JSR 326 Post mortem JVM Diagnostics API

First Early Draft Review

User manual and specification - 2010-01-22

JSR 326 Post mortem JVM Diagnostics API:
First Early Draft Review

User manual and specification - 2010-01-22

Published 2010-01-22

Copyri ght 2009 | BM Corporation

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

Table of Contents

PIEIBCE ... e e e e e et e e e e e e e e e viii
F U6 = o TP EP PP PPPRPPPPPRPPN viii
Related DOCUMENTALIONeeieiiiiiiie ettt e e e e e s s e e e s annne e e e e annnneeeanns viii
How to comment on the SPECITICAHIONuviiiiiiiiie e viii
LI (= 10T TSP PP P PPPRPPPPRRRP viii
REFEIEINCES ...ttt e et e e e a e e e e et e e a e e e e e e viii

S 1 gL oo [FTox 1 o] o ISP PP RPPPPPRP PRSP 1
WL 1S JSR 3267 ...ttt ettt e e et e e s et e e e e e e e e e e e e 1
What IS APACNE KBLO?eeeiiiiiie ettt e e s e e e e e e eas 1
[1[0 07 OO PP T PUPRPPPPPPRPN 1
Post Mortem Versus Live MONITOMNGc.ouvriieiiiiieeiiiee et e e e e e e annneee s 2
Tell me more about "DiagnoSstiC ATTIFACIS"ooiiiiiii e 2
What types of Dump are supported Dy thiS API?oeeiiieee e 3
What data can | expect t0 find iN @ DUMP?oviiiiiiie e 3

2. Application Programming Interface ArChiteCtUreoeveiiiiiiiiie e 4
[F gL 0 0 (8 o1 o o OO P PP PP PUPPRP PRSI 4
R 0t (] PRSP TP PP PRTPRP 4

Creation Time AFChITECTUNEoiiiiiiee e 5
ANAlYSIS TIME @rChITECTUNE ... e 6

3. DESIGN PIINCIPIES ...tttk e et e e e e st e e e e e e e e e b e e e e en e e e e e annneeeeann 7

4. TOPICS NOL YEL TESOIVEAeeeieiiiei ettt e e et e e e e e e e e e bt e e s e e e e e nnneee s 11

5. EXAIMPIES ... e e e e e e e nnes 13

B. APl REFEIEINCEeeiiiiiiiie ettt e e e e e e e bt e e e s et e e e e e e e e e e e e e e e e s 24
package javax.toOIS.AIBONOSIICSccourrrieiiiiie et e e 24

D7 =] K PP P S PPPPRPPPPPRP 25
package javax.toolS.diagNOSLiCSIMEBOEceiiiiiiiie et s e e e e 27
D7 =] K PP PO PT T PPPPRPPPPPRP 28
package javax.toolS.diagnOSti CS.FUNTIMIEcciiiiiiieiiiie e e e 55
D7 =] K PP PO PT T PPPPRPPPPPRP 55
package javax.toolS.diagnOSti CS.FUNTIMEJEVAceeiirriiieiiiei et e e e e e e 56
D7 =] K PP PO PT T PPPPRPPPPPRP 57
package javax.toolS.AIAgNOSIICS.VIMcciiiiiieiiiiii e e s 104
D= =] K PP PPP PP PPPPRPI 104
package javax.tool S.diagNOSHi CS.VIMLSPIceeiiiiiiieiiiiie ettt e s eeeane 109
D= =] PP P PP PPPPPPPRP 109
package javax.tools.diagnostiCS.VM.SPI.AElE€gAESooiiiiiiieeiiee e 109
D= =] K PP PPP PP PPPPRPI 110

AL REGISIEN TADIES ... 115

B. Opening IMageS EXaMPIEoeiieiiiiiie ittt e e e s e e e ek e e e s e e e e e nr e e e e nnreeeenann 120

C. SNAPSNot CaUSE EXAMPIEeeiiiiiiiiie ettt e e s e e s e e e e e e e nees 122

D. Identifying Java VM EXGMPIE ...t 124

E. Retrieving Object FieldS EXaMPIEooiiiiiiiieiiiee e 126

F. IMageANalyZer INTEITACEooo it e e e e s e e nnneee s 131

G. Retrieval of all JAVARUNIIMESooiiiiiiiiiiiii et e e e a e e 132

List of Figures

1.1, DUMP CONEENLSeevireeeeeieeessiitr e e e e e s s s e e e e e e s s s e e e e e e e s s s n s e e e e e e e e e s aa s nre s e e e e e e e e s sannnnnneeeeaessnnnnn
2.1 SUMMAENY ATCRITECIUIE ...oiiiieiiie ettt e e ekt e e e e e e s e e e e aanbn e e e e e nnn e e e e ennees
2.2. Creation TimeE ATCRITECIUIEiiiie ettt e e e e e e e e e e e e s nnr e e e e e annne s
2.3. ANalySiS TiMeE ATChITECTUIEoeiiiiiiie et e e e e e e e e e

List of Tables

2.0, PACKBGES ...eeeieteee ettt e e R e e e e e e n e e e as 4
6.1, ClASS SUIMMIBIYeeeieiiitieee ettt e e ettt e e ettt e e e ek e e e e e st e e e s bt e e e ok e e e e e e e s b et e e e asbe e e e e asse e e e e annne e e e e nnnrneeenan 24
6.2. FactoryRegistry CONSIIUCIOr SUMMEINY oviieiiiieeeeiiiieeeaeiiee e et e e e e s s e e e st e e e e e e e s nnnneeenns 25
6.3. FaCtOryREQISITY MELNOUSeeiiiiiiiii ettt e e s e e e e e e e ane 25
6.4, INTEITACE SUMIMEIY ...ttt et e e e s e e e s s b e e e e nn e e e e e e s e e e s snneeeenan 27
6.5, ClASS SUIMMIBIYeeiiiiiiiie etttk e e et e e ekt e e e ekt e e e e e a s b et e e e e ss e e e e e asb e e e e e asne e e e e nnnrneeenan 28
6.6. IMBGEPIOCESS MENOASocoiiiiiiii e e e s s 28
6.7. IMBYE MELNOUS ...t e et e e e e e e e s e e e e e e e e nnreeeenn 32
6.8. IMageAddressSPaCce MEINOUSccooiiiiieiiiiie e e e e e e 35
6.9. MemoryA ccessException CONSITUCIOr SUMIMEIY c.uveiiiiiiiieeeeiiiee e 36
6.10. MemoryAccesSEXCEPtION MEINOUSccoiiuiiiiiiiiiie et 36
6.11. DiagnostiCEXception CONSIIUCIOr SUMIMEIY vvieiiiiiiieeeeiree e e et e e e e e e e e s e e s anneee s 37
6.12. IMagESECtiON MELNOUS ...t e e e st e e e e e e e e enrn e e e 37
6.13. IMageStaCkFrame MELNOOSccoiiiiiiiiiiiie e e s e 39
6.14. IMageFactory MELNOGSccoiiiiiiiiii et e e e e e e e e e e s 41
6.15. CorruptDataException CONSIIUCIOr SUMIMEIY vverieiiiiieeeesiiee e et e e e e e e e e e ennes 43
6.16. CorruptDataEXCeption MEtNOASoviiiiiiiiee e 43
6.17. ImageThread MENOOSooiiiiiiiie e 44
6.18. DataUnavailable CONSIIUCIOr SUMMEIYoeiiiiiiieeiiiieie e e et e e e eanneeae s 45
6.19. IMagePOINIEr MEINOUSeeiiiiiiiii ettt e e e e e e e e e e e nnn e e e e e annes 46
6.20. CorruptData MEINOUSooeiiiiiiiee it e e e e e e e e e e e e e e nnees 51
6.21. IMagEMOAUIE MEINOUSeiiiieiei e s e et e s s 52
6.22. IMageSymbOl MENOUSviiiiiiii e 53
6.23. IMageREZIStEr MENOGScoiiiiiiiiii e e e e e 54
6.24. INTEITACE SUMIMAIYeiiiiiiiie ettt e e e e et e e e s e e e e e nn e e e e e b e e e e e anne e e e e annree s 55
6.25. ManagedRUNtIME MENOGSociiiiiiiiii it e e e e e 55
6.26. INTEITACE SUMIMEAIYeiiiiiiiie ittt e e e e e e e e e e e e et e e e e e nr e e e e s anrr e e e e annree s 56
6.27. JavaStaCKFrame MEINOUSoeiiiiiiie et e s e es 57
6.28. Javal 0CatiON MENOOScc.eiiiiiiiiii e e s 60
6.29. JAVAHEED MEINOUSooiiiiiiiei it e e e e e e e e e e e e e e 62
6.30. JavaReferenCe MEtNOGSociiiiiiiiiie e 63
6.31. JavaRUNIIME MEINOUS ..ot e st e e e e e e s enre e e e 66
6.32. JAVaOD]ECE MEINOUSeeeieeiiie et e e e e e s e e e e e 70
6.33. JavaClassLoader MEtNOGSc..oeioiiiiiii et 76
6.34. JavaVMINITATGS MEINOUSoeiiiiiiiiii et e e s e e e s eas 78
6.35. JavaMember MEtNOGScoooiiiiii e 80
6.36. JAVaMONItOr MEINOAScooiiiiiei e s e 82
6.37. JAvaMethod MELNOGScoiiiiiiiie e e e e e e e s 84
6.38. JAVaFT€ld MELNOGScooiiiiiiii et e e e e e e e e 86
6.39. JAVaVMOPLION MEINOUS ...ttt e e e s e e e s 92
6.40. JAVACIASS MELNOGSeeiieiiiiiie ittt et e e e e e e et e e e b e e e e s nnn e e s 93
6.41. JavaVariable MEINOUSc.eiiiiiiiiiie e e e e e e e 99
6.42. JavaThread MELNOOSooiiiiiiiiiiiii e e s e e e e ennes 100
6.43. INTEITACE SUMIMEAIYeiiiiiiiie ittt e e e e e s e e e e e ne et e e e s ne e e e s nnr e e e e nnnees 104
B.44. ClASS SUMIMBIYeeeieeiiiieeee ettt e ettt e e ettt e e e st et e e e s e e e e e s e e e e e s bt e e e e e s e e e e e anee e e e e ansn e e e e e nnn e e e e nnnnees 104
6.45. DUMPHANAIE MEINOUSeeiiiiiiiiiee et e e e e e e e s e e e 105
6.46. DumplnitiatorDelegate MEtNOUScoouiiiiiiiiii e 105
6.47. DUmMpFactory CONSIIUCION SUMMIBIY coviveiiiiiinrieeeeeeeessssn e e e e s s s ree e e e e e s s s e ee e e e e e s e snnnnnes 106
6.48. DUMPFACIONY MELNOUScoiiiiiiiiie ettt s e e e e e s e e e nn 106
6.49. DUumMpDeSCriptor CONSIIUCIOr SUMMIBIY vveieeiiiiieeeaiieee e ettt e e et e e s e e e s e e e s e e e annn e e e e eneees 108

JSR 326 Post mortem
JVM Diagnostics API

6.50. DUMPDESCIPLOr MENOASoiiiiiiiiee e e e e e e eaaeas 108
B.51. INLEITACE SUMIMAIYuviiiiiiie e e e e s s e e e e e e e e e st e e e e eaeeessaabsaaeeeeaeessanntareeeeeans 109
B.52. ClasS SUMIMANYccuiiieieiie e iiicit ettt e e e e e e et e e e e e e e e et eeeae e e s s s aatb e e e eeeeessaanstbaeeeeaaeeesaassntnnneeaaeens 110
6.53. HProf Signal TriggeredDumpDelegate ConStruCtor SUMMEIYueeeeeeeeeiiiiiiiieeeeeeeeeeeiinrereeeeeeeeens 110
6.54. HProfSignal TriggeredDumpDelegate MethOdSccccvviiiiiiiei i 110
6.55. HProfMBeanDumpDel egate CONSLIUCIOr SUMMENYcccvvveieeeeeeeiiiiiiiieeeee e e e sciirrree e e e e e e s eenenreeeeeeas 111
6.56. HProfMBeanDumpDelegate MEtNOUSccooiiiiiiiiiice e 111
6.57. IBM SPIBasedHeapDumpDel egate CoNnstructor SUMMANYceeeeeiiiiiiiiieeeeeeeseeiiiineeeee e e e e esensnsneess 111
6.58. IBM SPIBasedHeapDumpDelegate MethOdsoeevviiiiiiiiiiiiiiee e 111
6.59. JavaDumpDelegate CONSLIUCIOr SUMIMEIY vvveeeieeeeiiiiiirieeeeeeesseittireeeeeeesssesntsreeeeeaeessssnssnnaeeeaeeeas 112
6.60. JavaDumpDelegate MEINOUSoeiiiiiiiiiiiee e e e e e e e s e et aeeaaas 112
6.61. XMLDUmpWriter CONSIIUCIOr SUMMIBIY ..veeeiiiei it e e e e s ecitiee e e e e e e e s s st e e e e e e e s s sentanaeeeeaeeeeaans 113
6.62. XMLDUMPWIILEr MEINOUS ...vvviiiiieii ittt e e e e e s s e e e e e e e s e e ntbreeeeeaeeenanns 113
6.63. AbstractSignalBasedDumpl nitiatorDel egate Constructor SUMMAYccccvvvveeeeeeeeiiciivieeeeeeee e 113
6.64. AbstractSignal BasedDumplnitiatorDelegate Methodscooooiiiiiiiiiiiiiie e 113
6.65. IBM SPIBasedSystemDumpDel egate CoNStructor SUMMANYceceeeeiiiciuiiieeieeeeeeeiiiiieeeeeeeeeeesnnnnnens 114
6.66. IBM SPIBasedSystemDumpDelegate MethOdsocoviiiiiiiiiiiiiiiec e 114
6.67. AbstractlBM SPIBasedDumpl nitiatorDelegate Constructor SUMMarycccccvveeeeeeeeeiiiivvneeeeeenn. 114
6.68. Abstractl BM SPIBasedDumplnitiatorDelegate Methodseevvveeiiiiiiiiieience e 114
AL TA32 REGISIEr INBIMESeeiieiiiiiiie ettt e e st e e e ettt e e e s s e e e s s be e e e e bbb e e e e ansbe e e e e anteeeeeannneeas 115
A.2. AMDB4 REGISLEN INGITIEScouiviiieeiiiiie e ettt e e ettt e e e sttt e e s st e e e e st e e e s abbe e e e s anbbe e e e e anbeeeeesnsneeesannaeeas 115
A.3. POWErPC 32 REGISIEr NGIMESuviiiiiiiii e ettt e ettt e e e e s e st e e e e e e e s s e saa b e r e e e e e e e e s sannaraeeeeaeens 115
A.4. POWErPC 64 REGISIEr NGIMESuuiiiiiiiii et e e et e e e e s e et ee e e e e e e e s e saa e r e e e e e e e s s sannaraeneeaeens 117
A5, Z/Series 3L REGISLEr NAIMESoooeoiiiiiiiieeie e e e e e e e e et e e e e e e e e s s st a b e e e e e e e e e s e eeansrees 118
A.B. Z/SErieS B4 REGISLEr NAIMEScooeeeiiiiiiiiiie et e e e e e e e et e e e e e e s e e saab e e e e eeaeesseaanseees 119

Vi

List of Examples

5.1, OPENING @N IMBOEeeeeeiiiiiie etttk e e e et e e e ek et e e e e bt e e e s e e e e asn e e e e e nnre e e e e nnees 13
5.2. CauseAnalyzer Class deClaralioncueeiiiiiiiieiiiiie e nnnre e 13
5.3, FINA CUIMENE PrOCESSeiiieiiiiii ettt ettt et e et e e e e e e e e e bt e e e e annn e e e e annneeeas 14
5.4. Reporting Signal iNFOMMIBLIONeeiiiiiiiie et e e e e e e e e e e e annneas 14
5.5. Process ID and COMMENGIINEviiiiiiiiiiee et e e e e snre e e e 14
5.6. THread 1deNtIfICIIONcoiiiiiiieit et e e e e e e e e e e e e s ne e e e nanrneeeeanes 14
5.7. IMagETNread SACK TFr8CEcoiiiiiiei it e s e s s 15
5.8. JavaThread/ImageThread COMTEIHONcuuiiiiiiiei et 15
5.9. Declaration of WhatANBIYZEr ClESSccciiiiiiiiiiiiiie ettt 16
5.10. Getting the NOSINAIMEeiiieiiiii e e e et e e e e e e s s e e e e e 16
5.11. EXECULAIDIE NAIMEooiiiiiiie ettt e e e e e et e e e e e e e s e e e s anbe e e e e s annreee s 16
5.12. ProCESS [IBIaIIESeeieiiiii et 16
B5.13. JAVEA™ VM VEISION ..eoieiecicieie ettt 17
B5.14. JAVA™ VM OPHONSocvoveveceieeeeeseecte e eeee st s s ee et ene s ne s s eneeeanne s s s tssnesaensnessenenenen 17
5.15. ITEralE OVEN NEAPS ...ttt ettt et e s e e e e e e e 17
5.16. 1Erate OVEr ODJECLSeeiiiiiiieiiiiiie ettt e et e e e e e e e s e e e e s s e e e e s e e e e nnnn e e e e annnneas 18
5.17. Print ODJECE FIEIAS ...cooiiiiie e 18
5.18. Get Tthe ODJECE'S TYP ... eiete ettt e ek et e e e e e e e e e e e e e e e eas 18
5.19. Iterate Up Class NEIaICNYcocueiiiiiiiie e e e e s 18
5.20. Print OUE @8CN TIEIOeeiiiiieiie e 19
5.21. gL NEXT SUPEITIESSeeeeieiiiei ettt ettt e e e s e e e e et e e e n e e e e e e e e e e nnreeeenans 19
5.22. PrINE FIEIAS CIESS ...ttt e e e e e e 19
5.23. Testing JavaFi eld.getMOGITIEIS()eeeeiiriiieiiiiii e e e aaes 19
5.24. Getting the value of @ fIEldcooiiiiiii e 19
5.25. JavaField.get() retUrNS NUILooie e e es 20
5.26. BOXEU NUMIDETS ...ttt et e e et e e sk e e e e e e e e s annn e e e e anneeae s 20
5.27. Retrieving an ODJECE FEFEIEINCEoviiiiiiiie et e e e e e 20
5.28. Retrieving @ StNG FIEIOcoouiiiiei e 20
5.29. Method for printing OUt @rraly CONTENTScoiuurrieiiiiiie et e et e e e e e e e e s enrneeenns 21
5.30. All ODJECES NAVE CIASSES ...ttt e e e s s 21
5.31. Get NUMDEr Of ATAY ElEIMENEScoiiiiiii et e et e e s 21
5.32. Getting the type Of the array ElemMENTScoociiii e 21
5.33. Creating array Of COMECTE LY ...oeiiiiiie ittt e et e e et e e e e e e e e s ann e e e e nanrneeeeanes 22
5.34. Array of JavaODJECtS @S AESINGLIONeveeiiiiiieeeiiiie ettt e e e e e e e s e e e e snreeee e e 22
5.35. COPYING @TAY COMEEIESeeeiutrieeeiiteeeesattreeeaasteeeeeasse e e e e s sne e e e e s s e e e s as s e e e e s abn e e e e e annre e e s anneeeesannneees 22
5.36. Printing OUL @rray ElOIMENLSueiiiiiiiiie ittt e e e e e e s s e e e e e e e e nnnes 23

Vii

Preface

Thisisaliving document. Make sure you have the latest version. Other versions are available from the
Apache Kato Wiki page http://cwiki.apache.org/K ATO/jsr326specification.html or by checking out and
building the Apache Kato project.

Note also that thisis an early draft document and as such there are many areas open to improvement. There are
also areas that are specifically not completed. These areas cover parts of the API or its usage that still need to
be defined.

Audience

This document is intended to be used by consumers and implementors aike. It is expected that the reader will
have good knowledge of the Java™ programming language.

Related Documentation

More information about the Apache Kato incubator can be found by visiting the main website at http:/
incubator.apache.org/kato/site/lindex.html

How to comment on the specification

Comments on this document and its contents can be made using the kato-spec mailing list hosted by the Apache
Software Foundation.

Subscribe to the mailing list by sending an email to
<kat o- spec- subscri be@ ncubat or . apache. or g> Once subscribed you can send an email to the kato-spec mailing
list by addressing your email to<kat o- spec@ ncubat or . apache. or g>

Trademarks

All trademarks are property of their respective trademark owners.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

References

Home Page for Apache Kato Incubator Project http://incubator .apache.or g/kato/site/index.html

JSR 326 at JCP.org http://jcp.orglen/jsr/detail ?id=326

viii

http://incubator.apache.org/kato/site/index.html
http://jcp.org/en/jsr/detail?id=326

Chapter 1. Introduction

What is JSR 3267

JSR 326 isintended to be aJava™ AP specification for standardising how and what can be retrieved from the
contents of post-mortem artefacts - typically process and VM dumps.

Unusually for new APIs, this project will endeavour to encompass the old and the new, since diagnostic solution
that only works when users move to the latest rel ease does little to improve diagnosability in the short term.

This project will consume existing dump artefacts as well as possible while developing an API that can address
the emerging trendsin VM and application directions. The most obvious of these trends are the exploitation of
very large heaps, alternative languagesand, paradoxically for Java™, theincreased use of native memory through
vehicles such as NIO.

What is Apache Kato?

Project Kato isintended to be the place where the Specification, Reference implementation (RI) and Technology
Compatibility Kit (TCK) are openly created. The intention is that the Specification and RI will be developed
in tight unison, guided by a user-story-focused approach to ensure that real-world problems drive the project
from the beginning.

This project is about bringing together people and ideas to create a common, cross industry API, and we can't
think of a better place to do that than in Apache.

IBM developed an API called DTFJ ("Diagnostic Tool Framework for Java') as ameans of providing its support
teams a basis on which to write tools to diagnose Java SDK and Java application faults. It consists of a native
JVM-specific component and the DTFJ API, which was written in pure Java.

In 2009 IBM donated the implementation independent portions of DTFJ to the Apache Kato project

Rationale

JSR 326 exists because of the widely acknowledged limitations in diagnosing Java™ application problems after
the fact. There are many good ways to understand and diagnose problems while they happen, but few credible
or pervasive tools exist for helping resolve problems when it has all gone suddenly and horribly wrong.

Outside of "live monitoring” thereis no standard way to provide diagnostics information, and hence no standard
tools. Each tool writer hasto figure out how to access the dataindividually and specifically for each JVM vendor
and operating system. This sparsity of tools has meant that users have limited options in diagnosing their own
problems, especially unexpected or intermittent failures.

These users turn to the providers of their software to work out what is happening. Consequently application,
middleware, and JVM vendors are spending increasing time supporting customers in problem diagnosis.

Emerging trends indicate that thisis going to get worse.

Today VM heap sizesare measured in small numbers of gigabytes, processors on desktopscomeintwosor fours,
and most applications running on aJVM arewritten in Java™. To help analyse problemsin these configurations,
we use a disparate set of diagnostic tools and artefacts.

Introduction

If the problem can't be reproduced in a debugger, then things quickly get complicated. There are point tools
for problems like deadlock analysis or the ubiquitous Java™ out-of-memory problems, but overall the Java™
diagnostic tools arena is fragmented and VM- or OS-specific. Tool writers have to choose their place in this
matrix.

We want to change that by removing the need for tool writers to make a choice.

By enabling tool writersto easily target all the major VM vendors and operating systems, we expect the number
and capability of diagnostic toolsto greatly increase.

Tomorrow it gets harder; heap sizes hit 100's of gigabytes, processors come packaged in powers of 16, and the
JVM commonly executes awide range of language environments.

We can't tackle tomorrow's problems until we have a platform to address today's.

Post Mortem versus Live Monitoring

It's important to understand what the term "post mortem™ means as far as JSR 326 is concerned and how it fits
within the general Post-mortem versus Live Monitoring space.

For JSR 326 the term "post mortem" is used loosely: it does not just imply dead Java Virtual Machines and
applications; JSR 326 also covers living, breathing applications where the dump artefacts are deliberately
produced as part of live monitoring activity.

Live monitoring generally means tracing, profiling, debugging, or even bytecode monitoring and diagnosis by
agentsviathejava.lang.instrument API. It can be asurprise to understand that it can also mean analysis of dumps
to look for trends and gather statistics.

The live-monitoring diagnostic space is well served except for this last area. The mutation speed of modern
applications under load can sometimes mean that monitoring systems cannot keep pace since they need to do
complex analysis on-the-fly The obvious solution isto take asnapshot of arunning system and analyse the results
off-line

JSR 326 can help with this " Snapshot monitoring” by providing a standard mechanism for generating a snapshot
and for reading the contents of the snapshot later.

For JSR 326 "Post Mortem" just means "after the fact"

Tell me more about "Diagnostic Artifacts”

Simply put, when something goeswrong you'd like to know why. A diagnostic artifact iswhatever material isleft
when your application or VM fails. Sometimesit's a message to the console, or arecord in alog file. Hopefully
you'll get enough information to figure out what happened and fix the problem.

Unfortunately there are many cases where you don't get to see the obvious “smoking gun.”

In those situations you need access to more information so you can dig into the causes of your problem.
Historically the sorts of artifact you need are split into two types: those which show atime element and those that
are a snapshot of working system. The former of these typesis of course a trace, while the latter comes under
the term “dump” or “corefile” .

It's these latter type that JSR 326 is desighed to consume.

Introduction

What types of Dump are supported by this API?

The Apache Kato incubator project is devel oping the reference implementation for JSR 326. That work includes
the development of an implementation that can read standard binary HPROF files and an experimental new dump
that uses VMTI to expose more information than is currently in a HPROF file.

Other JVM vendors can devel op implementations to support the API for their own dumps.

What data can | expect to find in a Dump?

Dumps come in all shapes and sizes. There is no definitive statement of contents. The APl is designed to
accomodate this fact by providing a mechanism to signal that data is not available. Note that the design of the
API to handle data optionality is still not compl eted.

Figure 1.1. Dump contents

Running Process

Virtual —_| 1
Machine | e 1
Instance ‘ | m m
[Libraries
@ || & other process
elements
Jva — | @
elements

Its till possible to determine broad categories for the contents of a dump. In Figure 1.1, “Dump contents’ you
can see that its reasonable to have three categories - from the dump which has all process information down to
the dump which only contains objects from the Java heap.

Chapter 2. Application Programming
Interface Architecture

Introduction

This chapter describes the conceptual behaviour and structure of the API

Structure

JSR 326 consists of a series of Java packages listed below

Table 2.1. Packages

Name Title

javax.tools.diagnostics Top level of the API, provides accessto API
implementations.

javax.tools.diagnostics.image Package of interfaces representing a snapshot of a
program.

javax.tools.diagnostics.runtime Definition of an abstract view of a managed runtime.

javax.tools.diagnostics.runtime.java Definition of an abstract view of a Javaruntime.

javax.tools.diagnostics.vm Dump Creation API

javax.tools.diagnostics.vm.spi

javax.tools.diagnostics.vm.spi.delegates

These packages are separated into into four logical groups.
» Diagnostic Artifact creation

» Abstraction handler discovery

* Runtime abstraction

* Process abstraction

These logical separations are themselves grouped into two further distinctions: those available at creation time
and those available at analysistime.

Application Programming
Interface Architecture

Figure2.1. Summary Architecture

Generation Time Analysis Time
Application
Generator API

Dump Application

enerator. E
3o .
S < Java Runtime
2 API

IJVM 1 Process API
Dump Readers

Application
Generator API

Dump

' Generatori

JVM 2 JVM 3

This separation can be seeninthe Figure 2.1, “ Summary Architecture”. Inthisdiagram the green layer represents
the user application, the yellow layer represents the APl and the orange layer represents implementations in
support of the API. The red shapes represent the different types of diagnostic artifact that can be created.

Thereis avertical separation in this diagram which shows the two phases of the API. The left hand side shows
two distinct VM instances which is intended to indicate the capability of the API to be used on multiple
implementationsin astandard way. Theright hand side shows asingle application consuming multiple diagnostic
artifacts.

In the following sections we'll explore the APl in more detail.

Creation Time Architecture

Creation time is the term used for the phase when dumps are generated. Dump creation can be via the creation
time APl as outlined here, or viaa JVM implementation specific mechanism.

Figure 2.2. Creation Time Architecture

Application

E Generator API
2 Dump
Generators

L

Application Programming
Interface Architecture

InFigure2.2, “Creation Time Architecture” the green layer representsthe application, the yellow boxes represent
the APl and the orange boxes represent implementations that translate the dump creation request to the specific
actions required to create a diagnostic artifact.

The numbered parts of the diagram can explained as followed

1. Creation API: This part of the API provides a standard mechanism for an application to initiate the creation
of adiagnostic artifact

2. Dump Creators: The specificimplementationsthat are registered within the VM that provide the mechanisms
to create the diagnostic artifact

3. Diagnostic Artifacts: The artifacts produced

The relationship between implementations and the discovery mechanism is not shown in this diagram. See the
section on the discovery process for more information

Analysis Time architecture

Figure 2.3. Analysis Time Ar chitecture

Application

API E

.
Java Runtime

API

Discovery

Process API

Dump Readers

In Figure 2.3, “Analysis Time Architecture” the green layer represents the API, the yellow boxes represent
implementations that translate from specific dump formats to the API structure and the red boxes represent the
various types of dump that can be found.

The relationship between implementations and the discovery mechanism is not shown in this diagram. See the
section on the discovery process for more information

Chapter 3. Design Principles

Introduction

This chapter describes the principles that are common across the whole API.

Lists

Methodsusejava. util . Li st to return multiple objects. All lists are immutable and unsynchronised.

For example, an | magePr ocess may contain multiple instances of Managedrunt i me. TO retrieve the vanagedRunt i ne
instances, a call would be made to: Li st <ManagedRunti me> | magePr ocess. get Runt i mes() .

Lists are sometimes used in the API to access a larger number of objects than would be used in most Java
applications. For this reason, use of the java. util. List.toArray() method is discouraged in situations where
there would be a large number of array elements. For example:

JavaObj ect[] heapAsArray(JavaHeap heap) {
return heap. get Gbj ects().toArray(new JavaChject[0]);

}

would return an array with all of the objects in the heap, perhaps numbering in the hundreds of millions. This
should be considered when implementing or calling the API.

Type names

Type names and signatures use the same format as JNI. Please see the JavaDoc for each method for the exact
formats.

Theclassjava. util . Map. ent ry would be formatted like so:
java/util/Map$Entry

An multidimensional array j ava. util.Mp.entry[][] isformatted like:
[[Ljavalutil/NMapS$Entry;

A primitive array classforint[][] isformatted like so:

Y

Memory and Identification

Address space

Memory in the API consists of a collection of flat (i.e. not segmented) address spaces represented by the
I mageAddr essSpace Class. Implementations do not have to report any memory as being present in the snapshot.

Design Principles

Memory sections

The I mgesecti on interface is used to describe arbitrary areas of memory by returning a pointer (represented
by a I mgePoi nter instance) and a size along with a name. | nrageAddr essSpace instances use them to describe
what memory is mapped in a snapshot. They are aso used to describe the memory layout of the entities that the
API interfaces represent. Thisis normally done with methods such as Li st <I mageSect i on> get Sections(). The
actual 1 mgeSect i on instances returned are implementation specific and it is acceptable for there to be none. It
is expected that they will be used for:

e determining the memory occupancy of items. For example, the heap size could be derived from
JavaHeap. get Secti ons() .

e accessing structures in memory. For example, Javahj ect . get Sections() Will return all of the | magesecti on
instance representing the memory aJavaj ect occupies. With knowledge of how an object islaid out on the
heap, it would be possible to retrieve more information than is retrieved presented by the API.

Addresses and Identification

The API uses the I magePoi nter interface to identify objects returned by the API. | magePoi nter represents an
address in memory, and enables programs to access memory at that address and at offsets from that address.
Given that not al implementations of the API allow access to memory, the addresses returned could be entirely
artificial.

Whenani magePoi nt er isused asan address of an object fromthe API, itisup to theimplementation to decidewhat
itisactually pointing at. It isimportant though that objects of the same type have unique addresses. For example,
JavaObj ect instances much each return an 1 mgePoi nt er different from al other, but there may be instances of
Javad ass that share the same address.

I magePoi nt er allows access to memory using Java types, corrected for endianness. This means that only twos-
complement values can be returned, apart from the char which isunsigned in Java. There is no conversion from
the native platform's floating point formats. Floating point values are assumed to be stored as Java floating point

types.

Package Separation

While aspects of the i mage API are used by the runti me. j ava API, the reverse will never occur. The i nrage API
should, in principle, be implementable standal one. For example, thefollowing isallowed asit refersto theimage
package:

| mageThread JavaThread. get | nageThr ead()
But the converseis not:

JavaThread | mageThr ead. get JavaThr ead()

Error Handling

Implementations of the API should present data as accurate and complete as reasonably possible under any
circumstances. The purpose of the API includes presenting the state of a running process, a Java Virtual
Machine, when it encountered abnormal conditions. The most extreme of these situationsiswhen the native code
implementing the JVM itself has crashed. Assuch, therewill be situations where information cannot be retrieved

Design Principles

or may beincorrect. This should be regarded as normal. Both implementors of the API and those calling the AP
should code anticipating errors to be normal rather than exceptional conditions.

Dataisretrieved from the APl from two types of methods. Those returning multipleitemsusing generisised Lists
and those returning items directly. The lists that are returned are expected to return al items that they can.

When implementing lists, implementors should take care to:

* ensurethat lists have afinite number of items. For example, acorrupted linked list may be corrupt or terminated
incorrectly. The API implementation should detect this and terminate the list.

» processaslittle of theitems being returned as possible. Better to continue reading the collection of itemsrather

than fail on oneitem that is dightly wrong. For example, if the objects are being retrieved using the list from
the following method call:

Li st <JavaOhj ect > JavaHeap. get Obj ect s()

... then if one object fails to identify its type properly, it is expected that the list would return the Javaj ect .
Callsto that savamj ect would fail appropriately, such asto Javad ass Javahj ect . get Javad ass() .

Errors are reported on methods returning single items (i.e. not lists) using exceptions. There are two exceptions,
both subclasses of bi agnost i cExcept i on. The exceptions are:

* MenoryAccessExcepti on. Thisisthrown when an attempt has been made to access memory that is not present
in the snapshot.

* Corrupt Dat aExcept i on. Thisis thrown when the data used to form a response to the method call isincorrect.

Optional and missing data

There are circumstances where information cannot be supplied. Methods that throw the exception
Dat aUnavai | abl e Will do so if the information is either not presentable by the implmentation of the API, or if it
isnot available for that particular snapshot.

There are circumstances wherenul | isreturned by a method. These circumstances will be explicitly documented
in the Javadoc.

Dat aUnavai | abl e iS thrown when the API cannot return the requested data. nul 1 is returned when the data was
never there to be returned.

Methods that returnj ava. uti I . Li st instances will always do so under all circumstances.

Faked

objects

There are many possible implementations of a Java™ Virtual Machine each of which can have various and
different optimisations. Mapping a particular implementation to this APl may require the creation of synthetic
objects for entities which do not actually exist in the diagnostic artifact.

An example of thiswould be array classes. These classes are never loaded by aJava™ Virtual Machine, they are
constructed as and when they are necessary. It is conceivable that there would be no actual entities that could
directly correspond with Javad ass instances. In circumstances like these the API implementor would have to
create aJavad ass for the array class, asthat is the only means the API has for identifying that objects type.

Design Principles

Faked objects should be implemented carefully. For instance, if a faked javaMet hod is created, then the class
it declares itself as belonging to should report it, otherwise inconsistencies can arise that could cause calling
programs to fail.

There should be no collisions between real and faked objects.

Implementations should not be misleading. If afaked object has been created, then related fack objects should
be kept to aminimum. For instance afaked Javahj ect should not return | mageSect i on instances.

Object identities

All implementations should override the java. ! ang. Obj ect . equal s(vj ect) Method when objects are not
permanently cached and may need to be recreated. All API's should use equal s to test object identity.

The quantity of objects held within a diagnostic artifact normally means that it is impractical to keep an in-
memory instance for everything. Therefore the APl does not require that repeated calls to return a specific object
will in fact return the same instance. The API allows for recreation of already requested objects

The behaviour of equal s against objects from different snapshotsis not defined.

10

Chapter 4. Topics not yet resolved

This chapter outlines the areas of the specification and implementation etc that need to be resolved before the
API can be completed. In some casesthe API definition so far has a solution that is not optimal and may change
in the future.

Optionality

Diagnostic artifacts are not equal. Generally they do not contain the same set of information. Sinceit'slikely that
no single artifact will ever satisfy all the data requirements of the API the design of the APl must therefore be
amenableto missing data. Infact there aretwo cases of databeing missing. The casewherethat dataisnever inthe
artifact (for instance an HPROF dump does not contain any information what interfaces a class may implement)
and the case where in a particular instance of athe artifact that datais just missing (or corrupted).

Currently the API signals missing or corrupt data by throwing the relevant exception. There is no mechanism for

the user of the API to discover what types of data are present or missing from the artifact. Thisis a problem for
the user and for the Test Compliance Kit since it needs to have predictable contents.

Native and Java Frame interleaving

The API presents native stack frames and Java stack frames in different placesin the API - in ImageThread and
JavaThread. This makes it difficult to understand the order in which Java methods and native functions have
been called. Exposing the interleaving of native and Java frames would help, for example, debugging complex
JNI functions.

Optimisation of data access (query support)

The current programmatic means of accessing data is not open to optimisation. Having a query language would
enable the creation of useful indexes to speed up queries.

No support for identifying or handing generics in the Java Runtime

Currently it isimpossible to determine any of the generic typeinformation that isavailablein JV Msimplementing
Java 5.0 or above.

No support for thread groups in the Java Runtime

The API has no consistent means of reporting the ThreadGroups the JavaT hreads belong to.

Lack of consistency in accessing JavaObjects

In order to access the contents of objects in most cases it is often necessary to implement, as accesses via the
API, at least a subset of the functionality of the methods in the class of the object being accessed. For example,
to access all of the objectsin ajava.util.HashMap, knowledge of how HashMap isimplemented is necessary. As
HashMap can be implemented differently on different implementations of the Java SDK, it is difficult to write
programs using the API that are truly Java SDK agnostic.

Need defined behaviour on what toString offers on each part of the API

The toString() method's behaviour is not specified in sufficient details across the whole API. For example,
JavaStackFrame.toString() should return a string describing the stack location like in a Java stacktrace, so this
should be specified so it can be implemented consistently.

11

Topics not yet resolved

No definitions about snapshoting

It isdesirable that there be a consistent means for generating dumps for later analysis by the API. An API to be
used during runtime would enable applications to generate dumps when it suits them. This would not be to the
exclusion of other means of generating dumps peculiar to particular VM implementations.

12

Chapter 5. Examples

Introduction

This chapter contains snippets of code demonstrating how to call the API. The appendices contain the unedited
samples.

Opening Images

I'mage instances are obtained using the javax. tool s. di agnosti cs. Fact oryRegi stry class. See Appendix B,
Opening Images example for a compl ete example.

Programs using the API can obtain an Image like so:

Example 5.1. Opening an Image

| mage i mage = FactoryRegi stry. get Def aul t Regi stry().
get Il mage(new Fil e("exanple.file"));

Fact or yRegi stry USES javax.imageio.spi.ServiceRegistry as a registry of all APl implementations known to
the VM. Implementors should ensure that Fact or yRegi stry is able to see their | mgeFact ory by placing their
implementation in a jar file that contains a file called META- 1 NF/ j avax. t ool s. di agnost i cs. i mage. | mageFact ory
that contains aline of text that is the name of the ImageFactory implementation, such as

com exanpl e. dunp. | mageFact or yl npl

Determining Snapshot Cause

Snapshots can be generated for a variety of reasons. The API can report that a snapshot has been generated
because the VM received a POSIX type signal, whether it was synchronous or asynchronous. For example, if
aJNI library causes a si Gsegv when running, this might be detectable through the API. In most cases, it should
be possiblethrough | mageAddr essSpace. get Current Process() and | magePr ocess. get Current Thr ead() t0 determine
which process and which thread caused the snapshot.

If a snapshot was generated for a reason other than a POSIX signal being received, then the reason has to be
derived through knowledge of the VM implementation. For example, if an option was passed to the VM to
generate a snapshot on entry to a particular method, all of the stack traces could be searched to determine if that
method was present, and therefore probably causing the snapshot. Likewise, detecting a call to abort () in the
native stack would suggest that the snapshot was caused by a synchronous SIGABRT.

The following examples are extracts from the example program in Appendix C, Shapshot Cause Example.

The examples implement the | mageanal yzer interface, they just need to implement the anal yze(1 mage) method.

Example 5.2. CauseAnalyzer Class declaration

public class CauseAnal yzer inplenments | nmageAnal yzer {

@verride
public void anal yze(l mage i mage) {

13

http://java.sun.com/javase/6/docs/api/javax/imageio/spi/ServiceRegistry.html

Examples

The containing | mageAddr essSpace instances are searched for a current process. It is probable that there will be
one address space and one process. If get current Process() returnsnul I, there was no current process. Because
Li st isreturned, we can use afor-each loop.

Example 5.3. Find Current Process

for (InmageAddressSpace as : inmage. get AddressSpaces()) {
| mageProcess process = as. get CurrentProcess();

if (process !=null) {

Once found, the process can be queried for signal information and thread information. If a signal was raised,
| magePr ocess. get Si gnal Name() Will not be null. The example reports the signal name and number to the user.

Example 5.4. Reporting signal information

int signum = process. get Si gnal Nunber () ;
String signanme = process. get Si gnal Nane() ;

if (signane !'= null) {
System out . printl n("Snapshot caused by signal " + signane+"("+signumt")");

}

The1 magePr ocess can report the command line. Thisisthe command name and arguments that were used to start
the process. The command and arguments are returned in a single string, separated by spaces.

The process ID returned by get 1 () in a String. Thisis implementation specific, and so could be in any format,
whether that be hexadecimal, decimal or some other arbitrary string.

Example5.5. Process | D and commandline

System out. println("Process "+process.getlD()+
" was started with " +
process. get CommandLi ne() +""' ") ;

The program determines which thread caused the snapshot to be generated. If the current thread isn't null, the
thread isidentified by ID and its properties (implementation dependent).

Example 5.6. Thread identification

I mageThread t hread = process. get Current Thread();
if (thread !'= null) {
System out . println("\ nSnapshot caused by thread "+
thread. get I D() +
, "+thread. getProperties());

Next, the thread's stack frames are printed out. The code relies on java.lang. Object.toString() being
implemented correctly. It is expected that the most recent frame will be returned first.

14

Examples

Example5.7. ImageT hread stack trace

for (Il mageSt ackFrame frame: thread. get StackFranes()) {
Systemout.println("\t" + frane);

}

This section of code relies on the relationship between JavaThread instances and | mageThread instances to
determine which Java™ thread caused the snapshot. As the relationship is one-way, from Java™ to Image,
al of the JavaThread instances have to be queried. Because JavaThread. get | mageThread() Mmight be nul 1,
j ava. | ang. Obj ect . equal s iSexecuted against the | mageThr ead Which we know to be not null. Oncethe javathr ead
isfound, its name can be printed.

Example 5.8. JavaT hread/I mageT hread correlation

RUNTI ME: for (ManagedRuntine runtine : process. getRuntines()) {
if (runtinme instanceof JavaRuntine) {
JavaRuntinme jr = (JavaRuntinme) runtinme;

for(JavaThread jthread : jr.getThreads()) {
if (thread. equal s(jthread. getlmageThread())) {
System out. println("\nSnapshot caused by JavaThread "+
jthread. get Nane());

for(JavaStackFrane franme : jthread. get StackFranes()) {
Systemout.println("\t" + franme);

}
br eak RUNTI ME;
PR}

Identifying Java'™ VM

This example demonstrates how the VM that generated a snapshot might be identified. The following
information is reported using the image and java APIs:

* hostname of the machine the snapshot was generated on.

* Theprocess|D.

* The command line.

« The executable that was running the Java™ program (e.g. "/usr/bin/java").
* The command line.

* Theloaded native libraries.

» Theversion reported by the VM.

» The options passed to the VM.

The completelisting isin Appendix D, Identifying Java VM Example.

Like the previous example, thisimplements| mageAnal yzer . Thereis some functionality that isalso present inthe
previous example - it is not repeated here.

15

Examples

Example 5.9. Declaration of WhatAnalyzer class

public class Wat Anal yzer inplenents | mageAnal yzer {

@verride

public void anal yze(l mage i mage) {

The hostname of the machine where the snapshot was generated is printed out. This isn't information that is
necessarily available in most core dump formats, instead thiswould normally be recorded by the program. Asitis
important to get out as much information as possible, callsto the APl are made with try/catch blocks around each
individual method. This is necessary as exceptions should be expected to be raised under most circumstances.
The stack traces for pat aunavai | abl e are not usually reported asthisis not an error condition. Instead, a message
isinserted to indicate that the information is not known.

Example 5.10. Getting the hostname

/! Report the hostnane.
String host nane;

try {

host name = i mage. get Host Nane() ;

} catch (DataUnavail able e) {

hostname = "<Could not retrieve hostnane";
} catch (Corrupt Dat aException e) {

host name = "<Error retrieving hostnane>";

e.printStackTrace();

}

System out. printl n("Snapshot was generated on " + hostnane);

Here the executable that started the process is reported. Thisis the executable that launched the VM - typically
thisis the "java' program. Alternatives include "javac" and "appletviewer". Thisis the name of the executable
the operating system loaded into memory when creating the process.

Example 5.11. Executable name

String executabl e;
execut abl e = process. get Execut abl e() . get Nane() ;
System out. println("Process Executable "+ executable);

This code prints out the names of the libraries that were loaded by the process. This should include any JNI
libraries that were configured. Note that it is also possible to determine where in memory these libraries have
been loaded into memory using the get sect i ons() method. This can be used to identify where a thread might
have crashed.

Example5.12. Processlibraries

System out. println("Loaded Libraries:");
for(l mageModul e nodul e : process. getlLibraries()) {
Systemout.println("\t" + nodul e. get Nane());

}

The following code reports the Java™ VM version. Thisisimplementation dependent, but is expected to contain
morethan just the version of Java™ that is supported, but actually identify whichimplementation of the VM itis.

16

Examples

Example5.13. Java'™ VM Version

public void anal yzeRunti me(JavaRuntine jr) {

try {
System out. println("Java VM version: "+jr.getVersion()+""");

} catch (CorruptDat aExcepti on el) {
Systemout.println("Error retrieving Java VM version");
el. printStackTrace();

}

Thefollowing codereportsthe optionsthat were passed to the VM when it was created. The optionsare generated
and passed on by the executable the launches Java. Some of these might be passed on the command line (such
as by the "java' executable), but might also include options taken in from configuration files, as well as being
generated by the launcher itself.

Example 5.14. Java'™ VM Options

System out . println("VM options:");
for (JavaVMXption option : jr.getJavaVM nitArgs().get Options()) {
String optionString = "\t\t\""+option.getOptionString()+"\"":

| magePoi nter extra = option. getExtralnfo();
if (extra!=null) {

optionString += ", extral nf o=0x"+Long.toHexStri ng(extra.get Address());
}

System out. println(optionString);
1}

Retrieving Object Fields

This example demonstrates how object instance fields and array elements are accessed using the API. The
complete listing isin Appendix E, Retrieving Object Fields Example.

Theanal yzeRrunt i me method walks over the heaps within the VM. While Java™ programmerswill be used to the
concept of the heap, the API allows a number of heapsto be accessed inasingle VM. It isexpected the different
heapswill have different garbage collection policies and that each heap will beidentified with a descriptive name
through JavaHeap. get Nane() . The number of heaps and their names is implementation specific, but there must
be at least onein arunning JVM.

Example5.15. Iterate over heaps

public void anal yzeRunti me(JavaRuntine jr) {
for (JavaHeap heap : jr.getHeaps()) {
wal kHeap (heap);

b}

Thissection of coderetrieves each object from aheap. For APl implementations backed by acorefile, the objects
will probably be retrieved in order from lowest address in memory to the highest, but there is no relationship
between Javaj ect list indexes and the results of Javamj ect. get 1 D() that can be relied upon by callers of the
APIL.

TheJsavamj ect retrieved hasto betestedto seeif itisan array or an ordinary object asthey are handled differently.

17

Examples

Example5.16. Iterate over Objects

public void wal kHeap(JavaHeap heap) {
for (JavaObj ect joject : heap.get Objects()) {
if (jObject.isArray()) {
wal kArray (j Object);
} else {
wal koj ect (j Obj ect);
}
}

This method takes a Javamj ect and prints out the values of al of the instance fields (not the static fields). To
identify each object, its ID isused. Thisisturned into a hex string using the poi nt er ToHexSt ri ng(| magePoi nt er)
that isincluded in this example.

Example5.17. Print object fields

public void wal kObj ect (JavaChj ect j Object) {
System out. println("JavaCbject @" + pointerToHexString(jObject.getl)));

Each objectinaninstance of aclass, so herethesavad ass isretrieved. Thisisequivalient to thefollowing in Java:

Class java.l ang. Object.getC ass();

Implementors should ensure that the API returns the equivalent Javad ass.

Example 5.18. Get the object's type

Javad ass cl azz;
clazz = j Obj ect. getJavaC ass();

A class will only report its fields, the superclasses must be retrieved in order to retrieve their fields. Thiswhil e
loop retrieves each superclass until the superclassis null, which will be returned by thej ava. I ang. oj ect class.

The class nameis printed out, which should match what j ava. | ang. d ass. get Nane() Wwould return, except for ".
characters being replaced by "/".

Example 5.19. Iterate up class hierarchy

while (clazz '= null) {
Systemout.println(prefix + clazz.getNane() +":");
prefix +=" ";

This code retrieves each field from aJavad ass. Thisis equivalent to the following method in Java™ reflection:

Field[] java.lang. d ass. get Decl ar edFi el ds()

This should return all fields, even synthetic fields. The biagnosticException iS a superclass of
Cor r upt Dat aExcepti on and Dat aUnavai | abl e.

18

Examples

Example 5.20. Print out each field

for (JavaField nextField : clazz.getDeclaredFields()) {
printField(prefix, nextField, jObject);

} catch (Di agnosti cException e) {
Systemerr.printin("Error printing out fields.");
e.printStackTrace();

}

Herethe next superclassisretrieved. Thiswill returnnul 1 if the classhas no superclass, such asj ava. | ang. j ect .
The loop isterminated by the br eak if the superclass couldn't be retrieved.

Example 5.21. get next superclass

clazz = clazz. get Supercl ass();
} /] while (class !'= null)

This method demonstrates how to print out an instance field. Note that the Javaj ect ispassed asit must passed
on to the JavaFi el d for it to retrieve the value of the field in that instance.

Example 5.22. Print fields class

private void printField(String prefix, JavaField field, JavaObject object)

It is not worth printing out the class fields for each instance of the class on the heap, so the field is tested
to see if it is static. The following method call retrieves the modifiers (publ i c, static, protected, €c.) from
the Javari el d and then uses reflection to test for static being set. Callers of the API should not assume that
JavaFi el d. get Mbdi fi ers() only returns the bits defined in java. | ang. reflect. Mdifier - aways test with the
appropriate bitmasks or use the functions provided in mdifi er .

Example 5.23. Testing JavaField.getM odifier ()

if (java.lang.reflect. Modifier.isStatic(field.getMdifiers()))
return;

There are a number of methods provided by JavaFiel d to retrieve the field value. The most generic is
JavaFi el d. get (JavaObj ect) Which returns an oj ect .

Example 5.24. Getting the value of afield

Ooj ect fieldValue = field.get(object);

Object references that were nul | in the running program are also returned asnul | by the API.

19

Examples

Example 5.25. JavaField.get() returnsnull

// Format the field s val ue.
if(fieldvalue == null) {
val ueString = "<null reference>";

AS JavaFi el d. get (bj ect) Can return any type, primitive fields values are returned in instances of Nurber oOf
char act er . For instance, an i nt would be returned as an instance of j ava. I ang. I nt eger . This can't be confused
with fields that are referencestoj ava. | ang. I nt eger instances as they would be represented by Javaj ect .

Example 5.26. Boxed numbers

} else if (fieldValue instanceof Number) {
val ueString = fieldValue.toString();
} else if (fieldValue instanceof Character) {

val ueString = "°" + (Character)fieldvalue + "'";
} else if (fieldValue instanceof Bool ean) {
val ueString = ((Bool ean) fi el dval ue). bool eanVal ue() ? "true" : "false";

JavaFi el d. get () iSthe means by which referencesto other objects are also retrieved. This program just retrieves
the referred object's class name and its ID. It isimportant to remember that the signature of the field is expected
to be an appropriate type for the objects that can be retrieved from it. A field signature would be either the same
type as an object retrieved from it, an interface or super-interface, or a super class.

Example 5.27. Retrieving an object reference

} else if (fieldValue instanceof JavaObject) {
JavaObj ect reference = (JavaObject) fiel dval ue;

val ueString = reference. get Javad ass().getNane() + ": @" + pointerToHexString(reference.getlD());

The following code tests the object type to see if it is a Java™ String instance. The Javad ass representing
java.lang. String could be cached and compared against the objects classes, but instead we compare against the
name of the object's class. The method JavaFi el d. get Stri ng() iS used to retrieve the Javacj ect as an instance
of j ava. I ang. Stri ng in the running VM.

Example 5.28. Retrieving a string field

if ("javal/lang/ String". equal s(reference. getJavaCd ass().getNanme())) {

val ueString += valueString +' =\"" + field.getString(object) + "\"";
}
}
Systemout.println(prefix + field. getSignature() + " " +
field.getName() + " =" + valueString);

This method deals only with arrays, which are treated differently from ordinary objects when retrieving their
contents. Note that arrays don't have afield called "length”.

20

Examples

Example 5.29. Method for printing out array contents

public void wal kArray(Java(oj ect object) {
System out. println("JavaCbject @" + pointer ToHexString(object.getl)));

All instances of Javaj ect haveaJavad ass withaname. For arrays, thisfollowsthe JNI conventions. Aninteger
array would be called "[1", whereas an array of stringswould be called "[Lj ava/l ang/ String; ".

Example 5.30. All objects have classes

Javad ass cl azz;
clazz = object.getJavad ass();

cl assName = cl azz. get Nane();

Each array describes the number of elementsit contains. It isimportant to call get Arraysi ze() and not get si ze()
asthe latter returns the size of the object on the heap.

Example 5.31. Get number of array elements

int arraySize = 0;
arraySi ze = object.getArraySi ze();

An array's class should be able to report the type of its eements. Thiscall is used to determine the type of array
to receive the contents of the array.

Example 5.32. Getting the type of the array elements

String conponent Nane;
conponent Name = cl azz. get Conponent Type() . get Nane() ;

Arrays elements are not accessed on an individual basis. Instead, their contents are copied to real arrays. This
code demonstratesthat there are Javad ass for primitivetypes, inthe sameway thereisin reflection. These names
are used to create primitive arrays of the correct type. Java™ reflection functions in the same way.

21

Examples

Example 5.33. Creating array of correct type

Obj ect arrayCopy;

if ("bool ean". equal s(conponent Nane)) {
arrayCopy = new bool ean[arraySi ze] ;

} else if ("byte".equal s(conponent Nanme)) {
arrayCopy = new byte[arraySi ze] ;

} else if ("char".equal s(conponent Nanme)) {
arrayCopy = new char[arraySi ze] ;

} else if ("short".equal s(conponent Nane)) {
arrayCopy = new short[arraySize];

} else if ("int".equal s(component Nane)) {
arrayCopy = new i nt[arraySi ze];

} else if ("long".equal s(conponent Nanme)) {
arrayCopy = new | ong[arraySi ze] ;

} else if ("float".equal s(conponent Nanme)) {
arrayCopy = new float[arraySi ze];

} else if ("double".equal s(conponent Nane)) {
arrayCopy = new doubl e[arraySi ze] ;

} else {

If an array is not an array of primitives, it must be an array of objects. As there is no means of converting a
Javauj ect intoa'"real" object, an array of Javahj ect instance isreturned. Multidimensional arrays are returned
as arrays of Javabj ect instances that are themselves arrays. The example code shows how a array to receive
object arraysis allocated.

Example 5.34. Array of JavaObjects as destination

arrayCopy = new JavaChj ect[arraySi ze] ;

The method Javabject.arraycopy IS used to copy array elements in the same way as
java. | ang. Syst em arraycopy() . Implementors and those writing applications using this method call should take
careasarrayscan be extremely large, potentially larger than the JVM'sheap size. If afraction of an array isasked
for, that is all that should be allowed in memory.

Example 5.35. Copying array contents

obj ect.arraycopy(0, arrayCopy, 0, arraySi ze);

This code prints out the contents of the array elements. Thej ava. | ang. Array. get () method is used to retrieve
elements from the array in a generic fashion. If nul | isretrieved, that is printed, otherwise if it is an object the
type and address of the object is printed and failing that it must be an autoboxed primitive that can be printed
out using itstostring(). The corrupt Dat aExcept i on iS caught within the loop to alow the printing to continue
even if some of the elements can't be located.

22

Examples

Example 5.36. Printing out array elements

Systemout.println("\t" + classNane + "[" + arraySize +"] = {");
for (int cnt=0; cnt < arraySize; cnt++) {
Obj ect obj = Array. get (arrayCopy, cnt);

if (obj == null) {
Systemout.printlin("\t\tnull,");
} else if (obj instanceof JavaOhject) {
Javaoj ect ref j = (Javalhj ect) obj;
try {
Systemout.println("\t\t" + refObj.getJavaCl ass().getNane()+ " @"+
poi nt er ToHexString(ref Cbj.getID())+",");
} catch (CorruptDataException e) {
Systemerr.println("\t\t CorruptDataException while printing out array elenment");
e.printStackTrace();

}
} else {
Systemout.println("\t\t"+obj+",");
}
}
Systemout.printin("\t};");
}

23

Chapter 6. API Reference

This chapter contains the details of the Java classes that comprise the API.

package javax.tools.diagnostics

Top level of the API, provides accessto APl implementations.

Common semantics within javax.tools.diagnostics
Collections

1. Unless specifically declared all Collection classes and their associated Iterators are read only. Attempts to
add ,remove or replace items within the collection will result in ajava.lang.UnsupportedOperationException
being thrown

2. Ordered Collectionsreturned by this API arerequired to have a consistent and repeatabl e ordering across calls.

Object equality

Instances of classes defined by this API should only be tested for equality by using the java.lang.Object#equal ()
method.

Table6.1. Class Summary

Name Summary
FactoryRegistry Experimental addition to the API.

24

API Reference

Details

class FactoryRegistry

public FactoryRegistry extends java.lang.Object

Experimental addition to the API.

This class provides a central registry for image factories

Image factories can be registered directly using the addFactory() method.

The default registry obtained by calling getDefaultRegistry() uses javax.imagei 0.5pi.ServiceRegistry to discover
ImageFactory implementations.

To register an ImageFactory implementation that can be discovered by the registry do the following :
e Create a'services directory as a child of the manfest directory 'META-INF'
» Within this'services directory create atext file called 'javax.tools.diagnostics.image.lmageFactory'

e This text file should contain a single line which is the package qualified name of the ImageFactory
implementation to be registered

Table 6.2. FactoryRegistry Constructor Summary

Constructor

public FactoryRegistry()

Creates an empty registry. To obtain an populated registry use the getDefaultRegistry() method

Table 6.3. FactoryRegistry Methods

Methods
getDefaultRegistry public static synchronized FactoryRegistry getDefaultRegistry()

Returns the default registry. Thisregisty is preloaded with ImageFactory
implementations discovered using the javax.imageio.spi.ServiceRegistry

Returns
default image factory

iterator public Iterator iterator()

Returns an java.util.Iterator of ImageFactories registered to thisregistry.

25

API Reference

M ethods

addFactory

public boolean addFactory(lmageFactory factory)

Adds an ImageFactory to the registry instance If the factory instanceis
already in the registry it is not added again.

Returns
trueif factory added

Parameters
factory factory to add to registry

Throws
I1legal Argument if factory is null

getFactories

public ImageFactory getFactories()

Always returns an array even if the registry is empty

Returns
Returns the factoriesin the registry as an array

getlmage

public Image getlmage(Filefile)

Returns an appropriate javax.tools.diagnostics.image.lmage for the provide
file by locating the first registered image factory that can handle the case
insensitive file name extension of the provided file. If no factory can be
found to handle the file then null is returned.

File names without extension will always return null

Returns
Image or null

Parameters
file to create image from

Throws
Illegal ArgumentException if fileisnull
| OException if errors occur during image creation

26

API Reference

Methods
getJavaRuntime public JavaRuntime getJavaRuntime(Filefile)

Returns an appropriate javax.tools.diagnostics.image.lmage for the provide
file by locating the first registered image factory that can handle the case
insensitive file name extension of the provided file. If no factory can be
found to handle the file then null is returned.

File names without extension will always return null

Returns
Image or null

Parameters

file to create image from

Throws
Illegal ArgumentException if fileisnull
| OException if errors occur during image creation

package javax.tools.diagnostics.image

Package of interfaces representing a snapshot of a program.

In order to accommodate most dump formats, the API allows the possibility of having multiple processesin the
same dump. Each processis capable of having multiple ManagedRuntime. The package containsinformation on:

e The Image of the snapshot.
» ThelmageThread threadsincluding information on their ImageRegister registers and | mageStackFrame stacks.
» Loaded ImageModule libraries and their ImageSymbol symbols.

* Information on the running ImageProcess process.

Table 6.4. Interface Summary

Name Summary

ImageProcess This class represents a Process running in a given Address Space.

Image This class represents an entire operating system image (e.g.

ImageAddressSpace This class represents a single Address Space within the image.

I mageSection Represents a range of memory used for a specific purpose.

ImageStackFrame Represents a native stack frame

ImageFactory Thisinterface is used for classes which can produce instances of Image
implementors.

27

API Reference

Name Summary

ImageThread A low-level thread instance

I magePointer Represents an address in image memory.

CorruptData This classis used to indicate that corruption has been detected in the
image.

ImageModule Represents a shared library loaded into the image, or the executable
module itself

I mageSymbol Represents a symbol defined in an ImageModule

I mageRegi ster Represents the state of a CPU or FPU register

Table 6.5. Class Summary

Name

Summary

MemoryA ccessException

Indicates that an attempt was made to access memory which is not
included within the image

DiagnosticException

This classis the superclass of all exceptions thrown by
javax.tools.diagnostics classes

CorruptDataException

Used to indicate that corruption has been detected in the image.

DataUnavailable

This exception is used to indicate that data was requested which is not
available on this system, or in thisimage.

Details

interface ImageProcess

public interface ImageProcess

This class represents a Process running in a given Address Space.

Table 6.6. ImageProcess M ethods

M ethods

getCommandLine

public Sring getCommandLine()

Fetch the command line for this process. This may be the exact command
line the user issued, or it may be areconstructed command line based on
argv[] and argc.

Returns
the command line for the process

Throws
DataUnavailable if the information cannot be provided
CorruptDataException

28

API Reference

M ethods

getEnvironment

public Properties getEnvironment()

Get the environment variables for this process.

Returns
the environment variables for this process

Throws
DataUnavailable if the information cannot be provided

CorruptDataException

getID

public Sring getID()

Get the system-wide identifier for the process.

Returns
a system-wide identifier for the process (e.g. a process id (pid) on Unix like
systems)

Throws
DataUnavailable if the information cannot be provided

CorruptDataException

getLibraries

public List getLibraries()

Get the set of shared libraries which are loaded in this process.

Returns

an iterator to iterate over the shared libraries which are loaded in this
process

Throws
DataUnavailable if the information cannot be provided

CorruptDataException

29

API Reference

M ethods

getExecutable

public ImageModule getExecutabl &)

Get the module representing the executabl e within the image.

Returns

the module representing the executabl e within the image (as opposed to
modul es representing libraries)

Throws
DataUnavailable if the information cannot be provided
CorruptDataException

getThreads

public List getThreads()

Get the set of image threads in the image. There is not necessarily

any relationship between JavaThreads and ImageThreads. A VM
implementation may use an n:m mapping of JavaThreads to ImageThreads,
and not all ImageThreads are necessarily attached.

Returns
an iterator to iterate over each ImageThread in the image

getCurrentThread

public ImageThread getCurrentThread()

Find the thread which triggered the creation of the image

Returns

the ImageThread which caused the image to be created, or null if the image
was not created due to a specific thread

Throws
CorruptDataException

getRuntimes

public List getRuntimes()

Get the set of the known ManagedRuntime environmentsin theimage. In a
typical image, there will be only one runtime, and it will be an instance of
JavaRuntime. However any user of this API should be aware that thereisa
possibility that other runtimes may exist in the image

Returns

an iterator to iterate over al of the known ManagedRuntime environments
in the image.

30

API Reference

M ethods

getSignalNumber

public int getSignalNumber ()

Get the OS signal number in this process which triggered the creation of this
image.

Returns

the OS signal number in this process which triggered the creation of this
image, or O if the image was not created because of asignal in this process

Throws
DataUnavailable if the information cannot be provided

CorruptDataException

getSignalName

public String getSgnalName()

Get the name of the OS signal in this process which triggered the creation of
thisimage.

Returns

the name of the OS signal in this process which triggered the creation of
thisimage, or null if the image was not created because of asignal in this

process

Throws
DataUnavailable if the information cannot be provided

CorruptDataException

getPointer Size

public int getPointer Sze()

Determine the pointer size used by this process. Currently supported values
are 31, 32 or 64. In the future, other pointer sizes may also be supported.

Returns

the size of a pointer, in bits

31

API Reference

interface Image

public interface Image

This class represents an entire operating system image (e.g. a core file). There are methods for accessing
information about the architecture of the machine on which the image was running - hardware and operating
system. The major feature, however, isthe ability to iterate over the Address Spaces contained within the image.

Table6.7. Image Methods

Methods
getAddressSpaces public List getAddressSpaces()

Get the set of address spaces within the image - typically one but may be
more on some systems such as z/OS.

Returns

an Iterator which iterates over all of the address spaces described by this
Image

getProcessor Type public Sring getProcessor Type()
Get the family name for the processor on which the image was running.

Returns

the family name for the processor on which the image was running. This
corresponds to the value you would find in the "os.arch" System property.

Throws

DataUnavailable if this data cannot be inferred from this core
type
CorruptDataException if expected data cannot be read from the core

getProcessor SubType public String getProcessor SUbType()

Get the precise model of the CPU.

Returns

the precise model of the CPU (note that this can be an empty string

but not null). e.g. getProcessorType() will return "x86" where
getProcessorSubType() may return "Pentium 1V step 4" Note that this value
is platform and implementation dependent.

Throws
DataUnavailable
CorruptDataException

32

API Reference

Methods
getProcessor Count public int getProcessor Count()

Get the number of CPUs running in the system on which the image was

running.

Returns

the number of CPUs running in the system on which the image was running

Throws

DataUnavailable if the information cannot be provided
getSystemType public Sring getSystemType()

Get the family name for the operating system.

Returns

the family name for the operating system. This should be the same value

that would be returned for the "os.name" system property

Throws

DataUnavailable if this data cannot be inferred from this core

type

CorruptDataException if expected data cannot be read from the core

getSystemSubType public String getSystemSubType()

Get the detailed name of the operating system.

Returns

the detailed name of the operating system, or an empty string if this
information is not available (null will never be returned). This should be the
same value that would be returned for the "os.version" system property

Throws
DataUnavailable
CorruptDataException

33

API Reference

M ethods

getlnstalledM emory

public long getlnstalledMemory()

Get the amount of physical memory (in bytes) installed in the system on
which the image was running.

Returns

the amount of physical memory installed in the system on which the image
was running. The return value is specified in bytes.

Throws
DataUnavailable if the information cannot be provided

getCreationTime

public long getCreationTime()

Determines when the image was created

Returns
the time in milliseconds since 1970

Throws
DataUnavailable

getHostName

public Sring getHostName()

Get the host name of the system where the image was running.

Returns

The host name of the system where the image was running. This string will
be non-null and non-empty

Throws

DataUnavailable If the image did not provide this information
(would happen if the system did not know
its host name or if the image predated this
feature).

CorruptDataException

API Reference

Methods
getl PAddresses public Iterator getlPAddresses()

The set of |P addresses (as I netAddresses) which the system running the
image possessed.

Returns

An Iterator over the I P addresses (as | netAddresses) which the system
running the image possessed. The iterator will be non-null (but can be
empty if the host is known to have no IP addresses).

Throws

DataUnavailable If theimage did not provide thisinformation
(would happen if the system failed to look
them up or if the image pre-dated this
feature).

getSource public File getSource()

Experimenal

interface ImageAddressSpace

public interface | mageAddressSpace

This class represents a single Address Space within the image. On some operating systems (e.g. zZ/OS), there can
be more than one Address Space per core file (but generally with only one process per ImageAddressSpace).

Table 6.8. ImageAddressSpace M ethods

Methods
getCurrentProcess public ImageProcess getCurrentProcess()

Get the process within this address space which caused the image to be
created.

Returns

the process within this address space which caused the image to be created,
if any. Return null if no individual processtriggered the creation of the
image.

getProcesses public List getProcesses()

Get the set of processes within the address space.

Returns

an iterator which provides al of the processes within a given address
space. In most images, there will only be one process within an

ImageAddressSpace

35

API Reference

M ethods

getPointer

public ImagePointer getPointer (long address)

A factory method for creating pointersinto this address space

Returns
an ImagePointer for the specified address

Parameters

address the address to point to

getl mageSections

public List getlmageSections()
Get the raw memory in the address space.

Returns

An iterator of al the ImageSectionsin the address space. Their union will
be the total process address space

class MemoryAccessException

public MemoryAccessException extends javax.tools.diagnostics.image.Diagnosti cException

Indicates that an attempt was made to access memory which is not included within the image

Table 6.9. MemoryAccessException Constructor Summary

Constructor

public MemoryAccessException(lmagePointer badPointer Sring description)

Build exception for the given location and description

public MemoryAccessException(l magePointer badPointer)

Build exception for the given location and description

Table 6.10. M emor yAccessException Methods

M ethods

getPointer

public ImagePointer getPointer()

Get a pointer into the image where the access failed.

Returns
The pointer into the image where the access failed

36

API Reference

class DiaghosticException

public DiagnosticException extends java.lang.Exception

This classis the superclass of all exceptions thrown by javax.tools.diagnostics classes

Table 6.11. DiagnosticException Constructor Summary

Constructor

public DiagnosticException(String description)

Build exception with the given description

public DiagnosticException()

Build exception with no description

interface ImageSection

public interface ImageSection

Represents a range of memory used for a specific purpose.

Table 6.12. ImageSection M ethods

M ethods

getBaseAddress

public ImagePointer getBaseAddress()

Get the lowest address of memory in this section.

Returns
the lowest address of memory in this section

getSize

public long getSze()

Get the size of this contiguous image section as measured in bytes.

Returns
the size of this contiguous image section as measured in bytes

getName

public Sring getName()

Get the name of this section (e.g. ".text").

Returns

the name of this section (e.g. ".text"). Note that sections of the image
which have no specific name will receive a name synthesised by the
implementation. Thiswill never be null.

37

API Reference

M ethods

isExecutable

public boolean isExecutabl &)

Does this section have permission to allow the processor to attempt to
execute code?

Returns
true if this section is executable, false otherwise

Throws
DataUnavailable

isReadOnly

public boolean isReadOnly()

Isthis section read-only ?

Returns
true if write access to this section was disabled

Throws
DataUnavailable

isShared

public boolean isShared()

Is this section shared with other processes..

Returns
trueif this section is shared between processes

Throws
DataUnavailable

38

API Reference

interface ImageStackFrame

public interface |mageStackFrame

Represents a native stack frame

Table 6.13. ImageStackFrame M ethods

M ethods

getProcedureAddress public ImagePointer getProcedureAddress()

Get the address of the current instruction within the procedure being
executed.

Returns

the address of the current instruction within the procedure being executed,
or null if not available. Use this address with caution, asit is provided only
as abest guess. It may not be correct, or even within readable memory

Throws
CorruptDataException

getBasePointer public ImagePointer getBasePointer ()

Get the base pointer of the stack frame.

Returns
the base pointer of the stack frame

Throws
CorruptDataException

39

API Reference

M ethods

getProcedureName public Sring getProcedureName()

Returns a string describing the procedure at this stack frame.
I mplementations should use the following template so that procedure names
are reported consistently:

e |ibname(sourcefile)::entrypoint+<node></node>of f set

Any portion of the template may be omitted if it is not available
e €g0.

e systenB2(source.c)::WitForSingl ebj ect +14

e systenB2::WaitForSingl elbject-4

e (source.c)::WitForSingl eQoj ect

e :: Vit ForSingl elbject+14

o SystenB2+1404

e SystenB2:: TW ndow: : open(i nt, voi d*) +14

Returns

a string naming the function executing in this stack frame. If the nameis
not known for legitimate reasons, a synthetic name will be returned..

Throws
CorruptDataException

40

API Reference

interface ImageFactory

public interface ImageFactory

Thisinterfaceis used for classes which can produce instances of Image implementors.

Note that this interface forms the contract between the javax.tools.diagnostics.FactoryRegistry and

an implementation.

The methods on this interfface are only intended to be caled by the

javax.tools.diagnostics.FactoryRegistry

Table 6.14. ImageFactory M ethods

M ethods

getlmage

public Image getlmage(File imageFile)
Creates a new Image object based on the contents of imageFile.

Note that this method is only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Returns
an instance of Image

Parameters
imageFile afile with Image information, typically a corefile

Throws

| OException if unable to create an image from the
provided file

getimage

public Image getlmage(File imageFileFile metadata)
Creates a new Image object based on the contents of imageFile and metadata

Note that this method is only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Returns
an instance of Image

Parameters
imageFile afile with Image information, typically acorefile

metadata afile with additional Image information. Thisisan
implementation defined file

Throws

| OEXception if unable to create an image from the
provided file

41

API Reference

M ethods

getMajorVersion

public int getMajorVersion()
Fetch the mgjor version number

Returns
An integer corresponding to the APl major version number

getMinorVersion

public int getMinorVersion()

Fetch the minor version number

Returns
An integer corresponding to the APl minor version number

getM odificationL evel

public int getModificationLevel ()

Fetch the modification level

Returns
Aninteger corresponding to the APl modification level

getValidFileExtensions

public Sring getValidFileExtensions()

Returns an array of file extensions that the
javax.tools.diagnostics.FactoryRegistry can useto determineif an file can be
processed by this Image Factory implementation.

File extensions are the part of afile name after thelast '.".

Thereturned array is treated as a case insensitive collection of file
extensions.

Thereturned array is expected to contain at least one entry.

Note that this method is only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Returns
an array of case insensitive file extension names.

42

API Reference

M ethods

getJavaRuntime public JavaRuntime getJavaRuntime(Filefile)
Creates a new JavaRuntime object based on the contents of the file;

Note that this method is only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Returns
an instance of JavaRuntime

Parameters

file afile with JavaRuntime information

Throws

| OException if unable to create aruntime from the

provided file

class CorruptDataException

public CorruptDataException extends javax.tools.diagnosti cs.image.Diagnosti cCException

Used to indicate that corruption has been detected in the image.

Table 6.15. CorruptDataException Constructor Summary

Constructor

public CorruptDataException(CorruptData data)

Construct anew CorruptDataException for the specified corrupt data

Table 6.16. CorruptDataException Methods

M ethods

getCorruptData public CorruptData getCorruptData()

Get more info about the corrupted data

Returns
the CorruptData object

43

API Reference

interface ImageThread

public interface ImageThread

A low-level thread instance

Table6.17. ImageThread Methods

Methods

getlD public Sring getID()
Fetch aunique identifier for the thread. In many operating systems, threads
have more than one identifier (e.g. athread id, a handle, a pointer to VM
structures associated with the thread). In this case, one of these identifiers
will be chosen as the canonical one. The other identifiers would be returned
by getProperties()
Returns
aprocess-wide identifier for the thread (e.g. atid number)
Throws
CorruptDataException

getStackFrames public List getStackFrames()
Get the set of stack frames on this thread.
Returns
an iterator to walk the native stack framesin order from top-of-stack (that
is, the most recent frame) to bottom-of-stack. Throws DataUnavailable if
native stack frames are not available on this platform.
Throws
DataUnavailable I native stack frames are not available on

this platform

getStack Sections public List getStackSections()
Get the set of image sections which make up the stack.
Returns
a collection of ImageSections which make up the stack. On most platforms
this consists of a single entry, but on some platforms the thread's stack may
consist of non-contiguous sections

API Reference

Methods
getRegisters public List getRegisters()
Get the register contents.
Returns
an iterator to iterate over the state of the CPU registers when the image was
created. The collection may be empty if the register state is not available for
thisthread. If the CPU supports partia registers (e.g. AH, AL, AX, EAX,
RAX on AMD64), only the largest version of the register will be included
getProperties public Properties getProperties()

Get the OS-specific properties for this thread.

Returns

atable of OS-specific properties for this thread. Values which are
commonly availableinclude "priority" -- the priority of the thread "policy"
-- the scheduling policy of the thread

class DataUnavailable

public DataUnavailable extends javax.tool s.diagnosti cs.image.Diagnosti cException

This exception is used to indicate that data was requested which is not available on this system, or in thisimage.

Table 6.18. DataUnavailable Constructor Summary

Constructor

public DataUnavailable(String description)

Build exception with the given description
public DataUnavailable()

Build exception with no description

45

API Reference

interface ImagePointer

public interface | magePointer

Represents an address in image memory.

Table 6.19. ImagePointer Methods

M ethods

getAddress

public long getAddress()

Get the unwrapped address, represented as a 64-bit integer.

Returns

the unwrapped address, represented as a 64-bit integer Use caution when
comparing addresses, as some addresses may be negative. Note that on
segmented memory architectures, it may not be possible to represent al
addresses accurately as integers

getAddressSpace

public ImageAddressSpace getAddressShace()

Get the address space to which this pointer belongs.

Returns
the address space to which this pointer belongs

add

public ImagePointer add(long offset)

Build a new image pointer offset from this one by the given amount.

Returns
anew ImagePointer based at getAddress() + offset

Parameters
offset

isExecutable

public boolean isExecutable()

Isthe referenced location executable ?

Returns
true if this memory address is within an executable page

Throws
DataUnavailable

46

API Reference

M ethods

isReadOnly

public boolean isReadOnly()

Is the referenced location read only ?

Returns
true if write access to this memory address was disabled in the image

Throws
DataUnavailable

isShared

public boolean isShared()

|'s the referenced location shared ?

Returns
trueif this memory addressis shared between processes

Throws
DataUnavailable

getPointer At

public ImagePointer getPointer At(long index)

Get the value at the given offset from this pointer. To determine the number
of bytesto skip after this call to read the next value, use

| magePr ocess. get Poi nter Si ze()

Returns

the 32 or 64-bit pointer stored at getAddress() + index in the same address
space.

Parameters
index an offset (in bytes) from the current position

Throws
MemoryA ccessException if the memory cannot be read

CorruptDataException if the memory should bein the image, but is
missing or corrupted

47

API Reference

M ethods

getL ongAt

public long getLongAt(long index)

Get the value at the given offset from this pointer.

Returns
the 64-bit long stored at getAddress() + index

Parameters

index an offset (in bytes) from the current position

Throws
MemoryA ccessException if the memory cannot be read

CorruptDataException if the memory should bein theimage, but is
missing or corrupted

getlntAt

public int getIntAt(long index)
Get the value at the given offset from this pointer.

Returns
the 32-bit int stored at getAddress() + index

Parameters
index an offset (in bytes) from the current position

Throws
MemoryA ccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

48

API Reference

Methods
getShortAt public short getShortAt(long index)
Get the value at the given offset from this pointer.
Returns
the 16-bit short stored at getAddress() + index
Parameters
index an offset (in bytes) from the current position
Throws
MemoryA ccessException if the memory cannot be read
CorruptDataException if the memory should bein theimage, but is
missing or corrupted
getByteAt public byte getByteAt(long index)

Get the value at the given offset from this pointer.

Returns
the 8-bit byte stored at getAddress() + index

Parameters
index an offset (in bytes) from the current position

Throws
MemoryA ccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

49

API Reference

Methods
getFloatAt public float getFloatAt(long index)
Get the value at the given offset from this pointer.
Returns
the 32-bit float stored at getAddress() + index
Parameters
index an offset (in bytes) from the current position
Throws
MemoryA ccessException if the memory cannot be read
CorruptDataException if the memory should bein theimage, but is
missing or corrupted
getDoubleAt public double getDoubleAt(long index)
Get the value at the given offset from this pointer.
Returns
the 64-bit double stored at getAddress() + index
Parameters
index an offset (in bytes) from the current position
Throws
MemoryA ccessException if the memory cannot be read
CorruptDataException if the memory should be in the image, but is
missing or corrupted
equals public boolean equal s(Object obj)
Returns
True obj refersto the same Image Pointer in the image
Parameters
obj
hashCode public int hashCode()

50

API Reference

interface CorruptData

public interface CorruptData

This class is used to indicate that corruption has been detected in the image. It may indicate corruption of the
image file, or it may indicate that inconsistencies have been detected within the image file, perhaps caused by a
bug in the runtime or application. It may be encountered in two scenarios:

« within a CorruptDataException

* returned as an element from an Iterator

Any iterator injavax.diagnostics may implicitly include one or more CorruptDataobjectswithinthelist of objects

it provides. Normal data may be found after the CorruptData object if the javax.diagnostics implementation is
able to recover from the corruption.

Table 6.20. CorruptData M ethods

Methods

toString public Sring toSring()
Provides a string which describes the corruption
Returns
a descriptive string

getAddress public ImagePointer getAddress()

Return an address associated with the corruption. If the corruption is not
associated with an address, return null. If the corruption is associated with
more than one address, return the one which best identifies the corruption.

Returns
the address of the corrupted data

51

API Reference

interface ImageModule

public interface ImageModule

Represents a shared library loaded into the image, or the executable module itself

Table 6.21. ImageM odule M ethods

Methods
getName public Sring getName()
Get the file name of the shared library.
Returns
the file name of the shared library
Throws
CorruptDataException If the module is corrupt and the origina file
cannot be determined
getSections public List getSections()
Get the collection of sections that make up thislibrary.
Returns
acollection of sections that make up thislibrary
getSymbols public List getSymbols()
Provides a collection of symbols defined by the library. Thislist islikely
incomplete as many symbols may be private, symbols may have been
stripped from the library, or symbols may not by available in the image.
Returns
acollection of symbolswhich are defined by thislibrary.
getProperties public Properties getProperties()
Get the table of properties associated with this module.
Returns
atable of properties associated with this module. Values typically defined
in this table include "version" -- version information about the module
Throws
CorruptDataException

52

API Reference

interface ImageSymbol

public interface |mageSymbol

Represents a symbol defined in an ImageModule

Table 6.22. ImageSymbol M ethods

M ethods

getAddress public ImagePointer getAddress()

Get the address of this symbol in the image.

Returns
the address of this symbol in the image

getName public Sring getName()

Get the name of the symbol.

Returns
the name of the symbol

interface ImageRegister

53

API Reference

public interface | mageRegister

Represents the state of a CPU or FPU register

Table 6.23. ImageRegister M ethods

M ethods

getName public Sring getName()

Fetch the name of aregister. On some CPUs registers may have more than
one conventional name. Recommended names for some CPUs are provided
in the user guide.

Returns
the conventional name of the register

getValue public Number getValue()

Get the value for the register.

Returns

an integral or floating point type which contains the value for the register.
The returned value may be an instance of any subclass of Number. For
instance, on x86 architectures with MM X, the XMM registers will be
returned as Biglnteger instances

Throws
CorruptDataException

API Reference

package javax.tools.diagnostics.runtime

Definition of an abstract view of a managed runtime.
Runtimes are collections of software servicesthat together, provide a environment where an application program

can be executed. Most computer languages provide some sort of runtime. This package contains definitions that
are common to all runtime environments.

Table 6.24. I nterface Summary

Name Summary

ManagedRuntime A generic managed runtime instance.

Details

interface ManagedRuntime

public interface ManagedRuntime

A generic managed runtime instance. A Managed Runtime as against an "Unmanaged Runtime" is one where
the runtime takes an active role in the program execution. Common examples of managed runtimes are the Java
Virtual Machine or the .NET Common Language Runtime.

No class should implement this interface directly. This is an marker interface which is extended by specific
runtime interfaces. See javax.tools.diagnostics.runtime.java. JavaRuntime as an example of such a case.

Table 6.25. M anagedRuntime M ethods

Methods
getVersion public Sring getVersion()

Returns version data available for this runtime instance. The version
information is never null. The format of the version dataisimplementation
specific.

Returns

a string representing the available version information specific to the
implementation

Throws

CorruptDataException If the ManagedRuntime implementation is
unable to retrieve version data

55

API Reference

M ethods

getFullVersion public Sring getFullVersion()

Returns
astring representation of the version information for this runtime instance

Throws
CorruptDataException

package javax.tools.diagnostics.runtime.java

Definition of an abstract view of a Java runtime.

Implementations of the APl expose information about Java virtual machines with the

JavaRunti e

interface. The information about the following can be retrieved from JavaRuntimes:

JavaHeap Heaps.

JavaObject Objects.

JavaClassl oader Classloaders.

JavaClass Classes, including their JavaField fields and JavaM ethod methods.
JavaMonitor Monitors.

JavaThread Threads, including their JavaStackFrame stacks.

Table 6.26. | nterface Summary

Name Summary

JavaStackFrame Represents a Java stack frame.

Javal.ocation Represents a point of execution within a Java method

JavaHeap Represents a single heap of managed abjects.

JavaReference Represents a Javareference.

JavaRuntime Represents an instance of aJava Virtua Machine This interface defines

attributes and features common across real implementation of the Java
Virtual Machine.

JavaObject Represents a Java object or array.

JavaClassl oader Represents an internal ClassL oader structure within a Java Virtual

M achine instance.

JavaVMInitArgs This class models the JavaV MInitArgs C structure passed to

JNI_CreateJavaVM to create this Java Virtual Machine Typically the
options passed to the VM are similar but necessarily identical to these
used to invoke the Java Virtual Machine from a command line.

56

API Reference

Name Summary

JavaM ember Abstract interface which both JavaField and JavaMethod inherit from.

JavaMonitor Represents the underlying monitor used by a Java Virtual Machine to
manage locking and synchronization of a Java object.

JavaM ethod Represents a method or constructor in a class

JavaField Represents a field declaration.

JavaVMOption This class models the JavaV M Option C structures passed to the INI
invocation API entry point INI_CreateJavaVM used to create a Java
Virtua Machine.

JavaClass Represents a Java class.

JavaVariable Representation of aJava Variable

JavaThread Represents a Java thread.

Details

interface JavaStackFrame

public interface JavaSackFrame

Represents a Java stack frame.

Table 6.27. JavaStackFrame M ethods

M ethods

getBasePointer

public ImagePointer getBasePointer ()
Get a pointer to the base of this stack frame within memory.

The layout of a

JavaSt ackFr ame

is implementation specific.

Returns
the base pointer of the stack frame

Throws
CorruptDataException

57

API Reference

M ethods

getL ocation

public Javalocation getLocation()

Returns the Javal ocation that represents the location of this

JavaSt ackFr ame

within the Java program.

Returns
alocation object describing where the frame is executing.

Throws
CorruptDataException

getHeapRoots

public List getHeapRoots()
A list of references to objects and classes from this stack frame.

Returns the references to object and classes this Java Virtual Machine's
implementation considers as being kept alive by this Java stack frame. As
well as references from local variables and operations stack entries, this may
also include areference to the Java frame's class or to an object this stack
frame is keeping alive through holding its monitor.

Returns
alist of JavaReferences

getVariable

public Object getVariable(int dlot)
Gets the value of avariable from a stack frame.

Returns a JavaObject for an object reference,
nul |

for anull object reference. Primitives are returned as boxed primitives.
CorruptDataException is thrown if object referenceisincorrect, or if the
float or double are set to invalid values.

Parameters

slot - the numerical local variable slot number to retrieve.
Throws

DataUnavailable if this method is not supported or if stack not

in correct state to return variables.
IndexOutOfBoundsException if an invalid slot number is passed.

58

API Reference

M ethods

getVariables

public List getVariables()
Gets all variables from the stack frame.

Returns ajava.util.List containing the available JavaV ariable JavaV ariables.
While the method JavaM ethod#getV ariables() will return all local variables
for amethod, this method will return only those variables that are visible at
the point of execution for this stack frame.

equals

public boolean equal s(Object obj)

Returns
Trueif the given object refers to the same JavaStackFrame in the image

Parameters

obj

hashCode

public int hashCode()

interface JavalLocation

59

API Reference

public interface JavalLocation

Represents a point of execution within a Java method

Table 6.28. JavalL ocation M ethods

M ethods

getAddress

public ImagePointer getAddress()

Fetches the absolute address of the code which this |ocation represents.
This pointer will be contained within one of the segments returned by
getBytecodeSections() or getCompiledSections() of the method returned by
getMethod().

null may be returned, particularly for methods with no bytecode or compiled
sections (e.g. some native methods)

Although an offset into the method may be calculated using this pointer,
caution should be exercised in attempting to map this offset to an offset
within the original classfile. Various transformations may have been applied
to the bytecodes by the VM or other agents which may make the offset
difficult to interpret.

For native methods, the address may be meaningless.

Returns
the address in memory of the managed code

Throws

CorruptDataException if the underlying dataisin an unexpected
State

getLineNumber

public int getLineNumber ()

Get the line number.

Returns

the line number, if available, or throws DataUnavailableif it is not
available Line numbers are counted from 1

Throws

DataUnavailable if the line number datais not available for
this location

CorruptDataException if the underlying dataisin an unexpected
state

60

API Reference

M ethods

getFilename

public Sring getFilename()

Get the source file name.

Returns

the name of the sourcefile, if available, or throws DataUnavailableif it is
not available

Throws

DataUnavailable if the source file name is unavailablein the
core

CorruptDataException if the underlying dataisin an unexpected
state

getCompilationL evel

public int getCompilationLevel ()

Get the compilation level for thislocation. Thisis an implementation
defined number indicating the level at which the current location was
compiled. O indicates interpreted. Any positive number indicates some level
of JT compilation. Typically, higher numbers indicate more aggressive
compilation strategies

For native methods, a non-zero compilation level indicates that some
level of JIT compilation has been applied to the native cal (e.g. a
custom native call stub). To determine if the method is native, use
getMethod().getModifiers().

Returns
the compilation level

Throws

CorruptDataException if the underlying dataisin an unexpected
state

getM ethod

public JavaMethod getMethod()

Get the method which contains the point of execution.

Returns
the method which contains the point of execution

Throws

CorruptDataException if the underlying dataisin an unexpected
state

61

API Reference

M ethods

toString

public String toString()

Returns
A string representing the location as it would be seen in a Java stack trace

equals

public boolean equal s(Object obj)

Returns
Trueif the given object refersto the same Java Location in the image

Parameters
obj

hashCode

public int hashCode()

interface JavaHeap

public interface JavaHeap

Represents a single heap of managed objects. The heap can be viewed as an unordered collection of JavaObjects
or as a region of storage within the Java Virtual Machine instance. The heap commonly contains JavaObject
instances that are reachable by navigating chains of JavaReference These references can be obtained from the
JavaRuntimettgetHeapRoots() method. A heap can contain instances which cannot be reached by the use of

JavaReference

Table 6.29. JavaHeap Methods

M ethods

getSections

public List getSections()

Get the set of memory regions that represent the memory layout of the heap.
The actual make up of thislist isimplementation specific. The returned list
follows the standard semantics for javax.tool s.diagnostics collections. The
returned value is never null but can be an empty list.

Returns
alist of ImageSection instances

getName

public Sring getName()

Get a brief textual description of this heap. The value returned is
implementation specific. The returned value is never null.

Returns
abrief textual description of this heap

62

API Reference

M ethods

getObjects

public List getObjects()
Get the set of objects which are stored in this heap.

Returns

alist of JavaObject objects which are stored in this heap The returned list
follows the standard semantics for javax.tools.diagnostics collections. The
returned valueis never null but can be an empty list.

equals

public boolean equal S(Object obj)

Returns
trueif the given object refers to the same Java Heap in the image

Parameters
obj

hashCode

public int hashCode()

interface JavaReference

public interface JavaReference

Represents a Java reference.

A Javareferenceis atraceable relationship between two objects or between aroot and a Java object.

References are used by Garbage Collection systems to identify objects that can be reclaimed.

Table 6.30. JavaReference M ethods

Methods
getRootType public int getRootType()

Get the root type, as defined in the VMTI specification.

Returns

an integer representing the root type, see HEAP_ROOT _ statics above.
getReferenceType public int getReferenceType()

Get the reference type, as defined in the WMTI specification.

Returns

an integer representing the reference type, see REFERENCE _ statics
above.

63

API Reference

Methods

getReachability public int getReachability()
Get the reachability of the target object viathis specific reference.
Returns
an integer representing the reachability, see REACHABILITY_ statics
above.

getDescription public Sring getDescription()

Get a string describing the reference type.

Users should not depend on the contents or identity of this string. e.g. "JINI
Weak global reference”, "Instance field 'MyClass.value™, "Constant pool
string constant”

Returns
a String describing the reference type

isObjectReference

public boolean i sObjectReference()

Check to seeif this reference points to an object in the heap

Returns
trueif the target of this root is an object

Throws
DataUnavailable if the requested information is not available
CorruptDataException isthe underlying dataisin an unexpected

state

isClassReference

public boolean isClassReference()

Check to seeiif this reference pointsto aclass.

Returns
true if the target of thisroot isaclass

Throws
DataUnavailable if the requested information is not available
CorruptDataException isthe underlying dataisin an unexpected

state

API Reference

Methods
getTarget public Object getTarget()
Get the object referred to by this reference.
Returns
a JavaObject or a JavaClass
Throws
DataUnavailable if the requested information is not available
CorruptDataException isthe underlying dataisin an unexpected
State
getSour ce public Object getSource()

Get the source of this referenceif available.

Returns
a JavaClass, JavaObject, JavaStackFrame, JavaThread or null if unknown

Throws
DataUnavailable if the requested information is not available
CorruptDataException isthe underlying dataisin an unexpected

state

interface JavaRuntime

65

API Reference

public interface JavaRuntime

Represents an instance of a Java Virtual Machine This interface defines attributes and features common across
real implementation of the Java Virtual Machine. Not all of these characteristics are defined by the Java Virtual
Machine Specification Notable additions beyond the VM specification include Garbage Collection and access
to the contents of the Heap or Heaps. Since thisinterface defines aview of the Java Runtime that is beyond that
seen by the Java programmer during program execution it is necessarily more detailed.

Table 6.31. JavaRuntime M ethods

M ethods

getJavavM

public ImagePointer getJavaVM()

Get the object that represents the virtual machine

Returns

the address of the JavaVM structure which represents this VM instance in
JINI

Throws
CorruptDataException

getJavaVMInitArgs

public JavaVMInitArgs getJavaVMInitArgs()

Fetch the JavaV MInitArgs which were used to create this VM. See
JNI_CreateJavaVM in the NI Specification for more details. A valid object
is returned or an exception is thrown.

Returns
the JavaVv MInitArgs which were used to create this VM.

Throws
DataUnavailable if the arguments are not available
CorruptDataException if the implementation was unexpectedly

unable to retrieve the data

66

API Reference

M ethods

getJavaClassL oaders

public List getJavaClassLoaders()
Get the set of class |loaders available in this Java Virtua Machine instance.

Available in this context means class loaders that are participating in the
class loader hierarchy. All class loaders are returned including any defined
by the Java Virtual machine instance itself.

Any structural relationships between class loadersin thislist is not exposed.
Recreation of the class loader graph within a Java Virtual Machine instance
is beyond the scope of the API.

At least one class loader must be returned in the resulting list.

Returns

ajava.util.List of all of the class |oaders within this Java Virtual Machine
instance

getThreads

public List getThreads()

Get the set of Java Threads that have been started java.lang.Thread#start() in
this Java Virtual Machine instance. This method does not return all instances
of javallang.Thread contained within the system. Only threads that have
been started and have not yet stopped or exited are returned. Threads may
not be in an active state when returned by this method. The returned list
follows the standard semantics for javax.tool s.diagnostics collections The
returned list is never null although it can be empty.

Returns
ajavauutil.List of the JavaThreads in the runtime

getCompiledM ethods

public List getCompiledMethods()

Get the set of JavaM ethod objects that have been compiled. Compiled
methods are methods that have been converted into native code by the Java
Virtual Machine or related Just In Time Compiler There is no expectation
that any method has been compiled. The returned list could be empty.
However any JavaM ethod reachabl e though the API which would return
anon empty list for calls to JavaM ethod#getCompil edSections() must be
contained within the list returned by this method. The returned list follows
the standard semantics for javax.tool s.diagnostics collections

Returns
ajavautil.List of all of the JavaMethods in the JavaRuntime which have

been compiled.

67

API Reference

Methods

getMonitors public List getMonitors()
Provides access to the collection of monitors used in the Java Virtua
Machine. This collection can include monitors associated with managed
objects (e.g. object monitors) and monitors associated with Java Virtua
Machine internal control structures (e.g. raw monitors). Raw monitors are
implementation specific. The returned list follows the standard semantics for
javax.tools.diagnostics collections. The returned list is never null but could
be empty.
Returns
alist of monitors

getHeaps public List getHeaps()
Get the set of heaps known by the Java Virtual Machine There may be
multiple heaps within a Java Virtual Machine, for instance a generational
heap and a class heap. Heaps may be specific to this Java Virtual Machine
instance, or may be shared between multiple Java Virtual Machine
instances.
The returned list follows the standard semantics for javax.tools.diagnostics
collections.
The returned list is never null and will always contain at least one JavaHeap
object
Returns
alist for al of the Java heaps within this runtime.

getHeapRoots public List getHeapRoots()

Get the complete set of object and class roots known to the Java Virtual
Machine

Returns

alist of JavaReferences representing the known global heap roots

within this runtime. The returned list follows the standard semantics for
javax.tools.diagnostics collections. The returned list is never null but can be
empty.

68

API Reference

M ethods

getTraceBuffer

public Object getTraceBuffer (String buffer Namebool ean for matted)

Returns
an implementation specific result, depending on the parameters

Parameters
bufferName a String naming the buffer to be fetched

formatted true if formatting should be performed on the buffer, or
falseif the raw buffer contents should be returned

Throws
CorruptDataException

getObjectAtAddress

public JavaObject getObjectAtAddress(ImagePointer address)

Getsthe object located at address

addr ess

in the heap.

Returns
the JavaObject instance representing the located object.

Parameters

addr the ImagePointer instance representing the start address of
object in the heap;

Throws

Illegal ArgumentException if addressis null, outside the heap's
boundaries or if it doesn't point to the start
location of an object;

MemoryA ccessException if addressisisin the heap but it's not
accessible from the dump;

CorruptDataException if any data needed to build the returned
instance of JavaObject is corrupt.
DataUnavailable if any data needed to build the returned

instance of JavaObject isnot available.

69

API Reference

M ethods

equals

public boolean equal s(Object obj)

Returns
trueif the given object refers to the same Java Runtime in the image

Parameters

obj

hashCode

public int hashCode()

getSource

public File getSource()

Returns the File used as source for the creation of this Runtime. ThisFile
will be equal to the file presented to the FactoryRegistry when this runtime
(or its parent Image) was created.

Returns
File object

interface JavaObject

public interface JavaObject

Represents a Java object or array.

Array elements can be retrieved using the arraycopy() method. Object instance fields can be retrieved using the

get*()

methods in JavaField such as JavaFiel di#get(JavaObject). The JavaField objects can beretrieved from an object's
JavaClass using JavaClasst#getDeclaredFiel ds().

Table 6.32. JavaObject Methods

M ethods

getJavaClass

public JavaClass getJavaClass()
Get the JavaClass instance which represents the class of this object.

This method never returns null, al objects have a class. The JavaClass
returned might be synthetic for array types.

Returns
the JavaClass instance which represents the class of this object.

Throws
CorruptDataException

70

API Reference

M ethods

isArray

public boolean isArray()

Returns true if this JavaObject represents an array.

Returns
trueif this JavaObject represents an array.

Throws
CorruptDataException

getArraySize

public int getArraySze()
Get the number of elementsin this array.

Thisisequivalent to calling
array. | ength

in Java, where

array

isan array reference.

Returns
the number of elementsin thisarray.

Throws
CorruptDataException
Illegal ArgumentException if the object is not an array.

71

API Reference

M ethods

arraycopy

public void arraycopy(int srcStartObject dstint dstStartint length)
Copies data from the array this JavaObject represents into an array.

The dst object must be an array of the appropriate type -- a primitive type
array for base types, or a JavaObject array for reference arrays.

Parameters

srcStart index in the receiver to start copying from.

dst the destination array.

dstStart index in the destination array to start copying into.
length the number of elements to be copied.

Throws

CorruptDataException

MemoryA ccessException
NullPointerException if dstisnull.

Illegal ArgumentException if the object isnot an array, or if dst isnot an
array of the appropriate type.

IndexOutOfBoundsException if srcStart, dstStart, or length are out of
bounds in either the JavaObject or the
destination array.

getSize

public long getSze()

Get the number of bytes of memory occupied by this object.

Returns

the number of bytes of memory occupied by this object. The memory may
not necessarily be contiguous.

Throws
CorruptDataException

72

API Reference

M ethods

getHashcode

public long getHashcode()
Fetch the basic hash code for the abject.

Thisis the hash code which would be returned if a Javathread had requested
it. Typicaly the hash codeis based on the address of an object, and may
change if the object is moved by a garbage collect cycle.

Returns
the basic hash code of the object in the image.

Throws
DataUnavailable if the hash code cannot be determined.
CorruptDataException

getPersistentHashcode

public long getPersistentHashcode()

Fetch the basic hash code of the object in the image. This hash code is
guaranteed to be persistent between multiple snapshots of the same Image. If
the hash code cannot be determined, or if the hash code for this object could
change between snapshots, an exception is thrown.

If the VM uses a 'hasBeenHashed' hit, the value of this bit can be inferred by
calling getPersistentHashcode(). If the persistent hash code is not available,
then the 'hasBeenHashed' bit has not been set, and the hash of the object
could change if the object moves between snapshots

Returns
the basic hash code of the object in the image

Throws

DataUnavailable if ahash code cannot be determined, or if the
hash code could change between successive
snapshots

CorruptDataException

73

API Reference

Methods
getlD public ImagePointer getID()
The ID of an object is aunique address is memory which identifies the
object.
Itis probable that an object's address will change during the lifetime of a
JavaVirtual Machine because of the operations of the garbage collector.
Other mechanisms for uniquely identifying objects should be used when
comparing dumps.
The data at this memory isimplementation defined. The object may be non-
contiguous. Portions of the object may appear below or above this address.
Returns
the runtime-wide unique identifier for the object.
getSections public List getSections()
Returns the sections that this object occupies in memory.
These sections include the object's header and the data in the object.
In certain alocation strategies, an object's header and data may be allocated
contiguously. In this case, this method may return an iterator for asingle
section.
In other schemes, the header may be separate from the data or the data may
be broken up into multiple regions. Additionally, this function does not
guarantee that the memory used by this object is not also shared by one or
more other objects.
The contents of the image sections are implementation specific, as so are
undefined here.
Returns
acollection of sections that make up this object.
getReferences public List getReferences()

Get the set of references from this object.

These references will include at least the object's references to its class, and
any references from instance fields to other objects and classes, or array
elements references to other objects.

Returns
an List of JavaReferences.

74

API Reference

Methods
getHeap public JavaHeap getHeap()
Gets the heap where this object is located.
A JavaHeap will always be returned if this object could be retrieved by
JavaHeap#getObject(), otherwise DataUnavailable is thrown.
Returns
the JavaHeap instance representing the heap where this object is stored in
memory.
Throws
CorruptDataException if the heap information for this object is
corrupt.
DataUnavailable if the heap information for this object is not
available.
equals public boolean equal s(Object obyj)
Returns
Trueif the given object refers to the same Java Object in the image
Parameters
obj
hashCode public int hashCode()

75

API Reference

interface JavaClassLoader

public interface JavaClassLoader

Represents an internal ClassLoader structure within a Java Virtual Machine instance. For most ClassL oaders
there is a corresponding java.lang.ClassL oader instance within with JavaRuntime. For primordial class |oaders
such as the bootstrap class loader, there may or may not be a corresponding java.lang.ClassL oader instance.

Since Java does not define any strict inheritance structure between class loaders, there are no APIs for
inspecting 'child' or 'parent’ class loaders. This information may be inferred by inspecting the corresponding

javalang.ClassL oader instance:

pseudo javacode example

JavaCl assLoader | oader;

JavaObj ect instance=l oader. get Ovj ect ();
String cl assLoader Nane=i nst ance. get JavaC ass(). get Nanme();

Table 6.33. JavaClassL oader M ethods

M ethods

getDefinedClasses

public List getDefinedClasses()

Get the set of classes which are defined in this JavaClassLoader. Calling
the JavaClasstgetClassL oader() method on objects returned in thislist will
return this JavaClassL oader

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned value is never null but can be an empty list.

Returns
an list of classes which are defined in this JavaClassL oader

getCachedClasses

public List getCachedClasses()

When a ClassL oader successfully delegates a findClass() request to another
ClassL oader, the result of the delegation must be cached within the internal
structure so that the Java Virtual Machine does not make repeated requests
for the same class.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned value is never null but can be an empty list.

Returns

alist of classes which are defined in this JavaClassL oader or which were
found by delegation to other JavaClassL oaders

76

API Reference

M ethods

findClass

public JavaClass findClass(String name)

Find a class by name within this class loader. The class may have been
defined in this class loader, or this class |oader may have delegated the load
to another class loader and cached the result.

The form of the name presented to this method should be as follows

[packagenanepart / ...] (classnane) [$innerclassnane ...]

Examples

» Tofind the JavaClass that represents "javalang.String" use
findClass("javallang/String™)

» Tofind the JavaClass that represents "Foo.InnerClass.InnerinnerClass” in
the default package use findClass("' Foo$l nnerClass$l nnerlnnerClass")

 To find the JavaClass that represents "java.util.Map.Entry use
findClass("java/util/Map$Entry")

Returns
the JavaClass instance, or null if it is not found

Parameters

name of the classto find. Packages should be separated by '/
instead of .’

Throws

CorruptDataException if the underlying dataisin an unexpected
state

getObject

public JavaObject getObject()

Get the java.lang.ClassL oader instance (represented by a JavaObject
associated with this class loader. If thereis no associated class |oader,
for example the system class loader , then null will be returned. Further
examination of the returned object is implementation specific.

Returns
a JavaObject representing the java.lang.ClassL oader instance

Throws

CorruptDataException if the underlying dataisin an unexpected
State

77

API Reference

Methods
equals public boolean equal s(Object obj)
Returns
Trueif the given object refers to the same Java Class Loader in the image
Parameters
obj
hashCode public int hashCode()

interface JavaVMInitArgs

public interface JavavVMInitArgs
This class models the JavavVMiInitArgs C structure passed to JNI_CreateJavaVM to create this Java Virtual

Machine Typically the options passed to the VM are similar but necessarily identical to these used to invoke
the Java Virtual Machine from acommand line.

Table 6.34. JavavVMInitArgs M ethods

Methods
getVersion public int getVersion()

Fetch the INI version from the JavaV MInitArgs structure used to create this
JavaVirtual Machine. See the INI specification for the meaning for this
field.

Returns
the NI version

Throws
DataUnavailable
CorruptDataException

78

API Reference

M ethods

getlgnoreUnrecognized

public boolean getlgnoreUnrecogni zed()

Fetch the ignoreUnrecognized field from the JavaV MInitArgs structure
used to create this Java Virtual Machine. See the JNI specification for the
meaning for thisfield.

Returns

true if ignoreUnrecognized was set to a non-zero value when the Java
Virtual Machine was invoked

Throws
DataUnavailable
CorruptDataException

getOptions

public List getOptions()

Fetch the options used to start this Java Virtual Machine, in the order they
were originally specified. The returned list follows the standard semantics
for javax.tools.diagnostics collections The order of the options returned in
the list is the same as that passed to the to JINI_CreateJavaV M function. A
list is aways returned but could be empty

Returns
an List of JavavMOptions

Throws
DataUnavailable

79

API Reference

interface JavaMember

public interface JavaMember

Abstract interface which both JavaField and JavaM ethod inherit from. It defines APlswhich are common to both
types of members. It is modelled on java.lang.reflect. Member

Table 6.35. JavaMember Methods

Methods
getM odifiers public int getModifiers()
Get the set of modifiers for thisfield or method - a set of bits The
values for the constants representing the modifiers can be obtained from
javalang.reflect. Modifier.
Returns
the modifiers for this field or method.
Throws
CorruptDataException if the underlying dataisin an unexpected
state
getDeclaringClass public JavaClass getDeclaringClass()
Get the class which declares this field or method
Returns
the JavaClass which declared this field or method
Throws
CorruptDataException if the underlying dataisin an unexpected
State
DataUnavailable if there is no declaring class available
getName public Sring getName()
Get the name of the field or method
Returns
the name of the field or method
Throws
CorruptDataException if the underlying dataisin an unexpected
state

80

API Reference

Methods
getSignature public Sring getSgnature()
Get the signature of the field or method
Returns
the signature of the field or method. e.g. "(Ljava/lang/String;)V*"
Throws
CorruptDataException if the underlying dataisin an unexpected
state
equals public boolean equal s(Object obj)
Returns
Trueif the given object refers to the same Java Member in the image
Parameters
obj
hashCode public int hashCode()

interface JavaMonitor

public interface JavaMonitor

Represents the underlying monitor used by a Java Virtual Machine to manage locking and synchronization of
aJava object.

The underlying monitor is implementation specific. Some implementations may choose to use their monitor
implementations to control access to Java Virtual Machine resources that are not objects. In such cases,
getObject() will return null.

Java programmers use the synchronized modifier on methods and the synchronized block within methods
to control simultaneous access to Java objects. Java uses monitors for this synchronization, which can be
implemented using a variety of techniques. The JavaMonitor class presents the simple monitor abstraction that
allows the caller to determine:

» Which thread currently owns the monitor

» Which threads are waiting to be woken after they have gotten ownship of the monitor and relinquished it,
normally within Object.wait() within a synchronized block or method.

» The threads that waiting to get ownership of the monitor. These are typically threads waiting to enter a
synchronized block or method.

This API presents only what exists at the Java Virtual Machine bytecode level. The locking facilities provided
by the java.util.concurrent.lock package are expected to be implemented on top of ordinary Java monitors.

81

API Reference

Table 6.36. JavaM onitor M ethods

M ethods

getObject

public JavaObject getObject()

Get the object associated with this monitor. Not all JavaMonitors will have
objects, as there may be JavaMonitors that are used to control access to
internal Java Virtual Machine resources ("Raw" monitors).

Returns
the Java object associated with this monitor, or null.

getName

public Sring getName()
Get the name of a monitor.

For monitors not associated with object ("raw" monitors), it is expected

that this method will return a descriptive name that is meaningful to the
JavaVirtual Machine implementation. For example "Heap lock" might be a
monitor controlling exclusive access to the Java heap.

For objects, the expectation is that the name will uniquely identify the
object the monitor is associated with. Thisis not expected to necessarily be
consistent between different dumps of the same JVM.

Returns
the name of the monitor (never null)

Throws
CorruptDataException

getOwner

public JavaThread getOwner ()

Get the thread which currently owns the monitor. This may be null if the
monitor is not owned.

Returns
the owner of the monitor, or null if the monitor is not owned

Throws
CorruptDataException

82

API Reference

M ethods

getEnter Waiters

public List getEnterWaiters()
Get the set of threads waiting to enter the monitor.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned value is never null but can be an empty list.

Returns
alist of threads waiting to enter this monitor

getNotifyWaiters

public List getNotifyWaiters()

Get the set of threads waiting to be notified on the monitor. They are usually
threads in the java.lang.Object#wait() method.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned value is never null but can be an empty list.

Returns
alist of threads waiting to be notified on this monitor.

getiD

public ImagePointer getID()

Get the identifier for this monitor.

Returns
The pointer which uniquely identifies this monitor in memory.

equals

public boolean equal S(Object obj)

Returns
true if the given object refers to the same Java Monitor in the image

Parameters
obj

hashCode

public int hashCode()

83

API Reference

interface JavaMethod

public interface JavaMethod

Represents a method or constructor in aclass

Table 6.37. JavaM ethod M ethods

M ethods

getBytecodeSections

public List getBytecodeSections()
Get the set of ImageSections containing the bytecode of this method.

Each ImageSection contains data (usually bytecodes) used in executing this
method in interpreted mode.

The collection may be empty for native methods, or pre-compiled methods.

Typically, the collection will contain no more than one section, but thisis
not guaranteed.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

Thereturned list is never null but could be empty.

Returns
alist of ImageSections.

getCompiledSections

public List getCompiledSections()
Get the set of ImageSections containing the compiled code of this method.

Each ImageSection contains data (usually executable code) used in
executing this method in compiled mode.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns
alist of ImageSections.

API Reference

M ethods

getVariables

public List getVariables()
An experimental addition to the API.
Get the set of JavaVariable objects

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

Thereturned list is never null but could be empty.

Returns
List of JavaVariable objects available

equals

public boolean equal s(Object obj)

Returns
Trueif the given object refers to the same JavaMethod in the image

Parameters
obj

hashCode

public int hashCode()

interface JavaField

85

API Reference

public interface JavaField
Represents afield declaration. It is modelled on javalang.reflect.Field

Table 6.38. JavaField M ethods

M ethods

get public Object get(JavaObject object)
Get the contents of afield of an Object.

Returns

a JavaObject instance for reference type fields, an instance of a subclass
of Number, Boolean, or Character for primitive fields, or null for null
reference fields.

Parameters
object to fetch the field from. Ignored for static fields. Thisfield
must be declared in the object's class or in a superclass

Throws

CorruptDataException if the underlying dataisin an unexpected
State

MemoryA ccessException

NullPointerException if thefield isaninstance field, and object is
null

Illegal ArgumentException if the specified object is not appropriate for
thisfield

86

API Reference

Methods
getBoolean public boolean getBool ean(JavaObject object)
Get the contents of a boolean field
Returns
the field contents
Parameters
object to fetch the field from. Ignored for static fields.
Throws
CorruptDataException if the underlying dataisin an unexpected
State
MemoryA ccessException
NullPointerException if thefield isan instance field, and object is
null
Illegal ArgumentException if the specified object is not appropriate for
thisfield, or if the field is not a boolean.
getByte public byte getByte(JavaObject object)

Get the contents of abytefield

Returns
the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying dataisin an unexpected
State

MemoryA ccessException

NullPointerException if thefieldisan instance field, and object is
null

Illegal ArgumentException if the specified object is not appropriate for
thisfield, or if the type of the field cannot be
converted to byte

87

API Reference

Methods
getChar public char getChar(JavaObject object)
Get the contents of a char field
Returns
the field contents
Parameters
object to fetch the field from. Ignored for static fields.
Throws
CorruptDataException if the underlying dataisin an unexpected
State
MemoryA ccessException
NullPointerException if thefield isan instance field, and object is
null
Illegal ArgumentException if the specified object is not appropriate for
thisfield, or if the type of the field cannot be
converted to char
getDouble public double getDouble(JavaObject object)

Get the contents of adouble field or of another primitive field whose typeis
convertible to double viaawidening conversion.

Returns
the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying dataisin an unexpected
State

MemoryA ccessException

NullPointerException if thefieldisan instance field, and object is
null

Illegal ArgumentException if the specified object is not appropriate for
thisfield, or if the type of the field cannot
be converted to double via awidening
conversion

88

API Reference

Methods
getFloat public float getFloat(JavaObject object)
Get the contents of afloat field or of another primitive field whose typeis
convertible to float via awidening conversion.
Returns
the field contents
Parameters
object to fetch the field from. Ignored for static fields.
Throws
CorruptDataException if the underlying dataisin an unexpected
State
MemoryA ccessException
NullPointerException if thefield isaninstance field, and object is
null
Illegal ArgumentException if the specified object is not appropriate for
thisfield, or if the type of the field cannot be
converted to float via awidening conversion
getint public int getlnt(JavaObject object)

Get the contents of an int field or of another primitive field whose typeis
convertible to int via a widening conversion.

Returns
the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying dataisin an unexpected
State

MemoryA ccessException

NullPointerException if thefieldisan instance field, and object is
null

Illegal ArgumentException if the specified object is not appropriate for
thisfield, or if the type of the field cannot be
converted to int viaawidening conversion.

89

API Reference

Methods
getLong public long getLong(JavaObject object)
Get the contents of along field or of another primitive field whose typeis
convertible to long via awidening conversion.
Returns
the field contents
Parameters
object to fetch the field from. Ignored for static fields.
Throws
CorruptDataException if the underlying dataisin an unexpected
State
MemoryA ccessException
NullPointerException if thefield isaninstance field, and object is
null
Illegal ArgumentException if the specified object is not appropriate for
thisfield, or if the type of the field cannot be
converted to long via awidening conversion.
getShort public short getShort(JavaObject object)

Get the contents of ashort field or of another primitive field whose type is
convertible to short via a widening conversion.

Returns
the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying dataisin an unexpected
State

MemoryA ccessException

NullPointerException if thefieldisan instance field, and object is
null

Illegal ArgumentException if the specified object is not appropriate
for thisfield, or if the type of the field
cannot be converted to short viaawidening
conversion.

90

API Reference

Methods
getString public Sring getString(JavaObject object)
Get the contents of a string field
Returns
a String representing the value of the String field. Note that the instance
returned can be null if the field was null in object.
Parameters
object to fetch the field from. Ignored for static fields.
Throws
CorruptDataException if the underlying dataisin an unexpected
State
MemoryA ccessException
Illegal ArgumentException if the specified field is not a String
NullPointerException if thefieldisan instance field, and object is
null
equals public boolean equal s(Object obyj)
Returns
Trueif the given object refersto the same Java Field in the image
Parameters
obj
hashCode public int hashCode()

91

API Reference

interface JavaVMOption

public interface JavaVMOption

This class models the JavaVMOption C structures passed to the JNI invocation APl entry point
JNI_CreateJavaVM used to create a Java Virtual Machine. Each JavaV M Option consists of two components :

1. an optionString string, used to identify the option.

2. an extralnfo pointer, used to pass additional information. This component is usually null.

Table 6.39. JavavM Option Methods

Methods
getOptionString public Sring getOptionSring()

Fetch the optionString component of the option.

Returns
a string representing the optionString. Thisis never null.

Throws
DataUnavailable
CorruptDataException

getExtralnfo public ImagePointer getExtralnfo()

Fetch the extralnfo component of this option.

Returns
the pointer value from the extralnfo (usually null).

Throws
DataUnavailable
CorruptDataException

92

API Reference

interface JavaClass

public interface JavaClass
Represents a Java class.

A Java Class can have fields and methods. It is a shallow model of aloaded class file or specia types such as
array types or primitive typesin the Java Virtual Machine.

Table 6.40. JavaClass M ethods

Methods
getObject public JavaObject getObject()

Fetch the java.lang.Class object associated with this class.

In some implementations this may be null if no abject has been created to
represent this class, or if the classis synthetic.

Returns
the java.lang.Class object associated with this class

Throws

CorruptDataException if the underlying dataisin an unexpected
state

getClassL oader public JavaClasslLoader getClasslLoader ()

Fetch the class |oader associated with this class. Classes defined in the
bootstrap class loader (including classes representing primitive types or
void) will always return a JavaClassL oader representing the bootstrap
class loader. This asymmetry with java.lang.Class#getClassL oader() is
intentional.

Returns
the JavaClassL oader in which this class was defined

Throws

CorruptDataException if the class loader for this class cannot be
found (a class cannot exist without a loader
so this implies corruption)

93

API Reference

M ethods

getName

public Sring getName()

Get the name of the classin aform that follows the
javalang.ClasstgetName() definition.

This method will always return avalid class name.

Returns
the name of the class

Throws

CorruptDataException if the underlying dataisin an unexpected
state

getSuper class

public JavaClass getSuperclass()
Get the super class of this class.
Will return the superclass of this class or null if no superclass exists.

For JavaClass instances representing interfaces, java.lang.Object, primitive
types (int,boolean,char etc) and void, calling this method will return null.

Returns
the immediate superclass of this class, or null if this class has no superclass.

Throws

CorruptDataException if the underlying dataisin an unexpected
State

getlnterfaces

public List getInterfaces()

Get the set of names of interfaces directly implemented by the class
represented by this JavaClass.

Some JVM implementations may choose to load interfaces|azily, so only
the names are returned.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

alist of the names of interfaces directly implemented by this class.

94

API Reference

Methods
getM odifiers public int getModifiers()
Return the Java language modifiers for this class.
The modifiers are defined by the VM Specification.
Note that, for inner classes, the actual modifiers are returned, not the
synthetic modifiers. For instance, a classwill never have its 'protected'
modifier set, even if the inner class was a protected member, since
‘protected’ is not alegal modifier for aclassfile.
Returns
the modifiersfor this class
Throws
CorruptDataException if the underlying dataisin an unexpected
State
iSArray public boolean isArray()
This method returnstrue if the class represented by this JavaClassis an array
class.
Returns
trueif this classis an array class
Throws
CorruptDataException if the underlying dataisin an unexpected
state
getComponentType public JavaClass getComponentType()

For array classes, returns a JavaClass representing the component type of
thisarray class.

Returns
a JavaClass representing the component type of this array class

Throws

CorruptDataException if the underlying dataisin an unexpected
State

javalang.lllegal ArgumentExcaptilois JavaClass does not represent an array
class

95

API Reference

M ethods

getDeclaredFields

public List getDeclaredFields()
Get the set of fields declared in this class.
Fields declared in any superclass of this class are not returned.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

Thereturned list is never null but could be empty.

Returns
alist of fields declared in this class.

getDeclaredM ethods

public List getDeclaredMethods()
Get the set of methods declared in this class.
Methods declared in any superclass of this class are not returned.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

Thereturned list is never null but could be empty.

Returns
alist of methods declared in this class.

96

API Reference

M ethods

getConstantPool Refer ences

public List getConstantPool References()
Returns the list of constant pool references defined by this class.

Java classes may refer to other classes and to String objects viathe
class's constant pool. These references are followed by the garbage
collector, forming edges on the graph of reachable objects. This
getConstantPool References() may be used to determine which objects are
referred to by the receiver's constant pool.

Although Java VMs typicaly permit only Class and String objectsin

the constant pool, some esoteric or future virtual machines may permit
other types of objects to occur in the constant pool. This APl imposes no
restrictions on the types of JavaObjects which might be included in the list.

No assumption should be made about the order in which constant pool
references are returned.

Classes may also refer to objects through static variables. These may

be found with the getDeclaredFields() API. Objects referenced by static
variables are not returned by getConstantPool References() unless the object
is aso referenced by the constant pool.

Thereturned list follows the standard semantics for javax.tools.diagnostics
collections.

Thereturned list is never null but could be empty.

Returns
alist of JavaObjects which are referred to by the constant pool of this class.

getiD

public ImagePointer getID()

The ID of aclassisapointer to a section of memory which identifies the
class. The contents of this memory are implementation defined.

In some implementations getID() and getObject().getID() may return the
same value. Thisimplies that the class object is aso the primary interna
representation of the class. API users should not rely on this behaviour.

In some implementations, getlD() may return null for some classes.

Returns
apointer to the class

97

API Reference

M ethods

getReferences

public List getReferences()
Get the set of references from this class.

A reference is aobject that represents the uni-directional relationship
between objects and classes. Objects and classes cannot be reclaimed by
the Java Virtual Machine garbage collector if references exist that can
ultimately be traced back to root references. see JavaReference for more
detailed information.

Since this API can present entities that exist at any point in their lifecycle, it
is possible to encounter an JavaClass that is eligible for collection and thus
no JavaReference can be found that refersto it.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

Thereturned list is never null but could be empty.

Returns
alist of JavaReferences

equals

public boolean equal s(Object obj)

Returns
Trueif the given object refers to the same Java Class in the image

Parameters

obj

hashCode

public int hashCode()

98

API Reference

interface JavaVariable

public interface JavaVariable

Representation of a Java Variable

Thisis an experimental addition and may be removed at alater date

Table 6.41. JavaVariable M ethods

Methods
getName public Sring getName()
The name of the variable.
Throws
DataUnavailable if theinformation is not available
getSignature public Sring getSgnature()
The local variable's signature in NI format.
getStart public int getStart()
The start of the local variable's scope within the bytecode.
getL ength public int getLength()
The number of bytes this variables scope covers over the bytecode.
getSlot public int getSot()
Thelocal variable dot this variable occupies. Passed to
JavaStackFrame.getVariable() to retrieve the contents.
getValue public Object getValue()
The value of the variable

99

API Reference

interface JavaThread

public interface JavaThread

Represents a Java thread.

JavaThr ead

instances correspond with executing threads in the Java Virtual Machine, not java.lang.Thread instances on the
heap.

JavaThr ead

provide information on what was running including the locations of al of the threads within the Java program
when the dump was taken.

Table 6.42. JavaThread Methods

Methods
getJNIEnv public ImagePointer getJNIEnv()

Get the address of the INIEnv structure which represents this thread instance
in JNI.

Returns

the address of the INIEnv structure which represents this thread instance in
JINI.

Throws
CorruptDataException

getPriority public int getPriority()
Get the Java priority of the thread.

The value returned will be the same as what would have been returned by a
call to javalang.Thread#getPriority() within the Java Virtual Machine.

Returns
the Java priority of the thread (a number between 1 and 10 inclusive)

Throws
CorruptDataException

100

API Reference

M ethods

getObject

public JavaObject getObject()

Returns the JavaObject representing the instance of the class or subclass of
javalang.Thread that represents this thread in the Java Virtual Machine.

The object returned is the java.lang. Thread instance the method
javalang.Thread#start() start() was executed against in order to create this
Javathread.

This method may return

nul |

when there is no java.lang.Thread instance associated with this Java thread.
Some Java threads may be created for purposes other than for executing
Java code (for example, for garbage collection).

Returns

a JavaObject representing the java.lang. Thread associated with this thread,
or null.

Throws

CorruptDataException if thereferenceto java.lang.Thread is not
null and cannot be retrieved.

getState

public int getState()
Get the state of the thread when the dump was generated.

Theresult isabit vector, and uses the states defined by the function
GetThreadState in the IWVMTI specification.

Returns
the state of the thread when the image was created.

Throws

CorruptDataException If the thread state could not be successfully
retrieved.

101

API Reference

M ethods

getlmageThread

public ImageThread getlmageThread()
Returns the operating system level thread that executes the Java thread.

Thiswill return an ImageThread if an operating system level thread can be
returned, otherwise the

Dat aUnavai | abl e

exception is thrown. There is no guarantee that thereisa 1:1 relationship
between

JavaThr eads

and ImageThread ImageT hreads.

Returns
the ImageThread which this thread is currently bound to.

Throws

CorruptDataException If the underlying resource describing
the native representation of the thread is
damaged.

DataUnavailable If no mapping is provided due to missing or

limited underlying resources.

getStack Sections

public List getStackSections()

Get the List of ImageSection |mageSections which make up the Java Virtual
Machine stack.

Some Java Virtual Machine implementations may use parts of the
ImageThread's stack for JavaStackFrames.

Returns
acollection of ImageSections which make up the Java stack.

102

API Reference

M ethods

getStackFrames

public List getStackFrames()
Get the set of stack frames.

The start of the list will contain the top most stack frame, the last entry will
contain the bottom most stack frame. The top contains the most recently
executing stack frame.

This method may return an empty list when there are no Java stack frames
associated with this Java thread.

nul |

must never be returned.

Returns
alist of Java stack framesin order from top to bottom.

getName

public Sring getName()
Return the name of the thread.

Usually thisis derived from the object associated with the thread, but if the
name cannot be derived thisway (e.g. there is no object associated with the
thread) a name will be created for the thread.

Returns
the name of the thread

Throws
CorruptDataException If aname exists but cannot be retrieved.

equals

public boolean equal S(Object obj)

Returns
trueif the given object refers to the same Java Thread in the image

Parameters
obj

hashCode

public int hashCode()

103

API Reference

package javax.tools.diagnostics.vm

Dump Creation API

Provides standard mechanisms for initiating a Dump programmatically

Table 6.43. I nterface Summary

Name

Summary

DumpHandle

Triggers adump.

DumplnitiatorDelegate

Interface that describes the required capabilities of specific dump
initiator.

Table 6.44. Class Summary

Name

Summary

DumpFactory

Standard mechanism that allows a java application to trigger adump for
the executing VM.

DumpDescriptor

Definition of the capabilities of a Dump that should be produced by
passing an instance of this descriptor to the Dump class

Details

interface DumpHandle

104

API Reference

public interface DumpHandle

Triggers a dump. The location and type of dump produced is implementation specific but is guided by the
DumpDescriptor used to create this handle.

Table 6.45. DumpHandle Methods

Methods
dump public boolean dump()

interface DumplnitiatorDelegate

public interface Dumplnitiator Del egate

Interface that describes the required capabilities of specific dump initiator. Classes that implement this interface
can be called by the Dump class to trigger a specific dump.

Table 6.46. Dumpl nitiator Delegate M ethods

Methods
getCapabilities public Dumplnitiator Capabilities getCapabilities()

Returns an object that describes the capabilities offered by thisinitiator

Returns
apopulated capabilities object

available public boolean availabl&()

Called to check that the delegate has all available resourcesto proceed. This
method should only be called by the Dump class This method will always be
called before the first call to dump

Returns
trueif the delegate is available

createDumpHandle public DumpHandle createDumpHandi&()

Returns a Dump handle for a default configured dump

Returns
valid dump handle

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor descriptor)

Returns a Dump handle for a dump that will match the provided descriptor
on a"best can do" basis.

Returns
valid dump handle

105

API Reference

M ethods

getDumpType

public Sring getDumpType()

Returns a literal that describes the dump being produced by thisinitiator.
The value can be used by callers to the DumpFactory API to retrieve a
specific dump initiator.

Returns
dump type literal

class DumpFactory

public DumpFactory extends java.lang.Object

Standard mechanism that allows a java application to trigger a dump for the executing VM.

Table 6.47. DumpFactory Constructor Summary

Constructor

public DumpFactory()

Instantiate a dump factory that can be used to trigger dumps

Table 6.48. DumpFactory Methods

M ethods

getDefaultl nitiator Delegate

public Dumplnitiator Del egate getDefaultinitiator Del egate()

Get the default dump initiator

setDefaultl nitiator Delegate

public void setDefaultlnitiator Del egate(Dumpl nitiator Del egate
defaultinitiator Delegate)

sets the default dump initiator.

Parameters
defaultinitiatorDel egate

dump

public void dump()

Fastpath method allowing the user to trigger a dump using the default dump
method

Throws
| OException

dump

public void dump(String id)

Fastpath method allowing the user to trigger a standard dump for the given
data format

Throws

| OEXception

106

API Reference

Methods
dump public void dump(DumpDescriptor desc)
Fastpath method to create a dump from a dump type that can support the
data requested.
Returns
avalid dump handle
getDefault public static DumpFactory getDefault()

Get the default Dump factory. Returns a Dump factory populated with all
available dump initiators

Returns
default dump factory

loadStandardl nitiators

public void loadStandardi nitiators()

Looks for commonly available dump initiators and add them to this
instances configuration

createDumpHandle

public DumpHandle createDumpHandle()

Returns a Dump handle for the default dump type used by this VM

Returns
avalid dump handle

createDumpHandle

public DumpHandle createDumpHandle(DumpDescriptor desc)

Returns a Dump handle for a dump type that can support the data requested.

Returns
avalid dump handle

getlnitiator

public Dumplnitiator Del egate getlnitiator (Sring format)

Returns an initiator that can produce a dump of the required format. If no
initiator exists which can handle the format then null is returned

Returns
supporting initiator or null

Parameters
format

getAvailablel nitiators

public Collection getAvailablelnitiators()

Returns the set of available Initiators. Always returns a set.

107

API Reference

Methods
instantiateOverrideDelegate | public Dumpl nitiator Del egate instantiateOver rideDel egate()

I nstantiates a Dump delegate class to handle dump requests based on the
presence of the override system property initiatorPropertyName It will be
used in preference to any other auto discovered delegates. If the override
does not exist or cannot be instantiated then null is returned

Returns
override delegate instance

class DumpDescriptor

public DumpDescriptor extends java.lang.Object

Definition of the capabilities of a Dump that should be produced by passing an instance of this descriptor to
the Dump class

Table 6.49. DumpDescriptor Constructor Summary

Constructor
public DumpDescriptor ()

Table 6.50. DumpDescriptor Methods

Methods

setRecordClassL oader s public void setRecordClassLoader ()
Call to indicate that the dump generated by theinitiator is required to
contain datathat will eventually be represented by the JavaClassl oader
interface

setRecor dClasses public void setRecordClasses()

Cadll to indicate that the dump generated by theinitiator is required to
contain data that will eventually be represented by the JavaClass interface

recor dClassL oader sRequired |public boolean recordClassLoader sRequired()

Returns true if the recording of class loadersin the generated dump isa
required attribute. Returnsfalse if it is optional.

recordClassesRequired public boolean recordClassesRequired()

copy public DumpDescriptor copy()

Returns a copy of this descriptor.

Returns
new copy.

clone protected Object clong()

108

API Reference

package javax.tools.diagnostics.vm.spi

Table 6.51. I nterface Summary

Name

Summary

Dumpl nitiatorCapabilities

Description of the capabilities offered by a particular Dump Initiator

Details

interface DumplnitiatorCapabilities

public interface Dumplnitiator Capabilities

Description of the capabilities offered by a particular Dump Initiator

package javax.tools.diagnostics.vm.spi.delegates

109

API Reference

Table 6.52. Class Summary

Name Summary

HProf Signal TriggeredDumpDel egate

HProfMBeanDumpDel egate Uses HotSpotDiagnostic MBean to generate hprof dump.
I|BM SPIBasedHeapDumpDelegate

JavaDumpDelegate

XMLDumpWriter

AbstractSignal BasedDumpl nitiator D Sliegratiebased Dump Initiator relies on the presence of
org.apache kato.common142.DumpTrigger in the class path

| BM SPIBasedSystemDumpDel egate

Abstractl BM SPIBasedDumpl nitiatoy Detegel®el egate for IBM JVMs using the com.ibm.jvm.Dump APl Note
that reflection is used to trigger a dump as otherwise compilation of this
code would be dependent on having an IBM JVM.

Details

class HProfSignalTriggeredDumpDelegate

public HProfSignal TriggeredDumpDel egate extends
javax.tools.diagnostics.vm.spi.del egates.AbstractS gnal BasedDumpl nitiator Del egate

Table 6.53. HProfSignal TriggeredDumpDelegate Constructor Summary

Constructor
public HProfSignal TriggeredDumpDel egate()

Table 6.54. HProfSignal TriggeredDumpDelegate M ethods

Methods

available public boolean available()

getCapabilities public Dumplnitiator Capabilities getCapabilities()
getDumpType public Sring getDumpType()

110

API Reference

class HProfMBeanDumpDelegate

public HProfMBeanDumpDel egate extends java.lang.Object

Uses HotSpotDiagnostic MBean to generate hprof dump. Only available on Sun's hotspot.

Table 6.55. HProfM BeanDumpDelegate Constructor Summary

Constructor
public HProfMBeanDumpDel egate()

Table 6.56. HProfM BeanDumpDelegate M ethods

Methods

available public boolean available()
Checksto seeif the MBean isregistered. On IBM JVMs, thiswill return
false.

createDumpHandle public DumpHandle createDumpHandle()

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor descriptor)

getCapabilities public Dumplnitiator Capabilities getCapabilities()

getDumpType public Sring getDumpType()

class IBMSPIBasedHeapDumpDelegate

public IBMSPI BasedHeapDumpDel egate extends
javax.tools.diagnosti cs.vm.spi.del egates.Abstractl BMSPI BasedDumpl nitiator Del egate

Table 6.57. |BM SPI BasedHeapDumpDelegate Constructor Summary

Constructor
public IBMSPIBasedHeapDumpDel egate()

Table 6.58. | BM SPI BasedHeapDumpDelegate M ethods

Methods

getM ethodName protected Sring getMethodName()
getCapabilities public Dumplnitiator Capabilities getCapabilities()
getDumpType public Sring getDumpType()

111

API Reference

class JavaDumpDelegate

public JavaDumpDelegate extends java.lang.Object

Table 6.59. JavaDumpDelegate Constructor Summary

Constructor

public JavaDumpDelegate()

Table 6.60. JavaDumpDelegate M ethods

Methods

available public boolean available()

createDumpHandle public DumpHandle createDumpHandl &()

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor descriptor)
getCapabilities public Dumplnitiator Capabilities getCapabilities()

getDumpType public Sring getDumpType()

class XMLDumpWriter

112

API Reference

public XMLDumpWriter extends java.lang.Object

Table 6.61. XM LDumpWriter Constructor Summary

Constructor

public XMLDumpWriter()

Table6.62. XML DumpWriter Methods

Methods
write public void write(File output)
write public void write(Writer writer)

class AbstractSignalBasedDumplnitiatorDelegate

public abstract AbstractS gnal BasedDumpl nitiator Delegate extends java.lang.Object

Signal based Dump Initiator relieson the presence of org.apache.kato.commonl142.DumpTrigger inthe class path

Table 6.63. AbstractSignalBasedDumpl nitiator Delegate Constructor Summary

Constructor

public AbstractS gnal BasedDumpl nitiator Del egate()

Table 6.64. AbstractSignalBasedDumpl nitiator Delegate M ethods

M ethods

available

public boolean available()

createDumpHandle

public DumpHandle createDumpHandl &()

createDumpHandle

public DumpHandle createDumpHandle(DumpDescriptor descriptor)

113

API Reference

class IBMSPIBasedSystemDumpDelegate

public

IBMSPIBasedSystemDumpDel egate extends

javax.tools.diagnostics.vm.spi.del egates.Abstract| BM SPI BasedDumpl nitiator Del egate

Table 6.65. | BM SPI BasedSystemDumpDelegate Constructor Summary

Constructor

public IBMSPIBasedSystemDumpDel egate()

Table 6.66. | BM SPI BasedSystemDumpDelegate M ethods

Methods

getM ethodName protected Sring getMethodName()
getCapabilities public Dumplnitiator Capabilities getCapabilities()
getDumpType public Sring getDumpType()

class AbstractIBMSPIBasedDumplnitiatorDelegate

public abstract AbstractlBMSPIBasedDumpl nitiator Del egate extends java.lang.Object

Dump Delegate for IBM JVMs using the com.ibm.jvm.Dump API Note that reflection is used to trigger adump

as otherwise compilation of this code would be dependent on having an IBM JVM.

Table 6.67. Abstractl BM SPI BasedDumpl nitiator Delegate Constructor Summary

Constructor

public Abstractl BMSPIBasedDumpl nitiator Del egate()

Table 6.68. Abstractl BM SPI BasedDumpl nitiator Delegate M ethods

Methods
available public boolean availabl&()
getM ethodName protected abstract Sring getMethodName()

createDumpHandle

public DumpHandle createDumpHandl &()

createDumpHandle

public DumpHandle createDumpHandle(DumpDescriptor descriptor)

114

Appendix A. Register tables

Common Register Names

TableA.1l. I1A32 Register Names

Register Type
EDI I nteger
ESI Integer
EAX | nteger
EBX Integer
ECX I nteger
EDX I nteger
EIP | nteger
ESP Integer
EBP I nteger
Table A.2. AMD64 Register Names

Register Type
RDI Long
RS Long
RAX Long
RBX Long
RCX Long
RDX Long
R8 Long
R9 Long
R10 Long
R11 Long
R12 Long
R13 Long
R14 Long
R15 Long
RIP Long
RSP Long
RBP Long
Table A.3. Power PC 32 Register Names

Register Type
RO Integer

115

Register tables

Register Type

R1 I nteger
R2 Integer
R3 I nteger
R4 Integer
R5 I nteger
R6 Integer
R7 I nteger
R8 Integer
R9 I nteger
R10 Integer
R11 I nteger
R12 Integer
R13 I nteger
R14 I nteger
R15 I nteger
R16 Integer
R17 I nteger
R18 Integer
R19 I nteger
R20 Integer
R21 I nteger
R22 Integer
R23 I nteger
R24 Integer
R25 I nteger
R26 Integer
R27 I nteger
R28 Integer
R29 I nteger
R30 Integer
R31 I nteger
IAR Integer
LR I nteger
MSR Integer
CTR I nteger
CR Integer
FPSCR I nteger
XER I nteger

116

Register tables

Register Type
TID I nteger
MQ Integer

Table A.4. Power PC 64 Register Names

Register Type
RO Long
R1 Long
R2 Long
R3 Long
R4 Long
R5 Long
R6 Long
R7 Long
R8 Long
R9 Long
R10 Long
R11 Long
R12 Long
R13 Long
R14 Long
R15 Long
R16 Long
R17 Long
R18 Long
R19 Long
R20 Long
R21 Long
R22 Long
R23 Long
R24 Long
R25 Long
R26 Long
R27 Long
R28 Long
R29 Long
R30 Long
R31 Long
IAR Long

117

Register tables

Register Type
LR Long
MSR Long
CTR Long
CR Long
FPSCR Long
XER Long

Table A.5. z/Series 31 Register Names

Register Type

gpro Integer
gprl Integer
gpr2 Integer
gpr3 Integer
gpré Integer
gprs Integer
gpré Integer
gpr7 Integer
gpr8 Integer
gpro Integer
gprl0 Integer
gpril Integer
gpri2 Integer
gprl3 Integer
gprl4 Integer
gprls Integer
psw0 Integer
pswl Integer

118

Register tables

Table A.6. z/Series 64 Register Names

Register Type
gpr0 Long
gprl Long
gpr2 Long
gpr3 Long
gprd Long
gprs Long
gpré Long
gpr7 Long
gpr8 Long
gpro Long
gprl0 Long
gprll Long
gprl2 Long
gpri3 Long
gprl4 Long
gprls Long
pswO Long
pswl Long

119

Appendix B. Opening Images example

This class takes the name of at least one dump, and the name of a class that implements | mageAnal yzer listed in
Appendix F, ImageAnalyzer interface.

/***

* Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.

See the License for the specific |anguage governing perm ssions and

* [imtations under the License.
************~k~k~k*************~k~k~k***/

package org. apache. kat 0. exanpl es;

L T

inmport java.io.File;
import java.io. | OException;

import javax.tools.diagnostics. FactoryRegistry;
import javax.tools.diagnostics.inage.|nage;

/**

* This exanpl e shows how an Inage is opened, given a snapshot's file nane.
*

*/

public abstract class Readl mage {

/**
* Mai n nethod. Takes nanes of snapshot dunps and opens themwith the
* I mageFactory.
*
* @aram args
*/
public static void main(String[] args) {
if (args.length < 2) {
Systemerr.println("Usage: Readl mage <snapshot> [snapshot...] <lnmage anal yzer>");

}

String anal yzer Nanme
Cl ass anal yzerd ass
try {
anal yzerd ass = C ass. for Nane(anal yzer Nane) ;
} catch (d assNot FoundException e) {
Systemerr.printin("Unable to find test class "~"+anal yzer Name+""'");
e.printStackTrace();
Systemexit(1);
}

for(int i =0; i < args.length-1; i++) {
String filename = args[i];
Systemout. println("\nAnalysing “"+filename+"'");

"org. apache. kat 0. exanpl es. "+args[args. | engt h-1] ;
nul | ;

System out . println(" "y
| mage i nage;
try {

i mmge = FactoryRegi stry. get Defaul t Regi stry().getlnage(new File(filenane));
} catch (1 OException e) {

Systemout. println("Unable to open snapshot.");

e.printStackTrace();

conti nue;
}

try {
| mageAnal yzer anal yzerlnstance = (lmageAnal yzer) anal yzerd ass. new nstance();

120

Opening Images example

anal yzer | nstance. anal yze(i mage) ;
} catch (Instantiati onException e) {
e.printStackTrace();
} catch (111 egal AccessException e) {
e.printStackTrace();
} catch (d assCast Exception e) {
System out. println("Anal zyer class should be instances of |nmageAnalyzer.");
e.printStackTrace();
Systemexit(2);
}

121

Appendix C. Snapshot Cause Example

This classimplements the | mageanal yzer interface in Appendix F, ImageAnalyzer interface.

/*

*

*
*
*
*
*
*
*
*
*
*
*

E R Sk Sk Sk Sk Sk Sk S Sk S Sk Sk Sk Sk S Sk kS kS Sk Sk Sk Sk gk Sk Sk Sk kS Sk Sk Sk Sk kS Sk Sk Sk Sk kS Sk S kS kS Sk S kS kS S S S S S

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/|icenses/ LI CENSE- 2. 0

Unl ess required by applicable aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governing perm ssions and

limtations under the License.
~k~k~k~k************************~k***********************/

package org. apache. kat 0. exanpl es;

import javax.tools.diagnostics.
import javax.tools.diagnostics.
import javax.tools.diagnostics.

import javax.tools.diagnostics.
import javax.tools.diagnostics.

mage. Cor r upt Dat aExcept i on;
mage. Dat aUnavai | abl e;
mage. | mage;

mage. | magePr ocess;
mage. | mageSt ackFr ane;

i
i
i
import javax.tools.diagnostics.inmage. | nmageAddressSpace;
i
i
i

import javax.tools.diagnostics.

mage. | mageThr ead;

i mport javax.tools.diagnostics.runtime. ManagedRunti ne;

i mport javax.tools.diagnostics.runtine.java.JavaRunti ne;

i mport javax.tools.diagnostics.runtine.java.JavaSt ackFrane;
import javax.tools.diagnostics.runtine.java.JavaThread,

/*
*
*
*

*

*

Thi s anal yzer determ nes what process and thread
caused the dunp, and what signal, if any.

/

public class CauseAnal yzer inplenments | nmageAnal yzer {

@verride
public void anal yze(l mage i mage) {

for (I mageAddressSpace as : inmmage. get AddressSpaces()) {
| mageProcess process = as. getCurrentProcess();

/1 Only invoked if there is a "current" process,
/1 This is a process that caused the dunp to occur.
if (process !=null) {
try {
int signum = process. get Si gnal Nunber () ;
String signame = process. get Si gnal Nane();

/1 ldentify the process by nunber and conmand Ii ne.
Systemout. println("Process "+process.getlD()+

" was started with *" +

process. get CommandLi ne() +""'");

/1 The signals that cause the dunp to be generated
if (signame !'= null) {
Systemout. println("Dunp caused by signal " + signame+"("+signum")");

}

I mageThread thread = process. get Current Thread();
/1 ldentify the thread, by id, various properties and a stack trace.
if (thread !'= null) {

Systemout. println("\nDunp caused by thread "+

thread. get I D() +
", "+thread. getProperties());
for(l mageSt ackFrame frame: thread. getStackFrames()) {
Systemout.printin("\t" + frame);

122

Snapshot Cause Example

}

/1 Find JavaThread and then do stacktrace.
RUNTI ME: for(ManagedRuntine runtime : process.getRuntinmes()) {
if (runtinme instanceof JavaRuntine) {
JavaRuntine jr = (JavaRuntine) runtine;

for(JavaThread jthread : jr.getThreads()) {
if (thread.equal s(jthread.getlnmageThread())) {
System out. println("\nDunp caused by JavaThread "+
jthread. get Nanme());

for(JavaSt ackFrane frane : jthread. get StackFranmes()) {
Systemout.println("\t" + frane);

}
break RUNTI ME;

}

}

}
}
} catch (DataUnavail able e) {
e.printStackTrace();
} catch (Corrupt Dat aException e) {
e.printStackTrace();

123

Appendix D. Identifying Java VM Example

This classimplements the | mageanal yzer interface in Appendix F, ImageAnalyzer interface.

/~k************************
* Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/|icenses/ LI CENSE- 2. 0

distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

*
*
*
*
*
* Unless required by applicable law or agreed to in witing, software
*
*
*
*
*

***/

package org. apache.

import javax.tools.
import javax.tools.
import javax.tools.
import javax.tools.
import javax.tools.
import javax.tools.
import javax.tools.
import javax.tools.
import javax.tools.
import javax.tools.

/**

kat 0. exanpl es;

di
di
di
di
di
di
di
di
di
di

agnosti
agnosti
agnosti
agnosti
agnosti
agnosti
agnosti
agnosti
agnosti
agnosti

Cs.
Cs.
Cs.
Cs.
Cs.
Cs.
Cs.
Cs.
Cs.
Cs.

i mage. Cor r upt Dat aExcepti on;
i mage. Dat aUnavai | abl e;

i mage. | mage;

i mage. | rageAddr essSpace;

i mage. | rageMbdul e;

i mage. | magePoi nt er;

i mage. | mageProcess;

runti nme. ManagedRunt i nme;
runtime.java. JavaRunti ne;
runtine.java. JavavVMOpt i on;

* This Anal yzer generates a reports information useful for
* identifying the JVMthat was running when the snapshot was taken.
* Elements fromthe Java and I mage APls are used.

*/

public class What Anal yzer inplenents | nageAnal yzer {

@verride

public void anal yze(l nmage i mage) {
/! Report the hostnane.
String hostnane;

try {

host name = i mage. get Host Nane() ;

} catch (DataUnavail able e) {
host name = "<Coul d not

retrieve hostnane";

} catch (Corrupt Dat aException e) {
hostname = "<Error retrieving hostnane>";
e.printStackTrace();

}

System out. println("Snapshot was generated on " + hostnane);

for (lImageAddressSpace as :
for (1 mageProcess process :
String processlD;

try {

i mage. get Addr essSpaces()) {
as. get Processes()) {

processl D = process. getlX);
} catch (DataUnavail able e) {
processl D = "<Unknown>";
} catch (Corrupt Dat aException e) {
processlI D = "<Error>";
e.printStackTrace();

}

System out. println("Process | D="+processl|D);

String commandLi ne;

try {
conmandLi ne

process. get ConmandLi ne();
} catch (DataUnavail able e) {

124

Identifying Java VM Example

commandLi ne = "<Unknown>";

} catch (Corrupt Dat aException e) {
conmandLi ne = "<Error>";
e.printStackTrace();

}

System out. println("Command |ine: "+conmmandLine);

String executabl e;

try {

execut abl e = process. get Execut abl e() . get Nane() ;
} catch (Corrupt Dat aException e) {

execut abl e = "<Unknown>";

} catch (DataUnavail able e) {

executable = "<Error>";

e.printStackTrace();

}

System out. println("Process Executable "+ executable);

System out. println("Loaded Libraries:");
try {
for(l mgeMbdul e nodul e : process. getlLibraries()) {
Systemout.println("\t" + nodul e. get Nanme());

}

} catch (DataUnavail able e) {
Systemout.printin("No libraries found.");

} catch (Corrupt Dat aException e) {
Systemout.printin("Error retrieving libraries:");
e.printStackTrace();

}

for (ManagedRuntime runtinme : process.getRuntinmes()) {
if (runtinme instanceof JavaRuntine) {
anal yzeRuntinme ((JavaRuntine) runtine);

public void anal yzeRunti me(JavaRuntine jr) {

try {
Systemout. println("Java VM version: "+jr.getVersion()+""'");
} catch (CorruptDat aException el) {
Systemout.printin("Error retrieving Java VM version");
el. printStackTrace();
}

Systemout.println("VM options:");

try {

for (JavaVMOption option : jr.getJavaVM nitArgs().getOptions()) {
String optionString = "\t\t\""+option.getQOptionString()+"\"";

| magePoi nter extra = option.getExtralnfo();
if (extra!=null) {

optionString += ", extral nfo=0x"+Long.toHexString(extra.get Address());
}

Systemout. println(optionString);

}

} catch (DataUnavail able e) {
Systemout.println("Unable to report VM options");

} catch (Corrupt Dat aException e) {
Systemout.printin("Error retrieving VM options");
e.printStackTrace();

}

}
}

125

Appendix E. Retrieving Object Fields
Example

This class extends the runt i reanal yzer classin Appendix G, Retrieval of all JavaRuntimesto simplify obtaining
aJavaRunt i me instance.

/***

* Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.

See the License for the specific |anguage governing perm ssions and

* [imtations under the License.
************~k~k~k*************~k~k~k***/

package org. apache. kat 0. exanpl es;

E R T T

inmport java.lang.reflect.Array;

import javax.tools.diagnostics.inage. CorruptDat aExcepti on;
import javax.tools.diagnostics.inmage. D agnosti cExcepti on;
import javax.tools.diagnostics.inmage. | mgePointer;

import javax.tools.diagnostics.inmge. MenoryAccessExcepti on;
i mport javax.tools.diagnostics.runtine.java.JavaC ass;

i mport javax.tools.diagnostics.runtine.java.JavaFi el d;
import javax.tools.diagnostics.runtine.java.JavaHeap;
import javax.tools.diagnostics.runtine.java.Javabject;

i mport javax.tools.diagnostics.runtine.java.JavaRunti ne;

/**

* This exanpl es wal ks over all objects on the heap and prints the val ues

* of all of the fields, and the contents of all elenments of all the arrays.
*/

public class ObjectFields extends RuntinmeAnal yzer{

/**
* Gven a JavaRuntinme, print out all of the objects on the heap.
* @aramjr JavaRuntine to get objects from
*/
public void anal yzeRunti ne(JavaRuntine jr) {
for (JavaHeap heap : jr.getHeaps()) {
wal kHeap (heap);
}

}

/**

* \Wal ks over all objects on the heap.

* @aram heap JavaHeap to iterate over.

*/

public void wal kHeap(JavaHeap heap) {

for (JavaObject jObject : heap.getbjects()) {

try {
if (jObject.isArray()) {
wal kArray (j Object);
} else {
wal kbj ect (j Object);
}

/1 Even determ ning whether or not the JavaCbject is an array has difficulties.
} catch (Corrupt Dat aException e) {
Systemerr.println("Corrupt data exception calling jOoject.isArray() at "+

126

Retrieving Object Fields Example

poi nter ToHexString(j Goject.getl()));
e.printStackTrace();
}
}
}

/**

* Prints out all of the values of the fields in an object, along with

* identifying information of the type itself.

*

* @aram j Obj ect A JavaObj ect

*/

public void wal kObj ect (JavaChj ect j Object) {

/1 Just identify the object by its ID- this would the address on the heap.
Systemout. println("JavaChject @" + pointerToHexString(jObject.getlX)));
/1 Handl e indentation.

String prefix = "\t";

/1l Get the type of this object.

Javad ass cl azz;

try {

clazz = j Obj ect. getJavaC ass();

} catch (Corrupt Dat aException e) {
Systemerr.println(prefix+"Error getting JavaC ass");
e.printStackTrace();

return;
}
while (clazz '= null) {
/1 print out the nane of the class and the the fields.
try {
Systemout.println(prefix + clazz.getNane() +":");
prefix +=" ",

/* Print out all fields for this class.

*/

for (JavaField nextField : clazz.getDeclaredFields()) {
printField(prefix, nextField, jObject);

} catch (Di agnosti cException e) {
Systemerr.printin("Error printing out fields.");
e.printStackTrace();

}

/1 Get the next superclass.

try {

clazz = clazz. get Supercl ass();

} catch (Corrupt Dat aException e) {
e.printStackTrace();
br eak;

}

} /] while (class !'= null)
}

~
*

L T T I

~

Print out the content of one field.
Only prints out instance fields. WIIl returnif a
static field is passed.

@aram prefix Pad out nessage

@aramfield The field to print

@ar am obj ect The object to print out

@ hrows Corrupt Dat aException if sonmething goes w ong
@ hrows MenoryAccessException

private void printField(String prefix, JavaField field, JavaObject object) throws CorruptDataException, Men

if (java.lang.reflect. Modifier.isStatic(field.getMdifiers())) {
return;

}

127

Retrieving Object Fields Example

Obj ect fieldValue = field.get(object);
String valueString = "";

/1 Format the field s value.
if(fieldvalue == null) {
valueString = "<null reference>";

/1 Most of the primtive fields can be handl ed as Nunber instances.
} else if (fieldValue instanceof Number) {
valueString = fieldValue.toString();

} else if (fieldValue instanceof Character) {
valueString = "°" + (Character)fieldvalue + ""'";
} else if (fieldValue instanceof Bool ean) {

val ueString ((Bool ean) fi el dval ue). bool eanVal ue() ? "true" : "false";

} else if (fieldValue instanceof JavaObject) {
/1 Note how we have to get an instance of the object to know anything about it.
JavaObj ect reference = (JavaObject) fiel dval ue;

/1 classnanme: @ Oxadddress
val ueString = reference. getJavad ass().getNane() + ": @" + pointerToHexString(reference.getlX));

if ("javal/lang/ String".equal s(reference. getJavad ass().getNanme())) {

valueString += valueString +" =\"" + field.getString(object) + "\"";
}

}

Systemout.printin(prefix + field. getSignature() +" " +
field. getName() + " =" + valueString);

}

/**

* Print out the contents of an array.
*
* @aram j Obj ect JavaObj ect of an array.
*/
public void wal kArray(Java(oj ect object) {
/1 Just identify the object by its ID- this would the address on the heap.
Systemout. println("JavaCbject @" + pointerToHexString(object.getlX)));
/1 Handl e indentation.
String cl assNane;

Javad ass cl azz;
try {
clazz = object.getJavad ass();
} catch (Corrupt Dat aException e) {
Systemerr.printlin("Unable to determne array's JavaC ass. aborting");
e.printStackTrace();
return;

}

/1 The class nane is needed to determ ne the el enent types

try {
className = cl azz. get Nane();

} catch (Corrupt Dat aException e) {
Systemerr.printin("Error getting Array class nane.");
e.printStackTrace();
return;

}

int arraySize = 0;

/1 This gets the nunber of elenents in the array.

try {
arraySi ze = object.getArraySi ze();

} catch (Corrupt Dat aException e) {
Systemerr.println("Unable to get object size.");
e.printStackTrace();
return;

}

128

Retrieving Object Fields Example

String conponent Nane;
try {
conponent Name = cl azz. get Conponent Type() . get Nanme() ;
} catch (Corrupt Dat aException e) {
Systemerr.println("Unable to determ ne conponent type name. Qitting.");
e.printStackTrace();
return;

}
Obj ect arrayCopy;

if ("bool ean". equal s(conponent Nane)) {
arrayCopy = new bool ean[arraySi ze];

} else if ("byte".equal s(conponent Nanme)) {
arrayCopy = new byte[arraySi ze];

} else if ("char".equal s(conponent Nanme)) {
arrayCopy = new char[arraySi ze];

} else if ("short".equal s(conponent Nanme)) {
arrayCopy = new short[arraySize];

} else if ("int".equal s(component Nane)) {
arrayCopy = new int[arraySi ze];

} else if ("long".equal s(conponent Nane)) {
arrayCopy = new | ong[arraySi ze] ;

} else if ("float".equal s(conponent Nane)) {
arrayCopy = new float[arraySi ze];

} else if ("double".equal s(conponent Nane)) {
arrayCopy = new doubl e[arraySi ze] ;

} else {
/1 Anything elenment that is not a primtive nust be a reference type.
arrayCopy = new JavaChject[arraySi ze];

}

/* Copy the contents of the JavaCbject array into the array we prepared earlier.
* This is the only way to get the values of an array in a dunp.
*/

try {
obj ect.arraycopy(0, arrayCopy, 0, arraySize);

} catch (Corrupt Dat aException e) {
e.printStackTrace();
return;

} catch (MenoryAccessException e) {
e.printStackTrace();
return;

} catch (111 egal Argunent Exception e){
e.printStackTrace();
return;

} catch (1 ndexQut O BoundsException e) {
e.printStackTrace();
return;

}

/* Go through every elenment in the copy of the array and print out its contents.

* This exanpl e uses java.lang.Array.get() to nmake this easy to handl e generically.

*

* Object references - JavaChjects - are only printed out at the type name @an address.
* W don't print out subarrays - they will be encountered later in the heap anyhow.

*/

Systemout.println("\t" + className + "[" + arraySize +"] = {");

for (int cnt=0; cnt < arraySize; cnt++) {

Obj ect obj = Array. get(arrayCopy, cnt);

if (obj == null) {
Systemout.println("\t\tnull,");
} else if (obj instanceof Java(hject) {
JavaObj ect refObj = (Java(hj ect) obj;
try {
Systemout.println("\t\t" + refObj.getJavad ass().getNane()+ " "+
poi nter ToHexString(refChj.getlD())+",");
} catch (Corrupt Dat aException e) {
Systemerr.println("\t\t CorruptDataException while printing out array elenent");
e.printStackTrace();

129

Retrieving Object Fields Example

}
} else{
Systemout.println("\t\t"+obj+",");
}

}

Systemout.println("\t};");

}

/**

* Takes | nagePointer and returns it as a hex string. Perhaps this should be defined
* behavi our for | magePointer.toString().
* @aram poi nter |nmagePointer
* @eturn Address of pointer as a hex string prefixed with "0x"
*/
public static String pointerToHexString(lnmagePointer pointer) {
return "0x"+Long.toHexString(pointer.getAddress());
}

130

Appendix F. ImageAnalyzer interface

/***

*

*
*
*
*
*
*
*
*
*
*
*

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ |l i censes/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing, software

di stributed under the License is distributed on an "AS |'S" BASIS,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governing perm ssions and

limtations under the License.
***/

package org. apache. kat 0. exanpl es;

import javax.tools.diagnostics.inage.|nage;

public interface | mageAnal yzer {
public abstract void anal yze(lnage inage);

}

131

Appendix G. Retrieval of all JavaRuntimes

Thisclassallows subclassesto be given an i nage and havetheir anal yzer Runt i ne(JavaRunt i re) methodsinvoked.
This class implements the | rageanal yzer interface in Appendix F, ImageAnalyzer interface.

[R R R Kk kR K Kk kKRR Kk R R R Rk R R Rk R R R Rk R R R Rk R R R Rk R R R R R R K R R R R Rk kR Rk ok kK

* Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE-2. 0

Unl ess required by applicable |aw or agreed to in witing, software

di stributed under the License is distributed on an "AS |'S" BASIS,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governing perm ssions and

* limtations under the License.

LR R R R R R R R R R R LRy

package org. apache. kat 0. exanpl es;

EE R T R

import javax.tools.diagnostics.inmage. | nage;

import javax.tools.diagnostics.image. | mgeAddr essSpace;
import javax.tools.diagnostics.inmage. | mgeProcess;
import javax.tools.diagnostics.runtine. ManagedRunti ne;
import javax.tools.diagnostics.runtine.java.JavaRunti ne;

public abstract class RuntinmeAnal yzer inplenents |nmageAnal yzer {

| **

* Calls the anal yzeRunti me(JavaRuntine jr) method against all JavaRuntine
* instances found in the image.

*

* @aramimge | mage to anal yse

*/

@verride

public void anal yze(lmage image) {

for (1 mageAddressSpace as : inage. get AddressSpaces()) {

for (1 mageProcess process : as.getProcesses()) {
for(ManagedRuntinme runtime : process.getRuntimes()) {
if (runtime instanceof JavaRuntine) {
anal yzeRunti me((JavaRuntine) runtinme);

| **

* QOverride this nethod to anal yze just the JavaRunti nme.

*
* @aramjr
*/
public abstract void anal yzeRuntime(JavaRuntimnme jr);

}

132

