
Rumen

Table of contents

1 Overview..2

1.1 Motivation... 2

1.2 Components...2

2 How to use Rumen?... 3

2.1 Trace Builder... 3

2.2 Folder...5

3 Appendix..8

3.1 Resources...8

3.2 Dependencies...8

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Overview

Rumen is a data extraction and analysis tool built for Apache Hadoop. Rumen mines
JobHistory logs to extract meaningful data and stores it in an easily-parsed, condensed
format or digest. The raw trace data from MapReduce logs are often insufficient for
simulation, emulation, and benchmarking, as these tools often attempt to measure conditions
that did not occur in the source data. For example, if a task ran locally in the raw trace data
but a simulation of the scheduler elects to run that task on a remote rack, the simulator
requires a runtime its input cannot provide. To fill in these gaps, Rumen performs a statistical
analysis of the digest to estimate the variables the trace doesn't supply. Rumen traces drive
both Gridmix (a benchmark of Hadoop MapReduce clusters) and Mumak (a simulator for the
JobTracker).

1.1. Motivation
• Extracting meaningful data from JobHistory logs is a common task for any tool built to

work on MapReduce. It is tedious to write a custom tool which is so tightly coupled with
the MapReduce framework. Hence there is a need for a built-in tool for performing
framework level task of log parsing and analysis. Such a tool would insulate external
systems depending on job history against the changes made to the job history format.

• Performing statistical analysis of various attributes of a MapReduce Job such as task
runtimes, task failures etc is another common task that the benchmarking and simulation
tools might need. Rumen generates Cumulative Distribution Functions (CDF) for the
Map/Reduce task runtimes. Runtime CDF can be used for extrapolating the task runtime
of incomplete, missing and synthetic tasks. Similarly CDF is also computed for the total
number of successful tasks for every attempt.

1.2. Components

Rumen consists of 2 components

• Trace Builder : Converts JobHistory logs into an easily-parsed format. Currently
TraceBuilder outputs the trace in JSON format.

• Folder : A utility to scale the input trace. A trace obtained from TraceBuilder simply
summarizes the jobs in the input folders and files. The time-span within which all the
jobs in a given trace finish can be considered as the trace runtime. Folder can be used to
scale the runtime of a trace. Decreasing the trace runtime might involve dropping some
jobs from the input trace and scaling down the runtime of remaining jobs. Increasing the
trace runtime might involve adding some dummy jobs to the resulting trace and scaling
up the runtime of individual jobs.

Rumen

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://www.json.org/

2. How to use Rumen?

Converting JobHistory logs into a desired job-trace consists of 2 steps

1. Extracting information into an intermediate format
2. Adjusting the job-trace obtained from the intermediate trace to have the desired

properties.

Note:
Extracting information from JobHistory logs is a one time operation. This so called Gold Trace can be reused to generate
traces with desired values of properties such as output-duration, concentration etc.

Rumen provides 2 basic commands

• TraceBuilder
• Folder

Firstly, we need to generate the Gold Trace. Hence the first step is to run TraceBuilder
on a job-history folder. The output of the TraceBuilder is a job-trace file (and an
optional cluster-topology file). In case we want to scale the output, we can use the Folder
utility to fold the current trace to the desired length. The remaining part of this section
explains these utilities in detail.

Note:
Examples in this section assumes that certain libraries are present in the java CLASSPATH. See Section-3.2 for more details.

2.1. Trace Builder

Command:
java org.apache.hadoop.tools.rumen.TraceBuilder [options] <jobtrace-output>
<topology-output> <inputs>

This command invokes the TraceBuilder utility of Rumen. It converts the JobHistory
files into a series of JSON objects and writes them into the <jobtrace-output> file. It
also extracts the cluster layout (topology) and writes it in the<topology-output> file.
<inputs> represents a space-separated list of JobHistory files and folders.

Note:
1) Input and output to TraceBuilder is expected to be a fully qualified FileSystem path. So use 'file://' to specify files on
the local FileSystem and 'hdfs://' to specify files on HDFS. Since input files or folder are FileSystem paths, it means that
they can be globbed. This can be useful while specifying multiple file paths using regular expressions.

Rumen

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

Note:
2) By default, TraceBuilder does not recursively scan the input folder for job history files. Only the files that are directly
placed under the input folder will be considered for generating the trace. To add all the files under the input directory by
recursively scanning the input directory, use ‘-recursive’ option.

Cluster topology is used as follows :

• To reconstruct the splits and make sure that the distances/latencies seen in the actual run
are modeled correctly.

• To extrapolate splits information for tasks with missing splits details or synthetically
generated tasks.

Options :

Parameter Description Notes

-demuxer Used to read the jobhistory
files. The default is
DefaultInputDemuxer.

Demuxer decides how the input
file maps to jobhistory file(s).
Job history logs and job
configuration files are typically
small files, and can be more
effectively stored when
embedded in some container
file format like SequenceFile or
TFile. To support such usage
cases, one can specify a
customized Demuxer class that
can extract individual job
history logs and job
configuration files from the
source files.

-recursive Recursively traverse input
paths for job history logs.

This option should be used to
inform the TraceBuilder to
recursively scan the input paths
and process all the files under
it. Note that, by default, only the
history logs that are directly
under the input folder are
considered for generating the
trace.

2.1.1. Example
java org.apache.hadoop.tools.rumen.TraceBuilder
file:///home/user/job-trace.json file:///home/user/topology.output
file:///home/user/logs/history/done

Rumen

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

This will analyze all the jobs in /home/user/logs/history/done stored on the
local FileSystem and output the jobtraces in /home/user/job-trace.json along
with topology information in /home/user/topology.output.

2.2. Folder

Command:
java org.apache.hadoop.tools.rumen.Folder [options] [input] [output]

Note:
Input and output to Folder is expected to be a fully qualified FileSystem path. So use 'file://' to specify files on the local
FileSystem and 'hdfs://' to specify files on HDFS.

This command invokes the Folder utility of Rumen. Folding essentially means that the
output duration of the resulting trace is fixed and job timelines are adjusted to respect the
final output duration.

Options :

Parameter Description Notes

-input-cycle Defines the basic unit of time
for the folding operation. There
is no default value for
input-cycle. Input cycle
must be provided.

'-input-cycle 10m' implies
that the whole trace run will be
now sliced at a 10min interval.
Basic operations will be done
on the 10m chunks. Note that
Rumen understands various
time units like m(min), h(hour),
d(days) etc.

-output-duration This parameter defines the final
runtime of the trace. Default
value if 1 hour.

'-output-duration 30m'
implies that the resulting trace
will have a max runtime of
30mins. All the jobs in the input
trace file will be folded and
scaled to fit this window.

-concentration Set the concentration of the
resulting trace. Default value is
1.

If the total runtime of the
resulting trace is less than the
total runtime of the input trace,
then the resulting trace would

Rumen

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

contain lesser number of jobs
as compared to the input trace.
This essentially means that the
output is diluted. To increase
the density of jobs, set the
concentration to a higher value.

-debug Run the Folder in debug mode.
By default it is set to false.

In debug mode, the Folder will
print additional statements for
debugging. Also the
intermediate files generated in
the scratch directory will not be
cleaned up.

-seed Initial seed to the Random
Number Generator. By default,
a Random Number Generator
is used to generate a seed and
the seed value is reported back
to the user for future use.

If an initial seed is passed, then
the Random Number
Generator will generate the
random numbers in the same
sequence i.e the sequence of
random numbers remains
same if the same seed is used.
Folder uses Random Number
Generator to decide whether or
not to emit the job.

-temp-directory Temporary directory for the
Folder. By default the output
folder's parent directory is
used as the scratch space.

This is the scratch space used
by Folder. All the temporary
files are cleaned up in the end
unless the Folder is run in
debug mode.

-skew-buffer-length Enables Folder to tolerate
skewed jobs. The default buffer
length is 0.

'-skew-buffer-length
100' indicates that if the jobs
appear out of order within a
window size of 100, then they
will be emitted in-order by the
folder. If a job appears
out-of-order outside this
window, then the Folder will
bail out provided
-allow-missorting is not
set. Folder reports the
maximum skew size seen in
the input trace for future use.

-allow-missorting Enables Folder to tolerate
out-of-order jobs. By default
mis-sorting is not allowed.

If mis-sorting is allowed, then
the Folder will ignore
out-of-order jobs that cannot be

Rumen

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

deskewed using a skew buffer
of size specified using
-skew-buffer-length. If
mis-sorting is not allowed, then
the Folder will bail out if the
skew buffer is incapable of
tolerating the skew.

2.2.1. Examples

2.2.1.1. Folding an input trace with 10 hours of total runtime to generate an output trace with 1
hour of total runtime
java org.apache.hadoop.tools.rumen.Folder -output-duration 1h -input-cycle
20m file:///home/user/job-trace.json file:///home/user/job-trace-1hr.json

If the folded jobs are out of order then the command will bail out.

2.2.1.2. Folding an input trace with 10 hours of total runtime to generate an output trace with 1
hour of total runtime and tolerate some skewness
java org.apache.hadoop.tools.rumen.Folder -output-duration 1h -input-cycle
20m -allow-missorting -skew-buffer-length 100
file:///home/user/job-trace.json file:///home/user/job-trace-1hr.json

If the folded jobs are out of order, then atmost 100 jobs will be de-skewed. If the 101st job is
out-of-order, then the command will bail out.

2.2.1.3. Folding an input trace with 10 hours of total runtime to generate an output trace with 1
hour of total runtime in debug mode
java org.apache.hadoop.tools.rumen.Folder -output-duration 1h -input-cycle
20m -debug -temp-directory file:///tmp/debug
file:///home/user/job-trace.json file:///home/user/job-trace-1hr.json

This will fold the 10hr job-trace file file:///home/user/job-trace.json to finish
within 1hr and use file:///tmp/debug as the temporary directory. The intermediate
files in the temporary directory will not be cleaned up.

2.2.1.4. Folding an input trace with 10 hours of total runtime to generate an output trace with 1
hour of total runtime with custom concentration.
java org.apache.hadoop.tools.rumen.Folder -output-duration 1h -input-cycle
20m -concentration 2 file:///home/user/job-trace.json
file:///home/user/job-trace-1hr.json

Rumen

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

This will fold the 10hr job-trace file file:///home/user/job-trace.json to finish
within 1hr with concentration of 2. Example-2.3.2 will retain 10% of the jobs. With
concentration as 2, 20% of the total input jobs will be retained.

3. Appendix

3.1. Resources

MAPREDUCE-751 is the main JIRA that introduced Rumen to MapReduce. Look at the
MapReduce rumen-component for further details.

3.2. Dependencies

Rumen expects certain library JARs to be present in the CLASSPATH. The required libraries
are

• Hadoop MapReduce Tools
(hadoop-mapred-tools-{hadoop-version}.jar)

• Hadoop Common (hadoop-common-{hadoop-version}.jar)
• Apache Commons Logging (commons-logging-1.1.1.jar)
• Apache Commons CLI (commons-cli-1.2.jar)
• Jackson Mapper (jackson-mapper-asl-1.4.2.jar)
• Jackson Core (jackson-core-asl-1.4.2.jar)

Note:
One simple way to run Rumen is to use '$HADOOP_HOME/bin/hadoop jar' option to run it.

Rumen

Page 8
Copyright © 2008 The Apache Software Foundation. All rights reserved.

https://issues.apache.org/jira/browse/MAPREDUCE-751
https://issues.apache.org/jira/browse/MAPREDUCE/component/12313617

	1 Overview
	1.1 Motivation
	1.2 Components

	2 How to use Rumen?
	2.1 Trace Builder
	2.1.1 Example

	2.2 Folder
	2.2.1 Examples
	2.2.1.1 Folding an input trace with 10 hours of total runtime to generate an output trace with 1 hour of total runtime
	2.2.1.2 Folding an input trace with 10 hours of total runtime to generate an output trace with 1 hour of total runtime and tolerate some skewness
	2.2.1.3 Folding an input trace with 10 hours of total runtime to generate an output trace with 1 hour of total runtime in debug mode
	2.2.1.4 Folding an input trace with 10 hours of total runtime to generate an output trace with 1 hour of total runtime with custom concentration.

	3 Appendix
	3.1 Resources
	3.2 Dependencies

