Pig UDF Manual

Table of contents

L OVEIVIEIW. ...t etee et et e et e et e e e e e beesateeabeeeaseeaseeease e beeeaseeseesaseeseeaaseeseesateenseeannenneesn 2
2 EVEAl FUNCHIONS......c.eiiceeccee ettt ettt et e et e et e e ebe e st e e b e e eneeeneeennas 2
3 L0ad/SIOre FUNCLIONS........c.eieiie ettt et s re e sna e e ae e nneenreas 17
4 Builtin Functions and FUNCtion REPOSITONES.........c.ccveieeiieiiecieeie e 27
5 ACCUMUIGLON INEEITACE.ueieeieeeie et re e ens 27

B AOVANCE TOPICS....cuvititerieeiieiee ettt sttt sttt ettt bbbt bt e e e s et e besbesbesbesae e e e e 29

Pig UDF Manual

1. Overview

Pig provides extensive support for user-defined functions (UDFs) as away to specify custom
processing. Functions can be a part of amost every operator in Pig. This document describes
how to use existing functions as well as how to write your own functions.

2. Eval Functions

2.1. How to Use a Simple Eval Function

Eval isthe most common type of function. It can be used in FOREACH statements as shown
in this script:

- nyscript.pig
REG STER myudfs. j ar;
A = LOAD 'student _data' AS (name: chararray, age: int, gpa: float);
B = FOREACH A GENERATE nyudfs. UPPER(nane) ;
DUMP B;
The command below can be used to run the script. Note that all examplesin this document
run in local mode for ssimplicity but the examples can aso run in Hadoop mode. For more

information on how to run Pig, please see the PigTutorial.

java -cp pig.jar org.apache.pig.Main -x |ocal nyscript.pig

Thefirst line of the script providesthe location of thej ar fi | e that contains the UDF.
(Note that there are no quotes around the jar file. Having quotes would result in a syntax
error.) To locate the jar file, Pig first checksthe cl asspat h. If thejar file can't be found in
the classpath, Pig assumes that the location is either an absolute path or a path relative to the
location from which Pig was invoked. If the jar file can't be found, an error will be printed:
java.io.| Oexception: Can't read jar file: nyudfs.jar.

Multipler egi st er commands can be used in the same script. If the same fully-qualified
function is present in multiple jars, the first occurrence will be used consistently with Java
semantics.

The name of the UDF has to be fully qualified with the package name or an error will be
reported: j ava. i 0. | OException: Cannot instanti ate: UPPER. Also, the
function name is case sensitive (UPPER and upper are not the same). A UDF can take one or
more parameters. The exact signature of the function should clear from its documentation.

The function provided in this example takes an ASCI| string and produces its uppercase
version. If you are familiar with column transformation functions in SQL, you will recognize

Page 2

Pig UDF Manual

that UPPER fits this concept. However, as we will seelater in the document, eval functions
in Pig go beyond column transformation functions and include aggregate and filter functions.

If you arejust a user of UDFs, thisis most of what you need to know about UDFsto use
them in your code.

2.2. How to Write a Simple Eval Function
Let'snow look at the implementation of the UPPER UDF.

package nyudfs;

I mport java.io. | OException;

i nport org. apache. pi g. Eval Func;

i nport org.apache. pi g. dat a. Tupl e;

i mport org.apache.pig.inpl.util.Wappedl OExcepti on

public class UPPER extends Eval Func (String)

public String exec(Tuple input) throws | OException {
if (input == null || input.size() == 0)
return null;

try{
String str = (String)input.get(0);
return str.toUpperCase();
}cat ch(Exception e){
throw W appedl OExcepti on. wr ap(" Caught exception processing
i nput row ", e);

}
}

Thefirst line indicates that the function is part of the nyudf s package. The UDF class
extends the Eval Func classwhich isthe base classfor al eval functions. Itis
parameterized with the return type of the UDF whichisaJava St ri ng in this case. We will
look into the Eval Func classin more detail later, but for now all we need to do isto
implement the exec function. Thisfunction isinvoked on every input tuple. The input into
the function is atuple with input parameters in the order they are passed to the function in the
Pig script. In our example, it will contain asingle string field corresponding to the student
name.

Thefirst thing to decide iswhat to do with invalid data. This depends on the format of the
data. If the datais of type byt ear r ay it meansthat it has not yet been converted to its
proper type. In this case, if the format of the data does not match the expected type, aNULL
value should be returned. If, on the other hand, the input data is of another type, this means
that the conversion has already happened and the data should be in the correct format. Thisis
the case with our example and that's why it throws an error (line 16.) Note that

W appedl OExcept i on isahelper class to convert the actual exception to an

Page 3

Pig UDF Manual

| OException.
Also, note that lines 10-11 check if the input datais null or empty and if so returns null.
The actual function implementation ison lines 13-14 and is self-explanatory.

Now that we have the function implemented, it needs to be compiled and included in ajar.
You will need to build pi g. j ar to compile your UDF. Y ou can use the following set of
commands to checkout the code from SVN repository and create pig.jar:

svn co http://svn. apache. or g/ repos/ asf/ hadoop/ pi g/t runk

cd trunk

ant

You should see pi g. j ar inyour current working directory. The set of commands below
first compiles the function and then creates ajar file that containsit.

cd nyudfs
javac -cp pig.jar UPPER java
cd

jar';cf myudf s. jar myudfs

Y ou should now see myudf s. j ar inyour current working directory. Y ou can use thisjar
with the script described in the previous section.

2.3. Aggregate Functions

Aggregate functions are another common type of eval function. Aggregate functions are
usually applied to grouped data, as shown in this script:

- nyscript2.pig

A = LOAD 'student data' AS (nanme: chararray, age: int, gpa: float);
B = GROUP A BY nane;
C = FOREACH B GENERATE gr oup, COUNT(A);

DUMP C,

The script above uses the COUNT function to count the number of students with the same
name. There are a couple of things to note about this script. First, even though we are using a
function, thereisnor egi st er command. Second, the function is not qualified with the
package name. The reason for both isthat COUNT isabui | t i n function meaning that it
comes with the Pig distribution. These are the only two differences between builtins and
UDFs. Builtins are discussed in more detail later in this document.

An aggregate function is an eval function that takes a bag and returns a scalar value. One
interesting and useful property of many aggregate functions is that they can be computed
incrementally in adistributed fashion. We call these functionsal gebr ai ¢c. COUNT isan
example of an algebraic function because we can count the number of elementsin a subset of

Page 4

Pig UDF Manual

the data and then sum the counts to produce afinal output. In the Hadoop world, this means
that the partial computations can be done by the map and combiner, and the final result can
be computed by the reducer.

It isvery important for performance to make sure that aggregate functions that are algebraic
are implemented as such. Let'slook at the implementation of the COUNT function to see
what this means. (Error handling and some other code is omitted to save space. The full code
can be accessed here.

COUNT implements Al gebr ai c interface which looks like this:

Page 5

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/COUNT.java?view=markup

Pig UDF Manual

For afunction to be algebraic, it needs to implement Al gebr ai ¢ interface that consist of
definition of three classes derived from Eval Func. The contract is that the exec function
of thel ni ti al classiscalled once and is passed the original input tuple. Itsoutput is a
tuple that contains partial results. The exec function of the | nt er med class can be called
zero or more times and takes as its input a tuple that contains partial results produced by the
I ni tial classor by prior invocations of the | nt er med class and produces a tuple with
another partial result. Finally, the exec function of the Fi nal classis called and produces
the final result as a scalar type.

Here's the way to think about thisin the Hadoop world. The exec function of thel ni ti al
classisinvoked once by the map process and produces partial results. The exec function of
thel nt er med classisinvoked once by each conbi ner invocation (which can happen
zero or more times) and also produces partial results. The exec function of the Fi nal class
isinvoked once by the reducer and produces the final result.

Take alook at the COUNT implementation to see how thisis done. Note that the exec
function of thel ni ti al and| nt er med classes is parameterized with Tupl e and the
exec of theFi nal classis parameterized with the real type of the function, which in the
case of the COUNT isLong. Also, note that the fully-qualified name of the class needsto be
returned fromget I ni ti al ,get | nt er med, and get Fi nal methods.

2.4. Filter Functions

Filter functions are eval functions that return abool ean value. Filter functions can be used
anywhere a Boolean expression is appropriate, including the FI LTER operator or bi ncond
expression.

The example below usesthe | sEnpy builtin filter function to implement joins.

- inner join
A = LOAD 'student data' AS (nane: chararray, age: int, gpa: float);
B = LOAD 'voter_data' AS (nane: chararray, age: int, reglistration:
chararay, contributions: float);

C = COGROUP A BY nane, B BY nane;

D = FILTER C BY not IsErrpty(A)

E = FILTER D BY not |sEnpty(B);

F = FOREACH E CGENERATE f | atten(A) flatten(B);

DUMP F;

Note that, even if filtering is omitted, the same results will be produced because the
f or each resultsis a cross product and cross products get rid of empty bags. However,
doing up-front filtering is more efficient since it reduces the input of the cross product.

- full outer join
A = LOAD 'student data' AS (nane: chararray, age: int, gpa: float);

Page 6

Pig UDF Manual

The implementation of the | sEnpt y function looks like this:

2.5. Pig Types

The main thing to know about Pig's type system is that Pig uses native Javatypes for amost
all of itstypes, as shown in this table.

Pig Type Java Class
bytearray DataByteArray
chararray String
Page 7

Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig UDF Manual

int I nteger

long Long

float Float

double Double

tuple Tuple

bag DataBag

map Map<Object, Object>

All Pig-specific classes are available here.

Tupl e and Dat aBag are different in that they are not concrete classes but rather interfaces.
This enables users to extend Pig with their own versions of tuples and bags. As aresult,
UDFs cannot directly instantiate bags or tuples; they need to go through factory classes:
Tupl eFact ory and BagFact ory.

The builtin TOKENI ZE function shows how bags and tuples are created. A function takes a
text string as input and returns a bag of words from the text. (Note that currently Pig bags
always contain tuples.)

Page 8

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/data/

Pig UDF Manual

2.6. Schema

The latest version of Pig uses type information for validation and performance. It is
important for UDFs to participate in type propagation. Until now, our UDFs made no effort
to communicate their output schemato Pig. Thisis because, most of the time, Pig can figure
out thisinformation by using Java's Reflection. If your UDF returns a scalar or amap, no
work isrequired. However, if your UDF returnsat upl e or abag (of tuples), it needsto
help Pig figure out the structure of the tuple.

If aUDF returnsat upl e or abag and schemainformation is not provided, Pig assumes
that the tuple contains asingle field of type byt ear r ay. If thisis not the case, then not
specifying the schema can cause failures. We look at this next.

Let's assume that we have UDF Swap that, given atuple with two fields, swaps their order.
L et's assume that the UDF does not specify a schema and look at the scripts below:

This script will result in the following error cause by line 4.

Thisis because Pig isonly aware of two columnsin B while line 4 is requesting the third
column of the tuple. (Column indexing in Pig starts with 0.)

The function, including the schema, looks like this:

Page 9

http://java.sun.com/developer/technicalArticles/ALT/Reflection/

Pig UDF Manual

The function creates a schemawith asingle field (of type

Fi el dSchema=) of type =t upl e. Thename of thefield is constructed using the
get SchemaName function of the Eval Func class. The name consists of the name of the
UDF function, the first parameter passed to it, and a sequence number to guarantee
uniqueness. In the previous script, if you replacedunp D; withdescri be B; ,youwill
see the following output:

The second parameter to the Fi el dSchenma constructor is the schema representing this
field, which in this caseis atuple with two fields. The third parameter represents the type of
the schema, which in this caseisa TUPLE. All supported schema types are defined in the
or g. apache. pi g. dat a. Dat aType class.

Page 10

Pig UDF Manual

You need to import theor g. apache. pi g. dat a. Dat aType classinto your code to
define schemas. Y ou also need to import the schema class

or g. apache. pi g. i npl . | ogi cal Layer. schema. Schenma.

The example above shows how to create an output schema for atuple. Doing thisfor abag is
very similar. Let's extend the TOKENI ZE function to do that:

Page 11

Pig UDF Manual

}

public Schema out put Schema(Schena i nput) {

try{
Schema bagSchema = new Schenma();

bagSchenma. add(new Schera. Fi el dSchema("t oken",
Dat aType. CHARARRAY)) ;

return new Schema(new
Scherr;a. Fi el dSchema(get SchemaNane(t hi s. get C ass() . get Nane() .t oLower Case(),
i nput),
bagSchenms,
Dat aType. BAG)) ;
}catch (Exception e){
return null;

}
}
Asyou can see, thisisvery similar to the output schema definition in the Swap function.
One difference isthat instead of reusing input schema, we create a brand new field schemato

represent the tokens stored in the bag. The other difference is that the type of the schema
created is BAG (not =TUPLE=).

2.7. Error Handling

There are several types of errorsthat can occur in a UDF:

1. Anerror that affects a particular row but is not likely to impact other rows. An example
of such an error would be a malformed input value or divide by zero problem. A
reasonable handling of this situation would be to emit awarning and return anull value.
ABS function in the next section demonstrates this approach. The current approach isto
write the warning to st der r . Eventually we would like to pass alogger to the UDFs.
Note that returning a NULL value only makes sense if the malformed valueis of type
byt ear r ay. Otherwise the proper type has been already created and should have an
appropriate value. If thisisnot the case, it isan internal error and should cause the system
to fail. Both cases can be seen in the implementation of the ABS function in the next
section.

2. Aneror that affects the entire processing but can succeed on retry. An example of such a
failureistheinability to open alookup file because the file could not be found. This
could be atemporary environmental issue that can go away on retry. A UDF can signal
thisto Pig by throwing an | OExcept i on aswith the case of the ABS function below.

3. Anerror that affects the entire processing and is not likely to succeed on retry. An
example of such afailureistheinability to open alookup file because of file permission
problems. Pig currently does not have a way to handle this case. Hadoop does not have a
way to handle this case either. It will be handled the same way as 2 above.

Page 12

Pig UDF Manual

Pig provides a helper class W appedl OExcept i on. Theintent hereisto allow you to
convert any exception into | CExcept i on. Its usage can be seen in the UPPER function in
our first example.

2.8. Function Overloading

Before the type system was available in Pig, al values for the purpose of arithmetic
calculations were assumed to be doubles as the safest choice. However, thisis not very
efficient if the datais actually of type integer or long. (We saw about a 2x slowdown of a
guery when using double where integer could be used.) Now that Pig supports types we can
take advantage of the type information and choose the function that is most efficient for the
provided operands.

UDF writers are encouraged to provide type-specific versions of afunction if this can result
in better performance. On the other hand, we don't want the users of the functions to worry
about different functions - the right thing should just happen. Pig allows for thisviaa
function table mechanism as shown in the next example.

This example shows the implementation of the ABS function that returns the absolute value
of anumeric value passed to it asinpuit.

Page 13

Pig UDF Manual

The main thing to notice in this exampleisthe get Ar gToFuncMappi ng() method. This
method returns alist that contains a mapping from the input schema to the class that should
be used to handleit. In this example the main class handlesthe byt ear r ay input and
outsources the rest of the work to other classes implemented in separate files in the same
package. The example of one such classis below. This class handles integer input values.

A note on error handling. The ABS class covers the case of the byt ear r ay which means
the data has not been converted yet to its actual type. Thisiswhy anull valueis returned
when Nunber For mat Except i on isencountered. However, the | nt Abs function isonly
caled if the datais aready of typel nt eger which meansit has aready been converted to
the real type and bad format has been dealt with. Thisiswhy an exception is thrown if the
input can't becast to | nt eger.

The example above covers a reasonably simple case where the UDF only takes one

Page 14

Pig UDF Manual

parameter and there is a separate function for each parameter type. However, thiswill not
aways bethe case. If Pig can't find anexact mat ch ittriestodoabest match. The
rule for the best match isto find the most efficient function that can be used safely. This
means that Pig must find the function that, for each input parameter, provides the smallest
type that is equal to or greater than the input type. The type progression rules are:

i nt =- >=| ong=- >=f | oat =- >=doubl e.

For instance, let's consider function MAX which is part of the pi ggybank described later in
this document. Given two values, the function returns the larger value. The function table for
MAX looks like this:

public List (FuncSpec) getArgToFuncMappi ng() throws FrontendException {
Li st (FuncSpec) funcList = new ArraylList (FuncSpec) ();
Util.addToFuncti onLi st (funcLi st, |ntMx.cl ass. get Nanme(),

Dat aType. | NTEGER) ;
Uti|.addToFuncti onLi st (funcLi st, Doubl eMax. cl ass. get Nane(),

Dat aType. DOUBLE) ;
Uti|.addToFuncti onLi st (funcLi st, Fl oat Max. cl ass. get Nanme(),

Dat aType. FLOAT) ;
Uti|.addToFuncti onLi st (funcLi st, LongMax. cl ass. get Nane(),

Dat aType. LONG) ;

return funclLi st;

TheUWU i | . addToFuncti onLi st function isahelper function that adds an entry to the
list as the first argument, with the key of the class name passed as the second argument, and
the schema containing two fields of the same type as the third argument.

Let's now see how this function can be used in a Pig script:

REG STER pi ggybank. j ar

A = LOAD 'student _data' AS (nane: chararray, gpal: float, gpa2: double);
B = FOREACH A GENERATE nane,

or g. apache. pi g. pi ggybank. eval uati on. mat h. MAX(gpal, gpa2);

DUMP B;

In this example, the function gets one parameter of typef | oat and another of type

doubl e. The best fit will be the function that takes two double values. Pig makes this choice
on the user's behalf by inserting implicit casts for the parameters. Running the script aboveis
equivalent to running the script below:

A = LOAD 'student _data' AS (name: chararray, gpal: float, gpa2: double);
B = FOREACH A GENERATE nane,

or g. apache. pi g. pi ggybank. eval uati on. mat h. MAX((doubl e) gpal, gpa2);

DUMP B;

A special case of thebest fit approach ishandling data without a schema specified. The

Page 15

Pig UDF Manual

type for thisdataisinterpreted as byt ear r ay. Since the type of the datais not known,
there is no way to choose a best fit version. The only time a cast is performed is when the
function table contains only asingle entry. This works well to maintain backward
compatibility.

Let'srevisit the UPPER function from our first example. Asit iswritten now, it would only
work if the data passed to it is of type char ar r ay. To make it work with data whose typeis
not explicitly set, afunction table with a single entry needs to be added:

Now the following script will ran:

2.9. Reporting Progress

A challenge of running alarge shared system is to make sure system resources are used
efficiently. One aspect of this challenge is detecting runaway processes that are no longer
making progress. Pig uses a heartbeat mechanism for this purpose. If any of the tasks stops
sending a heartbeat, the system assumes that it is dead and killsit.

Page 16

Pig UDF Manual

Most of the time, single-tuple processing within a UDF is very short and does not require a
UDF to heartbeat. The same is true for aggregate functions that operate on large bags because
bag iteration code takes care of it. However, if you have afunction that performs a complex
computation that can take an order of minutes to execute, you should add a progress indicator
to your code. Thisisvery easy to accomplish. The Eval Func function provides a

pr ogr ess function that you need to call in your exec method.

For instance, the UPPER function would now ook as follows:

2.10. Import Lists

Animport list allows you to specify the package to which a UDF or a group of UDFs belong,
eliminating the need to qualify the UDF on every call. An import list can be specified viathe
udf.import.list Java property on the Pig command line:

Y ou can supply multiple locations as well:

To make use of import scripts, do the following:

3. Load/Stor e Functions

Page 17

Pig UDF Manual

The load/store user-defined functions control how data goes into Pig and comes out of Pig.
Often, the same function handles both input and output but that does not have to be the case.

With Pig 0.7.0, the Pig load/store APl moves closer to using Hadoop's | nputFormat and
OutputFormat classes. This enables Pig users/devel opers to create new LoadFunc and
StoreFunc implementation based on existing Hadoop InputFormat and OutputFormat classes
with minimal code. The complexity of reading the data and creating a record will now liein
the InputFormat and likewise on the writing end, the complexity of writing will liein the
OutputFormat. This enables Pig to easily read/write datain new storage formats as and when
an Hadoop InputFormat and OutputFormat is available for them.

Note: Both the LoadFunc and StoreFunc implementations should use the Hadoop 20 API
based classes (InputFormat/OutputFormat and related classes) under the new
org.apache.hadoop.mapreduce package instead of the old org.apache.hadoop.mapred
package.

3.1. Load Functions

L oadFunc abstract class has the main methods for loading data and for most use cases it
would suffice to extend it. There are three other optional interfaces which can be
implemented to achieve extended functionality:

« LoadMetadata has methods to deal with metadata - most implementation of loaders don't
need to implement this unless they interact with some metadata system. The getSchema()
method in this interface provides a way for loader implementations to communicate the
schema of the data back to pig. If aloader implementation returns data comprised of
fields of real types (rather than DataByteArray fields), it should provide the schema
describing the data returned through the getSchema() method. The other methods are
concerned with other types of metadata like partition keys and statistics. |mplementations
can return null return values for these methods if they are not applicable for that
implementation.

« LoadPushDown has methods to push operations from pig runtime into loader
implementations - currently only projections .i.e the pushProjection() method is called by
Pig to communicate to the loader what exact fields are required in the pig script. The
loader implementation can choose to honor the request or respond that it will not honor
the request and return all fieldsin the data. If aloader implementation is able to
efficiently return only required fields, it should implement LoadPushDown to improve
guery performance. (Irrespective of whether the implementation can or cannot return only
the required fields, if the implementation also implements getSchema(), the schema
returned in getSchema() should be for the entire tuple of data.)

« LoadCaster has methods to convert byte arrays to specific types. A loader
implementation should implement thisif casts (implicit or explicit) from DataByteArray

Page 18

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/LoadFunc.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/LoadMetadata.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/LoadPushDown.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/LoadCaster.java?view=markup

Pig UDF Manual

fields to other types need to be supported.

The LoadFunc abstract classis the main class to extend for implementing aloader. The
methods which need to be overriden are explained below:

getlnputFormat() : This method is called by Pig to get the InputFormat used by the loader.
The methods in the InputFormat (and underlying RecordReader) are called by Pig in the
same manner (and in the same context) as by Hadoop in a MapReduce java program. If
the InputFormat is a Hadoop packaged one, the implementation should use the new API
based one under org.apache.hadoop.mapreduce. If it is a custom InputFormat, it should
be implemented using the new API in org.apache.hadoop.mapreduce.

If acustom loader using atext-based InputFormat or afile-based InputFormat would like
to read filesin al subdirectories under a given input directory recursively, then it should
use the PigTextInputFormat and PigFilel nputFormat classes provided in
org.apache.pig.backend.hadoop.executionengine.mapReducel ayer. The Pig InputFormat
classes work around a current limitation in the Hadoop TextlnputFormat and
FilelnputFormat classes which only read one level down from the provided input
directory. For example, if theinput in the load statement is'dirl’ and there are subdirs
'dir2' and 'dir2/dir3' beneath dirl, the Hadoop TextInputFormat and Filel nputFormat
classes read the files under ‘dirl' only. Using PigTextlnputFormat or PigFilel nputFormat
(or by extending them), the filesin all the directories can be read.

setLocation() : This method is called by Pig to communicate the load location to the
loader. The loader should use this method to communi cate the same information to the
underlying InputFormat. This method is called multiple times by pig - implementations
should bear thisin mind and should ensure there are no inconsistent side effects due to
the multiple calls.

prepareToRead() : Through this method the RecordReader associated with the
InputFormat provided by the LoadFunc is passed to the LoadFunc. The RecordReader
can then be used by the implementation in getNext() to return atuple representing a
record of data back to pig.

getNext() : The meaning of getNext() has not changed and is called by Pig runtime to get
the next tuple in the data - in this method the implementation should use the the
underlying RecordReader and construct the tuple to return.

The following methods have default implementations in LoadFunc and should be overridden
only if needed:

setUdfContextSignature(): This method will be called by Pig both in the front end and
back end to pass a unique signature to the Loader. The signature can be used to store into
the UDFContext any information which the Loader needs to store between various
method invocations in the front end and back end. A use caseisto store
RequiredFieldList passed to it in LoadPushDown.pushProjection(RequiredFieldList) for

Page 19

Pig UDF Manual

use in the back end before returning tuples in getNext(). The default implementation in
L oadFunc has an empty body. This method will be called before other methods.

» relativeToAbsolutePath():Pig runtime will call this method to allow the L oader to convert
arelative load location to an absolute location. The default implementation provided in
LoadFunc handles this for FileSystem locations. If the load source is something else,
loader implementation may choose to override this.

Example Implementation

The loader implementation in the example is aloader for text data with line delimiter as'\n'
and '\t' as default field delimiter (which can be overridden by passing a different field
delimiter in the constructor) - thisis similar to current PigStorage loader in Pig. The
implementation uses an existing Hadoop supported Inputformat - TextlnputFormat - as the
underlying InputFormat.

Page 20

Pig UDF Manual

Page 21
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig UDF Manual

3.2. Store Functions

StoreFunc abstract class has the main methods for storing data and for most use cases it
should suffice to extend it. There is an optional interface which can be implemented to
achieve extended functionality:

« StoreMetadata: This interface has methods to interact with metadata systemsto store
schema and store statistics. This interface is truely optional and should only be
implemented if metadata needs to stored.

The methods which need to be overridden in StoreFunc are explained below:

« getOutputFormat(): This method will be called by Pig to get the OutputFormat used by
the storer. The methods in the OutputFormat (and underlying RecordWriter and
OutputCommitter) will be called by pig in the same manner (and in the same context) as
by Hadoop in a map-reduce java program. If the OutputFormat is a hadoop packaged one,
the implementation should use the new API based one under
org.apache.hadoop.mapreduce. If it is a custom OutputFormat, it should be implemented
using the new API under org.apache.hadoop.mapreduce. The checkOutputSpecs()
method of the OutputFormat will be called by pig to check the output location up-front.
This method will also be called as part of the Hadoop call sequence when the job is
launched. So implementations should ensure that this method can be called multiple
times without inconsistent side effects.

Page 22

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/StoreFunc.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/StoreMetadata.java?view=markup

Pig UDF Manual

setStorelocation(): This method is called by Pig to communicate the store location to the
storer. The storer should use this method to communicate the same information to the
underlying OutputFormat. This method is called multiple times by pig - implementations
should bear in mind that this method is called multiple times and should ensure there are
no inconsistent side effects due to the multiple calls.

prepareToWrite(): In the new API, writing of the data is through the OutputFormat
provided by the StoreFunc. In prepareToWrite() the RecordWriter associated with the
OutputFormat provided by the StoreFunc is passed to the StoreFunc. The RecordWriter
can then be used by the implementation in putNext() to write a tuple representing a
record of datain a manner expected by the RecordWriter.

putNext(): The meaning of putNext() has not changed and is called by Pig runtimeto
write the next tuple of data - in the new API, thisis the method wherein the
implementation will use the the underlying RecordWriter to write the Tuple out.

The following methods have default implementations in StoreFunc and should be overridden
only if necessary:

setStoreFunc! UDFContextSignature(): This method will be called by Pig both in the front
end and back end to pass a unigque signature to the Storer. The signature can be used to
store into the UDFContext any information which the Storer needs to store between
various method invocations in the front end and back end. The default implementation in
StoreFunc has an empty body. This method will be called before other methods.

rel ToA bsPathForStorel ocation(): Pig runtime will call this method to alow the Storer to
convert arelative store location to an absolute location. An implementation is provided in
StoreFunc which handles this for FileSystem based locations.

checkSchema(): A Store function should implement this function to check that a given
schema describing the data to be written is acceptable to it. The default implementation in
StoreFunc has an empty body. This method will be called before any callsto
setStorelocation().

Example Implementation

The storer implementation in the example is a storer for text datawith line delimiter as'\n'
and '\t' as default field delimiter (which can be overridden by passing a different field
delimiter in the constructor) - thisis similar to current PigStorage storer in Pig. The
implementation uses an existing Hadoop supported OutputFormat - TextOutputFormat as the
underlying OutputFormat.

public class SinpleTextStorer extends StoreFunc {

protected RecordWiter witer = null;

private byte fieldDel = "\t"';
private static final int BUFFER S| ZE = 1024;

Page 23

Pig UDF Manual

Page 24
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig UDF Manual

Page 25
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig UDF Manual

Page 26
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig UDF Manual

4. Builtin Functions and Function Repositories

Pig comes with aset of builtin functions. Two main properties differentiate builtin functions
from UDFs. First, they don't need to be registered because Pig knows where they are.
Second, they don't need to be qualified when used because Pig knows where to find them.

Pig also hosts a UDF repository called pi ggybank that allows users to share UDFs that
they have written. The details are described in PiggyBank.

5. Accumulator Interface

In Pig, problems with memory usage can occur when data, which results from a group or
cogroup operation, needs to be placed in abag and passed in its entirety to a UDF.

Page 27

http://wiki.apache.org/pig/PiggyBank

Pig UDF Manual

This problem is partially addressed by Algebraic UDFs that use the combiner and can deal
with data being passed to them incrementally during different processing phases (map,
combiner, and reduce.) However, there are a number of UDFsthat are not Algebraic, don't
use the combiner, but still don’t need to be given all data at once.

The new Accumulator interface is designed to decrease memory usage by targeting such
UDFs. For the functions that implement this interface, Pig guarantees that the data for the
same key is passed continuously but in small increments. To work with incremental data,
here is the interface a UDF needs to implement:

public interface Accunul ator <T> {
/-k-k

* Process tuples. Each DataBag may contain O to nany tuples for current
key .
public void accumul ate(Tupl e b) throws | OException
* %

* Called when all tuples fromcurrent key have been passed to the
accumnul at or .

* @eturn the value for the UDF for this key.

*/

public T getVal ue();
/**

* Called after getValue() to prepare processing for next key.
*/
public void cleanup();

There are several things to note here:

1. Each UDF must extend the EvalFunc class and implement all necessary functions there.

2. If afunction isagebraic but can be used in a FOREACH statement with accumulator
functions, it needs to implement the Accumulator interface in addition to the Algebraic
interface.

3. Theinterfaceis parameterized with the return type of the function.

4. Theaccumulate function is guaranteed to be called one or more times, passing one or
more tuplesin a bag, to the UDF. (Note that the tuple that is passed to the accumulator
has the same content as the one passed to exec — all the parameters passed to the UDF —
one of which should be a bag).

5. ThegetVaue function iscaled after all the tuples for a particular key have been
processed to retrieve the final value.

6. The cleanup function is called after getValue but before the next value is processed.

Here us a code snippet of the integer version of the MAX function that implements the
interface:

public class |IntMax extends Eval Func<l nteger> i npl ements Al gebrai c,

Page 28

Pig UDF Manual

6. Advanced Topics

6.1. Function I nstantiation

One problem that users run into is when they make assumption about how many times a
constructor for their UDF is called. For instance, they might be creating side filesin the store
function and doing it in the constructor seems like a good idea. The problem with this
approach isthat in most cases Pig instantiates functions on the client side to, for instance,
examine the schema of the data.

Users should not make assumptions about how many times afunction is instantiated; instead,

Page 29

Pig UDF Manual

they should make their code resilient to multiple instantiations. For instance, they could
check if the files exist before creating them.

6.2. Schemas

One request from usersis to have the ability to examine the input schema of the data before
processing the data. For example, they would like to know how to convert an input tupleto a
map such that the keys in the map are the names of the input columns. The current answer is
that there is now way to do this. Thisis something we would like to support in the future.

6.3. Passing Configurationsto UDFs

The singleton UDFContext class provides two features to UDF writers. First, on the backend,
it allows UDFsto get access to the JobConf object, by calling getJobConf. Thisisonly
available on the backend (at run time) as the JobConf has not yet been constructed on the
front end (during planning time).

Second, it allows UDFs to pass configuration information between instantiations of the UDF
on the front and backends. UDFs can store information in a configuration object when they
are constructed on the front end, or during other front end calls such as describeSchema.
They can then read that information on the backend when exec (for EvalFunc) or getNext
(for LoadFunc) is called. Note that information will not be passed between instantiations of
the function on the backend. The communication channel only works from front end to back
end.

To store information, the UDF calls getUDFProperties. This returns a Properties object
which the UDF can record the information in or read the information from. To avoid name
space conflicts UDFs are required to provide a signature when obtaining a Properties object.
This can be done in two ways. The UDF can provide its Class object (viathis.getClass()). In
this case, every instantiation of the UDF will be given the same Properties object. The UDF
can also provide its Class plus an array of Strings. The UDF can pass its constructor
arguments, or some other identifying strings. This allows each instantiation of the UDF to
have a different properties object thus avoiding name space collisions between instantiations
of the UDF.

Page 30

	1 Overview
	2 Eval Functions
	2.1 How to Use a Simple Eval Function
	2.2 How to Write a Simple Eval Function
	2.3 Aggregate Functions
	2.4 Filter Functions
	2.5 Pig Types
	2.6 Schema
	2.7 Error Handling
	2.8 Function Overloading
	2.9 Reporting Progress
	2.10 Import Lists

	3 Load/Store Functions
	3.1 Load Functions
	3.2 Store Functions

	4 Builtin Functions and Function Repositories
	5 Accumulator Interface
	6 Advanced Topics
	6.1 Function Instantiation
	6.2 Schemas
	6.3 Passing Configurations to UDFs

