UIMA References

Written and maintained by the Apache UIMA Development Community

Version 2.3.0-incubating

Copyright © 2004, 2006 International Business Machines Corporation
Copyright © 2006, 2010 The Apache Software Foundation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing incubation
at the Apache Software Foundation (ASF). Incubation is required of all newly accepted
projects until a further review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection of the completeness
or stability of the code, it does indicate that the project has yet to be fully endorsed by the
ASF.

License and Disclaimer. The ASF licenses this documentation to you under the

Apache License, Version 2.0 (the "License"); you may not use this documentation except

in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and
its contents are distributed under the License on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

Trademarks. All terms mentioned in the text that are known to be trademarks or
service marks have been appropriately capitalized. Use of such terms in this book should
not be regarded as affecting the validity of the the trademark or service mark.

Published January, 2010

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

I =177 Ve Lo o/ TSP 1
1.1. Using named Eclipse User Librariesc.cccccovviiiiiiiiiiiiiii 2
2. Component Descriptor Referenceccccooviiiiiiiiiiiiiiii 3
2.1 NOtAtioN ..ooooiiii e 3
2.2, IMPOTES it 4
2.3. Type System DeScriptorsccceeiiiiiiiiiiiiiiiiiiiiiccci e 5
2.3. 1 IMPOTES o 6
2.3.2. TYPES ettt 6
2.3.3. Featurescccceiiiiiiiiiiiiii 7
2.3.4. String SUbtyPesccccciiiiiiiiiiiii 8

2.4. Analysis Engine Descriptorscccooviiiiiiiiiiiiiiiiiiiiii 8
2.4.1. Primitive Analysis Engine Descriptorscccocciiiiiiiiiininn.. 9
2.4.2. Aggregate Analysis Engine Descriptorscccccciiiiiiiiiiiiiinnn, 26

2.5. Flow Controller Descriptorscccccoiiiiiiiiiiiiiiiiiiiiiii s 31
2.6. Collection Processing Component Descriptorscccccvviiiiiiiiiiiiiiiinniinnn. 32
2.6.1. Collection Reader Descriptorscccoovuviiiiiiiiiiiiiiiiiiiiiiicie e 32
2.6.2. CAS Initializer Descriptors (deprecated)c.cccccevviiiiiiiiiiininnnne 34
2.6.3. CAS Consumer Descriptorscccccooviiiiiiiiiiiiiiiiiiiccic, 35

2.7. Service Client Descriptorsccoocviiiiiiiiiiiiiiiiiiicc 36
2.8. Custom Resource Specifiersccccviiiiiiiiiiiiiiiiiiiiiiccc 38
3. CPE Descriptor Referencecccccocouiiiiiiiiiiiiiiiiiiiicc 39
3.1, CPE OVEIVIEW ..eeviiiiiiiiiiiiiiiiiiiiiiiecc ittt 39
3.2, NOLQtION ..eviiiiiiiiiiiiiiiii e 40
3.3, IMPOTtS coooiiiiii 41
3.4. CPE Descriptor OVEIVIEWccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee e 42
3.5. Collection Readerc..oooiiiiiiiiiiii 42
3.5.1. Error handling for Collection Readersccccceiiiiiiiiiiiiinnnn. 43

3.6. CAS PTOCESSOTSveeiiiviiiiiiieiiiieeie et 43
3.6.1. Specifying an Individual CAS Processorccccocuviiiiiiiiiiiiiiiinnns 45

3.7. CPE Operational Parameterscccccoeuiiiiiiiiiiiiiiiiiiiiiii s 54
3.8. Resource Manager Configurationcccccceviiiiiiiiiiiiiiniiicec, 58
3.9. Example CPE DeSCriptorccccciiiiiiiiiiiiiiiiiiiiiiiiii e 59
4. CAS RefOIeNCEoouviiiiiiiiiiiiecic s 61
i3 TR - L7 To Lo Yo/ S 61
4.2. CAS OVEIVIEW ...uiiiiiiiiiiiic i 61
4.2.1. The Type SYStemMcoovuiiiiiiiiiiiiiiiiiccic e 61
4.2.2. Creating/Accessing/Changing datac..ccocciiviiiiiiiii 62
4.2.3. Creating and using indeXescccceiiviiiiiiiiiiiiiiii 63

4.3. Built-in CAS TYPES ..evviiiiiiiiiiiiiiiccicccc 64
4.4. Accessing the type SYSteImcccueeiiiiiiiiiiiiiiiiiii 66
4.4.1. TypeSystemPrinter examplecccoooiiiiiiiiiiiiiiii 67
4.4.2. Using CAS APIs: Feature Structurescccccooviiiiiiiiiiiniiiiinn, 69

4.5. Creating feature structuresccccccooeiiiiiiiiiiiiii 71

UIMA References iii

UIMA References

4.6. Accessing or modifying Featuresc.ccccoooiiiiiiiiii 72
4.7. Indexes and Iteratorsccccooviiiiiiiiiiiiii 72
4.7.1. Built-in Indexesccccoovviiiiiiiiiiii 73
4.7.2. Adding Feature Structures to the Indexescccccooiiiii 73
4.7.3. TEETAtOTS ..eeeiiiiiiiiiiiiiii e 73
4.7.4. Special iterators for Annotation typesccccovviiiiiiiiiiiiiiiiii, 74
4.7.5. Constraints and Filtered iteratorscccccoociiiiiiiii 74
4.8. CAS API'S JAVAAOCS .evvvvieiieeeeiiiiiiiiiieeeeeeeeetiitie e e e e eeeeeattaeaeeeeeeesssteanaaeaaaeeeees 76
4.8.1. APIs in the CAS packageccceiiiiiiiiiiiiiiiiiiiccic 76
5. JCAaS RELETEICE ..cceeeeeeeeeeeeeeeeeee e 79
5.1. NAME SPACES ...eeiiiiiiiiiiiiiiiiicciii e 80
5.2. Use of XML DeSCIIPHONccevuiiiiiiiiiiiiiiiiiiiieiiiiie e 80
5.3. Mapping built-in CAS types to Java typescccceuviiiiiiiiiiiiiiiiiiiiii 81
5.4. Augmenting the generated Java Codecccceiiiiiiiiiiiiiii 81
5.4.1. Persistence of additional datac..cccooiiiiiini 81
5.4.2. Keeping hand-coded augmentations when regenerating 82
5.4.3. Additional Constructorscccocueriiiiiiiiiiiiiiii 82
5.4.4. Modifying generated itemscccocciiiiiiiiiiiiiii 83
5.5. Merging TYPESccvvviviiiiiiiiiiiiiiiii i 83
5.5.1. Aggregate AEs and CPEs as sources of typesc..ccoccvevvviriiiinnnnn. 83
5.5.2. JCasGen support for type mergingcccccoevveiviiiiiiiiiiiiniiic, 84
5.5.3. Type Merging impacts on Composabilityccccoeviriiiiiiiiin. 84
5.5.4. Adding Features to DocumentAnnotationcccccccovviiiiiiiiiiinnne. 85
5.6. Using JCas within an Annotatorc.cccoeeiiiiiiiiiiiii 86
5.6.1. Creating new INStancesccccuveiiiiiiiiiiiiiiicii 86
5.6.2. Getters and Settersccccccooviiiiiiiiiiiiii 87
5.6.3. Obtaining references to Indexescccoeciiiiiiiiiiiiiniiiiiiiiiiiice, 87
5.6.4. Updating IndeXescccuviiiiiiiiiiiiiiiiii 88
5.6.5. Using Tteratorsccccceiiiiiiiiiiiiiiii 89
5.6.6. Class Loaders in UIMAcccccooiiiiiiiiiiiiii 89
5.6.7. Issues accessing JCas objects outside of UIMA Engine Components.... 90
5.7. Setting up Classpath for JCascccocuiiiiiiiiiiiiii 90
5.8. PEAR iS0lationcc.cooviiiiiiiiiiiiiiiiicccic 90
6. PEAR Referencec..cooouiiiiiiiiiiiiiiicci e 91
6.1. Packaging a UIMA componentccccoeovviiiiiiiiiiiiiiiiii e, 91
6.1.1. Creating the PEAR structurecccccoiiiiiiiiiiiii, 91
6.1.2. Populating the PEAR structureccccoooviiiiiiiiiii 93
6.1.3. Creating the installation descriptorc..ccocciiiiiiiiiiiiii, 94
6.1.4. Installation Descriptor: templatecccooviiiiiiiiiii, 94
6.1.5. Packaging the PEAR structure into one filecccccoiin. 100
6.2. Installing @ PEAR packagecccccooouiiiiiiiiiiiiiiiiiiciccccce 101
6.2.1. Installing a PEAR file using the PEAR APIsccccoeiviiiiiiiiinnnnne. 102
6.3. PEAR package descriptorccccciiiiiiiiiiiiiiiiiiiii i 103
7. XMI CAS Serialization Referenceccccceeiiiiiiiiiiiiiiiiiiiiiiieccciecce 105
7L XMITAG e 105

iv

UIMA References UIMA Version 2.3.0

UIMA References

7.2. Feature Structuresccooovvviiiiiiiiiiiiiii 105
7.3. Primitive Featuresccooviiiiiiiiiiiiii 106
7.4. Reference Featuresccoooiiiiiiiiiiiiiiii 107
7.5. Array and List Featurescccccooviiiiiiiiiiiiii 107
7.5.1. Arrays and Lists as Multi-Valued Propertiesc..ccoccoovviiininnn 107
7.5.2. Arrays and Lists as First-Class Objectsc..ccoccoiviiiiiiiiiiiiiin, 108
7.5.3. Null Array/List Elementsccccccooiiiiiiiiiiiiiiiiie 109

7.6. Subjects of Analysis (Sofas) and Viewsc..cccccoiviiiiiiiiiiiiiiii 109
7.7. Linking XMI docs to Ecore Type Systemc.ccoceivviiiiiiiiiiiiiiiiiii 110
7.8. Delta CAS XMI FOrmatccceeiiiiiiiiiiiiiiiiiiiiiiiccciice e 110
UIMA Version 2.3.0 UIMA References v

Chapter 1. Javadocs

The details of all the public APIs for UIMA are contained in the API Javadocs. These
are located in the docs/api directory; the top level to open in your browser is called api/
index.html.

Eclipse supports the ability to attach the Javadocs to your project. The Javadoc should
already be attached to the ui mj - exanpl es project, if you followed the setup instructions
in Section 3.2, “Setting up Eclipse to view Example Code” in UIMA Overview & SDK Setup.
To attach Javadocs to your own Eclipse project, use the following instructions.

Note: As an alternative, you can add the UIMA source to the UIMA binary
distribution; if you do this you not only will have the Javadocs automatically
available (you can skip the following setup), you will have the ability to step
through the UIMA framework code while debugging. To add the source, follow
the instructions as described in the setup chapter: Section 3.3, “Adding the UIMA
source code to the jar files” in UIMA Overview & SDK Setup.

To add the Javadocs, open a project which is referring to the UIMA APIs in its class path,
and open the project properties. Then pick Java Build Path. Pick the "Libraries" tab and
select one of the UIMA library entries (if you don't have, for instance, uima-core jar in this
list, it's unlikely your code will compile). Each library entry has a small "+" sign on its left
- click that to expand the view to see the Javadoc location. If you highlight that and press
edit - you can add a reference to the Javadocs, in the following dialog:

-

{* Javadoc URL {e.g. 'http:/fwww.sample-url.org/doc)” or ‘file: fc: fmyworkspace fmyproject/doc’)

Javadoc location path: | Browse...
Validate...

™ Javadoc in archive

L

Ok | Cancel |

Once you do this, Eclipse can show you Javadocs for UIMA APIs as you work. To see
the Javadoc for a UIMA API, you can hover over the API class or method, or select it and

press shift-F2, or use the menu Navigate — Open External Javadoc, or open the Javadoc

view (Window — Show View - Other - Java - Javadoc).

Javadocs 1

api/index.html
api/index.html
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.adding_source
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.adding_source

Using named Eclipse User Libraries

In a similar manner, you can attach the source for the UIMA framework, if you download
the source distribution. The source corresponding to particular releases is available from
the Apache UIMA web site (http://incubator.apache.org/uima) on the downloads page.

1.1. Using named Eclipse User Libraries

You can also create a named "user library" in Eclipse containing the UIMA Jars, and
attach the Javadocs (or optionally, the sources); this named library is saved in the Eclipse
workspace. Once created, it can be added to the classpath of newly created Eclipse
projects.

Use the menu option Project — Properties — Java Build Path, and then pick the Libraries
tab, and click the Add Library button. Then select User Libraries, click "Next", and pick
the library you created for the UIMA Jars.

To create this library in the workspace, use the same menu picks as above, but after you
select the User Libraries and click "Next", you can click the "New Library..." button to
define your new library. You use the "Add Jars" button and multi-select all the Jars in the
lib directory of the UIMA binary distribution. Then you add the Javadoc attachment for
each Jar. The path to use is file:/ -- insert the path to your install of UIMA -- /docs/api.
After you do this for the first Jar, you can copy this string to the clipboard and paste it into
the rest of the Jars.

2 Javadocs UIMA Version 2.3.0

http://incubator.apache.org/uima

Chapter 2. Component Descriptor Reference

This chapter is the reference guide for the UIMA SDK's Component Descriptor XML
schema. A Component Descriptor (also sometimes called a Resource Specifier in the code) is
an XML file that either (a) completely describes a component, including all information
needed to construct the component and interact with it, or (b) specifies how to connect
to and interact with an existing component that has been published as a remote service.
Component (also called Resource) is a general term for modules produced by UIMA
developers and used by UIMA applications. The types of Components are: Analysis
Engines, Collection Readers, CAS Initializersl, CAS Consumers, and Collection Processing
Engines. However, Collection Processing Engine Descriptors are significantly different
in format and are covered in a separate chapter, Chapter 3, Collection Processing Engine
Descriptor Reference [39].

Section 2.1, “Notation” [3] describes the notation used in this chapter.

Section 2.2, “Imports” [4] describes the UIMA SDK's import syntax, used to allow
XML descriptors to import information from other XML files, to allow sharing of
information between several XML descriptors.

Section 2.4, “Analysis Engine Descriptors” [8] describes the XML format for Analysis
Engine Descriptors. These are descriptors that completely describe Analysis Engines,
including all information needed to construct and interact with them.

Section 2.6, “Collection Processing Component Descriptors” [32] describes the XML
format for Collection Processing Component Descriptors. This includes Collection Iterator,
CAS Initializer, and CAS Consumer Descriptors.

Section 2.7, “Service Client Descriptors” [36] describes the XML format for Service
Client Descriptors, which specify how to connect to and interact with resources deployed as
remote services.

Section 2.8, “Custom Resource Specifiers” [38] describes the XML format for Custom
Resource Specifiers, which allow you to plug in your own Java class as a UIMA Resource.

2.1. Notation

This chapter uses an informal notation to specify the syntax of Component Descriptors.
The formal syntax is defined by an XML schema definition, which is contained in the file
resour ceSpeci fi er Schema. xsd, located in the ui ma- core. j ar file.

The notation used in this chapter is:

* An ellipsis (...) inside an element body indicates that the substructure of that
element has been omitted (to be described in another section of this chapter). An
example of this would be:

"This component is deprecated and should not be use in new development.

Component Descriptor Reference 3

Imports

<anal ysi sEngi neMet aDat a>

</ anal ysi seEngi neMet aDat a>

An ellipsis immediately after an element indicates that the element type may be
may be repeated arbitrarily many times. For example:

<par anet er >[St ri ng] </ par anet er >
<par anet er >[St ri ng] </ par anet er >
indicates that there may be arbitrarily many parameter elements in this context.

* Bracketed expressions (e.g. [St ri ng]) indicate the type of value that may be used at
that location.

* A vertical bar, asin true| f al se, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

* Which elements are optional and which are required is specified in prose, not in the
syntax definition.

2.2. Imports

The UIMA SDK defines a particular syntax for XML descriptors to import information
from other XML files. When one of the following appears in an XML descriptor:

<inmport location="[URL]" /> or
<i nport nane="[Nane]" />

it indicates that information from a separate XML file is being imported. Note that imports
are allowed only in certain places in the descriptor. In the remainder of this chapter, it will
be indicated at which points imports are allowed.

If an import specifies a | ocat i on attribute, the value of that attribute specifies the URL
at which the XML file to import will be found. This can be a relative URL, which will be
resolved relative to the descriptor containing the i nport element, or an absolute URL.
Relative URLSs can be written without a protocol/scheme (e.g., “file:”), and without a host
machine name. In this case the relative URL might look something like or g/ apache/

nyproj / MyTypeSystem xni .
An absolute URL is written with one of the following prefixes, followed by a path such as
or g/ apache/ nyproj / MyTypeSystem xni :

® file:/ — has no network address

® file:/// — has an empty network address
e file://some.network.address/

4 Component Descriptor Reference UIMA Version 2.3.0

Type System Descriptors

For more information about URLS, please read the javadoc information for the Java class
//URL//.

If an import specifies a nane attribute, the value of that attribute should take the form of
a Java-style dotted name (e.g. or g. apache. nyproj . MyTypeSyst em). An .xml file with
this name will be searched for in the classpath or datapath (described below). As in Java,
the dots in the name will be converted to file path separators. So an import specifying
the example name in this paragraph will result in a search for or g/ apache/ nypr oj /
M/TypeSyst em xni in the classpath or datapath.

The datapath works similarly to the classpath but can be set programmatically through
the resource manager API. Application developers can specify a datapath during
initialization, using the following code:

Resour ceManager resMgr = U MAFr amewor k. newDef aul t Resour ceManager () ;
resMyr . set Dat aPat h(your Pat hSt ri ng) ;
Anal ysi sengi ne ae = Ul MAFr anewor k. pr oduceAE(desc, resMgr, null);

The default datapath for the entire JVM can be set via the ui na. dat apat h Java system
property, but this feature should only be used for standalone applications that don't need
to run in the same JVM as other code that may need a different datapath.

Previous versions of UIMA also supported XInclude. That support didn't work in many
situations, and it is no longer supported. To include other files, please use <import>.

2.3. Type System Descriptors

A Type System Descriptor is used to define the types and features that can be represented
in the CAS. A Type System Descriptor can be imported into an Analysis Engine or
Collection Processing Component Descriptor.

The basic structure of a Type System Descriptor is as follows:

<t ypeSyst enDescri pti on xm ns="http://ui ma. apache. or g/ resourceSpecifier">
<name> [String] </nane>
<description>[String] </ description>
<version>[String] </ versi on>

<vendor >[St ri ng] </ vendor >

<i nport s>
<inport ...>

</inports>

<types>
<t ypeDescri pti on>

</typeDescri ption>

UIMA Version 2.3.0 Component Descriptor Reference 5

Imports

</types>

</ typeSyst enDescri pti on>

All of the subelements are optional.

2.3.1.

Imports

The i nport s section allows this descriptor to import types from other type system
descriptors. The import syntax is described in Section 2.2, “Imports” [4]. A type

system may import any number of other type systems and then define additional types
which refer to imported types. Circular imports are allowed.

2.3.2. Types

The t ypes element contains zero or more t ypeDescri pti on elements. Each
t ypeDescri pti on has the form:

<t ypeDescri pti on>
<name>[TypeNane] </ nane>
<description>[String] </ description>
<supert ypeNane>[TypeNane] </ super t ypeNanme>
<f eat ures>

</ f eatures>
</typeDescri ption>

The name element contains the name of the type. A [TypeNane] is a dot-separated
list of names, where each name consists of a letter followed by any number of letters,
digits, or underscores. TypeNanes are case sensitive. Letter and digit are as defined
by Java; therefore, any Unicode letter or digit may be used (subject to the character
encoding defined by the descriptor file's XML header). The name following the final dot
is considered to be the “short name” of the type; the preceding portion is the namespace
(analogous to the package.class syntax used in Java). Namespaces beginning with uima
are reserved and should not be used. Examples of valid type names are:

¢ test.TokenAnnotation

¢ org.myorg.TokenAnnotation

* com.my_company.projl23.TokenAnnotation

These would all be considered distinct types since they have different namespaces. Best
practice here is to follow the normal Java naming conventions of having namespaces be all
lowercase, with the short type names having an initial capital, but this is not mandated,

so ABC. nit yPE is an allowed type name. While type names without namespaces (e.g.
TokenAnnot at i on alone) are allowed, but discouraged because naming conflicts can then
result when combining annotators that use different type systems.

Component Descriptor Reference UIMA Version 2.3.0

Features

The descri pti on element contains a textual description of the type. The super t ypeNane
element contains the name of the type from which it inherits (this can be set to the name of
another user-defined type, or it may be set to any built-in type which may be subclassed,
such as ui ma. t cas. Annot at i on for a new annotation type or ui ma. cas. TOP for a new
type that is not an annotation). All three of these elements are required.

2.3.3. Features

The f eat ur es element of a t ypeDescri pti on is required only if the type we are
specifying introduces new features. If the f eat ur es element is present, it contains zero or
more f eat ur eDescri pti on elements, each of which has the form:

<f eat ureDescri pti on>

<nanme>[Nane] </ nane>

<description>[String] </ description>

<rangeTypeNane>[Nane] </ r angeTypeNane>

<el enent Type>[Nane] </ el enent Type>

<mul ti pl eRef erencesAl | owed>t rue| f al se</ nul ti pl eRef er encesAl | owed>
</ f eat ureDescri pti on>

A feature's name follows the same rules as a type short name — a letter followed by any
number of letters, digits, or underscores. Feature names are case sensitive.

The feature's r angeTypeNane specifies the type of value that the feature can take. This
may be the name of any type defined in your type system, or one of the predefined types.
All of the predefined types have names that are prefixed with ui ma. cas or ui na. t cas, for

example:
ui ma. cas. TOP
ui ma. cas. String
ui ma. cas. Long
ui ma. cas. FSArray
ui ma. cas. StringlLi st
ui ma. t cas. Annot ati on.

For a complete list of predefined types, see the CAS API documentation.

The el enent Type of a feature is optional, and applies only when the r angeTypeNane

is ui ma. cas. FSArray or ui ma. cas. FSLi st The el ement Type specifies what type

of value can be assigned as an element of the array or list. This must be the name

of a non-primitive type. If omitted, it defaults to ui na. cas. TOP, meaning that any
FeatureStructure can be assigned as an element the array or list. Note: depending on the
CAS Interface that you use in your code, this constraint may or may not be enforced.
Note: At run time, the elementType is available from a runtime Feature object (using the
a_f eature_obj ect. get Range() . get Conponent Type() method) only when specified for
the ui ma. cas. FSArray ranges; it isn't available for ui ma. cas. FSLi st ranges.

The mul ti pl eRef er encesAl | owed feature is optional, and applies only when the
rangeTypeNane is an array or list type (it applies to arrays and lists of primitive as well

UIMA Version 2.3.0 Component Descriptor Reference 7

String Subtypes

as non-primitive types). Setting this to false (the default) indicates that this feature has
exclusive ownership of the array or list, so changes to the array or list are localized. Setting
this to true indicates that the array or list may be shared, so changes to it may affect other
objects in the CAS. Note: there is currently no guarantee that the framework will enforce
this restriction. However, this setting may affect how the CAS is serialized.

2.3.4. String Subtypes

There is one other special type that you can declare — a subset of the String type that
specifies a restricted set of allowed values. This is useful for features that can have only
certain String values, such as parts of speech. Here is an example of how to declare such a

type:

<t ypeDescri pti on>
<name>Par t Of Speech</ name>
<description>A part of speech. </description>
<supert ypeNanme>ui ma. cas. Stri ng</ supert ypeNanme>
<al | owedVal ues>
<val ue>
<string>NN</string>
<descri pti on>Noun, singular or mass.</description>
</ val ue>
<val ue>
<string>NNS</string>
<descri pti on>Noun, plural.</description>
</ val ue>
<val ue>
<string>VB</string>
<descri pti on>Verb, base form </description>
</ val ue>

</ al | onedVal ues>
</typeDescri ption>

2.4. Analysis Engine Descriptors

Analysis Engine (AE) descriptors completely describe Analysis Engines. There are two
basic types of Analysis Engines — Primitive and Aggregate. A Primitive Analysis Engine is

a container for a single annotator, where as an Aggregate Analysis Engine is composed of a
collection of other Analysis Engines. (For more information on this and other terminology,
see Chapter 2, UIMA Conceptual Overview in UIMA Ouverview & SDK Setup).

Both Primitive and Aggregate Analysis Engines have descriptors, and the two types
of descriptors have some similarities and some differences. Section 2.4.1, “Primitive
Analysis Engine Descriptors” [9] discusses Primitive Analysis Engine descriptors.
Section 2.4.2, “Aggregate Analysis Engine Descriptors” [26] then describes how
Aggregate Analysis Engine descriptors are different.

8 Component Descriptor Reference UIMA Version 2.3.0

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.conceptual

Primitive Analysis Engine Descriptors

2.4.1. Primitive Analysis Engine Descriptors

2.4.1.1. Basic Structure

<?xm version="1.0" encodi ng="UTF-8" ?>
<anal ysi sEngi neDescri ption
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">
<f ramewor kI npl enent at i on>or g. apache. ui na. j ava</ f r amewor kIl npl ement ati on>

<primtive>true</primtive>
<annot at or | npl enent ati onNanme> [String] </annotator! npl ement ati onNanme>

<anal ysi sengi neMet aDat a>

</ ;aln;al ysi sengi neMet aDat a>

<ext er nal Resour ceDependenci es>
</ ext er nal Resour ceDependenci es>
<r esour ceManager Confi gur at i on>
</ r é:sour ceManager Confi gurati on>

</ anal ysi seEngi neDescri pti on>

The document begins with a standard XML header. The recommended root tag is
<anal ysi sEngi neDescri pti on>, although <t aeDescri pti on> is also allowed for
backwards compatibility.

Within the root element we declare that we are using the XML namespace ht t p: //
ui ma. apache. or g/ resour ceSpeci fi er. Itis required that this namespace be used;
otherwise, the descriptor will not be able to be validated for errors.

The first subelement, <f r amewor ki npl enent ati on>, currently must have the value
or g. apache. ui ma. j ava, or or g. apache. ui ma. cpp. In future versions, there may be
other framework implementations, or perhaps implementations produced by other
vendors.

The second subelement, <pri mi ti ve>, contains the Boolean value t r ue, indicating that
this XML document describes a Primitive Analysis Engine.

The next subelement, <annot at or | npl enent at i onNane> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class
name for Java implementations, or the name of a .dll or .so file for C++ implementations.

The <anal ysi sEngi neMet aDat a> object contains descriptive information about the
analysis engine and what it does. It is described in Section 2.4.1.2, “Analysis Engine
MetaData” [10].

UIMA Version 2.3.0 Component Descriptor Reference

Primitive Analysis Engine Descriptors

The <ext er nal Resour ceDependenci es> and <r esour ceManager Conf i gur ati on>
elements declare the external resource files that the analysis engine relies upon. They are
optional and are described in Section 2.4.1.10, “External Resource Dependencies” [22]
and Section 2.4.1.11, “Resource Manager Configuration” [23].

2.4.1.2. Analysis Engine MetaData

<anal ysi sengi neMet aDat a>
<name> [String] </nanme>
<description>[String] </ description>
<version>[String] </ version>
<vendor >[Stri ng] </ vendor >
<configurati onParaneters> ... </configurationParaneters>
<confi gurati onPar anmet er Setti ngs>
</ confi gurati onPar anet er Setti ngs>
<typeSystenmDescription> ... </typeSystenmDescription>
<typePriorities> ... </typePriorities>
<f sl ndexCol | ection> ... </fslndexCollection>
<capabilities> ... </capabilities>

<oper ati onal Properties> ... </operational Properties>

</ anal ysi sEngi neMet aDat a>

The anal ysi sEngi neMet aDat a element contains four simple string fields — nane,
description, versi on, and vendor . Only the nane field is required, but providing values
for the other fields is recommended. The nane field is just a descriptive name meant to be
read by users; it does not need to be unique across all Analysis Engines.

The other sub-elements — confi gur ati onPar anet ers,

configurati onParaneterSettings,typeSystenDescription,typePriorities,

f sl ndexes, capabi l i ti es and oper ati onal Properti es are described in the following
sections. The only one of these that is required is capabi | i ti es; the others are optional.

2.4.1.3. Configuration Parameter Declaration

Configuration Parameters are made available to annotator implementations and
applications by the following interfaces: Annot at or Cont ext 2 (passed as an argument to
the initialize() method of a version 1 annotator), Conf i gur abl eResour ce (every Analysis
Engine implements this interface), and the Ui naCont ext (passed as an argument to the

2Deprec:ated; use UimaContext instead.

10 Component Descriptor Reference UIMA Version 2.3.0

Primitive Analysis Engine Descriptors

initialize() method of a version 2 annotator) (you can get this from any resource, including
Analysis Engines, using the method get Ui naCont ext ()).

Use AnnotatorContext within version 1 annotators and UimaContext for version 2
annotators and outside of annotators (for instance, in CasConsumers, or the containing
application) to access configuration parameters.

Configuration parameters are set from the corresponding elements in the XML descriptor
for the application. If you need to programmatically change parameter settings within

an application, you can use methods in ConfigurableResource; if you do this, you need

to call reconfigure() afterwards to have the UIMA framework notify all the contained
analysis components that the parameter configuration has changed (the analysis engine's
reinitialize() methods will be called). Note that in the current implementation, only
integrated deployment components have configuration parameters passed to them;
remote components obtain their parameters from their remote startup environment. This
will likely change in the future.

There are two ways to specify the <conf i gur at i onPar anet er s> section — as a list of
configuration parameters or a list of groups. A list of parameters, which are not part of
any group, looks like this:

<confi gurati onPar anet er s>
<confi gur ati onPar anet er >

<name>[Stri ng] </ nane>
<description>[String] </ description>
<type>String| | nt eger| Fl oat | Bool ean</type>
<mul ti Val ued>true| fal se</ mul ti Val ued>
<mandat or y>t r ue| f al se</ mandat or y>
<overrides>

<par anet er >[Stri ng] </ par anet er >

<par anet er >[Stri ng] </ par anet er >

</ overrides>
</ confi gur ati onPar anet er >
<confi gurati onPar anmet er >

</ confi gur ati onPar anet er >

</ confi gurati onPar anet er s>

For each configuration parameter, the following are specified:

* name — the name by which the annotator code refers to the parameter. All
parameters declared in an analysis engine descriptor must have distinct names.
(required). The name is composed of normal Java identifier characters.

¢ description — a natural language description of the intent of the parameter
(optional)

* type — the data type of the parameter's value — must be one of Stri ng, | nt eger,
Fl oat, or Bool ean (required).

UIMA Version 2.3.0 Component Descriptor Reference 11

Primitive Analysis Engine Descriptors

* multiValued -t r ue if the parameter can take multiple-values (an array), f al se if
the parameter takes only a single value (optional, defaults to false).

* mandatory —t r ue if a value must be provided for the parameter (optional, defaults
to false).

e overrides — this is used only in aggregate Analysis Engines, but is included here for
completeness. See Section 2.4.2.4, “Configuration Parameter Overrides” [29] for
a discussion of configuration parameter overriding in aggregate Analysis Engines.
(optional)

A list of groups looks like this:

<configurati onParaneters defaul t Goup="[String]"
searchStrat egy="none| defaul t _fal | back| | anguage_f al | back" >

<commmonPar anet er s>
[zero or nore paraneters]
</ conmonPar anet er s>

<configurati onG oup names="nanmel nane2 nane3 ...">
[zero or nore paraneters]
</ confi gurati onG oup>

<configurati onG oup nanes="nane4 nane5 ...">

[zero or nore paraneters]
</ confi gurati onG oup>

</ confi gurati onPar aret er s>

Both the <commonPar anet er s> and <confi gur at i onG oup> elements contain zero or
more <conf i gur at i onPar anet er > elements, with the same syntax described above.

The <comonPar anet er s> element declares parameters that exist in all groups. Each
<confi gur ati onG oup> element has a names attribute, which contains a list of group
names separated by whitespace (space or tab characters). Names consist of any number of
non-whitespace characters; however the Component Descriptor Editor tool restricts this
to be normal Java identifiers, including the period (.) and the dash (-). One configuration
group will be created for each name, and all of the groups will contain the same set of
parameters.

The def aul t Gr oup attribute specifies the name of the group to be used in the case where
an annotator does a lookup for a configuration parameter without specifying a group
name. It may also be used as a fallback if the annotator specifies a group that does not
exist — see below.

The sear chSt r at egy attribute determines the action to be taken when the context is
queried for the value of a parameter belonging to a particular configuration group, if that

12

Component Descriptor Reference UIMA Version 2.3.0

Primitive Analysis Engine Descriptors

group does not exist or does not contain a value for the requested parameter. There are
currently three possible values:

* none — there is no fallback; return null if there is no value in the exact group
specified by the user.

¢ default_fallback - if there is no value found in the specified group, look in the
default group (as defined by the def aul t attribute)

* language_fallback - this setting allows for a specific use of configuration parameter
groups where the groups names correspond to ISO language and country codes (for
an example, see below). The fallback sequence is: <| ang>_<country>_<regi on> -

<l ang>_<country> - <lang> - <default>.

Example

<configurati onParanet ers defaul t G oup="en"
searchStrat egy="I1 anguage_f al | back" >

<commonPar amnet er s>
<confi gurati onPar anet er >
<name>Di cti onar yFi | e</ nanme>
<descri ption>Locati on of dictionary for this
| anguage</ descri pti on>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ mandat or y>
</ confi gur ati onPar anet er >
</ comrmonPar anet er s>

<configurati onG oup nanes="en de en-US"/>

<configurati onG oup nanmes="zh">
<confi gur ati onPar anmet er >
<name>DBC_St r at egy</ name>
<description>Strategy for dealing with doubl e-byte
characters. </ description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ mandat or y>
</ confi gur ati onPar anet er >
</ confi gurati onG oup>

</ confi gurati onPar anet er s>

In this example, we are declaring a Di cti onar yFi | e parameter that can have a different
value for each of the languages that our AE supports — English (general), German, U.S.
English, and Chinese. For Chinese only, we also declare a DBC_St r at egy parameter.

UIMA Version 2.3.0 Component Descriptor Reference 13

Primitive Analysis Engine Descriptors

We are using the | anguage_f al | back search strategy, so if an annotator requests the
dictionary file for the en- GB (British English) group, we will fall back to the more general
en group.

Since we have defined en as the default group, this value will be returned if the context
is queried for the Di cti onar yFi | e parameter without specifying any group name, or if a
nonexistent group name is specified.

2.4.1.4. Configuration Parameter Settings

If no configuration groups were declared, the <conf i gur at i onPar anet er Set t i ngs>
element looks like this:

<confi gurati onPar anet er Setti ngs>
<nameVal uePai r >
<name>[St ri ng] </ nanme>
<val ue>
<string>[String]</string> |
<i nteger >[I nteger] </integer> |
<float>[Float] </fl oat> |
<bool ean>true| f al se</ bool ean> |
<array> ... <larray>
</val ue>
</ nanmeVal uePai r >

<naneVal uePai r >
</ naneVal uePai r >

</ confi gurati onPar anet er Setti ngs>

There are zero or more naneVal uePai r elements. Each nameVal uePai r contains a name
(which refers to one of the configuration parameters) and a value for that parameter.

The val ue element contains an element that matches the type of the parameter. For single-
valued parameters, this is either <stri ng>, <i nt eger >, <f | oat >, or <bool ean>. For
multi-valued parameters, this is an <ar r ay> element, which then contains zero or more
instances of the appropriate type of primitive value, e.g.:

<array><string>0One</string><string>Two</string></array>

If configuration groups were declared, then the <conf i gur ati onPar anet er Set ti ngs>
element looks like this:

<confi gurati onPar anet er Setti ngs>

<settingsFor G oup nane="[String]">
[one or nmore <naneVal uePair> el enent s]
</ setti ngsFor G oup>

Component Descriptor Reference UIMA Version 2.3.0

Primitive Analysis Engine Descriptors

<settingsFor G oup nane="[String]">
[one or more <naneVal uePair> el enent s]
</ setti ngsFor G oup>

</ confi gurati onPar anet er Setti ngs>

where each <set t i ngsFor G oup> element has a name that matches one of the
configuration groups declared under the <conf i gur at i onPar anet er s> element and
contains the parameter settings for that group.

Example

Here are the settings that correspond to the parameter declarations in the previous
example:

<confi gurati onPar anet er Setti ngs>

<settingsFor G oup nane="en">
<naneVal uePai r >
<name>Di cti onar yFi | e</ name>
<val ue><stri ng>resour cesEngli shdi ctionary. dat ></stri ng></val ue>
</ nameVal uePai r >
</ settingsFor G oup>

<set tingsFor G oup nane="en-US">
<nameVal uePai r >
<name>Di cti onar yFi | e</ nane>
<val ue><string>resourcesEngl i sh_USdi cti onary. dat </ stri ng></val ue>
</ naneVal uePai r >
</ settingsFor G oup>

<setti ngsFor G oup nane="de">
<naneVal uePai r >
<name>Di cti onaryFi | e</ nane>
<val ue><stri ng>resour cesDeut schdi cti onary. dat </ stri ng></val ue>
</ naneVal uePai r >
</ settingsFor G oup>

<settingsFor G oup nane="zh">
<naneVal uePai r >
<name>Di cti onar yFi | e</ nane>
<val ue><stri ng>resour cesChi nesedi cti onary. dat </ stri ng></val ue>
</ naneVal uePai r >

<naneVal uePai r >

<name>DBC_St r at egy</ nanme>

<val ue><stri ng>def aul t </ stri ng></val ue>
</ nanmeVal uePai r >

</ settingsFor G oup>

UIMA Version 2.3.0 Component Descriptor Reference

15

Primitive Analysis Engine Descriptors

</ confi gurati onPar anet er Setti ngs>

2.4.1.5. Type System Definition

<t ypeSyst enDescri pti on>

<name> [String] </nane>
<description>[String] </ description>
<versi on>[String] </ versi on>

<vendor >[St ri ng] </ vendor >

<i nport s>
<inport ...>

</inports>

<types>
<typeDescri pti on>

</typeDescri ption>

</types>

</ typeSyst enDescri ption>

A typeSystenmDescri pti on element defines a type system for an Analysis Engine. The
syntax for the element is described in Section 2.3, “Type System Descriptors” [5].

The recommended usage is to i nport an external type system, using the import syntax
described in Section 2.2, “Imports” [4] of this chapter. For example:

<t ypeSyst enDescri pti on>
<i nport s>
<i nport | ocation="M/SharedTypeSystem xnl ">
</inports>
</ typeSyst enDescri pti on>

This allows several AEs to share a single type system definition. The file
My Shar edTypeSyst em xml would then contain the full type system information,
including the nane, descri pti on, vendor, versi on, and t ypes.

2.4.1.6. Type Priority Definition

<typePriorities>
<name> [String] </nane>
<description>[String] </ descri ption>
<version>[String] </ versi on>

Component Descriptor Reference UIMA Version 2.3.0

Primitive Analysis Engine Descriptors

<vendor >[Stri ng] </ vendor >

<i nport s>
<inmport ...>

</inports>

<priorityLists>
<priorityList>
<t ype>[TypeNane] </t ype>
<t ype>[TypeNane] </ t ype>

</priorityList>

</priorityLists>
</[typePriorities>

The <t ypePri ori ti es> element contains zero or more <pri ori t yLi st > elements;
each <pri ori tyLi st > contains zero or more types. Like a type system, a type priorities
definition may also declare a name, description, version, and vendor, and may import
other type priorities. See Section 2.2, “Imports” [4] for the import syntax.

Type priority is used when iterating over feature structures in the CAS. For example, if
the CAS contains a Sent ence annotation and a Par agr aph annotation with the same span
of text (i.e. a one-sentence paragraph), which annotation should be returned first by an
iterator? Probably the Paragraph, since it is conceptually “bigger,” but the framework
does not know that and must be explicitly told that the Paragraph annotation has priority
over the Sentence annotation, like this:

<typePriorities>
<priorityList>
<t ype>or g. myor g. Par agr aph</ t ype>
<t ype>or g. nyor g. Sent ence</type>
</priorityList>
</[typePriorities>

All of the <pri ori tyLi st > elements defined in the descriptor (and in all component
descriptors of an aggregate analysis engine descriptor) are merged to produce a single
priority list.

Subtypes of types specified here are also ordered, unless overridden by another user-
specified type ordering. For example, if you specify type A comes before type B, then
subtypes of A will come before subtypes of B, unless there is an overriding specification
which declares some subtype of B comes before some subtype of A.

If there are inconsistencies between the priority list (type A declared before type B in one
priority list, and type B declared before type A in another), the framework will throw an
exception.

UIMA Version 2.3.0 Component Descriptor Reference 17

Primitive Analysis Engine Descriptors

User defined indexes may declare if they wish to use the type priority or not; see the next
section.

2.4.1.7. Index Definition

<f sl ndexCol | ecti on>
<name>[St ri ng] </ nanme>
<description>[String] </ descri ption>

<version>[String] </ versi on>
<vendor >[St ri ng] </ vendor >

<i nport s>
<inport ...>

</i .rr.ports>

<f sl ndexes>
<f sl ndexDescri pti on>
</st ndexDescri pti on>
<f sl ndexDescri pti on>
</st ndexDescri pti on>

</ f sl ndexes>

</ fsl ndexCol | ecti on>

The f sl ndexCol | ecti on element declares Feature Structure Indexes, each of which defined
an index that holds feature structures of a given type. Information in the CAS is always
accessed through an index. There is a built-in default annotation index declared which
can be used to access instances of type ui ma. t cas. Annot at i on (or its subtypes), sorted
based on their begi n and end features. For all other types, there is a default, unsorted
(bag) index. If there is a need for a specialized index it must be declared in this element of
the descriptor. See Section 4.7, “Indexes and Iterators” [72] for details on FS indexes.

Like type systems and type priorities, an f s| ndexCol | ecti on can declare a nane,
descri ption, vendor, and ver si on, and may import other f sl ndexCol | ect i ons. The
import syntax is described in Section 2.2, “Imports” [4].

An f sl ndexCol | ecti on may also define zero or more f sl ndexDescri pti on elements,
each of which defines a single index. Each f s| ndexDescri pti on has the form:

<f sl ndexDescri pti on>

<l abel >[Stri ng] </ | abel >
<t ypeNanme>[TypeNane] </ t ypeNanme>
<ki nd>sort ed| bag| set </ ki nd>

Component Descriptor Reference UIMA Version 2.3.0

Primitive Analysis Engine Descriptors

<keys>

<f sl ndexKey>

<f eat ur eNanme>[Nane] </ f eat ur eNanme>

<conpar at or >st andar d| r ever se</ conpar at or >
</ f sl ndexKey>

<f sl ndexKey>
<typePriority/>
</ f sl ndexKey>

</ keys>
</ f sl ndexDescri pti on>

The | abel element defines the name by which applications and annotators refer to this
index. The t ypeNane element contains the name of the type that will be contained in this
index. This must match one of the type names defined in the <t ypeSyst enDescri pti on>.

There are three possible values for the <ki nd> of index. Sorted indexes enforce an
ordering of feature structures, and may contain duplicates. Bag indexes do not enforce
ordering, and also may contain duplicates. Set indexes do not enforce ordering and may
not contain duplicates. If the <ki nd>element is omitted, it will default to sorted, which is
the most common type of index.

Note: There is usually no need to explicitly declare a Bag index in your
descriptor. As of UIMA v2.1, if you do not declare any index for a type (or any of
its supertypes), a Bag index will be automatically created.

An index may define zero or more keys. These keys determine the sort order of the feature
structures within a sorted index, and determine equality for set indexes. Bag indexes

do not use keys, and equality is determined by Feature Structure identity (that is, two
elements are considered equal if and only if they are exactly the same feature structure,
located in the same place in the CAS). Keys are ordered by precedence — the first key is
evaluated first, and subsequent keys are evaluated only if necessary.

Each key is represented by an f sl ndexKey element. Most f s| ndexKeys contains a

f eat ur eName and a conpar at or . The f eat ur eNane must match the name of one of the
features for the type specified in the <t ypeNane> element for this index. The comparator
defines how the features will be compared — a value of st andar d means that features will
be compared using the standard comparison for their data type (e.g. for numerical types,
smaller values precede larger values, and for string types, Unicode string comparison is
performed). A value of r ever se means that features will be compared using the reverse of
the standard comparison (e.g. for numerical types, larger values precede smaller values,
etc.). For Set indexes, the comparator direction is ignored — the keys are only used for the
equality testing.

UIMA Version 2.3.0 Component Descriptor Reference 19

Primitive Analysis Engine Descriptors

Each key used in comparisons must refer to a feature whose range type is String, Float, or
Integer.

There is a second type of a key, one which contains only the <t ypePri ori ty/ >. When this
key is used, it indicates that Feature Structures will be compared using the type priorities
declared in the <t ypePri ori ti es> section of the descriptor.

2.4.1.8. Capabilities

<capabilities>
<capability>

<i nput s>
<type al | Annot at or Feat ures="true| fal se"[TypeNane] </t ype>

<f eat ur e>[TypeNane] : [Nane] </ f eat ur e>
</i nput s>

<out put s>
<type al | Annot at or Feat ures="true| f al se"[TypeNane] </ type>

<f eat ure>[TypeNane] : [Nane] </ f eat ur e>
</ out put >
<l anguagesSupport ed>

<l anguage>[| SO Language | D] </ | anguage>

</ | anguagesSupport ed>

<i nput Sof as>
<sof aName>[nane] </ sof aNane>

</'i nput Sof as>

<out put Sof as>
<sof aNanme>[nane] </ sof aNanme>

</ out put Sof as>
</capability>

<capability>

</ capability>

</capabilities>

20

Component Descriptor Reference UIMA Version 2.3.0

Primitive Analysis Engine Descriptors

The capabilities definition is used by the UIMA Framework in several ways, including
setting up the Results Specification for process calls, routing control for aggregates based
on language, and as part of the Sofa mapping function.

The capabi | i ti es element contains one or more capabi | i t y elements. In Version 2 and
onwards, only one capability set should be used (multiple sets will continue to work for a
while, but they're not logically consistently supported).

Each capabi | i t y contains i nput s, out put's, | anguagesSupport ed, i nput Sof as, and
out put Sof as. Inputs and outputs element are required (though they may be empty);
<l anguagesSuppor t ed>, <i nput Sof as>, and <out put Sof as> are optional.

Both inputs and outputs may contain a mixture of type and feature elements.

<type. .. > elements contain the name of one of the types defined in the type system or
one of the built in types. Declaring a type as an input means that this component expects
instances of this type to be in the CAS when it receives it to process. Declaring a type as an
output means that this component creates new instances of this type in the CAS.

There is an optional attribute al | Annot at or Feat ur es, which defaults to false if omitted.
The Component Descriptor Editor tool defaults this to true when a new type is added

to the list of inputs and/or outputs. When this attribute is true, it specifies that all of

the type's features are also declared as input or output. Otherwise, the features that

are required as inputs or populated as outputs must be explicitly specified in feature
elements.

<feature...>elements contain the “fully-qualified” feature name, which

is the type name followed by a colon, followed by the feature name, e.g.

org. nyor g. TokenAnnot at i on: | enma. <f eat ur e. . . > elements in the <i nput s> section
must also have a corresponding type declared as an input. In output sections, this is not
required. If the type is not specified as an output, but a feature for that type is, this means
that existing instances of the type have the values of the specified features updated. Any
type mentioned in a <f eat ur e> element must be either specified as an input or an output
or both.

| anguage elements contain one of the ISO language identifiers, such as en for English, or
en- US for the United States dialect of English.

The list of language codes can be found here: http://www.ics.uci.edu/pub/iett/http/related/
is0639.txt and the country codes here: http://www.chemie.fu-berlin.de/diverse/doc/
ISO_3166.html

<i nput Sof as> and <out put Sof as> declare sofa names used by this component. All Sofa
names must be unique within a particular capability set. A Sofa name must be an input or
an output, and cannot be both. It is an error to have a Sofa name declared as an input in
one capability set, and also have it declared as an output in another capability set.

A <sof aName> is written as a simple Java-style identifier, without any periods in the
name, except that it may be written to end in “. *”. If written in this manner, it specifies

UIMA Version 2.3.0 Component Descriptor Reference 21

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Primitive Analysis Engine Descriptors

a set of Sofa names, all of which start with the base name (the part before the .*) followed
by a period and then an arbitrary Java identifier (without periods). This form is used to
specify in the descriptor that the component could generate an arbitrary number of Sofas,
the exact names and numbers of which are unknown before the component is run.

2.4.1.9. OperationalProperties

Components can specify specific operational properties that can be useful in deployment.
The following are available:

<oper ati onal Properties>
<nodi fi esCas> true|fal se </ nodifi esCas>
<mul ti pl eDepl oynment Al | owed> true|fal se </ nultipleDepl oyment Al | owed>
<out put sNewCASes> true| fal se </out put sNewCASes>

</ oper ati onal Properti es>

Modi fi esCas, if false, indicates that this component does not modify the CAS. If it is not
specified, the default value is true except for CAS Consumer components.

mul ti pl eDepl oynent Al | owed, if true, allows the component to be deployed multiple
times to increase performance throught scale-out techniques. If it is not specified, the
default value is true, except for CAS Consumer and Collection Reader components.

Note: 1f you wrap one or more CAS Consumers inside an aggregate

as the only components, you must explicitly specify in the aggregate the

mul ti pl eDepl oyment Al | owed property as false (assuming the CAS Consumer
components take the default here); otherwise the framework will complain about
inconsistent settings for these.

out put sNewCASes, if true, allows the component to create new CASes during processing,
for example to break a large artifact into smaller pieces. See Chapter 7, CAS Multiplier
Developer’s Guide in UIMA Tutorial and Developers” Guides for details.

2.4.1.10. External Resource Dependencies

<ext er nal Resour ceDependenci es>
<ext er nal Resour ceDependency>
<key>[Stri ng] </ key>
<description>[String] </description>
<interfaceNanme>[String] </interfaceNane>
<optional >true| f al se</ opti onal >
</ ext er nal Resour ceDependency>

<ext er nal Resour ceDependency>

</ ext er nal Resour ceDependency>

22 Component Descriptor Reference UIMA Version 2.3.0

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm

Primitive Analysis Engine Descriptors

</ ext er nal Resour ceDependenci es>

A primitive annotator may declare zero or more <ext er nal Resour ceDependency>
elements. Each dependency has the following elements:

key — the string by which the annotator code will attempt to access the resource.
Must be unique within this annotator.

descri pti on — a textual description of the dependency

i nt er f aceNane — the fully-qualified name of the Java interface through which the
annotator will access the data. This is optional. If not specified, the annotator can
only get an InputStream to the data.

opti onal —whether the resource is optional. If false, an exception will be thrown if
no resource is assigned to satisfy this dependency. Defaults to false.

2.4.1.11. Resource Manager Configuration

<r esour ceManager Conf i gur ati on>

<name>[Stri ng] </ nane>
<description>[String] </ description>
<version>[String] </ ver si on>

<vendor >[Stri ng] </ vendor >

<i nport s>

<inmport ...>

</inports>

<ext er nal Resour ces>

<ext er nal Resour ce>

<nanme>[St ri ng] </ nanme>

<description>[String] </ description>

<fil eResour ceSpecifier>

<fileUl>[URL]</fileUrl>

</fil eResourceSpecifier>

<i npl enent ati onName>[St ri ng] </ i npl enent at i onNane>
</ ext er nal Resour ce>

</ ext er nal Resour ces>

<ext er nal Resour ceBi ndi ngs>

<ext er nal Resour ceBi ndi ng>

<key>[St ri ng] </ key>

<r esour ceName>[St ri ng] </ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>

</ ext er nal Resour ceBi ndi ngs>

UIMA Version 2.3.0 Component Descriptor Reference 23

Primitive Analysis Engine Descriptors

</ r esour ceManager Conf i gurati on>

This element declares external resources and binds them to annotators' external resource
dependencies.

The r esour ceManager Conf i gur at i on element may optionally contain an i npor t, which
allows resource definitions to be stored in a separate (shareable) file. See Section 2.2,
“Imports” [4] for details.

The ext er nal Resour ces element contains zero or more ext er nal Resour ce elements,
each of which consists of:

* nane — the name of the resource. This name is referred to in the bindings
(see below). Resource names need to be unique within any Aggregate
Analysis Engine or Collection Processing Engine, so the Java-like
or g. myor g. myconponent . MyResour ce syntax is recommended.

e descri pti on — English description of the resource

* Resource Specifier — Declares the location of the resource. There are different
possibilities for how this is done (see below).

* i npl enent at i onName — The fully-qualified name of the Java class that will be
instantiated from the resource data. This is optional; if not specified, the resource
will be accessible as an input stream to the raw data. If specified, the Java class
must implement the i nt er f aceNane that is specified in the External Resource
Dependency to which it is bound.

One possibility for the resource specifier is a <f i | eResour ceSpeci f i er >, as shown
above. This simply declares a URL to the resource data. This support is built on the Java
class URL and its method URL.openStream(); it supports the protocols “file”, “http”
and “jar” (for referring to files in jars) by default, and you can plug in handlers for other
protocols. The URL has to start with file: (or some other protocol). It is relative to either
the classpath or the “data path”. The data path works like the classpath but can be set
programmatically via Resour ceManager . set Dat aPat h() . Setting the Java System
property ui ma. dat apat h also works.

fil e:con apache. d. t xt is a relative path; relative paths for resources are resolved using
the classpath and/or the datapath. For the file protocol, URLs starting with file:/ or file:///
are absolute. Note thatfil e:// or g/ apache/ d. t xt is NOT an absolute path starting with
“org”. The “//” indicates that what follows is a host name. Therefore if you try to use this
URL it will complain that it can't connect to the host “org”

Another option is a <f i | eLanguageResour ceSpeci f i er >, which is intended to support
resources, such as dictionaries, that depend on the language of the document being
processed. Instead of a single URL, a prefix and suffix are specified, like this:

<fil eLanguageResour ceSpeci fi er >
<fileUrl Prefix>file:FilelLanguageResource_i npl Test _data_</fileUrl Prefix>

24

Component Descriptor Reference UIMA Version 2.3.0

Primitive Analysis Engine Descriptors

<fileUrl Suffix> dat</fileUrl Suffix>
</fil eLanguageResour ceSpeci fi er>

The URL of the actual resource is then formed by concatenating the prefix, the language
of the document (as an ISO language code, e.g. en or en- US — see Section 2.4.1.8,
“Capabilities” [20] for more information), and the suffix.

A third option is a cust onResour ceSpeci fi er, which allows you to plug in an arbitrary
Java class. See Section 2.8, “Custom Resource Specifiers” [38] for more information.

The ext er nal Resour ceBi ndi ngs element declares which resources are bound to which
dependencies. Each ext er nal Resour ceBi ndi ng consists of:

* key —identifies the dependency. For a binding declared in a primitive analysis
engine descriptor, this must match the value of the key element of one of the
ext er nal Resour ceDependency elements. Bindings may also be specified in
aggregate analysis engine descriptors, in which case a compound key is used — see
Section 2.4.2.5, “External Resource Bindings” [30] .

* resour ceName — the name of the resource satisfying the dependency. This must
match the value of the nane element of one of the ext er nal Resour ce declarations.

A given resource dependency may only be bound to one external resource; one external
resource may be bound to many dependencies — to allow resource sharing.

2.4.1.12. Environment Variable References

In several places throughout the descriptor, it is possible to reference environment
variables. In Java, these are actually references to Java system properties. To reference
system environment variables from a Java analysis engine you must pass the environment
variables into the Java virtual machine by using the - D option on the j ava command line.

The syntax for environment variable references is <envVar Ref >[Var i abl eNane] </
envVar Ref >, where [VariableName] is any valid Java system property name.
Environment variable references are valid in the following places:

* The value of a configuration parameter (String-valued parameters only)

* The <annot at or | npl emrent at i onNane> element of a primitive AE descriptor

¢ The <nane> element within <anal ysi sEngi neMet aDat a>

e Within a <fi | eResour ceSpeci fi er>or <fil eLanguageResour ceSpeci fi er>

For example, if the value of a configuration parameter were specified as:

<stri ng><envVar Ref >TEMP_DI R</ envVar Ref >/t enp. dat </ st ri ng>, and the value of
the TEMP_DI R]ava System property were c: / t enp, then the configuration parameter's
value would evaluate to c: / t enp/ t enp. dat .

Note: The Component Descriptor Editor does not support environment variable
references. If you need to, however, you can use the sour ce tab view in the CDE to
manually add this notation.

UIMA Version 2.3.0 Component Descriptor Reference 25

Aggregate Analysis Engine Descriptors

2.4.2. Aggregate Analysis Engine Descriptors

Aggregate Analysis Engines do not contain an annotator, but instead contain one or more
component (also called delegate) analysis engines.

Aggregate Analysis Engine Descriptors maintain most of the same structure as Primitive
Analysis Engine Descriptors. The differences are:

* An Aggregate Analysis Engine Descriptor contains the element
<primtive>fal se</prinitive>ratherthan<prinitive>true</printive>.

* An Aggregate Analysis Engine Descriptor must not include a
<annot at or | npl enent at i onNanme> element.

* In place of the <annot at or | npl ement at i onNane>, an Aggregate Analysis Engine
Descriptor must have a <del egat eAnal ysi sEngi neSpeci fi er s> element. See
Section 2.4.2.1, “Delegate Analysis Engine Specifiers” [26].

* An Aggregate Analysis Engine Descriptor may provide a <f | owControl | er >
element immediately following the <del egat eAnal ysi sEngi neSpeci fi ers>.
Section 2.4.2.2, “FlowController” [27].

* Under the analysisEngineMetaData element, an Aggregate Analysis Engine
Descriptor may specify an additional element -- <f | owConst r ai nt s>.
See Section 2.4.2.3, “FlowConstraints” [27]. Typically only one of
<fl owCont rol | er>and <f | owConst r ai nt s> are specified. If both are specified,
the <f | owCont r ol | er > takes precedence, and the flow controller implementation
can use the information in specified in the <f | owConst r ai nt s> as part of its
configuration input.

* An aggregate Analysis Engine Descriptors must not contain a
<t ypeSyst enDescri pti on> element. The Type System of the Aggregate Analysis
Engine is derived by merging the Type System of the Analysis Engines that the
aggregate contains.

* Within aggregate Analysis Engine Descriptors, <conf i gur ati onPar anet er >
elements may define <overri des>. See Section 2.4.2.4, “Configuration Parameter
Overrides” [29] .

¢ External Resource Bindings can bind resources to dependencies declared by
any delegate AE within the aggregate. See Section 2.4.2.5, “External Resource
Bindings” [30].

* An additional optional element, <sof aMappi ngs>, may be included.

2.4.2.1. Delegate Analysis Engine Specifiers

<del egat eAnal ysi sEngi neSpeci fi er s>

26 Component Descriptor Reference UIMA Version 2.3.0

Aggregate Analysis Engine Descriptors

<del egat eAnal ysi sEngi ne key="[String]">
<anal ysi sEngi neDescri pti on>. .. </anal ysi sengi neDescri pti on> |
<import .../>

</ del egat eAnal ysi sEngi ne>

<del egat eAnal ysi sengi ne key="[String]">

</ del egat eAnal ysi sEngi ne>

</ del egat eAnal ysi sEngi neSpeci fi er s>

The del egat eAnal ysi sEngi neSpeci fi er s element contains one or more
del egat eAnal ysi sEngi ne elements. Each of these must have a unique key, and must
contain either:

* A complete anal ysi sEngi neDescri pti on element describing the delegate analysis
engine OR

* Aninport element giving the name or location of the XML descriptor for the
delegate analysis engine (see Section 2.2, “Imports” [4]).

The latter is the much more common usage, and is the only form supported by the
Component Descriptor Editor tool.

2.4.2.2. FlowController

<fl owController key="[String]">
<fl owControl | er Description>...</flowControllerDescription> |
<inport .../>
</flowController>

The optional f | owCont r ol | er element identifies the descriptor of the FlowController

component that will be used to determine the order in which delegate Analysis Engine are
called.

The key attribute is optional, but recommended; it assigns the FlowController an
identifier that can be used for configuration parameter overrides, Sofa mappings, or
external resource bindings. The key must not be the same as any of the delegate analysis
engine keys.

As with the del egat eAnal ysi sEngi ne element, the f | owCont rol | er element may
contain either a complete f | owControl | er Descri pti on or ani nport, but the import is
recommended. The Component Descriptor Editor tool only supports imports here.

2.4.2.3. FlowConstraints

If a <f | owCont r ol | er > is not specified, the order in which delegate Analysis
Engines are called within the aggregate Analysis Engine is specified using the

UIMA Version 2.3.0 Component Descriptor Reference 27

Aggregate Analysis Engine Descriptors

<f | owConst r ai nt s> element, which must occur immediately following the

confi gurationParanet er Setti ngs element. If a <f | owCont r ol | er > is specified, then
the <f | owConst r ai nt s> are optional. They can be used to pass an ordering of delegate
keys to the <f | owControl | er>.

There are two options for flow constraints -- <f i xedFl ow> or
<capabi | i t yLanguageFl ow>. Each is discussed in a separate section below.

Fixed Flow

<f | onConst r ai nt s>
<fi xedFl ow>
<node>[St ri ng] </ node>
<node>[St ri ng] </ node>

</ fi xedFl ow>
</ f|l owConstr ai nt s>

The f 1 owConst r ai nt s element must be included immediately following the
confi gurati onPar anet er Set ti ngs element.

Currently the f | owConst rai nt s element must contain a f i xedFl owelement. Eventually,
other types of flow constraints may be possible.

The f i xedFl owelement contains one or more node elements, each of which contains
an identifier which must match the key of a delegate analysis engine specified in the
del egat eAnal ysi sEngi neSpeci fi er s element.

Capability Language Flow

<f| owConst r ai nt s>
<capabi | i t yLanguageF| ow>
<node>[St ri ng] </ node>
<node>[St ri ng] </ node>

</ capabi | i t yLanguageF| ow>
</ fl owConst r ai nt s>

If you use <capabi | i t yLanguageFl ow>, the delegate Analysis Engines named by the
<node> elements are called in the given order, except that a delegate Analysis Engine
is skipped if any of the following are true (according to that Analysis Engine's declared
output capabilities):

e It cannot produce any of the aggregate Analysis Engine's output capabilities for the
language of the current document.

¢ All of the output capabilities have already been produced by an earlier Analysis
Engine in the flow.

28 Component Descriptor Reference UIMA Version 2.3.0

Aggregate Analysis Engine Descriptors

For example, if two annotators produce or g. myor g. TokenAnnot at i on feature structures
for the same language, these feature structures will only be produced by the first
annotator in the list.

Note: The flow analysis uses the specific types that are specified in the output
capabilities, without any expansion for subtypes. So, if you expect a type TT and
another type SubTT (which is a subtype of TT) in the output, you must include
both of them in the output capabilities.

2.4.2.4. Configuration Parameter Overrides

In an aggregate Analysis Engine Descriptor, each <confi gur ati onPar anet er > element
should contain an <over ri des> element, with the following syntax:

<overri des>

<par anet er >
[del egat eAnal ysi sEngi neKey] / [par amet er Nane]
</ par anet er >

<par anet er >

[del egat eAnal ysi sEngi neKey] / [par anmet er Nane]
</ par anet er >

</ overri des>

Since aggregate Analysis Engines have no code associated with them, the only way in
which their configuration parameters can affect their processing is by overriding the
parameter values of one or more delegate analysis engines. The <overri des> element
determines which parameters, in which delegate Analysis Engines, are overridden by this
configuration parameter.

For example, consider an aggregate Analysis Engine Descriptor that contains
delegate Analysis Engines with keys annot at or 1 and annot at or 2 (as declared in the
<delegateAnalysisEngine> element — see Section 2.4.2.1, “Delegate Analysis Engine
Specifiers” [26]) and also declares a configuration parameter as follows:

<confi gur ati onPar anet er >
<name>Aggr egat ePar anx/ nane>
<type>String</type>
<overrides>
<par anet er >annot at or 1/ par aml</ par anet er >
<par anet er >annot at or 2/ par an2</ par anet er >
</ overrides>
</ confi gurati onPar anet er >

The value of the Aggr egat ePar amparameter (whether assigned in the aggregate
descriptor or at runtime by an application) will override the value of parameter par anil

UIMA Version 2.3.0 Component Descriptor Reference 29

Aggregate Analysis Engine Descriptors

in annot at or 1 and also override the value of parameter par an2 in annot at or 2. No other
parameters will be affected.

For historical reasons only, if an aggregate Analysis Engine descriptor declares a
configuration parameter with no explicit overrides, that parameter will override any
parameters having the same name within any delegate analysis engine. This usage is
strongly discouraged. The UIMA SDK currently supports this usage but logs a warning
message to the log file. This support may be dropped in future versions.

2.4.2.5. External Resource Bindings

Aggregate analysis engine descriptors can declare resource bindings that bind resources
to dependencies declared in any of the delegate analysis engines (or their subcomponents,
recursively) within that aggregate. This allows resource sharing. Any binding at this

level overrides (supersedes) any binding specified by a contained component or their
subcomponents, recursively.

For example, consider an aggregate Analysis Engine Descriptor that contains

delegate Analysis Engines with keys annot at or 1 and annot at or 2 (as declared in the
<del egat eAnal ysi sEngi ne> element — see Section 2.4.2.1, “Delegate Analysis Engine
Specifiers” [26]), where annot at or 1 declares a resource dependency with key
myResour ce and annot at or 2 declares a resource dependency with key someResour ce .

Within that aggregate Analysis Engine Descriptor, the following
r esour ceManager Conf i gur at i on would bind both of those dependencies to a single
external resource file.

<r esour ceManager Conf i gur ati on>

<ext er nal Resour ces>
<ext er nal Resour ce>
<nanme>Exanpl eResour ce</ name>
<fil eResour ceSpecifier>
<fileUrl>file: MyResourceFile.dat</fileUrl>
</fil eResourceSpecifier>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>annot at or 1/ nyResour ce</ key>
<r esour ceNanme>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>
<ext er nal Resour ceBi ndi ng>
<key>annot at or 2/ someResour ce</ key>
<r esour ceNanme>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>

</ resour ceManager Conf i gurati on>

30

Component Descriptor Reference UIMA Version 2.3.0

Flow Controller Descriptors

The syntax for the ext er nal Resour ces declaration is exactly the same as described
previously. In the resource bindings note the use of the compound keys, e.g. annot at or 1/
nmyResour ce. This identifies the resource dependency key nyResour ce within the
annotator with key annot at or 1. Compound resource dependencies can be multiple levels
deep to handle nested aggregate analysis engines.

2.4.2.6. Sofa Mappings

Sofa mappings are specified between Sofa names declared in this aggregate descriptor
as part of the <capabi | i t y> section, and the Sofa names declared in the delegate
components. For purposes of the mapping, all the declarations of Sofas in any of the
capability sets contained within the <capabi | i ti es> element are considered together.

<sof aMappi ngs>
<sof aMappi ng>
<conponent Key>[keyNane] </ conponent Key>
<conponent Sof aNane>[sof aNane] </ conponent Sof aNanme>
<aggr egat eSof aNane>[sof aNane] </ aggr egat eSof aNane>
</ sof aMappi ng>

</ sof aMappi ngs>

The <componentSofaName> may be omitted in the case where the component is not
aware of Multiple Views or Sofas. In this case, the UIMA framework will arrange for the
specified <aggregateSofaName> to be the one visible to the delegate component.

The <componentKey> is the key name for the component as specified in the list of
delegate components for this aggregate.

The sofaNames used must be declared as input or output sofas in some capability set.

2.5. Flow Controller Descriptors

The basic structure of a Flow Controller Descriptor is as follows:

<?xm version="1.0" ?>
<fl onControl | er Descri ption
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">
<f ramewor kIl npl emrent at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl enent ati on>
<i npl enent ati onNane>[Cl assNane] </ i npl enent at i onNane>
<pr ocessi ngResour ceMet aDat a>
</ pr ocessi ngResour ceMet aDat a>

<ext er nal Resour ceDependenci es>

</ ext er nal Resour ceDependenci es>

UIMA Version 2.3.0 Component Descriptor Reference 31

Collection Processing Component Descriptors

<r esour ceManager Confi gur ati on>
</ r esour ceManager Confi gurati on>

</fl owControl | erDescri ption>

The f r amewor ki npl enent at i on element must always be set to the value
or g. apache. ui ma. j ava.

The i npl ement at i onNane element must contain the fully-qualified class name of the Flow
Controller implementation. This must name a class that implements the FI owContr ol | er
interface.

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as
a Primitive Analysis Engine Descriptor's anal ysi sEngi neMet aDat a element, described in
Section 2.4.1.2, “Analysis Engine MetaData” [10].

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur ati on elements
are exactly the same as in Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [23].

2.6. Collection Processing Component Descriptors

There are three types of Collection Processing Components — Collection Readers, CAS
Initializers (deprecated as of UIMA Version 2), and CAS Consumers. Each type of
component has a corresponding descriptor. The structure of these descriptors is very
similar to that of primitive Analysis Engine Descriptors.

2.6.1. Collection Reader Descriptors

The basic structure of a Collection Reader descriptor is as follows:

<?xm version="1.0" ?>
<col | ecti onReader Descri pti on
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">

<f ramewor kI npl ement at i on>or g. apache. ui ma. j ava</ f r amewor kIl npl emrent at i on>
<i npl enent ati onName>[Cl assNane] </ i npl enent at i onNane>

<pr ocessi ngResour ceMet aDat a>

</ .p.r.ocessi ngResour ceMet aDat a>
<ext er nal Resour ceDependenci es>
<} ;e;<t er nal Resour ceDependenci es>

<r esour ceManager Conf i gur ati on>

32

Component Descriptor Reference UIMA Version 2.3.0

Collection Reader Descriptors

</ r esour ceManager Conf i gurati on>

</ col | ecti onReader Descri pti on>

The f r amewor ki mpl enent at i on element must always be set to the value
or g. apache. ui na. j ava.

The i npl ement at i onNane element contains the fully-qualified class name of the
Collection Reader implementation. This must name a class that implements the
Col | ecti onReader interface.

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as
a Primitive Analysis Engine Descriptor's' anal ysi sEngi neMet aDat a element:

<pr ocessi hgResour ceMet aDat a>
<name> [String] </nane>
<descri ption>[String] </ descri ption>
<version>[String] </ versi on>
<vendor >[St ri ng] </ vendor >
<confi gurati onPar anet er s>
</ c.o;ﬁi gur at i onPar anet er s>
<confi gurati onPar anmet er Set ti ngs>
</ ;:.OInfi gur ati onPar anet er Setti ngs>
<t ypeSyst enDescri pti on>
<}ilypeSyst enDescri pti on>
<typePriorities>
<}'.[.ypePri orities>
<f sl ndexes>
</fs| ndexes>
<capabilities>
<} ;:;apabi lities>

</ processi ngResour ceMet aDat a>

The contents of these elements are the same as that described in Section 2.4.1.2, “Analysis
Engine MetaData” [10], with the exception that the capabilities section should not

UIMA Version 2.3.0 Component Descriptor Reference 33

CAS Initializer Descriptors (deprecated)

declare any inputs (because the Collection Reader is always the first component to receive
the CAS).

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur at i on elements
are exactly the same as in the Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [23].

2.6.2. CAS Initializer Descriptors (deprecated)

The basic structure of a CAS Initializer Descriptor is as follows:

<?xm version="1.0" encodi ng="UTF-8" ?>
<caslnitializerDescription
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">

<f ramewor kI npl emrent at i on>or g. apache. ui ma. j ava</ f ramewor kIl npl enent ati on>
<i npl enent at i onNanme>[Cl assNane] </i npl ement ati onNanme>

<pr ocessi hgResour ceMet aDat a>

</ .plr.ocessi ngResour ceMet aDat a>
<ext er nal Resour ceDependenci es>
</ ext er nal Resour ceDependenci es>
<r esour ceManager Confi gur at i on>
</ r le:sour ceManager Confi gurati on>

</caslnitializerDescription>

The f r amewor kI npl enent at i on element must always be set to the value
or g. apache. ui ma. j ava.

The i npl ement at i onNane element contains the fully-qualified class name of the CAS
Initializer implementation. This must name a class that implements the Casl ni ti al i zer
interface.

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as
a Primitive Analysis Engine Descriptor's' anal ysi sEngi neMet aDat a element, as described
in Section 2.4.1.2, “Analysis Engine MetaData” [10], with the exception of some

changes to the capabilities section. A CAS Initializer's capabilities element looks like this:

<capabilities>
<capability>
<out put s>
<type al | Annot at or Features="true| fal se">[Stri ng] </type>
<type>[TypeNane] </ t ype>

34

Component Descriptor Reference UIMA Version 2.3.0

CAS Consumer Descriptors

<f eat ur e>[TypeNane] : [Nane] </ f eat ur e>
</ out put s>

<out put Sof as>
<sof aName>[nane] </ sof aNanme>

</ out put Sof as>

<m meTypesSupport ed>
<m meType>[M ME Type] </ m meType>

</ m neTypesSupport ed>
</ capability>

<capability>
</ capability>
</ capabilities>

The differences between a CAS Initializer's capabilities declaration and an Analysis
Engine's capabilities declaration are that the CAS Initializer does not declare any input
CAS types and features or input Sofas (because it is always the first to operate on a CAS),
it doesn't have a language specifier, and that the CAS Initializer may declare a set of
MIME types that it supports for its input documents. Examples include: text/plain, text/
html, and application/pdf. For a list of MIME types see http://www.iana.org/assignments/
media-types/. This information is currently only for users' information, the framework
does not use it for anything. This may change in future versions.

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur at i on elements
are exactly the same as in the Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [23]).

2.6.3. CAS Consumer Descriptors

The basic structure of a CAS Consumer Descriptor is as follows:

<?xm version="1.0" encodi ng="UTF-8" ?>
<casConsuner Descri ption
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">
<f ramewor kI npl ement at i on>or g. apache. ui ma. j ava</ f r amewor kI npl ement at i on>

<i npl enent ati onNane>[Cl assNane] </ i npl enent at i onNane>

<pr ocessi ngResour ceMet aDat a>

UIMA Version 2.3.0 Component Descriptor Reference 35

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Service Client Descriptors

</ processi ngResour ceMet aDat a>
<ext er nal Resour ceDependenci es>
</ ext er nal Resour ceDependenci es>
<r esour ceManager Conf i gur ati on>

</ r esour ceManager Confi gurati on>
</ casConsuner Descri pti on>

The f ramewor kI npl enent at i on element currently must have the value
or g. apache. ui ma. j ava, or or g. apache. ui na. cpp.

The next subelement, <annot at or | npl enent at i onNane> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class
name for Java implementations, or the name of a .dll or .so file for C++ implementations.

The f r amewor ki mpl enent at i on element must always be set to the value
or g. apache. ui na. j ava.

The i npl ement at i onNane element must contain the fully-qualified class name of the CAS
Consumer implementation, or the name of a .dll or .so file for C++ implementations. For
Java, the named class must implement the CasConsuner interface.

The pr ocessi ngResour ceMet aDat a element contains essentially the same information as
a Primitive Analysis Engine Descriptor's anal ysi sEngi neMet aDat a element, described

in Section 2.4.1.2, “Analysis Engine MetaData” [10], except that the CAS Consumer
Descriptor's capabi | i ti es element should not declare outputs or outputSofas (since CAS
Consumers do not modify the CAS).

The ext er nal Resour ceDependenci es and r esour ceManager Conf i gur at i on elements
are exactly the same as in Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [23].

2.7. Service Client Descriptors

Service Client Descriptors specify only a location of a remote service. They are therefore
much simpler in structure. In the UIMA SDK, a Service Client Descriptor that refers

to a valid Analysis Engine or CAS Consumer service can be used in place of the actual
Analysis Engine or CAS Consumer Descriptor. The UIMA SDK will handle the details of
calling the remote service. (For details on deploying an Analysis Engine or CAS Consumer
as a service, see Section 3.6, “Working with Remote Services” in UIMA Tutorial and
Developers” Guides.

The UIMA SDK is extensible to support different types of remote services. In future
versions, there may be different variations of service client descriptors that cater to

36

Component Descriptor Reference UIMA Version 2.3.0

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services

Service Client Descriptors

different types of services. For now, the only type of service client descriptor is the
uri Speci fi er, which supports the SOAP and Vinci protocols.

<?xm version="1.0" encodi ng="UTF-8" ?>
<uri Specifier xm ns="http://uim. apache. org/resourceSpecifier">
<resour ceType>Anal ysi sEngi ne | CasConsuner </resourceType>
<uri>[URI]</uri>
<pr ot ocol >SCAP | SQOAPwi t hAttachments | Vi nci </ protocol >
<timeout >[I nteger] </ti nmeout >
<par amet er s>
<par anet er nane="VNS_HOST" val ue="sone. i nternet.ip. nane-or-address"/>
<par aneter nane="VNS_PORT" val ue="9000"/>
<par anet er nane="Get Met aDat aTi meout" val ue="[Integer]"/>
</ par anet er s>
</ uri Specifier>

The r esour ceType element is required for new descriptors, but is currently allowed to be
omitted for backward compatibility. It specifies the type of component (Analysis Engine or
CAS Consumer) that is implemented by the service endpoint described by this descriptor.

The uri element contains the URI for the web service. (Note that in the case of Vinci, this
will be the service name, which is looked up in the Vinci Naming Service.)

The pr ot ocol element may be set to SOAP, SOAPwithAttachments, or Vinci; other
protocols may be added later. These specify the particular data transport format that will
be used.

The ti meout element is optional. If present, it specifies the number of milliseconds to wait
for a request to be processed before an exception is thrown. A value of zero or less will
wait forever. If no timeout is specified, a default value (currently 60 seconds) will be used.

The parameters element is optional. If present, it can specify values for each of the
following;:

® VNS_HOST: host name for the Vinci naming service.
* VNS_PORT: port number for the Vinci naming service.

® Get Met aDat aTi neout : timeout period (in milliseconds) for the GetMetaData call. If
not specified, the default is 60 seconds. This may need to be set higher if there are a
lot of clients competing for connections to the service.

If the VNS_HOST and VNS_PORT are not specified in the descriptor, the values used for these
comes from parameters passed on the Java command line using the - DVNS_HOST=<host >
and/or - DVNS_PORT=<por t > system arguments. If not present, and a system argument is
also not present, the values for these default to | ocal host for the VNS_HOST and 9000 for
the VNS_PORT.

For details on how to deploy and call Analysis Engine and CAS Consumer services, see
Section 3.6, “Working with Remote Services” in UIMA Tutorial and Developers’ Guides.

UIMA Version 2.3.0 Component Descriptor Reference 37

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services

Custom Resource Specifiers

2.8. Custom Resource Specifiers

A Custom Resource Specifier allows you to plug in your own Java class as a UIMA
Resource. For example you can support a new service protocol by plugging in a Java class
that implements the UIMA Anal ysi sEngi ne interface and communicates with the remote
service.

A Custom Resource Specifier has the following format:

<?xm version="1.0" encodi ng="UTF-8" ?>
<cust onResour ceSpeci fi er xm ns="http://ui ma. apache. org/ resour ceSpeci fier">
<resour ceC assNanme>[Java C ass Nane] </ r esour ceCl assNane>
<par anet er s>
<paraneter nane="[String]" value="[String]"/>
<paraneter nane="[String]" value="[String]"/>
</ par anet er s>
</ cust omResour ceSpeci fi er>

The r esour ced assNane element must contain the fully-qualified name of a Java class
that can be found in the classpath (including the UIMA extension classpath, if you have
specified one using the Resour ceManager . set Ext ensi ond assPat h method). This class
must implement the UIMA Resour ce interface.

When an application calls the Ul MAFr amewor k. pr oduceResour ce method and passes a
Cust onResour ceSpeci fi er, the UIMA framework will load the named class and call its
initialize(ResourceSpecifier, Map) method, passing the Cust onResour ceSpeci fi er
as the first argument. Your class can override thei ni ti al i ze method and use the

Cust onResour ceSpeci fi er API to get access to the par anet er names and values
specified in the XML.

If you are using a custom resource specifier to plug in a class that implements a new
service protocol, your class must also implement the Anal ysi sEngi ne interface.
Generally it should also extend Anal ysi sEngi nel npl Base. The key methods

that should be implemented are get Met aDat a, pr ocessAndQut put NewCASes,

col I ecti onProcessConpl et e, and dest r oy.

38

Component Descriptor Reference UIMA Version 2.3.0

Chapter 3. Collection Processing Engine
Descriptor Reference

A UIMA Collection Processing Engine (CPE) is a combination of UIMA components
assembled to analyze a collection of artifacts. A CPE is an instantiation of the UIMA
Collection Processing Architecture, which defines the collection processing components,
interfaces, and APIs. A CPE is executed by a UIMA framework component called the
Collection Processing Manager (CPM), which provides a number of services for deploying
CPEs, running CPEs, and handling errors.

A CPE can be assembled programmatically within a Java application, or it can be
assembled declaratively via a CPE configuration specification, called a CPE Descriptor.
This chapter describes the format of the CPE Descriptor.

Details about the CPE, including its function, sub-components, APIs, and related tools,
can be found in Chapter 2, Collection Processing Engine Developer’s Guide in UIMA Tutorial
and Developers” Guides. Here we briefly summarize the CPE to define terms and provide
context for the later sections that describe the CPE Descriptor.

3.1. CPE Overview

Processing Pipelines

CAS Initializer
H—]

CAS

Work Queue Output Queue CAS Consumers

CollectionReader —»| ArtifactProducer — B1|Bz|Bsz B1|(Bz2(Bsa cea cce

K

Content(Text)

E Index

Figure 3.1. CPE Runtime Overview

An illustration of the CPE runtime is shown in Figure 3.1, “CPE Runtime

Overview” [39]. Some of the CPE components, such as the queues and processing
pipelines, are internal to the CPE, but their behavior and deployment may be configured
using the CPE Descriptor. Other CPE components, such as the Collection Reader and CAS

CPE Descriptor Reference 39

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe

Notation

Processors, are defined and configured externally from the CPE and then plugged in to the
CPE to create the overall engine. The parts of a CPE are:

Collection Reader
understands the native data collection format and iterates over the collection
producing subjects of analysis

CAS Initializer!
initializes a CAS with a subject of analysis

Artifact Producer
asynchronously pulls CASes from the Collection Reader, creates batches of CASes and
puts them into the work queue

Work Queue
shared queue containing batches of CASes queued by the Artifact Producer for
analysis by Analysis Engines

B1-Bn
individual batches containing 1 or more CASes

AE1-AEn
Analysis Engines arranged by a CPE descriptor

Processing Pipelines
each pipeline runs in a separate thread and contains a replicated set of the Analysis
Engines running in the defined sequence

Output Queue
holds batches of CASes with analysis results intended for CAS Consumers

CAS Consumers
perform collection level analysis over the CASes and extract analysis results, e.g.,
creating indexes or databases

3.2. Notation

CPE Descriptors are XML files. This chapter uses an informal notation to specify the
syntax of CPE Descriptors.

The notation used in this chapter is:

* An ellipsis (...) inside an element body indicates that the substructure of that
element has been omitted (to be described in another section of this chapter). An
example of this would be:

‘ <col | ecti onReader >

1Deprec:ated

40

CPE Descriptor Reference UIMA Version 2.3.0

Imports

</ col | ecti onReader >

* An ellipsis immediately after an element indicates that the element type may be
repeated arbitrarily many times. For example:

<par anet er >[St ri ng] </ par anet er >
<par anet er >[St ri ng] </ par anet er >

indicates that there may be arbitrarily many parameter elements in this context.

* An ellipsis inside an element means details of the attributes associated with that
element are defined later, e.g.:

<casProcessor ...>

* Bracketed expressions (e.g. [St ri ng]) indicate the type of value that may be used at
that location.

* A vertical bar, asin true| f al se, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

Which elements are optional and which are required is specified in prose, not in the
syntax definition.

3.3. Imports

As of version 2.2, a CPE Descriptor can use the same i nport mechanism as other
component descriptors. This allows referring to component descriptors using either
relative paths (resolved relative to the location of the CPE descriptor) or the classpath/
datapath. For details see Chapter 2, Component Descriptor Reference [3].

The follwing older syntax is still supported, but not recommended:

<descri pt or >
<include href="[URL or File]"/>
</ descri pt or >

The [URL or File] attribute is a URL or a filename for the descriptor of the incorporated
component. The argument is first attempted to be resolved as a URL.

Relative paths in an i ncl ude are resolved relative to the current working directory (NOT
the CPE descriptor location as is the case for i mpor t). A filename relative to another
directory can be specified using the CPM_HOVE variable, e.g.,

<descri pt or >
<i ncl ude href="${CPM HOVE}/ desc_dir/descriptor.xm"/>
</ descri pt or >

UIMA Version 2.3.0 CPE Descriptor Reference 41

CPE Descriptor Overview

In this case, the value for the CPM_HOVE variable must be provided to the CPE by
specifying it on the Java command line, e.g.,

j ava - DCPM_HOVE="C:. / Program Fi | es/ apache/ ui ma/ cpni' ...

3.4. CPE Descriptor Overview

A CPE Descriptor consists of information describing the following four main elements.

1. The Collection Reader, which is responsible for gathering artifacts and initializing
the Common Analysis Structure (CAS) used to support processing in the UIMA
collection processing engine.

2. The CAS Processors, responsible for analyzing individual artifacts, analyzing across
artifacts, and extracting analysis results. CAS Processors include Analysis Engines
and CAS Consumers.

3. Operational parameters of the Collection Processing Manager (CPM), such as
checkpoint frequency and deployment mode.

4. Resource Manager Configuration (optional).
The CPE Descriptor has the following high level skeleton:

<?xm version="1.0"?>
<cpeDescri pti on>
<col | ecti onReader >

</ col | ecti onReader >
<casProcessor s>

</ casProcessor s>
<cpeConfi g>

</ cpeConfi g>
<r esour ceManager Conf i gur ati on>

</ r esour ceManager Confi gur ati on>
</ cpeDescri pti on>

Details of each of the four main elements are described in the sections that follow.

3.5. Collection Reader

The <col | ect i onReader > section identifies the Collection Reader and optional CAS
Initializer that are to be used in the CPE. The Collection Reader is responsible for
retrieval of artifacts from a collection outside of the CPE, and the optional CAS Initializer
(deprecated as of UIMA Version 2) is responsible for initializing the CAS with the artifact.

42 CPE Descriptor Reference UIMA Version 2.3.0

Error handling for Collection Readers

A Collection Reader may initialize the CAS itself, in which case it does not require a CAS
Initializer. This should be clearly specified in the documentation for the Collection Reader.
Specifying a CAS Initializer for a Collection Reader that does not make use of a CAS
Initializer will not cause an error, but the specified CAS Initializer will not be used.

The complete structure of the <col | ect i onReader > section is:

<col | ecti onReader >
<col |l ectionlterator>
<descri ptor >
<import ...> | <include .../>
</ descri pt or >
<confi gurati onParaneterSettings>...</configurati onParaneterSettings>
<sof aNameMappi ngs>. . . </ sof aNameMappi ngs>
</coll ectionlterator>
<caslnitializer>
<descri pt or >
<import ...>| <include .../>
</ descri pt or >
<confi gurati onParaneterSettings>...</configurationParaneterSettings>
<sof aNameMappi ngs>. . . </ sof aNaneMappi ngs>
</caslnitializer>
</ col | ecti onReader >

The <col | ecti onl t er at or > identifies the descriptor for the Collection Reader,

and the <casl ni ti al i zer > identifies the descriptor for the CAS Initializer.

The format and details of the Collection Reader and CAS Initializer descriptors

are described in Section 2.6.1, “Collection Reader Descriptors” [32] . The

<confi gurati onParamet er Setti ngs> and the <sof aNaneMappi ngs> elements are
described in the next section.

3.5.1. Error handling for Collection Readers

The CPM will abort if the Collection Reader throws a large number of consecutive
exceptions (default = 100). This default can by changed by using the Java initialization
parameter - DVMaxCREr r or Thr eshol d xxx.

3.6. CAS Processors

The <casPr ocessor s> section identifies the components that perform the analysis on

the input data, including CAS analysis (Analysis Engines) and analysis results extraction
(CAS Consumers). The CAS Consumers may also perform collection level analysis, where
the analysis is performed (or aggregated) over multiple CASes. The basic structure of the
CAS Processors section is:

<casProcessors
dr opCasOnExcepti on="true| f al se"
casPool Si ze="[Nunber]"
processi ngUni t Thr eadCount =" [Nunber] ">

UIMA Version 2.3.0 CPE Descriptor Reference 43

CAS Processors

<casProcessor ...>
</ casP.r .o;:essor >
<casProcessor ...>
</ casP.r .();:essor >

</ casProcessor s>

The <casPr ocessor s> section has two mandatory attributes and one optional attribute
that configure the characteristics of the CAS Processor flow in the CPE. The first
mandatory attribute is a casPoolSize, which defines the fixed number of CAS instances
that the CPM will create and use during processing. All CAS instances are maintained in
a CAS Pool with a check-in and check-out access. Each CAS is checked-out from the CAS
Pool by the Collection Reader and initialized with an initial subject of analysis. The CAS is
checked-in into the CAS Pool when it is completely processed, at the end of the processing
chain. A larger CAS Pool size will result in more memory being used by the CPM. CAS
objects can be large and care should be taken to determine the optimum size of the CAS
Pool, weighing memory tradeoffs with performance.

The second mandatory <casPr ocessor s> attribute is pr ocessi nguni t Thr eadCount ,
which specifies the number of replicated Processing Pipelines. Each Processing Pipeline
runs in its own thread. The CPM takes CASes from the work queue and submits each
CAS to one of the Processing Pipelines for analysis. A Processing Pipeline contains one
or more Analysis Engines invoked in a given sequence. If more than one Processing
Pipeline is specified, the CPM replicates instances of each Analysis Engine defined in the
CPE descriptor. Each Processing Pipeline thread runs independently, consuming CASes
from work queue and depositing CASes with analysis results onto the output queue. On
multiprocessor machines, multiple Processing Pipelines can run in parallel, improving
overall throughput of the CPM.

Note: The number of Processing Pipelines should be equal to or greater than
CAS Pool size.

Elements in the pipeline (each represented by a <casProcessor> element) may indicate that
they do not permit multiple deployment in their Analysis Engine descriptor. If so, even
though multiple pipelines are being used, all CASes passing through the pipelines will be
routed through one instance of these marked Engines.

The final, optional, <casProcessors> attribute is dr opCasOnExcept i on. It defines a

policy that determines what happens with the CAS when an exception happens during
processing. If the value of this attribute is set to true and an exception happens, the CPM
will notify all registered listeners of the exception (see Section 2.3.1, “Using Listeners” in
UIMA Tutorial and Developers” Guides), clear the CAS and check the CAS back into the CAS
Pool so that it can be re-used. The presumption is that an exception may leave the CAS

in an inconsistent state and therefore that CAS should not be allowed to move through

44

CPE Descriptor Reference UIMA Version 2.3.0

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe.using_listeners

Specifying an Individual CAS Processor

the processing chain. When this attribute is omitted the CPM's default is the same as
specifying dr opCasOnExcepti on="fal se".

3.6.1. Specifying an Individual CAS Processor

The CAS Processors that make up the Processing Pipeline and the CAS Consumer
pipeline are specified with the <casPr ocessor > entity, which appears within the
<casPr ocessor s> entity. It may appear multiple times, once for each CAS Processor
specified for this CPE.

The order of the <casPr ocessor > entities with the <casPr ocessor s> section specifies the
order in which the CAS Processors will run. Although CAS Consumers are usually put at
the end of the pipeline, they need not be. Also, Aggregate Analysis Engines may include
CAS Consumers.

The overall format of the <casPr ocessor > entity is:

<casProcessor depl oynent="|ocal |renpte|integrated" name="[String]" >
<descri pt or >
<import ...> | <include .../>
</ descri pt or >
<confi gurati onParaneterSettings>...</configurationParaneterSettings>
<sof aNameMappi ngs>. . . </ sof aNaneMappi ngs>
<runl nSepar at eProcess>. .. </ runl nSepar at ePr ocess>
<depl oynent Par anet er s>. . . </ depl oynent Par anet er s>
<filter/>
<errorHandl i ng>...</errorHandl i ng>
<checkpoi nt bat ch="Nunber"/>
</ casProcessor >

The <casPr ocessor > element has two mandatory attributes, depl oynent and nane. The
mandatory name attribute specifies a unique string identifying the CAS Processor.

The mandatory depl oynent attribute specifies the CAS Processor deployment mode.
Currently, three deployment options are supported:

integrated
indicates integrated deployment of the CAS Processor. The CPM deploys and collocates
the CAS Processor in the same process space as the CPM. This type of deployment
is recommended to increase the performance of the CPE. However, it is NOT
recommended to deploy annotators containing JNI this way. Such CAS Processors
may cause a fatal exception and force the JVM to exit without cleanup (bringing
down the CPM). Any UIMA SDK compliant pure Java CAS Processors may be safely
deployed this way.

The descriptor for an integrated deployment can, in fact, be a remote service
descriptor. When used this way, however, the CPM error recovery options (see below)
operate in the integrated mode, which means that many of the retry options are not
available.

UIMA Version 2.3.0 CPE Descriptor Reference 45

Specifying an Individual CAS Processor

remote
indicates non-managed deployment of the CAS Processor. The CAS Processor
descriptor referenced in the <descri pt or > element must be a Vinci Service Client
Descriptor, which identifies a remotely deployed CAS Processor service (see
Section 3.6, “Working with Remote Services” in UIMA Tutorial and Developers” Guides).
The CPM assumes that the CAS Processor is already running as a remote service and
will connect to it using the URI provided in the client service descriptor. The lifecycle
of a remotely deployed CAS Processor is not managed by the CPM, so appropriate
infrastructure should be in place to start/restart such CAS Processors when necessary.
This deployment provides fault isolation and is implementation (i.e., programming
language) neutral.

local
indicates managed deployment of the CAS Processor. The CAS Processor descriptor
referenced in the <descri pt or > element must be a Vinci Service Deployment Descriptor,
which configures a CAS Processor for deployment as a Vinci service (see Section 3.6,
“Working with Remote Services” in UIMA Tutorial and Developers” Guides). The CPM
deploys the CAS Processor in a separate process and manages the life cycle (start/
stop) of the CAS Processor. Communication between the CPM and the CAS Processor
is done with Vinci. When the CPM completes processing, the process containing the
CAS Processor is terminated. This deployment mode insulates the CPM from the CAS
Processor, creating a more robust deployment at the cost of a small communication
overhead. On multiprocessor machines, the separate processes may run concurrently
and improve overall throughput.

A number of elements may appear within the <casPr ocessor > element.

3.6.1.1. <descriptor> Element

The <descri pt or > element is mandatory. It identifies the descriptor for the
referenced CAS Processor using the syntax described in Section 2.4, “Analysis Engine
Descriptors” [8].
* For r enot e CAS Processors, the referenced descriptor must be a Vinci Service Client
Descriptor, which identifies a remotely deployed CAS Processor service.
e For local CAS Processors, the referenced descriptor must be a Vinci Service
Deployment Descriptor.
e For integrated CAS Processors, the referenced descriptor must be an Analysis Engine
Descriptor (primitive or aggregate).

See Section 3.6, “Working with Remote Services” in UIMA Tutorial and Developers’ Guides
for more information on creating these descriptors and deploying services.

3.6.1.2. <configurationParameterSettings> Element

This element provides a way to override the contained Analysis Engine's parameters
settings. Any entry specified here must already be defined; values specified replace the

CPE Descriptor Reference UIMA Version 2.3.0

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services

Specifying an Individual CAS Processor

corresponding values for each parameter. For Cas Processors, this mechanism is only
available when they are deployed in “integrated” mode. For Collection Readers and
Initializers, it always is available.

The content of this element is identical to the component descriptor for specifying
parameters (in the case where no parameter groups are specified)®. Here is an example:

<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<nanme>Ci vi l i anTi t| es</ nane>
<val ue>
<array>
<string>M.</string>
<string>Ms. </string>
<string>Ms.</string>
<string>Dr.</string>
</ array>
</val ue>
</ naneVal uePai r >

</ confi gurati onPar anet er Setti ngs>

3.6.1.3. <sofaNameMappings> Element

This optional element provides a mapping from defined Sofa names in the component, or
the default Sofa name (if the component does not declare any Sofa names). The form of
this element is:

<sof aNameMappi ngs>
<sof aNameMappi ng cpeSof aName="a_CPE_nane"
conponent Sof aName="a_conponent _Nane"/ >

</ sof aNameMappi ngs>

There can be any number of <sof aNameMappi ng> elements contained in the
<sof aNaneMappi ngs> element. The conponent Sof aNane attribute is optional; leave it out
to specify a mapping for the _I ni ti al Vi ew- that is, for Single-View components.

3.6.1.4. <runIinSeparateProcess> Element

The <r unl nSepar at ePr ocess> element is mandatory for | ocal CAS Processors, but
should not appear for r enpt e or i nt egr at ed CAS Processors. It enables the CPM to
create external processes using the provided runtime environment. Applications launched
this way communicate with the CPM using the Vinci protocol and connectivity is enabled
by a local instance of the VNS that the CPM manages. Since communication is based on
Vinci, the application need not be implemented in Java. Any language for which Vinci

7,

2An earlier UIMA version required these to have a suffix of “_p
is accepted, also, for backward compatibility.

’, e.g., “string_p”. This is no longer required, but this format

UIMA Version 2.3.0 CPE Descriptor Reference 47

Specifying an Individual CAS Processor

provides support may be used to create an application, and the CPM will seamlessly
communicate with it. The overall structure of this element is:

<runl nSepar at ePr ocess>
<exec dir="[String]" executable="[String]">
<env key="[String]" value ="[String]"/>

<arg>[String] </ arg>
</ exec>
</ runl nSepar at ePr ocess>

The <exec> element provides information about how to execute the referenced CAS
Processor. Two attributes are defined for the <exec> element. The di r attribute is
currently not used — it is reserved for future functionality. The execut abl e attribute
specifies the actual Vinci service executable that will be run by the CPM, e.g., j ava, a
batch script, an application (.exe), etc. The executable must be specified with a fully
qualified path, or be found in the PATH of the CPM.

The <exec> element has two elements within it that define parameters used to construct
the command line for executing the CAS Processor. These elements must be listed in the
order in which they should be defined for the CAS Processor.

The optional <env> element is used to set an environment variable. The variable key will
be set to val ue. For example,

<env key="CLASSPATH' val ue="C: Javalib"/>

will set the environment variable CLASSPATH to the value C: Javal i b. The <env> element
may be repeated to set multiple environment variables. All of the key/value pairs will be
added to the environment by the CPM prior to launching the executable.

Note: The CPM actually adds ALL system environment variables when it

launches the program. It queries the Operating System for its current system
variables and one by one adds them to the program's process configuration.

The <ar g> element is used to specify arbitrary string arguments that will appear on the
command line when the CPM runs the command specified in the execut abl e attribute.

For example, the following would be used to invoke the UIMA Java implementation of the
Vinci service wrapper on a Java CAS Processor:

<runl nSepar at ePr ocess>
<exec executabl e="java">
<ar g>- DVNS_HOST=| ocal host </ ar g>
<ar g>- DVNS_PORT=9099</ ar g>
<ar g>or g. apache. ui ma. r ef erence_i npl . anal ysi s_engi ne. servi ce.
vi nci . Vi nci Anal ysi sEngi neServi ce_i npl </ ar g>
<ar g>C: ui madescdepl oyCasPr ocessor. xn </ ar g>

48

CPE Descriptor Reference UIMA Version 2.3.0

Specifying an Individual CAS Processor

</ exec>
<runl nSepar at ePr ocess>

This will cause the CPM to run the following command line when starting the CAS
Processor:

java - DUNS_HOST=l ocal host - DVNS_PORT=9099
or g. apache. ui ma. ref erence_i npl . anal ysi s_engi ne. servi ce. vi nci . \\
Vi nci Anal ysi sEngi neSer vi ce_i npl
C: ui radescdepl oyCasProcessor . xm

The first argument specifies that the Vinci Naming Service is running on the | ocal host .
The second argument specifies that the Vinci Naming Service port number is 9099.

The third argument (split over 2 lines in this documentation) identifies the UIMA
implementation of the Vinci service wrapper. This class contains the mai n method that
will execute. That main method in turn takes a single argument — the filename for the
CAS Processor service deployment descriptor. Thus the last argument identifies the Vinci
service deployment descriptor file for the CAS Processor. Since this is the same descriptor
file specified earlier in the <descr i pt or > element, the string ${ descri pt or} can be used
to refer to the descriptor, e.g.:

<ar g>${descri ptor}</arg>

The CPM will expand this out to the service deployment descriptor file referenced in the
<descri pt or > element.

3.6.1.5. <deploymentParameters> Element

The <depl oyrment Par anet er s> element defines a number of deployment parameters that
control how the CPM will interact with the CAS Processor. This element has the following
overall form:

<depl oynent Par anet er s>
<paraneter nane="[String]" value="..." type="string|integer" />

</ depl oynment Par anet er s>

The nane attribute identifies the parameter, the val ue attribute specifies the value
that will be assigned to the parameter, and the t ype attribute indicates the type of the
parameter, either st ri ng or i nt eger . The available parameters include:

service-access
string parameter whose value must be “exclusive”, if present. This parameter is
only effective for remote deployments. It modifies the Vinci service connections to
be preallocated and dedicated, one service instance per pipe-line. It is only relevant
for non-Integrated deployement modes. If there are fewer services instances that
are available (and alive — responding to a “ping” request) than there are pipelines,
the number of pipelines (the number of concurrent threads) is reduced to match

UIMA Version 2.3.0 CPE Descriptor Reference 49

Specifying an Individual CAS Processor

the number of available instances. If not specified, the VNS is queried each time a
service is needed, and a “random” instance is assigned from the pool of available
instances. If a services dies during processing, the CPM will use its normal error
handling procedures to attempt to reconnect. The number of attempts is specified

in the CPE descriptor for each Cas Processor using the <maxConsecuti veRestarts
val ue="10" action="kill-pipeline" waitTi neBet weenRet ri es="50"/> xml
element. The “value” attribute is the number of reconnection tries; the “action”

says what to do if the retries exceed the limit. The “kill-pipeline” action stops the
pipeline that was associated with the failing service (other pipelines will continue to
work). The CAS in process within a killed pipeline will be dropped. These events are
communicated to the application using the normal event listener mechanism. The
wai t Ti meBet weenRet ri es says how many milliseconds to wait inbetween attempts to
reconnect.

vnsHost
(Deprecated) string parameter specifying the VNS host, e.g., | ocal host for local
CAS Processors, host name or IP address of VNS host for remote CAS Processors.
This parameter is deprecated; use the parameter specification instead inside the Vinci
Service Client Descriptor, if needed. It is ignored for integrated and local deployments.
If present, for remote deployments, it specifies the VNS Host to use, unless that is
specified in the Vinci Service Client Descriptor.

vnsPort
(Deprecated) integer parameter specifying the VNS port number. This parameter
is deprecated; use the parameter specification instead inside the Vinci Service Client
Descriptor, if needed. It is ignored for integrated and local deployments. If present, for
remote deployments, it specifies the VNS Port number to use, unless that is specified
in the Vinci Service Client Descriptot.

For example, the following parameters might be used with a CAS Processor deployed in
local mode:

<depl oynent Par anet er s>
<par anet er nane="servi ce-access" val ue="excl usive" type="string"/>
</ depl oynent Par anet er s>

3.6.1.6. <filter> Element

The <filter> element is a required element but currently should be left empty. This element
is reserved for future use.

3.6.1.7. <errorHandling> Element

The mandatory <er r or Handl i ng> element defines error and restart policies for the
CAS Processor. Each CAS Processor may define different actions in the event of errors
and restarts. The CPM monitors and logs errant behaviors and attempts to recover the
component based on the policies specified in this element.

50

CPE Descriptor Reference UIMA Version 2.3.0

Specifying an Individual CAS Processor

There are two kinds of faults:

1. One kind only occurs with non-integrated CAS Processors — this fault is either a
timeout attempting to launch or connect to the non-integrated component, or some
other kind of connection related exception (for instance, the network connection
might timeout or get reset).

2. The other kind happens when the CAS Processor component (an Annotator, for
example) throws any kind of exception. This kind may occur with any kind of
deployment, integrated or not.

The <errorHandling> has specifications for each of these kinds of faults. The format of this
element is:

<error Handl i ng>
<maxConsecuti veRestarts action="conti nue| di sabl e|term nat e"
val ue="[Nunber]"/ >
<error Rat eThreshol d acti on="conti nue| di sabl e|term nate" val ue="[Rate]"/>
<timeout max="[Nunber]"/>
</ error Handl i ng>

The mandatory <maxConsecut i veRest ar t s> element applies only to faults of the first
kind, and therefore, only applies to non-integrated deployments. If such a fault occurs, a
retry is attempted, up to val ue="[Nurber] " of times. This retry resets the connection (if
one was made) and attempts to reconnect and perhaps re-launch (see below for details).
The original CAS (not a partially updated one) is sent to the CAS Processor as part of the
retry, once the deployed component has been successfully restarted or reconnected to.

The act i on attribute specifies the action to take when the threshold specified by the
val ue="[Nunber]" is exceeded. The possible actions are:

continue
skip any further processing for this CAS by this CAS Processor, and pass the CAS to
the next CAS Processor in the Pipeline.

The “restart” action is done, because it is needed for the next CAS.

If the dr opCasOnExcept i on="t rue", the CPM will NOT pass the CAS to the next CAS
Processor in the chain. Instead, the CPM will abort processing of this CAS, release the
CAS back to the CAS Pool and will process the next CAS in the queue.

The counter counting the restarts toward the threshold is only reset after a CAS is
successfully processed.

disable
the current CAS is handled just as in the cont i nue case, but in addition, the CAS
Processor is marked so that its process() method will not be called again (i.e., it will be
“skipped” for future CASes)

UIMA Version 2.3.0 CPE Descriptor Reference 51

Specifying an Individual CAS Processor

terminate
the CPM will terminate all processing and exit.

The definition of an error for the <maxConsecut i veRest ar t s> element differs slightly for
each of the three CAS Processor deployment modes:

local
Local CAS Processors experience two general error types:

¢ launch errors — errors associated with launching a process

* processing errors — errors associated with sending Vinci commands to the
process

A launch error is defined by a failure of the process to successfully register with the
local VNS within a default time window. The current timeout is 15 minutes. Multiple
local CAS Processors are launched sequentially, with a subsequent processor launched
immediately after its previous processor successfully registers with the VNS.

A processing error is detected if a connection to the CAS Processor is lost or if the
processing time exceeds a specified timeout value.

For local CAS Processors, the <maxConsecutiveRestarts> element specifies the number
of consecutive attempts made to launch the CAS Processor at CPM startup or after the
CPM has lost a connection to the CAS Processor.

remote
For remote CAS Processors, the <maxConsecutiveRestarts> element applies to errors
from sending Vinci commands. An error is detected if a connection to the CAS
Processor is lost, or if the processing time exceeds the timeout value specified in the
<timeout> element (see below).

integrated
Although mandatory, the <maxConsecutiveRestarts> element is NOT used for
integrated CAS Processors, because Integrated CAS Processors are not re-instantiated/
restarted on exceptions. This setting is ignored by the CPM for Integrated CAS
Processors but it is required. Future version of the CPM will make this element
mandatory for remote and local CAS Processors only.

The mandatory <err or Rat eThr eshol d> element is used for all faults — both those
above, and exceptions thrown by the CAS Processor itself. It specifies the number of
retries for exceptions thrown by the CAS Processor itself, a maximum error rate, and the
corresponding action to take when this rate is exceeded. The val ue attribute specifies the
error rate in terms of errors per sample size in the form “N M’, where Nis the number of
errors and Mis the sample size, defined in terms of the number of documents.

The first number is used also to indicate the maximum number of retries. If this

number is less than the <maxConsecut i veRestarts val ue="[Nunber] ">, itwill
override, reducing the number of “restarts” attempted. A retry is done only if the

dr opCasOnExcept i on is false. If it is set to true, no retry occurs, but the error is counted.

52

CPE Descriptor Reference UIMA Version 2.3.0

Specifying an Individual CAS Processor

When the number of counted errors exceeds the sample size, an action specified by
the act i on attribute is taken. The possible actions and their meaning are the same as
described above for the <maxConsecut i veRest ar t s> element:

® continue

¢ disable

® ternminate

The dr opCasOnExcepti on="true" attribute of the <casPr ocessor s> element modifies
the action taken for continue and disable, in the same manner as above. For example:

<error Rat eThreshol d val ue="3/1000" acti on="di sabl e"/>

specifies that each error thrown by the CAS Processor itself will be retried up to 3 times
(if dr opCasOnExcept i on is false) and the CAS Processor will be disabled if the error rate
exceeds 3 errors in 1000 documents.

If a document causes an error and the error rate threshold for the CAS Processor is not
exceeded, the CPM increments the CAS Processor's error count and retries processing
that document (if dr opCasOnExcept i on is false). The retry means that the CPM calls the
CAS Processor's process() method again, passing in as an argument the same CAS that
previously caused an exception.

Note: The CPM does not attempt to rollback any partial changes that may have
been applied to the CAS in the previous process() call.

Errors are accumulated across documents. For example, assume the error rate threshold is
3/ 1000. The same document may fail three times before finally succeeding on the fourth
try, but the error count is now 3. If one more error occurs within the current sample of
1000 documents, the error rate threshold will be exceeded and the specified action will be
taken. If no more errors occur within the current sample, the error counter is reset to 0 for
the next sample of 1000 documents.

The <t i neout > element is a mandatory element. Although mandatory for all CAS
Processors, this element is only relevant for local and remote CAS Processors. For
integrated CAS Processors, this element is ignored. In the current CPM implementation
the integrated CAS Processor process() method is not subject to timeouts.

The max attribute specifies the maximum amount of time in milliseconds the CPM
will wait for a process() method to complete When exceeded, the CPM will generate
an exception and will treat this as an error subject to the threshold defined in the
<error Rat eThr eshol d> element above, including doing retries.

Retry action taken on a timeout

The action taken depends on whether the CAS Processor is local (managed) or remote
(unmanaged). Local CAS Processors (which are services) are killed and restarted, and
a new connection to them is established. For remote CAS Processors, the connection to

UIMA Version 2.3.0 CPE Descriptor Reference 53

CPE Operational Parameters

them is dropped, and a new connection is reestablished (which may actually connect to a
different instance of the remote services, if it has multiple instances).

3.6.1.8. <checkpoint> Element

The <checkpoi nt > element is an optional element used to improve the performance of
CAS Consumers. It has a single attribute, bat ch, which specifies the number of CASes in a
batch, e.g.:

<checkpoi nt bat ch="1000">

sets the batch size to 1000 CASes. The batch size is the interval used to mark a point in
processing requiring special handling. The CAS Processor's bat chPr ocessConpl et e()
method will be called by the CPM when this mark is reached so that the processor can
take appropriate action. This mark could be used as a mechanism to buffer up results in
CAS Consumers and perform time-consuming operations, such as check-pointing, that
should not be done on a per-document basis.

3.7. CPE Operational Parameters

The parameters for configuring the overall CPE and CPM are specified in the
<cpeConf i g> section. The overall format of this section is:

<cpeConfi g>
<start At >[Nunber O | D] </ start At >

<nunifoPr ocess>[Nunber] </ numloPr ocess>

<out put Queue dequeueTi meout ="[Nunber]" queued ass="[C assNane]" />
<checkpoint file="[File]" tine="[Nunber]" batch="[Nunmber]"/>
<timerlnmpl >[C assNane] </ti mer| npl >

<depl oyAs>vi nci Servi ce|interactive|inmedi at e| si ngl e-t hr eaded
</ depl oyAs>

</ cpeConfi g>

This section of the CPE descriptor allows for defining the starting entity, the number
of entities to process, a checkpoint file and frequency, a pluggable timer, an optional
output queue implementation, and finally a mode of operation. The mode of operation
determines how the CPM interacts with users and other systems.

The <st ar t At > element is an optional argument. It defines the starting entity in the
collection at which the CPM should start processing.

The implementation in the CPM passes this argument to the Collection Reader as the
value of the parameter “st ar t Number ”. The CPM does not do anything else with this

54

CPE Descriptor Reference UIMA Version 2.3.0

CPE Operational Parameters

parameter; in particular, the CPM has no ability to skip to a specific document - that
function, if available, is only provided by a particular Collection Reader implementation.

If the <st ar t At > element is used, the Collection Reader descriptor must define a single-
valued configuration parameter with the name st ar t Nurrber . It can declare this value to
be of any type; the value passed in this XML element must be convertible to that type.

A typical use is to declare this to be an integer type, and to pass the sequential document
number where processing should start. An alternative implementation might take a
specific document ID; the collection reader could search through its collection until it
reaches this ID and then start there.

This parameter will only make sense if the particular collection reader is implemented to
use the st art Nunber configuration parameter.

The <nunifoPr ocess> element is an optional element. It specifies the total number of
entities to process. Use -1 to indicate ALL. If not defined, the number of entities to process
will be taken from the Collection Reader configuration. If present, this value overrides the
Collection Reader configuration.

The <out put Queue> element is an optional element. It enables plugging in a custom
implementation for the Output Queue. When omitted, the CPM will use a default output
queue that is based on First-in First-out (FIFO) model.

The UIMA SDK provides a second implementation for the
Output Queue that can be plugged in to the CPM, named “
or g. apache. ui ma. col | ecti on. i nmpl . cpm engi ne. SequencedQueue ”.

This implementation supports handling very large documents that are split into “chunks”;
it provides a delivery mechanism that insures the sequential order of the chunks using
information carried in the CAS metadata. This metadata, which is required for this
implementation to work correctly, must be added as an instance of a Feature Structure

of type or g. apache. es. tt. Docunment Met aDat a and referred to by an additional feature
named esDocunent Met aDat a in the special instance of ui na. t cas. Docunent Annot at i on
that is associated with the CAS. This is usually done by the Collection Reader; the instance
contains the following features:

sequenceNumber
[Number] the sequential number of a chunk, starting at 1. If not a chunk (i.e. complete
document), the value should be 0.

documentld
[Number] current document id. Chunks belonging to the same document have
identical document id.

isCompleted
[Number] 1 if the chunk is the last in a sequence, 0 otherwise.

url
[String] document url.

UIMA Version 2.3.0 CPE Descriptor Reference 55

CPE Operational Parameters

throttleID
[String] special attribute currently used by OmniFind.

This implementation of a sequenced queue supports proper sequencing of CASes in
CPM deployments that use document chunking. Chunking is a technique of splitting
large documents into pieces to reduce overall memory consumption. Chunking does not
depend on the number of CASes in the CAS Pool. It works equally well with one or more
CASes in the CAS Pool. Each chunk is packaged in a separate CAS and placed in the Work
Queue. If the CAS Pool is depleted, the CollectionReader thread is suspended until a CAS
is released back to the pool by the processing threads. A document may be split into 1, 2,
3 or more chunks that are analyzed independently. In order to reconstruct the document
correctly, the CAS Consumer can depend on receiving the chunks in the same sequential
order that the chunks were “produced”, when this sequenced queue implementation is
used. To plug in this sequenced queue to the CPM use the following specification:

<out put Queue dequeueTi meout ="100000" queueC ass=
"org. apache. ui ma. col | ecti on. i npl.cpm engi ne. SequencedQueue"/ >

where the mandatory queued ass attribute defines the name of the class and the second
mandatory attribute, dequeueTi meout specifies the maximum number of milliseconds to
wait for the expected chunk.

Note: The value for this timeout must be carefully determined to avoid
excessive occurrences of timeouts. Typically, the size of a chunk and the type of
analysis being done are the most important factors when deciding on the value
for the timeout. The larger the chunk and the more complicated analysis, the more
time it takes for the chunk to go from source to sink. You may specify 0, in which
case, the timeout is disabled - i.e., it is equivalent to an infinitely long timeout.

If the chunk doesn't arrive in the configured time window, the entire document is
presumed to be invalid and the CAS is dropped from further processing. This action
occurs regardless of any other error action specification. The SequencedQueue invalidate
the document, adding the offending document's metadata to a local cache of invalid
documents.

If the time out occurs, the CPM notifies all registered listeners (see Section 2.3.1, “Using
Listeners” in UIMA Tutorial and Developers’ Guides) by calling entityProcessComplete(). As
part of this call, the SequencedQueue will pass null instead of a CAS as the first argument,
and a special exception — CPMChunkTimeoutException. The reason for passing null as the
first argument is because the time out occurs due to the fact that the chunk has not been
received in the configured timeout window, so there is no CAS available when the timeout
event occurs.

The CPMChunkTimeoutException object includes an API that allows the listener to
retrieve the offending document id as well as the other metadata attributes as defined
above. These attributes are part of each chunk's metadata and are added by the Collection
Reader.

56

CPE Descriptor Reference UIMA Version 2.3.0

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe.using_listeners
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe.using_listeners

CPE Operational Parameters

Each chunk that SequencedQueue works on is subjected to a test to determine if the chunk
belongs to an invalid document. This test checks the chunk's metadata against the data in
the local cache. If there is a match, the chunk is dropped. This check is only performed for
chunks and complete documents are not subject to this check.

If there is an exception during the processing of a chunk, the CPM sends a notification
to all registered listeners. The notification includes the CAS and an exception. When the
listener notification is completed, the CPM also sends separate notifications, containing
the CAS, to the Artifact Producer and the SequencedQueue. The intent is to stop adding
new chunks to the Work Queue that belong to an “invalid” document and also to deal
with chunks that are en-route, being processed by the processing threads.

In response to the notification, the Artifact Producer will drop and release back to the CAS
Pool all CASes that belong to an “invalid” document. Currently, there is no support in the
CollectionReader's API to tell it to stop generating chunks. The CollectionReader keeps
producing the chunks but the Artifact Producer immediately drops/releases them to the
CAS Pool. Before the CAS is released back to the CAS Pool, the Artifact Producer sends
notification to all registered listeners. This notification includes the CAS and an exception
— SkipCasException.

In response to the notification of an exception involving a chunk, the SequencedQueue
retrieves from the CAS the metadata and adds it to its local cache of “invalid” documents.
All chunks de-queued from the OutputQueue and belonging to “invalid” documents

will be dropped and released back to the CAS Pool. Before dropping the CAS, the CPM
sends notification to all registered listeners. The notification includes the CAS and
SkipCasException.

The <checkpoi nt > element is an optional element. It specifies a CPE checkpoint

file, checkpoint frequency, and strategy for checkpoints (time or count based). At
checkpoint time, the CPM saves status information and statistics to the checkpoint file.
The checkpoint file is specified in the f i | e attribute, which has the same form as the hr ef
attribute of the <i ncl ude> element described in Section 3.3, “Imports” [41]. The ti ne
attribute indicates that a checkpoint should be taken every [Nunber] seconds, and the
bat ch attribute indicates that a checkpoint should be taken every [Nunber] batches.

The <t i mer | npl > element is optional. It is used to identify a custom timer plug-in class to
generate time stamps during the CPM execution. The value of the element is a Java class
name.

The <depl oyAs> element indicates the type of CPM deployment. Valid contents for this
element include:

vinciService
Vinci service exposing APIs for stop, pause, resume, and getStats

interactive
provide command line menus (start, stop, pause, resume)

UIMA Version 2.3.0 CPE Descriptor Reference 57

Resource Manager Configuration

immediate
run the CPM without menus or a service API

single-threaded
run the CPM in a single threaded mode. In this mode, the Collection Reader, the
Processing Pipeline, and the CAS Consumer Pipeline are all running in one thread
without the work queue and the output queue.

3.8. Resource Manager Configuration

External resource bindings for the CPE may optionally be specified in an element:

<r esour ceManager Confi guration href="..."/>

For an introduction to external resources, refer to Section 1.5.4, “Accessing External
Resource Files” in UIMA Tutorial and Developers” Guides.

In the r esour ceManager Conf i gur at i on element, the value of the href attribute refers

to another file that contains definitions and bindings for the external resources used by
the CPE. The format of this file is the same as the XML snippet Section 2.4.2.5, “External
Resource Bindings” [30] . For example, in a CPE containing an aggregate analysis engine
with two annotators, and a CAS Consumer, the following resource manager configuration
tile would bind external resource dependencies in all three components to the same
physical resource:

<r esour ceManager Conf i gur ati on>
<!-- Declare Resource -->

<ext er nal Resour ces>
<ext er nal Resour ce>
<nanme>Exanpl eResour ce</ name>
<fil eResour ceSpecifier>
<fileUrl>file: MyResourceFile.dat</fileUrl>
</fil eResourceSpecifier>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

<!'-- Bind conmponent resource dependenci es to Exanpl eResource -->

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>M/AE/ annot at or 1/ myResour ceKey</ key>
<r esour ceNane>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>

<ext er nal Resour ceBi ndi ng>
<key>M/AE/ annot at or 2/ soneResour ceKey</ key>
<r esour ceNane>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>

58 CPE Descriptor Reference UIMA Version 2.3.0

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae.accessing_external_resource_files
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae.accessing_external_resource_files

Example CPE Descriptor

<ext er nal Resour ceBi ndi ng>

<key>MyCasConsuner/ ot her Resour ceKey</ key>

<r esour ceNane>Exanpl eResour ce</ r esour ceNane>
</ ext er nal Resour ceBi ndi ng>

</ ext er nal Resour ceBi ndi ngs>

</ r esour ceManager Confi gurati on>

In this example, \/AE and MyCasConsuner are the names of the Analysis Engine and CAS
Consumer, as specified by the name attributes of the CPE's <casPr ocessor > elements.
annot at or 1 and annot at or 2 are the annotator keys specified within the Aggregate AE
Descriptor, and nyResour ceKey, someResour ceKey, and ot her Resour ceKey are the keys
of the resource dependencies declared in the individual annotator and CAS Consumer
descriptors.

3.9. Example CPE Descriptor

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cpeDescri pti on>
<col | ecti onReader >
<col |l ectionlterator>
<descri pt or >
<inport | ocation=
"../lcollection_reader/Fil eSystenCol | ecti onReader. xm "/ >
</ descri pt or >
</col |l ectionlterator>
</ col | ecti onReader >
<casProcessors dropCasOnExcepti on="true" casPool Si ze="1"
processi nguni t Thr eadCount =" 1" >
<casProcessor depl oynent="int egrat ed"
nane="Aggregate TAE - Nane Recogni zer and Person Title Annotator">
<descri pt or >
<inport | ocation=
"../anal ysi s_engi ne/ NamesAndPer sonTi t| es_TAE. xm "/ >
</ descri pt or>
<depl oyment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRat eThreshol d acti on="term nate" val ue="100/1000"/>
<maxConsecuti veRestarts action="term nate" val ue="30"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt batch="1"/>
</ casProcessor >
<casProcessor depl oynent="integrated" name="Annotation Printer">
<descri pt or >
<inport |ocation="../cas_consuner/AnnotationPrinter.xm"/>
</ descri pt or >
<depl oynment Par anet er s/ >

UIMA Version 2.3.0 CPE Descriptor Reference 59

Example CPE Descriptor

<filter/>
<error Handl i ng>
<error Rat eThreshol d acti on="term nate" val ue="100/1000"/>
<maxConsecuti veRestarts action="term nate" val ue="30"/>
<ti meout nmax="100000"/>
</ error Handl i ng>
<checkpoi nt batch="1"/>
</ casProcessor >
</ casProcessor s>
<cpeConfi g>
<nunmToPr ocess>1</ numloPr ocess>
<depl oyAs>i medi at e</ depl oyAs>
<checkpoint file="" tinme="3000"/>
<timerlnpl/>
</ cpeConfi g>
</ cpeDescri pti on>

60

CPE Descriptor Reference UIMA Version 2.3.0

Chapter 4. CAS Reference

The CAS (Common Analysis System) is the part of the Unstructured Information
Management Architecture (UIMA) that is concerned with creating and handling the data
that annotators manipulate.

Java users typically use the JCas (Java interface to the CAS) when manipulating objects
in the CAS. This chapter describes an alternative interface to the CAS which allows
discovery and specification of types and features at run time. It is recommended for use
when the using code cannot know ahead of time the type system it will be dealing with.

Use of the CAS as described here is also recommended (or necessary) when components
add to the definitions of types of other components. This UIMA feature allows users to
add features to a type that was already defined elsewhere. When this feature is used in
conjunction with the JCas, it can lead to problems with class loading. This is because
different JCas representations of a single type are generated by the different components,
and only one of them is loaded (unless you are using Pear descriptors). Note: we do not
recommend that you add features to pre-existing types. A type should be defined in one
place only, and then there is no problem with using the JCas. However, if you do use this
feature, do not use the JCas. Similarly, if you distribute your components for inclusion in
somebody else's UIMA application, and you're not sure that they won't add features to
your types, do not use the JCas for the same reasons.

CASes passed to Annotator Components are either a base CAS or a regular CAS. Base
CASes are only passed to Multi-View components - they are like regular CASes, but
do not have user accessible indexes or Sofas. They are used by the component only for
switching to other CAS views, which are regular CASes.

4.1. Javadocs

The subdirectory docs/ api contains the documentation details of all the classes, methods,
and constants for the APIs discussed here. Please refer to this for details on the methods,
classes and constants, specifically in the packages or g. apache. ui ma. cas. *.

4.2. CAS Overview

There are three' main parts to the CAS: the type system, data creation and manipulation,
and indexing. We will start with a brief description of these components.

4.2.1. The Type System

The type system specifies what kind of data you will be able to manipulate in your
annotators. The type system defines two kinds of entities, types and features. Types are

1A fourth part, the Subject of Analysis, is discussed in Chapter 5, Annotations, Artifacts, and Sofas in UIMA Tutorial and Developers’

Guides.

CAS Reference 61

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aas

Creating/Accessing/Changing data

arranged in a single inheritance tree and define the kinds of entities (objects) you can
manipulate in the CAS. Features optionally specify slots or fields within a type. The
correspondence to Java is to equate a CAS Type to a Java Class, and the CAS Features

to fields within the type. A critical difference is that CAS types have no methods; they

are just data structures with named slots (features). These features can have as values
primitive things like integers, floating point numbers, and strings, and they also can hold
references to other instances of objects in the CAS. We call instances of the data structures
declared by the type system “feature structures” (not to be confused with “features”).
Feature structures are similar to the many variants of record structures found in computer

science.’

Each CAS Type defines a supertype; it is a subtype of that supertype. This means that
any features that the supertype defines are features of the subtype; in other words, it
inherits its supertype's features. Only single inheritance is supported; a type's feature set
is the union of all of the features in its supertype hierarchy. There is a built-in type called
uima.cas.TOP; this is the top, root node of the inheritance tree. It defines no features.

The values that can be stored in features are either built-in primitive values or references
to other feature structures. The primitive values are bool ean, byt e, short (16 bit
integers), i nt eger (32 bit), | ong (64 bit), f | oat (32 bit), doubl e (64 bit floats) and strings;
the official names of these are ui ma. cas. Bool ean, ui ma. cas. Byt e, ui ma. cas. Short,

ui ma. cas. | nt eger, ui ma. cas. Long, ui ma. cas. Fl oat , ui ma. cas. Doubl e and

ui ma. cas. String . The strings are Java strings, and characters are Java characters.
Technically, this means that characters are UTF-16 code points, which is not quite

the same as a Unicode character. This distinction should make no difference for

almost all applications. The CAS also defines other basic built-in types for arrays of
these, plus arrays of references to other objects, called ui ma. cas. I nteger Array,

ui ma. cas. Fl oat Array, ui na. cas. Stri ngArray, ui ma. cas. FSArr ay, etc.

The CAS also defines a built-in type called ui ma. t cas. Annot at i on which inherits from
ui ma. cas. Annot at i onBase which in turn inherits from ui ma. cas. TOP. There are two
features defined by this type, called begi n and end, both of which are integer valued.

4.2.2. Creating, accessing and manipulating data

Creating and accessing data in the CAS requires knowledge about the types and features
defined in the type system. The idea is similar to other data access APIs, such as the

XML DOM or SAX APIs, or database access APIs such as JDBC. Contrary to those APIs,
however, the CAS does not use the names of type system entities directly in the APIs.
Rather, you use the type system to access type and feature entities by name, then use these
entities in the data manipulation APIs. This can be compared to the Java reflection APIs:
the type system is comparable to the Java class loader, and the type and feature objects to
thejava.l ang. O ass andj ava. | ang. refl ect. Fi el d classes.

? The name “feature structure” comes from terminology used in linguistics.

62

CAS Reference UIMA Version 2.3.0

Creating and using indexes

Why does it have to be this complicated? You wouldn't normally use reflection to create

a Java object, either. As mentioned earlier, the JCas provides the more straightforward
method to manipulate CAS data. The CAS access methods described here need only be
used for generic types of applications that need to be able to handle any kind of data (e.g.,
generic tooling) or when the JCas may not be used for other reasons. The generic kinds of
applications are exactly the ones where you would use the reflection API in Java as well.

4.2.3. Creating and using indexes

Each view of a CAS provides a set of indexes for that view. Instances of feature structures
can be added to a view's indexes. These indexes provide the only way for other annotators
to locate existing data in the CAS. The only way for an annotator to use data that another
annotator has created is by using an index (or the method get Al | | ndexedFS of the object
FSI ndexReposi t or y) to retrieve feature structures the first annotator created. If you want
the data you create to be visible to other annotators, you must explicitly call methods
which add it to the indexes — you must index it.

Indexes are named and are associated with a CAS Type; they are used to index instances
of that CAS type (including instances of that type's subtypes). If you are using multiple
views (see Chapter 6, Multiple CAS Views of an Artifact in UIMA Tutorial and Developers’
Guides), each view contains a separate instantiation of all of the indexes. To access an
index, you minimally need to know its name. A CAS view provides an index repository
which you can query for indexes for that view. Once you have a handle to an index, you
can get information about the feature structures in the index, the size of the index, as well
as an iterator over the feature structures.

Indexes are defined in the XML descriptor metadata for the application. Each CAS View
has its own, separate instantiation of indexes based on these definitions, kept in the view's
index repository. When you obtain an index, it is always from a particular CAS view.
When you index an item, it is always added to all indexes where it belongs, within just
one repository. You can specify different repositories (associated with different CAS
views) to use; a given Feature Structure instance may be indexed in more than one CAS
View.

Iterators allow you to enumerate the feature structures in an index. FS iterators provide
two kinds of APIs: the regular Java iterator API, and a specific FS iterator API where
the usual Java iterator APIs (hasNext () and next ()) are replaced by i sVal i d(),
moveToNext () (which does not return an element) and get () . Which API style

you use is up to you, but we do not recommend mixing the styles as the results are
sometimes unexpected. If you just want to iterate over an index from start to finish,
either style is equally appropriate. If you also use noveTo(Feat ureStructure fs) and
moveToPr evi ous(), it is better to use the special FS iterator style.

Note: The reason to not mix these styles is that you might be thinking that
next() followed by moveToPrevious() would always work. This is not true, because
next() returns the "current” element, and advances to the next position, which

UIMA Version 2.3.0 CAS Reference 63

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.mvs

Built-in CAS Types

might be beyond the last element. At that point, the interator becomes "invalid",
and by the iterator contracts, moveToNext and moveToPrevious are not allowed
on "invalid" iterators; when an iterator is not valid, all bets are off. But you can call
these methods on the iterator — moveToFirst(), moveToLast(), or moveTo(FS) — to
reset it.

Indexes are created by specifying them in the annotator's or aggregate's resource
descriptor. An index specification includes its name, the CAS type being indexed, the kind
of index it is, and an (optional) ordering relation on the feature structures to be indexed.
At startup time, all index specifications are combined; duplicate definitions (having the
same name) are allowed only if their definitions are the same.

Feature structure instances need to be explicitly added to the index repository by a
method call. Feature structures that are not indexed will not be visible to other annotators,
(unless they are located via being referenced by some other feature of another feature
structure, which is indexed, or through a chain of these).

The framework defines an unnamed bag index which indexes all types. The only access
provided for this index is the getAllIndexedFS(type) method on the index repository,
which returns an iterator over all indexed instances of the specified type (including its
subtypes) for that CAS View.

The framework defines one standard, built-in annotation index, called AnnotationIndex,
which indexes the ui ma. t cas. Annot at i on type: all feature structures of type
ui ma. t cas. Annot at i on or its subtypes are automatically indexed with this built-in index.

The ordering relation used by this index is to first order by the value of the “begin”
features (in ascending order) and then by the value of the “end” feature (in descending
order). This ordering insures that longer annotations starting at the same spot come before
shorter ones. For Subjects of Analysis other than Text, this may not be an appropriate
index.

4.3. Built-in CAS Types

The CAS has two kinds of built-in types — primitive and non-primitive. The primitive
types are:

* uima.cas.Boolean

* uima.cas.Byte

* uima.cas.Short

* uima.cas.Integer

* uima.cas.Long

* uima.cas.Float

* uima.cas.Double

* uima.cas.String

The Byte, Short, Integer, and Long are all signed integer types, of length 8, 16,
32, and 64 bits. The Doubl e type is 64 bit floating point. The St ri ng type can be sub-

64

CAS Reference UIMA Version 2.3.0

Built-in CAS Types

typed to create sets of allowed values; see Section 2.3.4, “String Subtypes” [8]. These
types can be used to specify the range of a String-valued feature. They act like Strings,
but have additional checking to insure the setting of values into them conforms to one of
the allowed values. Note that the other primitive types cannot be used as a supertype for
another type definition; only ui ma. cas. Stri ng can be sub-typed.

The non-primitive types exist in a type hierarchy; the top of the hierarchy is the type
ui ma. cas. TOP. All other non-primitive types inherit from some supertype.

There are 9 built-in array types. These arrays have a size specified when they are created;
the size is fixed at creation time. They are named:

* uima.cas.BooleanArray

* uima.cas.ByteArray

* uima.cas.ShortArray

* uima.cas.IntegerArray

* uima.cas.LongArray

* uima.cas.FloatArray

¢ uima.cas.DoubleArray

® uima.cas.StringArray

* uima.cas.FSArray

The ui ma. cas. FSArr ay type is an array whose elements are arbitrary other feature
structures (instances of non-primitive types).

There are 3 built-in types associated with the artifact being analyzed:
¢ uima.cas.AnnotationBase
¢ uima.tcas.Annotation
¢ uima.tcas.DocumentAnnotation

The Annot at i onBase type defines one system-used feature which specifies for an
annotation the subject of analysis (Sofa) to which it refers. The Annotation type extends
from this and defines 2 features, taking ui ma. cas. | nt eger values, called begi n and end.
The begi n feature typically identifies the start of a span of text the annotation covers; the
end feature identifies the end. The values refer to character offsets; the starting index is 0.
An annotation of the word “CAS” in a text “CAS Reference” would have a start index of
0, and an end index of 3; the difference between end and start is the length of the span the
annotation refers to.

Annotations are always with respect to some Sofa (Subject of Analysis — see Chapter 5,
Annotations, Artifacts, and Sofas in UIMA Tutorial and Developers” Guides .

Note: Artifacts which are not text strings may have a different interpretation
of the meaning of begin and end, or may define their own kind of annotation,
extending from Annot at i onBase.

The Docunent Annot at i on type has one special instance. It is a subtype of the Annotation
type, and the built-in definition defines one feature, | anguage, which is a string indicating

UIMA Version 2.3.0 CAS Reference 65

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aas
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aas

Accessing the type system

the language of the document in the CAS. The value of this language feature is used by
the system to control flow among annotators when the “CapabilityLanguageFlow” mode
is used, allowing the flow to skip over annotators that don't process particular languages.
Users may extend this type by adding additional features to it, using the XML Descriptor
element for defining a type.

Note: We do not recommend extending the Docunent Annot at i on type. If you
do, you must not use the JCas, for the reasons stated earlier.

Each CAS view has a different associated instance of the Docunment Annot at i on type. On
the CAS, use get Docunent at i onAnnot ati on() to access the Docunent Annot at i on.

There are also built-in types supporting linked lists, similar to the ones available in Java
and other programming languages. Their use is constrained by the usual properties of
linked lists: not very space efficient, no (efficient) random access, but an easy choice if you
don't know how long your list will be ahead of time. The implementation is type specific;
there are different list building objects for each of the primitive types, plus one for general
feature structures. Here are the type names:

* uima.cas.FloatList

* uima.cas.IntegerList

® uima.cas.StringList

* uima.cas.FSList

* uima.cas.EmptyFloatList

* uima.cas.EmptyIntegerList
* uima.cas.EmptyStringList
* uima.cas.EmptyFSList

¢ uima.cas.NonEmptyFloatList

¢ uima.cas.NonEmptyIntegerList
¢ uima.cas.NonEmptyStringList
¢ uima.cas.NonEmptyFSList

For the primitive types Fl oat, | nt eger, Stri ng and Feat ur eStr uct ur e, there is a base
type, for instance, ui ma. cas. Fl oat Li st. For each of these, there are two subtypes,
corresponding to a non-empty element, and a marker that serves to indicate the end of
the list, or an empty list. The non-empty types define two features —head and t ai | . The
head feature holds the particular value for that part of the list. The tail refers to the next
list object (either a non-empty one or the empty version to indicate the end of the list).

There are no other built-in types. Users are free to define their own type systems, building
upon these types.

4.4. Accessing the type system

During annotator processing, or outside an annotator, access the type system by calling
CAS. get TypeSystem().

66

CAS Reference UIMA Version 2.3.0

TypeSystemPrinter example

However, CAS annotators implement an additional method, t ypeSyst em ni t (), which
is called by the UIMA framework before the annotator's process method. This method,
implemented by the annotator writer, is passed a reference to the CAS's type system
metadata. The method typically uses the type system APIs to obtain type and feature
objects corresponding to all the types and features the annotator will be using in its
process method. This initialization step should not be done during an annotator's initialize
method since the type system can change after the initialize method is called; it should
not be done during the process method, since this is presumably work that is identical
for each incoming document, and so should be performed only when the type system
changes (which will be a rare event). The UIMA framework guarantees it will call the
typeSyst em ni t method of an annotator whenever the type system changes, before
calling the annotator's pr ocess() method.

The initialization done by t ypeSyst em ni t () is done by the UIMA framework when you
use the JCas APIs; you only need to provide a t ypeSyst em ni t () method, as described
here, when you are not using the JCas approach.

4.4.1. TypeSystemPrinter example

Here is a code fragment that, given a CAS Type System, will print a list of all types.

/1 Get all type names fromthe type system
/1 and print themto stdout.
private void |istTypesl(TypeSystemts) ({
/1l CGet an iterator over types
Iterator typelterator = ts.get Typelterator();
Type t;
Systemout.println("Types in the type system");
while (typelterator.hasNext()) ({
/] Retrieve a type...
t = (Type) typelterator.next();
/1 ...and print its nane.
Systemout. println(t.getNanme());

}
Systemout.println();

This method is passed the type system as a parameter. From the type system, we can get
an iterator over all known types. If you run this against a CAS created with no additional
user-defined types, we should see something like this on the console:

Types in the type system
ui ma. cas. Bool ean

ui ma. cas. Byte

ui ma. cas. Short

ui ma. cas. | nt eger

ui ma. cas. Long

ui ma. cas. ArrayBase

UIMA Version 2.3.0 CAS Reference 67

TypeSystemPrinter example

If the type system had user-defined types these would show up too. Note that some of
these types are not directly creatable — they are types used by the framework in the type
hierarchy (e.g. uima.cas.ArrayBase).

CAS type names include a name-space prefix. The components of a type name are
separated by the dot (.). A type name component must start with a Unicode letter,
followed by an arbitrary sequence of letters, digits and the underscore (_). By convention,
the last component of a type name starts with an uppercase letter, the rest start with a
lowercase letter.

Listing the type names is mildly useful, but it would be even better if we could see the
inheritance relation between the types. The following code prints the inheritance tree in
indented format.

private static final int |NDENT = 2;
private void |istTypes2(TypeSystemts) ({
/1 Get the root of the inheritance tree.
Type top = ts.get TopType();
/1 Recursively print the tree.
printlnheritanceTree(ts, top, 0);

}

private void printlnheritanceTree(TypeSystemts, Type type, int level) {
indent(level); // Print indentation.
System out. println(type.getNanme());
/1l Get a vector of the i medi ate subtypes.
Vect or subTypes =
ts.getDirectl ySubsumedTypes(type);
++l evel; // Increase the indentation |evel.
for (int i = 0; i < subTypes.size(); i++) {
/1 Print the subtypes.
printlnheritanceTree(ts, (Type) subTypes.get(i), level);

}
}

/1 A sinple, inefficient indenter
private void indent(int level) {
int spaces = | evel * | NDENT;
for (int i =0; i < spaces; i++) {
Systemout.print(" ");
}
}

This example shows that you can traverse the type hierarchy by starting
at the top with TypeSystem.getTopType and by retrieving subtypes with
TypeSystem get Di rect | ySubsunmedTypes() .

The Javadocs also have APIs that allow you to access the features, as well as what the
allowed value type is for that feature. Here is sample code which prints out all the features

68

CAS Reference UIMA Version 2.3.0

Using CAS APIs: Feature Structures

of all the types, together with the allowed value types (the feature “range”). Each feature
has a “domain” which is the type where it is defined, as well as a “range”.

private void |istFeatures2(TypeSystemts) {
Iterator featurelterator = ts.getFeatures();
Feature f;
Systemout.println("Features in the type system");
while (featurelterator.hasNext()) {
f = (Feature) featurelterator.next();
System out . printl n(
f.get ShortName() + ": " +
f.getDomain() + " ->" + f.getRange());
}
Systemout . println();

We can ask a feature object for its domain (the type it is defined on) and its range (the type
of the value of the feature). The terminology derives from the fact that features can be
viewed as functions on subspaces of the object space.

4.4.2. Using the CAS APIs to create and modify feature
structures

Assume a type system declaration that defines two types: Entity and Person. Entity has
no features defined within it but inherits from uima.tcas.Annotation — so it has the begin
and end features. Person is, in turn, a subtype of Entity, and adds firstName and lastName
features. CAS type systems are declaratively specified using XML; the format of this XML
is described in Section 2.3, “Type System Descriptors” [5].

<I-- Type System Definition -->
<t ypeSyst enDescri pti on>
<types>
<t ypeDescri pti on>
<name>com xyz. proj . Enti t y</ nane>
<description />
<supert ypeNanme>ui na. t cas. Annot at i on</ supert ypeNane>
</typeDescri ption>
<t ypeDescri pti on>
<name>Per son</ nane>
<description />
<supertypeName>com xyz. proj . Entity </supertypeNane>
<f eat ures>
<f eat ureDescri pti on>
<nane>f i r st Nane</ nane>
<description />
<rangeTypeNanme>ui ma. cas. Stri ng</rangeTypeName>
</ f eat ureDescri pti on>
<f eat ureDescri pti on>
<nane>| ast Nane</ nanme>
<description />

UIMA Version 2.3.0 CAS Reference 69

Using CAS APIs: Feature Structures

<rangeTypeNanme>ui ma. cas. Stri ng</rangeTypeNane>
</ featureDescription>
</ f eat ures>
</typeDescri ption>
</types>
</ typeSyst enDescri pti on>

To be able to access types and features, we need to know their names. The CAS

interface defines constants that hold the names of built-in feature names, such as, e.g.,

CAS. TYPE_NAME_| NTEGER It is good programming practice to create such constants for
the types and features you define, for your own use as well as for others who will be using
your annotators.

/** Entity type nane constant. */
public static final String ENTI TY_TYPE _NAME = "com xyz.proj.Entity";

/** Person type nane constant. */
public static final String PERSON TYPE_NAME = "com xyz.proj.Person";

/** First name feature nane constant. */
public static final String FI RST_NAVE FEAT_NAME = "firstName";

/[** Last nanme feature nane constant. */
public static final String LAST _NAMVE FEAT _NAME = "Il ast Nane";

Next we define type and feature member variables; these will hold the values of the type
and feature objects needed by the CAS APIs, to be assigned during t ypeSystem ni t ().

/1l Type system obj ect variabl es
private Type entityType;

private Type personType;

private Feature firstNanmeFeature;
private Feature | ast NameFeat ure;
private Type stringType;

The type system does not throw an exception if we ask for something that is not known,

it simply returns null; therefore the code checks for this and throws a proper exception.
We require all these types and features to be defined for the annotator to work. One might
imagine situations where certain computations are predicated on some type or feature
being defined in the type system, but that is not the case here.

/1l CGet a type object corresponding to a nane.
/1 If it doesn't exist, throw an exception.
private Type initType(String typeNane)
throws Annotatorlnitializati onException {
Type type = ts.get Type(typeNane);
if (type == null) {
throw new Annotatorlnitializati onException(
Annotatorlnitializati onException. TYPE_NOT_FOUND,
new bject[] { this.getd ass().getNane(), typeNane });

70

CAS Reference UIMA Version 2.3.0

Creating feature structures

}

return type;

}

/1 W add simlar code for retrieving feature objects.
/1l Get a feature object froma nanme and a type object.
/1 1f it doesn't exist, throw an exception.
private Feature initFeature(String featNane, Type type)
throws Annotatorlnitializati onException {
Feature feat = type. get Feat ur eByBaseNane(f eat Nane) ;
if (feat == null) {
throw new Annotatorlnitializati onException(
Annotatorlnitializati onExcepti on. FEATURE_NOT_FOUND,
new bject[] { this.getd ass().getNane(), featNane });
}

return feat;

Using these two functions, code for initializing the type system described above would be:

public void typeSystemn nit(TypeSystem aTypeSystem
throws Anal ysi sEngi neProcessException {
this.typeSystem = aTypeSystem
/1 Set type system nenber vari abl es.
this.entityType = initType(ENTI TY_TYPE_NAME);
thi s. personType = initType(PERSON_TYPE_NAME) ;
this.firstNameFeature =
i ni t Feat ur e(Fl RST_NAME_FEAT_NAME, personType);
this. | ast NaneFeature =
i ni t Feat ur e(LAST_NAME_FEAT_NAME, personType);
this.stringType = initType(CAS. TYPE_NAME_STRI NG ;

Note that we initialize the string type by using a type name constant from the CAS.

4.5. Creating feature structures

To create feature structures in JCas, we use the Java “new” operator. In the CAS, we use
one of several different API methods on the CAS object, depending on which of the 10
basic kinds of feature structures we are creating (a plain feature structure, or an instance
of the built-in primitive type arrays or FSArray). There are is also a method to create an
instance of a ui ma. t cas. Annot at i on, setting the begin and end values.

Once a feature structure is created, it needs to be added to the CAS indexes (unless

it will be accessed via some reference from another accessible feature structure). The

CAS provides this API: Assuming aCAS holds a reference to a CAS, and token holds a
reference to a newly created feature structure, here's the code to add that feature structure
to all the relevant CAS indexes:

/1 Add the token to the index repository.

UIMA Version 2.3.0 CAS Reference 71

Accessing or modifying Features

aCAS. addFsTol ndexes(t oken);

There is also a corresponding r enoveFsFr oml ndexes(t oken) method on CAS objects.

Because some of the indexes (the Sorted and Set types) use comparators defined on
particular values of the features of an indexed type, if you change the values of those
features being used in the index key, the correct way to do this is to
1. remove the item from all indexes where it is indexed, in all views where it is
indexed,
2. update the value of the features being used as keys,
3. add the item back to the indexes, in all views.

4.6. Accessing or modifying features of feature
structures

Values of individual features for a feature structure can be set or referenced, using a set
of methods that depend on the type of value that feature is declared to have. There are
methods on FeatureStructure for this: getBooleanValue, getByteValue, getShortValue,
getIntValue, getLongValue, getFloatValue, getDoubleValue, getStringValue, and
getFeatureValue (which means to get a value which in turn is a reference to a feature
structure). There are corresponding “setter” methods, as well. These methods on the
feature structure object take as arguments the feature object retrieved earlier in the
typeSystemlInit method.

Using the previous example, with the type system initialized with type personType and
feature lastNameFeature, here's a sample code fragment that gets and sets that feature:

/'l Assune aPerson is a variable hol ding an object of type Person
/1 get the | ast NaneFeature value fromthe feature structure

String | ast Nane = aPerson. get Stri ngVal ue(l ast NaneFeat ure) ;

/'l set the | ast NanmeFeature val ue

aPer son. set Stri ngVal ue(l ast NaneFeat ure, newStri ngVal ueFor Last Nane) ;

The getters and setters for each of the primitive types are defined in the Javadocs as
methods of the FeatureStructure interface.

4.7. Indexes and lterators

Each CAS can have many indexes associated with it; each CAS View contains a complete
set of instantions of the indexes. Each index is represented by an instance of the type
org.apache.uima.cas.FSIndex. You use the object org.apache.uima.cas.FSIndexRepository,
accessible via a method on a CAS object, to retrieve instances of indexes. There are
methods that let you select the index by name, by type, or by both name and type. Since
each index is already associated with a type, passing both a name and a type is valid
only if the type passed in is the same type or a subtype of the one declared in the index

72

CAS Reference UIMA Version 2.3.0

Built-in Indexes

specification for the named index. If you pass in a subtype, the returned FSIndex object
refers to an index that will return only items belonging to that subtype (or subtypes of that
subtype).

The returned FSIndex objects are used, in turn, to create iterators. There is also a method
on the Index Repository, get Al | | ndexedFS, which will return an iterator over all indexed
Feature Structures (for that CAS View), in no particular order. The iterators created can
be used like common Java iterators, to sequentially retrieve items indexed. If the index
represents a sorted index, the items are returned in a sorted order, where the sort order is
specified in the XML index definition. This XML is part of the Component Descriptor, see
Section 2.4.1.7, “Index Definition” [18].

Feature structures should not be added to or removed from indexes while iterating

over them; a ConcurrentModificationException is thrown when this is detected. Certain
operations are allowed with the iterators after modification, which can “reset” this
condition, such as moving to beginning, end, or moving to a particular feature structure.
So - if you have to modify the index, you can move it back to the last FS you had retrieved
from the iterator, and then continue, if that makes sense in your application.

4.7.1.

Built-in Indexes

An unnamed built-in bag index exists which holds all feature structures which are
indexed. The only access to this index is the method getAllIndexedFS(Type) which returns
an iterator over all indexed Feature Structures.

The CAS also contains a built-in index for the type ui na. t cas. Annot at i on, which
sorts annotations in the order in which they appear in the document. Annotations are
sorted first by increasing begi n position. Ties are then broken by decreasing end position
(so that longer annotations come first). Annotations that match in both their begi n

and end features are sorted using the Type Priority (see Section 2.4.1.6, “Type Priority
Definition” [16])

4.7.2. Adding Feature Structures to the Indexes

Feature Structures are added to the indexes by calling the

FSI ndexReposi t ory. addFS(Feat ur eSt r uct ur e) method or the equivalent convenience
method CAS. addFsTol ndexes(Feat ur eSt r uct ur e) . This adds the Feature Structure to
all indexes that are defined for the type of that FeatureStructure (or any of its supertypes).
Note that you should not add a Feature Structure to the indexes until you have set values
for all of the features that may be used as sort keys in an index.

4.7.3.

Iterators

Iterators are objects of class or g. apache. ui ma. cas. FSI t erat or. This class extends
java.util.lterator and implements the normal Java iterator methods, plus additional
ones that allow moving both forwards and backwards.

UIMA Version 2.3.0 CAS Reference 73

Special iterators for Annotation types

4.7.4. Special iterators for Annotation types

The built-in index over the ui ma. t cas. Annot at i on type named “Annot at i onl ndex”
has additional capabilities. To use them, you first get a reference to this built-in index
using either the get Annot at i onl ndex method on a CAS View object, or by asking the
FSI ndexReposi t ory object for an index having the particular name “AnnotationIndex”,
for example:

Annot ati onl ndex i dx = aCAS. get Annot ati onl ndex();
/1 or you can iterate over a specific subtype of Annotation:
Annot ati onl ndex i dx = aCAS. get Annot at i onl ndex(aType);

This object can be used to produce several additional kinds of iterators. It can produce
unambiguous iterators; these skip over elements until it finds one where the start position
of the next annotation is equal to or greater than the end position of the previously
returned annotation.

It can also produce several kinds of subiterators; these are iterators whose annotations
fall within the span of another annotation. This kind of iterator can also have the
unambiguous property, if desired. It also can be “strict” or not; strict means that the
returned annotation lies completely within the span of the controlling annotation. Non-
strict only implies that the beginning of the returned annotation falls within the span of
the controlling annotation.

There is also a method which produces an Annot at i onTr ee object, which contains
nodes representing the results of doing a strict, unambiguous subiterator over the span
of some controlling annotation. For more details, please refer to the Javadocs for the
org. apache. ui ma. cas. t ext package.

4.7.5. Constraints and Filtered iterators

There is a set of API calls that build constraint objects. These objects can be used directly
to test if a particular feature structure matches (satisfies) the constraint, or they can be
passed to the createFilteredIterator method to create an iterator that skips over instances
which fail to satisfy the constraint.

It is possible to specify a feature value located by following a chain of references starting
from the feature structure being tested. Here's a scenario to explore this concept. Let's
suppose you have the following type system (namespaces are omitted for clarity):

Token, having a feature PartOfSpeech which holds a reference to another
type (POS)

POS (a type with many subtypes, each representing a different part of
speech)

Noun (a subtype of POS)

74

CAS Reference UIMA Version 2.3.0

Constraints and Filtered iterators

ProperName (a subtype of Noun), having a feature Class which holds an
integer value encoding some information about the proper noun.

If you want to filter Token instances, such that only those tokens get through which are
proper names of class 3 (for example), you would need a test that started with a Token
instance, followed its PartOfSpeech reference to another instance (the ProperName
instance) and then tested the Class feature of that instance for a value equal to 3.

To support this, the filtering approach has components that specify tests, and components
that specify “paths”. The tests that can be done include testing references to type
instances to see if they are instances of some type or its subtypes; this is done with a
FSTypeConstraint constraint. Other tests check for equality or, for numeric values, ranges.

Each test may be combined with a path — to get to the value to test. Tests that start from a
feature structure instance can be combined with and and or connectors. The Javadocs for
these are in the package org.apache.uima.cas in the classes that end in Constraint, plus the
classes ConstraintFactory, FeaturePath and CAS. Here's an example; assume the variable
cas holds a reference to a CAS instance.

/1 Start by getting the constraint factory fromthe CAS.
Constrai nt Factory cf = cas. getConstraintFactory();

/1l To specify a path to an itemto test, you start by
/] creating an enpty path.
Feat urePath path = cas. createFeaturePath();

/1 Add PCS feature to path, creating one-el enment path.
pat h. addFeat ur e(posFeat) ;

/'l You can extend the chain arbitrarily by adding additional
/| features.

/1l Create a new type constraint.

/'l Type constraints will check that structures

/1l they match agai nst have a type at |east as specific

/1 as the type specified in the constraint.

FSTypeConst rai nt nounConstraint = cf.createTypeConstraint();

/1 Set the type (by default it is TOP).

/1 This succeeds if the type being tested by this constraint
/1 is nounType or a subtype of nounType.

nounConstrai nt. add(nounType) ;

/! Enbed the noun constraint under the pos path.
/1 This neans, associate the test with the path, so it tests the
/'l proper val ue.

// The result is a test which wll
/1 match a feature structure that has a posFeat defined
/1 which has a value which is an instance of a nounType or

UIMA Version 2.3.0 CAS Reference 75

CAS API's Javadocs

/1 one of its subtypes.
FSMat chConst rai nt enmbeddedNoun = cf. enbedConstrai nt (path, nounConstraint);

/1l Create a type constraint for token (or a subtype of it)
FSTypeConstrai nt tokenConstraint = cf.createTypeConstraint();

/1 Set the type.
t okenConstrai nt . add(t okenType) ;

/1l Create the final constraint by conjoining the two constraints.
FSMat chConst rai nt nounTokenCons = cf.and(nounConstraint, tokenConstraint);

/Il Create a filtered iterator fromsone annotation iterator.
FSlterator it = cas.createFilteredlterator(annotlt, nounTokenCons);

4.8. The CAS API's —a guide to the Javadocs

The CAS APIs are organized into 3 Java packages: cas, cas.impl, and cas.text. Most of

the APIs described here are in the cas package. The cas.impl package contains classes
used in serializing and deserializing (reading and writing to external strings) the XCAS
form of the CAS (XCAS is an XML serialization of the CAS). The XCAS form is used

for transporting the CAS among local and remote annotators, or for storing the CAS in
permanent storage. The cas.text contains the APIs that extend the CAS to support artifact
(including “text”) analysis.

4.8.1. APIs in the CAS package

The main objects implementing the APIs discussed here are shown in the diagram below.
The hierarchy represents that there is a way to get from an upper object to an instance of
the lower object, usually by using a method on the upper object; this is not an inheritance
hierarchy.

76

CAS Reference UIMA Version 2.3.0

APIs in the CAS package

_

[TypeSystem] [FSIndexRepository]

1 1 |
[Type] { Feature } { FSindex,]
Annotationlndex

FSlterator }

FeatureStructure }

Figure 4.1. CAS Object hierarchy

The main Interface is the CAS interface. This has most of the functionality of the CAS,
except for the type system metadata access, and the indexing access. JCas and CAS are
alternative representations and API approaches to the CAS; each has a method to get the
other. You can mix JCas and CAS APIs in your application as needed. To use the JCas
APIs, you have to create the Java classes that correspond to the CAS types, and include
them in the Java class path of the application. If you have a CAS object, you can get a JCas
object by using the getJCas() method call on the CAS object; likewise, you can get the CAS
object from a JCas by using the getCAS() method call on the JCas object. There is also a
low level CAS interface that is not part of the official API, and is intended for internal use
only —it is not documented here.

The type system metadata APIs are found in the TypeSystem interface. The objects
defining each type and feature are defined by the interfaces Type and Feature. The Type
interface has methods to see what types subsume other types, to iterate over the types
available, and to extract information about the types, including what features it has. The
Feature interface has methods that get what type it belongs to, its name, and its range (the
kind of values it can hold).

The FSIndexRepository gives you access to methods to get instances of indexes,

and also provides access to the iterator over all indexed feature structures:

get Al | I ndexedFS(aType) . The FSIndex and AnnotationIndex objects give you methods
to create instances of iterators.

Iterators and the CAS methods that create new feature structures return FeatureStructure
objects. These objects can be used to set and get the values of defined features within
them.

UIMA Version 2.3.0 CAS Reference 77

Chapter 5. JCas Reference

The CAS is a system for sharing data among annotators, consisting of data structures
(definable at run time), sets of indexes over these data, metadata describing these,
subjects of analysis, and a high performance serialization/deserialization mechanism. JCas
provides Java approach to accessing CAS data, and is based on using generated, specific
Java classes for each CAS type.

Annotators process one CAS per call to their process method. During processing,
annotators can retrieve feature structures from the passed in CAS, add new ones, modify
existing ones, and use and update CAS indexes. Of course, an annotator can also use
plain Java Objects in addition; but the data in the CAS is what is shared among annotators
within an application.

All the facilities present in the APIs for the CAS are available when using the JCas APlIs;
indeed, you can use the getCas() method to get the corresponding CAS object from a JCas
(and vice-versa). The JCas APIs often have helper methods that make using this interface
more convenient for Java developers.

The data in the CAS are typed objects having fields. JCas uses a set of generated Java
classes (each corresponding to a particular CAS type) with “getter” and “setter” methods
for the features, plus a constructor so new instances can be made. The Java classes don't
actually store the data in the class instance; instead, the getters and setters forward to

the underlying CAS data representation. Because of this, applications which use the

JCas interface can share data with annotators using plain CAS (i.e., not using the JCas
approach).

Users can modify the JCas generated Java classes by adding fields to them; this allows
arbitrary non-CAS data to also be represented within the JCas objects, as well; however,
the non-CAS data stored in the JCas object instances cannot be shared with annotators
using the plain CAS.

Data in the CAS initially has no corresponding JCas type instances; these are created

as needed at the first reference. This means, if your annotator is passed a large CAS
having millions of CAS feature structures, but you only reference a few of them, and no
previously created Java JCas object instances were created by upstream annotators, the
only Java objects that will be created will be those that correspond to the CAS feature
structures that you reference.

The JCas class Java source files are generated from XML type system descriptions. The
JCasGen utility does the work of generating the corresponding Java Class Model for the
CAS types. There are a variety of ways JCasGen can be run; these are described later. You
include the generated classes with your UIMA component, and you can publish these
classes for others who might want to use your type system.

JCas Reference 79

Name Spaces

The specification of the type system in XML can be written using a conventional
text editor, an XML editor, or using the Eclipse plug-in that supports editing UIMA
descriptors.

Changes to the type system are done by changing the XML and regenerating the
corresponding Java Class Models. Of course, once you've published your type system for
others to use, you should be careful that any changes you make don't adversely impact the
users. Additional features can be added to existing types without breaking other code.

A separate Java class is generated for each type; this type implements the CAS
FeatureStructure interface, as well as having the special getters and setters for the
included features. In the current implementation, an additional helper class per type

is also generated. The generated Java classes have methods (getters and setters) for the
fields as defined in the XML type specification. Descriptor comments are reflected in the
generated Java code as Java-doc style comments.

5.1. Name Spaces

Full Type names consist of a “namespace” prefix dotted with a simple name. Namespaces
are used like packages to avoid collisions between types that are defined by different
people at different times. The namespace is used as the Java package name for generated
Java files.

Type names used in the CAS correspond to the generated Java classes directly. If the CAS
name is com.myCompany.myProject. ExampleClass, the generated Java class is in the
package com.myCompany.myProject, and the class is ExampleClass.

An exception to this rule is the built-in types starting with ui ma. cas and ui na. t cas;
these names are mapped to Java packages named or g. apache. ui ma. j cas. cas and
org. apache. ui na. j cas. tcas.

5.2. XML description element

Each XML type specification can have <description ... > tags. The description for a type
will be copied into the generated Java code, as a Javadoc style comment for the class.
When writing these descriptions in the XML type specification file, you might want to use
html tags, as allowed in Javadocs.

If you use the Component Description Editor, you can write the html tags normally,

for instance, “<h1>My Title</h1>". The Component Descriptor Editor will take care of
coverting the actual descriptor source so that it has the leading “<” character written as
“<”, to avoid confusing the XML type specification. For example, <p> would be written
in the source of the descriptor as <p>. Any characters used in the Javadoc comment
must of course be from the character set allowed by the XML type specification. These
specifications often start with the line <?xml version="1.0" encoding="UTF-8" ?>, which
means you can use any of the UTF-8 characters.

80

JCas Reference UIMA Version 2.3.0

Mapping built-in CAS types to Java types

5.3. Mapping built-in CAS types to Java types

The built-in primitive CAS types map to Java types as follows:

ui ma. cas. Bool ean - bool ean

0

ui ma. cas. Byte byt e

ui ma. cas. Short short

0

ui ma. cas. | nteger - int

ui ma. cas. Long - long

ui ma. cas. Fl oat - float
ui ma. cas. Doubl e - doubl e

uima.cas. String - String

5.4. Augmenting the generated Java Code

The Java Class Models generated for each type can be augmented by the user. Typical
augmentations include adding additional (non-CAS) fields and methods, and import
statements that might be needed to support these. Commonly added methods include
additional constructors (having different parameter signatures), and implementations of
toString().

To augment the code, just edit the generated Java source code for the class named the
same as the CAS type. Here's an example of an additional method you might add; the
various getter methods are retrieving values from the instance:

public String toString() { // for debuggi ng
return "XsgParse "
+ getslotNanme() + "
+ get headWord() . get Cover edText ()
+ " segNo: " + getseqNo()
", cAddr: " + id
", size left mods: " + getl Mods().size()
", size right nods: " + getrMods().size();

+ + +

5.4.1. Persistence of additional data

If you add custom instance fields to JCas cover classes, these exist in the JCas cover object
instance, but not in the CAS itself. Each time a CAS object is referenced (by an iterator,

or by following a Feature Structure reference), a new JCas cover object instance may be
created. If you need these values, you can (a) make them CAS values if possible, or (b)
hold a reference to the the particular JCas cover object instance in your Java code. For
some simple cases, setting the the performance tuning option JCAS_CACHE_ENABLE
(see Section 3.9, “Performance Tuning Options” in UIMA Tutorial and Developers’ Guides)

UIMA Version 2.3.0 JCas Reference 81

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#tug.application.pto

Keeping hand-coded augmentations when regenerating

to true will cause the same JCas cover object that was previously used for a particular CAS
Feature Structure to be reused. However, this capability won't work when other factors
interfere with the ability to reuse the same object. Pear isolation is an example of this.

Because of this, and because the JCas Cache holds on to the JCas cover objects beyond
their useful life and prevents them from being garbage collected, it is normally
recommended running with the JCAS_CACHE_ENABLE set to "false".

5.4.2. Keeping hand-coded augmentations when
regenerating

If the type system specification changes, you have to re-run the JCasGen generator. This
will produce updated Java for the Class Models that capture the changed specification.
If you have previously augmented the source for these Java Class Models, your changes
must be merged with the newly (re)generated Java source code for the Class Models.
This can be done by hand, or you can run the version of JCasGen that is integrated with
Eclipse, and use automatic merging that is done using Eclipse's EMF plug-in. You can
obtain Eclipse and the needed EMF plug-in from http://www.eclipse.orgy/.

If you run the generator version that works without using Eclipse, it will not merge Java
source changes you may have previously made; if you want them retained, you'll have to
do the merging by hand.

The Java source merging will keep additional constructors, additional fields, and any
changes you may have made to the readObject method (see below). Merging will not
delete classes in the target corresponding to deleted CAS types, which no longer are in the
source — you should delete these by hand.

Warning: The merging supports Java 1.4 syntactic constructs only. JCasGen
generates Java 1.4 code, so as long as any code you change here also sticks to only
Java 1.4 constructs, the merge will work. If you use Java 5 or later specific syntax
or constructs, the merge operation will likely fail to merge properly.

5.4.3. Additional Constructors

Any additional constructors that you add must include the JCas argument. The first line of
your constructor is required to be

this(jcas); /1 run the standard constructor

where jcas is the passed in JCas reference. If the type you're defining extends
ui ma. t cas. Annot at i on, JCasGen will automatically add a constructor which
takes 2 additional parameters — the begin and end Java int values, and set the
ui ma. t cas. Annot at i on begi n and end fields.

Here's an example: If you're defining a type MyType which has a feature parent, you
might make an additional constructor which has an additional argument of parent:

82

JCas Reference UIMA Version 2.3.0

http://www.eclipse.org/

Modifying generated items

M/ Type(JCas jcas, MyType parent) {
thi s(jcas); /] run the standard constructor
set Parent (parent); // set the parent field fromthe paraneter

}

5.4.3.1. Using readObject

Fields defined by augmenting the Java Class Model to include additional fields represent
data that exist for this class in Java, in a local JVM (Java Virtual Machine), but do not exist
in the CAS when it is passed to other environments (for example, passing to a remote
annotator).

A problem can arise when new instances are created, perhaps by the underlying system
when it iterates over an index, which is: how to insure that any additional non-CAS fields
are properly initialized. To allow for arbitrary initialization at instance creation time, an
initialization method in the Java Class Model, called readObject is used. The generated
default for this method is to do nothing, but it is one of the methods that you can modify
— to do whatever initialization might be needed. It is called with 0 parameters, during the
constructor for the object, after the basic object fields have been set up. It can refer to fields
in the CAS using the getters and setters, and other fields in the Java object instance being
initialized.

A pre-existing CAS feature structure could exist if a CAS was being passed to this
annotator; in this case the JCas system calls the readObject method when creating the
corresponding Java instance for the first time for the CAS feature structure. This can
happen at two points: when a new object is being returned from an iterator over a CAS
index, or a getter method is getting a field for the first time whose value is a feature
structure.

5.4.4.

Modifying generated items

The following modifications, if made in generated items, will be preserved when
regenerating.

The public/private etc. flags associated with methods (getters and setters). You can change
the default (“public”) if needed.

“final” or “abstract” can be added to the type itself, with the usual semantics.

5.5. Merging types

Type definitions are merged by the framework from all the components being run
together.

5.5.1. Aggregate AEs and CPEs as sources of types

When running aggregate AEs (Analysis Engines), or a set of AEs in a collection processing
engine, the UIMA framework will build a merged type system (Note: this “merge” is

UIMA Version 2.3.0 JCas Reference 83

JCasGen support for type merging

merging types, not to be confused with merging Java source code, discussed above).
This merged type system has all the types of every component used in the application.
In addition, application code can use UIMA Framework APIs to read and merge type
descriptions, manually.

In most cases, each type system can have its own Java Class Models generated
individually, perhaps at an earlier time, and the resulting class files (or .jar files containing
these class files) can be put in the class path to enable JCas.

However, it is possible that there may be multiple definitions of the same CAS type, each
of which might have different features defined. In this case, the UIMA framework will
create a merged type by accumulating all the defined features for a particular type into
that type's type definition. However, the JCas classes for these types are not automatically
merged, which can create some issues for JCas users, as discussed in the next section.

5.5.2. JCasGen support for type merging

When there are multiple definitions of the same CAS type with different features defined,
then JCasGen can be re-run on the merged type system, to create one set of JCas Class
definitions for the merged types, which can then be shared by all the components.
Directions for running JCasGen can be found in Chapter 7, [CasGen User's Guide in UIMA
Tools Guide and Reference. This is typically done by the person who is assembling the
Aggregate Analysis Engine or Collection Processing Engine. The resulting merged Java
Class Model will then contain get and set methods for the complete set of features. These
Java classes must then be made available in the class path, replacing the pre-merge versions
of the classes.

If hand-modifications were done to the pre-merge versions of the classes, these must be
applied to the merged versions, as described in section Section 5.4.2, “Keeping hand-
coded augmentations when regenerating” [82], above. If just one of the pre-merge
versions had hand-modifications, the source for this hand-modified version can be

put into the file system where the generated output will go, and the -merge option for
JCasGen will automatically merge the hand-modifications with the generated code. If both
pre-merged versions had hand-modifications, then these modifications must be manually
merged.

An alternative to this is packaging the components as individual PEAR files, each with
their own version of the JCas generated Classes. The Framework (as of release 2.2) can run
PEAR files using the pear file descriptor, and supply each component with its particular
version of the JCas generated class.

5.5.3. Impact of Type Merging on Composability of
Annotators

The recommended approach in UIMA is to build and maintain type systems as separate
components, which are imported by Annotators. Using this approach, Type Merging does

84 JCas Reference UIMA Version 2.3.0

../tools/tools.pdf#ugr.tools.jcasgen

Adding Features to DocumentAnnotation

not occur because the Type System and its JCas classes are centrally managed and shared
by the annotators.

If you do choose to create a JCas Annotator that relies on Type Merging (meaning that
your annotator redefines a Type that is already in use elsewhere, and adds its own
features), this can negatively impact the reusability of your annotator, unless your
component is used as a PEAR file.

If not using PEAR file packaging isolation capability, whenever anyone wants to combine
your annotator with another annotator that uses a different version of the same Type,

they will need to be aware of all of the issues described in the previous section. They will
need to have the know-how to re-run JCasGen and appropriately set up their classpath to
include the merged Java classes and to not include the pre-merge classes. (To enable this,
you should package these classes separately from other .jar files for your annotator, so that
they can be more easily excluded.) And, if you have done hand-modifications to your JCas
classes, the person assembling your annotator will need to properly merge those changes.
These issues significantly complicate the task of combining annotators, and will cause
your annotator not to be as easily reusable as other UIMA annotators.

5.5.4. Adding Features to DocumentAnnotation

There is one built-in type, ui ma. t cas. Docunent Annot at i on, to which applications

can add additional features. (All other built-in types are "feature-final" and you

cannot add additional features to them.) Frequently, additional features are added to

ui ma. t cas. Docunent Annot at i on to provide a place to store document-level metadata.

For the same reasons mentioned in the previous section, adding features to
DocumentAnnotation is not recommended if you are using JCas. Instead, it is
recommended that you define your own type for storing your document-level
metadata. You can create an instance of this type and add it to the indexes in the

usual way. You can then retrieve this instance using the iterator returned from the
methodget Al | | ndexedFS(type) on an instance of a JESIndexRepository object. (As of
UIMA v2.1, you do not have to declare a custom index in your descriptor to get this to
work).

If you do choose to add features to DocumentAnnotation, there are additional issues
to be aware of. The UIMA SDK provides the JCas cover class for the built-in definition
of DocumentAnnotation, in the separate jar file ui ma- docurent - annot ation. j ar.

If you add additional features to DocumentAnnotation, you must remove this jar file
from your classpath, because you will not want to use the default JCas cover class. You
will need to re-run JCasGen as described in Section 5.5.2, “JCasGen support for type
merging” [84]. JCasGen will generate a new cover class for DocumentAnnotation,
which you must place in your classpath in lieu of the version in ui ma- docunent -
annot ation.jar.

Also, this is the reason why the method JCas. get Docunent Annot at i onFs() returns
type TOP, rather than type Docunent Annot at i on. Because the Docunent Annot at i on

UIMA Version 2.3.0 JCas Reference 85

Using JCas within an Annotator

class can be replaced by users, it is not part of ui na- core. j ar and so the core UIMA
framework cannot have any references to it. In your code, you may “cast” the result

of JCas. get Docunent Annot ati onFs() to type Docunent Annot at i on, which must be
available on the classpath either via ui ma- docunent - annot ati on. j ar or by including a
custom version that you have generated using JCasGen.

5.6. Using JCas within an Annotator

To use JCas within an annotator, you must include the generated Java classes output from
JCasGen in the class path.

An annotator written using JCas is built by defining a class for the annotator that extends
JCasAnnotator_ImplBase. The process method for this annotator is written

public void process(JCas jcas)
t hrows Anal ysi sEngi neProcessExcepti on {
/1 body of annotator goes here

The process method is passed the JCas instance to use as a parameter.

The JCas reference is used throughout the annotator to refer to the particular JCas instance
being worked on. In pooled or multi-threaded implementations, there will be a separate
JCas for each thread being (simultaneously) worked on.

You can do several kinds of operations using the JCas APIs: create new feature structures
(instances of CAS types) (using the new operator), access existing feature structures
passed to your annotator in the JCas (for example, by using the next method of an iterator
over the feature structures), get and set the fields of a particular instance of a feature
structure, and add and remove feature structure instances from the CAS indexes. To
support iteration, there are also functions to get and use indexes and iterators over the
instances in a JCas.

5.6.1. Creating new instances using the Java “new”
operator

The new operator creates new instances of JCas types. It takes at least one parameter, the
JCas instance in which the type is to be created. For example, if there was a type Meeting
defined, you can create a new instance of it using:

Meeting m= new Meeting(jcas);

Other variations of constructors can be added in custom code; the single parameter
version is the one automatically generated by JCasGen. For types that are subtypes of
Annotation, JCasGen also generates an additional constructor with additional “begin” and
“end” arguments.

86

JCas Reference UIMA Version 2.3.0

Getters and Setters

5.6.2. Getters and Setters

If the CAS type Meeting had fields location and time, you could get or set these by using
getter or setter methods. These methods have names formed by splicing together the word
“get” or “set” followed by the field name, with the first letter of the field name capitalized.
For instance

get Locati on()

The getter forms take no parameters and return the value of the field; the setter forms take
one parameter, the value to set into the field, and return void.

There are built-in CAS types for arrays of integers, strings, floats, and feature structures.
For fields whose values are these types of arrays, there is an alternate form of getters and
setters that take an additional parameter, written as the first parameter, which is the index
in the array of an item to get or set.

5.6.3. Obtaining references to Indexes

The only way to access instances (not otherwise referenced from other instances) passed in
to your annotator in its JCas is to use an iterator over some index. Indexes in the CAS are
specified in the annotator descriptor. Indexes have a name; text annotators have a built-in,
standard index over all annotations.

To get an index, first get the JESIndexRepository from the JCas using the method
jcas.get]FSIndexRepository(). Here are the calls to get indexes:

JFSI ndexRepository ir = jcas. get JFSI ndexRepository();

ir.getlndex(name-of-index) // get the index by its name, a string
i r.getlndex(name-of -i ndex, Foo.type) // filtered by specific type

i r.get Annot at i onl ndex() /1 get Annotationl ndex
i r.get Annot at i onl ndex(Foo. t ype) /1 filtered by specific type

For convenience, the getAnnotationIndex method is available directly on the JCas object
instance; the implementation merely forwards to the associated index repository.

Filtering types have to be a subtype of the type specified for this index in its index
specification. They can be written as either Foo.type or if you have an instance of Foo, you
can write

f ool nst ance. j casType. casType.

Foo is (of course) an example of the name of the type.

UIMA Version 2.3.0 JCas Reference 87

Updating Indexes

5.6.4. Adding (and removing) instances to (from) indexes

CAS indexes are maintained automatically by the CAS. But you must add any instances of
feature structures you want the index to find, to the indexes by using the call:

myl nst ance. addTol ndexes() ;

Do this after setting all features in the instance which could be used in indexing, for
example, in determining the sorting order. After indexing, do not change the values of
these particular features because the indexes will not be updated. If you need to change
the values, you must first remove the instance from the CAS indexes, change the values,
and then add the instance back. To remove an instance from the indexes, use the method:

nyl nst ance. r enoveFr om ndexes() ;

Note: It's OK to change feature values which are not used in determining sort
ordering (or set membership), without removing and re-adding back to the index.

When writing a Multi-View component, you may need to index instances in multiple CAS
views. The methods above use the indexes associated with the current JCas object. There
is a variation of the addTol ndexes / renoveFronl ndexes methods which takes one
argument: a reference to a JCas object holding the view in which you want to index this
instance.

nmyl nst ance. addTol ndexes(anot her JCas)
myl nst ance. r enoveFr om ndexes(anot her JCas)

You can also explicitly add instances to other views using the addFsToIndexes method
on other JCas (or CAS) objects. For instance, if you had 2 other CAS views (myView1 and
myView?2), in which you wanted to index mylInstance, you could write:

nmyl nst ance. addTol ndexes(); //addTol ndexes used with the new operator
myVi ewl. addFsTol ndexes(nyl nstance); // index nylnstance in nyViewl
nmyVi ew2. addFsTol ndexes(nyl nstance); // index nylnstance in nyVi ew2

The rules for determining which index to use with a particular JCas object are designed

to behave the way most would think they should; if you need specific behavior, you can
always explicitly designate which view the index adding and removing operations should
work on.

The rules are: If the instance is a subtype of AnnotationBase, then the view is the view
associated with the annotation as specified in the feature holding the view reference in
AnnotationBase. Otherwise, if the instance was created using the "new" operator, then
the view is the view passed to the instance's constructor. Otherwise, if the instance was
created by getting a feature value from some other instance, whose range type is a feature
structure, then the view is the same as the referring instance. Otherwise, if the instance

88

JCas Reference UIMA Version 2.3.0

Using Iterators

was created by any of the Feature Structure Iterator operations over some index, then it is
the view associated with the index.

5.6.5.

Using lterators

Once you have an index obtained from the JCas, you can get an iterator from the index;
here is an example:

FSI ndexRepository ir = jcas. get FSI ndexRepository();
FSI ndex myl ndex = ir.getlndex("nyl ndexName");
FSlterator nylterator = nylndex.iterator();

JFSI ndexRepository ir = jcas. get JFSI ndexRepository();
FSI ndex myl ndex = ir.getlndex("nyl ndexName", Foo.type); // filtered
FSlterator nylterator = nylndex.iterator();

Iterators work like normal Java iterators, but are augmented to support additional
capabilities. Iterators are described in the CAS Reference, Section 4.7, “Indexes and
[terators” [72].

5.6.6.

Class Loaders in UIMA

The basic concept of a UIMA application includes assembling engines into a flow. The
application made up of these Engines are run within the UIMA Framework, either by the
Collection Processing Manager, or by using more basic UIMA Framework APIs.

The UIMA Framework exists within a JVM (Java Virtual Machine). A JVM has the
capability to load multiple applications, in a way where each one is isolated from the
others, by using a separate class loader for each application. For instance, one set of UIMA
Framework Classes could be shared by multiple sets of application - specific classes, even
if these application-specific classes had the same names but were different versions.

5.6.6.1. Use of Class Loaders is optional

The UIMA framework will use a specific ClassLoader, based on how ResourceManager
instances are used. Specific ClassLoaders are only created if you specify an
ExtensionClassPath as part of the ResourceManager. If you do not need to support
multiple applications within one UIMA framework within a JVM, don't specify an
ExtensionClassPath; in this case, the classloader used will be the one used to load the
UIMA framework - usually the overall application class loader.

Of course, you should not run multiple UIMA applications together, in this way;, if
they have different class definitions for the same class name. This includes the JCas
“cover” classes. This case might arise, for instance, if both applications extended

ui ma. t cas. Document Annot at i on in differing, incompatible ways. Each application
would need its own definition of this class, but only one could be loaded (unless
you specify ExtensionClassPath in the ResourceManager which will cause the UIMA
application to load its private versions of its classes, from its classpath).

UIMA Version 2.3.0 JCas Reference 89

Issues accessing JCas objects outside of UIMA Engine Components

5.6.7. Issues accessing JCas objects outside of UIMA
Engine Components

If you are using the ExtensionClassPaths, the JCas cover classes are loaded under a class
loader created by the ResourceManager part of the UIMA Framework. If you reference the
same]Cas classes outside of any UIMA component, for instance, in top level application
code, the JCas classes used by that top level application code also must be in the class path
for the application code.

Alternatively, you could do all the JCas processing inside a UIMA component (and do no
processing using JCas outside of the UIMA pipeline).

5.7. Setting up Classpath for JCas

The JCas Java classes generated by JCasGen are typically compiled and put into a JAR file,
which, in turn, is put into the application's class path.

This JAR file must be generated from the application's merged type system. This is most
conveniently done by opening the top level descriptor used by the application in the
Component Descriptor Editor tool, and pressing the Run-JCasGen button on the Type
System Definition page.

5.8. PEAR isolation

As of version 2.2, the framework supports component descriptors which are PEAR
descriptors. These descriptors define components plus include information on the class
path needed to run them. The framework uses the class path information to set up a
localized class path, just for code running within the PEAR context. This allows PEAR files
requiring different versions of common code to work well together, even if the class names
in the different versions have the same names.

90

JCas Reference UIMA Version 2.3.0

Chapter 6. PEAR Reference

A PEAR (Processing Engine ARchive) file is a standard package for UIMA components.
This chapter describes the PEAR 1.0 structure and specification.

The PEAR package can be used for distribution and reuse by other components or
applications. It also allows applications and tools to manage UIMA components
automatically for verification, deployment, invocation, testing, etc.

Currently, there is an Eclipse plugin and a command line tool available to create PEAR
packages for standard UIMA components. Please refer to Chapter 8, PEAR Packager User's
Guide in UIMA Tools Guide and Reference for more information about these tools.

PEARs distributed to new targets can be installed at those targets. UIMA includes a tool
for installing PEARs; see Chapter 10, PEAR Installer User’s Guide in UIMA Tools Guide and
Reference for more information about installing PEARs.

An installed PEAR can be used as a component within a UIMA pipeline, by specifying the
pear descriptor that is created when installing the pear. See Section 6.3, “PEAR package
descriptor” [103].

6.1. Packaging a UIMA component

For the purpose of describing the process of creating a PEAR file and its internal structure,
this section describes the steps used to package a UIMA component as a valid PEAR file.
The PEAR packaging process consists of the following steps:

® Section 6.1.1, “Creating the PEAR structure” [91]
* Section 6.1.2, “Populating the PEAR structure” [93]
* Section 6.1.3, “Creating the installation descriptor” [94]

¢ Section 6.1.5, “Packaging the PEAR structure into one file” [100]

6.1.1. Creating the PEAR structure

The first step in the PEAR creation process is to create a PEAR structure. The PEAR
structure is a structured tree of folders and files, including the following elements:

* Required Elements:

* The metadata folder which contains the PEAR installation descriptor and
properties files.

¢ The installation descriptor (metadata/install.xml)

PEAR Reference 91

../tools/tools.pdf#ugr.tools.pear.packager
../tools/tools.pdf#ugr.tools.pear.packager
../tools/tools.pdf#ugr.tools.pear.installer

Creating the PEAR structure

¢ A UIMA analysis engine descriptor and its required code, delegates (if any),
and resources

¢ Optional Elements:

¢ The desc folder to contain descriptor files of analysis engines, delegates
analysis engines (all levels), and other components (Collection Readers, CAS
Consumers, etc).

e The src folder to contain the source code

¢ The bin folder to contain executables, scripts, class files, dlls, shared libraries,

etc.

¢ The lib folder to contain jar files.

¢ The doc folder containing documentation materials, preferably accessible
through an index.html.

* The data folder to contain data files (e.g. for testing).

¢ The conf folder to contain configuration files.

* The resources folder to contain other resources and dependencies.

e Other user-defined folders or files are allowed, but should be avoided.

Root

desc

C

bin

E

doc

conf
data

i

resources

Figure 6.1. The PEAR Structure

92

PEAR Reference

UIMA Version 2.3.0

Populating the PEAR structure

6.1.2. Populating the PEAR structure

After creating the PEAR structure, the component's descriptor files, code files, resources
files, and any other files and folders are copied into the corresponding folders of the PEAR
structure. The developer should make sure that the code would work with this layout of
files and folders, and that there are no broken links. Although it is strongly discouraged,
the optional elements of the PEAR structure can be replaced by other user defined files
and folder, if required for the component to work properly.

Note: The PEAR structure must be self-contained. For example, this means
that the component must run properly independently from the PEAR root folder
location. If the developer needs to use an absolute path in configuration or
descriptor files, then he/she should put these files in the “conf” or “desc” and
replace the path of the PEAR root folder with the string “$main_root” . The tools
that deploy and use PEAR files should localize the files in the “conf” and “desc”
folders by replacing the string “$main_root” with the local absolute path of the
PEAR root folder. The “$main_root” macro can also be used in the Installation
descriptor (install.xml)

Currently there are three types of component packages depending on their deployment:

6.1.2.1. Standard Type

A component package with the standard type must be a valid Analysis Engine, and all the
required files to deploy it locally must be included in the PEAR package.

6.1.2.2. Service Type

A component package with the service type must be deployable locally as a supported
UIMA service (e.g. Vinci). In this case, all the required files to deploy it locally must be
included in the PEAR package.

6.1.2.3. Network Type

A component package with the network type is not deployed locally but rather in the
“remote” environment. It's accessed as a network AE (e.g. Vinci Service). The component
owner has the responsibility to start the service and make sure it's up and running before
it's used by others (like a webmaster that makes sure the web site is up and running). In
this case, the PEAR package does not have to contain files required for deployment, but
must contain the network AE descriptor (see Section 1.1.4, “Creating the XML Descriptor”
in UIMA Tutorial and Developers’ Guides) and the <DESC> tag in the installation descriptor
must point to the network AE descriptor. For more information about Network Analysis
Engines, please refer to Section 3.6, “Working with Remote Services” in UIMA Tutorial and
Developers” Guides .

UIMA Version 2.3.0 PEAR Reference 93

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae.creating_xml_descriptor
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services

Creating the installation descriptor

6.1.3. Creating the installation descriptor

The installation descriptor is an xml file called install.xml under the metadata folder of the
PEAR structure. It's also called InsD. The InsD XML file should be created in the UTF-8

file encoding. The InsD should contain the following sections:

* <OS>: This section is used to specify supported operating systems

* <TOOLKITS>: This section is used to specify toolkits, such as JDK, needed by the
component.

e <SUBMITTED_COMPONENT>: This is the most important section in the
Installation Descriptor. It's used to specify required information about the
component. See Section 6.1.4, “Installation Descriptor: template” [94] for
detailed information about this section.

¢ <INSTALLATION>: This section is explained in section Section 6.2, “Installing a

PEAR package” [101] .

6.1.4. Documented template for the installation

descriptor:

The following is a sample “documented template” which describes content of the

installation descriptor install.xml:

<? xm version="1.0" encodi ng="UTF-8""?>
<I-- Installation Descriptor Tenplate -->
<COMPONENT_| NSTALLATI ON_DESCRI PTOR>

<I-- Specifications of OS names, including version, -->
<0sS>
<NAME>CS_Nane_ 1</ NAMVE>
<NAME>0OS_Nane_2</ NAME>
</ OS>
<I-- Specifications of required standard toolkits -->
<TOOLKI TS>
<JDK_VERSI ON>JDK_Ver si on</ JDK_VERSI ON>
</ TOOLKI TS>
<I-- There are 2 types of variables that are used in the |InsD:
a) $main_root , which will be substituted with the real path to the

mai n conponent root directory after

mai n (submitted) conponent

installing the

b) $conponent _i d$root, which will be substituted with the real path
to the root directory of a given del egate conponent after

installing the given del egate conponent -->

<l-- Specification of submitted conponent (AE) coD
<!-- Note: submtted_conponent_id is assigned by devel oper; -->
<I-- XML descriptor file name is set by devel oper. -->
<l-- Inportant: |ID element should be the first in the -->
94 PEAR Reference UIMA Version 2.3.0

Installation Descriptor: template

<I-- SUBM TTED_COVPONENT secti on. -->
<I-- Submitted conponent may include optional specification -->
<l-- of Collection Reader that can be used for testing the -->
<I-- submitted conponent. Sy
<I-- Submitted conponent may include optional specification -->
<I-- of CAS Consuner that can be used for testing the -->
<l-- submtted conponent. -->

<SUBM TTED_COVPONENT>
<| D>subni tt ed_conponent _i d</ | D>
<NAME>Subni tted conponent name</ NAVE>
<DESC>$mai n_r oot / desc/ Conponent Descri pt or . xm </ DESC>

<!-- depl oynent options: -->
<l-- a) "standard" is deploying AE locally -->
<I-- b) "service" is deploying AE locally as a service, -->
<I-- usi ng specified conmmand (script) -->
<l-- ¢) "network" is deploying a pure network AE, which -->
<l-- i s runni ng sonewhere on the network -->

<DEPLOYMENT>st andard | service | networ k</ DEPLOYMENT>

<l-- Specifications for "service" deploynent option only -->
<SERVI CE_COMVAND>$mai n_r oot / bi n/ st art Ser vi ce. bat </ SERVI CE_ COWAND>
<SERVI CE_WORKI NG_DI R>$mai n_r oot </ SERVI CE_WORKI NG_DI R>

<SERVI CE_COMVAND_ARGS>

<ARGUMENT>
<VALUE>1st _par anet er _val ue</ VALUE>
<COMMENTS>1st paraneter descri pti on</ COMENTS>
</ ARGUMENT>

<ARGUMENT>
<VALUE>2nd_par anet er _val ue</ VALUE>
<COWENTS>2nd par anet er descri pti on</ COWENTS>
</ ARGUMENT>

</ SERVI CE_COMVAND_ARGS>
<I-- Specifications for "network" depl oynment option only -->
<NETWORK_ PARAMETERS>

<VNS_SPECS VNS_HOST="vns_host _| P" VNS_PORT="vns_port_No" />
</ NETWORK_PARAMETERS>
<I-- Ceneral specifications -->
<COMMENTS>Mai n conponent descri pti on</ COMWENTS>
<COLLECTI ON_READER>

<COLLECTI ON_| TERATOR _DESC>

$mai n_r oot/ desc/ Col | | t er Descri pt or. xmi
</ COLLECTI ON_|I TERATOR _DESC>

UIMA Version 2.3.0 PEAR Reference

Installation Descriptor: template

<CAS_| NI TI ALI ZER_DESC>
$mai n_r oot/ desc/ CASI ni tializerDescriptor.xm
</ CAS_I NI TI ALI ZER_DESC>
</ COLLECTI ON_READER>

<CAS_CONSUMER>
<DESC>$mai n_r oot / desc/ CASConsuner Descri pt or . xm </ DESC>
</ CAS_CONSUMER>

</ SUBM TTED_COMPONENT>

<I-- Specifications of the conponent installation process -->

<| NSTALLATI ON>
<I-- List of delegate conponents that should be installed together -->
<l-- with the main subnitted conponent (for aggregate conponents) -->
<I-- Inportant: ID elenment should be the first in each -->
<I-- DELEGATE_COVPONENT sect i on. -->

<DELEGATE_COVPONENT>

<I D>first_del egat e_conponent _i d</ | D>

<NAME>Nane of first required separate conmponent </ NAME>
</ DELEGATE_COVPONENT>

<DELEGATE_COMPONENT>

<| D>second_del egat e_conponent _i d</ | D>

<NAME>Nane of second required separate conponent </ NAVE>
</ DELEGATE_COVPONENT>

<I-- Specifications of |ocal path names that should be replaced -->
<l-- with real path nanes after the main conponent as well as -->
<I-- all required delegate (library) conmponents are installed. -->
<l-- <FILE> and <REPLACE W TH> val ues may use the $main_root or -->
<!'-- one of the $conponent i d$root vari abl es. -->
<I-- Inportant: ACTION el ement should be the first in each -->
<I-- PROCESS secti on. -->
<PROCESS>

<ACTI ON>f i nd_and_r epl ace_pat h</ ACTI O\>

<PARAMETERS>

<FI LE>$mai n_r oot / desc/ Conponent Descri pt or . xm </ FI LE>
<FI ND_STRI NG>. . / resour ces/ di ct/ </ FI ND_STRI NG
<REPLACE_W TH>$nmai n_r oot/ r esour ces/ di ct/ </ REPLACE_W TH>
<COMMENTS>Speci fy actual dictionary location in XM. conponent
descri pt or

</ COMVENTS>

</ PARAVETERS>

</ PROCESS>

<PROCESS>
<ACTI ON>f i nd_and_r epl ace_pat h</ ACTI ON>
<PARAMETERS>
<FI LE>$mai n_r oot / desc/ Del egat eConponent Descri pt or. xm </ FI LE>
<FI ND_STRI NG

PEAR Reference UIMA Version 2.3.0

Installation Descriptor: template

I ocal _root _directory_for_1st_del egat e_conponent/resources/dict/

</ FI ND_STRI NG

<REPLACE W TH>
$first_del egat e_conponent _i d$r oot/ resources/ dict/

</ REPLACE W TH>

<COVMENTS>
Speci fy actual dictionary |ocation in the descriptor of the 1st
del egat e conmponent

</ COMVENTS>

</ PARAMVETERS>
</ PROCESS>

<I-- Specifications of environment variables that shoul d be set prior
to running the main conponent and all other reused conponents.
<VAR _VALUE> val ues may use the $mai n_root or one of the

$conponent _i d$root vari ables. -->
<PROCESS>
<ACTI ON>set _env_vari abl e</ ACTI ON>
<PARAMETERS>

<VAR_NAME>env_vari abl e_name</ VAR _NAVE>
<VAR _VALUE>env_vari abl e_val ue</ VAR_VALUE>
<COMMENTS>Set envi ronment vari abl e val ue</ COUWENTS>
</ PARAVETERS>
</ PROCESS>

</ | NSTALLATI ON>
</ COVPONENT_| NSTALLATI ON_DESCRI PTOR>

6.1.4.1. The SUBMITTED_COMPONENT section

The SUBMITTED_COMPONENT section of the installation descriptor (install.xml) is
used to specify required information about the UIMA component. Before explaining
the details, let's clarify the concept of component ID and “macros” used in the

installation descriptor. The component ID element should be the first element in the
SUBMITTED _COMPONENT section.

The component id is a string that uniquely identifies the component. It should use the
JAVA naming convention (e.g. com.company_name.project_name.etc.mycomponent).

Macros are variables such as $main_root, used to represent a string such as the full path of
a certain directory.

The values of these macros are defined by the PEAR installation process, when the PEAR
is installed, and represent the values local to that particular installation. The values are
stored in the nmet adat a/ PEAR. properti es file that is generated during PEAR installation.
The tools and applications that use and deploy PEAR files replace these macros with the
corresponding values in the local environment as part of the deployment process in the
files included in the conf and desc folders.

Currently, there are two types of macros:

UIMA Version 2.3.0 PEAR Reference 97

Installation Descriptor: template

* $main_root, which represents the local absolute path of the main component root
directory after deployment.

* $component_id$root, which represents the local absolute path to the root directory of
the component which has component_id as component ID. This component could be,
for instance, a delegate component.

For example, if some part of a descriptor needs to have a path to the data subdirectory
of the PEAR, you write $mai n_r oot / dat a. If your PEAR refers to a delegate component
having the ID “ny. conp. Di cti onary”, and you need to specify a path to one of this
component's subdirectories, e.g. r esour ce/ di ct, you write $ny. conp. Di cti onary
$root/resources/dict.

6.1.4.2. The ID, NAME, and DESC tags

These tags are used to specify the component ID, Name, and descriptor path using the
corresponding tags as follows:

<SUBM TTED_COVPONENT>
<| D>submi tt ed_conponent _i d</ | D>
<NAME>Subni tt ed conponent nanme</ NAMVE>
<DESC>$nmmi n_r oot / desc/ Conponent Descr i pt or . xm </ DESC>

6.1.4.3. Tags related to deployment types

As mentioned before, there are currently three types of PEAR packages, depending on the
following deployment types

Standard Type

A component package with the standard type must be a valid UIMA Analysis Engine, and
all the required files to deploy it must be included in the PEAR package. This deployment
type should be specified as follows:

<DEPLOYMENT>st andar d</ DEPLOYNMENT>

Service Type

A component package with the service type must be deployable locally as a supported
UIMA service (e.g. Vinci). The installation descriptor must include the path for the
executable or script to start the service including its arguments, and the working directory
from where to launch it, following this template:

<DEPLOYMENT>ser vi ce</ DEPLOYMENT>
<SERVI CE_COMVAND>$nmi n_r oot / bi n/ st art Ser vi ce. bat </ SERVI CE_COMVAND>
<SERVI CE_WORKI NG_DI R>$mai n_r oot </ SERVI CE_WORKI NG _DI R>
<SERVI CE_COMVAND_ARGS>
<ARGUMENT>

98

PEAR Reference UIMA Version 2.3.0

Installation Descriptor: template

<VALUE>1st _par anet er _val ue</ VALUE>
<COMMENTS>1st paraneter descripti on</ COMENTS>
</ ARGUVENT>
<ARGUMENT>
<VALUE>2nd_par anet er _val ue</ VALUE>
<COMMENTS>2nd par anet er descri pti on</ COMVENTS>
</ ARGUMENT>
</ SERVI CE_COMVAND ARGS>

Network Type

A component package with the network type is not deployed locally, but rather in a
“remote” environment. It's accessed as a network AE (e.g. Vinci Service). In this case, the
PEAR package does not have to contain files required for deployment, but must contain
the network AE descriptor. The <DESC> tag in the installation descriptor (See section
2.3.2.1) must point to the network AE descriptor. Here is a template in the case of Vinci
services:

<DEPLOYMENT>net wor k</ DEPL OYMENT>
<NETWORK _PARAMETERS>

<VNS_SPECS VNS _HOST="vns_host | P* VNS _PORT="vns_port_No" />
</ NETWORK_PARAMETERS>

6.1.4.4. The Collection Reader and CAS Consumer tags

These sections of the installation descriptor are used by any specific Collection Reader or
CAS Consumer to be used with the packaged analysis engine.

6.1.4.5. The INSTALLATION section

The <INSTALLATION> section specifies the external dependencies of the component and
the operations that should be performed during the PEAR package installation.

The component dependencies are specified in the <DELEGATE_COMPONENT> sub-
sections, as shown in the installation descriptor template above.

Important: The ID element should be the first element in each
<DELEGATE_COMPONENT> sub-section.

The <INSTALLATION> section may specify the following operations:
e Setting environment variables that are required to run the installed component.

This is also how you specify additional classpaths for a Java component - by
specifying the setting of an environmental variable named CLASSPATH. The

bui | dConponent Cl asspat h method of the PackageBrowser class builds a classpath
string from what it finds in the CLASSPATH specification here, plus adds a
classpath entry for all Jars in the | i b directory. Because of this, there is no need to

UIMA Version 2.3.0 PEAR Reference 99

Packaging the PEAR structure into one file

specify Class Path entries for Jars in the lib directory, when using the Eclipse plugin
pear packager or the Maven Pear Packager.

When specifying the value of the CLASSPATH environment
variable, use the semicolon ";" as the separator character, regardless
of the target Operating System conventions. This delimiter will be
replaced with the right one for the Operating System during PEAR

installation.

If your component needs to set the UIMA datapath you must specify the necessary
datapath setting using an environment variable with the key ui ma. dat apat h. When
such a key is specified the get Conponent Dat aPat h method of the PackageBrowser
class will return the specified datapath settings for your component.

Warning: Do not put UIMA Framework Jars into the lib directory of
your PEAR; doing so will cause system failures due to class loading issues.

* Note that you can use “macros”, like $main_root or $component_id$root in the
VAR_VALUE element of the <PARAMETERS> sub-section.

* Finding and replacing string expressions in files.

* Note that you can use the “macros” in the FILE and REPLACE_WITH elements of
the <PARAMETERS> sub-section.

Important: the ACTION element always should be the 1st element in each <PROCESS>
sub-section.

By default, the PEAR Installer will try to process every file in the desc and conf directories
of the PEAR package in order to find the “macros” and replace them with actual path
expressions. In addition to this, the installer will process the files specified in the
<INSTALLATION> section.

Important: all XML files which are going to be processed should be created using UTF-8
or UTF-16 file encoding. All other text files which are going to be processed should be
created using the ASCII file encoding.

6.1.5. Packaging the PEAR structure into one file

The last step of the PEAR process is to simply zip the content of the PEAR root folder (not
including the root folder itself) to a PEAR file with the extension “.pear”.

To do this you can either use the PEAR packaging tools that are described in “Chapter 8,
PEAR Packager User’s Guide in UIMA Tools Guide and Reference” or you can use the PEAR
packaging API that is shown below.

To use the PEAR packaging API you first have to create the necessary information for the
PEAR package:

100

PEAR Reference UIMA Version 2.3.0

../tools/tools.pdf#ugr.tools.pear.packager
../tools/tools.pdf#ugr.tools.pear.packager

Installing a PEAR package

/[define PEAR data

String conponent| D = "Annot Conponent | D*;

String mai nConponent Desc = "desc/ mai nConponent Descri pt or. xm "
String classpath ="$nmi n_root/bin;";

String datapath ="$mai n_root/resources;";

String mai nConponent Root = "/ hone/ user/ devel op/ nyAnnot";
String targetDir = "/home/user/devel op";

Properties annotatorProperties = new Properties();

annot at or Properti es. set Property("sysPropertyl", "valuel");

To create a complete PEAR package in one step call:

PackageCr eat or . gener at ePear Package(
conponent | D, mai nConponent Desc, cl asspath, datapath,
mai nConponent Root, targetDir, annotatorProperties);

The created PEAR package has the file name <componentID>.pear and is located in the
<targetDir>.

To create just the PEAR installation descriptor in the main component root directory call:

PackageCreat or. creat el nstal | Descri ptor (conponent| D, mai nConponent Desc,
cl asspat h, datapath, mai nConponent Root, annotat or Properties);

To package a PEAR file with an existing installation descriptor call:

PackageCr eat or . cr eat ePear Package(conponent | D, nmai nConponent Root ,
targetDir);

The created PEAR package has the file name <componentID>.pear and is located in the
<targetDir>.

6.2. Installing a PEAR package

The installation of a PEAR package can be done using the PEAR installer tool (see
Chapter 10, PEAR Installer User’s Guide in UIMA Tools Guide and Reference, or by an
application using the PEAR APIs, directly.

During the PEAR installation the PEAR file is extracted to the installation directory and
the PEAR macros in the descriptors are updated with the corresponding path. At the end
of the installation the PEAR verification is called to check if the installed PEAR package
can be started successfully. The PEAR verification use the classpath, datapath and the
system property settings of the PEAR package to verify the PEAR content. Necessary Java
library path settings for native libararies, PATH variable settings or system environment
variables cannot be recognized automatically and the use must take care of that manually.

Note: By default the PEAR packages are not installed directly to the specified
installation directory. For each PEAR a subdirectory with the name of the PEAR's

UIMA Version 2.3.0 PEAR Reference 101

../tools/tools.pdf#ugr.tools.pear.installer

Installing a PEAR file using the PEAR APIs

ID is created where the PEAR package is installed to. If the PEAR installation
directory already exists, the old content is automatically deleted before the new
content is installed.

6.2.1. Installing a PEAR file using the PEAR APIs

The example below shows how to use the PEAR APIs to install a PEAR package and
access the installed PEAR package data. For more details about the PackageBrowser API,
please refer to the Javadocs for the org.apache.uima.pear.tools package.

File installIDir = new Fil e("/home/ user/ui maApp/install edPears");
File pearFile = new Fil e("/hone/ user/ ui maApp/test pear. pear");
bool ean doVerification = true;

try {
/1 install PEAR package

PackageBr owser instPear = Packagel nstaller.install Package(
installDir, pearFile, doVerification);

/Il retrieve installed PEAR data
/'l PEAR package cl asspath
String classpath = instPear. buil dConponent Cl assPat h() ;
/| PEAR package datapath
String datapath = instPear.get Conponent Dat aPat h() ;
/| PEAR package mmi n conmponent descri ptor
String mai nConponent Descri ptor = instPear
.getlnstall ati onDescri ptor().get Mai nConmponent Desc() ;
/| PEAR package conponent |D
String mai nConponent | D = i nst Pear
.getlnstall ati onDescri ptor().getMai nConponent | d();
/| PEAR package pear descri ptor
String pearDescPath = instPear.get Conponent Pear DescPat h() ;

/1 print out settings
System out . printl n("PEAR package cl ass path: " + classpath);
System out. printl n("PEAR package datapath: " + datapath);
System out . printl n("PEAR package mai nConponent Descri ptor:
+ mai nConponent Descri ptor);
System out . printl n("PEAR package nai nConponent | D:
+ mai nConponent | D) ;
System out . printl n("PEAR package specifier path: " + pearDescPath);

} catch (Packagel nstal | er Exception ex) {
/| catch Packagel nstal |l er Exception - PEAR installation failed
ex. printStackTrace();
Systemout.println("PEAR installation failed");
} catch (1 CException ex) {
ex. printStackTrace();
Systemout.println("Error retrieving installed PEAR settings");

102 PEAR Reference UIMA Version 2.3.0

PEAR package descriptor

To run a PEAR package after it was installed using the PEAR API see the example below.
It use the generated PEAR specifier that was automatically created during the PEAR
installation. For more details about the APIs please refer to the Javadocs.

File installDir = new Fil e("/hone/ user/ui maApp/i nstall edPears");
File pearFile = new Fil e("/hone/user/ ui maApp/test pear.pear");
bool ean doVerification = true;

try {

/1 Install PEAR package
PackageBr owser instPear = Packagel nstaller.install Package(
install Dir, pearFile, doVerification);

/1l Create a default resouce manager
Resour ceManager rsrcMr = Ul MAFramewor k. newDef aul t Resour ceManager () ;

/] Create analysis engine fromthe installed PEAR package using
/1 the created PEAR specifier
XMLI nput Source in =
new XM.I nput Sour ce(i nst Pear. get Conponent Pear DescPat h()) ;
Resour ceSpeci fier specifier =
Ul MAFr amewor k. get XM_Par ser () . par seResour ceSpeci fier(in);
Anal ysi sengi ne ae =
U MAFr amewor k. pr oduceAnal ysi sengi ne(specifier, rsrcMyr, null);

/|l Create a CAS with a sanpl e docunment text
CAS cas = ae. newCAS();

cas. set Docunent Text (" Sanpl e text to process");
cas. set Docunment Language("en");

/1 Process the sanpl e docunment
ae. process(cas);
} catch (Exception ex) {

ex. printStackTrace();

}

6.3. PEAR package descriptor

To run an installed PEAR package directly in the UIMA framework the pear Speci fi er
XML descriptor can be used. Typically during the PEAR installation such an specifier is
automatically generated and contains all the necessary information to run the installed
PEAR package. Settings for system environment variables, system PATH settings or Java
library path settings cannot be recognized automatically and must be set manually when
the JVM is started.

Note: The PEAR may contain specifications for "environment variables" and
their settings. When such a PEAR is run directly in the UIMA framework, those
settings (except for Classpath and Data Path) are converted to Java System
properties, and set to the specified values. Java cannot set true environmental

UIMA Version 2.3.0 PEAR Reference 103

PEAR package descriptor

variables; if such a setting is needed, the application would need to arrange to do
this prior to invoking Java.

The generated PEAR descriptor is located in the component root directory of the installed
PEAR package and has a filename like <componentID>_pear.xml.

The PEAR package descriptor looks like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<pear Speci fi er xm ns="http://ui ma. apache. or g/ resour ceSpecifier">
<pear Pat h>/ honme/ user/ ui maApp/ i nst al | edPear s/ t est pear </ pear Pat h>

</ pear Speci fi er >

The pear Pat h setting in the descriptor must point to the component root directory of the
installed PEAR package.

Note: It is not possible to share resources between PEAR Analysis Engines that
are instantiated using the PEAR descriptor. The PEAR runtime created for each
PEAR descriptor has its own specific ResourceManager (unless exactly the same
Classpath and Data Path are being used).

104 PEAR Reference UIMA Version 2.3.0

Chapter 7. XMI CAS Serialization Reference

This is the specification for the mapping of the UIMA CAS into the XMI
(XML Metadata Interchangel) format. XMI is an OMG standard for
expressing object graphs in XML. The UIMA SDK provides support for XMI
through the classes or g. apache. ui ma. cas. i npl . X CasSeri al i zer and
org. apache. ui ma. cas. i npl . Xm CasDeseri al i zer.

7.1. XMI Tag

The outermost tag is <XMI> and must include a version number and XML namespace
attribute:

<xm : XM xmi:version="2.0" xmns:xm ="http://ww. ong. org/ XM " >
<!-- CAS Contents here -->
</ xm : XM >

XML namespaces” are used throughout. The “xmi” namespace prefix is used to identify
elements and attributes that are defined by the XMI specification. The XMI document
will also define one namespace prefix for each CAS namespace, as described in the next
section.

7.2. Feature Structures

UIMA Feature Structures are mapped to XML elements. The name of the element is
formed from the CAS type name, making use of XML namespaces as follows.

The CAS type namespace is converted to an XML namespace URI by the following rule:
replace all dots with slashes, prepend http:///, and append .ecore.

This mapping was chosen because it is the default mapping used by the Eclipse Modeling
Framework (EMF)’ to create namespace URIs from Java package names. The use of the
http scheme is a common convention, and does not imply any HTTP communication.

The .ecore suffix is due to the fact that the recommended type system definition for a
namespace is an ECore model, see Chapter 8, XMI and EMF Interoperability in UIMA
Tutorial and Developers’ Guides.

Consider the CAS type name “org.myproj.Foo”. The CAS namespace (“org.myorg.”) is
converted to the XML namespace URI is http:///org/myproj.ecore.

The XML element name is then formed by concatenating the XML namespace prefix
(which is an arbitrary token, but typically we use the last component of the CAS
namespace) with the type name (excluding the namespace).

! For details on XMI see Grose et al. Mastering XMI. Java Programming with XMI, XML, and UML. John Wiley & Sons, Inc. 2002.
2http://www.w3.org/TR/xml—r1amesl1/
3 For details on EMF and Ecore see Budinsky et al. Eclipse Modeling Framework 2.0. Addison-Wesley. 2006.

XMI CAS Serialization Reference 105

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.xmi_emf

Primitive Features

So the example “org.myproj.Foo” FeatureStructure is written to XMI as:

<xm : XM
xm :version="2.0"
xm ns: xm ="http://ww. ong. org/ XM "
xm ns: myproj ="http:///org/ nyproj.ecore">

<nmyproj:Foo xm:id="1"/>

</ xm : XM >

The xmi:id attribute is only required if this object will be referred to from elsewhere in the
XMI document. If provided, the xmi:id must be unique for each feature.

All namespace prefixes (e.g. “myproj”) in this example must be bound to URIs using the
“xmlns...” attribute, as defined by the XML namespaces specification.

7.3. Primitive Features

CAS features of primitive types (String, Boolean, Byte, Short, Integer, Long , Float, or
Double) can be mapped either to XML attributes or XML elements. For example, a CAS
FeatureStructure of type org.myproj.Foo, with features:

begi n 14
end = 19
myFeature = "bar

could be mapped to:

<xm : XM xm :version="2.0" xm ns:xm ="http://ww. ong. org/ XM "
xm ns: myproj ="http:///org/ nyproj.ecore">

<myproj: Foo xm :id="1" begi n="14" end="19" nyFeature="bar"/>
</ xm : XM >
or equivalently:

<xm : XM xmi:version="2.0" xm ns:xm ="http://ww. ong. org/ XM "
xm ns: myproj ="http:///org/ nyproj.ecore">

<myproj: Foo xm :id="1">
<begi n>14</ begi n>
<end>19</ end>
<myFeat ur e>bar </ nyFeat ur e>
</ mypr oj : Foo>

</ xm : XM >

106 XMI CAS Serialization Reference UIMA Version 2.3.0

Reference Features

The attribute serialization is preferred for compactness, but either representation is
allowable. Mixing the two styles is allowed; some features can be represented as attributes
and others as elements.

7.4. Reference Features

CAS features that are references to other feature structures (excluding arrays and lists,
which are handled separately) are serialized as ID references.

If we add to the previous CAS example a feature structure of type org.myproj.Baz, with
feature “myFoo0” that is a reference to the Foo object, the serialization would be:

<xm : XM xmi:version="2.0" xm ns:xm ="http://ww. ong. org/ XM "
xm ns: myproj ="http:///org/ nyproj.ecore">

<nyproj: Foo xm :id="1" begi n="14" end="19" nyFeature="bar"/>
<nmyproj:Baz xm :id="2" nmyFoo="1"/>

</ xm : XM >

As with primitive-valued features, it is permitted to use an element rather than an
attribute. However, the syntax is slightly different:

<nmyproj:Baz xm:id="2">
<nyFoo href="#1"/>
<mypr oj . Baz>

Note that in the attribute representation, a reference feature is indistinguishable from an
integer-valued feature, so the meaning cannot be determined without prior knowledge of
the type system. The element representation is unambiguous.

7.5. Array and List Features

For a CAS feature whose range type is one of the CAS array or list types, the XMI
serialization depends on the setting of the “multipleReferencesAllowed” attribute for that
feature in the UIMA Type System Description (see Section 2.3.3, “Features” [7]).

An array or list with multipleReferencesAllowed = false (the default) is serialized as a
“multi-valued” property in XMI. An array or list with multipleReferencesAllowed = true
is serialized as a first-class object. Details are described below.

7.5.1. Arrays and Lists as Multi-Valued Properties

In XMI, a multi-valued property is the most natural XMI representation for most cases.
Consider the example where the FeatureStructure of type org.myproj.Baz has a feature
myIntArray whose value is the integer array {2,4,6}. This can be mapped to:

<nmyproj:Baz xm:id="3" nylntArray="2 4 6"/>

UIMA Version 2.3.0 XMI CAS Serialization Reference 107

Arrays and Lists as First-Class Objects

or equivalently:

<nmyproj:Baz xm:id="3">
<nyl nt Array>2</nyl nt Arr ay>
<nyl nt Array>4</ nyl nt Arr ay>
<myl nt Array>6</ nyl nt Arr ay>
</ nyproj : Baz>

Note that String arrays whose elements contain embedded spaces MUST use the latter
mapping.

FSArray or FSList features are serialized in a similar way. For example an FSArray feature
that contains references to the elements with xmi:id's “13” and “42” could be serialized as:

<nmyproj:Baz xm :id="3" nyFsArray="13 42"/>
or:

<nmyproj:Baz xm:id="3">
<nyFsArray href="#13"/>
<nmyFsArray href="#42"/>
</ nyproj : Baz>

7.5.2. Arrays and Lists as First-Class Objects

The multi-valued-property representation described in the previous section does
not allow multiple references to an array or list object. Therefore, it cannot be used
for features that are defined to allow multiple references (i.e. features for which
multipleReferencesAllowed = true in the Type System Description).

When multipleReferencesAllowed is set to true, array and list features are serialized

as references, and the array or list objects are serialized as separate objects in the XMI.
Consider again the example where the FeatureStructure of type org.myproj.Baz has a
feature myIntArray whose value is the integer array {2,4,6}. If myIntArray is defined with
multipleReferencesAllowed=true, the serialization will be as follows:

<nmyproj:Baz xm :id="3" nylntArray="4"/>
or:
<myproj:Baz xm :id="3">

<nylnt Array href="#4"/>
</ nyproj: Baz>

with the array object serialized as

<cas:IntegerArray xm:id="4" elements="2 4 6"/>

or:

108

XMI CAS Serialization Reference UIMA Version 2.3.0

Null Array/List Elements

<cas:|IntegerArray xm:id="4">
<el ement s>2</ el enent s>
<el enent s>4</ el enent s>
<el enent s>6</ el enent s>

</ cas: | nt eger Array>

Note that in this case, the XML element name is formed from the CAS type name (e.g.

“ui ma. cas. | nt eger Array”) in the same way as for other FeatureStructures. The elements
of the array are serialized either as a space-separated attribute named “elements” or as a
series of child elements named “elements”.

List nodes are just standard FeatureStructures with “head” and “tail” features, and are
serialized using the normal FeatureStructure serialization. For example, an IntegerList
with the values 2, 4, and 6 would be serialized as the four objects:

<cas: NonEnptyl nt egerLi st xm :id="10" head="2" tail="11"/>
<cas: NonEnptyl nt egerLi st xm:id="11" head="4" tail="12"/>
<cas: NonEnptyl nt eger Li st xm :id="12" head="6" tail="13"/>
<cas: Enptyl ntegerlList xm:id"13"/>

This representation of arrays allows multiple references to an array of list. It also allows
a feature with range type TOP to refer to an array or list. However, it is a very unnatural
representation in XMI and does not support interoperability with other XMI-based
systems, so we instead recommend using the multi-valued-property representation
described in the previous section whenever it is possible.

7.5.3. Null Array/List Elements

In UIMA, an element of an FSArray or FSList may be null. In XMI, multi-valued
properties do not permit null values. As a workaround for this, we use a dummy instance
of the special type cas:NULL, which has xmi:id 0. For example, in the following example
the “myFsArray” feature refers to an FSArray whose second element is null:

<cas: NULL xmi :id="0"/>
<myproj:Baz xm :id="3">
<nmyFsArray href="#13"/>
<nyFsArray href="#0"/>
<nyFsArray href="#42"/>
</ nyproj: Baz>

7.6. Subjects of Analysis (Sofas) and Views

A UIMA CAS contain one or more subjects of analysis (Sofas). These are serialized no
differently from any other feature structure. For example:

<?xm version="1.0"7?>
<xm : XM xmi:version="2.0" xm ns:xm =http://ww. ong. or g/ XM

UIMA Version 2.3.0 XMI CAS Serialization Reference 109

Linking XMI docs to Ecore Type System

xm ns: cas="http:///ui ma/cas. ecore">
<cas: Sofa xm :id="1" sof aNun="1"
text="the quick brown fox junps over the |lazy dog."/>
</ xm : XM >

Each Sofa defines a separate View. Feature Structures in the CAS can be members of
one or more views. (A Feature Structure that is a member of a view is indexed in its
IndexRepository, but that is an implementation detail.)

In the XMI serialization, views will be represented as first-class objects. Each View has
an (optional) “sofa” feature, which references a sofa, and multi-valued reference to the
members of the View. For example:

<cas: Vi ew sof a="1" nenbers="3 7 21 39 61"/>

Here the integers 3, 7, 21, 39, and 61 refer to the xmi:id fields of the objects that are
members of this view.

7.7. Linking an XMI Document to its Ecore Type
System

If the CAS Type System has been saved to an Ecore file (as described in Chapter 8,
XMI and EMF Interoperability in UIMA Tutorial and Developers’ Guides), it is possible to
store a link from an XMI document to that Ecore type system. This is done using an
xsi:schemal.ocation attribute on the root XMI element.

The xsi:schemal.ocation attribute is a space-separated list that represents a mapping
from namespace URI (e.g. http:///org/myproj.ecore) to the physical URI of the .ecore file
containing the type system for that namespace. For example:

xsi : schemalLocati on=
"http:///org/ myproj.ecore file:/c:/typesystens/ nyproj.ecore"

would indicate that the definition for the org.myproj CAS types is contained in the file c: /
t ypesyst ens/ nmypr oj . ecor e. You can specify a different mapping for each of your CAS
namespaces, using a space separated list. For details see Budinsky et al. Eclipse Modeling
Framework.

7.8. Delta CAS XMI Format

The Delta CAS XMI serialization format is designed primarily to reduce the overhead
serialization when calling annotators configured as services. Only Feature Structures and
Views that are new or modified by the service are serialized and returned by the service.

The classes or g. apache. ui na. cas. i npl . Xni CasSeri al i zer and
org. apache. ui ma. cas. i npl . Xmi CasDeseri al i zer support serialization of only the

110

XMI CAS Serialization Reference UIMA Version 2.3.0

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.xmi_emf
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.xmi_emf

Delta CAS XMI Format

modifications to the CAS. A caller is expected to set a marker to indicate the point from
which changes to the CAS are to be tracked.

A Delta CAS XMI document contains only the Feature Structures and Views that have
been added or modified. The new and modified Feature Structures are represented in
exactly the format as in a complete CAS serialization. The cas: Vi ew element has been
extended with three additional attributes to represent modifications to View membership.
These new attributes are added _nenbers, del et ed_nmenber s and r ei ndexed_nenber s.
For example:

<cas: Vi ew sof a="1" added_menbers="63 77" del eted_nenber="7 61" rei ndexed_nenber s="39"

Here the integers 63, 77 represent xmi:id fields of the objects that have been newly added
members to this View, 7 and 61 are xmi:id fields of the objects that have been removed
from this view and 39 is the xmi:id of an object to be reindexed in this view.

UIMA Version 2.3.0 XMI CAS Serialization Reference 111

	UIMA References
	Table of Contents
	Chapter 1. Javadocs
	1.1. Using named Eclipse User Libraries

	Chapter 2. Component Descriptor Reference
	2.1. Notation
	2.2. Imports
	2.3. Type System Descriptors
	2.3.1. Imports
	2.3.2. Types
	2.3.3. Features
	2.3.4. String Subtypes

	2.4. Analysis Engine Descriptors
	2.4.1. Primitive Analysis Engine Descriptors
	2.4.1.1. Basic Structure
	2.4.1.2. Analysis Engine MetaData
	2.4.1.3. Configuration Parameter Declaration
	Example

	2.4.1.4. Configuration Parameter Settings
	Example

	2.4.1.5. Type System Definition
	2.4.1.6. Type Priority Definition
	2.4.1.7. Index Definition
	2.4.1.8. Capabilities
	2.4.1.9. OperationalProperties
	2.4.1.10. External Resource Dependencies
	2.4.1.11. Resource Manager Configuration
	2.4.1.12. Environment Variable References

	2.4.2. Aggregate Analysis Engine Descriptors
	2.4.2.1. Delegate Analysis Engine Specifiers
	2.4.2.2. FlowController
	2.4.2.3. FlowConstraints
	Fixed Flow
	Capability Language Flow

	2.4.2.4. Configuration Parameter Overrides
	2.4.2.5. External Resource Bindings
	2.4.2.6. Sofa Mappings

	2.5. Flow Controller Descriptors
	2.6. Collection Processing Component Descriptors
	2.6.1. Collection Reader Descriptors
	2.6.2. CAS Initializer Descriptors (deprecated)
	2.6.3. CAS Consumer Descriptors

	2.7. Service Client Descriptors
	2.8. Custom Resource Specifiers

	Chapter 3. Collection Processing Engine Descriptor Reference
	3.1. CPE Overview
	3.2. Notation
	3.3. Imports
	3.4. CPE Descriptor Overview
	3.5. Collection Reader
	3.5.1. Error handling for Collection Readers

	3.6. CAS Processors
	3.6.1. Specifying an Individual CAS Processor
	3.6.1.1. <descriptor> Element
	3.6.1.2. <configurationParameterSettings> Element
	3.6.1.3. <sofaNameMappings> Element
	3.6.1.4. <runInSeparateProcess> Element
	3.6.1.5. <deploymentParameters> Element
	3.6.1.6. <filter> Element
	3.6.1.7. <errorHandling> Element
	Retry action taken on a timeout

	3.6.1.8. <checkpoint> Element

	3.7. CPE Operational Parameters
	3.8. Resource Manager Configuration
	3.9. Example CPE Descriptor

	Chapter 4. CAS Reference
	4.1. Javadocs
	4.2. CAS Overview
	4.2.1. The Type System
	4.2.2. Creating, accessing and manipulating data
	4.2.3. Creating and using indexes

	4.3. Built-in CAS Types
	4.4. Accessing the type system
	4.4.1. TypeSystemPrinter example
	4.4.2. Using the CAS APIs to create and modify feature structures

	4.5. Creating feature structures
	4.6. Accessing or modifying features of feature structures
	4.7. Indexes and Iterators
	4.7.1. Built-in Indexes
	4.7.2. Adding Feature Structures to the Indexes
	4.7.3. Iterators
	4.7.4. Special iterators for Annotation types
	4.7.5. Constraints and Filtered iterators

	4.8. The CAS API's – a guide to the Javadocs
	4.8.1. APIs in the CAS package

	Chapter 5. JCas Reference
	5.1. Name Spaces
	5.2. XML description element
	5.3. Mapping built-in CAS types to Java types
	5.4. Augmenting the generated Java Code
	5.4.1. Persistence of additional data
	5.4.2. Keeping hand-coded augmentations when regenerating
	5.4.3. Additional Constructors
	5.4.3.1. Using readObject

	5.4.4. Modifying generated items

	5.5. Merging types
	5.5.1. Aggregate AEs and CPEs as sources of types
	5.5.2. JCasGen support for type merging
	5.5.3. Impact of Type Merging on Composability of Annotators
	5.5.4. Adding Features to DocumentAnnotation

	5.6. Using JCas within an Annotator
	5.6.1. Creating new instances using the Java “new” operator
	5.6.2. Getters and Setters
	5.6.3. Obtaining references to Indexes
	5.6.4. Adding (and removing) instances to (from) indexes
	5.6.5. Using Iterators
	5.6.6. Class Loaders in UIMA
	5.6.6.1. Use of Class Loaders is optional

	5.6.7. Issues accessing JCas objects outside of UIMA Engine Components

	5.7. Setting up Classpath for JCas
	5.8. PEAR isolation

	Chapter 6. PEAR Reference
	6.1. Packaging a UIMA component
	6.1.1. Creating the PEAR structure
	6.1.2. Populating the PEAR structure
	6.1.2.1. Standard Type
	6.1.2.2. Service Type
	6.1.2.3. Network Type

	6.1.3. Creating the installation descriptor
	6.1.4. Documented template for the installation descriptor:
	6.1.4.1. The SUBMITTED_COMPONENT section
	6.1.4.2. The ID, NAME, and DESC tags
	6.1.4.3. Tags related to deployment types
	Standard Type
	Service Type
	Network Type

	6.1.4.4. The Collection Reader and CAS Consumer tags
	6.1.4.5. The INSTALLATION section

	6.1.5. Packaging the PEAR structure into one file

	6.2. Installing a PEAR package
	6.2.1. Installing a PEAR file using the PEAR APIs

	6.3. PEAR package descriptor

	Chapter 7. XMI CAS Serialization Reference
	7.1. XMI Tag
	7.2. Feature Structures
	7.3. Primitive Features
	7.4. Reference Features
	7.5. Array and List Features
	7.5.1. Arrays and Lists as Multi-Valued Properties
	7.5.2. Arrays and Lists as First-Class Objects
	7.5.3. Null Array/List Elements

	7.6. Subjects of Analysis (Sofas) and Views
	7.7. Linking an XMI Document to its Ecore Type System
	7.8. Delta CAS XMI Format

