Pig Latin Reference Manual

by

Table of contents

L OVEIVIBW. ..ttt sttt ettt bbbt se st et e e e st e b e sbe e bt e bt e se et et e beneenbeneennenneenean 2
2 DAta TYPES AN IMIOFE.......ocueeiecie ettt e st e et e e sreeste et e sse e teeneesreesseenneaneensens 4
3 Arithmetic Operators AN IMOTE..........coeiirieiiierese e 29
A RElELIONAl OPEIGLIOIS......ccueiueeeereerteste sttt ettt e e ne bbb e b e sbeene e e e enes 45
5 DIiagNOSLIC OPEIALONS.......eueiteeueeieeeetesre et sttt ee e ss e bbbt s se e e e et e snesbesreesesaeennennens 77
B UDF SEALEMENES........eeeiieeeie ettt r e e s e ne e e b e e sne e e neesneeenneas 83
7 BV FUNCHIONS.......ciiiiiciesieceeiee sttt sttt sttt et st e bbb nnenneas 88
8 L0BO/StOrE FUNCLIONS........oiviiieiiiitesieeiieie ettt sttt sne bt 100
e X @0 01017200 S 104

10 ULility COMMEBNGS........oiueiiiiiieieieiesie sttt besne b naeas 115

1. Overview

Pig Latin Reference Manual

Use the Pig Latin Reference Manual together with the Pig Latin Users Guide.

1.1. Conventions

Conventions for the syntax and code examples in the Pig Latin Reference Manual are

described here.

Convention

O

[]

{}

UPPERCASE

lowercase

Description

Parentheses enclose one or more
items.

Parentheses are also used to
indicate the tuple data type.

Straight brackets enclose one or
more optional items.

Straight brackets are also used to
indicate the map data type. In this
case <> is used to indicate optional
items.

Curly brackets enclose two or
more items, one of whichis
required.

Curly brackets also used to
indicate the bag data type. In this
case <> isused to indicate
required items.

Horizontal ellipsis pointsindicate
that you can repeat a portion of the
code.

In general, uppercase type
indicates elements the system
supplies.

In general, lowercase type
indicates elements that you supply.

Example

Multiple items:

(1, abc, (2,4,6))

Optional items:
[INNER | OUTER]

Two items, one required:

{ gen_blk | nested _gen blk }

Pig Latin syntax statement:
cat path [path ...]

Pig Latin statement:
A =LOAD 'data’ AS (f1:int);

+ LOAD, ASsupplied BY
system

Page 2

piglatin_users.html

Pig Latin Reference Manual

italics

1.2. Keywords

Pig keywords are listed here.

-A

-B

Note: The names (aliases) of
relations and fields are case

e« A, flarenames (aliases)
data supplied by you

sensitive. The names of Pig Latin
functions are case sensitive. All
other Pig Latin keywords are case

insensitive.

[talic type indicates placeholders Pig Latin syntax:
or variables for which you must

supply values.

dias=LIMIT dias n;

Y ou supply the values for
placeholder aias and variable n.

and, any, all, arrange, as, asc, AVG

bag, BinaryDeserializer, BinarySerializer,
BinStorage, by, bytearray

cache, cat, cd, chararray, cogroup, CONCAT,
copyFromLocal, copyToLocal, COUNT, cp, cross

%declare, %default, define, desc, describe, DIFF,
distinct, double, du, dump

e E, eval, exec, explain

f, F, filter, flatten, float, foreach, full
generate, group

help

if, illustrate, inner, input, int, into, is

join

Page 3

2. Data Typesand More

2.1. Relations, Bags, Tuples, Fields

U
~V,W,X,Y,Z

-- Symbols

Pig Latin Reference Manual

kill

[, L, left, limit, load, long, Is

map, matches, MAX, MIN, mkdir, mv
not, null

or, order, outer, output

paralel, pig, Pigbump, PigStorage, pwd
quit

register, right, rm, rmf, run

sample, set, ship, SIZE, split, stderr, stdin, stdout,
store, stream, SUM

TextLoader, TOKENIZE, through, tuple

union, using

==l=<> <= >=+-*[%?$.#()[1{}

Pig L atin statements work with relations. A relation can be defined as follows:

A relation is abag (more specifically, an outer bag).

A bag isacollection of tuples.
A tupleisan ordered set of fields.
A field isapiece of data.

Page 4

piglatin_users.html#Pig+Latin+Statements

Pig Latin Reference Manual

A Pigrelation isabag of tuples. A Pigrelation issimilar to atable in arelational database,
where the tuples in the bag correspond to the rows in atable. Unlike arelational table,
however, Pig relations don't require that every tuple contain the same number of fields or that
the fields in the same position (column) have the same type.

Also note that relations are unordered which means there is no guarantee that tuples are
processed in any particular order. Furthermore, processing may be parallelized in which case
tuples are not processed according to any total ordering.

2.1.1. Referencing Relations

Relations are referred to by name (or alias). Names are assigned by you as part of the Pig
Latin statement. In this example the name (alias) of therelationisA.

A = LOAD 'student' USING PigStorage() AS (nane:chararray, age:int,
gpa: fl oat) ;
DUMP A;

(John, 18, 4. OF)
(Mary, 19, 3. 8F)
(Bill, 20, 3.9F)
(Joe, 18, 3. 8F)

2.1.2. Referencing Fields

Fields are referred to by positional notation or by name (alias).

» Positional notation is generated by the system. Positional notation is indicated with the
dollar sign ($) and begins with zero (0); for example, $0, $1, $2.

« Names are assigned by you using schemas (or, in the case of the GROUP operator and
some functions, by the system). Y ou can use any name that is not a Pig keyword; for
example, f1, f2, f3 or a, b, c or name, age, gpa.

Givenrelation A above, the three fields are separated out in this table.

First Field Second Field Third Field
Datatype chararray int float
Positional notation $0 $1 $2
(generated by system)
Possible name (assigned name age gpa

by you using a schema)

Page 5

Pig Latin Reference Manual

Field value (for thefirst John 18 4.0
tuple)

As shown in this example when you assign names to fields you can still refer to the fields
using positional notation. However, for debugging purposes and ease of comprehension, itis
better to use names.

In this example an error is generated because the requested column ($3) is outside of the
declared schema (positional notation begins with $0). Note that the error is caught before the
statements are executed.

2.1.3. Referencing Fieldsthat are Complex Data Types

As noted, the fields in atuple can be any data type, including the complex data types: bags,
tuples, and maps.

» Usethe schemas for complex data types to name fields that are complex data types.

« Usethe dereference operators to reference and work with fields that are complex data
types.

In this example the data file contains tuples. A schemafor complex data types (in this case,
tuples) is used to load the data. Then, dereference operators (the dot in t1.tla and t2.$0) are
used to access the fields in the tuples. Note that when you assign names to fields you can till
refer to these fields using positional notation.

0
Q
Q
0]
)]

Pig Latin Reference Manual

2.2. Data Types

2.2.1. Simple and Complex

Simple Data Types Description Example
Scalars
int Signed 32-bit integer 10
long Signed 64-bit integer Data 10L or 10l
Display: 10L
float 32-hit floating point Data: 10.5F or 10.5f or 10.5e2f
or 10.5E2F
Display: 10.5F or 1050.0F
double 64-bit floating point Data. 10.5or 10.5e2 or 10.5E2
Display: 10.5 or 1050.0
Arrays
chararray Character array (string) in Unicode ' hello world
UTF-8 format
Page 7

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

bytearray Byte array (blob)

Complex Data Types

tuple An ordered set of fields. (19,2

bag An collection of tuples. {(19,2), (18,1)}
map A set of key value pairs. [openttapache]

Note the following general observations about data types:

Use schemasto assign typesto fields. If you don't assign types, fields default to type
bytearray and implicit conversions are applied to the data depending on the context in
which that datais used. For example, inrelation B, f1 is converted to integer because 5 is
integer. Inrelation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

A = LOAD 'data' AS (f1,f2,f3);
B = FOREACH A GENERATE f1 + 5;
C = FOREACH A generate f1 + f2;

If aschemais defined as part of aload statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

A
B

LOAD 'data' AS (nane:chararray, age:int, gpa:float);
FOREACH A GENERATE (i nt) nane;

This will cause an error

If Pig cannot resolve incompatible types through implicit casts, an error will occur. For
example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE nane + gpa;

Page 8

Pig Latin Reference Manual

This will cause an error ...

2.2.2. Tuple

A tupleisan ordered set of fields.

2.2.2.1. Syntax

(fiedd[, field ...])

2.2.2.2. Terms
()

field

2.2.2.3. Usage

A tupleisenclosed in parentheses ().

A piece of data. A field can be any datatype
(including tuple and bag).

Y ou can think of atuple asarow with one or more fields, where each field can be any data
type and any field may or may not have data. If afield has no data, then the following

happens:

« Inaload statement, the loader will inject null into the tuple. The actual valuethat is
substituted for null isloader specific; for example, PigStorage substitutes an empty field

for null.

* Inanon-load statement, if arequested field is missing from atuple, Pig will inject null.

2.2.2.4. Example

In this example the tuple contains three fields.

(John, 18, 4. OF)

2.2.3. Bag

A bag isacollection of tuples.

2.2.3.1. Syntax: Inner bag

{ tuple[, tuple ...]}

Page 9

Pig Latin Reference Manual

223.2. Terms
{1} Aninner bag isenclosed in curly brackets{ }.
tuple A tuple.

2.2.3.3. Usage

Note the following about bags:
» A bag can have duplicate tuples.

« A bag can have tuples with differing numbers of fields. However, if Pig triesto accessa
field that does not exist, anull value is substituted.

« A bag can have tuples with fields that have different data types. However, for Pig to
effectively process bags, the schemas of the tuples within those bags should be the same.
For example, if half of the tuplesinclude chararray fields and while the other half include
float fields, only half of the tuples will participate in any kind of computation because the
chararray fields will be converted to null.

Bags have two forms: outer bag (or relation) and inner bag.

2.2.3.4. Example: Outer Bag

In this example A isarelation or bag of tuples. Y ou can think of thisbag as an outer bag.

2.2.3.5. Example: Inner Bag
Now, suppose we group relation A by thefirst field to form relation X.

In this example X isarelation or bag of tuples. Thetuplesin relation X have two fields. The
first field istype int. The second field is type bag; you can think of this bag as an inner bag.

X,
(1,2,3)})
(4,2,1),(4,3,3)})

Page 10

Pig Latin Reference Manual

(8,{(8,3,4)})
2.2.4. Map
A map isaset of key value pairs.

2.2.4.1. Syntax (<> denotes optional)

[key#value <, key#vaue ...>]

2242. Terms
[1 Maps are enclosed in straight brackets|].
Key value pairs are separated by the pound sign #.
key Must be chararray datatype. Must be a unique value.
value Any datatype.

2.2.4.3. Usage

Key values within arelation must be unique.

2.2.4.4 Example

In this example the map includes two key value pairs.
[name#John, phone#5551212]

2.3. Nulls

In Pig Latin, nulls are implemented using the SQL definition of null as unknown or
non-existent. Nulls can occur naturally in data or can be the result of an operation.

2.3.1. Nullsand Operators

Pig Latin operators interact with nulls as shown in thistable.

Operator Interaction

Comparison operators: If either sub-expression is null, the result isnull.

Page 11

Comparison operator:

matches

Arithmetic operators:
+,5%1
% modulo

? bincond

Null operator:

isnull

Null operator:

isnot null

Dereference operators:

tuple (.) or map (#)

Cast operator

Functions:

AVG, MIN, MAX, SUM

Function:

COUNT

Function:

CONCAT

Function:

Pig Latin Reference Manual

If either the string being matched against or the string
defining the match is null, the result isnull.

If either sub-expression is null, the resulting
expression isnull.

If the tested value is null, returns true; otherwise,
returns false.

If the tested value is not null, returns true; otherwise,
returns false.

If the de-referenced tuple or map is null, returns null.

Casting anull from one type to another type resultsin
anull.

These functionsignore nulls.

This function counts all values, including nulls.

If either sub-expression is null, the resulting

expression isnull.

If the tested object isnull, returns null.

Page 12

Pig Latin Reference Manual

SIZE

For Boolean sub-expressions, note the results when nulls are used with these operators:

e FILTER operator — If afilter expression resultsin null value, the filter does not pass them

through (if X isnull, IX isalso null, and the filter will reject both).

» Bincond operator — If a Boolean sub-expression resultsin null value, the resulting
expression is null (see the interactions above for Arithmetic operators)

2.3.2. Nullsand Constants
Nulls can be used as constant expressions in place of expressions of any type.

In this example aand null are projected.

A = LOAD 'data' AS (a, b, c).
B = FOREACH A GENERATE a, null;

In this example of an outer join, if the join key is missing from atableit is replaced by null.

LOAD 'student' AS (nanme: chararray, age: int, gpa: float);
LOAD 'votertablOk' AS (name: chararray, age: int, registration:
chararray, donation: float);

C = COGROUP A BY nane, B BY nane;

D = FOREACH C GENERATE FLATTEN((IsSEmpty(A) ? null : A)),
FLATTEN((I sEnpty(B) ? null : B));

Like any other expression, null constants can be implicitly or explicitly cast.

w >

In this example both aand null will be implicitly cast to double.

A = LOAD 'data'" AS (a, b, c).
B = FOREACH A GENERATE a + null;

In this example both aand null will be cast to int, aimplicitly, and null explicitly.

A
B

LOAD 'data' AS (a, b, c).
FOREACH A GENERATE a + (int)null;

2.3.3. Operations That Produce Nulls

As noted, nulls can be the result of an operation. These operations can produce null values:
« Division by zero

» Returnsfrom user defined functions (UDFs)

o Dereferencing afield that does not exist.

Page 13

Pig Latin Reference Manual

Dereferencing a key that does not exist in amap. For example, given amap, info,
containing [name#john, phone#5551212] if a user tries to use info#address anull is
returned.

Accessing afield that does not exist in atuple.

2.3.3.1. Example: Accessing afield that does not exist in atuple

In this example nulls are injected if fields do not have data.

2.3.4. Nullsand L oad Functions

As noted, nulls can occur naturaly in the data. If nulls are part of the data, it isthe
responsibility of the load function to handle them correctly. Keep in mind that what is
considered a null value is loader-specific; however, the load function should aways
communicate null valuesto Pig by producing Javanulls.

The Pig Latin load functions (for example, PigStorage and TextL oader) produce null values
wherever datais missing. For example, empty strings (chararrays) are not loaded; instead,
they are replaced by nulls.

PigStorage is the default load function for the LOAD operator. In this example the is not null
operator is used to filter names with null values.

2.4. Constants

Page 14

Pig Latin Reference Manual

Pig provides constant representations for all data types except bytearrays.

Simple Data Types
Scalars

int

long

float

double

Arrays

chararray

bytearray

Complex Data Types

tuple

bag

map

P ease note the following:

Constant Example

19
191
19.2F or 1.92e2f

19.2 or 1.92e2

'hello world'

(19, 2, 1)

{(19,2,(12)}

['name' # 'John', ‘ext’ # 5555]

Notes

Not applicable.

A constant in this form creates a
tuple.

A constant in this form creates a
bag.

A constant in this form creates a
map.

* On UTF-8 systems you can specify string constants consisting of printable ASCI|
characters such as 'abc'; you can specify control characters such as'\t'; and, you can
specify a character in Unicode by starting it with '\u', for instance, \uOOO1' represents
Ctrl-A in hexadecimal (see Wikipedia ASCII, Unicode, and UTFE-8). In theory, you

Page 15

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

Pig Latin Reference Manual

should be able to specify non-UTF-8 constants on non-UTF-8 systems but as far aswe
know this has not been tested.

» To specify along constant, | or L must be appended to the number (for example,
12345678L). If thel or L is not specified, but the number istoo large to fit into an int, the
problem will be detected at parse time and the processing is terminated.

« Any numeric constant with decimal point (for example, 1.5) and/or exponent (for
example, 5et+1l) istreated as double unless it ends with f or F in which caseit is assigned
type float (for example, 1.5f).

The data type definitions for tuples, bags, and maps apply to constants:
» A tuple can contain fields of any data type

« A bagisacollection of tuples

« A map key must be a scalar; amap value can be any data type

Complex constants (either with or without values) can be used in the same places scalar
constants can be used; that is, in FILTER and GENERATE statements.

A = LOAD 'data' USING MyStorage() AS (T: tuple(nane:chararray, age: int));
B =FLTER ABY T == ('john', 25);
D = FOREACH B GENERATE T. name, [25#5.6], {(1, 5, 18)};

2.5. Expressions

In Pig Latin, expressions are language constructs used with the FILTER, FOREACH,
GROUP, and SPLIT operators as well asthe eval functions.

Expressions are written in conventional mathematical infix notation and are adapted to the
UTF-8 character set. Depending on the context, expressions can include:

« Any Pig datatype (simple data types, complex data types)

« Any Pig operator (arithmetic, comparison, null, boolean, dereference, sign, and cast)

e Any Pig built-in function.

« Any user-defined function (UDF) written in Java.

In Pig Latin,
e Anarithmetic expression could look like this:

X = GROUP A BY f2*f3;

Page 16

Pig Latin Reference Manual

A string expression could look like this, where aand b are both chararrays.

X = FOREACH A GENERATE CONCAT(a, b);
A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

2.5.1. Field expressions

Field expressions represent afield or a dereference operator applied to afield. See
Dereference Operators for more details.

2.5.2. Star expression

The star symbol, *, can be used to represent all the fields of atuple. It is equivalent to writing
out the fields explicitly. In the following example the definition of B and C are exactly the
same, and MyUDF will be invoked with exactly the same arguments in both cases.

LOAD ' data' USI NG MySt orage() AS (nane:chararray, age: int);
FOREACH A GENERATE *, MyUDF(nane, age);
FOREACH A GENERATE name, age, MyUDF(*);

Omw>
o n

A common error when using the star expression is the following:

GROUP A BY $0;

G
C = FOREACH G GENERATE COUNT(*)

In this example, the programmer really wants to count the number of elementsin the bagin
the second field: COUNT($1).
2.5.3. Boolean expressions

Boolean expressions can be made up of UDFs that return a boolean value or boolean
operators (see Boolean Operators).

2.5.4. Tuple expressions

Tuple expressions form subexpressions into tuples. The tuple expression has the form
(expression [, expression ...]), where expression is a general expression. The simplest tuple
expression is the star expression, which represents all fields.

Page 17

Pig Latin Reference Manual

2.5.5. General expressions

General expressions can be made up of UDFs and amost any operator. Since Pig does not
consider boolean a base type, the result of a general expression cannot be a boolean. Field
expressions are the simpliest general expressions.

2.6. Schemas

Schemas enable you to assign names to and declare types for fields. Schemas are optional but
we encourage you to use them whenever possible; type declarations result in better
parse-time error checking and more efficient code execution.

Schemas are defined using the AS keyword with the LOAD, STREAM, and FOREACH
operators. If you define a schema using the LOAD operator, then it is the load function that
enforces the schema (see the LOAD operator and the Pig UDF Manual for more
information).

Note the following:
* You can define a schemathat includes both the field name and field type.

» You can define a schemathat includes the field name only; in this case, the field type
defaults to bytearray.

e You can choose not to define a schema; in this case, the field is un-named and the field
type defaults to bytearray.

If you assign aname to afield, you can refer to that field using the name or by positional
notation. If you don't assign aname to afield (the field is un-named) you can only refer to
the field using positional notation.

If you assign atypeto afield, you can subsequently change the type using the cast operators.
If you don't assign atypeto afield, the field defaults to bytearray; you can change the default
type using the cast operators.

2.6.1. Schemaswith LOAD and STREAM Statements

With LOAD and STREAM statements, the schema following the AS keyword must be
enclosed in parentheses.

In this example the LOAD statement includes a schema definition for ssmple data types.

A = LOAD 'data' AS (fl:int, f2:int);

Page 18

udf.html

Pig Latin Reference Manual

2.6.2. Schemas with FOREACH Statements

With FOREACH statements, the schema following the AS keyword must be enclosed in
parentheses when the FLATTEN operator is used. Otherwise, the schema should not be
enclosed in parentheses.

In this example the FOREACH statement includes FLATTEN and a schema for simple data
types.

X = FOREACH C GENERATE FLATTEN(B) AS (f1l:int, f2:int, f3:int);
In this example the FOREA CH statement includes a schema for simple data types.

X = FOREACH A GENERATE f1+f2 AS x1:int;

2.6.3. Schemasfor Simple Data Types

Simple data types include int, long, float, double, chararray, and bytearray.
2.6.3.1. Syntax

(dliad:type]) [, (aliag:type]) ...])

2.6.3.2. Terms
dias The name assigned to the field.
type (Optional) The simple data type assigned to the field.
The alias and type are separated by acolon (:).
If the type is omitted, the field defaults to type
bytearray.
(,) Multiple fields are enclosed in parentheses and

separated by commas.

2.6.3.3. Examples

In this example the schema defines multiple types.

cat student;
John 18 4.0

Page 19

Pig Latin Reference Manual

In this example field "gpa" will default to bytearray because no typeis declared.

2.6.4. Schemasfor Complex Data Types

Complex data types include tuples, bags, and maps.

2.6.5. Tuple Schema
A tupleisan ordered set of fields.

2.6.5.1. Syntax

diad[:tuple] (diad:type]) [, (diadg:typq]) ...])

2.6.5.2. Terms

dias The name assigned to the tuple.

Page 20
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

‘tuple (Optional) The data type, tuple (case insensitive).
O The designation for atuple, a set of parentheses.
aliag:type] The constituents of the tuple, where the schema

definition rules for the corresponding type applies to
the congtituents of the tuple:

» dias—the name assigned to the field

» type (optional) —the simple or complex datatype
assigned to the field

2.6.5.3. Examples
In this example the schema defines one tuple. The load statements are equivalent.

In this example the schema defines two tuples.

Page 21
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

2.6.6. Bag Schema
A bag isacollection of tuples.

2.6.6.1. Syntax
diag[:bag] {tuple}

2.6.6.2. Terms
dias The name assigned to the bag.
‘bag (Optional) The datatype, bag (case insensitive).
{} The designation for a bag, a set of curly brackets.
tuple A tuple (see Tuple Schema).

2.6.6.3. Examples

In this example the schema defines a bag. The two load statements are equivalent.

2.6.7. Map Schema
A map isaset of key value pairs.

Page 22

Pig Latin Reference Manual

2.6.7.1. Syntax (where <> means optional)

dias<:map>|[]
2.6.7.2. Terms

dias The name assigned to the map.

:map (Optional) The data type, map (case insensitive).

[] il'he designation for amap, a set of straight brackets [
2.6.7.3. Example

In this example the schema defines a map. The load statements are equivalent.

2.6.8. Schemasfor Multiple Types

Y ou can define schemas for data that includes multiple types.

2.6.8.1. Example
In this example the schema defines atuple, bag, and map.

Page 23

Pig Latin Reference Manual

2.7. Parameter Substitution

2.7.1. Description

Substitute values for parameters at run time.

2.7.1.1. Syntax: Specifying parametersusing the Pig command line

pig {—param param_name = param_value | -param_file file_name} [-debug | -dryrun] script

2.7.1.2. Syntax: Specifying parameters using preprocessor statementsin a Pig script

{%declare | %odefault} param_name param_value

2.7.1.3. Terms

pig Keyword

Note: exec, run, and explain also support parameter
substitution.

—param Flag. Use this option when the parameter is included
in the command line.

Multiple parameters can be specified. If the same
parameter is specified multiple times, the last value
will be used and awarning will be generated.

Command line parameters and parameter files can be
combined with command line parameters taking
precedence.

param_name The name of the parameter.

The parameter name has the structure of a standard
language identifier: it must start with aletter or
underscore followed by any number of letters, digits,
and underscores.

Parameter names are case insensitive.

If you pass a parameter to a script that the script does
not use, this parameter is silently ignored. If the script
has a parameter and no value is supplied or
substituted, an error will result.

Page 24

Pig Latin Reference Manual

param_vaue

—param _file

file_name

—debug

The value of the parameter.

A parameter value can take two forms:

« A sequence of characters enclosed in single or
double quotes. In this case the unquoted version
of the value is used during substitution. Quotes
within the value can be escaped with the
backslash character (\). Single word values that
don't use specia characters such as % or = don't
have to be quoted.

A command enclosed in back ticks.

The value of a parameter, in either form, can be
expressed in terms of other parameters aslong as the
values of the dependent parameters are aready
defined.

Flag. Use this option when the parameter is included
inafile.

Multiple files can be specified. If the same parameter
is present multiple timesin the file, the last value will
be used and awarning will be generated. If a

parameter present in multiple files, the value from the
last file will be used and awarning will be generated.

Command line parameters and parameter files can be
combined with command line parameters taking
precedence.

The name of afile containing one or more
parameters.

A parameter file will contain one line per parameter.
Empty lines are allowed. Perl-style (#) comment lines
are aso alowed. Comments must take afull line and
must be the first character on the line. Each
parameter line will be of the form: param_name =
param_value. White spaces around = are allowed but
are optional.

Flag. With this option, the script isrun and afully
substituted Pig script produced in the current working
directory named original_script_name.substituted

Page 25

—dryrun

script

%declare

Y%default

2.7.1.4. Usage

Pig Latin Reference Manual

Flag. With this option, the script is not run and a fully
substituted Pig script produced in the current working
directory named original_script_name.substituted

A pig script. The pig script must be the last element
in the Pig command line.

o |f parameters are specified in the Pig command
line or in a parameter file, the script should
include a $param_name for each para_name
included in the command line or parameter file.

o |f parameters are specified using the
preprocessor statements, the script should
include either %declare or %odefault.

» Inthe script, parameter names can be escaped
with the backslash character (\) in which case
substitution does not take place.

Preprocessor statement included in a Pig script.

Use to describe one parameter in terms of other
parameters.

The declare statement is processed prior to running
the Pig script.

The scope of a parameter value defined using declare
isal the lines following the declare statement until
the next declare statement that defines the same
parameter is encountered.

Preprocessor statement included in a Pig script.

Use to provide a default value for a parameter. The
default value has the lowest priority and is used if a
parameter value has not been defined by other means.

The default statement is processed prior to running
the Pig script.

The scopeis the same as for %declare.

Parameter substitution enables you to write Pig scripts that include parameters and to supply
values for these parameters at run time. For instance, suppose you have a job that needs to

Page 26

Pig Latin Reference Manual

run every day using the current day's data. Y ou can create a Pig script that includes a
parameter for the date. Then, when you run this script you can specify or supply avalue for
the date parameter using one of the supported methods.

Specifying Parameter s

Y ou can specify parameter names and parameter values as follows:
e Aspart of acommand line.

e Inparameter file, as part of acommand line.

» With the declare statement, as part of Pig script.

« With default statement, as part of aPig script.

Precedence

Precedence for parametersis as follows:

» Highest - parameters defined using the declare statement
e Next - parameters defined in the command line

« Lowest - parameters defined in a script

Processing Order and Precedence

Parameters are processed as follows:

« Command line parameters are scanned in the order they are specified on the command
line.

o Parameter files are scanned in the order they are specified on the command line. Within
each file, the parameters are processed in the order they are listed.

« Declare and default preprocessors statements are processed in the order they appear in the
Pig script.

2.7.1.5. Example: Specifying parametersin the command line

Suppose we have a data file called 'mydata and a pig script called 'myscript.pig'.

mydata

1 2 3
4 2 1
8 3 4

Page 27

Pig Latin Reference Manual

myscript.pig

In this example the parameter (data) and the parameter value (mydata) are specified in the
command line. If the parameter name in the command line (data) and the parameter namein
the script ($data) do not match, the script will not run. If the value for the parameter (mydata)
isnot found, an error is generated.

2.7.1.6. Example: Specifying parameter susing a parameter file

Suppose we have a parameter file called 'myparams.’

In this example the parameters and values are passed to the script using the parameter file.

2.7.1.7. Example: Specifying parameter s using the declar e statement

In this example the command is executed and its stdout is used as the parameter value.

2.7.1.8. Example: Specifying parameter s using the default statement

In this example the parameter (DATE) and value ("20090101") are specified in the Pig script
using the default statement. If avalue for DATE is not specified elsewhere, the default value
20090101 is used.

Pig Latin Reference Manual

2.7.1.9. Examples: Specifying parameter values as a sequence of characters

In this example the characters (in this case, Joe's URL) can be enclosed in single or double
quotes, and quotes within the sequence of characters can be escaped.

In this example single word values that don't use specia characters (in this case, mydata)
don't have to be enclosed in quotes.

2.7.1.10. Example: Specifying parameter values as a command

In this example the command is enclosed in back ticks. First, the parameters mycmd and date
are substituted when the declare statement is encountered. Then the resulting command is
executed and its stdout is placed in the path before the load statement is run.

3. Arithmetic Operatorsand More

3.1. Arithmetic Operators

3.1.1. Description

Operator Symbol Notes
addition +
subtraction -
multiplication *
division /

Page 29

Pig Latin Reference Manual

modulo % Returns the remainder of adivided
by b (a%b).

bincond ?: (condition ? value_if_true:
value if_false)
The bincond should be enclosed in
parenthesis.
The schemas for the two
conditional outputs of the bincond
should match.

3.1.1.1. Examples

Suppose we have relation A.

In this example the modul o operator is used with fields f1 and f2.

In this example the bincond operator is used with fields f2 and B. The condition is "f2 equals
1": if the condition istrue, return 1; if the condition is false, return the count of the number of
tuplesin B.

3.1.1.2. Types Table: addition (+) and subtraction (-) operators

* pytearray cast asthis datatype

Page 30

Pig Latin Reference Manual

bag tuple map
bag error error error
tuple notyet | error
map error

int

long

float

double

chararray

bytearray

3.1.1.3. Types Table: multiplication (*) and division (/) operators

* bytearray cast as this datatype

bag tuple map
bag error error error
tuple error error
map error

int

int

error

error

error

int

int

not yet

not yet

error

int

long
error
error
error

long

long

long
not yet
not yet
error

long

float

error

error

error

float

float

float

float

not yet

not yet

error

float

double

error

error

error

double

double

double

double

double

not yet

not yet

error

double

chararray
error
error
error

error

error

error

error

error

chararray
error
error
error

error

bytearray
error
error
error

cast as
int

cast as
long

cast as
float

cast as
double

error

cast as
double

bytearray
error
error
error

cast as
int

Page 31

long

float

double

chararray

bytearray

3.1.1.4. Types Table: modulo (%) operator

int
int int
long
bytearray

3.2. Comparison Operators

3.2.1. Description

Operator Symbol
equal ==

not equal 1=
lessthan <
greater than >

less than or equal to <=

Pig Latin Reference Manual

long float double error cast as
long
float double error cast as
float
double error cast as
double
error error
cast as
double
long bytearray
long cast asint
long cast aslong
error
Notes

Page 32

Pig Latin Reference Manual

greater than or equal to >=
pattern matching matches Regular expression matching. Use
the Java format for regular
expressions.
Use the comparison operators with numeric and string data.
3.2.1.1. Example: numeric
X = FILTER A BY (f1 == 8);
3.2.1.2. Example: string
X = FILTER A BY (f2 == 'apache');
3.2.1.3. Example: matches
X = FILTER A BY (f1 matches '.*apache.*');
3.2.1.4. Types Table: equal (==) and not equal (!=) operators
* bytearray cast as this datatype
bag tuple map int long float double chararray bytearray
bag error error error error error error error error error
tuple boolean | error error error error error error error
(see
Note 1)
map boolean | error error error error error error
(see
Note 2)
int boolean ' boolean | boolean ' boolean error cast as
boolean
long boolean | boolean ' boolean error cast as
boolean

Page 33

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Pig Latin Reference Manual

float boolean ' boolean | error cast as
boolean
double boolean ' error cast as
boolean
chararray boolean | cast as
boolean
bytearray boolean

Note 1: boolean (Tuple A is equal to tuple B if they havethe same size s, and for all 0 <=1i <
sA[i] ==BJi])

Note 2: boolean (Map A isequal to map B if A and B have the same number of entries, and
for every key k1 in A with avaue of v1, thereisakey k2 in B with avalue of v2, such that
kl==k2andvl==v2)

3.2.1.5.
bag tuple map int long float double chararray bytearray
bag error error error error error error error error error
tuple error error error error error error error error
map error error error error error error error
int boolean | boolean | boolean ' boolean ' error boolean
(bytearray
cast as
int)
long boolean | boolean ' boolean error boolean
(bytearray
cast as
long)
float boolean | boolean | error boolean

Page 34

Pig Latin Reference Manual

double boolean | error
chararray boolean
bytearray

3.2.1.6. Types Table: matches operator

*Cast as chararray (the second argument must be chararray)

chararray bytearray*
chararray boolean boolean
bytearray boolean boolean
3.3. Null Operators
3.3.1. Description
Operator Symbol Notes
isnull isnull
isnot null isnot null

3.3.1.1. Example

X = FILTER A BY f1 is not null;

(bytearray
cast as
float)

boolean
(bytearray
cast as
double)

boolean
(bytearray
cast as
chararray)

boolean

Page 35

Pig Latin Reference Manual

3.3.2. TypesTable

The null operators can be applied to all data types. For more information, see Nulls.
3.4. Boolean Operators

3.4.1. Description

Operator Symbol Notes
AND and

OR or

NOT not

Pig does not support a boolean data type. However, the result of a boolean expression (an
expression that includes boolean and comparison operators) is always of type boolean (true
or false).

3.4.1.1. Example
X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

3.5. Dereference Operators

3.5.1. Description

Operator Symbol Notes

tuple dereference tuple.id or tuple.(id,...) Tuple dereferencing can be done
by name (tuple.field_name) or
position (mytuple.$0). If a set of
fields are dereferenced
(tuple.(namel, name2) or
tuple.($0, $1)), the expression
represents a tuple composed of the
specified fields. Note that if the
dot operator is applied to a
bytearray, the bytearray will be
assumed to be atuple.

Page 36

Pig Latin Reference Manual

bag dereference bag.id or bag.(id,...) Bag dereferencing can be done by
name (bag.field_name) or position
(bag.$0). If aset of fieldsare
dereferenced (bag.(namel, name2)
or bag.($0, $1)), the expression
represents a bag composed of the
specified fields.

map dereference map# key' Map dereferencing must be done
by key (field_namettkey or
$0#key). If the pound operator is
applied to abytearray, the
bytearray is assumed to be a map.
If the key does not exist, the empty
string is returned.

3.5.1.1. Example: Tuple

Suppose we have relation A.

In this example dereferencing is used to retrieve two fields from tuple f2.

3.5.1.2. Example: Bag

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field namesin relation B).

Page 37

Pig Latin Reference Manual

In this example dereferencing is used with relation X to project thefirst field (f1) of each
tuplein the bag (a).

3.5.1.3. Example: Tupleand Bag

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field namesin relation B).

Page 38
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

In this example dereferencing is used to project afield (f1) from atuple (group) and afield
(f1) from abag (a).

3.5.1.4. Example: Map
Suppose we have relation A.

In this example dereferencing is used to look up the value of key ‘open'.

3.6. Sign Operators

Page 39
Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.6.1. Description

Operator Symbol
positive +
negative (negation) -

3.6.1.1. Example

A = LOAD 'data' as (x, Yy, 2);
B = FOREACH A GENERATE -Xx, Y;

3.6.1.2. Types Table: negation (-) operator
bag
tuple
map
int
long
float
double
chararray

bytearray

3.7. Flatten Operator

error
error
error
int
long
float
double
error

double (as double)

Pig Latin Reference Manual

Notes
Has no effect.

Changes the sign of a positive or
negative number.

The FLATTEN operator looks like a UDF syntactically, but it is actually an operator that
changes the structure of tuples and bagsin away that a UDF cannot. Flatten un-nests tuples

Page 40

Pig Latin Reference Manual

aswell asbags. Theideaisthe same, but the operation and result is different for each type of
structure.

For tuples, flatten substitutes the fields of atuple in place of the tuple. For example, consider
arelation that has atuple of the form (a, (b, ¢)). The expression GENERATE $0, flatten($1),
will cause that tuple to become (a, b, c).

For bags, the situation becomes more complicated. When we un-nest a bag, we create new
tuples. If we have arelation that is made up of tuples of the form ({ (b,c),(d,e)}) and we apply
GENERATE flatten($0), we end up with two tuples (b,c) and (d,e). When we remove a level
of nesting in a bag, sometimes we cause a cross product to happen. For example, consider a
relation that has atuple of the form (a, { (b,c), (d,e)}), commonly produced by the GROUP
operator. If we apply the expression GENERATE $0, flatten($1) to this tuple, we will create
new tuples: (a, b, ¢) and (a, d, €).

For examples using the FLATTEN operator, see FOREACH.
3.8. Cast Operators

3.8.1. Description
Pig Latin supports casts as shown in thistable.

to

from bag tuple map int long float double chararray bytearray
bag error error error error error error error error
tuple error error error error error error error error
map error error error error error error error error
int error error error yes yes yes error error
long error error error yes yes yes error error
float error error error yes yes yes error error
double error error error yes yes yes error error

Page 41

piglatin_reference.html#FOREACH

Pig Latin Reference Manual

chararray = error error error error error error error error
bytearray = yes yes yes yes yes yes yes yes
3.8.1.1. Syntax

{(data_type) | (tuple(data_type)) | (bag{tuple(data_type)}) | (map(]) } field

3.8.1.2. Terms
(data_type) The data type you want to cast to, enclosed in
parentheses. Y ou can cast to any data type except
bytearray (see the table above).
field The field whose type you want to change.
Thefield can be represented by positional notation or
by name (alias). For example, if f1isthefirst field
and type int, you can cast to type long using (Ilong)$0
or (long)f1.
3.8.1.3. Usage

Cast operators enable you to cast or convert data from one type to another, aslong as
conversion is supported (see the table above). For example, suppose you have an integer
field, myint, which you want to convert to astring. Y ou can cast thisfield fromint to
chararray using (chararray)myint.

Please note the following:
« A field can be explicitly cast. Once cast, the field remains that type (it is not

automatically cast back). In this example $0 is explicitly cast to int.

B = FOREACH A GENERATE (int)$0 + 1;

« Where possible, Pig performsimplicit casts. In this example $0 is cast to int (regardless
of underlying data) and $1 is cast to double.

B = FOREACH A GENERATE$0+ 1,$1+1.0

« When two bytearrays are used in arithmetic expressions or with built-in aggregate

Page 42

Pig Latin Reference Manual

functions (such as SUM) they are implicitly cast to double. If the underlying datais really
int or long, you' |l get better performance by declaring the type or explicitly casting the
data.

Downcasts may cause loss of data. For example casting from long to int may drop bits.

3.8.1.4. Examples

In thisexample anint is cast to type chararray (see relation X).

In this example abytearray (fld in relation A) is cast to type tuple.

Page 43
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

In this example abytearray (fld in relation A) is cast to type bag.

In this example abytearray (fld in relation A) is cast to type map.

Page 44
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

4. Relational Operators

4.1. COGROUP

COGROUP is the same as GROUP, but for readability purposes programmers usually use
GROUP when only onerelation is involved and COGROUP with multiple relations. See
GROUP for more information.

4.2. CROSS

Computes the cross product of two or more relations.

4.2.1. Syntax

dias= CROSS dlias, dias[, dias ...] [PARALLEL n;

422.Terms
dias The name of arelation.
PARALLEL n Increase the parallelism of ajob by specifying the

number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

Page 45

Pig Latin Reference Manual

n=(nr_nodes- 1) * 0.45* nr_GB

where nr_nodes is the number of nodes used and
nr_GB isthe amount of physical memory on each
node.

Note the following:

» Pardld only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

» If youdon't specify paralel, you still get the
same map parallelism but only one reduce task.

4.2.3. Usage

Use the CROSS operator to compute the cross product (Cartesian product) of two or more

CROSS is an expensive operation and should be used sparingly.

4.2.4. Example

Suppose we have relations A and B.

In this example the cross product of relation A and B is computed.

Page 46

Pig Latin Reference Manual

4,2,1,8,9)
4,2,1,1,3)

—~

4.3. DISTINCT

Removes duplicate tuplesin arelation.

4.3.1. Syntax

alias=DISTINCT dias[PARALLEL n];

43.2. Terms
dias

PARALLEL n

4.3.3. Usage

The name of the relation.

Increase the parallelism of ajob by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline;

n=(nr_nodes- 1) * 0.45* nr_GB

where nr_nodes is the number of nodes used and
nr_GB isthe amount of physical memory on each
node.

Note the following:

» Pardld only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

» |If youdon't specify paralel, you still get the
same map parallelism but only one reduce task.

Use the DISTINCT operator to remove duplicate tuplesin arelation. DISTINCT does not
preserve the original order of the contents (to eliminate duplicates, Pig must first sort the
data). Y ou cannot use DISTINCT on a subset of fields. To do this, use FOREACH ...
GENERATE to select the fields, and then use DISTINCT.

Page 47

Pig Latin Reference Manual

4.3.4. Example

Suppose we have relation A.

In this example al duplicate tuples are removed.

4.4, DUMP
Displays the contents of arelation.

4.4.1. Syntax

DUMP dias;

442 . Terms

dias The name of arelation.

4.4.3. Usage

Use the DUMP operator to run (execute) a Pig Latin statement and to display the contents of
an alias. Y ou can use DUMP as a debugging device to make sure the results you are
expecting are being generated.

4.4.4. Example

In this example adump is performed after each statement.

Page 48

Pig Latin Reference Manual

45 FILTER

Selects tuples from arelation based on some condition.

4.5.1. Syntax

dlias=FILTER dias BY expression;

452. Terms
alias The name of the relation.
BY Required keyword.
expression A boolean expression.
4.5.3. Usage

Use the FILTER operator to work with tuples or rows of data (if you want to work with
columns of data, use the FOREACH ...GENERATE operation).

FILTER is commonly used to select the data that you want; or, conversely, to filter out
(remove) the data you don’t want.

4.5.4. Examples
Suppose we have relation A.

Page 49

Pig Latin Reference Manual

In this example the condition states that if the third field equals 3, then include the tuple with
relation X.

In this example the condition states that if the first field equals 8 or if the sum of fieldsf2 and
f3 isnot greater than first field, then include the tuple relation X.

4.6. FOREACH

Generates data transformations based on columns of data.

4.6.1. Syntax

alias = FOREACH { gen_blk | nested_gen_blk } [AS schemal;

4.6.2. Terms
dias The name of relation (outer bag).
gen _blk FOREACH ... GENERATE used with arelation

(outer bag). Use this syntax:

alias = FOREACH aias GENERATE expression
[expression]

Page 50
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

nested gen_blk

expression
nested alias

nested op

AS

schema

4.6.3. Usage

FOREACH ... GENERATE used with ainner bag.
Use this syntax:
alias = FOREACH nested_alias{
alias = nested_op; [alias = nested_op; ...]
GENERATE expression [, expression ...]

1

Where:

The nested block is enclosed in opening and closing
brackets{ ... }.

The GENERATE keyword must be the last statement
within the nested block.

An expression.
The name of the inner bag.

Allowed operations are DISTINCT, FILTER, LIMIT,
ORDER and SAMPLE.

The FOREACH ... GENERATE operation itself is
not allowed since this could lead to an arbitrary
number of nesting levels.

Keyword.

A schemausing the AS keyword (see Schemas).
« Ifthe FLATTEN operator is used, enclose the
schemain parentheses.

o |fthe FLATTEN operator is not used, don't
enclose the schema in parentheses.

Use the FOREACH ...GENERATE operation to work with columns of data (if you want to
work with tuples or rows of data, use the FILTER operation).

Page 51

Pig Latin Reference Manual

FOREACH ...GENERATE works with relations (outer bags) as well asinner bags:
« If Alisareation (outer bag), a FOREACH statement could look like this.

. I' A isaninner !ag, a FOREACH statement cou|! |oo! ||!et!|s

4.6.4. Examples

Suppose we have relations A, B, and C (see the GROUP operator for information about the
field namesin relation C).

Page 52
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

4.6.5. Example: Projection

In this example the asterisk (*) is used to project al tuples from relation A to relation X.
Relation A and X areidentical.

In this example two fields from relation A are projected to form relation X.

4.6.6. Example: Nested Projection

In this example if one of the fieldsin the input relation is a tuple, bag or map, we can perform
aprojection on that field (using a deference operator).

In this example multiple nested columns are retained.

Page 53
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

4.6.7. Example: Schema

In this example two fieldsin relation A are summed to form relation X. A schemais defined
for the projected field.

4.6.8. Example: Applying Functions
In this example the built-in function SUM() is used to sum a set of numbersin abag.

4.6.9. Example: Flattening
In this example the FLATTEN operator is used to eliminate nesting.

Another FLATTEN example.

Page 54
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

Another FLATTEN example. Note that for the group '4' in C, there are two tuplesin each
bag. Thus, when both bags are flattened, the cross product of these tuplesis returned; that is,
tuples (4, 2, 6), (4, 3, 6), (4,2,9), and (4, 3, 9).

4.6.10. Example: Nested Block

Suppose we have relations A and B. Note that relation B contains an inner bag.

In this example we perform two of the operations allowed in a nested block, FILTER and
DISTINCT. Note that the last statement in the nested block must be GENERATE.

Page 55
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

PA = FA. outli nk;

DA = DI STI NCT PA;

GENERATE GROUP, COUNT(DA);
}
DUMP X;

(www. ddd. com 1L)
(v, www. com 1L)

4.7. GROUP

Groups the datain a one or multiple relations. For readability COGROUP is usually used
with multiple relations and group is used with asingle relation, but they are the same
operator.

4.7.1. Syntax

alias= GROUP alias{ ALL | BY expression} [, diasALL | BY expression ...] [PARALLEL n];

47.2. Terms

aias The name of arelation.

ALL Keyword. Use ALL if you want all tuplestogoto a
single group; for example, when doing aggregates
across entire relations.

B = GROUPA ALL,;

BY Keyword. Use this clause to group the relation by
field, tuple or expression.
B = GROUP A BY f1;

expression A tuple expression. Thisis the group key or key field.
If the result of the tuple expressionisasingle field,
the key will be the value of the first field rather than a
tuple with one field.

PARALLEL n Increase the parallelism of ajob by specifying the

number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

Page 56

Pig Latin Reference Manual

n=(nr_nodes- 1) * 0.45* nr_GB

where nr_nodes is the number of nodes used and
nr_GB isthe amount of physical memory on each
node.

Note the following:

» Pardld only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

« If youdon't specify parallel, you still get the
same map parallelism but only one reduce task.

4.7.3. Usage

The GROUP operator groups together tuples that have the same group key (key field). The
key field will be atupleif the group key has more than one field, otherwise it will be the
same type as that of the group key. The result of a GROUP operation is arelation that
includes one tuple per group. This tuple contains two fields:

o Thefirst field is named "group” (do not confuse this with the GROUP operator) and is
the same type of the group key.

» The second field takes the name of the original relation and is type bag.

The names of both fields are generated by the system as shown in the example below.

Note that the GROUP (and thus COGROUP) and JOIN operators perform similar functions.
GROUP creates a nested set of output tuples while JOIN creates aflat set of output tuples.

4.7.4. Example

Suppose we have relation A.

A = | oad 'student' AS (nane:chararray, age:int,gpa:float);
DESCRI BE A;

A: {name: chararray, age: int,gpa: float}

DUMP A;

(John, 18, 4. OF)
(Mary, 19, 3. 8F)
(Bill, 20, 3. 9F)

Page 57

Pig Latin Reference Manual

(Joe,18,3.8%)
Now, suppose we group relation A on field "age" for form relation B. We can use the
DESCRIBE and ILLUSTRATE operators to examine the structure of relation B. Relation B
has two fields. The first field is named "group” and istype int, the same asfield "age" in
relation A. The second field isname"A" after relation A and istype bag.

Continuing on, as shown in these FOREACH statements, we can refer to the fieldsin relation
B by names "group" and "A" or by positional notation.

Suppose we have relation A.

Page 58
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

In this example the tuples are grouped using an expression, f2*{3.

Suppose we have two relations, A and B.

In this example tuples are co-grouped using field “owner” from relation A and field “friend2”
from relation B as the key fields. The DESCRIBE operator shows the schemafor relation X,
which has two fields, "group” and "A" (see the GROUP operator for information about the
field names).

Relation X looks like this. A tupleis created for each unique key field. The tuple includes the
key field and two bags. Thefirst bag is the tuples from the first relation with the matching
key field. The second bag is the tuples from the second relation with the matching key field.
If no tuples match the key field, the bag is empty.

ice)})

In this example tuples are co-grouped and the INNER keyword is used to ensure that only
bags with at least one tuple are returned.

Page 59

Pig Latin Reference Manual

ice)})

In this example tuples are co-grouped and the INNER keyword is used asymmetrically on
only one of the relations.

ice)})

4.8. JOIN

Performs inner, equijoin of two or more relations based on common field values.

4.8.1. Syntax

alias=JOIN aliasBY {expression|(‘expression [, expression ...]")'} (, aiasBY {expression|(‘expression [,
expression ...]")'} ...) [USING "replicated" | "skewed" | "merge"] [PARALLEL n];

48.2. Terms

dias The name of arelation.

BY Keyword

expression A field expression.
Example: X = JOIN A BY fieldA, B BY fieldB, C
BY fieldC;

USING Keyword

"replicated” Use to perform fragment replicate joins (see
Fragment Replicate Joins).

"skewed" Use to perform skewed joins (see Skewed Joins).

"merge” Use to perform merge joins (see Merge Joins).

Page 60

piglatin_users.html#Fragment+Replicate+Joins
piglatin_users.html#Skewed+Joins
piglatin_users.html#Merge+Joins

Pig Latin Reference Manual

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

n=(nr_nodes- 1) * 0.45* nr_GB

where nr_nodes is the number of nodes used and
nr_GB isthe amount of physical memory on each
node.

Note the following:

» Paradld only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

» |If youdon't specify paralel, you still get the
same map parallelism but only one reduce task.

4.8.3. Usage

Use the JOIN operator to perform an inner, equijoin join of two or more relations based on
common field values. The JOIN operator always performs an inner join. Note that the JOIN
and COGROUP operators perform similar functions. JOIN creates aflat set of output records
while COGROUP creates a nested set of output records.

4.8.4. Example

Suppose we have relations A and B.

Page 61

Pig Latin Reference Manual

In thisexamplerelations A and B are joined by their first fields.

4.9. JOIN, OUTER

Performs an outer join of two or more relations based on common field values.

4.9.1. Syntax
alias = JOIN left-alias BY left-alias-column [LEFT|RIGHT|FULL] [OUTER], right-alias BY
right-alias-column [PARALLEL n[;
492 Terms
dias The name of arelation. Appliesto alias, left-alias and
right-alias.
aias-column The name of the join column for the corresponding
relation. Appliesto left-alias-column and
right-alias-column.
BY Keyword
LEFT Left outer join.
RIGHT Right outer join.
FULL Full outer join.

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Page 62

Pig Latin Reference Manual

OUTER (Optional) Keyword

PARALLEL n Increase the parallelism of ajob by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

n=(nr_nodes- 1) * 0.45* nr_GB

where nr_nodes is the number of nodes used and
nr_GB isthe amount of physical memory on each
node.

Note the following:

» Pardld only affects the number of reduce tasks.
Map paralelism is determined by the input file,
one map for each HDFS block.

» If youdon't specify paralel, you still get the
same map parallelism but only one reduce task.

4.9.3. Usage

Use the OUTER JOIN operator to perform left, right, or full outer joins. The Pig Latin syntax
closely adheres to the SQL standard. The keyword OUTER is optional for outer joins (the
keywords LEFT, RIGHT and FULL will imply left outer, right outer and full outer joins
respectively when OUTER is omitted).

P ease note the following:

e Outer joinswill only work provided the relations which need to produce nulls (in the case
of non-matching keys) have schemas.

« Outer joins are currently only supported by the default join implementation; specialized
joins (specified by the USING clause) DO NOT support outer joins.

e Outer joinswill only work for two-way joins; to perform a multi-way outer join, you will
need to perform multiple two-way outer join statements.

4.9.4. Examples

This example shows a left outer join.

Page 63

piglatin_users.html#Specialized+Joins
piglatin_users.html#Specialized+Joins

Pig Latin Reference Manual

A = LOAD '"a.txt' AS (n:chararray, a:int);
B =LOAD 'b.txt' AS (n:chararray, mchararray);
C =JAN A by $0 LEFT OQUTER, B BY $0;

This example shows afull outer join.

A = LOAD '"a.txt' AS (n:chararray, a:int);

B = LOAD 'b.txt' AS (n:chararray, mchararray);
C = JAON A BY $0 FULL, B BY $0;

4.10. LIMIT

Limits the number of output tuples.

4.10.1. Syntax

dias=LIMIT dlias n;

4.10.2. Terms
dias The name of arelation.
n The number of tuples.
4.10.3. Usage

Use the LIMIT operator to limit the number of output tuples. If the specified number of
output tuplesis equal to or exceeds the number of tuplesin the relation, the output will
include al tuplesin the relation.

There is no guarantee which tuples will be returned, and the tuples that are returned can
change from one run to the next. A particular set of tuples can be requested using the
ORDER operator followed by LIMIT.

Note: The LIMIT operator allows Pig to avoid processing all tuplesin arelation. In most
cases aquery that uses LIMIT will run more efficiently than an identical query that does not
use LIMIT. It isalways agood ideato use limit if you can.

4.10.4. Examples
Suppose we have relation A.

A = LOAD 'data' AS (al:int,a2:int,a3:int);

Page 64

Pig Latin Reference Manual

In this example output is limited to 3 tuples. Note that there is no guarantee which three
tuples will be output.

In this example the ORDER operator is used to order the tuples and the LIMIT operator is
used to output the first three tuples.

4.11. LOAD
L oads data from the file system.

4.11.1. Syntax

LOAD 'data [USING function] [AS schema];

4.11.2. Terms

‘data The name of thefile or directory, in single quotes.

Page 65
Copyright © 2007 The Apache Software Foundation. All rights reserved.

USING

function

AS

schema

4.11.3. Usage

Pig Latin Reference Manual

If you specify adirectory name, all thefilesin the
directory are loaded.

Y ou can use Hadoop-supported globing to specify
files at thefile system or directory levels (see Hadoop
gobStatus for details on globing syntax).

Keyword.

If the USING clause is omitted, the default load
function PigStorage is used.

The load function.

e You can use abuilt-in function (see the
load/store functions). PigStorage is the default
load function and does not need to be specified
(simply omit the USING clause).

» You can write your own load function if your
dataisin aformat that cannot be processed by
the built-in functions (see the Pig UDF Manual).

Keyword.

A schemausing the AS keyword, enclosed in
parentheses (see Schemas).

The loader produces the data of the type specified by
the schema. If the data does not conform to the
schema, depending on the loader, either anull value
or an error is generated.

Note: For performance reasons the loader may not
immediately convert the data to the specified format;
however, you can still operate on the data assuming
the specified type.

Use the LOAD operator to load data from the file system.

4.11.4. Examples

Suppose we have a data file called myfile.txt. The fields are tab-delimited. The records are

newline-separated.

Page 66

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)
udf.html

Pig Latin Reference Manual

In this example the default load function, PigStorage, |oads data from myfile.txt to form
relation A. Thetwo LOAD statements are equivalent. Note that, because no schemais
specified, the fields are not named and all fields default to type bytearray.

In this example a schemais specified using the AS keyword. The two LOAD statements are
equivalent. You can use the DESCRIBE and ILLUSTRATE operators to view the schema.

For examples of how to specify more complex schemas for use with the LOAD operator, see
Schemas for Complex Data Types and Schemas for Multiple Types.

4.12. ORDER

Sorts arelation based on one or more fields.

4.12.1. Syntax

dias= ORDER diasBY { * [ASCIDESC] | field_alias[ASC|DESC] [, field_alias[ASC|DESC] ...] }

Page 67

[PARALLEL n];

4.12.2. Terms

dias

BY

ASC

DESC

field_alias

PARALLEL n

4.12.3. Usage

Pig Latin Reference Manual

The name of arelation.
Required keyword.

The designator for atuple.
Sort in ascending order.
Sort in descending order.
A field in the relation.

Increase the parallelism of ajob by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline;

n=(nr_nodes- 1) * 0.45* nr_GB

where nr_nodes is the number of nodes used and
nr_GB isthe amount of physical memory on each
node.

Note the following:

» Pardld only affects the number of reduce tasks.
Map paraleism is determined by theinput file,
one map for each HDFS block.

« If youdon't specify parallel, you still get the
same map parallelism but only one reduce task.

In Pig, relations are unordered (see Relations, Bags, Tuples, and Fields):
« |If you order relation A to produce relation X (X = ORDER A BY * DESC;) relations A

Page 68

Pig Latin Reference Manual

and X still contain the same thing.
If you retrieve the contents of relation X (DUMP X;) they are guaranteed to be in the
order you specified (descending).

« However, if you further processrelation X (Y = FILTER X BY $0 > 1;) thereisno
guarantee that the contents will be processed in the order you originally specified
(descending).

4.12.4. Examples
Suppose we have relation A.

In thisexamplerelation A is sorted by the third field, f3 in descending order. Note that the
order of the three tuples ending in 3 can vary.

4.13. SAMPLE

Partitions a relation into two or more relations.

4.13.1. Syntax

SAMPLE dlias size;

4.13.2. Terms

dias The name of arelation.

Page 69

Pig Latin Reference Manual

size Sample size, range 0to 1 (for example, enter 0.1 for
10%).
4.13.3. Usage

Use the SAMPLE operator to select arandom data sample with the stated sample size.
SAMPLE is aprobabalistic operator; there is no guarantee that the exact same number of
tuples will be returned for a particular sample size each time the operator is used.

4.13.4. Example
In this example relation X will contain 1% of the datain relation A.

A = LOAD 'data’ AS (fl:int,f2:int,f3:int);
X = SAMPLE A 0. 01;

4.14. SPLIT

Partitions a relation into two or more relations.

4.14.1. Syntax

SPLIT aliasINTO dlias | F expression, alias |F expression [, dlias |F expression ...];

4.14.2. Terms
dias The name of arelation.
INTO Required keyword.
IF Required keyword.
expression An expression.
4.14.3. Usage

Use the SPLIT operator to partition the contents of arelation into two or more relations based
on some expression. Depending on the conditions stated in the expression:

Page 70

Pig Latin Reference Manual

» A tuple may be assigned to more than one relation.

« A tuple may not be assigned to any relation.

4.14.4. Example
In thisexamplerelation A is split into three relations, X, Y, and Z.

4.15. STORE
Stores data to the file system.

4.15.1. Syntax

STORE aias INTO 'directory’ [USING function];

4.15.2. Terms
aias The name of arelation.
INTO Required keyword.
'directory" The name of the storage directory, in quotes. If the
?;yﬁctory already exists, the STORE operation will
Page 71

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

The output data files, named part-nnnnn, are written
to this directory.

USING Keyword. Use this clause to name the store function.
If the USING clause is omitted, the default store
function PigStorage is used.

function The store function.

» You can use abuilt-in function (see the
L oad/Store Functions). PigStorage is the default
load function and does not need to be specified
(simply omit the USING clause).

« You can write your own store function (see the
User-Defined Function Manual) if your dataisin
aformat that cannot be processed by the built-in
functions.

4.15.3. Usage

Use the STORE operator to run (execute) Pig Latin statements and to store data on the file

system.

4.15.4. Examples

In this example datais stored using PigStorage and the asterisk character (*) asthefield
delimiter.

Page 72

Pig Latin Reference Manual

In this example, the CONCAT function is used to format the data before it is stored.

4.16. STREAM

Sends data to an external script or program.

4.16.1. Syntax
alias= STREAM dlias[, dias...] THROUGH { command’ | cmd_dalias} [AS schemd] ;
4.16.2. Terms
dias The name of arelation.
THROUGH Keyword.
Page 73

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

“command’ A command, including the arguments, enclosed in
back tics (where acommand is anything that can be
executed).

cmd_alias The name of a command created using the DEFINE
operator.

AS Keyword.

schema A schemausing the AS keyword, enclosed in
parentheses (see Schemas).

4.16.3. Usage

Use the STREAM operator to send data through an external script or program. Multiple
stream operators can appear in the same Pig script. The stream operators can be adjacent to
each other or have other operations in between.

When used with a command, a stream statement could look like this:

A = LOAD 'data';
B = STREAM A THROUGH “streampl -n 57;

When used with acmd_alias, a stream statement could look like this, where cmd is the
defined alias.

A = LOAD 'data’;
DEFINE cnd “streampl —-n 57;
B = STREAM A THROUGH cnd;

4.16.4. About Data Guarantees
Data guarantees are determined based on the position of the streaming operator in the Pig
script.

» Unordered data— No guarantee for the order in which the data is delivered to the
streaming application.

» Grouped data— The datafor the same grouped key is guaranteed to be provided to the
streaming application contiguously

« Grouped and ordered data— The data for the same grouped key is guaranteed to be

Page 74

piglatin_reference.html#DEFINE

Pig Latin Reference Manual

provided to the streaming application contiguously. Additionally, the data within the
group is guaranteed to be sorted by the provided secondary key.

In addition to position, data grouping and ordering can be determined by the data itself.

However, you need to know the property of the datato be able to take advantage of its
structure.

4.16.5. Example: Data Guarantees

In this example the data is unordered.

In this example the datais grouped.

In this example the data is grouped and ordered.

4.16.6. Example: Schemas
In this example a schemais specified as part of the STREAM statement.

4.16.7. Additional Examples
See the UDF statement DEFINE for additional examples.

Page 75

Pig Latin Reference Manual

4.17. UNION

Computes the union of two or more relations.

4.17.1. Syntax

dias= UNION dlias, dias|, dias...];

4.17.2. Terms

dias The name of arelation.

4.17.3. Usage

Use the UNION operator to merge the contents of two or more relations. The UNION
operator:

» Does not preserve the order of tuples. Both the input and output relations are interpreted
as unordered bags of tuples.

» Does not ensure (as databases do) that all tuples adhere to the same schema or that they
have the same number of fields. In atypical scenario, however, this should be the case;
therefore, it isthe user's responsibility to either (1) ensure that the tuplesin the input
relations have the same schema or (2) be able to process varying tuplesin the output
relation.

» Does not eliminate duplicate tuples.

4.17.4. Example

In this example the union of relation A and B is computed.

Page 76

Pig Latin Reference Manual

5. Diagnostic Operators

5.1. DESCRIBE

Returns the schema of an dlias.

5.1.1. Syntax

DESCRIBE dlias;

51.2. Terms

dias The name of arelation.

5.1.3. Usage

Use the DESCRIBE operator to review the schema of a particular alias.

5.1.4. Example

In this example a schemais specified using the AS clause. If all data conformsto the schema,
Pig will use the assigned types.

Page 77
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

In this example no schemais specified. All fields default to type bytearray or long (see Data
Types).

5.2. EXPLAIN

Displays execution plans.

5.2.1. Syntax

EXPLAIN [—out path] [-brief] [-dot] [param param_name = param_value] [param_file file_name] dias;

5.2.2. Terms

—out path Will generate logical_plan.[txt||dot],
physical_plan.[text||dot], exec_plan.[text||dot] in the
specified directory (path).

Page 78

Pig Latin Reference Manual

—brief

—dot

—param param_name = param_value
—param _filefile_name
dias

5.2.3. Usage

Default (no path given): Stdout

Does not expand nested plans (presenting a smaller
graph for overview).

Dot mode: outputs aformat that can be passed to dot

for graphical display.

Text mode: multiple output (split) will be broken out
in sections.

Default; Text
See Parameter Substitution.
See Parameter Substitution.

The name of arelation.

Use the EXPLAIN operator to review the logical, physical, and map reduce execution plans
that are used to compute the specified relationship.

If no script is given:

« Thelogical plan shows a pipeline of operators to be executed to build the relation. Type
checking and backend-independent optimizations (such as applying filters early on) also

apply.

» Thephysical plan shows how the logical operators are translated to backend-specific
physical operators. Some backend optimizations also apply.

« The map reduce plan shows how the physical operators are grouped into map reduce

jobs.

If ascript without an aliasis specified, it will output the entire execution graph (logical,

physical, or map reduce).

If ascript with aadiasis specified, it will output the plan for the given alias.

5.2.4. Example

Page 79

Pig Latin Reference Manual

In this example the EXPLAIN operator produces all three plans. (Note that only a portion of
the output is shown in this example.)

53. ILLUSTRATE
Displays a step-by-step execution of a sequence of statements.

5.3.1. Syntax

ILLUSTRATE dlias,

5.3.2. Terms

Page 80
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

dias The name of arelation.

5.3.3. Usage

Use the ILLUSTRATE operator to review how datais transformed through a sequence of Pig
Latin statements:

» Thedataload statement must include a schema.

« ThePig Latin statement used to form the relation that is used with the ILLUSTRATE
command cannot include the map datatype, the LIMIT and SPLIT operators, or nested
FOREACH statements.

ILLUSTRATE accesses the ExampleGenerator algorithm which can select an appropriate
and concise set of example data automatically. It does a better job than random sampling
would do; for example, random sampling suffers from the drawback that selective operations
such asfilters or joins can eliminate all the sampled data, giving you empty results which
will not help with debugging.

With the ILLUSTRATE operator you can test your programs on small datasets and get faster
turnaround times. The ExampleGenerator algorithm uses Pig's Local mode (rather than
Hadoop mode) which means that illustrative example datais generated in near real-time.

Relation X can be used with the ILLUSTRATE operator.

X = FOREACH A GENERATE f1;

| LLUSTRATE X;

Relation Y cannot be used with the ILLUSTRATE operator.
Y=LMTA S3;

| LLUSTRATE V;

5.3.4. Example

In this example we count the number of sites a user has visited since 12/1/08. The
ILLUSTRATE statement will show how the results for num_user_visits are derived.

visits = LOAD 'visits' AS (user:chararray, ulr:chararray,
ti mest anp: chararray);

DUWP vi si ts;
(Any, cnn. com 20080218)
(Fred, harvar d. edu, 20081204)

Page 81

Pig Latin Reference Manual

Page 82
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

6. UDF Statements

6.1. DEFINE

Assigns an alias to afunction or command.

6.1.1. Syntax

DEFINE dias{function | ['command™ [input] [output] [ship] [cache]] };

6.1.2. Terms
dias
function

“command °

input

output

The name for the function or command.
The name of afunction.

A command, including the arguments, enclosed in
back tics (where acommand is anything that can be
executed).

INPUT ({stdin | 'path’} [USING seriaizer] [, {stdin |
'‘path’} [USING seridizer] ...])

Where:

« INPUT —Keyword.

» 'path'— A file path, enclosed in single quotes.

¢ USING - Keyword.

» seridlizer — A function that converts datafrom
tuples to stream format. PigStorage is the default
serializer. You can also write your own UDF.

OUTPUT ({stdout | stderr | 'path’} [USING
deserializer] [, { stdout | stderr | 'path’} [USING
deseridizer] ...])

Where:

Page 83

Pig Latin Reference Manual

« OUTPUT —Keyword.
» 'path’'— A file path, enclosed in single quotes.
e USING - Keyword.

o deseridizer — A function that converts data from
stream format to tuples. PigStorage is the default
deserializer. Y ou can also write your own UDF.

ship SHIP(path' [, 'path ...])

Where:
» SHIP-Keyword.
» 'path'— A file path, enclosed in single quotes.

cache CACHE('dfs_path#dfs file' [, 'dfs_path#dfs file' ...])

Where:
e CACHE -Keyword.

» 'dfs path#dfs file' — A file path/file name on the
distributed file system, enclosed in single quotes.
Example: '/mydir/mydata.txt#mydata.txt’

6.1.3. Usage
Use the DEFINE statement to assign a name (alias) to a function or to a command.

Use DEFINE to specify afunction when:

« Thefunction has alog package name that you don't want to include in a script, especially
if you call the function several timesin that script.

« The constructor for the function takes string parameters. If you need to use different
constructor parameters for different callsto the function you will need to create multiple
defines — one for each parameter set.

Use DEFINE to specify a command when the streaming command specification is complex
or requires additional parameters (input, output, and so on).
6.1.3.1. About Input and Output

Serialization is needed to convert data from tuplesto aformat that can be processed by the
streaming application. Deserialization is needed to convert the output from the streaming

Page 84

piglatin_reference.html#STREAM

Pig Latin Reference Manual

application back into tuples.

PigStorage, the default serialization/deserialization function, converts tuples to tab-delimited
lines. Pig's BinarySerializer and BinaryDeserializer functions treat the entire file as a byte
stream (no formatting or interpretation takes place). Y ou can also write your own
serialization/deserialization functions.

6.1.3.2. About Ship

Use the ship option to send streaming binary and supporting files, if any, from the client node
to the compute nodes. Pig does not automatically ship dependencies; it is your responsibility
to explicitly specify al the dependencies and to make sure that the software the processing
relies on (for instance, perl or python) isinstalled on the cluster. Supporting files are shipped
to the task's current working directory and only relative paths should be specified. Any
pre-installed binaries should be specified in the PATH.

Only files, not directories, can be specified with the ship option. One way to work around
thislimitation isto tar all the dependenciesinto atar file that accurately reflects the structure
needed on the compute nodes, then have awrapper for your script that un-tars the
dependencies prior to execution.

Note that the ship option has two components: the source specification, provided in the ship(
) clause, isthe view of your machine; the command specification is the view of the actual
cluster. The only guarantee is that the shipped files are available in the current working
directory of the launched job and that your current working directory is also on the PATH
environment variable.

Shipping files to relative paths or absolute paths is not supported since you might not have
permission to read/write/execute from arbitrary paths on the clusters.

Note the following:

1. Itissafeonly to ship files to be executed from the current working directory on the task
on the cluster.

OP = stream | P t hrough “script;
or
DEFI NE CVD “script”™ ship('/albl/script');
OP = stream | P t hrough CVD';

2. Shipping filesto relative paths or absolute paths is undefined and mostly will fail since
you may not have permissions to read/write/execute from arbitraty paths on the actual
clusters.

6.1.3.3. About Auto-Ship

Page 85

Pig Latin Reference Manual

If the ship option is not specified, Pig will attempt to auto-ship the binary in the following

way:

« If thefirst word on the streaming command is perl or python, Pig assumes that the binary
isthe first non-quoted string it encounters that does not start with dash.

» Otherwise, Pig will attempt to ship the first string from the command line aslong as it
does not come from /bin, /usr/bin, /usr/local/bin. Pig will determine this by scanning the
path if an absolute path is provided or by executing which. The paths can be made
configurable using the set stream.skippath <path> option. (Y ou can use multiple set
commands to specify more than one path to skip.)

If you don't supply a DEFINE for a given streaming command, then auto-shipping is turned
off.

Note the following:

1. If Pig determinesthat it needs to auto-ship an absolute path it will not ship it at all since
there is no way to ship filesto the necessary location (lack of permissions and so on).

oP
or
OP = stream | P through “perl /albl/c/script.pl”;

2. Pig will not auto-ship filesin the following system directories (this is determined by
executing 'which <file>' command).

stream | P through “/al/b/c/script;

/bin /usr/bin /usr/local/bin /sbin /usr/sbin /usr/local/sbin
3. To auto-ship, thefilein question should be present in the PATH. So if thefileisin the
current working directory then the current working directory should be in the PATH.

6.1.3.4. About Cache

The ship option works with binaries, jars, and small datasets. However, loading larger
datasets at run time for every execution can severely impact performance. Instead, use the
cache option to access large files already moved to and available on the compute nodes. Only
files, not directories, can be specified with the cache option.

6.1.4. Example: Input/Output

In this example PigStorage is the default serialization/deserialization function. The tuples
from relation A are converted to tab-delimited lines that are passed to the script.

X = STREAM A THROUGH " stream pl ~;
In this example PigStorage is used as the serialization/deserialization function, but acomma

Page 86

Pig Latin Reference Manual

is used as the delimiter.

In this example user-defined serialization/deserialization functions are used with the script.

6.1.5. Example: Ship/Cache

In this example ship is used to send the script to the cluster compute nodes.

In this example cache is used to specify afile located on the cluster compute nodes.

6.1.6. Example: Logging

In this example the streaming stderr is stored in the _logs/<dir> directory of the job's output
directory. Because the job can have multiple streaming applications associated with it, you
need to ensure that different directory names are used to avoid conflicts. Pig stores up to 100
tasks per streaming job.

In this example afunction is defined for use with the FOREACH ... GENERATE operator.

Page 87

Pig Latin Reference Manual

In this example a command is defined for use with the STREAM operator.

6.2. REGISTER
Registers a JAR file so that the UDFs in the file can be used.

6.2.1. Syntax
REGISTER dlias;
6.2.2. Terms
dias The path of aJava JAR file. Do not place the namein
quotes.
6.2.3. Usage

Use the REGISTER statement to specify the path of a Java JAR file containing UDFs.

For more information about UDFs, see the User Defined Function Guide. Note that Pig
currently only supports functions written in Java.

6.2.4. Example
In this example REGISTER states that myfunc.jar islocated in the /src directory.

7. Eval Functions

7.1. AVG

Page 88

Pig Latin Reference Manual

Computes the average of the numeric values in a single-column bag.

7.1.1. Syntax
AV G(expression)
7.1.2. Terms
expression Any expression whose result is abag. The elements
of the bag should be data typeint, long, float, or
double.
7.1.3. Usage

Use the AV G function to compute the average of the numeric values in a single-column bag.
AVG requires apreceding GROUP ALL statement for global averages and a GROUP BY
statement for group averages.

The AV G function now ignores NULL values.

7.1.4. Example

In this example the average GPA for each student is computed (see the GROUP operators for
information about the field namesin relation B).

Page 89

Pig Latin Reference Manual

7.1.5. Types Tables

int long float double chararray bytearray
AVG long long double double error cast as
double
7.2. CONCAT

Concatenates two fields of type chararray or two fields of type bytearray.

7.2.1. Syntax

CONCAT (expression, expression)

7.2.2. Terms
expression An expression with data types chararray or bytearray.
7.2.3. Usage

Use the CONCAT function to concatenate two elements. The data type of the two elements
must be the same, either chararray or bytearray.

7.2.4. Example

In this example fields f2 and 3 are concatenated.

Page 90

Pig Latin Reference Manual

7.2.5. Types Tables

chararray bytearray
chararray chararray cast as chararray
bytearray bytearray

7.3. COUNT

Computes the number of elementsin abag.

7.3.1. Syntax

COUNT (expression)

7.3.2. Terms

expression An expression with data type bag.

7.3.3. Usage

Use the COUNT function to compute the number of elementsin abag. COUNT requires a
preceding GROUP ALL statement for global counts and a GROUP BY statement for group
counts.

The COUNT function now ignores NULL values. If you want to include NULL valuesin the
count computation, see COUNT_STAR.

Note: Y ou cannot use the tuple designator (*) with COUNT; that is, COUNT(*) will not
work.

7.3.4. Example

In this example the tuples in the bag are counted (see the GROUP operator for information
about the field namesin relation B).

A = LOAD 'data'" AS (fl:int,f2:int,f3:int);

DUMP A
(1,2,3)

Page 91

piglatin_reference.html#COUNT_STAR

Pig Latin Reference Manual

7.3.5. Types Tables

int

long

float

double

chararray

bytearray

COUNT

long

long

long

long

long

long

7.4. COUNT_STAR

Computes the number of elementsin abag.

7.4.1. Syntax

COUNT_STAR(expression)

74.2. Terms
expression An expression with data type bag.
7.4.3. Usage

Use the COUNT_STAR function to compute the number of elementsin a bag.
COUNT _STAR requires a preceding GROUP AL L statement for global countsand a
GROUPBY statement for group counts.

Page 92
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual

COUNT_STAR includes NULL valuesin the count computation (unlike COUNT, which
ignores NULL values).

7.4.4. Example
In this example COUNT_STAR is used the count the tuplesin a bag.

7.5.DIFF

Comparestwo fieldsin atuple.

7.5.1. Syntax

DIFF (expression, expression)

75.2. Terms
expression An expression with any datatype.
7.5.3. Usage

The DIFF function comparestwo fieldsin atuple. If the field values match, null is returned.
If the field values do not match, the non-matching elements are returned.

7.5.4. Example

In this example the two fields are bags. DIFF compares the tuplesin each bag.

Page 93

Pig Latin Reference Manual

7.6. IsEmpty
Checksif abag or map is empty.

7.6.1. Syntax

| SEmpty(expression)

7.6.2. Terms

expression An expression with any data type.

7.6.3. Usage

The IsEmpty function checks if abag or map is empty (has no data). The function can be
used to filter data.

7.6.4. Example

In this example al students with an SSN but no name are located.

7.7.MAX

Computes the maximum of the numeric values or chararrays in a single-column bag. MAX
requires a preceding GROUP ALL statement for global maximums and a GROUP BY
statement for group maximums.

7.7.1. Syntax

MAX (expression)

Page 94

Pig Latin Reference Manual

7.7.2. Terms
expression An expression with data typesint, long, float, double,
or chararray.
7.7.3. Usage

Use the MAX function to compute the maximum of the numeric values or chararraysin a

single-column bag.

7.7.4. Example

In this example the maximum GPA for al termsis computed for each student (see the
GROUP operator for information about the field namesin relation B).

7.7.5. Types Tables

int long float double chararray bytearray
MAX int long float double chararray cast as
double

Page 95

Pig Latin Reference Manual

7.8.MIN

Computes the minimum of the numeric values or chararraysin a single-column bag. MIN
requires a preceding GROUP... ALL statement for global minimums and a GROUP ... BY
statement for group minimums.

7.8.1. Syntax

MIN(expression)

7.8.2. Terms
expression An expression with datatypesint, long, float, double,
or chararray.
7.8.3. Usage

Use the MIN function to compute the minimum of a set of numeric values or chararraysin a
single-column bag.

7.8.4. Example

In this example the minimum GPA for all termsis computed for each student (see the
GROUP operator for information about the field namesin relation B).

Page 96

Pig Latin Reference Manual

7.8.5. Types Tables

int long float double chararray bytearray
MIN int long float double chararray cast as
double

7.9.SIZE
Computes the number of elements based on the data type.

7.9.1. Syntax

SIZE(expression)

7.9.2. Terms

expression An expression with any data type.

7.9.3. Usage

Use the SIZE function to compute the number of elements based on the data type (see the
Types Tables below).

7.9.4. Example

In this example the number of charactersin thefirst field is computed.

Page 97

Pig Latin Reference Manual

7.9.5. Types Tables

int returns 1

long returns 1

float returns 1

double returns 1

chararray returns number of charactersin the array

bytearray returns number of bytesin the array

tuple returns number of fieldsin the tuple

bag returns number of tuplesin bag

map returns number of key/value pairsin map
7.10. SUM

Computes the sum of the numeric values in a single-column bag. SUM requires a preceding
GROUP ALL statement for global sums and a GROUP BY statement for group sums.

7.10.1. Syntax
SUM (expression)
7.10.2. Terms
expression An expression with data typesint, long, float, double,
or bytearray cast as double.
7.10.3. Usage

Use the SUM function to compute the sum of a set of numeric values in a single-column bag.

Page 98

Pig Latin Reference Manual

7.10.4. Example

In this example the number of petsis computed. (see the GROUP operator for information
about the field namesin relation B).

7.10.5. Types Tables

int long float double chararray bytearray
SUM long long double double error cast as
double

7.11. TOKENIZE
Splits astring and outputs a bag of words.

7.11.1. Syntax

TOKENIZE(expression)

7.11.2. Terms

expression An expression with data type chararray.

Page 99

Pig Latin Reference Manual

7.11.3. Usage

Use the TOKENIZE function to split a string of words (all wordsin asingle tuple) into a bag
of words (each word in asingle tuple). The following characters are considered to be word
separators: space, double quote("), coma(,) parenthesis(()), star(*).

7.11.4. Example

In this example the strings in each row are split.

8. Load/Stor e Functions

L oad/Store functions determine how data goes into Pig and comes out of Pig. In addition to
the Pig built-in load/store functions, you can also write your functions (see the User-Defined
Function Manual).

8.1. BinarySerializer

Converts afile to a byte stream.

8.1.1. Syntax

BinarySerializer()

8.1.2. Terms

none no parameters

8.1.3. Usage

Page 100

Pig Latin Reference Manual

Use the BinarySerializer with the DEFINE operator to convert afile to abyte stream. No
Formatting or interpretation takes place.

8.1.4. Example

In this example the BinarySerializer and BinaryDeserializer are use to convert datato and
from streaming format.

DEFINE Y “stream pl~ | NPUT(stdin USING Bi narySerializer()) OUTPUT (stdout
USI NG Bi naryDeseri alizer());

X = STREAM A THROUGH Y;

8.2. BinaryDeserializer

Converts abyte stream into afile.

8.2.1. Syntax

BinarySerializer()

8.2.2. Terms

none no parameters

8.2.3. Usage

Use the BinaryDeserializer with the DEFINE operator to convert a byte stream into afile. No
Formatting or interpretation takes place.

8.2.4. Example

In this example the BinarySerializer and BinaryDeserializer are use to convert datato and
from streaming format.

DEFINE Y “stream pl~ | NPUT(stdin USING Bi narySerializer()) OUTPUT (stdout
USI NG Bi naryDeseri al i zer());

X = STREAM A THROUGH Y;

8.3. BinStorage
Loads and stores data in machine-readable format.

Page 101

Pig Latin Reference Manual

8.3.1. Syntax

BinStorage()

8.3.2. Terms

none no parameters

8.3.3. Usage
BinStorage works with data that is represented on disk in machine-readable format.

BinStorage is used internally by Pig to store the temporary datathat is created between
multiple map/reduce jobs.

8.3.4. Example
In this example BinStorage is used with the LOAD and STORE functions.

A = LOAD 'data' USI NG Bi nSt or age() ;
STORE X into 'output' USING Bi nSt orage();

8.4. PigStorage
Loads and stores datain UTF-8 format.
8.4.1. Syntax

PigStorage(field_delimiter)

8.4.2. Terms
field_delimiter Parameter.
The default field delimiter istab (\t).
Y ou can specify other characters as field delimiters;
however, be sure to encase the charactersin single
quotes.
8.4.3. Usage

Page 102

Pig Latin Reference Manual

PigStorage works with structured text files in human-readable UTF-8 format. PigStorage al'so
works with simple and complex datatypes and is the default function for the LOAD and
STORE operators.

« For load statements, PigStorage expects data to be formatted as delimiter-separated fields
and newline-separated records ("\n’).

» For store statements, PigStorage outputs data as delimiter-separated fields and
newline-separated records ('\n').

For both load and store statements the default field delimiter is the tab character ('\t'). You
can use other characters asfield delimiters, but separators such asA or Ctrl-A should be
represented in Unicode (\u0001) using UTF-16 encoding (see Wikipedia ASCII, Unicode,
and UTF-16).

8.4.4. Example

In this example PigStorage expects input.txt to contain tab-separated fields and
newline-separated records. The statements are equival ent.

A = LOAD 'student' USING PigStorage('\t') AS (nane: chararray, age:int,
gpa: float);

A = LOAD 'student' AS (nane: chararray, age:int, gpa: float);

In this example PigStorage stores the contents of X into files with fields that are delimited
with an asterisk (*). The STORE function specifies that the fileswill be located in a
directory named output and that the files will be named part-nnnnn (for example,
part-00000).

STORE X I NTO 'output' USING PigStorage('*');

8.5. PigDump
Stores datain UTF-8 format.

8.5.1. Syntax

PigDump()

8.5.2. Terms

none no parameters

Page 103

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-16

Pig Latin Reference Manual

8.5.3. Usage
PigDump stores data as tuples in human-readable UTF-8 format.

8.5.4. Example

In this example PigDump is used with the STORE function.
STORE X | NTO ' out put' USI NG Pi gDunp();

8.6. TextL oader

Loads unstructured datain UTF-8 format.

8.6.1. Syntax

TextLoader()

8.6.2. Terms

none no parameters

8.6.3. Usage

TextLoader works with unstructured datain UTF8 format. Each resulting tuple contains a
single field with one line of input text. TextLoader cannot be used to store data.

8.6.4. Example

In this example TextLoader is used with the LOAD function.
A = LOAD 'data' USI NG Text Loader () ;

9. File Commands

9.1. cat

Prints the content of one or more files to the screen.

9.1.1. Syntax

Page 104

Pig Latin Reference Manual

cat path [path ...]

9.1.2. Terms

path The location of afile or directory.

9.1.3. Usage

The cat command is similar to the Unix cat command. If multiple files are specified, content
from al filesis concatenated together. If multiple directories are specified, content from all
filesin all directoriesis concatenated together.

9.1.4. Example

In this example the students file in the data directory is printed.

grunt > cat data/students;
joe smth

Jj ohn adans

anne white

9.2.cd

Changes the current directory to another directory.

9.2.1. Syntax

cd [dir]

9.2.2. Terms

dir The name of the directory you want to navigate to.

9.2.3. Usage

The cd command is similar to the Unix cd command and can be used to navigate the file
system. If adirectory is specified, this directory is made your current working directory and
all other operations happen relatively to this directory. If no directory is specified, your home
directory (/user/NAME) becomes the current working directory.

Page 105

Pig Latin Reference Manual

9.2.4. Example

In this example we move to the /data directory.

9.3. copyFromL ocal
Copies afileor directory from the local file system to HDFS.

9.3.1. Syntax

copyFromLocal src_path dst_path

9.3.2. Terms
src_path The path on the local file system for afile or
directory
dst_path The path on HDFS.
9.3.3. Usage

The copyFromLocal command enables you to copy afile or adirector from the local file
system to the Hadoop Distributed File System (HDFS). If adirectory is specified, itis
recursively copied over. Dot "." can be used to specify that the new file/directory should be
created in the current working directory and retain the name of the source file/directory.

9.3.4. Example

In this example afile (students) and a directory (/data/tests) are copied from the local file
system to HDFS.

Page 106

Pig Latin Reference Manual

/ dat a/ new_t est/ nore_dat a
9.4. copyToL ocal

Copies afileor directory from HDFS to alocal file system.

9.4.1. Syntax

copyTolLoca src_path dst_path

9.4.2. Terms
src_path The path on HDFS.
dst_path The path on the local file system for afile or
directory.
9.4.3. Usage

The copyTolLocal command enables you to copy afile or adirector from Hadoop Distributed
File System (HDFS) to alocal file system. If adirectory is specified, it is recursively copied
over. Dot "." can be used to specify that the new file/directory should be created in the
current working directory (directory from which the script was executed or grunt shell
started) and retain the name of the source file/directory.

9.4.4. Example
In this example two files are copied from HDFS to the local file system.

grunt > copyToLocal students /data
grunt > copyToLocal data /data/nydata

95.¢cp
Copies afile or directory within HDFS.

9.5.1. Syntax

cp src_path dst_path

95.2. Terms

Page 107

Pig Latin Reference Manual

src_path The path on HDFS.
dst_path The path on HDFS.
9.5.3. Usage

The cp command is similar to the Unix cp command and enables you to copy files or

directories within DFS. If adirectory is specified, it isrecursively copied over. Dot "." can be
used to specify that the new file/directory should be created in the current working directory
and retain the name of the source file/directory.

9.5.4. Example

In this example afile (students) is copied to another file (students_save).
grunt> cp students students_save

9.6. exec

Run aPig script.

9.6.1. Syntax

exec [param param_name = param_value] [-param_file file_name] script

9.6.2. Terms
—param param_name = param_value See Parameter Substitution.
—param _filefile_name See Parameter Substitution.
script The name of aPig script.
9.6.3. Usage

Use the exec command to run a Pig script with no interaction between the script and the
Grunt shell (batch mode). Aliases defined in the script are not available to the shell; however,
the files produced as the output of the script and stored on the system are visible after the
script isrun. Aliases defined viathe shell are not available to the script.

Page 108

Pig Latin Reference Manual

With the exec command, store statements will not trigger execution; rather, the entire script
is parsed before execution starts. Unlike the run command, exec does not change the
command history or remembers the handles used inside the script. Exec without any
parameters can be used in scripts to force execution up to the point in the script where the
EXeC OCCUrs.

For comparison, see the run command. Both the exec and run commands are useful for
debugging because you can modify a Pig script in an editor and then rerun the script in the
Grunt shell without leaving the shell. Also, both commands promote Pig script modularity as
they allow you to reuse existing components.

9.6.4. Examples

In this example the script is displayed and run.

In this example parameter substitution is used with the exec command.

In this example multiple parameters are specified.

9.7.1s

Lists the contents of a directory.

9.7.1. Syntax

Is[path]

Page 109

Pig Latin Reference Manual

9.7.2. Terms

path The name of the path/directory.

9.7.3. Usage

The ls command is similar to the Unix |s command and enables you to list the contents of a
directory. If DIR is specified, the command lists the content of the specified directory.
Otherwise, the content of the current working directory is listed.

9.7.4. Example

In this example the contents of the data directory are listed.

grunt> |Is /data

/[data/ DDLs <dir>
/ dat a/ count <dir>
/data/data <dir>
/ dat a/ schema <dir>

9.8. mkdir

Creates a new directory.

9.8.1. Syntax

mkdir path

9.8.2. Terms

path The name of the path/directory.

9.8.3. Usage

The mkdir command is similar to the Unix mkdir command and enables you to create a new
directory. If you specify adirectory or path that does not exist, it will be created.

9.8.4. Example

In this example a directory and subdirectory are created.

Page 110

Pig Latin Reference Manual

grunt> nkdir data/20070905
9.9. mv
Moves afile or directory within the Hadoop Distributed File System (HDFS).

9.9.1. Syntax

mv src_path dst_path

9.9.2. Terms

src_path The path on HDFS.

dst_path The path on HDFS.

9.9.3. Usage

The mv command is identical to the Unix mv command (which copiesfiles or directories
within DFS) except that it deletes the source file or directory as soon asiit is copied.

If adirectory is specified, it isrecursively moved. Dot "." can be used to specify that the new
file/directory should be created in the current working directory and retain the name of the
source file/directory.

9.9.4. Example

In this example the output directory is copied to output2 and then del eted.

9.10. pwd

Prints the name of the current working directory.

Page 111

Pig Latin Reference Manual

9.10.1. Syntax

pwd

9.10.2. Terms

none no parameters

9.10.3. Usage

The pwd command is identical to Unix pwd command and it prints the name of the current
working directory.

9.10.4. Example

In this example the name of the current working directory is/data.

grunt > pwd
/ dat a

9.11.rm

Removes one or more files or directories.

9.11.1. Syntax

rm path [path...]

90.11.2. Terms

path The name of the path/directory/file.

9.11.3. Usage

The rm command is similar to the Unix rm command and enables you to remove one or more
filesor directories.

Note: This command recursively removes a directory even if it is not empty and it does not
confirm remove and the removed data is not recoverable.

Page 112

Pig Latin Reference Manual

9.11.4. Example

In this example files are removed.

grunt > rm/dat a/ st udent s
grunt> rm students students_sav

9.12. rmf

Forcibly removes one or more files or directories.

9.12.1. Syntax

rmf path [path ...]

0.12.2. Terms

path The name of the path/directory/file.

9.12.3. Usage

The rmf command is similar to the Unix rm -f command and enables you to forcibly remove
one or more files or directories.

Note: This command recursively removes a directory even if it is not empty and it does not
confirm remove and the removed data is not recoverable.

9.12.4. Example
In this example files are forcibly removed.

grunt> rnf /datal/students
grunt> rnf students students_sav

9.13.run
Run a Pig script.

9.13.1. Syntax

run [—param param_name = param_value] [—param_file file_name] script

Page 113

Pig Latin Reference Manual

9.13.2. Terms
—param param_name = param_vaue See Parameter Substitution.
—param _filefile_name See Parameter Substitution.
script The name of aPig script.
9.13.3. Usage

Use the run command to run a Pig script that can interact with the Grunt shell (interactive
mode). The script has access to aliases defined externally via the Grunt shell. The Grunt shell
has access to aliases defined within the script. All commands from the script are visible in the
command history.

With the run command, every store triggers execution. The statements from the script are put
into the command history and all the aliases defined in the script can be referenced in
subsequent statements after the run command has compl eted. 1ssuing a run command on the
grunt command line has basically the same effect as typing the statements manually.

For comparison, see the exec command. Both the run and exec commands are useful for
debugging because you can modify a Pig script in an editor and then rerun the script in the
Grunt shell without leaving the shell. Also, both commands promote Pig script modularity as
they allow you to reuse existing components.

9.13.4. Example

In this example the script interacts with the results of commands issued via the Grunt shell.

ORDER a BY narme;

unt> cat myscript.pig
= LIMT b 10;

gr
b
c
grunt> a = LOAD 'student' AS (nanme, age, gpa);
grunt> run myscript.pig

grunt>d = LIMT c 3;

grunt > DUWP d;

(alice, 20, 2.47)

(alice, 27, 1.95)
(alice, 36, 2.27)

Page 114

Pig Latin Reference Manual

In this example parameter substitution is used with the run command.

10. Utility Commands

10.1. help

Printsalist of Pig commands.

10.1.1. Syntax

help

10.1.2. Terms

none no parameters

10.1.3. Usage

The help command printsalist of Pig commands.

10.1.4. Example
In this example the students file in the data directory is printed out.

10.2. kill
Killsajob.

Page 115

Pig Latin Reference Manual

10.2.1. Syntax

kill jobid

10.2.2. Terms

jobid Thejobid.

10.2.3. Usage
The kill command enables you to kill ajob based on ajobid.

10.2.4. Example

In this example the job with id job_0001 iskilled.
grunt> kill job 0001

10.3. quit

Quits from the Pig grunt shell.

10.3.1. Syntax

exit

10.3.2. Terms

none no parameters

10.3.3. Usage
The quit command enables you to quit or exit the Pig grunt shell.

10.3.4. Example

In this example the quit command exits the Pig grunt shall.

grunt> quit

Page 116

Pig Latin Reference Manual

10.4. set
Assigns values to keys used in Pig.

10.4.1. Syntax
set key 'value
10.4.2. Terms
key Key (seetable). Case sensitive.
value Value for key (seetable). Case sensitive.

10.4.3. Usage

The set command enables you to assign values to keys, as shown here:

Key Value Description
debug on/off enabl es/disables debug-level
logging
job.name single quoted string that contains | sets user-specified name for the
the name job

10.4.4. Example

In this example debug is set on and the job is assigned a name.

grunt > set debug on
grunt> set job.nane 'ny job'

Page 117

	1 Overview
	1.1 Conventions
	1.2 Keywords

	2 Data Types and More
	2.1 Relations, Bags, Tuples, Fields
	2.1.1 Referencing Relations
	2.1.2 Referencing Fields
	2.1.3 Referencing Fields that are Complex Data Types

	2.2 Data Types
	2.2.1 Simple and Complex
	2.2.2 Tuple
	2.2.2.1 Syntax
	2.2.2.2 Terms
	2.2.2.3 Usage
	2.2.2.4 Example

	2.2.3 Bag
	2.2.3.1 Syntax: Inner bag
	2.2.3.2 Terms
	2.2.3.3 Usage
	2.2.3.4 Example: Outer Bag
	2.2.3.5 Example: Inner Bag

	2.2.4 Map
	2.2.4.1 Syntax (<> denotes optional)
	2.2.4.2 Terms
	2.2.4.3 Usage
	2.2.4.4 Example

	2.3 Nulls
	2.3.1 Nulls and Operators
	2.3.2 Nulls and Constants
	2.3.3 Operations That Produce Nulls
	2.3.3.1 Example: Accessing a field that does not exist in a tuple

	2.3.4 Nulls and Load Functions

	2.4 Constants
	2.5 Expressions
	2.5.1 Field expressions
	2.5.2 Star expression
	2.5.3 Boolean expressions
	2.5.4 Tuple expressions
	2.5.5 General expressions

	2.6 Schemas
	2.6.1 Schemas with LOAD and STREAM Statements
	2.6.2 Schemas with FOREACH Statements
	2.6.3 Schemas for Simple Data Types
	2.6.3.1 Syntax
	2.6.3.2 Terms
	2.6.3.3 Examples

	2.6.4 Schemas for Complex Data Types
	2.6.5 Tuple Schema
	2.6.5.1 Syntax
	2.6.5.2 Terms
	2.6.5.3 Examples

	2.6.6 Bag Schema
	2.6.6.1 Syntax
	2.6.6.2 Terms
	2.6.6.3 Examples

	2.6.7 Map Schema
	2.6.7.1 Syntax (where <> means optional)
	2.6.7.2 Terms
	2.6.7.3 Example

	2.6.8 Schemas for Multiple Types
	2.6.8.1 Example

	2.7 Parameter Substitution
	2.7.1 Description
	2.7.1.1 Syntax: Specifying parameters using the Pig command line
	2.7.1.2 Syntax: Specifying parameters using preprocessor statements in a Pig script
	2.7.1.3 Terms
	2.7.1.4 Usage
	2.7.1.4.1 Specifying Parameters
	2.7.1.4.2 Precedence
	2.7.1.4.3 Processing Order and Precedence

	2.7.1.5 Example: Specifying parameters in the command line
	2.7.1.6 Example: Specifying parameters using a parameter file
	2.7.1.7 Example: Specifying parameters using the declare statement
	2.7.1.8 Example: Specifying parameters using the default statement
	2.7.1.9 Examples: Specifying parameter values as a sequence of characters
	2.7.1.10 Example: Specifying parameter values as a command

	3 Arithmetic Operators and More
	3.1 Arithmetic Operators
	3.1.1 Description
	3.1.1.1 Examples
	3.1.1.2 Types Table: addition (+) and subtraction (-) operators
	3.1.1.3 Types Table: multiplication (*) and division (/) operators
	3.1.1.4 Types Table: modulo (%) operator

	3.2 Comparison Operators
	3.2.1 Description
	3.2.1.1 Example: numeric
	3.2.1.2 Example: string
	3.2.1.3 Example: matches
	3.2.1.4 Types Table: equal (==) and not equal (!=) operators
	3.2.1.5
	3.2.1.6 Types Table: matches operator

	3.3 Null Operators
	3.3.1 Description
	3.3.1.1 Example

	3.3.2 Types Table

	3.4 Boolean Operators
	3.4.1 Description
	3.4.1.1 Example

	3.5 Dereference Operators
	3.5.1 Description
	3.5.1.1 Example: Tuple
	3.5.1.2 Example: Bag
	3.5.1.3 Example: Tuple and Bag
	3.5.1.4 Example: Map

	3.6 Sign Operators
	3.6.1 Description
	3.6.1.1 Example
	3.6.1.2 Types Table: negation (-) operator

	3.7 Flatten Operator
	3.8 Cast Operators
	3.8.1 Description
	3.8.1.1 Syntax
	3.8.1.2 Terms
	3.8.1.3 Usage
	3.8.1.4 Examples

	4 Relational Operators
	4.1 COGROUP
	4.2 CROSS
	4.2.1 Syntax
	4.2.2 Terms
	4.2.3 Usage
	4.2.4 Example

	4.3 DISTINCT
	4.3.1 Syntax
	4.3.2 Terms
	4.3.3 Usage
	4.3.4 Example

	4.4 DUMP
	4.4.1 Syntax
	4.4.2 Terms
	4.4.3 Usage
	4.4.4 Example

	4.5 FILTER
	4.5.1 Syntax
	4.5.2 Terms
	4.5.3 Usage
	4.5.4 Examples

	4.6 FOREACH
	4.6.1 Syntax
	4.6.2 Terms
	4.6.3 Usage
	4.6.4 Examples
	4.6.5 Example: Projection
	4.6.6 Example: Nested Projection
	4.6.7 Example: Schema
	4.6.8 Example: Applying Functions
	4.6.9 Example: Flattening
	4.6.10 Example: Nested Block

	4.7 GROUP
	4.7.1 Syntax
	4.7.2 Terms
	4.7.3 Usage
	4.7.4 Example

	4.8 JOIN
	4.8.1 Syntax
	4.8.2 Terms
	4.8.3 Usage
	4.8.4 Example

	4.9 JOIN, OUTER
	4.9.1 Syntax
	4.9.2 Terms
	4.9.3 Usage
	4.9.4 Examples

	4.10 LIMIT
	4.10.1 Syntax
	4.10.2 Terms
	4.10.3 Usage
	4.10.4 Examples

	4.11 LOAD
	4.11.1 Syntax
	4.11.2 Terms
	4.11.3 Usage
	4.11.4 Examples

	4.12 ORDER
	4.12.1 Syntax
	4.12.2 Terms
	4.12.3 Usage
	4.12.4 Examples

	4.13 SAMPLE
	4.13.1 Syntax
	4.13.2 Terms
	4.13.3 Usage
	4.13.4 Example

	4.14 SPLIT
	4.14.1 Syntax
	4.14.2 Terms
	4.14.3 Usage
	4.14.4 Example

	4.15 STORE
	4.15.1 Syntax
	4.15.2 Terms
	4.15.3 Usage
	4.15.4 Examples

	4.16 STREAM
	4.16.1 Syntax
	4.16.2 Terms
	4.16.3 Usage
	4.16.4 About Data Guarantees
	4.16.5 Example: Data Guarantees
	4.16.6 Example: Schemas
	4.16.7 Additional Examples

	4.17 UNION
	4.17.1 Syntax
	4.17.2 Terms
	4.17.3 Usage
	4.17.4 Example

	5 Diagnostic Operators
	5.1 DESCRIBE
	5.1.1 Syntax
	5.1.2 Terms
	5.1.3 Usage
	5.1.4 Example

	5.2 EXPLAIN
	5.2.1 Syntax
	5.2.2 Terms
	5.2.3 Usage
	5.2.4 Example

	5.3 ILLUSTRATE
	5.3.1 Syntax
	5.3.2 Terms
	5.3.3 Usage
	5.3.4 Example

	6 UDF Statements
	6.1 DEFINE
	6.1.1 Syntax
	6.1.2 Terms
	6.1.3 Usage
	6.1.3.1 About Input and Output
	6.1.3.2 About Ship
	6.1.3.3 About Auto-Ship
	6.1.3.4 About Cache

	6.1.4 Example: Input/Output
	6.1.5 Example: Ship/Cache
	6.1.6 Example: Logging

	6.2 REGISTER
	6.2.1 Syntax
	6.2.2 Terms
	6.2.3 Usage
	6.2.4 Example

	7 Eval Functions
	7.1 AVG
	7.1.1 Syntax
	7.1.2 Terms
	7.1.3 Usage
	7.1.4 Example
	7.1.5 Types Tables

	7.2 CONCAT
	7.2.1 Syntax
	7.2.2 Terms
	7.2.3 Usage
	7.2.4 Example
	7.2.5 Types Tables

	7.3 COUNT
	7.3.1 Syntax
	7.3.2 Terms
	7.3.3 Usage
	7.3.4 Example
	7.3.5 Types Tables

	7.4 COUNT_STAR
	7.4.1 Syntax
	7.4.2 Terms
	7.4.3 Usage
	7.4.4 Example

	7.5 DIFF
	7.5.1 Syntax
	7.5.2 Terms
	7.5.3 Usage
	7.5.4 Example

	7.6 IsEmpty
	7.6.1 Syntax
	7.6.2 Terms
	7.6.3 Usage
	7.6.4 Example

	7.7 MAX
	7.7.1 Syntax
	7.7.2 Terms
	7.7.3 Usage
	7.7.4 Example
	7.7.5 Types Tables

	7.8 MIN
	7.8.1 Syntax
	7.8.2 Terms
	7.8.3 Usage
	7.8.4 Example
	7.8.5 Types Tables

	7.9 SIZE
	7.9.1 Syntax
	7.9.2 Terms
	7.9.3 Usage
	7.9.4 Example
	7.9.5 Types Tables

	7.10 SUM
	7.10.1 Syntax
	7.10.2 Terms
	7.10.3 Usage
	7.10.4 Example
	7.10.5 Types Tables

	7.11 TOKENIZE
	7.11.1 Syntax
	7.11.2 Terms
	7.11.3 Usage
	7.11.4 Example

	8 Load/Store Functions
	8.1 BinarySerializer
	8.1.1 Syntax
	8.1.2 Terms
	8.1.3 Usage
	8.1.4 Example

	8.2 BinaryDeserializer
	8.2.1 Syntax
	8.2.2 Terms
	8.2.3 Usage
	8.2.4 Example

	8.3 BinStorage
	8.3.1 Syntax
	8.3.2 Terms
	8.3.3 Usage
	8.3.4 Example

	8.4 PigStorage
	8.4.1 Syntax
	8.4.2 Terms
	8.4.3 Usage
	8.4.4 Example

	8.5 PigDump
	8.5.1 Syntax
	8.5.2 Terms
	8.5.3 Usage
	8.5.4 Example

	8.6 TextLoader
	8.6.1 Syntax
	8.6.2 Terms
	8.6.3 Usage
	8.6.4 Example

	9 File Commands
	9.1 cat
	9.1.1 Syntax
	9.1.2 Terms
	9.1.3 Usage
	9.1.4 Example

	9.2 cd
	9.2.1 Syntax
	9.2.2 Terms
	9.2.3 Usage
	9.2.4 Example

	9.3 copyFromLocal
	9.3.1 Syntax
	9.3.2 Terms
	9.3.3 Usage
	9.3.4 Example

	9.4 copyToLocal
	9.4.1 Syntax
	9.4.2 Terms
	9.4.3 Usage
	9.4.4 Example

	9.5 cp
	9.5.1 Syntax
	9.5.2 Terms
	9.5.3 Usage
	9.5.4 Example

	9.6 exec
	9.6.1 Syntax
	9.6.2 Terms
	9.6.3 Usage
	9.6.4 Examples

	9.7 ls
	9.7.1 Syntax
	9.7.2 Terms
	9.7.3 Usage
	9.7.4 Example

	9.8 mkdir
	9.8.1 Syntax
	9.8.2 Terms
	9.8.3 Usage
	9.8.4 Example

	9.9 mv
	9.9.1 Syntax
	9.9.2 Terms
	9.9.3 Usage
	9.9.4 Example

	9.10 pwd
	9.10.1 Syntax
	9.10.2 Terms
	9.10.3 Usage
	9.10.4 Example

	9.11 rm
	9.11.1 Syntax
	9.11.2 Terms
	9.11.3 Usage
	9.11.4 Example

	9.12 rmf
	9.12.1 Syntax
	9.12.2 Terms
	9.12.3 Usage
	9.12.4 Example

	9.13 run
	9.13.1 Syntax
	9.13.2 Terms
	9.13.3 Usage
	9.13.4 Example

	10 Utility Commands
	10.1 help
	10.1.1 Syntax
	10.1.2 Terms
	10.1.3 Usage
	10.1.4 Example

	10.2 kill
	10.2.1 Syntax
	10.2.2 Terms
	10.2.3 Usage
	10.2.4 Example

	10.3 quit
	10.3.1 Syntax
	10.3.2 Terms
	10.3.3 Usage
	10.3.4 Example

	10.4 set
	10.4.1 Syntax
	10.4.2 Terms
	10.4.3 Usage
	10.4.4 Example

