
JSR 326 Post mortem JVM Diagnostics API

First Early Draft Review

User manual and specification - 2010-01-22

JSR 326 Post mortem JVM Diagnostics API:

First Early Draft Review

User manual and specification - 2010-01-22

Published 2010-01-22

Copyright 2009 IBM Corporation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

iii

Table of Contents
Preface .. viii

Audience ... viii
Related Documentation ... viii
How to comment on the specification ... viii
Trademarks .. viii
References ... viii

1. Introduction .. 1
What is JSR 326? ... 1
What is Apache Kato? .. 1
Rationale .. 1
Post Mortem versus Live Monitoring ... 2
Tell me more about "Diagnostic Artifacts" ... 2
What types of Dump are supported by this API? .. 3
What data can I expect to find in a Dump? .. 3

2. Application Programming Interface Architecture ... 4
Introduction .. 4
Structure ... 4

Creation Time Architecture .. 5
Analysis Time architecture .. 6

3. Design Principles .. 7
4. Topics not yet resolved ... 11
5. Examples .. 13
6. API Reference ... 24

package javax.tools.diagnostics .. 24
Details .. 25

package javax.tools.diagnostics.image .. 27
Details .. 28

package javax.tools.diagnostics.runtime .. 55
Details .. 55

package javax.tools.diagnostics.runtime.java ... 56
Details .. 57

package javax.tools.diagnostics.vm ... 104
Details .. 104

package javax.tools.diagnostics.vm.spi .. 109
Details .. 109

package javax.tools.diagnostics.vm.spi.delegates ... 109
Details .. 110

A. Register tables .. 115
B. Opening Images example .. 120
C. Snapshot Cause Example .. 122
D. Identifying Java VM Example ... 124
E. Retrieving Object Fields Example .. 126
F. ImageAnalyzer interface .. 131
G. Retrieval of all JavaRuntimes .. 132

iv

List of Figures
1.1. Dump contents ... 3
2.1. Summary Architecture .. 5
2.2. Creation Time Architecture ... 5
2.3. Analysis Time Architecture ... 6

v

List of Tables
2.1. Packages .. 4
6.1. Class Summary ... 24
6.2. FactoryRegistry Constructor Summary .. 25
6.3. FactoryRegistry Methods ... 25
6.4. Interface Summary ... 27
6.5. Class Summary ... 28
6.6. ImageProcess Methods .. 28
6.7. Image Methods ... 32
6.8. ImageAddressSpace Methods ... 35
6.9. MemoryAccessException Constructor Summary .. 36
6.10. MemoryAccessException Methods ... 36
6.11. DiagnosticException Constructor Summary ... 37
6.12. ImageSection Methods ... 37
6.13. ImageStackFrame Methods .. 39
6.14. ImageFactory Methods ... 41
6.15. CorruptDataException Constructor Summary .. 43
6.16. CorruptDataException Methods .. 43
6.17. ImageThread Methods ... 44
6.18. DataUnavailable Constructor Summary ... 45
6.19. ImagePointer Methods ... 46
6.20. CorruptData Methods ... 51
6.21. ImageModule Methods .. 52
6.22. ImageSymbol Methods .. 53
6.23. ImageRegister Methods .. 54
6.24. Interface Summary .. 55
6.25. ManagedRuntime Methods ... 55
6.26. Interface Summary .. 56
6.27. JavaStackFrame Methods ... 57
6.28. JavaLocation Methods ... 60
6.29. JavaHeap Methods ... 62
6.30. JavaReference Methods .. 63
6.31. JavaRuntime Methods .. 66
6.32. JavaObject Methods ... 70
6.33. JavaClassLoader Methods .. 76
6.34. JavaVMInitArgs Methods .. 78
6.35. JavaMember Methods .. 80
6.36. JavaMonitor Methods .. 82
6.37. JavaMethod Methods ... 84
6.38. JavaField Methods ... 86
6.39. JavaVMOption Methods .. 92
6.40. JavaClass Methods .. 93
6.41. JavaVariable Methods .. 99
6.42. JavaThread Methods .. 100
6.43. Interface Summary .. 104
6.44. Class Summary ... 104
6.45. DumpHandle Methods ... 105
6.46. DumpInitiatorDelegate Methods ... 105
6.47. DumpFactory Constructor Summary ... 106
6.48. DumpFactory Methods ... 106
6.49. DumpDescriptor Constructor Summary ... 108

JSR 326 Post mortem
JVM Diagnostics API

vi

6.50. DumpDescriptor Methods ... 108
6.51. Interface Summary .. 109
6.52. Class Summary ... 110
6.53. HProfSignalTriggeredDumpDelegate Constructor Summary ... 110
6.54. HProfSignalTriggeredDumpDelegate Methods ... 110
6.55. HProfMBeanDumpDelegate Constructor Summary .. 111
6.56. HProfMBeanDumpDelegate Methods .. 111
6.57. IBMSPIBasedHeapDumpDelegate Constructor Summary ... 111
6.58. IBMSPIBasedHeapDumpDelegate Methods .. 111
6.59. JavaDumpDelegate Constructor Summary ... 112
6.60. JavaDumpDelegate Methods ... 112
6.61. XMLDumpWriter Constructor Summary ... 113
6.62. XMLDumpWriter Methods .. 113
6.63. AbstractSignalBasedDumpInitiatorDelegate Constructor Summary .. 113
6.64. AbstractSignalBasedDumpInitiatorDelegate Methods ... 113
6.65. IBMSPIBasedSystemDumpDelegate Constructor Summary .. 114
6.66. IBMSPIBasedSystemDumpDelegate Methods ... 114
6.67. AbstractIBMSPIBasedDumpInitiatorDelegate Constructor Summary ... 114
6.68. AbstractIBMSPIBasedDumpInitiatorDelegate Methods .. 114
A.1. IA32 Register Names ... 115
A.2. AMD64 Register Names .. 115
A.3. PowerPC 32 Register Names .. 115
A.4. PowerPC 64 Register Names .. 117
A.5. z/Series 31 Register Names .. 118
A.6. z/Series 64 Register Names .. 119

vii

List of Examples
5.1. Opening an Image .. 13
5.2. CauseAnalyzer Class declaration ... 13
5.3. Find Current Process .. 14
5.4. Reporting signal information ... 14
5.5. Process ID and commandline .. 14
5.6. Thread identification ... 14
5.7. ImageThread stack trace ... 15
5.8. JavaThread/ImageThread correlation .. 15
5.9. Declaration of WhatAnalyzer class .. 16
5.10. Getting the hostname .. 16
5.11. Executable name ... 16
5.12. Process libraries .. 16
5.13. Javatm VM Version ... 17
5.14. Javatm VM Options ... 17
5.15. Iterate over heaps ... 17
5.16. Iterate over Objects ... 18
5.17. Print object fields ... 18
5.18. Get the object's type ... 18
5.19. Iterate up class hierarchy ... 18
5.20. Print out each field ... 19
5.21. get next superclass .. 19
5.22. Print fields class ... 19
5.23. Testing JavaField.getModifiers() .. 19
5.24. Getting the value of a field ... 19
5.25. JavaField.get() returns null .. 20
5.26. Boxed numbers ... 20
5.27. Retrieving an object reference ... 20
5.28. Retrieving a string field .. 20
5.29. Method for printing out array contents ... 21
5.30. All objects have classes .. 21
5.31. Get number of array elements ... 21
5.32. Getting the type of the array elements ... 21
5.33. Creating array of correct type .. 22
5.34. Array of JavaObjects as destination ... 22
5.35. Copying array contents ... 22
5.36. Printing out array elements .. 23

viii

Preface
Warning

This is a living document. Make sure you have the latest version. Other versions are available from the
Apache Kato Wiki page http://cwiki.apache.org/KATO/jsr326specification.html or by checking out and
building the Apache Kato project.

Note also that this is an early draft document and as such there are many areas open to improvement. There are
also areas that are specifically not completed. These areas cover parts of the API or its usage that still need to
be defined.

Audience

This document is intended to be used by consumers and implementors alike. It is expected that the reader will
have good knowledge of the Javatm programming language.

Related Documentation

More information about the Apache Kato incubator can be found by visiting the main website at http://
incubator.apache.org/kato/site/index.html

How to comment on the specification

Comments on this document and its contents can be made using the kato-spec mailing list hosted by the Apache
Software Foundation.

Subscribe to the mailing list by sending an email to
<kato-spec-subscribe@incubator.apache.org> Once subscribed you can send an email to the kato-spec mailing
list by addressing your email to<kato-spec@incubator.apache.org>

Trademarks

All trademarks are property of their respective trademark owners.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

References

Home Page for Apache Kato Incubator Project http://incubator.apache.org/kato/site/index.html

JSR 326 at JCP.org http://jcp.org/en/jsr/detail?id=326

http://incubator.apache.org/kato/site/index.html
http://jcp.org/en/jsr/detail?id=326

1

Chapter 1. Introduction

What is JSR 326?

JSR 326 is intended to be a JavaTM API specification for standardising how and what can be retrieved from the
contents of post-mortem artefacts - typically process and JVM dumps.

Unusually for new APIs, this project will endeavour to encompass the old and the new, since diagnostic solution
that only works when users move to the latest release does little to improve diagnosability in the short term.

This project will consume existing dump artefacts as well as possible while developing an API that can address
the emerging trends in JVM and application directions. The most obvious of these trends are the exploitation of
very large heaps, alternative languages and, paradoxically for Javatm, the increased use of native memory through
vehicles such as NIO.

What is Apache Kato?

Project Kato is intended to be the place where the Specification, Reference implementation (RI) and Technology
Compatibility Kit (TCK) are openly created. The intention is that the Specification and RI will be developed
in tight unison, guided by a user-story-focused approach to ensure that real-world problems drive the project
from the beginning.

This project is about bringing together people and ideas to create a common, cross industry API, and we can't
think of a better place to do that than in Apache.

IBM developed an API called DTFJ ("Diagnostic Tool Framework for Java") as a means of providing its support
teams a basis on which to write tools to diagnose Java SDK and Java application faults. It consists of a native
JVM-specific component and the DTFJ API, which was written in pure Java.

In 2009 IBM donated the implementation independent portions of DTFJ to the Apache Kato project

Rationale

JSR 326 exists because of the widely acknowledged limitations in diagnosing Javatm application problems after
the fact. There are many good ways to understand and diagnose problems while they happen, but few credible
or pervasive tools exist for helping resolve problems when it has all gone suddenly and horribly wrong.

Outside of "live monitoring" there is no standard way to provide diagnostics information, and hence no standard
tools. Each tool writer has to figure out how to access the data individually and specifically for each JVM vendor
and operating system. This sparsity of tools has meant that users have limited options in diagnosing their own
problems, especially unexpected or intermittent failures.

These users turn to the providers of their software to work out what is happening. Consequently application,
middleware, and JVM vendors are spending increasing time supporting customers in problem diagnosis.

Emerging trends indicate that this is going to get worse.

Today JVM heap sizes are measured in small numbers of gigabytes, processors on desktops come in twos or fours,
and most applications running on a JVM are written in Javatm. To help analyse problems in these configurations,
we use a disparate set of diagnostic tools and artefacts.

Introduction

2

If the problem can't be reproduced in a debugger, then things quickly get complicated. There are point tools
for problems like deadlock analysis or the ubiquitous Javatm out-of-memory problems, but overall the Javatm

diagnostic tools arena is fragmented and JVM- or OS-specific. Tool writers have to choose their place in this
matrix.

We want to change that by removing the need for tool writers to make a choice.

By enabling tool writers to easily target all the major JVM vendors and operating systems, we expect the number
and capability of diagnostic tools to greatly increase.

Tomorrow it gets harder; heap sizes hit 100's of gigabytes, processors come packaged in powers of 16, and the
JVM commonly executes a wide range of language environments.

We can't tackle tomorrow's problems until we have a platform to address today's.

Post Mortem versus Live Monitoring

It's important to understand what the term "post mortem" means as far as JSR 326 is concerned and how it fits
within the general Post-mortem versus Live Monitoring space.

For JSR 326 the term "post mortem" is used loosely: it does not just imply dead Java Virtual Machines and
applications; JSR 326 also covers living, breathing applications where the dump artefacts are deliberately
produced as part of live monitoring activity.

Live monitoring generally means tracing, profiling, debugging, or even bytecode monitoring and diagnosis by
agents via the java.lang.instrument API. It can be a surprise to understand that it can also mean analysis of dumps
to look for trends and gather statistics.

The live-monitoring diagnostic space is well served except for this last area. The mutation speed of modern
applications under load can sometimes mean that monitoring systems cannot keep pace since they need to do
complex analysis on-the-fly The obvious solution is to take a snapshot of a running system and analyse the results
off-line

JSR 326 can help with this "Snapshot monitoring" by providing a standard mechanism for generating a snapshot
and for reading the contents of the snapshot later.

For JSR 326 "Post Mortem" just means "after the fact"

Tell me more about "Diagnostic Artifacts"

Simply put, when something goes wrong you'd like to know why. A diagnostic artifact is whatever material is left
when your application or JVM fails. Sometimes it's a message to the console, or a record in a log file. Hopefully
you'll get enough information to figure out what happened and fix the problem.

Unfortunately there are many cases where you don't get to see the obvious “smoking gun.”

In those situations you need access to more information so you can dig into the causes of your problem.
Historically the sorts of artifact you need are split into two types: those which show a time element and those that
are a snapshot of working system. The former of these types is of course a trace, while the latter comes under
the term “dump” or “core file” .

It's these latter type that JSR 326 is designed to consume.

Introduction

3

What types of Dump are supported by this API?

The Apache Kato incubator project is developing the reference implementation for JSR 326. That work includes
the development of an implementation that can read standard binary HPROF files and an experimental new dump
that uses JVMTI to expose more information than is currently in a HPROF file.

Other JVM vendors can develop implementations to support the API for their own dumps.

What data can I expect to find in a Dump?

Dumps come in all shapes and sizes. There is no definitive statement of contents. The API is designed to
accomodate this fact by providing a mechanism to signal that data is not available. Note that the design of the
API to handle data optionality is still not completed.

Figure 1.1. Dump contents

Java
elements

Libraries
& other process
elements

Virtual
Machine
 Instance

Dumps

Running Process

Its still possible to determine broad categories for the contents of a dump. In Figure 1.1, “Dump contents” you
can see that its reasonable to have three categories - from the dump which has all process information down to
the dump which only contains objects from the Java heap.

4

Chapter 2. Application Programming
Interface Architecture

Introduction

This chapter describes the conceptual behaviour and structure of the API

Structure

JSR 326 consists of a series of Java packages listed below

Table 2.1. Packages

Name Title

javax.tools.diagnostics Top level of the API, provides access to API
implementations.

javax.tools.diagnostics.image Package of interfaces representing a snapshot of a
program.

javax.tools.diagnostics.runtime Definition of an abstract view of a managed runtime.

javax.tools.diagnostics.runtime.java Definition of an abstract view of a Java runtime.

javax.tools.diagnostics.vm Dump Creation API

javax.tools.diagnostics.vm.spi

javax.tools.diagnostics.vm.spi.delegates

These packages are separated into into four logical groups.

• Diagnostic Artifact creation

• Abstraction handler discovery

• Runtime abstraction

• Process abstraction

These logical separations are themselves grouped into two further distinctions: those available at creation time
and those available at analysis time.

Application Programming
Interface Architecture

5

Figure 2.1. Summary Architecture

Application

JVM 1

JVM 2

Generator API

Dump
Generators

Application

Generator API

Dump
Generators

Application

Dump Readers

Java Runtime
APID

is
co

ve
ry

A
P

I

Process API

Generation Time Analysis Time

JVM 3

This separation can be seen in the Figure 2.1, “Summary Architecture”. In this diagram the green layer represents
the user application, the yellow layer represents the API and the orange layer represents implementations in
support of the API. The red shapes represent the different types of diagnostic artifact that can be created.

There is a vertical separation in this diagram which shows the two phases of the API. The left hand side shows
two distinct JVM instances which is intended to indicate the capability of the API to be used on multiple
implementations in a standard way. The right hand side shows a single application consuming multiple diagnostic
artifacts.

In the following sections we'll explore the API in more detail.

Creation Time Architecture

Creation time is the term used for the phase when dumps are generated. Dump creation can be via the creation
time API as outlined here, or via a JVM implementation specific mechanism.

Figure 2.2. Creation Time Architecture

Generator API

Dump
Generators

Application

1

2

3

Application Programming
Interface Architecture

6

In Figure 2.2, “Creation Time Architecture” the green layer represents the application, the yellow boxes represent
the API and the orange boxes represent implementations that translate the dump creation request to the specific
actions required to create a diagnostic artifact.

The numbered parts of the diagram can explained as followed

1. Creation API: This part of the API provides a standard mechanism for an application to initiate the creation
of a diagnostic artifact

2. Dump Creators: The specific implementations that are registered within the JVM that provide the mechanisms
to create the diagnostic artifact

3. Diagnostic Artifacts: The artifacts produced

The relationship between implementations and the discovery mechanism is not shown in this diagram. See the
section on the discovery process for more information

Analysis Time architecture

Figure 2.3. Analysis Time Architecture

Application

Dump Readers

Java Runtime
APID

is
co

ve
ry

A
P

I

Process API

2

3

1

4

5

In Figure 2.3, “Analysis Time Architecture” the green layer represents the API, the yellow boxes represent
implementations that translate from specific dump formats to the API structure and the red boxes represent the
various types of dump that can be found.

The relationship between implementations and the discovery mechanism is not shown in this diagram. See the
section on the discovery process for more information

7

Chapter 3. Design Principles

Introduction

This chapter describes the principles that are common across the whole API.

Lists

Methods use java.util.List to return multiple objects. All lists are immutable and unsynchronised.

For example, an ImageProcess may contain multiple instances of ManagedRuntime. To retrieve the ManagedRuntime
instances, a call would be made to: List<ManagedRuntime> ImageProcess.getRuntimes().

Lists are sometimes used in the API to access a larger number of objects than would be used in most Java
applications. For this reason, use of the java.util.List.toArray() method is discouraged in situations where
there would be a large number of array elements. For example:

 JavaObject[] heapAsArray(JavaHeap heap) {
 return heap.getObjects().toArray(new JavaObject[0]);
 }

would return an array with all of the objects in the heap, perhaps numbering in the hundreds of millions. This
should be considered when implementing or calling the API.

Type names

Type names and signatures use the same format as JNI. Please see the JavaDoc for each method for the exact
formats.

The class java.util.Map.entry would be formatted like so:

 java/util/Map$Entry

An multidimensional array java.util.Map.entry[][] is formatted like:

 [[Ljava/util/Map$Entry;

A primitive array class for int[][] is formatted like so:

 [[I

Memory and Identification

Address space

Memory in the API consists of a collection of flat (i.e. not segmented) address spaces represented by the
ImageAddressSpace class. Implementations do not have to report any memory as being present in the snapshot.

Design Principles

8

Memory sections

The ImageSection interface is used to describe arbitrary areas of memory by returning a pointer (represented
by a ImagePointer instance) and a size along with a name. ImageAddressSpace instances use them to describe
what memory is mapped in a snapshot. They are also used to describe the memory layout of the entities that the
API interfaces represent. This is normally done with methods such as List<ImageSection> getSections(). The
actual ImageSection instances returned are implementation specific and it is acceptable for there to be none. It
is expected that they will be used for:

• determining the memory occupancy of items. For example, the heap size could be derived from
JavaHeap.getSections().

• accessing structures in memory. For example, JavaObject.getSections() will return all of the ImageSection
instance representing the memory a JavaObject occupies. With knowledge of how an object is laid out on the
heap, it would be possible to retrieve more information than is retrieved presented by the API.

Addresses and Identification

The API uses the ImagePointer interface to identify objects returned by the API. ImagePointer represents an
address in memory, and enables programs to access memory at that address and at offsets from that address.
Given that not all implementations of the API allow access to memory, the addresses returned could be entirely
artificial.

When an ImagePointer is used as an address of an object from the API, it is up to the implementation to decide what
it is actually pointing at. It is important though that objects of the same type have unique addresses. For example,
JavaObject instances much each return an ImagePointer different from all other, but there may be instances of
JavaClass that share the same address.

ImagePointer allows access to memory using Java types, corrected for endianness. This means that only twos-
complement values can be returned, apart from the char which is unsigned in Java. There is no conversion from
the native platform's floating point formats. Floating point values are assumed to be stored as Java floating point
types.

Package Separation

While aspects of the image API are used by the runtime.java API, the reverse will never occur. The image API
should, in principle, be implementable standalone. For example, the following is allowed as it refers to the image
package:

 ImageThread JavaThread.getImageThread()

But the converse is not:

 JavaThread ImageThread.getJavaThread()

Error Handling

Implementations of the API should present data as accurate and complete as reasonably possible under any
circumstances. The purpose of the API includes presenting the state of a running process, a Java Virtual
Machine, when it encountered abnormal conditions. The most extreme of these situations is when the native code
implementing the JVM itself has crashed. As such, there will be situations where information cannot be retrieved

Design Principles

9

or may be incorrect. This should be regarded as normal. Both implementors of the API and those calling the API
should code anticipating errors to be normal rather than exceptional conditions.

Data is retrieved from the API from two types of methods. Those returning multiple items using generisised Lists
and those returning items directly. The lists that are returned are expected to return all items that they can.

When implementing lists, implementors should take care to:

• ensure that lists have a finite number of items. For example, a corrupted linked list may be corrupt or terminated
incorrectly. The API implementation should detect this and terminate the list.

• process as little of the items being returned as possible. Better to continue reading the collection of items rather
than fail on one item that is slightly wrong. For example, if the objects are being retrieved using the list from
the following method call:

 List<JavaObject> JavaHeap.getObjects()

... then if one object fails to identify its type properly, it is expected that the list would return the JavaObject.
Calls to that JavaObject would fail appropriately, such as to JavaClass JavaObject.getJavaClass().

Errors are reported on methods returning single items (i.e. not lists) using exceptions. There are two exceptions,
both subclasses of DiagnosticException. The exceptions are:

• MemoryAccessException. This is thrown when an attempt has been made to access memory that is not present
in the snapshot.

• CorruptDataException. This is thrown when the data used to form a response to the method call is incorrect.

Optional and missing data

There are circumstances where information cannot be supplied. Methods that throw the exception
DataUnavailable will do so if the information is either not presentable by the implmentation of the API, or if it
is not available for that particular snapshot.

There are circumstances where null is returned by a method. These circumstances will be explicitly documented
in the Javadoc.

DataUnavailable is thrown when the API cannot return the requested data. null is returned when the data was
never there to be returned.

Methods that return java.util.List instances will always do so under all circumstances.

Faked objects

There are many possible implementations of a JavaTM Virtual Machine each of which can have various and
different optimisations. Mapping a particular implementation to this API may require the creation of synthetic
objects for entities which do not actually exist in the diagnostic artifact.

An example of this would be array classes. These classes are never loaded by a Javatm Virtual Machine, they are
constructed as and when they are necessary. It is conceivable that there would be no actual entities that could
directly correspond with JavaClass instances. In circumstances like these the API implementor would have to
create a JavaClass for the array class, as that is the only means the API has for identifying that objects type.

Design Principles

10

Faked objects should be implemented carefully. For instance, if a faked JavaMethod is created, then the class
it declares itself as belonging to should report it, otherwise inconsistencies can arise that could cause calling
programs to fail.

There should be no collisions between real and faked objects.

Implementations should not be misleading. If a faked object has been created, then related fack objects should
be kept to a minimum. For instance a faked JavaObject should not return ImageSection instances.

Object identities

All implementations should override the java.lang.Object.equals(Object) method when objects are not
permanently cached and may need to be recreated. All API's should use equals to test object identity.

The quantity of objects held within a diagnostic artifact normally means that it is impractical to keep an in-
memory instance for everything. Therefore the API does not require that repeated calls to return a specific object
will in fact return the same instance. The API allows for recreation of already requested objects

The behaviour of equals against objects from different snapshots is not defined.

11

Chapter 4. Topics not yet resolved
This chapter outlines the areas of the specification and implementation etc that need to be resolved before the
API can be completed. In some cases the API definition so far has a solution that is not optimal and may change
in the future.

Optionality

Diagnostic artifacts are not equal. Generally they do not contain the same set of information. Since it's likely that
no single artifact will ever satisfy all the data requirements of the API the design of the API must therefore be
amenable to missing data. In fact there are two cases of data being missing. The case where that data is never in the
artifact (for instance an HPROF dump does not contain any information what interfaces a class may implement)
and the case where in a particular instance of a the artifact that data is just missing (or corrupted).

Currently the API signals missing or corrupt data by throwing the relevant exception. There is no mechanism for
the user of the API to discover what types of data are present or missing from the artifact. This is a problem for
the user and for the Test Compliance Kit since it needs to have predictable contents.

Native and Java Frame interleaving

The API presents native stack frames and Java stack frames in different places in the API - in ImageThread and
JavaThread. This makes it difficult to understand the order in which Java methods and native functions have
been called. Exposing the interleaving of native and Java frames would help, for example, debugging complex
JNI functions.

Optimisation of data access (query support)

The current programmatic means of accessing data is not open to optimisation. Having a query language would
enable the creation of useful indexes to speed up queries.

No support for identifying or handing generics in the Java Runtime

Currently it is impossible to determine any of the generic type information that is available in JVMs implementing
Java 5.0 or above.

No support for thread groups in the Java Runtime

The API has no consistent means of reporting the ThreadGroups the JavaThreads belong to.

Lack of consistency in accessing JavaObjects

In order to access the contents of objects in most cases it is often necessary to implement, as accesses via the
API, at least a subset of the functionality of the methods in the class of the object being accessed. For example,
to access all of the objects in a java.util.HashMap, knowledge of how HashMap is implemented is necessary. As
HashMap can be implemented differently on different implementations of the Java SDK, it is difficult to write
programs using the API that are truly Java SDK agnostic.

Need defined behaviour on what toString offers on each part of the API

The toString() method's behaviour is not specified in sufficient details across the whole API. For example,
JavaStackFrame.toString() should return a string describing the stack location like in a Java stacktrace, so this
should be specified so it can be implemented consistently.

Topics not yet resolved

12

No definitions about snapshoting

It is desirable that there be a consistent means for generating dumps for later analysis by the API. An API to be
used during runtime would enable applications to generate dumps when it suits them. This would not be to the
exclusion of other means of generating dumps peculiar to particular JVM implementations.

13

Chapter 5. Examples

Introduction

This chapter contains snippets of code demonstrating how to call the API. The appendices contain the unedited
samples.

Opening Images

Image instances are obtained using the javax.tools.diagnostics.FactoryRegistry class. See Appendix B,
Opening Images example for a complete example.

Programs using the API can obtain an Image like so:

Example 5.1. Opening an Image

 Image image = FactoryRegistry.getDefaultRegistry().
 getImage(new File("example.file"));

FactoryRegistry uses javax.imageio.spi.ServiceRegistry as a registry of all API implementations known to
the JVM. Implementors should ensure that FactoryRegistry is able to see their ImageFactory by placing their
implementation in a jar file that contains a file called META-INF/javax.tools.diagnostics.image.ImageFactory
that contains a line of text that is the name of the ImageFactory implementation, such as

com.example.dump.ImageFactoryImpl

Determining Snapshot Cause

Snapshots can be generated for a variety of reasons. The API can report that a snapshot has been generated
because the JVM received a POSIX type signal, whether it was synchronous or asynchronous. For example, if
a JNI library causes a SIGSEGV when running, this might be detectable through the API. In most cases, it should
be possible through ImageAddressSpace.getCurrentProcess() and ImageProcess.getCurrentThread() to determine
which process and which thread caused the snapshot.

If a snapshot was generated for a reason other than a POSIX signal being received, then the reason has to be
derived through knowledge of the JVM implementation. For example, if an option was passed to the JVM to
generate a snapshot on entry to a particular method, all of the stack traces could be searched to determine if that
method was present, and therefore probably causing the snapshot. Likewise, detecting a call to abort() in the
native stack would suggest that the snapshot was caused by a synchronous SIGABRT.

The following examples are extracts from the example program in Appendix C, Snapshot Cause Example.

The examples implement the ImageAnalyzer interface, they just need to implement the analyze(Image) method.

Example 5.2. CauseAnalyzer Class declaration

public class CauseAnalyzer implements ImageAnalyzer {

 @Override
 public void analyze(Image image) {

http://java.sun.com/javase/6/docs/api/javax/imageio/spi/ServiceRegistry.html

Examples

14

The containing ImageAddressSpace instances are searched for a current process. It is probable that there will be
one address space and one process. If getCurrentProcess() returns null, there was no current process. Because
List is returned, we can use a for-each loop.

Example 5.3. Find Current Process

 for (ImageAddressSpace as : image.getAddressSpaces()) {
 ImageProcess process = as.getCurrentProcess();

 if (process != null) {

Once found, the process can be queried for signal information and thread information. If a signal was raised,
ImageProcess.getSignalName() will not be null. The example reports the signal name and number to the user.

Example 5.4. Reporting signal information

 int signum = process.getSignalNumber();
 String signame = process.getSignalName();

 if (signame != null) {
 System.out.println("Snapshot caused by signal " + signame+"("+signum+")");
 }

The ImageProcess can report the command line. This is the command name and arguments that were used to start
the process. The command and arguments are returned in a single string, separated by spaces.

The process ID returned by getID() in a String. This is implementation specific, and so could be in any format,
whether that be hexadecimal, decimal or some other arbitrary string.

Example 5.5. Process ID and commandline

 System.out.println("Process "+process.getID()+
 " was started with `" +
 process.getCommandLine()+"'");

The program determines which thread caused the snapshot to be generated. If the current thread isn't null, the
thread is identified by ID and its properties (implementation dependent).

Example 5.6. Thread identification

 ImageThread thread = process.getCurrentThread();
 if (thread != null) {
 System.out.println("\nSnapshot caused by thread "+
 thread.getID()+
 ", "+thread.getProperties());

Next, the thread's stack frames are printed out. The code relies on java.lang.Object.toString() being
implemented correctly. It is expected that the most recent frame will be returned first.

Examples

15

Example 5.7. ImageThread stack trace

 for(ImageStackFrame frame: thread.getStackFrames()) {
 System.out.println("\t" + frame);
 }

This section of code relies on the relationship between JavaThread instances and ImageThread instances to
determine which Javatm thread caused the snapshot. As the relationship is one-way, from Javatm to Image,
all of the JavaThread instances have to be queried. Because JavaThread.getImageThread() might be null,
java.lang.Object.equals is executed against the ImageThread which we know to be not null. Once the JavaThread
is found, its name can be printed.

Example 5.8. JavaThread/ImageThread correlation

RUNTIME: for(ManagedRuntime runtime : process.getRuntimes()) {
 if (runtime instanceof JavaRuntime) {
 JavaRuntime jr = (JavaRuntime) runtime;

 for(JavaThread jthread : jr.getThreads()) {
 if (thread.equals(jthread.getImageThread())) {
 System.out.println("\nSnapshot caused by JavaThread "+
 jthread.getName());

 for(JavaStackFrame frame : jthread.getStackFrames()) {
 System.out.println("\t" + frame);
 }
 break RUNTIME;
 }}}}

Identifying Javatm VM

This example demonstrates how the JVM that generated a snapshot might be identified. The following
information is reported using the image and java APIs:

• hostname of the machine the snapshot was generated on.

• The process ID.

• The command line.

• The executable that was running the Javatm program (e.g. "/usr/bin/java").

• The command line.

• The loaded native libraries.

• The version reported by the JVM.

• The options passed to the JVM.

The complete listing is in Appendix D, Identifying Java VM Example.

Like the previous example, this implements ImageAnalyzer. There is some functionality that is also present in the
previous example - it is not repeated here.

Examples

16

Example 5.9. Declaration of WhatAnalyzer class

public class WhatAnalyzer implements ImageAnalyzer {

 @Override
 public void analyze(Image image) {

The hostname of the machine where the snapshot was generated is printed out. This isn't information that is
necessarily available in most core dump formats, instead this would normally be recorded by the program. As it is
important to get out as much information as possible, calls to the API are made with try/catch blocks around each
individual method. This is necessary as exceptions should be expected to be raised under most circumstances.
The stack traces for DataUnavailable are not usually reported as this is not an error condition. Instead, a message
is inserted to indicate that the information is not known.

Example 5.10. Getting the hostname

 // Report the hostname.
 String hostname;
 try {
 hostname = image.getHostName();
 } catch (DataUnavailable e) {
 hostname = "<Could not retrieve hostname";
 } catch (CorruptDataException e) {
 hostname = "<Error retrieving hostname>";
 e.printStackTrace();
 }
 System.out.println("Snapshot was generated on " + hostname);

Here the executable that started the process is reported. This is the executable that launched the JVM - typically
this is the "java" program. Alternatives include "javac" and "appletviewer". This is the name of the executable
the operating system loaded into memory when creating the process.

Example 5.11. Executable name

 String executable;
 executable = process.getExecutable().getName();
 System.out.println("Process Executable "+ executable);

This code prints out the names of the libraries that were loaded by the process. This should include any JNI
libraries that were configured. Note that it is also possible to determine where in memory these libraries have
been loaded into memory using the getSections() method. This can be used to identify where a thread might
have crashed.

Example 5.12. Process libraries

 System.out.println("Loaded Libraries:");
 for(ImageModule module : process.getLibraries()) {
 System.out.println("\t" + module.getName());
 }

The following code reports the Javatm VM version. This is implementation dependent, but is expected to contain
more than just the version of Javatm that is supported, but actually identify which implementation of the JVM it is.

Examples

17

Example 5.13. Javatm VM Version

 public void analyzeRuntime(JavaRuntime jr) {
 try {
 System.out.println("Java VM version:`"+jr.getVersion()+"'");
 } catch (CorruptDataException e1) {
 System.out.println("Error retrieving Java VM version");
 e1.printStackTrace();
 }

The following code reports the options that were passed to the JVM when it was created. The options are generated
and passed on by the executable the launches Java. Some of these might be passed on the command line (such
as by the "java" executable), but might also include options taken in from configuration files, as well as being
generated by the launcher itself.

Example 5.14. Javatm VM Options

 System.out.println("VM options:");
 for (JavaVMOption option : jr.getJavaVMInitArgs().getOptions()) {
 String optionString = "\t\t\""+option.getOptionString()+"\"";

 ImagePointer extra = option.getExtraInfo();
 if (extra != null) {
 optionString += ", extraInfo=0x"+Long.toHexString(extra.getAddress());
 }

 System.out.println(optionString);
 }}

Retrieving Object Fields

This example demonstrates how object instance fields and array elements are accessed using the API. The
complete listing is in Appendix E, Retrieving Object Fields Example.

The analyzeRuntime method walks over the heaps within the JVM. While Javatm programmers will be used to the
concept of the heap, the API allows a number of heaps to be accessed in a single JVM. It is expected the different
heaps will have different garbage collection policies and that each heap will be identified with a descriptive name
through JavaHeap.getName(). The number of heaps and their names is implementation specific, but there must
be at least one in a running JVM.

Example 5.15. Iterate over heaps

 public void analyzeRuntime(JavaRuntime jr) {
 for (JavaHeap heap : jr.getHeaps()) {
 walkHeap (heap);
 } }

This section of code retrieves each object from a heap. For API implementations backed by a core file, the objects
will probably be retrieved in order from lowest address in memory to the highest, but there is no relationship
between JavaObject list indexes and the results of JavaObject.getID() that can be relied upon by callers of the
API.

The JavaObject retrieved has to be tested to see if it is an array or an ordinary object as they are handled differently.

Examples

18

Example 5.16. Iterate over Objects

 public void walkHeap(JavaHeap heap) {
 for (JavaObject jObject : heap.getObjects()) {
 if (jObject.isArray()) {
 walkArray (jObject);
 } else {
 walkObject (jObject);
 }
 }

This method takes a JavaObject and prints out the values of all of the instance fields (not the static fields). To
identify each object, its ID is used. This is turned into a hex string using the pointerToHexString(ImagePointer)
that is included in this example.

Example 5.17. Print object fields

 public void walkObject(JavaObject jObject) {
 System.out.println("JavaObject @ " + pointerToHexString(jObject.getID()));

Each object in an instance of a class, so here the JavaClass is retrieved. This is equivalient to the following in Java:

Class java.lang.Object.getClass();

Implementors should ensure that the API returns the equivalent JavaClass.

Example 5.18. Get the object's type

 JavaClass clazz;
 clazz = jObject.getJavaClass();

A class will only report its fields, the superclasses must be retrieved in order to retrieve their fields. This while
loop retrieves each superclass until the superclass is null, which will be returned by the java.lang.Object class.
The class name is printed out, which should match what java.lang.Class.getName() would return, except for "."
characters being replaced by "/".

Example 5.19. Iterate up class hierarchy

 while (clazz != null) {
 System.out.println(prefix + clazz.getName() +":");
 prefix += " ";

This code retrieves each field from a JavaClass. This is equivalent to the following method in Javatm reflection:

Field[] java.lang.Class.getDeclaredFields()

This should return all fields, even synthetic fields. The DiagnosticException is a superclass of
CorruptDataException and DataUnavailable.

Examples

19

Example 5.20. Print out each field

 for (JavaField nextField : clazz.getDeclaredFields()) {
 printField(prefix, nextField, jObject);
 }
 } catch (DiagnosticException e) {
 System.err.println("Error printing out fields.");
 e.printStackTrace();
 }

Here the next superclass is retrieved. This will return null if the class has no superclass, such as java.lang.Object.
The loop is terminated by the break if the superclass couldn't be retrieved.

Example 5.21. get next superclass

 clazz = clazz.getSuperclass();
 } // while (class != null)

This method demonstrates how to print out an instance field. Note that the JavaObject is passed as it must passed
on to the JavaField for it to retrieve the value of the field in that instance.

Example 5.22. Print fields class

 private void printField(String prefix, JavaField field, JavaObject object)

It is not worth printing out the class fields for each instance of the class on the heap, so the field is tested
to see if it is static. The following method call retrieves the modifiers (public, static, protected, etc.) from
the JavaField and then uses reflection to test for static being set. Callers of the API should not assume that
JavaField.getModifiers() only returns the bits defined in java.lang.reflect.Modifier - always test with the
appropriate bitmasks or use the functions provided in Modifier.

Example 5.23. Testing JavaField.getModifiers()

 if (java.lang.reflect.Modifier.isStatic(field.getModifiers()))
 return;

There are a number of methods provided by JavaField to retrieve the field value. The most generic is
JavaField.get(JavaObject) which returns an Object.

Example 5.24. Getting the value of a field

 Object fieldValue = field.get(object);

Object references that were null in the running program are also returned as null by the API.

Examples

20

Example 5.25. JavaField.get() returns null

 // Format the field's value.
 if(fieldValue == null) {
 valueString = "<null reference>";

As JavaField.get(Object) can return any type, primitive fields values are returned in instances of Number or
Character. For instance, an int would be returned as an instance of java.lang.Integer. This can't be confused
with fields that are references to java.lang.Integer instances as they would be represented by JavaObject.

Example 5.26. Boxed numbers

 } else if (fieldValue instanceof Number) {
 valueString = fieldValue.toString();
 } else if (fieldValue instanceof Character) {
 valueString = "`" + (Character)fieldValue + "'";
 } else if (fieldValue instanceof Boolean) {
 valueString = ((Boolean) fieldValue).booleanValue() ? "true" : "false";

JavaField.get() is the means by which references to other objects are also retrieved. This program just retrieves
the referred object's class name and its ID. It is important to remember that the signature of the field is expected
to be an appropriate type for the objects that can be retrieved from it. A field signature would be either the same
type as an object retrieved from it, an interface or super-interface, or a super class.

Example 5.27. Retrieving an object reference

 } else if (fieldValue instanceof JavaObject) {
 JavaObject reference = (JavaObject) fieldValue;

 valueString = reference.getJavaClass().getName() + ": @ " + pointerToHexString(reference.getID());

The following code tests the object type to see if it is a Javatm String instance. The JavaClass representing
java.lang.String could be cached and compared against the objects classes, but instead we compare against the
name of the object's class. The method JavaField.getString() is used to retrieve the JavaObject as an instance
of java.lang.String in the running JVM.

Example 5.28. Retrieving a string field

 if ("java/lang/String".equals(reference.getJavaClass().getName())) {
 valueString += valueString +" = \"" + field.getString(object) + "\"";
 }

 }

 System.out.println(prefix + field.getSignature() + " " +
 field.getName() + " = " + valueString);

This method deals only with arrays, which are treated differently from ordinary objects when retrieving their
contents. Note that arrays don't have a field called "length".

Examples

21

Example 5.29. Method for printing out array contents

 public void walkArray(JavaObject object) {
 System.out.println("JavaObject @ " + pointerToHexString(object.getID()));

All instances of JavaObject have a JavaClass with a name. For arrays, this follows the JNI conventions. An integer
array would be called "[I", whereas an array of strings would be called "[Ljava/lang/String;".

Example 5.30. All objects have classes

 JavaClass clazz;
 clazz = object.getJavaClass();

 className = clazz.getName();

Each array describes the number of elements it contains. It is important to call getArraySize() and not getSize()
as the latter returns the size of the object on the heap.

Example 5.31. Get number of array elements

 int arraySize = 0;
 arraySize = object.getArraySize();

An array's class should be able to report the type of its elements. This call is used to determine the type of array
to receive the contents of the array.

Example 5.32. Getting the type of the array elements

 String componentName;
 componentName = clazz.getComponentType().getName();

Arrays elements are not accessed on an individual basis. Instead, their contents are copied to real arrays. This
code demonstrates that there are JavaClass for primitive types, in the same way there is in reflection. These names
are used to create primitive arrays of the correct type. Javatm reflection functions in the same way.

Examples

22

Example 5.33. Creating array of correct type

 Object arrayCopy;

 if ("boolean".equals(componentName)) {
 arrayCopy = new boolean[arraySize];
 } else if ("byte".equals(componentName)) {
 arrayCopy = new byte[arraySize];
 } else if ("char".equals(componentName)) {
 arrayCopy = new char[arraySize];
 } else if ("short".equals(componentName)) {
 arrayCopy = new short[arraySize];
 } else if ("int".equals(componentName)) {
 arrayCopy = new int[arraySize];
 } else if ("long".equals(componentName)) {
 arrayCopy = new long[arraySize];
 } else if ("float".equals(componentName)) {
 arrayCopy = new float[arraySize];
 } else if ("double".equals(componentName)) {
 arrayCopy = new double[arraySize];
 } else {

If an array is not an array of primitives, it must be an array of objects. As there is no means of converting a
JavaObject into a "real" object, an array of JavaObject instance is returned. Multidimensional arrays are returned
as arrays of JavaObject instances that are themselves arrays. The example code shows how a array to receive
object arrays is allocated.

Example 5.34. Array of JavaObjects as destination

 arrayCopy = new JavaObject[arraySize];

The method JavaObject.arraycopy is used to copy array elements in the same way as
java.lang.System.arraycopy(). Implementors and those writing applications using this method call should take
care as arrays can be extremely large, potentially larger than the JVM's heap size. If a fraction of an array is asked
for, that is all that should be allowed in memory.

Example 5.35. Copying array contents

 object.arraycopy(0, arrayCopy, 0, arraySize);

This code prints out the contents of the array elements. The java.lang.Array.get() method is used to retrieve
elements from the array in a generic fashion. If null is retrieved, that is printed, otherwise if it is an object the
type and address of the object is printed and failing that it must be an autoboxed primitive that can be printed
out using its toString(). The CorruptDataException is caught within the loop to allow the printing to continue
even if some of the elements can't be located.

Examples

23

Example 5.36. Printing out array elements

 System.out.println("\t" + className + "[" + arraySize +"] = {");
 for (int cnt=0; cnt < arraySize; cnt++) {
 Object obj = Array.get(arrayCopy, cnt);

 if (obj == null) {
 System.out.println("\t\tnull,");
 } else if (obj instanceof JavaObject) {
 JavaObject refObj = (JavaObject) obj;
 try {
 System.out.println("\t\t" + refObj.getJavaClass().getName()+ " @ "+
 pointerToHexString(refObj.getID())+",");
 } catch (CorruptDataException e) {
 System.err.println("\t\t CorruptDataException while printing out array element");
 e.printStackTrace();
 }
 } else {
 System.out.println("\t\t"+obj+",");
 }
 }
 System.out.println("\t};");
 }

24

Chapter 6. API Reference
This chapter contains the details of the Java classes that comprise the API.

package javax.tools.diagnostics

Top level of the API, provides access to API implementations.

Common semantics within javax.tools.diagnostics
Collections

1. Unless specifically declared all Collection classes and their associated Iterators are read only. Attempts to
add ,remove or replace items within the collection will result in a java.lang.UnsupportedOperationException
being thrown

2. Ordered Collections returned by this API are required to have a consistent and repeatable ordering across calls.

Object equality

Instances of classes defined by this API should only be tested for equality by using the java.lang.Object#equals()
method.

Table 6.1. Class Summary

Name Summary

FactoryRegistry Experimental addition to the API.

API Reference

25

Details

class FactoryRegistry

public FactoryRegistry extends java.lang.Object

Experimental addition to the API.

This class provides a central registry for image factories

Image factories can be registered directly using the addFactory() method.

The default registry obtained by calling getDefaultRegistry() uses javax.imageio.spi.ServiceRegistry to discover
ImageFactory implementations.

To register an ImageFactory implementation that can be discovered by the registry do the following :

• Create a 'services' directory as a child of the manfest directory 'META-INF'

• Within this 'services' directory create a text file called 'javax.tools.diagnostics.image.ImageFactory'

• This text file should contain a single line which is the package qualified name of the ImageFactory
implementation to be registered

Table 6.2. FactoryRegistry Constructor Summary

Constructor

public FactoryRegistry()

Creates an empty registry. To obtain an populated registry use the getDefaultRegistry() method

Table 6.3. FactoryRegistry Methods

Methods

getDefaultRegistry public static synchronized FactoryRegistry getDefaultRegistry()

Returns the default registry. This registy is preloaded with ImageFactory
implementations discovered using the javax.imageio.spi.ServiceRegistry

Returns

default image factory

iterator public Iterator iterator()

Returns an java.util.Iterator of ImageFactories registered to this registry.

API Reference

26

Methods

addFactory public boolean addFactory(ImageFactory factory)

Adds an ImageFactory to the registry instance If the factory instance is
already in the registry it is not added again.

Returns

true if factory added

Parameters

factory factory to add to registry

Throws

IllegalArgument if factory is null

getFactories public ImageFactory getFactories()

Always returns an array even if the registry is empty

Returns

Returns the factories in the registry as an array

getImage public Image getImage(File file)

Returns an appropriate javax.tools.diagnostics.image.Image for the provide
file by locating the first registered image factory that can handle the case
insensitive file name extension of the provided file. If no factory can be
found to handle the file then null is returned.

File names without extension will always return null

Returns

Image or null

Parameters

file to create image from

Throws

IllegalArgumentException if file is null

IOException if errors occur during image creation

API Reference

27

Methods

getJavaRuntime public JavaRuntime getJavaRuntime(File file)

Returns an appropriate javax.tools.diagnostics.image.Image for the provide
file by locating the first registered image factory that can handle the case
insensitive file name extension of the provided file. If no factory can be
found to handle the file then null is returned.

File names without extension will always return null

Returns

Image or null

Parameters

file to create image from

Throws

IllegalArgumentException if file is null

IOException if errors occur during image creation

package javax.tools.diagnostics.image

Package of interfaces representing a snapshot of a program.

In order to accommodate most dump formats, the API allows the possibility of having multiple processes in the
same dump. Each process is capable of having multiple ManagedRuntime. The package contains information on:

• The Image of the snapshot.

• The ImageThread threads including information on their ImageRegister registers and ImageStackFrame stacks.

• Loaded ImageModule libraries and their ImageSymbol symbols.

• Information on the running ImageProcess process.

Table 6.4. Interface Summary

Name Summary

ImageProcess This class represents a Process running in a given Address Space.

Image This class represents an entire operating system image (e.g.

ImageAddressSpace This class represents a single Address Space within the image.

ImageSection Represents a range of memory used for a specific purpose.

ImageStackFrame Represents a native stack frame

ImageFactory This interface is used for classes which can produce instances of Image
implementors.

API Reference

28

Name Summary

ImageThread A low-level thread instance

ImagePointer Represents an address in image memory.

CorruptData This class is used to indicate that corruption has been detected in the
image.

ImageModule Represents a shared library loaded into the image, or the executable
module itself

ImageSymbol Represents a symbol defined in an ImageModule

ImageRegister Represents the state of a CPU or FPU register

Table 6.5. Class Summary

Name Summary

MemoryAccessException Indicates that an attempt was made to access memory which is not
included within the image

DiagnosticException This class is the superclass of all exceptions thrown by
javax.tools.diagnostics classes

CorruptDataException Used to indicate that corruption has been detected in the image.

DataUnavailable This exception is used to indicate that data was requested which is not
available on this system, or in this image.

Details

interface ImageProcess

public interface ImageProcess

This class represents a Process running in a given Address Space.

Table 6.6. ImageProcess Methods

Methods

getCommandLine public String getCommandLine()

Fetch the command line for this process. This may be the exact command
line the user issued, or it may be a reconstructed command line based on
argv[] and argc.

Returns

the command line for the process

Throws

DataUnavailable if the information cannot be provided

CorruptDataException

API Reference

29

Methods

getEnvironment public Properties getEnvironment()

Get the environment variables for this process.

Returns

the environment variables for this process

Throws

DataUnavailable if the information cannot be provided

CorruptDataException

getID public String getID()

Get the system-wide identifier for the process.

Returns

a system-wide identifier for the process (e.g. a process id (pid) on Unix like
systems)

Throws

DataUnavailable if the information cannot be provided

CorruptDataException

getLibraries public List getLibraries()

Get the set of shared libraries which are loaded in this process.

Returns

an iterator to iterate over the shared libraries which are loaded in this
process

Throws

DataUnavailable if the information cannot be provided

CorruptDataException

API Reference

30

Methods

getExecutable public ImageModule getExecutable()

Get the module representing the executable within the image.

Returns

the module representing the executable within the image (as opposed to
modules representing libraries)

Throws

DataUnavailable if the information cannot be provided

CorruptDataException

getThreads public List getThreads()

Get the set of image threads in the image. There is not necessarily
any relationship between JavaThreads and ImageThreads. A JVM
implementation may use an n:m mapping of JavaThreads to ImageThreads,
and not all ImageThreads are necessarily attached.

Returns

an iterator to iterate over each ImageThread in the image

getCurrentThread public ImageThread getCurrentThread()

Find the thread which triggered the creation of the image

Returns

the ImageThread which caused the image to be created, or null if the image
was not created due to a specific thread

Throws

CorruptDataException

getRuntimes public List getRuntimes()

Get the set of the known ManagedRuntime environments in the image. In a
typical image, there will be only one runtime, and it will be an instance of
JavaRuntime. However any user of this API should be aware that there is a
possibility that other runtimes may exist in the image

Returns

an iterator to iterate over all of the known ManagedRuntime environments
in the image.

API Reference

31

Methods

getSignalNumber public int getSignalNumber()

Get the OS signal number in this process which triggered the creation of this
image.

Returns

the OS signal number in this process which triggered the creation of this
image, or 0 if the image was not created because of a signal in this process

Throws

DataUnavailable if the information cannot be provided

CorruptDataException

getSignalName public String getSignalName()

Get the name of the OS signal in this process which triggered the creation of
this image.

Returns

the name of the OS signal in this process which triggered the creation of
this image, or null if the image was not created because of a signal in this
process

Throws

DataUnavailable if the information cannot be provided

CorruptDataException

getPointerSize public int getPointerSize()

Determine the pointer size used by this process. Currently supported values
are 31, 32 or 64. In the future, other pointer sizes may also be supported.

Returns

the size of a pointer, in bits

API Reference

32

interface Image

public interface Image

This class represents an entire operating system image (e.g. a core file). There are methods for accessing
information about the architecture of the machine on which the image was running - hardware and operating
system. The major feature, however, is the ability to iterate over the Address Spaces contained within the image.

Table 6.7. Image Methods

Methods

getAddressSpaces public List getAddressSpaces()

Get the set of address spaces within the image - typically one but may be
more on some systems such as z/OS.

Returns

an Iterator which iterates over all of the address spaces described by this
Image

getProcessorType public String getProcessorType()

Get the family name for the processor on which the image was running.

Returns

the family name for the processor on which the image was running. This
corresponds to the value you would find in the "os.arch" System property.

Throws

DataUnavailable if this data cannot be inferred from this core
type

CorruptDataException if expected data cannot be read from the core

getProcessorSubType public String getProcessorSubType()

Get the precise model of the CPU.

Returns

the precise model of the CPU (note that this can be an empty string
but not null). e.g. getProcessorType() will return "x86" where
getProcessorSubType() may return "Pentium IV step 4" Note that this value
is platform and implementation dependent.

Throws

DataUnavailable

CorruptDataException

API Reference

33

Methods

getProcessorCount public int getProcessorCount()

Get the number of CPUs running in the system on which the image was
running.

Returns

the number of CPUs running in the system on which the image was running

Throws

DataUnavailable if the information cannot be provided

getSystemType public String getSystemType()

Get the family name for the operating system.

Returns

the family name for the operating system. This should be the same value
that would be returned for the "os.name" system property

Throws

DataUnavailable if this data cannot be inferred from this core
type

CorruptDataException if expected data cannot be read from the core

getSystemSubType public String getSystemSubType()

Get the detailed name of the operating system.

Returns

the detailed name of the operating system, or an empty string if this
information is not available (null will never be returned). This should be the
same value that would be returned for the "os.version" system property

Throws

DataUnavailable

CorruptDataException

API Reference

34

Methods

getInstalledMemory public long getInstalledMemory()

Get the amount of physical memory (in bytes) installed in the system on
which the image was running.

Returns

the amount of physical memory installed in the system on which the image
was running. The return value is specified in bytes.

Throws

DataUnavailable if the information cannot be provided

getCreationTime public long getCreationTime()

Determines when the image was created

Returns

the time in milliseconds since 1970

Throws

DataUnavailable

getHostName public String getHostName()

Get the host name of the system where the image was running.

Returns

The host name of the system where the image was running. This string will
be non-null and non-empty

Throws

DataUnavailable If the image did not provide this information
(would happen if the system did not know
its host name or if the image predated this
feature).

CorruptDataException

API Reference

35

Methods

getIPAddresses public Iterator getIPAddresses()

The set of IP addresses (as InetAddresses) which the system running the
image possessed.

Returns

An Iterator over the IP addresses (as InetAddresses) which the system
running the image possessed. The iterator will be non-null (but can be
empty if the host is known to have no IP addresses).

Throws

DataUnavailable If the image did not provide this information
(would happen if the system failed to look
them up or if the image pre-dated this
feature).

getSource public File getSource()

Experimenal

interface ImageAddressSpace

public interface ImageAddressSpace

This class represents a single Address Space within the image. On some operating systems (e.g. z/OS), there can
be more than one Address Space per core file (but generally with only one process per ImageAddressSpace).

Table 6.8. ImageAddressSpace Methods

Methods

getCurrentProcess public ImageProcess getCurrentProcess()

Get the process within this address space which caused the image to be
created.

Returns

the process within this address space which caused the image to be created,
if any. Return null if no individual process triggered the creation of the
image.

getProcesses public List getProcesses()

Get the set of processes within the address space.

Returns

an iterator which provides all of the processes within a given address
space. In most images, there will only be one process within an
ImageAddressSpace

API Reference

36

Methods

getPointer public ImagePointer getPointer(long address)

A factory method for creating pointers into this address space

Returns

an ImagePointer for the specified address

Parameters

address the address to point to

getImageSections public List getImageSections()

Get the raw memory in the address space.

Returns

An iterator of all the ImageSections in the address space. Their union will
be the total process address space

class MemoryAccessException

public MemoryAccessException extends javax.tools.diagnostics.image.DiagnosticException

Indicates that an attempt was made to access memory which is not included within the image

Table 6.9. MemoryAccessException Constructor Summary

Constructor

public MemoryAccessException(ImagePointer badPointerString description)

Build exception for the given location and description

public MemoryAccessException(ImagePointer badPointer)

Build exception for the given location and description

Table 6.10. MemoryAccessException Methods

Methods

getPointer public ImagePointer getPointer()

Get a pointer into the image where the access failed.

Returns

The pointer into the image where the access failed

API Reference

37

class DiagnosticException

public DiagnosticException extends java.lang.Exception

This class is the superclass of all exceptions thrown by javax.tools.diagnostics classes

Table 6.11. DiagnosticException Constructor Summary

Constructor

public DiagnosticException(String description)

Build exception with the given description

public DiagnosticException()

Build exception with no description

interface ImageSection

public interface ImageSection

Represents a range of memory used for a specific purpose.

Table 6.12. ImageSection Methods

Methods

getBaseAddress public ImagePointer getBaseAddress()

Get the lowest address of memory in this section.

Returns

the lowest address of memory in this section

getSize public long getSize()

Get the size of this contiguous image section as measured in bytes.

Returns

the size of this contiguous image section as measured in bytes

getName public String getName()

Get the name of this section (e.g. ".text").

Returns

the name of this section (e.g. ".text"). Note that sections of the image
which have no specific name will receive a name synthesised by the
implementation. This will never be null.

API Reference

38

Methods

isExecutable public boolean isExecutable()

Does this section have permission to allow the processor to attempt to
execute code?

Returns

true if this section is executable, false otherwise

Throws

DataUnavailable

isReadOnly public boolean isReadOnly()

Is this section read-only ?

Returns

true if write access to this section was disabled

Throws

DataUnavailable

isShared public boolean isShared()

Is this section shared with other processes..

Returns

true if this section is shared between processes

Throws

DataUnavailable

API Reference

39

interface ImageStackFrame

public interface ImageStackFrame

Represents a native stack frame

Table 6.13. ImageStackFrame Methods

Methods

getProcedureAddress public ImagePointer getProcedureAddress()

Get the address of the current instruction within the procedure being
executed.

Returns

the address of the current instruction within the procedure being executed,
or null if not available. Use this address with caution, as it is provided only
as a best guess. It may not be correct, or even within readable memory

Throws

CorruptDataException

getBasePointer public ImagePointer getBasePointer()

Get the base pointer of the stack frame.

Returns

the base pointer of the stack frame

Throws

CorruptDataException

API Reference

40

Methods

getProcedureName public String getProcedureName()

Returns a string describing the procedure at this stack frame.
Implementations should use the following template so that procedure names
are reported consistently:

• libname(sourcefile)::entrypoint±<node></node>offset

Any portion of the template may be omitted if it is not available

• e.g.

• system32(source.c)::WaitForSingleObject+14

• system32::WaitForSingleObject-4

• (source.c)::WaitForSingleObject

• ::WaitForSingleObject+14

• system32+1404

• system32::TWindow::open(int,void*)+14

Returns

a string naming the function executing in this stack frame. If the name is
not known for legitimate reasons, a synthetic name will be returned..

Throws

CorruptDataException

API Reference

41

interface ImageFactory

public interface ImageFactory

This interface is used for classes which can produce instances of Image implementors.

Note that this interface forms the contract between the javax.tools.diagnostics.FactoryRegistry and
an implementation. The methods on this interface are only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Table 6.14. ImageFactory Methods

Methods

getImage public Image getImage(File imageFile)

Creates a new Image object based on the contents of imageFile.

Note that this method is only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Returns

an instance of Image

Parameters

imageFile a file with Image information, typically a core file

Throws

IOException if unable to create an image from the
provided file

getImage public Image getImage(File imageFileFile metadata)

Creates a new Image object based on the contents of imageFile and metadata

Note that this method is only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Returns

an instance of Image

Parameters

imageFile a file with Image information, typically a core file

metadata a file with additional Image information. This is an
implementation defined file

Throws

IOException if unable to create an image from the
provided file

API Reference

42

Methods

getMajorVersion public int getMajorVersion()

Fetch the major version number

Returns

An integer corresponding to the API major version number

getMinorVersion public int getMinorVersion()

Fetch the minor version number

Returns

An integer corresponding to the API minor version number

getModificationLevel public int getModificationLevel()

Fetch the modification level

Returns

An integer corresponding to the API modification level

getValidFileExtensions public String getValidFileExtensions()

Returns an array of file extensions that the
javax.tools.diagnostics.FactoryRegistry can use to determine if an file can be
processed by this Image Factory implementation.

File extensions are the part of a file name after the last '.'.

The returned array is treated as a case insensitive collection of file
extensions.

The returned array is expected to contain at least one entry.

Note that this method is only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Returns

an array of case insensitive file extension names.

API Reference

43

Methods

getJavaRuntime public JavaRuntime getJavaRuntime(File file)

Creates a new JavaRuntime object based on the contents of the file;

Note that this method is only intended to be called by the
javax.tools.diagnostics.FactoryRegistry

Returns

an instance of JavaRuntime

Parameters

file a file with JavaRuntime information

Throws

IOException if unable to create a runtime from the
provided file

class CorruptDataException

public CorruptDataException extends javax.tools.diagnostics.image.DiagnosticException

Used to indicate that corruption has been detected in the image.

Table 6.15. CorruptDataException Constructor Summary

Constructor

public CorruptDataException(CorruptData data)

Construct a new CorruptDataException for the specified corrupt data

Table 6.16. CorruptDataException Methods

Methods

getCorruptData public CorruptData getCorruptData()

Get more info about the corrupted data

Returns

the CorruptData object

API Reference

44

interface ImageThread

public interface ImageThread

A low-level thread instance

Table 6.17. ImageThread Methods

Methods

getID public String getID()

Fetch a unique identifier for the thread. In many operating systems, threads
have more than one identifier (e.g. a thread id, a handle, a pointer to VM
structures associated with the thread). In this case, one of these identifiers
will be chosen as the canonical one. The other identifiers would be returned
by getProperties()

Returns

a process-wide identifier for the thread (e.g. a tid number)

Throws

CorruptDataException

getStackFrames public List getStackFrames()

Get the set of stack frames on this thread.

Returns

an iterator to walk the native stack frames in order from top-of-stack (that
is, the most recent frame) to bottom-of-stack. Throws DataUnavailable if
native stack frames are not available on this platform.

Throws

DataUnavailable If native stack frames are not available on
this platform

getStackSections public List getStackSections()

Get the set of image sections which make up the stack.

Returns

a collection of ImageSections which make up the stack. On most platforms
this consists of a single entry, but on some platforms the thread's stack may
consist of non-contiguous sections

API Reference

45

Methods

getRegisters public List getRegisters()

Get the register contents.

Returns

an iterator to iterate over the state of the CPU registers when the image was
created. The collection may be empty if the register state is not available for
this thread. If the CPU supports partial registers (e.g. AH, AL, AX, EAX,
RAX on AMD64), only the largest version of the register will be included

getProperties public Properties getProperties()

Get the OS-specific properties for this thread.

Returns

a table of OS-specific properties for this thread. Values which are
commonly available include "priority" -- the priority of the thread "policy"
-- the scheduling policy of the thread

class DataUnavailable

public DataUnavailable extends javax.tools.diagnostics.image.DiagnosticException

This exception is used to indicate that data was requested which is not available on this system, or in this image.

Table 6.18. DataUnavailable Constructor Summary

Constructor

public DataUnavailable(String description)

Build exception with the given description

public DataUnavailable()

Build exception with no description

API Reference

46

interface ImagePointer

public interface ImagePointer

Represents an address in image memory.

Table 6.19. ImagePointer Methods

Methods

getAddress public long getAddress()

Get the unwrapped address, represented as a 64-bit integer.

Returns

the unwrapped address, represented as a 64-bit integer Use caution when
comparing addresses, as some addresses may be negative. Note that on
segmented memory architectures, it may not be possible to represent all
addresses accurately as integers

getAddressSpace public ImageAddressSpace getAddressSpace()

Get the address space to which this pointer belongs.

Returns

the address space to which this pointer belongs

add public ImagePointer add(long offset)

Build a new image pointer offset from this one by the given amount.

Returns

a new ImagePointer based at getAddress() + offset

Parameters

offset

isExecutable public boolean isExecutable()

Is the referenced location executable ?

Returns

true if this memory address is within an executable page

Throws

DataUnavailable

API Reference

47

Methods

isReadOnly public boolean isReadOnly()

Is the referenced location read only ?

Returns

true if write access to this memory address was disabled in the image

Throws

DataUnavailable

isShared public boolean isShared()

Is the referenced location shared ?

Returns

true if this memory address is shared between processes

Throws

DataUnavailable

getPointerAt public ImagePointer getPointerAt(long index)

Get the value at the given offset from this pointer. To determine the number
of bytes to skip after this call to read the next value, use

ImageProcess.getPointerSize()

.

Returns

the 32 or 64-bit pointer stored at getAddress() + index in the same address
space.

Parameters

index an offset (in bytes) from the current position

Throws

MemoryAccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

API Reference

48

Methods

getLongAt public long getLongAt(long index)

Get the value at the given offset from this pointer.

Returns

the 64-bit long stored at getAddress() + index

Parameters

index an offset (in bytes) from the current position

Throws

MemoryAccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

getIntAt public int getIntAt(long index)

Get the value at the given offset from this pointer.

Returns

the 32-bit int stored at getAddress() + index

Parameters

index an offset (in bytes) from the current position

Throws

MemoryAccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

API Reference

49

Methods

getShortAt public short getShortAt(long index)

Get the value at the given offset from this pointer.

Returns

the 16-bit short stored at getAddress() + index

Parameters

index an offset (in bytes) from the current position

Throws

MemoryAccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

getByteAt public byte getByteAt(long index)

Get the value at the given offset from this pointer.

Returns

the 8-bit byte stored at getAddress() + index

Parameters

index an offset (in bytes) from the current position

Throws

MemoryAccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

API Reference

50

Methods

getFloatAt public float getFloatAt(long index)

Get the value at the given offset from this pointer.

Returns

the 32-bit float stored at getAddress() + index

Parameters

index an offset (in bytes) from the current position

Throws

MemoryAccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

getDoubleAt public double getDoubleAt(long index)

Get the value at the given offset from this pointer.

Returns

the 64-bit double stored at getAddress() + index

Parameters

index an offset (in bytes) from the current position

Throws

MemoryAccessException if the memory cannot be read

CorruptDataException if the memory should be in the image, but is
missing or corrupted

equals public boolean equals(Object obj)

Returns

True obj refers to the same Image Pointer in the image

Parameters

obj

hashCode public int hashCode()

API Reference

51

interface CorruptData

public interface CorruptData

This class is used to indicate that corruption has been detected in the image. It may indicate corruption of the
image file, or it may indicate that inconsistencies have been detected within the image file, perhaps caused by a
bug in the runtime or application. It may be encountered in two scenarios:

• within a CorruptDataException

• returned as an element from an Iterator

Any iterator in javax.diagnostics may implicitly include one or more CorruptData objects within the list of objects
it provides. Normal data may be found after the CorruptData object if the javax.diagnostics implementation is
able to recover from the corruption.

Table 6.20. CorruptData Methods

Methods

toString public String toString()

Provides a string which describes the corruption

Returns

a descriptive string

getAddress public ImagePointer getAddress()

Return an address associated with the corruption. If the corruption is not
associated with an address, return null. If the corruption is associated with
more than one address, return the one which best identifies the corruption.

Returns

the address of the corrupted data

API Reference

52

interface ImageModule

public interface ImageModule

Represents a shared library loaded into the image, or the executable module itself

Table 6.21. ImageModule Methods

Methods

getName public String getName()

Get the file name of the shared library.

Returns

the file name of the shared library

Throws

CorruptDataException If the module is corrupt and the original file
cannot be determined

getSections public List getSections()

Get the collection of sections that make up this library.

Returns

a collection of sections that make up this library

getSymbols public List getSymbols()

Provides a collection of symbols defined by the library. This list is likely
incomplete as many symbols may be private, symbols may have been
stripped from the library, or symbols may not by available in the image.

Returns

a collection of symbols which are defined by this library.

getProperties public Properties getProperties()

Get the table of properties associated with this module.

Returns

a table of properties associated with this module. Values typically defined
in this table include "version" -- version information about the module

Throws

CorruptDataException

API Reference

53

interface ImageSymbol

public interface ImageSymbol

Represents a symbol defined in an ImageModule

Table 6.22. ImageSymbol Methods

Methods

getAddress public ImagePointer getAddress()

Get the address of this symbol in the image.

Returns

the address of this symbol in the image

getName public String getName()

Get the name of the symbol.

Returns

the name of the symbol

interface ImageRegister

API Reference

54

public interface ImageRegister

Represents the state of a CPU or FPU register

Table 6.23. ImageRegister Methods

Methods

getName public String getName()

Fetch the name of a register. On some CPUs registers may have more than
one conventional name. Recommended names for some CPUs are provided
in the user guide.

Returns

the conventional name of the register

getValue public Number getValue()

Get the value for the register.

Returns

an integral or floating point type which contains the value for the register.
The returned value may be an instance of any subclass of Number. For
instance, on x86 architectures with MMX, the XMM registers will be
returned as BigInteger instances

Throws

CorruptDataException

API Reference

55

package javax.tools.diagnostics.runtime

Definition of an abstract view of a managed runtime.

Runtimes are collections of software services that together, provide a environment where an application program
can be executed. Most computer languages provide some sort of runtime. This package contains definitions that
are common to all runtime environments.

Table 6.24. Interface Summary

Name Summary

ManagedRuntime A generic managed runtime instance.

Details

interface ManagedRuntime

public interface ManagedRuntime

A generic managed runtime instance. A Managed Runtime as against an "Unmanaged Runtime" is one where
the runtime takes an active role in the program execution. Common examples of managed runtimes are the Java
Virtual Machine or the .NET Common Language Runtime.

No class should implement this interface directly. This is an marker interface which is extended by specific
runtime interfaces. See javax.tools.diagnostics.runtime.java.JavaRuntime as an example of such a case.

Table 6.25. ManagedRuntime Methods

Methods

getVersion public String getVersion()

Returns version data available for this runtime instance. The version
information is never null. The format of the version data is implementation
specific.

Returns

a string representing the available version information specific to the
implementation

Throws

CorruptDataException If the ManagedRuntime implementation is
unable to retrieve version data

API Reference

56

Methods

getFullVersion public String getFullVersion()

Returns

a string representation of the version information for this runtime instance

Throws

CorruptDataException

package javax.tools.diagnostics.runtime.java

Definition of an abstract view of a Java runtime.

Implementations of the API expose information about Java virtual machines with the

JavaRuntime

interface. The information about the following can be retrieved from JavaRuntimes:

• JavaHeap Heaps.

• JavaObject Objects.

• JavaClassLoader Classloaders.

• JavaClass Classes, including their JavaField fields and JavaMethod methods.

• JavaMonitor Monitors.

• JavaThread Threads, including their JavaStackFrame stacks.

Table 6.26. Interface Summary

Name Summary

JavaStackFrame Represents a Java stack frame.

JavaLocation Represents a point of execution within a Java method

JavaHeap Represents a single heap of managed objects.

JavaReference Represents a Java reference.

JavaRuntime Represents an instance of a Java Virtual Machine This interface defines
attributes and features common across real implementation of the Java
Virtual Machine.

JavaObject Represents a Java object or array.

JavaClassLoader Represents an internal ClassLoader structure within a Java Virtual
Machine instance.

JavaVMInitArgs This class models the JavaVMInitArgs C structure passed to
JNI_CreateJavaVM to create this Java Virtual Machine Typically the
options passed to the JVM are similar but necessarily identical to these
used to invoke the Java Virtual Machine from a command line.

API Reference

57

Name Summary

JavaMember Abstract interface which both JavaField and JavaMethod inherit from.

JavaMonitor Represents the underlying monitor used by a Java Virtual Machine to
manage locking and synchronization of a Java object.

JavaMethod Represents a method or constructor in a class

JavaField Represents a field declaration.

JavaVMOption This class models the JavaVMOption C structures passed to the JNI
invocation API entry point JNI_CreateJavaVM used to create a Java
Virtual Machine.

JavaClass Represents a Java class.

JavaVariable Representation of a Java Variable

JavaThread Represents a Java thread.

Details

interface JavaStackFrame

public interface JavaStackFrame

Represents a Java stack frame.

Table 6.27. JavaStackFrame Methods

Methods

getBasePointer public ImagePointer getBasePointer()

Get a pointer to the base of this stack frame within memory.

The layout of a

JavaStackFrame

is implementation specific.

Returns

the base pointer of the stack frame

Throws

CorruptDataException

API Reference

58

Methods

getLocation public JavaLocation getLocation()

Returns the JavaLocation that represents the location of this

JavaStackFrame

within the Java program.

Returns

a location object describing where the frame is executing.

Throws

CorruptDataException

getHeapRoots public List getHeapRoots()

A list of references to objects and classes from this stack frame.

Returns the references to object and classes this Java Virtual Machine's
implementation considers as being kept alive by this Java stack frame. As
well as references from local variables and operations stack entries, this may
also include a reference to the Java frame's class or to an object this stack
frame is keeping alive through holding its monitor.

Returns

a list of JavaReferences

getVariable public Object getVariable(int slot)

Gets the value of a variable from a stack frame.

Returns a JavaObject for an object reference,

null

for a null object reference. Primitives are returned as boxed primitives.
CorruptDataException is thrown if object reference is incorrect, or if the
float or double are set to invalid values.

Parameters

slot - the numerical local variable slot number to retrieve.

Throws

DataUnavailable if this method is not supported or if stack not
in correct state to return variables.

IndexOutOfBoundsException if an invalid slot number is passed.

API Reference

59

Methods

getVariables public List getVariables()

Gets all variables from the stack frame.

Returns a java.util.List containing the available JavaVariable JavaVariables.
While the method JavaMethod#getVariables() will return all local variables
for a method, this method will return only those variables that are visible at
the point of execution for this stack frame.

equals public boolean equals(Object obj)

Returns

True if the given object refers to the same JavaStackFrame in the image

Parameters

obj

hashCode public int hashCode()

interface JavaLocation

API Reference

60

public interface JavaLocation

Represents a point of execution within a Java method

Table 6.28. JavaLocation Methods

Methods

getAddress public ImagePointer getAddress()

Fetches the absolute address of the code which this location represents.
This pointer will be contained within one of the segments returned by
getBytecodeSections() or getCompiledSections() of the method returned by
getMethod().

null may be returned, particularly for methods with no bytecode or compiled
sections (e.g. some native methods)

Although an offset into the method may be calculated using this pointer,
caution should be exercised in attempting to map this offset to an offset
within the original class file. Various transformations may have been applied
to the bytecodes by the VM or other agents which may make the offset
difficult to interpret.

For native methods, the address may be meaningless.

Returns

the address in memory of the managed code

Throws

CorruptDataException if the underlying data is in an unexpected
state

getLineNumber public int getLineNumber()

Get the line number.

Returns

the line number, if available, or throws DataUnavailable if it is not
available Line numbers are counted from 1

Throws

DataUnavailable if the line number data is not available for
this location

CorruptDataException if the underlying data is in an unexpected
state

API Reference

61

Methods

getFilename public String getFilename()

Get the source file name.

Returns

the name of the source file, if available, or throws DataUnavailable if it is
not available

Throws

DataUnavailable if the source file name is unavailable in the
core

CorruptDataException if the underlying data is in an unexpected
state

getCompilationLevel public int getCompilationLevel()

Get the compilation level for this location. This is an implementation
defined number indicating the level at which the current location was
compiled. 0 indicates interpreted. Any positive number indicates some level
of JIT compilation. Typically, higher numbers indicate more aggressive
compilation strategies

For native methods, a non-zero compilation level indicates that some
level of JIT compilation has been applied to the native call (e.g. a
custom native call stub). To determine if the method is native, use
getMethod().getModifiers().

Returns

the compilation level

Throws

CorruptDataException if the underlying data is in an unexpected
state

getMethod public JavaMethod getMethod()

Get the method which contains the point of execution.

Returns

the method which contains the point of execution

Throws

CorruptDataException if the underlying data is in an unexpected
state

API Reference

62

Methods

toString public String toString()

Returns

A string representing the location as it would be seen in a Java stack trace

equals public boolean equals(Object obj)

Returns

True if the given object refers to the same Java Location in the image

Parameters

obj

hashCode public int hashCode()

interface JavaHeap

public interface JavaHeap

Represents a single heap of managed objects. The heap can be viewed as an unordered collection of JavaObjects
or as a region of storage within the Java Virtual Machine instance. The heap commonly contains JavaObject
instances that are reachable by navigating chains of JavaReference These references can be obtained from the
JavaRuntime#getHeapRoots() method. A heap can contain instances which cannot be reached by the use of
JavaReference

Table 6.29. JavaHeap Methods

Methods

getSections public List getSections()

Get the set of memory regions that represent the memory layout of the heap.
The actual make up of this list is implementation specific. The returned list
follows the standard semantics for javax.tools.diagnostics collections. The
returned value is never null but can be an empty list.

Returns

a list of ImageSection instances

getName public String getName()

Get a brief textual description of this heap. The value returned is
implementation specific. The returned value is never null.

Returns

a brief textual description of this heap

API Reference

63

Methods

getObjects public List getObjects()

Get the set of objects which are stored in this heap.

Returns

a list of JavaObject objects which are stored in this heap The returned list
follows the standard semantics for javax.tools.diagnostics collections. The
returned value is never null but can be an empty list.

equals public boolean equals(Object obj)

Returns

true if the given object refers to the same Java Heap in the image

Parameters

obj

hashCode public int hashCode()

interface JavaReference

public interface JavaReference

Represents a Java reference.

A Java reference is a traceable relationship between two objects or between a root and a Java object.

References are used by Garbage Collection systems to identify objects that can be reclaimed.

Table 6.30. JavaReference Methods

Methods

getRootType public int getRootType()

Get the root type, as defined in the JVMTI specification.

Returns

an integer representing the root type, see HEAP_ROOT_ statics above.

getReferenceType public int getReferenceType()

Get the reference type, as defined in the JVMTI specification.

Returns

an integer representing the reference type, see REFERENCE_ statics
above.

API Reference

64

Methods

getReachability public int getReachability()

Get the reachability of the target object via this specific reference.

Returns

an integer representing the reachability, see REACHABILITY_ statics
above.

getDescription public String getDescription()

Get a string describing the reference type.

Users should not depend on the contents or identity of this string. e.g. "JNI
Weak global reference", "Instance field 'MyClass.value'", "Constant pool
string constant"

Returns

a String describing the reference type

isObjectReference public boolean isObjectReference()

Check to see if this reference points to an object in the heap

Returns

true if the target of this root is an object

Throws

DataUnavailable if the requested information is not available

CorruptDataException is the underlying data is in an unexpected
state

isClassReference public boolean isClassReference()

Check to see if this reference points to a class.

Returns

true if the target of this root is a class

Throws

DataUnavailable if the requested information is not available

CorruptDataException is the underlying data is in an unexpected
state

API Reference

65

Methods

getTarget public Object getTarget()

Get the object referred to by this reference.

Returns

a JavaObject or a JavaClass

Throws

DataUnavailable if the requested information is not available

CorruptDataException is the underlying data is in an unexpected
state

getSource public Object getSource()

Get the source of this reference if available.

Returns

a JavaClass, JavaObject, JavaStackFrame, JavaThread or null if unknown

Throws

DataUnavailable if the requested information is not available

CorruptDataException is the underlying data is in an unexpected
state

interface JavaRuntime

API Reference

66

public interface JavaRuntime

Represents an instance of a Java Virtual Machine This interface defines attributes and features common across
real implementation of the Java Virtual Machine. Not all of these characteristics are defined by the Java Virtual
Machine Specification Notable additions beyond the JVM specification include Garbage Collection and access
to the contents of the Heap or Heaps. Since this interface defines a view of the Java Runtime that is beyond that
seen by the Java programmer during program execution it is necessarily more detailed.

Table 6.31. JavaRuntime Methods

Methods

getJavaVM public ImagePointer getJavaVM()

Get the object that represents the virtual machine

Returns

the address of the JavaVM structure which represents this JVM instance in
JNI

Throws

CorruptDataException

getJavaVMInitArgs public JavaVMInitArgs getJavaVMInitArgs()

Fetch the JavaVMInitArgs which were used to create this VM. See
JNI_CreateJavaVM in the JNI Specification for more details. A valid object
is returned or an exception is thrown.

Returns

the JavaVMInitArgs which were used to create this VM.

Throws

DataUnavailable if the arguments are not available

CorruptDataException if the implementation was unexpectedly
unable to retrieve the data

API Reference

67

Methods

getJavaClassLoaders public List getJavaClassLoaders()

Get the set of class loaders available in this Java Virtual Machine instance.

Available in this context means class loaders that are participating in the
class loader hierarchy. All class loaders are returned including any defined
by the Java Virtual machine instance itself.

Any structural relationships between class loaders in this list is not exposed.
Recreation of the class loader graph within a Java Virtual Machine instance
is beyond the scope of the API.

At least one class loader must be returned in the resulting list.

Returns

a java.util.List of all of the class loaders within this Java Virtual Machine
instance

getThreads public List getThreads()

Get the set of Java Threads that have been started java.lang.Thread#start() in
this Java Virtual Machine instance. This method does not return all instances
of java.lang.Thread contained within the system. Only threads that have
been started and have not yet stopped or exited are returned. Threads may
not be in an active state when returned by this method. The returned list
follows the standard semantics for javax.tools.diagnostics collections The
returned list is never null although it can be empty.

Returns

a java.util.List of the JavaThreads in the runtime

getCompiledMethods public List getCompiledMethods()

Get the set of JavaMethod objects that have been compiled. Compiled
methods are methods that have been converted into native code by the Java
Virtual Machine or related Just In Time Compiler There is no expectation
that any method has been compiled. The returned list could be empty.
However any JavaMethod reachable though the API which would return
a non empty list for calls to JavaMethod#getCompiledSections() must be
contained within the list returned by this method. The returned list follows
the standard semantics for javax.tools.diagnostics collections

Returns

a java.util.List of all of the JavaMethods in the JavaRuntime which have
been compiled.

API Reference

68

Methods

getMonitors public List getMonitors()

Provides access to the collection of monitors used in the Java Virtual
Machine. This collection can include monitors associated with managed
objects (e.g. object monitors) and monitors associated with Java Virtual
Machine internal control structures (e.g. raw monitors). Raw monitors are
implementation specific. The returned list follows the standard semantics for
javax.tools.diagnostics collections. The returned list is never null but could
be empty.

Returns

a list of monitors

getHeaps public List getHeaps()

Get the set of heaps known by the Java Virtual Machine There may be
multiple heaps within a Java Virtual Machine, for instance a generational
heap and a class heap. Heaps may be specific to this Java Virtual Machine
instance, or may be shared between multiple Java Virtual Machine
instances.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null and will always contain at least one JavaHeap
object

Returns

a list for all of the Java heaps within this runtime.

getHeapRoots public List getHeapRoots()

Get the complete set of object and class roots known to the Java Virtual
Machine

Returns

a list of JavaReferences representing the known global heap roots
within this runtime. The returned list follows the standard semantics for
javax.tools.diagnostics collections. The returned list is never null but can be
empty.

API Reference

69

Methods

getTraceBuffer public Object getTraceBuffer(String bufferNameboolean formatted)

Returns

an implementation specific result, depending on the parameters

Parameters

bufferName a String naming the buffer to be fetched

formatted true if formatting should be performed on the buffer, or
false if the raw buffer contents should be returned

Throws

CorruptDataException

getObjectAtAddress public JavaObject getObjectAtAddress(ImagePointer address)

Gets the object located at address

address

in the heap.

Returns

the JavaObject instance representing the located object.

Parameters

addr the ImagePointer instance representing the start address of
object in the heap;

Throws

IllegalArgumentException if address is null, outside the heap's
boundaries or if it doesn't point to the start
location of an object;

MemoryAccessException if address is is in the heap but it's not
accessible from the dump;

CorruptDataException if any data needed to build the returned
instance of JavaObject is corrupt.

DataUnavailable if any data needed to build the returned
instance of JavaObject is not available.

API Reference

70

Methods

equals public boolean equals(Object obj)

Returns

true if the given object refers to the same Java Runtime in the image

Parameters

obj

hashCode public int hashCode()

getSource public File getSource()

Returns the File used as source for the creation of this Runtime. This File
will be equal to the file presented to the FactoryRegistry when this runtime
(or its parent Image) was created.

Returns

File object

interface JavaObject

public interface JavaObject

Represents a Java object or array.

Array elements can be retrieved using the arraycopy() method. Object instance fields can be retrieved using the

get*()

methods in JavaField such as JavaField#get(JavaObject). The JavaField objects can be retrieved from an object's
JavaClass using JavaClass#getDeclaredFields().

Table 6.32. JavaObject Methods

Methods

getJavaClass public JavaClass getJavaClass()

Get the JavaClass instance which represents the class of this object.

This method never returns null, all objects have a class. The JavaClass
returned might be synthetic for array types.

Returns

the JavaClass instance which represents the class of this object.

Throws

CorruptDataException

API Reference

71

Methods

isArray public boolean isArray()

Returns true if this JavaObject represents an array.

Returns

true if this JavaObject represents an array.

Throws

CorruptDataException

getArraySize public int getArraySize()

Get the number of elements in this array.

This is equivalent to calling

array.length

in Java, where

array

is an array reference.

Returns

the number of elements in this array.

Throws

CorruptDataException

IllegalArgumentException if the object is not an array.

API Reference

72

Methods

arraycopy public void arraycopy(int srcStartObject dstint dstStartint length)

Copies data from the array this JavaObject represents into an array.

The dst object must be an array of the appropriate type -- a primitive type
array for base types, or a JavaObject array for reference arrays.

Parameters

srcStart index in the receiver to start copying from.

dst the destination array.

dstStart index in the destination array to start copying into.

length the number of elements to be copied.

Throws

CorruptDataException

MemoryAccessException

NullPointerException if dst is null.

IllegalArgumentException if the object is not an array, or if dst is not an
array of the appropriate type.

IndexOutOfBoundsException if srcStart, dstStart, or length are out of
bounds in either the JavaObject or the
destination array.

getSize public long getSize()

Get the number of bytes of memory occupied by this object.

Returns

the number of bytes of memory occupied by this object. The memory may
not necessarily be contiguous.

Throws

CorruptDataException

API Reference

73

Methods

getHashcode public long getHashcode()

Fetch the basic hash code for the object.

This is the hash code which would be returned if a Java thread had requested
it. Typically the hash code is based on the address of an object, and may
change if the object is moved by a garbage collect cycle.

Returns

the basic hash code of the object in the image.

Throws

DataUnavailable if the hash code cannot be determined.

CorruptDataException

getPersistentHashcode public long getPersistentHashcode()

Fetch the basic hash code of the object in the image. This hash code is
guaranteed to be persistent between multiple snapshots of the same Image. If
the hash code cannot be determined, or if the hash code for this object could
change between snapshots, an exception is thrown.

If the VM uses a 'hasBeenHashed' bit, the value of this bit can be inferred by
calling getPersistentHashcode(). If the persistent hash code is not available,
then the 'hasBeenHashed' bit has not been set, and the hash of the object
could change if the object moves between snapshots

Returns

the basic hash code of the object in the image

Throws

DataUnavailable if a hash code cannot be determined, or if the
hash code could change between successive
snapshots

CorruptDataException

API Reference

74

Methods

getID public ImagePointer getID()

The ID of an object is a unique address is memory which identifies the
object.

It is probable that an object's address will change during the lifetime of a
Java Virtual Machine because of the operations of the garbage collector.
Other mechanisms for uniquely identifying objects should be used when
comparing dumps.

The data at this memory is implementation defined. The object may be non-
contiguous. Portions of the object may appear below or above this address.

Returns

the runtime-wide unique identifier for the object.

getSections public List getSections()

Returns the sections that this object occupies in memory.

These sections include the object's header and the data in the object.

In certain allocation strategies, an object's header and data may be allocated
contiguously. In this case, this method may return an iterator for a single
section.

In other schemes, the header may be separate from the data or the data may
be broken up into multiple regions. Additionally, this function does not
guarantee that the memory used by this object is not also shared by one or
more other objects.

The contents of the image sections are implementation specific, as so are
undefined here.

Returns

a collection of sections that make up this object.

getReferences public List getReferences()

Get the set of references from this object.

These references will include at least the object's references to its class, and
any references from instance fields to other objects and classes, or array
elements references to other objects.

Returns

an List of JavaReferences.

API Reference

75

Methods

getHeap public JavaHeap getHeap()

Gets the heap where this object is located.

A JavaHeap will always be returned if this object could be retrieved by
JavaHeap#getObject(), otherwise DataUnavailable is thrown.

Returns

the JavaHeap instance representing the heap where this object is stored in
memory.

Throws

CorruptDataException if the heap information for this object is
corrupt.

DataUnavailable if the heap information for this object is not
available.

equals public boolean equals(Object obj)

Returns

True if the given object refers to the same Java Object in the image

Parameters

obj

hashCode public int hashCode()

API Reference

76

interface JavaClassLoader

public interface JavaClassLoader

Represents an internal ClassLoader structure within a Java Virtual Machine instance. For most ClassLoaders
there is a corresponding java.lang.ClassLoader instance within with JavaRuntime. For primordial class loaders
such as the bootstrap class loader, there may or may not be a corresponding java.lang.ClassLoader instance.

Since Java does not define any strict inheritance structure between class loaders, there are no APIs for
inspecting 'child' or 'parent' class loaders. This information may be inferred by inspecting the corresponding
java.lang.ClassLoader instance:

pseudo javacode example

 JavaClassLoader loader;
 JavaObject instance=loader.getObject();
 String classLoaderName=instance.getJavaClass().getName();

Table 6.33. JavaClassLoader Methods

Methods

getDefinedClasses public List getDefinedClasses()

Get the set of classes which are defined in this JavaClassLoader. Calling
the JavaClass#getClassLoader() method on objects returned in this list will
return this JavaClassLoader

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned value is never null but can be an empty list.

Returns

an list of classes which are defined in this JavaClassLoader

getCachedClasses public List getCachedClasses()

When a ClassLoader successfully delegates a findClass() request to another
ClassLoader, the result of the delegation must be cached within the internal
structure so that the Java Virtual Machine does not make repeated requests
for the same class.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned value is never null but can be an empty list.

Returns

a list of classes which are defined in this JavaClassLoader or which were
found by delegation to other JavaClassLoaders

API Reference

77

Methods

findClass public JavaClass findClass(String name)

Find a class by name within this class loader. The class may have been
defined in this class loader, or this class loader may have delegated the load
to another class loader and cached the result.

The form of the name presented to this method should be as follows

 [packagenamepart / ...] (classname) [$innerclassname ...]

Examples

• To find the JavaClass that represents "java.lang.String" use
findClass("java/lang/String")

• To find the JavaClass that represents "Foo.InnerClass.InnerInnerClass" in
the default package use findClass("Foo$InnerClass$InnerInnerClass")

• To find the JavaClass that represents "java.util.Map.Entry use
findClass("java/util/Map$Entry")

Returns

the JavaClass instance, or null if it is not found

Parameters

name of the class to find. Packages should be separated by '/'
instead of '.'

Throws

CorruptDataException if the underlying data is in an unexpected
state

getObject public JavaObject getObject()

Get the java.lang.ClassLoader instance (represented by a JavaObject
associated with this class loader. If there is no associated class loader,
for example the system class loader , then null will be returned. Further
examination of the returned object is implementation specific.

Returns

a JavaObject representing the java.lang.ClassLoader instance

Throws

CorruptDataException if the underlying data is in an unexpected
state

API Reference

78

Methods

equals public boolean equals(Object obj)

Returns

True if the given object refers to the same Java Class Loader in the image

Parameters

obj

hashCode public int hashCode()

interface JavaVMInitArgs

public interface JavaVMInitArgs

This class models the JavaVMInitArgs C structure passed to JNI_CreateJavaVM to create this Java Virtual
Machine Typically the options passed to the JVM are similar but necessarily identical to these used to invoke
the Java Virtual Machine from a command line.

Table 6.34. JavaVMInitArgs Methods

Methods

getVersion public int getVersion()

Fetch the JNI version from the JavaVMInitArgs structure used to create this
Java Virtual Machine. See the JNI specification for the meaning for this
field.

Returns

the JNI version

Throws

DataUnavailable

CorruptDataException

API Reference

79

Methods

getIgnoreUnrecognized public boolean getIgnoreUnrecognized()

Fetch the ignoreUnrecognized field from the JavaVMInitArgs structure
used to create this Java Virtual Machine. See the JNI specification for the
meaning for this field.

Returns

true if ignoreUnrecognized was set to a non-zero value when the Java
Virtual Machine was invoked

Throws

DataUnavailable

CorruptDataException

getOptions public List getOptions()

Fetch the options used to start this Java Virtual Machine, in the order they
were originally specified. The returned list follows the standard semantics
for javax.tools.diagnostics collections The order of the options returned in
the list is the same as that passed to the to JNI_CreateJavaVM function. A
list is always returned but could be empty

Returns

an List of JavaVMOptions

Throws

DataUnavailable

API Reference

80

interface JavaMember

public interface JavaMember

Abstract interface which both JavaField and JavaMethod inherit from. It defines APIs which are common to both
types of members. It is modelled on java.lang.reflect.Member

Table 6.35. JavaMember Methods

Methods

getModifiers public int getModifiers()

Get the set of modifiers for this field or method - a set of bits The
values for the constants representing the modifiers can be obtained from
java.lang.reflect.Modifier.

Returns

the modifiers for this field or method.

Throws

CorruptDataException if the underlying data is in an unexpected
state

getDeclaringClass public JavaClass getDeclaringClass()

Get the class which declares this field or method

Returns

the JavaClass which declared this field or method

Throws

CorruptDataException if the underlying data is in an unexpected
state

DataUnavailable if there is no declaring class available

getName public String getName()

Get the name of the field or method

Returns

the name of the field or method

Throws

CorruptDataException if the underlying data is in an unexpected
state

API Reference

81

Methods

getSignature public String getSignature()

Get the signature of the field or method

Returns

the signature of the field or method. e.g. "(Ljava/lang/String;)V"

Throws

CorruptDataException if the underlying data is in an unexpected
state

equals public boolean equals(Object obj)

Returns

True if the given object refers to the same Java Member in the image

Parameters

obj

hashCode public int hashCode()

interface JavaMonitor

public interface JavaMonitor

Represents the underlying monitor used by a Java Virtual Machine to manage locking and synchronization of
a Java object.

The underlying monitor is implementation specific. Some implementations may choose to use their monitor
implementations to control access to Java Virtual Machine resources that are not objects. In such cases,
getObject() will return null.

Java programmers use the synchronized modifier on methods and the synchronized block within methods
to control simultaneous access to Java objects. Java uses monitors for this synchronization, which can be
implemented using a variety of techniques. The JavaMonitor class presents the simple monitor abstraction that
allows the caller to determine:

• Which thread currently owns the monitor

• Which threads are waiting to be woken after they have gotten ownship of the monitor and relinquished it,
normally within Object.wait() within a synchronized block or method.

• The threads that waiting to get ownership of the monitor. These are typically threads waiting to enter a
synchronized block or method.

This API presents only what exists at the Java Virtual Machine bytecode level. The locking facilities provided
by the java.util.concurrent.lock package are expected to be implemented on top of ordinary Java monitors.

API Reference

82

Table 6.36. JavaMonitor Methods

Methods

getObject public JavaObject getObject()

Get the object associated with this monitor. Not all JavaMonitors will have
objects, as there may be JavaMonitors that are used to control access to
internal Java Virtual Machine resources ("Raw" monitors).

Returns

the Java object associated with this monitor, or null.

getName public String getName()

Get the name of a monitor.

For monitors not associated with object ("raw" monitors), it is expected
that this method will return a descriptive name that is meaningful to the
Java Virtual Machine implementation. For example "Heap lock" might be a
monitor controlling exclusive access to the Java heap.

For objects, the expectation is that the name will uniquely identify the
object the monitor is associated with. This is not expected to necessarily be
consistent between different dumps of the same JVM.

Returns

the name of the monitor (never null)

Throws

CorruptDataException

getOwner public JavaThread getOwner()

Get the thread which currently owns the monitor. This may be null if the
monitor is not owned.

Returns

the owner of the monitor, or null if the monitor is not owned

Throws

CorruptDataException

API Reference

83

Methods

getEnterWaiters public List getEnterWaiters()

Get the set of threads waiting to enter the monitor.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned value is never null but can be an empty list.

Returns

a list of threads waiting to enter this monitor

getNotifyWaiters public List getNotifyWaiters()

Get the set of threads waiting to be notified on the monitor. They are usually
threads in the java.lang.Object#wait() method.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned value is never null but can be an empty list.

Returns

a list of threads waiting to be notified on this monitor.

getID public ImagePointer getID()

Get the identifier for this monitor.

Returns

The pointer which uniquely identifies this monitor in memory.

equals public boolean equals(Object obj)

Returns

true if the given object refers to the same Java Monitor in the image

Parameters

obj

hashCode public int hashCode()

API Reference

84

interface JavaMethod

public interface JavaMethod

Represents a method or constructor in a class

Table 6.37. JavaMethod Methods

Methods

getBytecodeSections public List getBytecodeSections()

Get the set of ImageSections containing the bytecode of this method.

Each ImageSection contains data (usually bytecodes) used in executing this
method in interpreted mode.

The collection may be empty for native methods, or pre-compiled methods.

Typically, the collection will contain no more than one section, but this is
not guaranteed.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

a list of ImageSections.

getCompiledSections public List getCompiledSections()

Get the set of ImageSections containing the compiled code of this method.

Each ImageSection contains data (usually executable code) used in
executing this method in compiled mode.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

a list of ImageSections.

API Reference

85

Methods

getVariables public List getVariables()

An experimental addition to the API.

Get the set of JavaVariable objects

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

List of JavaVariable objects available

equals public boolean equals(Object obj)

Returns

True if the given object refers to the same JavaMethod in the image

Parameters

obj

hashCode public int hashCode()

interface JavaField

API Reference

86

public interface JavaField

Represents a field declaration. It is modelled on java.lang.reflect.Field

Table 6.38. JavaField Methods

Methods

get public Object get(JavaObject object)

Get the contents of a field of an Object.

Returns

a JavaObject instance for reference type fields, an instance of a subclass
of Number, Boolean, or Character for primitive fields, or null for null
reference fields.

Parameters

object to fetch the field from. Ignored for static fields. This field
must be declared in the object's class or in a superclass

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate for
this field

API Reference

87

Methods

getBoolean public boolean getBoolean(JavaObject object)

Get the contents of a boolean field

Returns

the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate for
this field, or if the field is not a boolean.

getByte public byte getByte(JavaObject object)

Get the contents of a byte field

Returns

the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate for
this field, or if the type of the field cannot be
converted to byte

API Reference

88

Methods

getChar public char getChar(JavaObject object)

Get the contents of a char field

Returns

the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate for
this field, or if the type of the field cannot be
converted to char

getDouble public double getDouble(JavaObject object)

Get the contents of a double field or of another primitive field whose type is
convertible to double via a widening conversion.

Returns

the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate for
this field, or if the type of the field cannot
be converted to double via a widening
conversion

API Reference

89

Methods

getFloat public float getFloat(JavaObject object)

Get the contents of a float field or of another primitive field whose type is
convertible to float via a widening conversion.

Returns

the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate for
this field, or if the type of the field cannot be
converted to float via a widening conversion

getInt public int getInt(JavaObject object)

Get the contents of an int field or of another primitive field whose type is
convertible to int via a widening conversion.

Returns

the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate for
this field, or if the type of the field cannot be
converted to int via a widening conversion.

API Reference

90

Methods

getLong public long getLong(JavaObject object)

Get the contents of a long field or of another primitive field whose type is
convertible to long via a widening conversion.

Returns

the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate for
this field, or if the type of the field cannot be
converted to long via a widening conversion.

getShort public short getShort(JavaObject object)

Get the contents of a short field or of another primitive field whose type is
convertible to short via a widening conversion.

Returns

the field contents

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

NullPointerException if the field is an instance field, and object is
null

IllegalArgumentException if the specified object is not appropriate
for this field, or if the type of the field
cannot be converted to short via a widening
conversion.

API Reference

91

Methods

getString public String getString(JavaObject object)

Get the contents of a string field

Returns

a String representing the value of the String field. Note that the instance
returned can be null if the field was null in object.

Parameters

object to fetch the field from. Ignored for static fields.

Throws

CorruptDataException if the underlying data is in an unexpected
state

MemoryAccessException

IllegalArgumentException if the specified field is not a String

NullPointerException if the field is an instance field, and object is
null

equals public boolean equals(Object obj)

Returns

True if the given object refers to the same Java Field in the image

Parameters

obj

hashCode public int hashCode()

API Reference

92

interface JavaVMOption

public interface JavaVMOption

This class models the JavaVMOption C structures passed to the JNI invocation API entry point
JNI_CreateJavaVM used to create a Java Virtual Machine. Each JavaVMOption consists of two components :

1. an optionString string, used to identify the option.

2. an extraInfo pointer, used to pass additional information. This component is usually null.

Table 6.39. JavaVMOption Methods

Methods

getOptionString public String getOptionString()

Fetch the optionString component of the option.

Returns

a string representing the optionString. This is never null.

Throws

DataUnavailable

CorruptDataException

getExtraInfo public ImagePointer getExtraInfo()

Fetch the extraInfo component of this option.

Returns

the pointer value from the extraInfo (usually null).

Throws

DataUnavailable

CorruptDataException

API Reference

93

interface JavaClass

public interface JavaClass

Represents a Java class.

A Java Class can have fields and methods. It is a shallow model of a loaded class file or special types such as
array types or primitive types in the Java Virtual Machine.

Table 6.40. JavaClass Methods

Methods

getObject public JavaObject getObject()

Fetch the java.lang.Class object associated with this class.

In some implementations this may be null if no object has been created to
represent this class, or if the class is synthetic.

Returns

the java.lang.Class object associated with this class

Throws

CorruptDataException if the underlying data is in an unexpected
state

getClassLoader public JavaClassLoader getClassLoader()

Fetch the class loader associated with this class. Classes defined in the
bootstrap class loader (including classes representing primitive types or
void) will always return a JavaClassLoader representing the bootstrap
class loader. This asymmetry with java.lang.Class#getClassLoader() is
intentional.

Returns

the JavaClassLoader in which this class was defined

Throws

CorruptDataException if the class loader for this class cannot be
found (a class cannot exist without a loader
so this implies corruption)

API Reference

94

Methods

getName public String getName()

Get the name of the class in a form that follows the
java.lang.Class#getName() definition.

This method will always return a valid class name.

Returns

the name of the class

Throws

CorruptDataException if the underlying data is in an unexpected
state

getSuperclass public JavaClass getSuperclass()

Get the super class of this class.

Will return the superclass of this class or null if no superclass exists.

For JavaClass instances representing interfaces, java.lang.Object, primitive
types (int,boolean,char etc) and void, calling this method will return null.

Returns

the immediate superclass of this class, or null if this class has no superclass.

Throws

CorruptDataException if the underlying data is in an unexpected
state

getInterfaces public List getInterfaces()

Get the set of names of interfaces directly implemented by the class
represented by this JavaClass.

Some JVM implementations may choose to load interfaces lazily, so only
the names are returned.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

a list of the names of interfaces directly implemented by this class.

API Reference

95

Methods

getModifiers public int getModifiers()

Return the Java language modifiers for this class.

The modifiers are defined by the JVM Specification.

Note that, for inner classes, the actual modifiers are returned, not the
synthetic modifiers. For instance, a class will never have its 'protected'
modifier set, even if the inner class was a protected member, since
'protected' is not a legal modifier for a class file.

Returns

the modifiers for this class

Throws

CorruptDataException if the underlying data is in an unexpected
state

isArray public boolean isArray()

This method returns true if the class represented by this JavaClass is an array
class.

Returns

true if this class is an array class

Throws

CorruptDataException if the underlying data is in an unexpected
state

getComponentType public JavaClass getComponentType()

For array classes, returns a JavaClass representing the component type of
this array class.

Returns

a JavaClass representing the component type of this array class

Throws

CorruptDataException if the underlying data is in an unexpected
state

java.lang.IllegalArgumentExceptionif this JavaClass does not represent an array
class

API Reference

96

Methods

getDeclaredFields public List getDeclaredFields()

Get the set of fields declared in this class.

Fields declared in any superclass of this class are not returned.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

a list of fields declared in this class.

getDeclaredMethods public List getDeclaredMethods()

Get the set of methods declared in this class.

Methods declared in any superclass of this class are not returned.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

a list of methods declared in this class.

API Reference

97

Methods

getConstantPoolReferences public List getConstantPoolReferences()

Returns the list of constant pool references defined by this class.

Java classes may refer to other classes and to String objects via the
class's constant pool. These references are followed by the garbage
collector, forming edges on the graph of reachable objects. This
getConstantPoolReferences() may be used to determine which objects are
referred to by the receiver's constant pool.

Although Java VMs typically permit only Class and String objects in
the constant pool, some esoteric or future virtual machines may permit
other types of objects to occur in the constant pool. This API imposes no
restrictions on the types of JavaObjects which might be included in the list.

No assumption should be made about the order in which constant pool
references are returned.

Classes may also refer to objects through static variables. These may
be found with the getDeclaredFields() API. Objects referenced by static
variables are not returned by getConstantPoolReferences() unless the object
is also referenced by the constant pool.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

a list of JavaObjects which are referred to by the constant pool of this class.

getID public ImagePointer getID()

The ID of a class is a pointer to a section of memory which identifies the
class. The contents of this memory are implementation defined.

In some implementations getID() and getObject().getID() may return the
same value. This implies that the class object is also the primary internal
representation of the class. API users should not rely on this behaviour.

In some implementations, getID() may return null for some classes.

Returns

a pointer to the class

API Reference

98

Methods

getReferences public List getReferences()

Get the set of references from this class.

A reference is a object that represents the uni-directional relationship
between objects and classes. Objects and classes cannot be reclaimed by
the Java Virtual Machine garbage collector if references exist that can
ultimately be traced back to root references. see JavaReference for more
detailed information.

Since this API can present entities that exist at any point in their lifecycle, it
is possible to encounter an JavaClass that is eligible for collection and thus
no JavaReference can be found that refers to it.

The returned list follows the standard semantics for javax.tools.diagnostics
collections.

The returned list is never null but could be empty.

Returns

a list of JavaReferences

equals public boolean equals(Object obj)

Returns

True if the given object refers to the same Java Class in the image

Parameters

obj

hashCode public int hashCode()

API Reference

99

interface JavaVariable

public interface JavaVariable

Representation of a Java Variable

This is an experimental addition and may be removed at a later date

Table 6.41. JavaVariable Methods

Methods

getName public String getName()

The name of the variable.

Throws

DataUnavailable if the information is not available

getSignature public String getSignature()

The local variable's signature in JNI format.

getStart public int getStart()

The start of the local variable's scope within the bytecode.

getLength public int getLength()

The number of bytes this variables scope covers over the bytecode.

getSlot public int getSlot()

The local variable slot this variable occupies. Passed to
JavaStackFrame.getVariable() to retrieve the contents.

getValue public Object getValue()

The value of the variable

API Reference

100

interface JavaThread

public interface JavaThread

Represents a Java thread.

JavaThread

instances correspond with executing threads in the Java Virtual Machine, not java.lang.Thread instances on the
heap.

JavaThread

provide information on what was running including the locations of all of the threads within the Java program
when the dump was taken.

Table 6.42. JavaThread Methods

Methods

getJNIEnv public ImagePointer getJNIEnv()

Get the address of the JNIEnv structure which represents this thread instance
in JNI.

Returns

the address of the JNIEnv structure which represents this thread instance in
JNI.

Throws

CorruptDataException

getPriority public int getPriority()

Get the Java priority of the thread.

The value returned will be the same as what would have been returned by a
call to java.lang.Thread#getPriority() within the Java Virtual Machine.

Returns

the Java priority of the thread (a number between 1 and 10 inclusive)

Throws

CorruptDataException

API Reference

101

Methods

getObject public JavaObject getObject()

Returns the JavaObject representing the instance of the class or subclass of
java.lang.Thread that represents this thread in the Java Virtual Machine.

The object returned is the java.lang.Thread instance the method
java.lang.Thread#start() start() was executed against in order to create this
Java thread.

This method may return

null

when there is no java.lang.Thread instance associated with this Java thread.
Some Java threads may be created for purposes other than for executing
Java code (for example, for garbage collection).

Returns

a JavaObject representing the java.lang.Thread associated with this thread,
or null.

Throws

CorruptDataException if the reference to java.lang.Thread is not
null and cannot be retrieved.

getState public int getState()

Get the state of the thread when the dump was generated.

The result is a bit vector, and uses the states defined by the function
GetThreadState in the JVMTI specification.

Returns

the state of the thread when the image was created.

Throws

CorruptDataException If the thread state could not be successfully
retrieved.

API Reference

102

Methods

getImageThread public ImageThread getImageThread()

Returns the operating system level thread that executes the Java thread.

This will return an ImageThread if an operating system level thread can be
returned, otherwise the

DataUnavailable

exception is thrown. There is no guarantee that there is a 1:1 relationship
between

JavaThreads

and ImageThread ImageThreads.

Returns

the ImageThread which this thread is currently bound to.

Throws

CorruptDataException If the underlying resource describing
the native representation of the thread is
damaged.

DataUnavailable If no mapping is provided due to missing or
limited underlying resources.

getStackSections public List getStackSections()

Get the List of ImageSection ImageSections which make up the Java Virtual
Machine stack.

Some Java Virtual Machine implementations may use parts of the
ImageThread's stack for JavaStackFrames.

Returns

a collection of ImageSections which make up the Java stack.

API Reference

103

Methods

getStackFrames public List getStackFrames()

Get the set of stack frames.

The start of the list will contain the top most stack frame, the last entry will
contain the bottom most stack frame. The top contains the most recently
executing stack frame.

This method may return an empty list when there are no Java stack frames
associated with this Java thread.

null

must never be returned.

Returns

a list of Java stack frames in order from top to bottom.

getName public String getName()

Return the name of the thread.

Usually this is derived from the object associated with the thread, but if the
name cannot be derived this way (e.g. there is no object associated with the
thread) a name will be created for the thread.

Returns

the name of the thread

Throws

CorruptDataException If a name exists but cannot be retrieved.

equals public boolean equals(Object obj)

Returns

true if the given object refers to the same Java Thread in the image

Parameters

obj

hashCode public int hashCode()

API Reference

104

package javax.tools.diagnostics.vm

Dump Creation API
Provides standard mechanisms for initiating a Dump programmatically

Table 6.43. Interface Summary

Name Summary

DumpHandle Triggers a dump.

DumpInitiatorDelegate Interface that describes the required capabilities of specific dump
initiator.

Table 6.44. Class Summary

Name Summary

DumpFactory Standard mechanism that allows a java application to trigger a dump for
the executing JVM.

DumpDescriptor Definition of the capabilities of a Dump that should be produced by
passing an instance of this descriptor to the Dump class

Details

interface DumpHandle

API Reference

105

public interface DumpHandle

Triggers a dump. The location and type of dump produced is implementation specific but is guided by the
DumpDescriptor used to create this handle.

Table 6.45. DumpHandle Methods

Methods

dump public boolean dump()

interface DumpInitiatorDelegate

public interface DumpInitiatorDelegate

Interface that describes the required capabilities of specific dump initiator. Classes that implement this interface
can be called by the Dump class to trigger a specific dump.

Table 6.46. DumpInitiatorDelegate Methods

Methods

getCapabilities public DumpInitiatorCapabilities getCapabilities()

Returns an object that describes the capabilities offered by this initiator

Returns

a populated capabilities object

available public boolean available()

Called to check that the delegate has all available resources to proceed. This
method should only be called by the Dump class This method will always be
called before the first call to dump

Returns

true if the delegate is available

createDumpHandle public DumpHandle createDumpHandle()

Returns a Dump handle for a default configured dump

Returns

valid dump handle

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor descriptor)

Returns a Dump handle for a dump that will match the provided descriptor
on a "best can do" basis.

Returns

valid dump handle

API Reference

106

Methods

getDumpType public String getDumpType()

Returns a literal that describes the dump being produced by this initiator.
The value can be used by callers to the DumpFactory API to retrieve a
specific dump initiator.

Returns

dump type literal

class DumpFactory

public DumpFactory extends java.lang.Object

Standard mechanism that allows a java application to trigger a dump for the executing JVM.

Table 6.47. DumpFactory Constructor Summary

Constructor

public DumpFactory()

Instantiate a dump factory that can be used to trigger dumps

Table 6.48. DumpFactory Methods

Methods

getDefaultInitiatorDelegate public DumpInitiatorDelegate getDefaultInitiatorDelegate()

Get the default dump initiator

setDefaultInitiatorDelegate public void setDefaultInitiatorDelegate(DumpInitiatorDelegate
defaultInitiatorDelegate)

sets the default dump initiator.

Parameters

defaultInitiatorDelegate

dump public void dump()

Fastpath method allowing the user to trigger a dump using the default dump
method

Throws

IOException

dump public void dump(String id)

Fastpath method allowing the user to trigger a standard dump for the given
data format

Throws

IOException

API Reference

107

Methods

dump public void dump(DumpDescriptor desc)

Fastpath method to create a dump from a dump type that can support the
data requested.

Returns

a valid dump handle

getDefault public static DumpFactory getDefault()

Get the default Dump factory. Returns a Dump factory populated with all
available dump initiators

Returns

default dump factory

loadStandardInitiators public void loadStandardInitiators()

Looks for commonly available dump initiators and add them to this
instances configuration

createDumpHandle public DumpHandle createDumpHandle()

Returns a Dump handle for the default dump type used by this JVM

Returns

a valid dump handle

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor desc)

Returns a Dump handle for a dump type that can support the data requested.

Returns

a valid dump handle

getInitiator public DumpInitiatorDelegate getInitiator(String format)

Returns an initiator that can produce a dump of the required format. If no
initiator exists which can handle the format then null is returned

Returns

supporting initiator or null

Parameters

format

getAvailableInitiators public Collection getAvailableInitiators()

Returns the set of available Initiators. Always returns a set.

API Reference

108

Methods

instantiateOverrideDelegate public DumpInitiatorDelegate instantiateOverrideDelegate()

Instantiates a Dump delegate class to handle dump requests based on the
presence of the override system property initiatorPropertyName It will be
used in preference to any other auto discovered delegates. If the override
does not exist or cannot be instantiated then null is returned

Returns

override delegate instance

class DumpDescriptor

public DumpDescriptor extends java.lang.Object

Definition of the capabilities of a Dump that should be produced by passing an instance of this descriptor to
the Dump class

Table 6.49. DumpDescriptor Constructor Summary

Constructor

public DumpDescriptor()

Table 6.50. DumpDescriptor Methods

Methods

setRecordClassLoaders public void setRecordClassLoaders()

Call to indicate that the dump generated by the initiator is required to
contain data that will eventually be represented by the JavaClassLoader
interface

setRecordClasses public void setRecordClasses()

Call to indicate that the dump generated by the initiator is required to
contain data that will eventually be represented by the JavaClass interface

recordClassLoadersRequired public boolean recordClassLoadersRequired()

Returns true if the recording of class loaders in the generated dump is a
required attribute. Returns false if it is optional.

recordClassesRequired public boolean recordClassesRequired()

copy public DumpDescriptor copy()

Returns a copy of this descriptor.

Returns

new copy.

clone protected Object clone()

API Reference

109

package javax.tools.diagnostics.vm.spi

Table 6.51. Interface Summary

Name Summary

DumpInitiatorCapabilities Description of the capabilities offered by a particular Dump Initiator

Details

interface DumpInitiatorCapabilities

public interface DumpInitiatorCapabilities

Description of the capabilities offered by a particular Dump Initiator

package javax.tools.diagnostics.vm.spi.delegates

API Reference

110

Table 6.52. Class Summary

Name Summary

HProfSignalTriggeredDumpDelegate

HProfMBeanDumpDelegate Uses HotSpotDiagnostic MBean to generate hprof dump.

IBMSPIBasedHeapDumpDelegate

JavaDumpDelegate

XMLDumpWriter

AbstractSignalBasedDumpInitiatorDelegateSignal based Dump Initiator relies on the presence of
org.apache.kato.common142.DumpTrigger in the class path

IBMSPIBasedSystemDumpDelegate

AbstractIBMSPIBasedDumpInitiatorDelegateDump Delegate for IBM JVMs using the com.ibm.jvm.Dump API Note
that reflection is used to trigger a dump as otherwise compilation of this
code would be dependent on having an IBM JVM.

Details

class HProfSignalTriggeredDumpDelegate

public HProfSignalTriggeredDumpDelegate extends
javax.tools.diagnostics.vm.spi.delegates.AbstractSignalBasedDumpInitiatorDelegate

Table 6.53. HProfSignalTriggeredDumpDelegate Constructor Summary

Constructor

public HProfSignalTriggeredDumpDelegate()

Table 6.54. HProfSignalTriggeredDumpDelegate Methods

Methods

available public boolean available()

getCapabilities public DumpInitiatorCapabilities getCapabilities()

getDumpType public String getDumpType()

API Reference

111

class HProfMBeanDumpDelegate

public HProfMBeanDumpDelegate extends java.lang.Object

Uses HotSpotDiagnostic MBean to generate hprof dump. Only available on Sun's hotspot.

Table 6.55. HProfMBeanDumpDelegate Constructor Summary

Constructor

public HProfMBeanDumpDelegate()

Table 6.56. HProfMBeanDumpDelegate Methods

Methods

available public boolean available()

Checks to see if the MBean is registered. On IBM JVMs, this will return
false.

createDumpHandle public DumpHandle createDumpHandle()

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor descriptor)

getCapabilities public DumpInitiatorCapabilities getCapabilities()

getDumpType public String getDumpType()

class IBMSPIBasedHeapDumpDelegate

public IBMSPIBasedHeapDumpDelegate extends
javax.tools.diagnostics.vm.spi.delegates.AbstractIBMSPIBasedDumpInitiatorDelegate

Table 6.57. IBMSPIBasedHeapDumpDelegate Constructor Summary

Constructor

public IBMSPIBasedHeapDumpDelegate()

Table 6.58. IBMSPIBasedHeapDumpDelegate Methods

Methods

getMethodName protected String getMethodName()

getCapabilities public DumpInitiatorCapabilities getCapabilities()

getDumpType public String getDumpType()

API Reference

112

class JavaDumpDelegate

public JavaDumpDelegate extends java.lang.Object

Table 6.59. JavaDumpDelegate Constructor Summary

Constructor

public JavaDumpDelegate()

Table 6.60. JavaDumpDelegate Methods

Methods

available public boolean available()

createDumpHandle public DumpHandle createDumpHandle()

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor descriptor)

getCapabilities public DumpInitiatorCapabilities getCapabilities()

getDumpType public String getDumpType()

class XMLDumpWriter

API Reference

113

public XMLDumpWriter extends java.lang.Object

Table 6.61. XMLDumpWriter Constructor Summary

Constructor

public XMLDumpWriter()

Table 6.62. XMLDumpWriter Methods

Methods

write public void write(File output)

write public void write(Writer writer)

class AbstractSignalBasedDumpInitiatorDelegate

public abstract AbstractSignalBasedDumpInitiatorDelegate extends java.lang.Object

Signal based Dump Initiator relies on the presence of org.apache.kato.common142.DumpTrigger in the class path

Table 6.63. AbstractSignalBasedDumpInitiatorDelegate Constructor Summary

Constructor

public AbstractSignalBasedDumpInitiatorDelegate()

Table 6.64. AbstractSignalBasedDumpInitiatorDelegate Methods

Methods

available public boolean available()

createDumpHandle public DumpHandle createDumpHandle()

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor descriptor)

API Reference

114

class IBMSPIBasedSystemDumpDelegate

public IBMSPIBasedSystemDumpDelegate extends
javax.tools.diagnostics.vm.spi.delegates.AbstractIBMSPIBasedDumpInitiatorDelegate

Table 6.65. IBMSPIBasedSystemDumpDelegate Constructor Summary

Constructor

public IBMSPIBasedSystemDumpDelegate()

Table 6.66. IBMSPIBasedSystemDumpDelegate Methods

Methods

getMethodName protected String getMethodName()

getCapabilities public DumpInitiatorCapabilities getCapabilities()

getDumpType public String getDumpType()

class AbstractIBMSPIBasedDumpInitiatorDelegate

public abstract AbstractIBMSPIBasedDumpInitiatorDelegate extends java.lang.Object

Dump Delegate for IBM JVMs using the com.ibm.jvm.Dump API Note that reflection is used to trigger a dump
as otherwise compilation of this code would be dependent on having an IBM JVM.

Table 6.67. AbstractIBMSPIBasedDumpInitiatorDelegate Constructor Summary

Constructor

public AbstractIBMSPIBasedDumpInitiatorDelegate()

Table 6.68. AbstractIBMSPIBasedDumpInitiatorDelegate Methods

Methods

available public boolean available()

getMethodName protected abstract String getMethodName()

createDumpHandle public DumpHandle createDumpHandle()

createDumpHandle public DumpHandle createDumpHandle(DumpDescriptor descriptor)

115

Appendix A. Register tables

Common Register Names

Table A.1. IA32 Register Names

Register Type

EDI Integer

ESI Integer

EAX Integer

EBX Integer

ECX Integer

EDX Integer

EIP Integer

ESP Integer

EBP Integer

Table A.2. AMD64 Register Names

Register Type

RDI Long

RSI Long

RAX Long

RBX Long

RCX Long

RDX Long

R8 Long

R9 Long

R10 Long

R11 Long

R12 Long

R13 Long

R14 Long

R15 Long

RIP Long

RSP Long

RBP Long

Table A.3. PowerPC 32 Register Names

Register Type

R0 Integer

Register tables

116

Register Type

R1 Integer

R2 Integer

R3 Integer

R4 Integer

R5 Integer

R6 Integer

R7 Integer

R8 Integer

R9 Integer

R10 Integer

R11 Integer

R12 Integer

R13 Integer

R14 Integer

R15 Integer

R16 Integer

R17 Integer

R18 Integer

R19 Integer

R20 Integer

R21 Integer

R22 Integer

R23 Integer

R24 Integer

R25 Integer

R26 Integer

R27 Integer

R28 Integer

R29 Integer

R30 Integer

R31 Integer

IAR Integer

LR Integer

MSR Integer

CTR Integer

CR Integer

FPSCR Integer

XER Integer

Register tables

117

Register Type

TID Integer

MQ Integer

Table A.4. PowerPC 64 Register Names

Register Type

R0 Long

R1 Long

R2 Long

R3 Long

R4 Long

R5 Long

R6 Long

R7 Long

R8 Long

R9 Long

R10 Long

R11 Long

R12 Long

R13 Long

R14 Long

R15 Long

R16 Long

R17 Long

R18 Long

R19 Long

R20 Long

R21 Long

R22 Long

R23 Long

R24 Long

R25 Long

R26 Long

R27 Long

R28 Long

R29 Long

R30 Long

R31 Long

IAR Long

Register tables

118

Register Type

LR Long

MSR Long

CTR Long

CR Long

FPSCR Long

XER Long

Table A.5. z/Series 31 Register Names

Register Type

gpr0 Integer

gpr1 Integer

gpr2 Integer

gpr3 Integer

gpr4 Integer

gpr5 Integer

gpr6 Integer

gpr7 Integer

gpr8 Integer

gpr9 Integer

gpr10 Integer

gpr11 Integer

gpr12 Integer

gpr13 Integer

gpr14 Integer

gpr15 Integer

psw0 Integer

psw1 Integer

Register tables

119

Table A.6. z/Series 64 Register Names

Register Type

gpr0 Long

gpr1 Long

gpr2 Long

gpr3 Long

gpr4 Long

gpr5 Long

gpr6 Long

gpr7 Long

gpr8 Long

gpr9 Long

gpr10 Long

gpr11 Long

gpr12 Long

gpr13 Long

gpr14 Long

gpr15 Long

psw0 Long

psw1 Long

120

Appendix B. Opening Images example
This class takes the name of at least one dump, and the name of a class that implements ImageAnalyzer listed in
Appendix F, ImageAnalyzer interface.

/***
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 **/
package org.apache.kato.examples;

import java.io.File;
import java.io.IOException;

import javax.tools.diagnostics.FactoryRegistry;
import javax.tools.diagnostics.image.Image;

/**
 * This example shows how an Image is opened, given a snapshot's file name.
 *
 */
public abstract class ReadImage {

 /**
 * Main method. Takes names of snapshot dumps and opens them with the
 * ImageFactory.
 *
 * @param args
 */
 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("Usage: ReadImage <snapshot> [snapshot...] <Image analyzer>");
 }

 String analyzerName = "org.apache.kato.examples."+args[args.length-1];
 Class analyzerClass = null;
 try {
 analyzerClass = Class.forName(analyzerName);
 } catch (ClassNotFoundException e) {
 System.err.println("Unable to find test class `"+analyzerName+"'");
 e.printStackTrace();
 System.exit(1);
 }

 for(int i = 0; i < args.length-1; i++) {
 String filename = args[i];
 System.out.println("\nAnalysing `"+filename+"'");
 System.out.println("==========================");

 Image image;
 try {
 image = FactoryRegistry.getDefaultRegistry().getImage(new File(filename));
 } catch (IOException e) {
 System.out.println("Unable to open snapshot.");
 e.printStackTrace();
 continue;
 }
 try {
 ImageAnalyzer analyzerInstance = (ImageAnalyzer) analyzerClass.newInstance();

Opening Images example

121

 analyzerInstance.analyze(image);
 } catch (InstantiationException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (ClassCastException e) {
 System.out.println("Analzyer class should be instances of ImageAnalyzer.");
 e.printStackTrace();
 System.exit(2);
 }

 }
 }
}

122

Appendix C. Snapshot Cause Example
This class implements the ImageAnalyzer interface in Appendix F, ImageAnalyzer interface.

/***
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 **/
package org.apache.kato.examples;

import javax.tools.diagnostics.image.CorruptDataException;
import javax.tools.diagnostics.image.DataUnavailable;
import javax.tools.diagnostics.image.Image;
import javax.tools.diagnostics.image.ImageAddressSpace;
import javax.tools.diagnostics.image.ImageProcess;
import javax.tools.diagnostics.image.ImageStackFrame;
import javax.tools.diagnostics.image.ImageThread;
import javax.tools.diagnostics.runtime.ManagedRuntime;
import javax.tools.diagnostics.runtime.java.JavaRuntime;
import javax.tools.diagnostics.runtime.java.JavaStackFrame;
import javax.tools.diagnostics.runtime.java.JavaThread;

/**
 * This analyzer determines what process and thread
 * caused the dump, and what signal, if any.
 *
 */
public class CauseAnalyzer implements ImageAnalyzer {

 @Override
 public void analyze(Image image) {
 for (ImageAddressSpace as : image.getAddressSpaces()) {
 ImageProcess process = as.getCurrentProcess();

 // Only invoked if there is a "current" process,
 // This is a process that caused the dump to occur.
 if (process != null) {
 try {
 int signum = process.getSignalNumber();
 String signame = process.getSignalName();

 // Identify the process by number and command line.
 System.out.println("Process "+process.getID()+
 " was started with `" +
 process.getCommandLine()+"'");

 // The signals that cause the dump to be generated
 if (signame != null) {
 System.out.println("Dump caused by signal " + signame+"("+signum+")");
 }

 ImageThread thread = process.getCurrentThread();
 // Identify the thread, by id, various properties and a stack trace.
 if (thread != null) {
 System.out.println("\nDump caused by thread "+
 thread.getID()+
 ", "+thread.getProperties());
 for(ImageStackFrame frame: thread.getStackFrames()) {
 System.out.println("\t" + frame);

Snapshot Cause Example

123

 }

 // Find JavaThread and then do stacktrace.
RUNTIME: for(ManagedRuntime runtime : process.getRuntimes()) {
 if (runtime instanceof JavaRuntime) {
 JavaRuntime jr = (JavaRuntime) runtime;

 for(JavaThread jthread : jr.getThreads()) {
 if (thread.equals(jthread.getImageThread())) {
 System.out.println("\nDump caused by JavaThread "+
 jthread.getName());

 for(JavaStackFrame frame : jthread.getStackFrames()) {
 System.out.println("\t" + frame);
 }
 break RUNTIME;
 }
 }
 }
 }
 }
 } catch (DataUnavailable e) {
 e.printStackTrace();
 } catch (CorruptDataException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

124

Appendix D. Identifying Java VM Example
This class implements the ImageAnalyzer interface in Appendix F, ImageAnalyzer interface.

/***
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 **/
package org.apache.kato.examples;

import javax.tools.diagnostics.image.CorruptDataException;
import javax.tools.diagnostics.image.DataUnavailable;
import javax.tools.diagnostics.image.Image;
import javax.tools.diagnostics.image.ImageAddressSpace;
import javax.tools.diagnostics.image.ImageModule;
import javax.tools.diagnostics.image.ImagePointer;
import javax.tools.diagnostics.image.ImageProcess;
import javax.tools.diagnostics.runtime.ManagedRuntime;
import javax.tools.diagnostics.runtime.java.JavaRuntime;
import javax.tools.diagnostics.runtime.java.JavaVMOption;
/**
 * This Analyzer generates a reports information useful for
 * identifying the JVM that was running when the snapshot was taken.
 * Elements from the Java and Image APIs are used.
 */
public class WhatAnalyzer implements ImageAnalyzer {

 @Override
 public void analyze(Image image) {
 // Report the hostname.
 String hostname;
 try {
 hostname = image.getHostName();
 } catch (DataUnavailable e) {
 hostname = "<Could not retrieve hostname";
 } catch (CorruptDataException e) {
 hostname = "<Error retrieving hostname>";
 e.printStackTrace();
 }

 System.out.println("Snapshot was generated on " + hostname);

 for (ImageAddressSpace as : image.getAddressSpaces()) {
 for(ImageProcess process : as.getProcesses()) {
 String processID;
 try {
 processID = process.getID();
 } catch (DataUnavailable e) {
 processID = "<Unknown>";
 } catch (CorruptDataException e) {
 processID = "<Error>";
 e.printStackTrace();
 }
 System.out.println("Process ID="+processID);

 String commandLine;
 try {
 commandLine = process.getCommandLine();
 } catch (DataUnavailable e) {

Identifying Java VM Example

125

 commandLine = "<Unknown>";
 } catch (CorruptDataException e) {
 commandLine = "<Error>";
 e.printStackTrace();
 }
 System.out.println("Command line: "+commandLine);

 String executable;
 try {
 executable = process.getExecutable().getName();
 } catch (CorruptDataException e) {
 executable = "<Unknown>";
 } catch (DataUnavailable e) {
 executable = "<Error>";
 e.printStackTrace();
 }
 System.out.println("Process Executable "+ executable);

 System.out.println("Loaded Libraries:");
 try {
 for(ImageModule module : process.getLibraries()) {
 System.out.println("\t" + module.getName());
 }
 } catch (DataUnavailable e) {
 System.out.println("No libraries found.");
 } catch (CorruptDataException e) {
 System.out.println("Error retrieving libraries:");
 e.printStackTrace();
 }

 for (ManagedRuntime runtime : process.getRuntimes()) {
 if (runtime instanceof JavaRuntime) {
 analyzeRuntime ((JavaRuntime) runtime);
 }
 }
 }
 }
 }

 public void analyzeRuntime(JavaRuntime jr) {

 try {
 System.out.println("Java VM version:`"+jr.getVersion()+"'");
 } catch (CorruptDataException e1) {
 System.out.println("Error retrieving Java VM version");
 e1.printStackTrace();
 }

 System.out.println("VM options:");
 try {
 for (JavaVMOption option : jr.getJavaVMInitArgs().getOptions()) {
 String optionString = "\t\t\""+option.getOptionString()+"\"";

 ImagePointer extra = option.getExtraInfo();
 if (extra != null) {
 optionString += ", extraInfo=0x"+Long.toHexString(extra.getAddress());
 }

 System.out.println(optionString);
 }
 } catch (DataUnavailable e) {
 System.out.println("Unable to report VM options");
 } catch (CorruptDataException e) {
 System.out.println("Error retrieving VM options");
 e.printStackTrace();
 }
 }
}

126

Appendix E. Retrieving Object Fields
Example

This class extends the RuntimeAnalyzer class in Appendix G, Retrieval of all JavaRuntimes to simplify obtaining
a JavaRuntime instance.

/***
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 **/
package org.apache.kato.examples;

import java.lang.reflect.Array;

import javax.tools.diagnostics.image.CorruptDataException;
import javax.tools.diagnostics.image.DiagnosticException;
import javax.tools.diagnostics.image.ImagePointer;
import javax.tools.diagnostics.image.MemoryAccessException;
import javax.tools.diagnostics.runtime.java.JavaClass;
import javax.tools.diagnostics.runtime.java.JavaField;
import javax.tools.diagnostics.runtime.java.JavaHeap;
import javax.tools.diagnostics.runtime.java.JavaObject;
import javax.tools.diagnostics.runtime.java.JavaRuntime;

/**
 * This examples walks over all objects on the heap and prints the values
 * of all of the fields, and the contents of all elements of all the arrays.
 */
public class ObjectFields extends RuntimeAnalyzer{

 /**
 * Given a JavaRuntime, print out all of the objects on the heap.
 * @param jr JavaRuntime to get objects from
 */
 public void analyzeRuntime(JavaRuntime jr) {
 for (JavaHeap heap : jr.getHeaps()) {
 walkHeap (heap);
 }
 }

 /**
 * Walks over all objects on the heap.
 * @param heap JavaHeap to iterate over.
 */
 public void walkHeap(JavaHeap heap) {
 for (JavaObject jObject : heap.getObjects()) {

 try {
 if (jObject.isArray()) {
 walkArray (jObject);
 } else {
 walkObject (jObject);
 }

 // Even determining whether or not the JavaObject is an array has difficulties.
 } catch (CorruptDataException e) {
 System.err.println("Corrupt data exception calling jObject.isArray() at "+

Retrieving Object Fields Example

127

 pointerToHexString(jObject.getID()));
 e.printStackTrace();
 }
 }
 }

 /**
 * Prints out all of the values of the fields in an object, along with
 * identifying information of the type itself.
 *
 * @param jObject A JavaObject
 */
 public void walkObject(JavaObject jObject) {
 // Just identify the object by its ID - this would the address on the heap.
 System.out.println("JavaObject @ " + pointerToHexString(jObject.getID()));
 // Handle indentation.
 String prefix = "\t";

 // Get the type of this object.
 JavaClass clazz;
 try {
 clazz = jObject.getJavaClass();
 } catch (CorruptDataException e) {
 System.err.println(prefix+"Error getting JavaClass");
 e.printStackTrace();
 return;
 }

 while (clazz != null) {
 // print out the name of the class and the the fields.
 try {
 System.out.println(prefix + clazz.getName() +":");
 prefix += " ";

 /* Print out all fields for this class.
 */
 for (JavaField nextField : clazz.getDeclaredFields()) {
 printField(prefix, nextField, jObject);
 }
 } catch (DiagnosticException e) {
 System.err.println("Error printing out fields.");
 e.printStackTrace();
 }

 // Get the next superclass.
 try {
 clazz = clazz.getSuperclass();
 } catch (CorruptDataException e) {
 e.printStackTrace();
 break;
 }

 } // while (class != null)
 }

 /**
 * Print out the content of one field.
 * Only prints out instance fields. Will return if a
 * static field is passed.
 *
 * @param prefix Pad out message
 * @param field The field to print
 * @param object The object to print out
 * @throws CorruptDataException if something goes wrong
 * @throws MemoryAccessException
 */
 private void printField(String prefix, JavaField field, JavaObject object) throws CorruptDataException, MemoryAccessException {

 if (java.lang.reflect.Modifier.isStatic(field.getModifiers())) {
 return;
 }

Retrieving Object Fields Example

128

 Object fieldValue = field.get(object);

 String valueString = "";

 // Format the field's value.
 if(fieldValue == null) {
 valueString = "<null reference>";

 // Most of the primitive fields can be handled as Number instances.
 } else if (fieldValue instanceof Number) {
 valueString = fieldValue.toString();
 } else if (fieldValue instanceof Character) {
 valueString = "`" + (Character)fieldValue + "'";
 } else if (fieldValue instanceof Boolean) {
 valueString = ((Boolean) fieldValue).booleanValue() ? "true" : "false";
 } else if (fieldValue instanceof JavaObject) {
 // Note how we have to get an instance of the object to know anything about it.
 JavaObject reference = (JavaObject) fieldValue;

 // classname: @ 0xadddress
 valueString = reference.getJavaClass().getName() + ": @ " + pointerToHexString(reference.getID());

 if ("java/lang/String".equals(reference.getJavaClass().getName())) {
 valueString += valueString +" = \"" + field.getString(object) + "\"";
 }

 }

 System.out.println(prefix + field.getSignature() + " " +
 field.getName() + " = " + valueString);
 }

 /**
 * Print out the contents of an array.
 *
 * @param jObject JavaObject of an array.
 */
 public void walkArray(JavaObject object) {
 // Just identify the object by its ID - this would the address on the heap.
 System.out.println("JavaObject @ " + pointerToHexString(object.getID()));
 // Handle indentation.
 String className;

 JavaClass clazz;
 try {
 clazz = object.getJavaClass();
 } catch (CorruptDataException e) {
 System.err.println("Unable to determine array's JavaClass. aborting");
 e.printStackTrace();
 return;
 }

 // The class name is needed to determine the element types
 try {
 className = clazz.getName();
 } catch (CorruptDataException e) {
 System.err.println("Error getting Array class name.");
 e.printStackTrace();
 return;
 }

 int arraySize = 0;

 // This gets the number of elements in the array.
 try {
 arraySize = object.getArraySize();
 } catch (CorruptDataException e) {
 System.err.println("Unable to get object size.");
 e.printStackTrace();
 return;
 }

Retrieving Object Fields Example

129

 String componentName;
 try {
 componentName = clazz.getComponentType().getName();
 } catch (CorruptDataException e) {
 System.err.println("Unable to determine component type name. Quitting.");
 e.printStackTrace();
 return;
 }

 Object arrayCopy;

 if ("boolean".equals(componentName)) {
 arrayCopy = new boolean[arraySize];
 } else if ("byte".equals(componentName)) {
 arrayCopy = new byte[arraySize];
 } else if ("char".equals(componentName)) {
 arrayCopy = new char[arraySize];
 } else if ("short".equals(componentName)) {
 arrayCopy = new short[arraySize];
 } else if ("int".equals(componentName)) {
 arrayCopy = new int[arraySize];
 } else if ("long".equals(componentName)) {
 arrayCopy = new long[arraySize];
 } else if ("float".equals(componentName)) {
 arrayCopy = new float[arraySize];
 } else if ("double".equals(componentName)) {
 arrayCopy = new double[arraySize];
 } else {
 // Anything element that is not a primitive must be a reference type.
 arrayCopy = new JavaObject[arraySize];
 }

 /* Copy the contents of the JavaObject array into the array we prepared earlier.
 * This is the only way to get the values of an array in a dump.
 */
 try {
 object.arraycopy(0, arrayCopy, 0, arraySize);
 } catch (CorruptDataException e) {
 e.printStackTrace();
 return;
 } catch (MemoryAccessException e) {
 e.printStackTrace();
 return;
 } catch (IllegalArgumentException e){
 e.printStackTrace();
 return;
 } catch (IndexOutOfBoundsException e) {
 e.printStackTrace();
 return;
 }

 /* Go through every element in the copy of the array and print out its contents.
 * This example uses java.lang.Array.get() to make this easy to handle generically.
 *
 * Object references - JavaObjects - are only printed out at the type name @ an address.
 * We don't print out subarrays - they will be encountered later in the heap anyhow.
 */
 System.out.println("\t" + className + "[" + arraySize +"] = {");
 for (int cnt=0; cnt < arraySize; cnt++) {
 Object obj = Array.get(arrayCopy, cnt);

 if (obj == null) {
 System.out.println("\t\tnull,");
 } else if (obj instanceof JavaObject) {
 JavaObject refObj = (JavaObject) obj;
 try {
 System.out.println("\t\t" + refObj.getJavaClass().getName()+ " @ "+
 pointerToHexString(refObj.getID())+",");
 } catch (CorruptDataException e) {
 System.err.println("\t\t CorruptDataException while printing out array element");
 e.printStackTrace();

Retrieving Object Fields Example

130

 }
 } else {
 System.out.println("\t\t"+obj+",");
 }
 }
 System.out.println("\t};");
 }

 /**
 * Takes ImagePointer and returns it as a hex string. Perhaps this should be defined
 * behaviour for ImagePointer.toString().
 * @param pointer ImagePointer
 * @return Address of pointer as a hex string prefixed with "0x"
 */
 public static String pointerToHexString(ImagePointer pointer) {
 return "0x"+Long.toHexString(pointer.getAddress());
 }
}

131

Appendix F. ImageAnalyzer interface

/***
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 **/
package org.apache.kato.examples;

import javax.tools.diagnostics.image.Image;

public interface ImageAnalyzer {
 public abstract void analyze(Image image);
}

132

Appendix G. Retrieval of all JavaRuntimes
This class allows subclasses to be given an Image and have their analyzerRuntime(JavaRuntime) methods invoked.
This class implements the ImageAnalyzer interface in Appendix F, ImageAnalyzer interface.

/***
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 **/
package org.apache.kato.examples;

import javax.tools.diagnostics.image.Image;
import javax.tools.diagnostics.image.ImageAddressSpace;
import javax.tools.diagnostics.image.ImageProcess;
import javax.tools.diagnostics.runtime.ManagedRuntime;
import javax.tools.diagnostics.runtime.java.JavaRuntime;

public abstract class RuntimeAnalyzer implements ImageAnalyzer {

 /**
 * Calls the analyzeRuntime(JavaRuntime jr) method against all JavaRuntime
 * instances found in the image.
 *
 * @param image Image to analyse
 */
 @Override
 public void analyze(Image image) {
 for(ImageAddressSpace as : image.getAddressSpaces()) {
 for(ImageProcess process : as.getProcesses()) {
 for(ManagedRuntime runtime : process.getRuntimes()) {
 if (runtime instanceof JavaRuntime) {
 analyzeRuntime((JavaRuntime) runtime);
 }
 }
 }
 }
 }

 /**
 * Override this method to analyze just the JavaRuntime.
 *
 * @param jr
 */
 public abstract void analyzeRuntime(JavaRuntime jr);
}

