
UIMA Asynchronous Scaleout
Written and maintained by the Apache UIMA Development Community

Version 2.2.2-incubating

Copyright © 2007, 2008 International Business Machines Corporation

Copyright © 2008 The Apache Software Foundation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing incubation
at the Apache Software Foundation (ASF). Incubation is required of all newly accepted
projects until a further review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection of the completeness
or stability of the code, it does indicate that the project has yet to be fully endorsed by the
ASF.

License and Disclaimer. The ASF licenses this documentation to you under the
Apache License, Version 2.0 (the "License"); you may not use this documentation except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and
its contents are distributed under the License on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

Trademarks. All terms mentioned in the text that are known to be trademarks or
service marks have been appropriately capitalized. Use of such terms in this book should
not be regarded as affecting the validity of the the trademark or service mark.

Published April, 2008

http://www.apache.org/licenses/LICENSE-2.0

UIMA Asynchronous Scaleout iii

Table of Contents
1. Overview - Asynchronous Scaleout .. 1

1.1. Terminology ... 1
1.2. AS versus CPM .. 2
1.3. Design goals for Asynchronous Scaleout .. 3
1.4. AS Concepts ... 4

1.4.1. Threading .. 4
1.4.2. AS Component wrapping .. 4
1.4.3. Deployment alternatives .. 6
1.4.4. Limits .. 8
1.4.5. Compatibility ... 9

1.5. Application Concepts ... 9
1.5.1. Application API ... 9
1.5.2. Collection Process Complete .. 9

1.6. Monitoring & Controlling ... 10
1.6.1. Instrumentation provided .. 10

1.7. JMS Service Descriptor ... 10
1.8. Collection Reader support .. 11

2. Error Handling for Asynchronous Scaleout ... 13
2.1. Basic concepts ... 13
2.2. Associating Errors with incoming commands ... 13
2.3. Error handling overview .. 14
2.4. Error results ... 15
2.5. Error Recovery actions ... 15

2.5.1. Aggregate Error Actions .. 16
2.6. Thresholds for Terminate and Disable .. 17
2.7. Terminate Action .. 17
2.8. Commands and allowed actions ... 18

3. Asynchronous Scaleout Deployment Descriptor .. 19
3.1. Descriptor Organization ... 19
3.2. Deployment Descriptor .. 19
3.3. CAS Pool .. 20
3.4. Service .. 20
3.5. Customizing the deployment .. 21
3.6. Input Queue ... 21
3.7. Top Level AE Descriptor .. 22
3.8. Setting Environment Variables .. 22
3.9. Analysis Engine .. 22
3.10. Error Configuration descriptors .. 25
3.11. Error Configuration defaults ... 27

4. Asynchronous Scaleout Application Interface ... 29
4.1. Asynchronous API Overview ... 29
4.2. The UimaAsynchronousEngine Interface .. 29
4.3. Application Context Map ... 31

UIMA Asynchronous Scaleout

iv UIMA Asynchronous Scaleout UIMA-AS Version 2.2.2

4.4. Status Callback Listener .. 31
4.5. Error Results .. 31
4.6. Asynchronous API Usage Scenarios ... 32

4.6.1. Instantiating a Client API Object .. 32
4.6.2. Calling an Existing Service ... 32
4.6.3. Retrieving Asynchronous Results ... 32
4.6.4. Deploying a Service with the Client API .. 33

4.7. Sample Code .. 33

Overview - Asynchronous Scaleout 1

Chapter 1. Overview - Asynchronous Scaleout
UIMA Asynchronous Scaleout (AS) is a set of capabilities supported in the UIMA
Framework for achieving scaleout that is more general than the approaches provided for
in the Collection Processing Manager (CPM). AS is a second generation design, replacing
the CPM and Vinci Services. The CPM and Vinci are still available and are not being
deprecated, but new designs are encouraged to use AS for scalability, and current designs
reaching limitations may want to move to AS.

AS is integrated with the flow controller architecture, and can be applied to both primitive
and aggregate analysis engines.

1.1. Terminology
Terms used in describing AS capabilities include:

AS
Asynchronous Scaleout - a name given to the capability described here

AS-JMS/AMQ/Spring
A variety of AS, based on JMS (Java Messaging Services), Active MQ, an Apache Open
Source implementation of JMS, and the Spring framework. This variety is the one
described in detail in this document.

Queue
Queues are the basic mechanism of asynchronous communication. One or more
"producers" send messages to a queue, and a queue can have one or more "consumers"
that receive messages. Messages in UIMA AS are usually CASes, or references to
CASes. Queues are identified by a 2 part name. The first part is the Queue Broker; the
second part is a Queue Name.

AS Component
An AS client or service. AS clients send requests to AS service queues and receive back
responses on reply queues. AS services can be AS Primitives or AS aggregates (see
following).

AS Primitive
An AS service that is either a Primitive Analysis Engine or an Aggregate AE whose
Delegates are not AS-enabled

AS Aggregate
An AS service that is an Aggregate Analysis Engine where the Delegates are also AS
components.

AS Client
A component sending requests to AS services. An AS client is typically an application
using the UIMA AS client API, a JMS Service Client Proxy, or an AS Aggregate.

AS versus CPM

2 Overview - Asynchronous Scaleout UIMA-AS Version 2.2.2

co-located
two running pieces of code are co-located if they run in the same JVM and share the
same UIMA framework implementation and components.

Queue Broker
Queue brokers manage one or more named queues. The brokers are identified using
a URL, representing where they are on the network. When the queue broker is
co-located with the AS client and service, CASes are passed by reference, avoiding
serialization / deserialization.

Transport Connector
AS components connect to queue brokers via transport connectors. UIMA AS will
typically use "tcp" connectors. "http" connectors are also available, and are useful for
tunneling through firewalls via an existing public web server.

1.2. AS versus CPM
It is useful to compare and contrast the approaches and capabilities of AS and CPM.

 AS CPM

Putting
components
together

Aggregates are the only way to put
components together.

Two methods of putting components
together

1. CPE (Collection Processing
Engine) descriptor, which has
sections specifying a Collection
Reader, and a set of CAS
Processors

2. Each CAS Processor can, as well,
be an aggregate

Kinds of
Aggregates

An aggregate can be run
asynchronously using the AS
mechanism, with a queue in front
of each delegate, or it can by
run synchronously. When run
asynchronously, all of the delegates will
have queues in front of them, and AS
Primitive delegates can be individually
scaled out (replicated) as needed.

All aggregates are run synchronously.
In an aggregate, only one component is
running at a time.

CAS flow Any, including custom user-defined
sequence using user-provided flow
controller.

Fixed linear flow between CAS
processors. A single CAS processor
can be an aggregate, and within the
aggregate, can have any flow including
custom user-defined sequence using
user-provided flow controller.

Design goals for Asynchronous Scaleout

UIMA-AS Version 2.2.2 Overview - Asynchronous Scaleout 3

 AS CPM

Threading Each instance of a component runs in
its own thread.

One thread for the collection reader, one
for the CAS Consumers, "n" threads for
the main pipeline.

Delegate
deployment

Co-located or remote. Co-located or remote.

Life cycle
management

Scripts to launch services, launch
Queue Brokers.

Scripts to launch services, start Vinci
Name Service.

In addition, CPE "managed"
configuration provides for automatic
launching of UIMA Vinci services in
same machine, in different processes.

Error recovery Similar capabilities as the CPM
provides for CAS Processors, but at the
finer granularity of each AS component.
The support includes customizable
behavior overrides and extensions via
user code.

Error detection, thresholding, and
recovery options at the granularity
of CAS Processors (which are
CPM components, not delegates of
aggregates), with some customizable
callback notifications

Firewall
interactions

Enables deployment of AS services
behind a firewall using a public broker.
Enables deployment of a public broker
through single port, or using HTTP
"tunneling".

When using Vinci protocol, requires
opening a large number of ports for
each deployed service. SOAP connected
services require one open port.

Monitoring JMX (Java Management Extensions) are
enabled for recording many kinds of
statistical information, and can be used
to monitor (and, in the future, control)
the operations of AS configured
systems.

Limited JMX information

Collection
Reader

Supported for backwards compatibility.
New programs should use the CAS
Multiplier instead, which is more
general, or have the application
pass in CASes to be processed. The
compatibility support wraps Collection
Readers as Cas Multipliers.

Is always first element in linear CPE
sequence chain

1.3. Design goals for Asynchronous Scaleout
The design goals for AS are:

AS Concepts

4 Overview - Asynchronous Scaleout UIMA-AS Version 2.2.2

1. Increased flexibility and options for scaleout (versus CPM)
a. scale out parts independently of other parts, to appropriate degree
b. more options for protocols for remote connections, including some that don't

require many ports through firewalls
2. Build upon widely accepted Apache-licensed open source middleware
3. Simplification:

a. Standardize on single approach to aggregate components
b. More uniform Error handling / recovery / monitoring for all AS managed

components.
c. No changes to existing annotator code or descriptors. An additional

deployment descriptor is used to augment the conventional descriptors.

1.4. AS Concepts

1.4.1. User written components and multi-threading

AS provides for scaling out of annotators - both aggregates and primitives. Each of these
can specify a user-written implementation class. For primitives, this is the annotator class
with the process() method that does the work. For aggregates, this can be an (optional)
custom flow controller class that computes the flow.

The classes for annotators and flow controllers do not need to be "thread-safe" with
respect to their instance data - meaning, they do not need to be implemented with
synchronization locks for access to their instance data, because each instance will only
be called using one thread at a time. Scale out for these classes is done using multiple
instances of the class.

However, if you have class "static" fields shared by all instances, or other kinds of external
data shared by all instances (such as a writable file), you must be aware of the possibility
of multiple threads accessing these fields or external resources, running on separate
instances of the class, and do any required synchronization for these.

1.4.2. AS Component wrapping

Components managed by AS

1. have an associated input queue (this may be internal, or explicit and externalized).

They receive work units (CASes) from this queue, and return the updated CASes to
an output queue which is specified as part of the message delivering the input work
unit (CAS).

2. have a container which wraps the component and provides the following services
(see Figure 1.1, “AS Primitive Wrapper” [5]):

• A connection to an input queue of CASes to be processed

AS Component wrapping

UIMA-AS Version 2.2.2 Overview - Asynchronous Scaleout 5

• Scale-out within the JVM for components at the bottom level - the AS
Primitives. Scaleout creates multiple instances of the annotator(s), and runs
each one on its own thread, all drawing work from the same input queue.

• (For AS Aggregates) connections to input queues of the delegates
• A "pull" mechanism for the component to pull new CASes (to be processed)

from their associated input queue
• (For AS Aggregates) A separate, built-in internal queue to receive CASes

back from delegates. These are passed to the aggregate's flow controller,
which then specifies where they go next.

• A connection to user-specified error handlers. Error conditions are
communicated to the flow controller, to enable user / dynamically
determined recovery or termination actions.

Figure 1.1. AS Primitive Wrapper

As shown in the next figure, when the component being wrapped is an AS Aggregate, the
container will use the aggregate's flow controller (shown as "FC") to determine the flow
of the CASes among the delegates. The next figure shows the additional output queue
configured for aggregates to receive CASes returning from delegates. The dashed lines
show how the queues are associated with the components.

Deployment alternatives

6 Overview - Asynchronous Scaleout UIMA-AS Version 2.2.2

Figure 1.2. AS Aggregate wrapper

The collection of parts and queues is wired together according to a deployment
specification, provided by the deployer. This specification is a collection of one or more
deployment descriptors.

1.4.3. Deployment alternatives

Deployment is concerned with the following kinds of parts, and allocating these parts
(possibly replicated) to various hosts:

• Application Drivers. These represent the top level caller of UIMA functionality.
Examples include: stand-alone Java applications, such as the example document
analyzer tool, a custom Web servlet, etc.

• AS Services. AS primitive or AS aggregate services deployed on one or more nodes
as needed to meet scalability requirements.

• Queue Brokers. Each Queue Broker manages and provides the storage facility for
one or more named queues.

Parts can be co-located or not; when they're not, we say they're remote. Remote includes
running on the same host, but in a different process space, using a different JVM or other
native process. Connections between the parts are done using the JMS (Java Messaging
Service) protocols, and in this version the support for this is provided by the ActiveMQ
implementation from apache.org.

Note: For high availability, the Queue Brokers can be, themselves, replicated
over many hosts, with fail-over capability provided by the underlying ActiveMQ
implementation.

Deployment alternatives

UIMA-AS Version 2.2.2 Overview - Asynchronous Scaleout 7

1.4.3.1. Configuring multiple instances of components

AS components can be replicated; the replicated components can be co-located or
distributed across different nodes. The purpose of the replication is to allow multiple
work units (CASes) to be processed in parallel, in multiple threads, either in the same
host, or using different hosts. The vision is that the deployment is able to replicate just
those components which are the bottleneck in overall system thruput.

There are two ways replication can be specified.

1. In the deployment descriptor, set the numberOfInstances attribute to a number
bigger than one.

2. Deploy the same service on many nodes, specifying the same input service queue

The first way is limited to replicating an AS Primitive. An AS Primitive can be the whole
component of the service, or it can be at the bottom of an aggregate hierarchy of co-located
parts.

Replicating an AS Primitive has the effect of replicating all of its components, since no
queues are used below its input queue.

1.4.3.2. Queues

Asynchronous operation uses queues to connect components. Each queue is defined by a
queue name and the URL of its Queue Broker. AS services register as queue consumers to
obtain CASes to work on (as input) and to send CASes they're finished with (as output) to
the reply queue specified by the AS client.

For the AS-JMS/AMQ/Spring implementation, the queue implementation is provided by
ActiveMQ queue broker. A single Queue Broker can manage multiple queues. By default
UIMA AS configures the Queue Broker to use in-memory queues, so the queue is resident
on the same JVM as its managing Queue Broker. ActiveMQ offers several failsafe options,
including the use of disk-based queues and redundant master/slave broker configurations.

The decisions about where to deploy Queue Brokers are deployment decisions, made
based on issues such as domain of control, firewalls, CPU / memory resources, etc. Of
particular interest for distributed applications is that a UIMA AS service can be deployed
behind a firewall but still be publicly available by using a queue broker that is available
publicly.

When components are co-located, an optimization is done so that CASes are not actually
sent as they would be over the network; rather, a reference to the in-memory Java object is
passed using the queue.

Warning: Do not hook up different kinds of services to the same input queue. The
framework expects that multiple services all listening to a particular input queue
are sharing the workload of processing CASes sent to that queue. The framework

Limits

8 Overview - Asynchronous Scaleout UIMA-AS Version 2.2.2

does not currently verify that all services on a queue are the same kind, but likely
will in a future release.

1.4.3.3. Deployment Descriptors

Each deployment descriptor specifies deployment information for one service, including
all of its co-located delegates (if any). A service is an AS component, having one top level
input queue, to which CASes are sent for processing.

Each deployment descriptor has a reference to an associated Analysis Engine descriptor,
which can be an aggregate, a primitive (including CAS Consumers), or a service client
descriptor.

AS Components and their associated queue brokers can be co-located on the same
host/jvm; the deployment descriptor indicates which components (if any) are co-located
on its host/jvm, and specifies remote queues (queue-brokers and queue-names) for all
other components.

All services need to be manually started using an appropriate deployment descriptor
(describing the things to be set up on that server). There are several scripts provided
including deployAsyncService, that do this. The client API also supports a deploy method
for doing this with the same JVM.

Deploying UIMA aggregates

UIMA aggregates can either be run asynchronously as AS Aggregates, or synchronously
(as AS Primitives). AS Aggregates have a queue in front of each delegate; results from
each delegate are sent to a receiving (internal) queue. UIMA aggregates run as AS
Primitives send CASes synchronously to each delegate, without using any queuing
mechanism.

Each delegate in an AS Aggregate can be specified to be local or remote. Local means
co-located using internal (hidden) queues; remote means all others, including delegates
running in a different JVM, or in the same JVM but that can be shared by multiple clients
For each delegate which is remote, the deployment descriptor specifies the delegate's
input queue. If the delegate is local, an hidden, internal queue is automatically created for
that delegate.

1.4.4. Current design limitations

This section describes limitations of the initial support for AS. Some of these limitations
are due to the functionality being staged over several releases.

1.4.4.1. Sofa Mapping limits

Sofa mapping works for co-located delegates, only. As with Vinci and SOAP, remote
delegates needing sofa mapping need to respecify sofa mappings in an aggregate
descriptor at the remote node.

Compatibility

UIMA-AS Version 2.2.2 Overview - Asynchronous Scaleout 9

1.4.4.2. Parameter Overriding limits

Parameter overrides only work for co-located delegates. As with Vinci and SOAP, remote
delegates needing parameter overrides need to respecify the overrides in an aggregate
descriptor at the remote node.

1.4.4.3. Resource Sharing limits

Resource Sharing works for co-located delegates, only.

1.4.5. Compatibility with earlier version of remoting and
scaleout

A Vinci client service descriptor or a SOAP service descriptor can be used in an aggregate
descriptor as before, and can be used as a primitive analysis engine in a deployment
descriptor. There is a new type of client service descriptor for an AS service, the JMS
service descriptor; see Section 1.7, “JMS Service Descriptor” [10]

1.5. Application Concepts
When UIMA is used, it is called using Application APIs. A typical top-level driver has this
basic flow:

1. Read UIMA descriptors and instantiate components
2. Do a Run
3. Do another Run, etc.
4. Stop

A "run", in turn, consists of 3 parts:
1. initialize (or reinitialize, if already run)
2. process CASes
3. finish (collectionProcessComplete is called)

Initialize is called by the framework when the instance is created. The other methods need
to be called by the driver. collectionProcessComplete should be called when the driver
determines that it is finished sending input CASes for processing using the process()
method. reinitialize() can be called if needed, after changing parameter settings, to
get the co-located components to reinitialize.

1.5.1. Application API

Please see the sample code.

1.5.2. Collection Process Complete

Applications may want to signal a chain of annotators being used in a particular "run"
when all CASes for this run have been processed, and any final computation and

Monitoring & Controlling

10 Overview - Asynchronous Scaleout UIMA-AS Version 2.2.2

outputting is to be done; it calls the collectionProcessComplete method to do this. This
is frequently done when using stateful components which are accumulating information
over multiple documents.

It is up to the application to determine when the run is finished and there are no more
CASes to process. It then calls this method on the top level analysis engine; the framework
propagates this method call to all delegates of this aggregate, and this is repeated
recursively for all delegate aggregates.

This call is synchronous, meaning when this call is issued by an application, the
framework will block the thread issuing the call until all processing of CASes within the
aggregate has completed and the collectionProcessComplete method has returned (or
timed out) from every component it was sent to.

Components receive this call in a fixed order taken from the <fixedFlow> sequence
information in the descriptors, if that is available, and in an arbitrary order otherwise.

If a component is replicated, only one of the instances will receive the
collectionProcessComplete call.

1.6. Monitoring and Controlling an AS application
JMX (Java Management Extensions) are used for monitoring and controlling an AS
application. This capability is being staged; initial versions have some monitoring
capability, but little controlling capability.

The first versions of AS will use the standard GUI tooling available as part of Java 5 to
display the JMX results. Later versions may include additional UIMA-specific tooling for
this.

1.6.1. Instrumentation provided

The implementation provides the following kinds of instrumentation via JMX:

• Timing
• by component, by CAS(?)
• by queue
• message transit & serialization/deserialization

• component / host status
• by component
• state: OK, Idle, Working, Stopped, restarting, etc.

1.7. JMS Service Descriptor
To call a UIMA AS Service from Document Analyzer or any other base UIMA application,
use a descriptor such as the following:

Collection Reader support

UIMA-AS Version 2.2.2 Overview - Asynchronous Scaleout 11

<customResourceSpecifier xmlns="http://uima.apache.org/resourceSpecifier">

 <resourceClassName>

 org.apache.uima.aae.jms_adapter.JmsAnalysisEngineServiceAdapter

 </resourceClassName>

 <parameters>

 <parameter name="brokerURL"

 value="tcp://uima17.watson.ibm.com:61616"/>

 <parameter name="endpoint"

 value="uima.as.RoomDateMeetingDetectorAggregateQueue"/>

 </parameters>

</customResourceSpecifier>

The resouceClassName must be set exactly as shown. Set the brokerURL and endpoint
parameters to the appropriate values for the UIMA AS Service you want to call. These are
the same settings you would use in a deployment descriptor to specify the location of a
remote delegate. Note that this is a synchronous adapter, which processes one CAS at a
time, so it will not take advantage of the scalability that UIMA AS provides. To process
more than one CAS at a time, you must use the Asynchronous UIMA AS Client API
Chapter 4, Asynchronous Scaleout Application Interface [29].

For more information on the customResourceSpecifier see Section 2.8, “Custom Resource
Specifiers” in UIMA References.

1.8. Collection Reader support
Collection Readers are supported for backwards compatibility; new programs should use
the Cas Multiplier. (The reason for this is that Cas Multipliers can be run multiple times in
one run, and can be dynamically configured from the incoming CAS.) The compatibility
is achieved by wrapping the Collection Reader so that it looks like a Cas Multiplier.
Because of this implementation, you can use a CollectionReader descriptor anywhere that
a CAS Multiplier descriptor would work. Calls to the CAS Multiplier's next() method are
translated into calls to the Collection Reader's getNext() method. Since a Collection Reader
cannot accept a CAS as input, calls to the CAS Multiplier's process(CAS) method will be
translated into calls to the Collection Reader's reconfigure() method (except for the very
first call to process(), which is ignored). This is done so that if a Collection Reader reacts
to reconfigure() by resetting its state to be at the beginning of the collection, then when
deployed as a CAS Multiplier service it can be reused multiple times without having to
restart the service.

../references/references.pdf#ugr.ref.xml.component_descriptor.custom_resource_specifiers
../references/references.pdf#ugr.ref.xml.component_descriptor.custom_resource_specifiers

Error Handling for Asynchronous Scaleout 13

Chapter 2. Error Handling for Asynchronous
Scaleout

This chapter discusses the high level architecture for Error Handling from the user's point
of view.

2.1. Basic concepts
This chapter describes error configuration for AS components.

The AS framework manages a collection of component parts written by users (user code)
which can throw exceptions. In addition, the AS framework can run timers when sending
commands to user code which can create timeouts.

An AS component is either an AS aggregate or an AS primitive. AS aggregates can have
multiple levels of aggregation; error configuration is done for each level of aggregation.
The rest of this chapter focuses on the error configuration one level at a time (either for
one particular level in an aggregate hierarchy, or for an AS primitive).

There is a small number of commands which can be sent to an AS component. When a
component returns the result, if an error occurs, an error result is returned instead of the
normal result.

Configuration and support is provided for three classes of errors:

1. Exceptions thrown from code (component or framework) at this level

2. error messages received from delegates.

3. timeouts of commands sent to delegates.

The second and third class of errors is only possible for AS aggregates.

When errors happen, the framework provides a standard set of configurable actions. See
Section 2.8, “Commands and allowed actions” [18] for a summary table of the actions
available in different situations.

2.2. Associating Errors with incoming commands
Components managed by AS may generate errors when they are sent a command. The
error is associated with the command that was running to produce the error.

There are three incoming message commands supported by the AS framework:
1. getMetadata - sent by the framework when initializing connection to an AS

component
2. processCas - sent once for each CAS

Error handling overview

14 Error Handling for Asynchronous Scaleout UIMA-AS Version 2.2.2

3. collectionProcessComplete - sent when an application calls this method

Error handling actions are associated with these various commands. Some error handling
actions make sense only if there is an associated CAS object, and are therefore only
allowed with the processCas command.

2.3. Error handling overview
When an error happens, it is either "recovered", or not; only errors from delegates of an
AS aggregate can be recovered. Recovery may be achieved by retrying the request or by
skipping the delegate.

Commands normally return results; however if an non-recoverable error occurs, the
command returns an error result instead.

For AS aggregates, each level in aggregate hierarchy can be configured to try to recover
the error. If a particular AS aggregate level does not recover, the error is sent up to the
next level of the hierarchy (or to the calling client, if a top level). The error result is
updated to reflect the actions the framework takes for this error.

Non-recovered errors can optionally have an associated "Terminate" or "Disable" action
(see below), triggered by the error when a threshold is reached. "Disable" applies to the
delegate that generated the error while "Terminate" applies to the aggregate and any
co-located aggregates it is contained within.

Figure 2.1. Basic error handling chain for AS Aggregates for errors from delegates

Error results

UIMA-AS Version 2.2.2 Error Handling for Asynchronous Scaleout 15

The basic error handling chain starts with an error, and can attempt to recover using retry.
If this fails (or is not configured), the error count is incremented and checked against the
thresholds for this delegate. If the threshold has been reached the specified action is taken,
disabling the delegate or terminating the entire component. If the Terminate error is not
taken, recovery by the Continue action can be attempted. If that fails, an error result is
returned to the caller.

For AS primitives, only the Terminate action is available, and Retry and Continue do not
apply.

Figure 2.2. Basic error handling chain for AS Primitives

2.4. Error results

Error results are returned instead of a CAS, if an error occurs and is not recovered.

If the application uses the synchronous sendAndReceive() method, an Error Result is
passed back to the client API in the form of a Java exception. The particular exception
varies, depending on many factors, but will include a complete stack trace beginning
with the cause of the error. If the application uses an asynchronous API, the exception is
wrapped in a EntityProcessStatus object and delivered via a callback listener registered by
the application. See section 4.4 Status Callback Listener for details.

2.5. Error Recovery actions

When errors occur in delegates, the aggregate containing them can attempt to recover.
There are two basic recovery actions: retrying the same command and continuing past
(skipping) the failing component.

Every command sent to a delegate can have an associated (configurable) timeout. If the
timeout occurs before the delegate responds, the framework creates an error representing
the timeout.

Aggregate Error Actions

16 Error Handling for Asynchronous Scaleout UIMA-AS Version 2.2.2

Note: If, subsequently, a response is (finally) received corresponding to the
command that had timed-out, this is logged, but the response is discarded and no
further action is taken.

When errors occur in delegates, retry is attempted (if configured), some number of times.
If that fails, error counts are incremented and thresholds examined for Terminate/Disable
actions. If not reached, or if the action is Disable, Continue is attempted (if configured); if
Continue fails, the error is not recovered, and the aggregate returns the error result from
the delegate to the aggregate's caller. On Terminate, the error is returned to the caller.

2.5.1. Aggregate Error Actions

This section describes in more detail the error actions valid only for AS aggregates.

2.5.1.1. Retry

Retry is an action which re-sends the same command that failed back to the input queue
of the delegate. (Note: It may be picked up by a different instance of that delegate, which
may have a better chance of succeeding.) The framework will keep a copy of the CAS sent
to remote components in order to have it to send again if a retry is required.

Retry is not allowed for colocated delegates.

The "collectionProcessComplete" command is never retried.

Retry is done some number of times, as specified in the deployment descriptor.

2.5.1.2. Disable Action

Figure 2.3. Disable action

When this action is taken the framework marks the particular delegate causing the error
as "disabled" so it will be skipped in subsequent calls. The framework calls the flow
controller, telling it to remove the particular delegate from the flow.

2.5.1.3. Continue Option on Delegate Process CAS Failures

For processCas commands, the Continue action causes the framework to give the flow
controller object for that CAS the error details, and ask the flow controller if processing

Thresholds for Terminate and Disable

UIMA-AS Version 2.2.2 Error Handling for Asynchronous Scaleout 17

can continue. If the flow controller returns "true", the flow controller will be called asking
for the next step; if "false", the framework stops processing the CAS, returning an error
to the client reply queue, or just returning the CAS to the casPool of the CAS multiplier
which created it.

For "collectionProcessComplete" commands, Continue means to ignore the error, and
continue as if the collectionProcessComplete call had returned normally.

This action is not allowed for the getMetadata command.

2.6. Thresholds for Terminate and Disable
The Terminate and Disable actions are conditioned by testing against a threshold.

Thresholds are specified as two numbers - an error count and a window. The threshold
is reached if the number of errors occurring within the window size is equal to or greater
than "the error count". A value of 0 disables the error threshold so no action can be taken.
A window of 0 means no window, i.e. all errors are counted

Errors associated with the processCas command are the only ones that are counted in the
threshold measurements.

2.7. Terminate Action
When this action is taken the service represented by this component sends an error reply
and then terminates, disconnecting itself as a listener from its input queue, and cleaning
itself up (releasing resources, etc.). During cleanup, the component analysis engine's
destroy method is called.

Note: The termination action applies to the entire aggregate service. Remote
delegates are not affected.

Figure 2.4. Terminate action

If the threshold is not exceeded, the error counts associated with the threshold are
incremented.

Note: Some errors will always cause a terminate: for instance, framework or flow
controller errors cause immediate termination.

Commands and allowed actions

18 Error Handling for Asynchronous Scaleout UIMA-AS Version 2.2.2

2.8. Commands and allowed actions
All of the allowed actions are optional, and default to not being done, except for
getMetadata being sent to a delegate that is remote - this has a default timeout of 1
minute.

Here's a table of the allowed actions, by command. In this table, the Retry, Continue, and
Disable actions apply to the particular Delegate associated with the error; the Terminate
action applies to the entire component.

The framework returns an Error Result to the caller for errors that are not recovered.

Table 2.1. Error actions by command type

Error actions allowed
Command

AS Aggregate AS Primitive

getMetadata Retry, Disable, Terminate Terminate

processCas Retry, Continue, Disable,
Terminate

Terminate

collection
Processing
Complete

Continue, Disable, Terminate Terminate

The rationale for providing the terminate action for primitive services is that only the
service can know that it is no longer capable of continued operation. Consider a scaled
component with multiple service instances, where one of them goes "bad" and starts
throwing exceptions: the clients of this service have no way of stopping new requests from
being delivered to this bad service instance. The teminate action allows the bad service to
remove itself from further processing; this could allow life cycle management to restart a
new instance.

Asynchronous Scaleout Deployment Descriptor 19

Chapter 3. Asynchronous Scaleout
Deployment Descriptor

3.1. Descriptor Organization

Each deployment descriptor describes one service, associated with a single UIMA
descriptor (aggregate or primitive), and describes the deployment of those UIMA
components that are co-located, together with specifications of connections to those
subcomponents that are remote.

The deployment descriptor is used to augment information contained in an analysis
engine descriptor. It adds information concerning

• which components are managed using AS
• queue names for connecting components
• error thresholds and recovery / terminate action specifications
• error handling routine specifications

The application can include both Java and non-Java components; the deployment
descriptors are slightly different for non-Java components.

3.2. Deployment Descriptor

Each deployment descriptor describes components associated with one UIMA descriptor.
The basic structure of a Deployment Descriptor is as follows:

<analysisEngineDeploymentDescription

 xmlns="http://uima.apache.org/resourceSpecifier">

 <!-- the standard (optional) header -->

 <name>[String]</name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <deployment protocol="jms" provider="activemq">

 <casPool numberOfCASes="xxx" initialFsHeapSize="nnn"/>

 <service> <!-- must have only 1 -->

 <!-- 0 or more of the following -->

 <!-- name required, value optional -->

 <custom name="..." value="..."/>

 <inputQueue .../>

CAS Pool

20 Asynchronous Scaleout Deployment Descriptor UIMA-AS Version 2.2.2

 <topDescriptor .../>

 <environmentVariables .../> <!--optional -->

 <analysisEngine key="key name" async="[true/false]">

 <scaleout numberOfInstances="1"/> <!-- optional -->

 <!-- optional -->

 <casMultiplier poolSize="5" initialFsHeapSize="nnn"/>

 <asyncPrimitiveErrorConfiguration .../> <!-- optional -->

 <delegates> <!-- optional, only for aggregates -->

 <!-- 0 or more -->

 <analysisEngine key="key name" async="[true/false]">

 ... <!-- optional nested specifications -->

 </analysisEngine>

 . . .

 <remoteAnalysisEngine key="key name"> <!-- 0 or more -->

 <!-- next is either required or must be omitted -->

 <casMultiplier poolSize="5" initialFsHeapSize="nnn"/>

 <inputQueue ... />

 <replyQueue location="[local|remote]"/><!-- optional-->

 <serializer method="xmi"/>

 <asyncAggregateErrorConfiguration ... />

 </remoteAnalysisEngine>

 . . .

 </delegates>

 </analysisEngine>

 </service>

 </deployment>

</analysisEngineDeploymentDescription>

3.3. CAS Pool
This element specifies information for managing CAS pools. Having more CASes in
the pools enables more AS components to run at the same time. For instance, if your
application had four components, but one was slow, you might deploy 10 instances of the
slow component. To get all 10 instances working on CASes simultaneously, your CAS pool
should be at least 10 CASes. The casPool size should be small enough to avoid paging.

The initialFsHeapSize attribute is optional, and allows setting the size of the initial
CAS Feature Structure heap. This number is specified in bytes, and the default is
approximately 2 megabytes for Java top-level services, and 40 kilobytes for C++ top level
services. The heap grows as needed; this parameter is useful for those cases where the
expected heap size is much smaller than the default.

3.4. Service
This section is required and specifies the deployment information for the service.

Customizing the deployment

UIMA-AS Version 2.2.2 Asynchronous Scaleout Deployment Descriptor 21

3.5. Customizing the deployment

The <custom> element(s) are optional. Each one, if specified, requires a name parameter,
and can have an optional value parameter. They are intended to provide additional
information needed for particular kinds of deployment.

The following lists the things that can be specified here.

• name="run_top_level_CPP_service_as_separate_process"

(no value used)

Causes the top level component, which must be a component specified as using
<frameworkImplementation>org.apache.uima.cpp</frameworkImplementation>
and which must be specified as async="false" (the default), to be run in a separate
process, rather than via using the JNI.

3.6. Input Queue

The inputQueue element is required. It identifies the input queue for the service.

<inputQueue brokerURL="tcp://x.y.z:portnumber"

 endpoint="queue_name"

 prefetch="1"/>

The queue broker address includes a protocol specification, which should be set to either
"tcp", or "http". The brokerURL attribute specifies the queue broker URL, typically its
network address and port. .

The http protocol is similar to the tcp protocol, but is preferred for wide-area-network
connections where there may be firewall issues, as it supports http tunnelling.

Warning: When remote delegates are being used, and the replyQueue is remote,
the brokerURL value used for this remote delegate is used also for the remote
reply Queue, and must be valid for both the client to send requests and the remote
service to send replies to. The URL to use for the reply is resolved on the remote
system when sending a reply. Using "localhost" will not work, nor will partially
specified URLs unless they resolve to the same URL on all nodes where services
are running. The recommended best practice is to use fully qualified URL names.

The queue name is used to uniquely identify a queue belonging to a particular broker.

The prefetch attribute controls prefetching of messages for an instance of the service.
It can be 0 - which disables prefetching. This is useful in some realtime applications for
reducing latency. In this case, when a new request arrives, any available instance will
take the request; if prefetching was set above 0, the request might be prefetched by a busy
service. The default value if not specified is 1.

Top Level AE Descriptor

22 Asynchronous Scaleout Deployment Descriptor UIMA-AS Version 2.2.2

Note: The prefetch attribute is only used with the top inputQueue element for
the service.

3.7. Top level Analysis Engine descriptor
Each service must indicate some analysis engine to run, using this element.

<topDescriptor>

 <import location="..." /> <!-- or name="..." -->

</topDescriptor>

This is the standard UIMA import element. Imports can be by name or by location; see
Section 2.2, “Imports” in UIMA References.

3.8. Setting Environment Variables
This element is optional, and provides a way to set environment variables.

Note: This element is only allowed and used
for top level Analysis Engines specifying
<frameworkImplementation>org.apache.uima.cpp</frameworkImplementation>
and running using the <custom
name="run_top_level_CPP_service_as_separate_process">; it is not supported for
Java Analysis Engines.

Components written in C++ can be run as a top level service. These components are
launched in a separate process, and by default, all the environment variables of the
launching process are passed to the new process. This element allows the environment
variables of the new process to be augmented.

<environmentVariables>

<!-- one or more of the following element -->

<environmentVariable name="xxx">value goes here</environmentVariable>

</environmentVariables>

Usually, the value will replace any existing value. As a special exception, for the
environment variables used as the PATH (for Windows) or LD_LIBRARY_PATH (for
Linux) or DYLD_LIBRARY_PATH (for MacOS), the value will be "prepended" with a path
separator character appropriate for the platform, to any existing value.

3.9. Analysis Engine
This is used to describe an element which is an analysis engine. It is optional and
only needed if the defaults are being overridden. The async attribute is only used for
aggregates, and specifies that this aggregate will be run asynchronously (with input
queues in front of all of its delegates) or not. If not specified, the async property defaults
to "false" except in the case where the deployment descriptor includes the <delegates>

../references/references.pdf#ugr.ref.xml.component_descriptor.imports

Analysis Engine

UIMA-AS Version 2.2.2 Asynchronous Scaleout Deployment Descriptor 23

element, when it defaults to "true". If you specify async="false", then it is an error to
specify any <delegates> in the deployment descriptor.

The key attribute must have as its value the key name used in the containing aggregate
descriptor to uniquely identify this delegate. Since the top level aggregate is not contained
in another aggregate, this can be omitted for that element. Deployment information is
matched to delegates using the key name specified in the aggregate descriptor to identify
the delegate.

<analysisEngine key="key name" async="true">

 <scaleout numberOfInstances="1"/> <!-- optional -->

 <!-- casMultiplier is either required, or must be omitted-->

 <casMultiplier poolSize="5" initialFsHeapSize="nn"/>

 <!-- next two are optional, but only one allowed -->

 <asyncAggregateErrorConfiguration .../> <!-- optional -->

 <asyncPrimitiveErrorConfiguration .../> <!-- optional -->

 <delegates> <!-- optional -->

 <analysisEngine key="key name" ...> <!-- 0 or more -->

 ... <!-- optional nested specifications -->

 </analysisEngine>

 . . .

 <remoteAnalysisEngine key="key name"> <!-- 0 or more -->

 <!-- next is either required or must be omitted -->

 <casMultiplier poolSize="5" initialFsHeapSize="nnn"/>

 <inputQueue ... />

 <replyQueue location="[local|remote]"/> <!-- optional -->

 <serializer method="xmi"/> <!-- optional -->

 <asyncAggregateErrorConfiguration .../> <!-- optional -->

 </remoteAnalysisEngine>

 . . .

 </delegates> . . .

</analysisEngine>

<analysisEngine> is used to specify deployment details for an analysis engine. It
is optional, and if omitted, defaults will be used: The analysis engine will be run
asynchronously, with a scaleout of 1, using the default error configuration.

The <scaleout ...> element specifies, for co-located primitive or non-AS aggregates
(async="false") at the bottom of an aggregate tree, how many replicated instances are
created.

The <casMultiplier> element inside an <analysisEngine> element is required if the analysis
engine component is a CAS multiplier, and is an error if specified for other components. It
specifies for CAS multipliers the size of the pool of CASes used by that CAS multiplier for
generating extra CASes.

Note: The actual CAS pool size can be bigger than the size specified here. The
custom CAS multiplier code specifies how many CASes it needs access to at the

Analysis Engine

24 Asynchronous Scaleout Deployment Descriptor UIMA-AS Version 2.2.2

same time; the actual CAS pool size is the value in the deployment descriptor, plus
the value in custom CM code, minus 1.

The initialFsHeapSize attribute on the <casMultiplier> element is optional, and allows
setting the size of the initial CAS Feature Structure heap for CASes in this pool. This
number is specified in bytes, and the default is approximately 2 megabytes for Java
top-level services, and 40 kilobytes for C++ top level services. The heap grows as needed;
this parameter is useful for those cases where the expected heap size is much smaller than
the default.

The <remoteAnalysisEngine> elements are used to specify that the delegate is not
co-located, and how to connect to it. The <inputQueue> element specifies the remote's
input queue. The <serializer> element describes what method of serialization to use (for
now "xmi" is the only allowed value, and this element can be omitted). The casMultiplier
element inside a remoteAnalysisEngine element is only specified if the remote component
is a CAS Multiplier, and it specifies the size of a pool of CASes kept to receive the new
CASes from the remote component, and the initial size of those CASes. Its poolSize must
be equal to or larger than the casMultiplier poolSize specified for that remote component.

Note: Only one remote can be a remote CAS Multiplier, in the current design, and
that remote can only have one instance. Scale out in any manner is not supported
in the current release

For tcp: style connections, the <replyQueue> element for each containing aggregate
specifies the location of the queue that receives replies from the delegates. The two values
allowed for location are "local" and "remote". Local means the reply queue is part of the
process that is sending requests to the remote node; remote means the reply queue is
on the same node as the remote process's input queue. The choice is dependent on both
resource consumption (the queues store CASes in memory), and on firewall issues.

The default replyQueue location is local and normally does not have to be specified; users
should set this to remote if a firewall prevents the remote delegate from accessing TCP/IP
connections on the client's machine.

Note: When replyQueue is set to remote, the brokerURL value used for this
remote delegate must be valid for both the client to send requests and the remote
service to send replies.

Services may be running on nodes with firewalls, where the only port open is the one
for http. In this case, you can use the http protocol, For http: style connections, the only
supported configuration is remote, and is the default.

The <asyncPrimitiveErrorConfiguration> element is only allowed within a top-level
analysis engine specification (that is, one that is not a delegate of another, containing
analysis engine).

Error Configuration descriptors

UIMA-AS Version 2.2.2 Asynchronous Scaleout Deployment Descriptor 25

3.10. Error Configuration descriptors

Error Configuration descriptors can be included directly in the deployment descriptors, or
they may use the <import> mechanism to import another file having the specification.

For AS Aggregates, the configuration applicable to delegates goes in
<asyncAggregateErrorConfiguration> elements for the delegate.

For AS Primitives, there is one <asyncPrimitiveErrorConfiguration> element that
configures threshold-based termination. The other kinds of error configuration are not
applicable for AS Primitives.

See Chapter 2, Error Handling for Asynchronous Scaleout [13] for a complete overview of
error handling.

The Error Configuration descriptor for AS Aggregates is as follows; note that all the
elements are optional:

<asyncAggregateErrorConfiguration

 xmlns="http://uima.apache.org/resourceSpecifier">

 <!-- the standard (optional) header -->

 <name>[String]</name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <import ... /> <!-- optional -->

 <getMetadataErrors

 maxRetries="n"

 timeout="xxx_milliseconds"

 errorAction="disable|terminate"/>

 <processCasErrors

 maxRetries="n"

 timeout="xxx_milliseconds"

 continueOnRetryFailure="true|false"

 thresholdCount="xxx"

 thresholdWindow="yyy"

 thresholdAction="disable|terminate"/>

 <collectionProcessCompleteErrors

 timeout="xxx_milliseconds"

 additionalErrorAction="disable|terminate"/>

</asyncAggregateErrorConfiguration>

For an AS Primitive, the <asyncPrimitiveErrorConfiguration> element appears at the top
level, and has this form:

Error Configuration descriptors

26 Asynchronous Scaleout Deployment Descriptor UIMA-AS Version 2.2.2

<asyncPrimitiveErrorConfiguration

 xmlns="http://uima.apache.org/resourceSpecifier">

 <!-- the standard (optional) header -->

 <name>[String]</name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <import ... /> <!-- optional -->

 <processCasErrors

 thresholdCount="xxx"

 thresholdWindow="yyy"

 thresholdAction="terminate"/>

 <collectionProcessCompleteErrors

 additionalErrorAction="terminate"/>

</asyncPrimitiveErrorConfiguration>

The maxRetries attribute specifies the maximum number of retries to do. If this is set to 0
(the default), no retries are done.

The continueOnRetryFailure attribute, if set to 'true' causes the framework to ask the
aggregate's flow controller if the processing for the CAS can continue. If this attribute
is 'false' or if the flow controller indicates it cannot continue, further processing on the
CAS is stopped and an error is returned from the aggregate. Warning: there are some
conditions in the current implementation where this is not yet being done; this is a known
issue.

Warning: If maxRetries > 0 or the continueOnRetryFailure attribute is 'true',
the CAS will be saved before sending it to remote delegates, to enable the these
actions. For co-located delegates, the CAS is not copied, therefore the retry and
continue options are not allowed.

The timeout attribute specifies the timeout values used when sending commands to
the delegates. The units are milliseconds and a value of 0 has the special meaning of no
timeout.

The thresholdCount and thresholdWindow attributes specify the threshold at which
the thresholdAction is taken. If xxx errors occur within a window of size yyy, the
framework takes the specified action of either disabling this delegate, or terminating
the containing AS Aggregate (or if not an AS Aggregate, terminating the AS Primitive).
A thresholdCount of 0 (the default) has the special meaning of no threshold, i.e. errors
ignored, and a thresholdWindow of 0 (the default) means no window, i.e. all errors
counted.

An action of 'disable' applies to the specified delegate, removing it from the flow so the
containing aggregate will no longer send it commands. The 'terminate' action applies

Error Configuration defaults

UIMA-AS Version 2.2.2 Asynchronous Scaleout Deployment Descriptor 27

to the entire service containing this component, disconnecting it from its input queue
and shutting it down. Note that when disabling, the framework asks the flow controller
to remove the delegate from the flow, but if the flow controller cannot reasonably
operate without this component it can convert the action to 'terminate' by throwing an
AnalysisEngineProcessException.FLOW_CANNOT_CONTINUE_AFTER_REMOVE
exception.

Note that the only action for an AS Primitive on getMetadata failure is to terminate, and
this is always the case, so it is not listed as an configuration option. This is also the default
action for an AS Aggregate getMetadata failure.

3.11. Error Configuration defaults
If the <errorConfiguration> element is omitted, or if some sub elements of this are omitted,
the following defaults are used:

• The maxRetries parameter is set to 0.

• Timeout defaults are set to 0, meaning no timeout, except for the getMetadata
command for remote delegates; here the default is 60000 (1 minute)

• The continueOnRetryFailure action is set to "false".

• The thresholdCount value is set to 0, meaning no threshold, errors are ignored.

• The thresholdWindow value is set to 0, meaning no window, all errors are counted.

• No disable or terminate action will be done (i.e. errors ignored), except for the
getMetadata command where the default is to terminate.

Asynchronous Scaleout Application Interface 29

Chapter 4. Asynchronous Scaleout
Application Interface

4.1. Asynchronous API Overview

The Asynchronous API provides Java applications the capability to connect to and to
make requests UIMA-AS services. ProcessCas and CollectionProcessingComplete requests
are supported.

An application can use this API to prepare and send each CAS to a service one at a time,
or alternately can use a UIMA collection reader to prepare the CASes to be delivered. The
application must provide a listener class to receive asynchronous replies. For individual
CAS requests a synchronous sendAndReceive call is available. As an alternative for this
case (for synchronous requests to a UIMA-AS service), instead of using this client API, the
standard UIMA Analysis Engine APIs can be used with an analysis engine instantiated
from a JMS Service Descriptor. See Section 1.7, “JMS Service Descriptor” [10].

Other options available in this API include specifying the maximum number of
outstanding requests allowed, timeout values and the size of local Cas pool to create.

The Asynchronous API can also be used to deploy services. Java services deployed
by the API are instantiated in the same JVM. Logging for all UIMA components in
the same JVM are merged; class names and thread IDs can be used to distinguish log
entries from different services. All services in the JVM can be monitored by a single JMX
console. Native (org.apache.uima.cpp) services can be called from the JVM via the JNI or
optionally be launched as separate processes on the same machine. In either case logging
and JMX monitoring for native services are integrated with the those in the JVM.

4.2. The UimaAsynchronousEngine Interface

An application developer's starting point for accessing UIMA-AS services is the
UimaAsynchronousEngine Interface. For each service an application wants to use, it must
instantiate a client object:

UimaAsynchronousEngine uimaAsEngine =

 new BaseUIMAAsynchronousEngine_impl();

The following is a short introduction to some important methods on this class.

• void initialize(Map anApplicationContext): Initializes asynchronous client. Using
configuration provided in a given Map object, this method creates a connection to
the UIMA-AS Service queue, creates a response queue, and retrieves the service
metadata. This method blocks until a reply is received from the service or a timeout
occurs. If a collection reader has been specified, its typesystem is merged with

The UimaAsynchronousEngine Interface

30 Asynchronous Scaleout Application Interface UIMA-AS Version 2.2.2

that from the service. The combined typesystem is used to create a Cas pool. On
success the application is notified via the listener's initializationComplete() method.
Asynchronous errors are delivered to the listener's entityProcessComplete()
method. See Section 4.3, “Application Context Map” [31] for more about the
ApplicationContext map.

• void addStatusCallbackListener(UimaASStatusCallbackListener aListener): Plugs
in an application-specific listener. The application receives callbacks via methods in
this listener class. More than one listener can be added.

• CAS getCAS(): Requests a new CAS instance from the CAS pool. This method
blocks until a free instance of CAS is available in the CAS pool. Applications that
use getCAS() need to call CAS.reset() as appropriate or CAS.release() to return it to
the Cas pool.

• void sendCAS(CAS aCAS): Sends a given CAS for analysis to the
UIMA-AS Service. The application is notified of responses or timeouts via
entityProcessComplete().

• void setCollectionReader(CollectionReader aCollectionReader): Plugs in an
instantiated CollectionReader instance to use. Must be called before initialize. The
application calls the process() method to begin analyzing the collection.

• void process(): Starts processing a collection using a collection reader. The method
will block until the CollectionReader finishes processing the entire collection.
Throws ResourceProcessException if a CollectionReader has not been provided or
initialize has not been called.

• void collectionProcessingComplete(): Sends a Collection Processing Complete
request to the UIMA-AS Analysis Service. The method blocks until the service
replies or a timeout occurs. On success the application is notified via the listener's
collectionProcessComplete() method.

• void sendAndReceiveCAS(CAS aCAS): Send a CAS, wait for response. On success
aCAS contains the analysis results. Throws an exception on error.

• String deploy(String aDeploymentDescriptor, Map anApplicationContext): Deploys
the UIMA-AS service specified by the given deployment descriptor in this JVM,
and returns a handle to the Spring container for this service. The application context
map must contain DD2SpringXsltFilePath and SaxonClasspath entries. This call
blocks until the service is ready to process requests, or an exception occurs during
deployment.

• void undeploy(String aSpringContainerId): Tells the specified service to terminate
and removes the Spring container.

• void stop(): Stops the asynchronous client. Removes the Cas pool, drops the
connection to the UIMA-AS service queue and stops listening on its response queue.
Terminates and undeploys any services which have been started with this client.

Application Context Map

UIMA-AS Version 2.2.2 Asynchronous Scaleout Application Interface 31

4.3. Application Context Map
The application context map is used to pass initialization parameters. These parameters
are itemized below.

• DD2SpringXsltFilePath: Required for deploying services.

• SaxonClasspath: Required for deploying services.

• ServerUri: Broker connector for service. Required for initialize.

• Endpoint: Service queue name. Required for initialize.

• Resource Manager: (Optional) a UIMA ResourceManager to use for the client.

• CasPoolSize: Size of Cas pool to create to send to specified service. Default = 1.

• CAS_INITIAL_HEAPSIZE: (Optional) the initial CAS heapsize.

• Application Name: optional name of the application using this API, for logging.

• Timeout: Process CAS timeout in ms. Default = no timeout.

• GetMetaTimeout: Initialize timeout in ms. Default = 60 seconds.

• CpcTimeout: Collection process complete timeout. Default = no timeout.

4.4. Status Callback Listener
Asynchronous events are delivered to applications via methods in classes registered to the
API object with addStatusCallbackListener(). These classes must implement the interface
org.apache.uima.aae.client.UimaASStatusCallbackListener.

• initializationComplete(EntityProcessStatus aStatus): The callback used to inform the
application that the initialization request has completed. On success aStatus will be
null; on failure use the EntityProcessStatus class to get the details.

• entityProcessComplete(CAS aCas, EntityProcessStatus aStatus): The callback used
to inform the application that a processCas request has completed. On success
aStatus will be null; on failure use the EntityProcessStatus class to get the details.

• collectionProcessComplete(EntityProcessStatus aStatus): The callback used to
inform the application that the CPC request has completed. On success aStatus will
be null; on failure use the EntityProcessStatus class to get the details.

4.5. Error Results
Errors are delivered to the callback listeners as an EntityProcessStatus object.

Note: The use of EntityProcessStatus is temporary. This will be replaced shortly.

Asynchronous API Usage Scenarios

32 Asynchronous Scaleout Application Interface UIMA-AS Version 2.2.2

• isException(): Indicates the error returned is in the form of exception messages.

• getExceptions(): Returns a List of exceptions.

4.6. Asynchronous API Usage Scenarios

4.6.1. Instantiating a Client API Object

A client API object must be instantiated for each remote service an application will
directly connect with, and a listener class registered in order to process asynchronous
events:

//create Asynchronous Client API

uimaAsEngine = new BaseUIMAAsynchronousEngine_impl();

uimaAsEngine.addStatusCallbackListener(new MyStatusCallbackListener());

4.6.2. Calling an Existing Service

The following code shows how to establish connection to an existing service:

//create Map to pass server URI and Endpoint parameters

Map<String,Object> appCtx = new HashMap<String,Object>();

// Add Broker URI on local machine

appCtx.put(UimaAsynchronousEngine.ServerUri, "tcp://localhost:61616");

// Add Queue Name

appCtx.put(UimaAsynchronousEngine.Endpoint, "RoomNumberAnnotatorQueue");

// Add the Cas Pool Size

appCtx.put(UimaAsynchronousEngine.CasPoolSize, 2);

//initialize

uimaAsEngine.initialize(appCtx);

Prepare a Cas and send it to the service:

//get an empty CAS from the Cas pool

CAS cas = uimaAsEngine.getCAS();

// Initialize it with input data

cas.setDocumentText("Some text to pass to this service.");

// Send Cas to service for processing

uimaAsEngine.sendCAS(cas);

4.6.3. Retrieving Asynchronous Results

Asynchronous events resulting from the process Cas request are passed to the registered
listener.

Deploying a Service with the Client API

UIMA-AS Version 2.2.2 Asynchronous Scaleout Application Interface 33

// Callback Listener. Receives event notifications from UIMA-AS.

class MyStatusCallbackListener implements UimaASStatusCallbackListener {

// Method called when the processing of a Document is completed.

public void entityProcessComplete(CAS aCas, EntityProcessStatus aStatus) {

 if (aStatus != null && aStatus.isException()) {

 List exceptions = aStatus.getExceptions();

 for (int i = 0; i < exceptions.size(); i++) {

 ((Throwable) exceptions.get(i)).printStackTrace();

 }

 uimaAsEngine.stop();

 return;

 }

// Process the retrieved Cas here

// ...

 }

// Add other required callback methods below...

}

4.6.4. Deploying a Service with the Client API

Services can be deployed from a client object independently of any service connection.
The main motivation for this feature is to be able to deploy a service, connect to it, and
then remove the service when the application is done using it.

// create Map to hold required parameters

Map<String,Object> appCtx = new HashMap<String,Object>();

appCtx.put(UimaAsynchronousEngine.DD2SpringXsltFilePath,

 System.getenv("UIMA_HOME") + "/bin/dd2spring.xsl");

appCtx.put(UimaAsynchronousEngine.SaxonClasspath,

 "file:" + System.getenv("UIMA_HOME") + "/saxon/saxon8.jar");

uimaAsEngine.deploy(service, appCtx);

4.7. Sample Code
See
$UIMA_HOME/examples/src/org/apache/uima/examples/as/RunRemoteAsyncAE.java

	UIMA Asynchronous Scaleout
	Table of Contents
	Chapter 1. Overview - Asynchronous Scaleout
	1.1. Terminology
	1.2. AS versus CPM
	1.3. Design goals for Asynchronous Scaleout
	1.4. AS Concepts
	1.4.1. User written components and multi-threading
	1.4.2. AS Component wrapping
	1.4.3. Deployment alternatives
	1.4.3.1. Configuring multiple instances of components
	1.4.3.2. Queues
	1.4.3.3. Deployment Descriptors
	Deploying UIMA aggregates

	1.4.4. Current design limitations
	1.4.4.1. Sofa Mapping limits
	1.4.4.2. Parameter Overriding limits
	1.4.4.3. Resource Sharing limits

	1.4.5. Compatibility with earlier version of remoting and scaleout

	1.5. Application Concepts
	1.5.1. Application API
	1.5.2. Collection Process Complete

	1.6. Monitoring and Controlling an AS application
	1.6.1. Instrumentation provided

	1.7. JMS Service Descriptor
	1.8. Collection Reader support

	Chapter 2. Error Handling for Asynchronous Scaleout
	2.1. Basic concepts
	2.2. Associating Errors with incoming commands
	2.3. Error handling overview
	2.4. Error results
	2.5. Error Recovery actions
	2.5.1. Aggregate Error Actions
	2.5.1.1. Retry
	2.5.1.2. Disable Action
	2.5.1.3. Continue Option on Delegate Process CAS Failures

	2.6. Thresholds for Terminate and Disable
	2.7. Terminate Action
	2.8. Commands and allowed actions

	Chapter 3. Asynchronous Scaleout Deployment Descriptor
	3.1. Descriptor Organization
	3.2. Deployment Descriptor
	3.3. CAS Pool
	3.4. Service
	3.5. Customizing the deployment
	3.6. Input Queue
	3.7. Top level Analysis Engine descriptor
	3.8. Setting Environment Variables
	3.9. Analysis Engine
	3.10. Error Configuration descriptors
	3.11. Error Configuration defaults

	Chapter 4. Asynchronous Scaleout Application Interface
	4.1. Asynchronous API Overview
	4.2. The UimaAsynchronousEngine Interface
	4.3. Application Context Map
	4.4. Status Callback Listener
	4.5. Error Results
	4.6. Asynchronous API Usage Scenarios
	4.6.1. Instantiating a Client API Object
	4.6.2. Calling an Existing Service
	4.6.3. Retrieving Asynchronous Results
	4.6.4. Deploying a Service with the Client API

	4.7. Sample Code

