
Mathematics & Algorithms

Walter Ray-Dulany

raydulany@apache.org

1 / 1



Introduction

2 / 1



Pirk’s Wideskies Algorithm

Pirk uses the Wideskies algorithm to accomplish scalable PIR.

This algorithm can be broken down into two distinct conceptual
pieces:

I Paillier Encryption
I The Query-Response-Result algorithms

Before we begin those however, we take a (happily brief) diversion
into the language of the mathematics involved in this deck.

3 / 1



Language Preliminaries

4 / 1



Language Preliminaries

The Paillier scheme employs a small amount of group theoretic
notation. Let’s go over that notation briefly.

5 / 1



Language Preliminaries

I Z/NZ: This is the group of integers modulo N; it can be
thought of as all numbers 0  k < N, with modular addition
(e.g. for N = 5, 1 + 7 ⌘ 3 mod N).

This is a group under addition.

I (Z/NZ)⇥: This is the multiplicative group of integers modulo
N, also called the units of Z/NZ. Sometimes denoted
(Z/NZ)⇤, this is the set of 0  k < N that are relatively prime
to N (that is, k and N share no factors, or equivalently the
greatest common denominator (gcd) of k and N is 1). One
can also think of this as the set of k 2 Z/NZ such that there
exists a k�1 2 Z/NZ with k · k�1 ⌘ 1 mod N.

This is a group under multiplication.

6 / 1



Language Preliminaries

Using the above notation, we can see that
�
Z/N2Z

�⇥
= {0  k < N2 : gcd(k ,N2) = 1}.

If N happens to be an RSA modulus, N = pq, p and q primes,
then

�
Z/N2Z

�⇥ is just all numbers between 0 (inclusive) and N2

(exclusive) that are not divisible by either p or q.

7 / 1



Language Preliminaries

I Order In Z/NZ: The order of an element k 2 Z/NZ is the
least integer e such that e · k = 0 mod N.

I Order in
�
Z/N2Z

�⇥: The order of an element a 2
�
Z/N2Z

�⇥

is the least integer e such that ae = 1 mod N2.

In both cases, order is well defined (i.e. it exists and makes sense)
for all elements of the groups.

8 / 1



Language Preliminaries

For a more in depth discussion of these, and closely related, terms,
please see
http://www.math.nagoya-u.ac.jp/~richard/teaching/s2015/Group_2.pdf

9 / 1

http://www.math.nagoya-u.ac.jp/~richard/teaching/s2015/Group_2.pdf


Paillier Encryption

10 / 1



Paillier Encryption

Paillier encryption is a partially homomorphic public key scheme
that relies on the function

Eg : Z/NZ ⇥ (Z/NZ)⇥ !
�
Z/N2Z

�⇥

given by
Eg (x , y) = g xyN mod N2,

g 2
�
Z/N2Z

�⇥. Here, Z/NZ is the plaintext space and�
Z/N2Z

�⇥ is the ciphertext space.

When the order of g is a non-zero multiple of N, Eg is a bijection.

11 / 1



Paillier Prerequisites

I Public key: (N, g), N an RSA modulus N = pq, p and q
primes of approximately the same bit-length, and
g 2

�
Z/N2Z

�⇥ such that the order of g is a nonzero multiple
of N.

I Private key: �(N), where � is the Carmichael function

�(N) = lcm(p � 1, q � 1)

that gives the exponent of (Z/NZ)⇥.
I Plaintext space: Z/NZ.
I Ciphertext space:

�
Z/N2Z

�⇥.

We can also consider the pair (p, q) to be the private key, as �(N) is quickly

and easily derived from it. Note that �(N) is coprime to N.

12 / 1



What Do We Mean By ‘Homomorphic Encryption’?

An encryption scheme is fully homomorphic if it is a homomorphism
from plaintext space to ciphertext space for arbitrary operations
and arbitrary numbers of such operations. If this definition seems
squishy and not very mathematical, that’s because it is; it’s hard to
find a proper mathematical definition of this term.

An encryption scheme is partially homomorphic if it is a
homomorphism for only some operations, or for only a few
consecutive operations.

13 / 1



Paillier Encryption is Homomorphic

Paillier encryption is a partial homomorphism between addition in
Z/NZ and multiplication in

�
Z/N2Z

�⇥.

Denote Paillier encryption by Eg and decryption by Dg , and let m
and m0 2 Z/NZ. Then

D(E(m)E(m0) mod N2) = (m +m0) mod N

D(E(m)k mod N2) = km mod N, k 2 N

Note that the second equality follows immediately from the first.

14 / 1



General Paillier Algorithm

15 / 1



Paillier Supporting Function

Let X = {u < N2 : u = 1 mod N} and let L : X ! Z/NZ be
defined by

L(u) =
u � 1
N

mod N.

This function is well defined over
�
Z/N2Z

�⇥.

16 / 1



General Paillier Encryption

The general Paillier algorithm differs only slightly from Pirk’s
version.

Algorithm 1 General Paillier encryption and decryption.

1: procedure Paillier encryption
2: given N, a random g 2

�
Z/N2Z

�⇥ of order a nonzero
multiple of N, and a message m 2 Z/NZ

3: select a random value ⇣ 2 (Z/NZ)⇥

4: return E(m) = gm⇣N mod N2

1: procedure Paillier decryption
2: given N, �(N), g , and ciphertext c 2

�
Z/N2Z

�⇥

3: return m = L(c�(N)
mod N2)

L(g�(N)
mod N2)

mod N

17 / 1



Paillier Works

It is a straightforward exercise to check that
I D(E(m)) = m

I D(E(m)E(m0) mod N2) = (m +m0) mod N

18 / 1



Paillier As Used In Wideskies

19 / 1



Paillier As Used In Wideskies

The version of Paillier used in Wideskies is a computationally
simpler variant of the full Paillier scheme that sacrifices no security
over the general case.

20 / 1



Converting Between The Two

Pirk’s simplified version of Paillier simply uses

g ⌘ 1 + N mod N2

=) L(g�(N) mod N2) = �(N),

the proof of which is a straightforward exercise.

21 / 1



Paillier As Used In Wideskies

Algorithm 2 Paillier encryption and decryption

1: procedure Paillier encryption
2: given N and a message m 2 Z/NZ
3: select a random value ⇣ 2 (Z/NZ)⇥

4: return E(m) = (1 +mN)⇣N mod N2

1: procedure Paillier decryption
2: given N, �(N), and a ciphertext c 2

�
Z/N2Z

�⇥

3: set µ = �(N)�1 mod N . Recall gcd(�(N),N) = 1
4: set ĉ = c�(N) mod N2

5: set m̂ = L(c�(N) mod N2)
6: return m̂µ mod N

22 / 1



Paillier Reference

For more on Paillier encryption and the (hypothesized) hard
problem upon which it is based, see

https://pirk.incubator.apache.org/papers/1999_asiacrypt_paillier_paper.pdf

on Pirk’s website.

23 / 1

https://pirk.incubator.apache.org/papers/1999_asiacrypt_paillier_paper.pdf


Wideskies

24 / 1



Wideskies Parameters

The algorithm requires the following parameters, which are not
independent (see the next slide).

I N, the Paillier modulus
I B , the bit-length of N
I H (or Hk), a keyed hash function (with key k)
I `, the bit length of the output of H, i.e. Hk : Z ! (Z/2Z)`

I ⌧ , the number of search terms
I �, the number of bits of data returned for each search hit
I b the chunk size, in bits, determining how data is split among

responses.
I r , the number of responses that can be returned per query

request period per search term

25 / 1



Parameter Relationships

I 2b⌧ < N: there must be space in the modulus to hold all the
data, even if each search term hits as often as possible.

I ⌧ < 2`: Although the paper permits search term hash
collisions, Pirk does not permit them. Typically ⌧ ⌧ 2`

I b|�: Chunk size must evenly divide the data size
I �

b |r : the number of chunks per returned datum must divide
the number of responses, for bandwidth efficiency.

I H: Must be pseudo-random but need not be cryptographically
secure.

26 / 1



Public Parameters

All of
H, `,N,B , �, b, and r

are public, that is, must be shared between the client and server.

Note that the fact that 2b⌧ < N gives some information on the
number of search terms the client is using; the amount of this
information can be decreased without bound by choosing N and `
to be much larger than would be otherwise necessary; this
necessarily causes a performance hit.

27 / 1



Wideskies Algorithm, Without Encryption

28 / 1



Wideskies Without Encryption?

The Wideskies algorithm is of sufficient complexity that it can be
useful to go through the algorithm without the encryption and
decryption steps first, in order to orient ourselves.

After, it will be straightforward to see the changes that using the
Paillier encryption requires.

29 / 1



Query, Without Encryption

30 / 1



The Query Algorithm, Without Encryption

Let T
0

, . . . ,T⌧�1

2 Z/NZ be our search terms.

Algorithm 3 Query Formation Algorithm version 1

1: Choose a random key k for H.
2: Compute Hk(T0

), . . . ,Hk(T⌧�1

).
3: while card ({Hk(T0

), . . . ,Hk(T⌧�1

)}) < ⌧ do
4: go to ?? . If there are hash collisions, pick a new key.
5: for i = 0, . . . , 2` � 1 do
6: Set

Ei =

⇢
2jb if i = Hk(Tj);
0 otherwise.

7: return {E
0

, . . . ,E
2

`�1

,H, k ,N}

31 / 1



Query Notes, Without Encryption

Since ⌧ ⌧ 2`, we expect most of the Ei to be zero.

We will typically denote Hk(T ) by T and its associated E by ET . If
we wish to keep track of a specific T we will write Tj and ETj .

32 / 1



Response, Without Encryption

33 / 1



Response Initialization, Without Encryption

We must initialize some values before forming the response.
1. c

0

, . . . , c
2

`�1

= 0, counters to keep track of the number of
times each ET has been seen.

2. Y
0

, . . . ,Yr�1

= 0, response vectors.

34 / 1



Response Data, Without Encryption

Responder information comes in pairs (T ,D) where T is a
(potential) search term, and D is T ’s associated response datum,
which will be returned if T is a search term.

We view D as a �-long bit stream (d
0

, . . . , d��1

), and break D up
into �/b chunks Di as

Di = (di ·b, di ·b+1

, . . . , d(i+1)·b�1

), i = 0, . . . , �/b � 1.

For example, if D = 011010 and b = 3, then

D
0

= 011
D

1

= 010

35 / 1



Response Algorithm, Without Encryption

Algorithm 4 Stream processing, plaintext version

1: Input: T = {(T ,D)}
2: for (T ,D) 2 T do
3: Compute T = Hk(T )
4: if cT + �

b > r then . The space allocated for term T is full.
5: return
6: else
7: Split D into b-bit chunks D

0

, . . . ,D(�/b)�1

.
8: for i = 0, . . . , (�/b)� 1 do
9: Set Di = DiET mod N . Nonzero only if ET 6= 0.

10: Set Yi+cT = Yi+cT +Di mod N

11: Set cT = cT + (�/b)

12: Output: Y
0

, . . . ,Yr�1

36 / 1



Response Example, Without Encryption

Let’s look at how the response would look on the first four (T ,D)
pairs that pass through the algorithm.

37 / 1



Response Example Setup, Without Encryption

Suppose that among our search terms are T and T 0, with

Hk(T ) = j and
Hk(T

0) = j 0.

Suppose that T 00, with Hk(T 00) = j 00, is not a search term.

Let the responder see, in order, the pairs (T ,D0), (T 0,D1),
(T 00,D2), (T ,D3).

The Yi are formed by summing down the columns in following
matrices.

38 / 1



Response Example Start, Without Encryption

No terms have yet been evaluated.

Index Y
0

· · · Y�/b�1

Y�/b · · · Y
2�/b�1

...
j 0 · · · 0 0 · · · 0
...
j 0 0 · · · 0 0 · · · 0
...
j 00 0 · · · 0 0 · · · 0
...

cj = 0, cj 0 = 0, cj 00 = 0.

39 / 1



Response Example: First Term, Without Encryption

(T ,D0) enters and is proccessed; hit:

Index Y
0

· · · Y�/b�1

Y�/b · · · Y
2�/b�1

...
j D0

02

jb · · · D0
�/b�12

jb 0 · · · 0
...
j 0 0 · · · 0 0 · · · 0
...
j 00 0 · · · 0 0 · · · 0
...

cj = �/b, cj 0 = 0, cj 00 = 0.

40 / 1



Response Example Second Term, Without Encryption

(T 0,D1) enters and is proccessed; hit:

Index Y
0

· · · Y�/b�1

Y�/b · · · Y
2�/b�1

...
j D0

0

2

jb · · · D0

�/b�1

2

jb 0 · · · 0
...
j 0 D1

02

j0b · · · D1
�/b�12

j0b 0 · · · 0
...
j 00 0 · · · 0 0 · · · 0
...

cj = �/b, cj 0 = �/b, cj 00 = 0.

41 / 1



Response Example Third Term, Without Encryption

(T 00,D2) enters and is proccessed; no hit:

Index Y
0

· · · Y�/b�1

Y�/b · · · Y
2�/b�1

...
j D0

0

2

jb · · · D0

�/b�1

2

jb 0 · · · 0
...
j 0 D1

0

2

j0b · · · D1

�/b�1

2

j0b 0 · · · 0
...
j 00 D2

0 · 0 · · · D2
�/b�1 · 0 0 · · · 0

...

cj = �/b, cj 0 = �/b, cj 00 = �/b.

42 / 1



Response Example Fourth Term, Without Encryption

(T ,D3) enters and is proccessed; hit:

Index Y
0

· · · Y�/b�1

Y�/b · · · Y
2�/b�1

...
j D0

0

2

jb · · · D0

�/b�1

2

jb D3
02

jb · · · D3
�/b�12

jb

...
j 0 D1

0

2

j0b · · · D1

�/b�1

2

j0b 0 · · · 0
...
j 00 D2

0 · 0 · · · D2
�/b�1 · 0 0 · · · 0

...

cj = 2�/b, cj 0 = �/b, cj 00 = �/b.

43 / 1



Result, Without Encryption

44 / 1



Result, Without Encryption

The algorithm for getting the results out of the response return is
straightforward. To begin,

I Write Yi =
P⌧�1

k=0

2kbPki in base 2b, where Pki is the value of
the k th row in the i th column. Note each Pki is b-bits long,
and therefore Yi < N.

I Yi will have data on search term T if and only if T was seen
i + 1 times before the responder returned.

45 / 1



Result Algorithm, Without Encryption

Algorithm 5 Data recovery, plaintext version

1: Set M = 2jb(2b � 1) . b 1s left-shifted jb places.
2: for ⌘ = 1, . . . , (rb/�) do . At most rb/� hits can be returned.
3: for i = 0, . . . , (�/b)� 1 do . Each hit uses �/b chunks.
4: Set Di = Y(⌘�1)(�/b)+i&M . “&” denotes bit-wise AND.
5: Set Di = Di/2jb . Step ?? ensures 2jb | Di

6: Set X⌘ = D
0

kD
1

k . . . kD(�/b)�1

7: return X
1

, . . . ,X(rb/�) . the data corresponding to selector Tj

46 / 1



Wideskies Algorithm, With Encryption

47 / 1



Adding Encryption To The Mix

Adding encryption is straightforward. The following slides have the
encryption-enabled algorithms, with the differences from the earlier
slides in bold.

48 / 1



Query, Encrypted

49 / 1



Query, Encrypted

Algorithm 6 Query formation, ciphertext version 1

1: Choose a random key k for H.
2: Compute Hk(T0

), . . . ,Hk(T⌧�1

).
3: while card ({Hk(T0

), . . . ,Hk(T⌧�1

)}) < ⌧ do
4: go to ??
5: for i = 0, . . . , 2` � 1 do
6: Set

Ei =

⇢
E(2jb) if i = Hk(Tj ) for some j 2 {0, . . . , ⌧ � 1}
E(0) otherwise.

7: return {E
0

, . . . , E
2

`�1

,H, k ,N}

50 / 1



Response, Encrypted

51 / 1



Response Initialization, Encrypted

As before, we must initialize some values before forming the
response.

1. c
0

, . . . , c
2

`�1

= 0, counters to keep track of the number of
times each ET has been seen.

2. Y0, . . . ,Yr�1 = 1, response vectors.

52 / 1



Response, Encrypted

Algorithm 7 Stream processing, ciphertext version

1: Input: T = {(T ,D)}
2: Initialize:
3: Counters ci = 0 , 0  i  (2l � 1)
4: Paillier ciphertext values Yj = 1 , 0  j  (r � 1)
5: for (T ,D) 2 T do
6: Compute T = Hk(T )
7: if cT + �

b > r then
8: return
9: else

10: Split D into b-bit chunks, D = D
0

, . . . ,D(�/b)�1

11: for i = 0, . . . , (�/b)� 1 do
12: Set Di = EDi

T mod N2

13: Set Yi+cT = Yi+cT Di mod N2

14: Set cT = cT + (�/b)

15: Output: Y
0

, . . . ,Yr�1

53 / 1



Result, Encrypted

54 / 1



Result, Encrypted (and then Decrypted)

Actually literally the same algorithm as before is used; the only
difference is that we first decrypt the encrypted Yi .

55 / 1



Distributed Version

56 / 1



Distributed Version

The paper goes over how to do the distributed version; the change
is straightforward, and our earlier example slides make it easy to see
how it works.

57 / 1



Distributed Difference:
Unencrypted Sums, Encrypted Products

Recall our example matrix:

Index Y
0

· · · Y�/b�1

Y�/b · · · Y
2�/b�1

...
j D0

0

2

jb · · · D0

�/b�1

2

jb D3

0

2

jb · · · D3

�/b�1

2

jb

...
j 0 D1

0

2

j0b · · · D1

�/b�1

2

j0b 0 · · · 0
...
j 00 D2

0 · 0 · · · D2
�/b�1 · 0 0 · · · 0

...

58 / 1



Distributed Difference:
Unencrypted Sums, Encrypted Products

When we moved to an encrypted algorithm, all of the Di -long sums
of Ei became EDi

i .

In the distributed version, we actually make matrix components
rather than the fake matrix of Di in certain bit-positions we had
earlier.

In the matrix, rows are indexed by 0  T  2` � 1, columns by
0  j  r � 1.

59 / 1



Distributed Difference:
Unencrypted Sums, Encrypted Products

As before, let

Hk(T ) = j ,

Hk(T
0) = j 0, and

Hk(T
00) = j 00,

with T and T 0 search terms and T 00 not.

Notice that this time we won’t simply discard the data D
2

from T 00;
we no longer multiply it by zero, but use it as the exponent of Ej 00 ,
which is an encryption of 0.

60 / 1



Distributed Difference:
Unencrypted Sums, Encrypted Products

The matrix in the encrypted setting:

Index Y
0

· · · Y�/b�1

Y�/b · · · Y
2�/b�1

...
j ED0

0
j · · · E

D0
�/b�1

j ED3
0

j · · · E
D3
�/b�1

j

...
j 0 ED1

0
j0 · · · E

D1
�/b�1

j0 1 · · · 1
...
j 00 ED2

0
j00 · · · E

D2
�/b�1

j00 1 · · · 1
...

61 / 1



Algorithm In Matrix Form

Algorithm 8 Responder - Matrix Variant

1: Input: T = {(T ,D)}
2: Initialize:

3: Counters ci = 0 , 0  i  (2l � 1)

4: Paillier ciphertext values Yj = 1 , 0  j  (r � 1)

5: for (T ,D) 2 T do
6: Compute T = Hk (T ) . View as the row index of M : mT , j

7: if cT + �
b
> r then

8: return
9: else

10: Split D into b-bit chunks, D = D
0

kD
1

k . . . kD(�/b)�1

11: for k = 0, . . . , (�/b)� 1 do
12: Set mT , cT +k = EDk

T mod N2

13: Set cT = cT + (�/b)

14: for 0  j  (r � 1): do
15: Yj =

Q
2

l�1

i=0

mi,j

16: Output: Y
0

, . . . ,Yr�1

62 / 1



Distributed Algorithm

Algorithm 9 Responder - Distributed Variant

1: Input: T = {(T ,D)}
2: for (T ,D) 2 T in parallel do
3: Compute T = Hk (T ) . View as the row index of M : mT , j

4: Split D into b-bit chunks, D = D
0

kD
1

k . . . kD(�/b)�1

5: Form D = {Dk : 0  k  (�/b)� 1}
6: Emit (T ,D)

7: for each T in parallel do
8: Initialize cT = 0

9: while cT < r do
10: for each (T ,D) do
11: for each Dk 2 D , 0  k  . . . , (�/b)� 1 do
12: Set mT , cT = EDk

T mod N2

13: Emit (cT ,mT , cT )
14: cT = cT + 1

15: for 0  j  (r � 1) in parallel: do
16: Yj =

Q
2

l�1

i=0

mi,j

17: Output: Y
0

, . . . ,Yr�1

63 / 1



‘Actual’ Example

64 / 1



Actual Example Setup

We run through the above with actual numbers.

Let
I N = 35, p = 5, q = 7, �(N) = 12, B = 5.
I ⌧ , the number of terms we’ll search for, is 2. These terms are

T
0

= 0 and T
1

= 3.
I We won’t specify most of H; only that ` = 4,

H(T
0

) = 0110 = 6 and H(T
3

) = 0010 = 2.
I Our return data are � = 4 bits long; let b = 2. We limit

ourselves to r = 4.
I Let’s consult an RNG to choose values of ⇣ for use in Paillier.

65 / 1



Let’s Consult an RNG

Source: http://imgs.xkcd.com/comics/random_number.png, used under

http://www.xkcd.com/license.html

66 / 1

http://imgs.xkcd.com/comics/random_number.png
http://www.xkcd.com/license.html


Actual Example Setup

Great, we will randomly set ⇣ = 4 for all encryptions.

67 / 1



Example Query

I Since H(T
0

) = 6,

E
6

= E(20·2)

= 639

I Similarly, since H(T
1

) = 2,

E
2

= E(21·2)

= 359.

I All other terms are encryptions of 0; we will write these as 1
even though they would in fact be distributed across a wide
array of values in

�
Z/N2Z

�⇥.

68 / 1



Example Response
Suppose, as in our example above, that the responder inputs, in
order, are (T

0

,D0), (T
1

,D1), (5,D2), and (T
0

,D3), after which
point the responder returns (perhaps another T

0

comes in, thus
causing cT

0

to be greater than r). Here,

D0 = 0000 = (D0

0

,D0

1

) = (00, 00),

D1 = 0110 = (D1

0

,D1

1

) = (01, 10),

D2 = 0111 = (D2

0

,D2

1

) = (01, 11),

D3 = 0010 = (D3

0

,D3

1

) = (00, 10),

Note that since 5 is not a search term, it will result in raising an
encrypted zero to D2 = 7; again, we’re just going to write 1, even
though the acutal algorithm may (will) have any encryption of 0
instead.

69 / 1



Example Response Matrix

The responder forms the matrix

Index Y
0

Y
1

Y
2

Y
3

...
2 ED1

0
2 mod N2 = 359 ED1

1
2 mod N2 = 256 1 1

.

.

.

6 ED0
0

6 mod N2 = 1 ED0
1

6 mod N2 = 1 ED3
0

6 mod N2 = 1 ED3
1

6 mod N2 = 396

7 1 1 1 1
.

.

.

70 / 1



Example Responses

The only interesting responses are Y
0

= 359, Y
1

= 256, and
Y

3

= 396 (products are taken down columns).

71 / 1



Example Result

We decrypt to Y
0

= 0100, Y
1

= 8 = 1000 and Y
3

= 2 = 0010, and
then run through the processing algorithm:

I Data For T
0

: M = 0011
I X1 = 0:

I D
0

= (Y
0

&0011)/20 = 00

I D
1

= (Y
1

&0011)/20 = 00

I X2 = 2:
I D

0

= (Y
2

&0011)/20 = 00

I D
1

= (Y
3

&0011)/20 = 10

72 / 1



Example Result

We decrypted to Y
0

= 0100, Y
1

= 8 = 1000 and Y
3

= 2 = 0010,
and then run through the processing algorithm:

I Data For T
1

: M = 1100.
I X1 = 6:

I D
0

= (Y
0

&1100)/22 = 01

I D
1

= (Y
1

&1100)/22 = 10

I X2 = 0:
I D

0

= (Y
2

&1100)/22 = 00

I D
1

= (Y
3

&1100)/22 = 00

These results are precisely the data the responder had.⇤

*: We cannot distinguish the fact that X2 is a non-response from the possibility that X2 represents an

actual return of a datum D = 0 from the responder. In practice, one must avoid using D = 0 to

eliminate this ambiguity

73 / 1


