Behavior:

	6.7.8 JobControl
	6.7.9 Data Compression
	6.7.9.1 Intermediate Outputs
	6.7.9.2 Job Outputs

	6.7.10 Skipping Bad Records

	7 Example: WordCount v2.0
	7.1 Source Code
	7.2 Sample Runs
	7.3 Highlights

