
DistCp Version 2 Guide

Table of contents

1 Overview..2

2 Usage..2

2.1 Basic Usage... 2

2.2 Update and Overwrite..3

3 Command Line Options...5

4 Architecture of DistCp...7

4.1 DistCp Driver.. 7

4.2 Copy-listing Generator.. 8

4.3 Input-formats and Map-Reduce Components... 9

5 Appendix..10

5.1 Map sizing... 10

5.2 Copying Between Versions of HDFS..11

5.3 Map/Reduce and other side-effects... 11

5.4 SSL Configurations for HSFTP sources..11

6 Frequently Asked Questions.. 12

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Overview

DistCp Version 2 (distributed copy) is a tool used for large inter/intra-cluster copying. It uses
MapReduce to effect its distribution, error handling and recovery, and reporting. It expands a
list of files and directories into input to map tasks, each of which will copy a partition of the
files specified in the source list.

The erstwhile implementation of DistCp has its share of quirks and drawbacks, both in its
usage, as well as its extensibility and performance. The purpose of the DistCp refactor was to
fix these shortcomings, enabling it to be used and extended programmatically. New
paradigms have been introduced to improve runtime and setup performance, while
simultaneously retaining the legacy behaviour as default.

This document aims to describe the design of the new DistCp, its spanking new features,
their optimal use, and any deviance from the legacy implementation.

2. Usage

2.1. Basic Usage

The most common invocation of DistCp is an inter-cluster copy:

bash$ hadoop distcp2 hdfs://nn1:8020/foo/bar \
hdfs://nn2:8020/bar/foo

This will expand the namespace under /foo/bar on nn1 into a temporary file, partition its
contents among a set of map tasks, and start a copy on each TaskTracker from nn1 to nn2.

One can also specify multiple source directories on the command line:

bash$ hadoop distcp2 hdfs://nn1:8020/foo/a \
hdfs://nn1:8020/foo/b \
hdfs://nn2:8020/bar/foo

Or, equivalently, from a file using the -f option:
bash$ hadoop distcp2 -f hdfs://nn1:8020/srclist \
hdfs://nn2:8020/bar/foo

Where srclist contains
hdfs://nn1:8020/foo/a
hdfs://nn1:8020/foo/b

When copying from multiple sources, DistCp will abort the copy with an error message if

DistCp Version 2 Guide

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

two sources collide, but collisions at the destination are resolved per the options specified. By
default, files already existing at the destination are skipped (i.e. not replaced by the source
file). A count of skipped files is reported at the end of each job, but it may be inaccurate if a
copier failed for some subset of its files, but succeeded on a later attempt.

It is important that each TaskTracker can reach and communicate with both the source and
destination file systems. For HDFS, both the source and destination must be running the
same version of the protocol or use a backwards-compatible protocol; see Copying Between
Versions.

After a copy, it is recommended that one generates and cross-checks a listing of the source
and destination to verify that the copy was truly successful. Since DistCp employs both
Map/Reduce and the FileSystem API, issues in or between any of the three could adversely
and silently affect the copy. Some have had success running with -update enabled to
perform a second pass, but users should be acquainted with its semantics before attempting
this.

It's also worth noting that if another client is still writing to a source file, the copy will likely
fail. Attempting to overwrite a file being written at the destination should also fail on HDFS.
If a source file is (re)moved before it is copied, the copy will fail with a
FileNotFoundException.

Please refer to the detailed Command Line Reference for information on all the options
available in DistCp.

2.2. Update and Overwrite

-update is used to copy files from source that don't exist at the target, or have different
contents. -overwrite overwrites target-files even if they exist at the source, or have the
same contents.

Update and Overwrite options warrant special attention, since their handling of source-paths
varies from the defaults in a very subtle manner. Consider a copy from /source/first/
and /source/second/ to /target/, where the source paths have the following
contents:

hdfs://nn1:8020/source/first/1
hdfs://nn1:8020/source/first/2
hdfs://nn1:8020/source/second/10
hdfs://nn1:8020/source/second/20

When DistCp is invoked without -update or -overwrite, the DistCp defaults would
create directories first/ and second/, under /target. Thus:

DistCp Version 2 Guide

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

distcp2 hdfs://nn1:8020/source/first
hdfs://nn1:8020/source/second hdfs://nn2:8020/target

would yield the following contents in /target:

hdfs://nn2:8020/target/first/1
hdfs://nn2:8020/target/first/2
hdfs://nn2:8020/target/second/10
hdfs://nn2:8020/target/second/20

When either -update or -overwrite is specified, the contents of the source-directories
are copied to target, and not the source directories themselves. Thus:

distcp2 -update hdfs://nn1:8020/source/first
hdfs://nn1:8020/source/second hdfs://nn2:8020/target

would yield the following contents in /target:

hdfs://nn2:8020/target/1
hdfs://nn2:8020/target/2
hdfs://nn2:8020/target/10
hdfs://nn2:8020/target/20

By extension, if both source folders contained a file with the same name (say, 0), then both
sources would map an entry to /target/0 at the destination. Rather than to permit this
conflict, DistCp will abort.

Now, consider the following copy operation:

distcp2 hdfs://nn1:8020/source/first
hdfs://nn1:8020/source/second hdfs://nn2:8020/target

With sources/sizes:

hdfs://nn1:8020/source/first/1 32
hdfs://nn1:8020/source/first/2 32
hdfs://nn1:8020/source/second/10 64
hdfs://nn1:8020/source/second/20 32

And destination/sizes:

hdfs://nn2:8020/target/1 32
hdfs://nn2:8020/target/10 32
hdfs://nn2:8020/target/20 64

Will effect:

DistCp Version 2 Guide

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

hdfs://nn2:8020/target/1 32
hdfs://nn2:8020/target/2 32
hdfs://nn2:8020/target/10 64
hdfs://nn2:8020/target/20 32

1 is skipped because the file-length and contents match. 2 is copied because it doesn't exist at
the target. 10 and 20 are overwritten since the contents don't match the source.

If -update is used, 1 is overwritten as well.

3. Command Line Options

Flag Description Notes

-p[rbugp] Preserve
r: replication number
b: block size
u: user
g: group
p: permission

Modification times are not
preserved. Also, when
-update is specified, status
updates will not be
synchronized unless the file
sizes also differ (i.e. unless the
file is re-created).

-i Ignore failures As explained in the Appendix,
this option will keep more
accurate statistics about the
copy than the default case. It
also preserves logs from failed
copies, which can be valuable
for debugging. Finally, a failing
map will not cause the job to
fail before all splits are
attempted.

-log <logdir> Write logs to <logdir> DistCp keeps logs of each file it
attempts to copy as map
output. If a map fails, the log
output will not be retained if it is
re-executed.

-m <num_maps> Maximum number of
simultaneous copies

Specify the number of maps to
copy data. Note that more
maps may not necessarily
improve throughput.

-overwrite Overwrite destination If a map fails and -i is not
specified, all the files in the
split, not only those that failed,

DistCp Version 2 Guide

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

will be recopied. As discussed
in the Usage documentation, it
also changes the semantics for
generating destination paths,
so users should use this
carefully.

-update Overwrite if src size different
from dst size

As noted in the preceding, this
is not a "sync" operation. The
only criterion examined is the
source and destination file
sizes; if they differ, the source
file replaces the destination file.
As discussed in the Usage
documentation, it also changes
the semantics for generating
destination paths, so users
should use this carefully.

-f <urilist_uri> Use list at <urilist_uri> as src
list

This is equivalent to listing
each source on the command
line. The urilist_uri list
should be a fully qualified URI.

-filelimit <n> Limit the total number of files to
be <= n

Deprecated! Ignored in the
new DistCp.

-sizelimit <n> Limit the total size to be <= n
bytes

Deprecated! Ignored in the
new DistCp.

-delete Delete the files existing in the
dst but not in src

The deletion is done by FS
Shell. So the trash will be used,
if it is enable.

-strategy
{dynamic|uniformsize}

Choose the copy-strategy to be
used in DistCp.

By default, uniformsize is used.
(i.e. Maps are balanced on the
total size of files copied by
each map. Similar to legacy.) If
"dynamic" is specified,
DynamicInputFormat is
used instead. (This is described
in the Architecture section,
under InputFormats.)

-bandwidth Specify bandwidth per map, in
MB/second.

Each map will be restricted to
consume only the specified
bandwidth. This is not always
exact. The map throttles back
its bandwidth consumption

DistCp Version 2 Guide

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

during a copy, such that the net
bandwidth used tends towards
the specified value.

-atomic {-tmp
<tmp_dir>}

Specify atomic commit, with
optional tmp directory.

-atomic instructs DistCp to
copy the source data to a
temporary target location, and
then move the temporary target
to the final-location atomically.
Data will either be available at
final target in a complete and
consistent form, or not at all.
Optionally, -tmp may be used
to specify the location of the
tmp-target. If not specified, a
default is chosen. Note:
tmp_dir must be on the final
target cluster.

-mapredSslConf
<ssl_conf_file>

Specify SSL Config file, to be
used with HSFTP source

When using the hsftp protocol
with a source, the security-
related properties may be
specified in a config-file and
passed to DistCp.
<ssl_conf_file> needs to be in
the classpath.

-async Run DistCp asynchronously.
Quits as soon as the Hadoop
Job is launched.

The Hadoop Job-id is logged,
for tracking.

4. Architecture of DistCp

The components of the new DistCp may be classified into the following categories:

• DistCp Driver
• Copy-listing generator
• Input-formats and Map-Reduce components

4.1. DistCp Driver

The DistCp Driver components are responsible for:

• Parsing the arguments passed to the DistCp command on the command-line, via:
• OptionsParser, and
• DistCpOptionsSwitch

DistCp Version 2 Guide

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

• Assembling the command arguments into an appropriate DistCpOptions object, and
initializing DistCp. These arguments include:
• Source-paths
• Target location
• Copy options (e.g. whether to update-copy, overwrite, which file-attributes to

preserve, etc.)

• Orchestrating the copy operation by:
• Invoking the copy-listing-generator to create the list of files to be copied.
• Setting up and launching the Hadoop Map-Reduce Job to carry out the copy.
• Based on the options, either returning a handle to the Hadoop MR Job immediately,

or waiting till completion.

The parser-elements are exercised only from the command-line (or if DistCp::run() is
invoked). The DistCp class may also be used programmatically, by constructing the
DistCpOptions object, and initializing a DistCp object appropriately.

4.2. Copy-listing Generator

The copy-listing-generator classes are responsible for creating the list of files/directories to
be copied from source. They examine the contents of the source-paths (files/directories,
including wild-cards), and record all paths that need copy into a sequence- file, for
consumption by the DistCp Hadoop Job. The main classes in this module include:

1. CopyListing: The interface that should be implemented by any copy-listing-generator
implementation. Also provides the factory method by which the concrete CopyListing
implementation is chosen.

2. SimpleCopyListing: An implementation of CopyListing that accepts multiple source
paths (files/directories), and recursively lists all the individual files and directories under
each, for copy.

3. GlobbedCopyListing: Another implementation of CopyListing that expands wild-cards in
the source paths.

4. FileBasedCopyListing: An implementation of CopyListing that reads the source-path list
from a specified file.

Based on whether a source-file-list is specified in the DistCpOptions, the source-listing is
generated in one of the following ways:

1. If there's no source-file-list, the GlobbedCopyListing is used. All wild-cards are
expanded, and all the expansions are forwarded to the SimpleCopyListing, which in turn
constructs the listing (via recursive descent of each path).

2. If a source-file-list is specified, the FileBasedCopyListing is used. Source-paths are read
from the specified file, and then forwarded to the GlobbedCopyListing. The listing is

DistCp Version 2 Guide

Page 8
Copyright © 2008 The Apache Software Foundation. All rights reserved.

then constructed as described above.

One may customize the method by which the copy-listing is constructed by providing a
custom implementation of the CopyListing interface. The behaviour of DistCp differs here
from the legacy DistCp, in how paths are considered for copy.

The legacy implementation only lists those paths that must definitely be copied on to target.
E.g. if a file already exists at the target (and -overwrite isn't specified), the file isn't even
considered in the Map-Reduce Copy Job. Determining this during setup (i.e. before the
Map-Reduce Job) involves file-size and checksum-comparisons that are potentially
time-consuming.

The new DistCp postpones such checks until the Map-Reduce Job, thus reducing setup time.
Performance is enhanced further since these checks are parallelized across multiple maps.

4.3. Input-formats and Map-Reduce Components

The Input-formats and Map-Reduce components are responsible for the actual copy of files
and directories from the source to the destination path. The listing-file created during
copy-listing generation is consumed at this point, when the copy is carried out. The classes of
interest here include:

• UniformSizeInputFormat: This implementation of
org.apache.hadoop.mapreduce.InputFormat provides equivalence with Legacy DistCp in
balancing load across maps. The aim of the UniformSizeInputFormat is to make each
map copy roughly the same number of bytes. Apropos, the listing file is split into groups
of paths, such that the sum of file-sizes in each InputSplit is nearly equal to every other
map. The splitting isn't always perfect, but its trivial implementation keeps the setup-time
low.

• DynamicInputFormat and DynamicRecordReader:
The DynamicInputFormat implements org.apache.hadoop.mapreduce.InputFormat, and is
new to DistCp. The listing-file is split into several "chunk-files", the exact number of
chunk-files being a multiple of the number of maps requested for in the Hadoop Job.
Each map task is "assigned" one of the chunk-files (by renaming the chunk to the task's
id), before the Job is launched.

Paths are read from each chunk using the DynamicRecordReader, and processed in the
CopyMapper. After all the paths in a chunk are processed, the current chunk is deleted
and a new chunk is acquired. The process continues until no more chunks are available.

This "dynamic" approach allows faster map-tasks to consume more paths than slower
ones, thus speeding up the DistCp job overall.

• CopyMapper: This class implements the physical file-copy. The input-paths are checked

DistCp Version 2 Guide

Page 9
Copyright © 2008 The Apache Software Foundation. All rights reserved.

against the input-options (specified in the Job's Configuration), to determine whether a
file needs copy. A file will be copied only if at least one of the following is true:
• A file with the same name doesn't exist at target.
• A file with the same name exists at target, but has a different file size.
• A file with the same name exists at target, but has a different checksum, and

-skipcrccheck isn't mentioned.
• A file with the same name exists at target, but -overwrite is specified.
• A file with the same name exists at target, but differs in block-size (and block-size

needs to be preserved.

• CopyCommitter: This class is responsible for the commit-phase of the DistCp job,
including:
• Preservation of directory-permissions (if specified in the options)
• Clean-up of temporary-files, work-directories, etc.

5. Appendix

5.1. Map sizing

By default, DistCp makes an attempt to size each map comparably so that each copies
roughly the same number of bytes. Note that files are the finest level of granularity, so
increasing the number of simultaneous copiers (i.e. maps) may not always increase the
number of simultaneous copies nor the overall throughput.

The new DistCp also provides a strategy to "dynamically" size maps, allowing faster
data-nodes to copy more bytes than slower nodes. Using -strategy dynamic
(explained in the Architecture), rather than to assign a fixed set of source-files to each
map-task, files are instead split into several sets. The number of sets exceeds the number of
maps, usually by a factor of 2-3. Each map picks up and copies all files listed in a chunk.
When a chunk is exhausted, a new chunk is acquired and processed, until no more chunks
remain.

By not assigning a source-path to a fixed map, faster map-tasks (i.e. data-nodes) are able to
consume more chunks, and thus copy more data, than slower nodes. While this distribution
isn't uniform, it is fair with regard to each mapper's capacity.

The dynamic-strategy is implemented by the DynamicInputFormat. It provides superior
performance under most conditions.

Tuning the number of maps to the size of the source and destination clusters, the size of the
copy, and the available bandwidth is recommended for long-running and regularly run jobs.

DistCp Version 2 Guide

Page 10
Copyright © 2008 The Apache Software Foundation. All rights reserved.

5.2. Copying Between Versions of HDFS

For copying between two different versions of Hadoop, one will usually use HftpFileSystem.
This is a read-only FileSystem, so DistCp must be run on the destination cluster (more
specifically, on TaskTrackers that can write to the destination cluster). Each source is
specified as hftp://<dfs.http.address>/<path> (the default
dfs.http.address is <namenode>:50070).

5.3. Map/Reduce and other side-effects

As has been mentioned in the preceding, should a map fail to copy one of its inputs, there
will be several side-effects.

• Unless -overwrite is specified, files successfully copied by a previous map on a
re-execution will be marked as "skipped".

• If a map fails mapred.map.max.attempts times, the remaining map tasks will be
killed (unless -i is set).

• If mapred.speculative.execution is set set final and true, the result of the
copy is undefined.

5.4. SSL Configurations for HSFTP sources

To use an HSFTP source (i.e. using the hsftp protocol), a Map-Red SSL configuration file
needs to be specified (via the -mapredSslConf option). This must specify 3 parameters:

• ssl.client.truststore.location: The local-filesystem location of the
trust-store file, containing the certificate for the namenode.

• ssl.client.truststore.type: (Optional) The format of the trust-store file.
• ssl.client.truststore.password: (Optional) Password for the trust-store file.

The following is an example of the contents of the contents of a Map-Red SSL Configuration
file:

<configuration>

<property>

<name>ssl.client.truststore.location</name>

<value>/work/keystore.jks</value>

<description>Truststore to be used by clients like distcp.
Must be specified. </description>

DistCp Version 2 Guide

Page 11
Copyright © 2008 The Apache Software Foundation. All rights reserved.

</property>

<property>

<name>ssl.client.truststore.password</name>

<value>changeme</value>

<description>Optional. Default value is "". </description>

</property>

<property>

<name>ssl.client.truststore.type</name>

<value>jks</value>

<description>Optional. Default value is "jks". </description>

</property>

</configuration>

The SSL configuration file must be in the class-path of the DistCp program.

6. Frequently Asked Questions
1. Why does -update not create the parent source-directory under a pre-existing target

directory?
The behaviour of -update and -overwrite is described in detail in the Usage
section of this document. In short, if either option is used with a pre-existing destination
directory, the contents of each source directory is copied over, rather than the
source-directory itself. This behaviour is consistent with the legacy DistCp
implementation as well.

2. How does the new DistCp differ in semantics from the Legacy DistCp?
• Files that are skipped during copy used to also have their file-attributes (permissions,

owner/group info, etc.) unchanged, when copied with Legacy DistCp. These are now
updated, even if the file-copy is skipped.

• Empty root directories among the source-path inputs were not created at the target, in
Legacy DistCp. These are now created.

3. Why does the new DistCp use more maps than legacy DistCp?
Legacy DistCp works by figuring out what files need to be actually copied to target
before the copy-job is launched, and then launching as many maps as required for copy.

DistCp Version 2 Guide

Page 12
Copyright © 2008 The Apache Software Foundation. All rights reserved.

So if a majority of the files need to be skipped (because they already exist, for example),
fewer maps will be needed. As a consequence, the time spent in setup (i.e. before the
M/R job) is higher.

The new DistCp calculates only the contents of the source-paths. It doesn't try to filter out
what files can be skipped. That decision is put- off till the M/R job runs. This is much
faster (vis-a-vis execution-time), but the number of maps launched will be as specified in
the -m option, or 20 (default) if unspecified.

4. Why does DistCp not run faster when more maps are specified?
At present, the smallest unit of work for DistCp is a file. i.e., a file is processed by only
one map. Increasing the number of maps to a value exceeding the number of files would
yield no performance benefit. The number of maps lauched would equal the number of
files.

5. Why does DistCp run out of memory?
If the number of individual files/directories being copied from the source path(s) is
extremely large (e.g. 1,000,000 paths), DistCp might run out of memory while
determining the list of paths for copy. This is not unique to the new DistCp
implementation.

To get around this, consider changing the -Xmx JVM heap-size parameters, as follows:

bash$ export HADOOP_CLIENT_OPTS="-Xms64m -Xmx1024m"

bash$ hadoop distcp2 /source /target

DistCp Version 2 Guide

Page 13
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Overview
	2 Usage
	2.1 Basic Usage
	2.2 Update and Overwrite

	3 Command Line Options
	4 Architecture of DistCp
	4.1 DistCp Driver
	4.2 Copy-listing Generator
	4.3 Input-formats and Map-Reduce Components

	5 Appendix
	5.1 Map sizing
	5.2 Copying Between Versions of HDFS
	5.3 Map/Reduce and other side-effects
	5.4 SSL Configurations for HSFTP sources

	6 Frequently Asked Questions

