
UIMA References
Written and maintained by the Apache UIMA Development Community

Version 2.3.0-incubating

Copyright © 2004, 2006 International Business Machines Corporation

Copyright © 2006, 2010 The Apache Software Foundation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing incubation
at the Apache Software Foundation (ASF). Incubation is required of all newly accepted
projects until a further review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection of the completeness
or stability of the code, it does indicate that the project has yet to be fully endorsed by the
ASF.

License and Disclaimer. The ASF licenses this documentation to you under the
Apache License, Version 2.0 (the "License"); you may not use this documentation except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and
its contents are distributed under the License on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

Trademarks. All terms mentioned in the text that are known to be trademarks or
service marks have been appropriately capitalized. Use of such terms in this book should
not be regarded as affecting the validity of the the trademark or service mark.

Published January, 2010

http://www.apache.org/licenses/LICENSE-2.0

UIMA References iii

Table of Contents
1. Javadocs .. 1

1.1. Using named Eclipse User Libraries ... 2
2. Component Descriptor Reference .. 3

2.1. Notation ... 3
2.2. Imports .. 4
2.3. Type System Descriptors .. 5

2.3.1. Imports .. 6
2.3.2. Types ... 6
2.3.3. Features ... 7
2.3.4. String Subtypes .. 8

2.4. Analysis Engine Descriptors ... 8
2.4.1. Primitive Analysis Engine Descriptors ... 9
2.4.2. Aggregate Analysis Engine Descriptors .. 26

2.5. Flow Controller Descriptors .. 31
2.6. Collection Processing Component Descriptors .. 32

2.6.1. Collection Reader Descriptors .. 32
2.6.2. CAS Initializer Descriptors (deprecated) .. 34
2.6.3. CAS Consumer Descriptors .. 35

2.7. Service Client Descriptors ... 36
2.8. Custom Resource Specifiers .. 38

3. CPE Descriptor Reference ... 39
3.1. CPE Overview .. 39
3.2. Notation ... 40
3.3. Imports ... 41
3.4. CPE Descriptor Overview ... 42
3.5. Collection Reader ... 42

3.5.1. Error handling for Collection Readers .. 43
3.6. CAS Processors ... 43

3.6.1. Specifying an Individual CAS Processor .. 45
3.7. CPE Operational Parameters .. 54
3.8. Resource Manager Configuration ... 58
3.9. Example CPE Descriptor .. 59

4. CAS Reference .. 61
4.1. Javadocs ... 61
4.2. CAS Overview .. 61

4.2.1. The Type System .. 61
4.2.2. Creating/Accessing/Changing data ... 62
4.2.3. Creating and using indexes .. 63

4.3. Built-in CAS Types ... 64
4.4. Accessing the type system .. 66

4.4.1. TypeSystemPrinter example ... 67
4.4.2. Using CAS APIs: Feature Structures ... 69

4.5. Creating feature structures ... 71

UIMA References

iv UIMA References UIMA Version 2.3.0

4.6. Accessing or modifying Features .. 72
4.7. Indexes and Iterators .. 72

4.7.1. Built-in Indexes .. 73
4.7.2. Adding Feature Structures to the Indexes .. 73
4.7.3. Iterators ... 73
4.7.4. Special iterators for Annotation types .. 74
4.7.5. Constraints and Filtered iterators ... 74

4.8. CAS API's Javadocs .. 76
4.8.1. APIs in the CAS package ... 76

5. JCas Reference .. 79
5.1. Name Spaces .. 80
5.2. Use of XML Description ... 80
5.3. Mapping built-in CAS types to Java types .. 81
5.4. Augmenting the generated Java Code .. 81

5.4.1. Persistence of additional data ... 81
5.4.2. Keeping hand-coded augmentations when regenerating 82
5.4.3. Additional Constructors ... 82
5.4.4. Modifying generated items .. 83

5.5. Merging Types ... 83
5.5.1. Aggregate AEs and CPEs as sources of types 83
5.5.2. JCasGen support for type merging ... 84
5.5.3. Type Merging impacts on Composability ... 84
5.5.4. Adding Features to DocumentAnnotation .. 85

5.6. Using JCas within an Annotator ... 86
5.6.1. Creating new instances .. 86
5.6.2. Getters and Setters ... 87
5.6.3. Obtaining references to Indexes ... 87
5.6.4. Updating Indexes ... 88
5.6.5. Using Iterators ... 89
5.6.6. Class Loaders in UIMA .. 89
5.6.7. Issues accessing JCas objects outside of UIMA Engine Components 90

5.7. Setting up Classpath for JCas ... 90
5.8. PEAR isolation ... 90

6. PEAR Reference .. 91
6.1. Packaging a UIMA component ... 91

6.1.1. Creating the PEAR structure .. 91
6.1.2. Populating the PEAR structure .. 93
6.1.3. Creating the installation descriptor .. 94
6.1.4. Installation Descriptor: template .. 94
6.1.5. Packaging the PEAR structure into one file ... 100

6.2. Installing a PEAR package .. 101
6.2.1. Installing a PEAR file using the PEAR APIs 102

6.3. PEAR package descriptor ... 103
7. XMI CAS Serialization Reference ... 105

7.1. XMI Tag .. 105

UIMA References

UIMA Version 2.3.0 UIMA References v

7.2. Feature Structures ... 105
7.3. Primitive Features ... 106
7.4. Reference Features .. 107
7.5. Array and List Features .. 107

7.5.1. Arrays and Lists as Multi-Valued Properties 107
7.5.2. Arrays and Lists as First-Class Objects ... 108
7.5.3. Null Array/List Elements ... 109

7.6. Subjects of Analysis (Sofas) and Views ... 109
7.7. Linking XMI docs to Ecore Type System ... 110
7.8. Delta CAS XMI Format ... 110

Javadocs 1

Chapter 1. Javadocs
The details of all the public APIs for UIMA are contained in the API Javadocs. These
are located in the docs/api directory; the top level to open in your browser is called api/
index.html.

Eclipse supports the ability to attach the Javadocs to your project. The Javadoc should
already be attached to the uimaj-examples project, if you followed the setup instructions
in Section 3.2, “Setting up Eclipse to view Example Code” in UIMA Overview & SDK Setup.
To attach Javadocs to your own Eclipse project, use the following instructions.

Note: As an alternative, you can add the UIMA source to the UIMA binary
distribution; if you do this you not only will have the Javadocs automatically
available (you can skip the following setup), you will have the ability to step
through the UIMA framework code while debugging. To add the source, follow
the instructions as described in the setup chapter: Section 3.3, “Adding the UIMA
source code to the jar files” in UIMA Overview & SDK Setup.

To add the Javadocs, open a project which is referring to the UIMA APIs in its class path,
and open the project properties. Then pick Java Build Path. Pick the "Libraries" tab and
select one of the UIMA library entries (if you don't have, for instance, uima-core.jar in this
list, it's unlikely your code will compile). Each library entry has a small "+" sign on its left
- click that to expand the view to see the Javadoc location. If you highlight that and press
edit - you can add a reference to the Javadocs, in the following dialog:

Once you do this, Eclipse can show you Javadocs for UIMA APIs as you work. To see
the Javadoc for a UIMA API, you can hover over the API class or method, or select it and
press shift-F2, or use the menu Navigate → Open External Javadoc, or open the Javadoc
view (Window → Show View → Other → Java → Javadoc).

api/index.html
api/index.html
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.adding_source
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.adding_source

Using named Eclipse User Libraries

2 Javadocs UIMA Version 2.3.0

In a similar manner, you can attach the source for the UIMA framework, if you download
the source distribution. The source corresponding to particular releases is available from
the Apache UIMA web site (http://incubator.apache.org/uima) on the downloads page.

1.1. Using named Eclipse User Libraries
You can also create a named "user library" in Eclipse containing the UIMA Jars, and
attach the Javadocs (or optionally, the sources); this named library is saved in the Eclipse
workspace. Once created, it can be added to the classpath of newly created Eclipse
projects.

Use the menu option Project → Properties → Java Build Path, and then pick the Libraries
tab, and click the Add Library button. Then select User Libraries, click "Next", and pick
the library you created for the UIMA Jars.

To create this library in the workspace, use the same menu picks as above, but after you
select the User Libraries and click "Next", you can click the "New Library..." button to
define your new library. You use the "Add Jars" button and multi-select all the Jars in the
lib directory of the UIMA binary distribution. Then you add the Javadoc attachment for
each Jar. The path to use is file:/ -- insert the path to your install of UIMA -- /docs/api.
After you do this for the first Jar, you can copy this string to the clipboard and paste it into
the rest of the Jars.

http://incubator.apache.org/uima

Component Descriptor Reference 3

Chapter 2. Component Descriptor Reference
This chapter is the reference guide for the UIMA SDK's Component Descriptor XML
schema. A Component Descriptor (also sometimes called a Resource Specifier in the code) is
an XML file that either (a) completely describes a component, including all information
needed to construct the component and interact with it, or (b) specifies how to connect
to and interact with an existing component that has been published as a remote service.
Component (also called Resource) is a general term for modules produced by UIMA
developers and used by UIMA applications. The types of Components are: Analysis
Engines, Collection Readers, CAS Initializers1, CAS Consumers, and Collection Processing
Engines. However, Collection Processing Engine Descriptors are significantly different
in format and are covered in a separate chapter, Chapter 3, Collection Processing Engine
Descriptor Reference [39].

Section 2.1, “Notation” [3] describes the notation used in this chapter.

Section 2.2, “Imports” [4] describes the UIMA SDK's import syntax, used to allow
XML descriptors to import information from other XML files, to allow sharing of
information between several XML descriptors.

Section 2.4, “Analysis Engine Descriptors” [8] describes the XML format for Analysis
Engine Descriptors. These are descriptors that completely describe Analysis Engines,
including all information needed to construct and interact with them.

Section 2.6, “Collection Processing Component Descriptors” [32] describes the XML
format for Collection Processing Component Descriptors. This includes Collection Iterator,
CAS Initializer, and CAS Consumer Descriptors.

Section 2.7, “Service Client Descriptors” [36] describes the XML format for Service
Client Descriptors, which specify how to connect to and interact with resources deployed as
remote services.

Section 2.8, “Custom Resource Specifiers” [38] describes the XML format for Custom
Resource Specifiers, which allow you to plug in your own Java class as a UIMA Resource.

2.1. Notation
This chapter uses an informal notation to specify the syntax of Component Descriptors.
The formal syntax is defined by an XML schema definition, which is contained in the file
resourceSpecifierSchema.xsd, located in the uima-core.jar file.

The notation used in this chapter is:

• An ellipsis (...) inside an element body indicates that the substructure of that
element has been omitted (to be described in another section of this chapter). An
example of this would be:

1This component is deprecated and should not be use in new development.

Imports

4 Component Descriptor Reference UIMA Version 2.3.0

<analysisEngineMetaData>

...

</analysisEngineMetaData>

An ellipsis immediately after an element indicates that the element type may be
may be repeated arbitrarily many times. For example:

<parameter>[String]</parameter>

<parameter>[String]</parameter>

...

indicates that there may be arbitrarily many parameter elements in this context.

• Bracketed expressions (e.g. [String]) indicate the type of value that may be used at
that location.

• A vertical bar, as in true|false, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

• Which elements are optional and which are required is specified in prose, not in the
syntax definition.

2.2. Imports

The UIMA SDK defines a particular syntax for XML descriptors to import information
from other XML files. When one of the following appears in an XML descriptor:

<import location="[URL]" /> or

<import name="[Name]" />

it indicates that information from a separate XML file is being imported. Note that imports
are allowed only in certain places in the descriptor. In the remainder of this chapter, it will
be indicated at which points imports are allowed.

If an import specifies a location attribute, the value of that attribute specifies the URL
at which the XML file to import will be found. This can be a relative URL, which will be
resolved relative to the descriptor containing the import element, or an absolute URL.
Relative URLs can be written without a protocol/scheme (e.g., “file:”), and without a host
machine name. In this case the relative URL might look something like org/apache/
myproj/MyTypeSystem.xml.

An absolute URL is written with one of the following prefixes, followed by a path such as
org/apache/myproj/MyTypeSystem.xml:

• file:/ ← has no network address
• file:/// ← has an empty network address
• file://some.network.address/

Type System Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 5

For more information about URLs, please read the javadoc information for the Java class
“URL”.

If an import specifies a name attribute, the value of that attribute should take the form of
a Java-style dotted name (e.g. org.apache.myproj.MyTypeSystem). An .xml file with
this name will be searched for in the classpath or datapath (described below). As in Java,
the dots in the name will be converted to file path separators. So an import specifying
the example name in this paragraph will result in a search for org/apache/myproj/
MyTypeSystem.xml in the classpath or datapath.

The datapath works similarly to the classpath but can be set programmatically through
the resource manager API. Application developers can specify a datapath during
initialization, using the following code:

ResourceManager resMgr = UIMAFramework.newDefaultResourceManager();

resMgr.setDataPath(yourPathString);

AnalysisEngine ae = UIMAFramework.produceAE(desc, resMgr, null);

The default datapath for the entire JVM can be set via the uima.datapath Java system
property, but this feature should only be used for standalone applications that don't need
to run in the same JVM as other code that may need a different datapath.

Previous versions of UIMA also supported XInclude. That support didn't work in many
situations, and it is no longer supported. To include other files, please use <import>.

2.3. Type System Descriptors
A Type System Descriptor is used to define the types and features that can be represented
in the CAS. A Type System Descriptor can be imported into an Analysis Engine or
Collection Processing Component Descriptor.

The basic structure of a Type System Descriptor is as follows:

<typeSystemDescription xmlns="http://uima.apache.org/resourceSpecifier">

 <name> [String] </name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <imports>

 <import ...>

 ...

 </imports>

 <types>

 <typeDescription>

 ...

 </typeDescription>

Imports

6 Component Descriptor Reference UIMA Version 2.3.0

 ...

 </types>

</typeSystemDescription>

All of the subelements are optional.

2.3.1. Imports

The imports section allows this descriptor to import types from other type system
descriptors. The import syntax is described in Section 2.2, “Imports” [4]. A type
system may import any number of other type systems and then define additional types
which refer to imported types. Circular imports are allowed.

2.3.2. Types

The types element contains zero or more typeDescription elements. Each
typeDescription has the form:

<typeDescription>

 <name>[TypeName]</name>

 <description>[String]</description>

 <supertypeName>[TypeName]</supertypeName>

 <features>

 ...

 </features>

</typeDescription>

The name element contains the name of the type. A [TypeName] is a dot-separated
list of names, where each name consists of a letter followed by any number of letters,
digits, or underscores. TypeNames are case sensitive. Letter and digit are as defined
by Java; therefore, any Unicode letter or digit may be used (subject to the character
encoding defined by the descriptor file's XML header). The name following the final dot
is considered to be the “short name” of the type; the preceding portion is the namespace
(analogous to the package.class syntax used in Java). Namespaces beginning with uima
are reserved and should not be used. Examples of valid type names are:

• test.TokenAnnotation
• org.myorg.TokenAnnotation
• com.my_company.proj123.TokenAnnotation

These would all be considered distinct types since they have different namespaces. Best
practice here is to follow the normal Java naming conventions of having namespaces be all
lowercase, with the short type names having an initial capital, but this is not mandated,
so ABC.mYtyPE is an allowed type name. While type names without namespaces (e.g.
TokenAnnotation alone) are allowed, but discouraged because naming conflicts can then
result when combining annotators that use different type systems.

Features

UIMA Version 2.3.0 Component Descriptor Reference 7

The description element contains a textual description of the type. The supertypeName
element contains the name of the type from which it inherits (this can be set to the name of
another user-defined type, or it may be set to any built-in type which may be subclassed,
such as uima.tcas.Annotation for a new annotation type or uima.cas.TOP for a new
type that is not an annotation). All three of these elements are required.

2.3.3. Features

The features element of a typeDescription is required only if the type we are
specifying introduces new features. If the features element is present, it contains zero or
more featureDescription elements, each of which has the form:

<featureDescription>

 <name>[Name]</name>

 <description>[String]</description>

 <rangeTypeName>[Name]</rangeTypeName>

 <elementType>[Name]</elementType>

 <multipleReferencesAllowed>true|false</multipleReferencesAllowed>

</featureDescription>

A feature's name follows the same rules as a type short name – a letter followed by any
number of letters, digits, or underscores. Feature names are case sensitive.

The feature's rangeTypeName specifies the type of value that the feature can take. This
may be the name of any type defined in your type system, or one of the predefined types.
All of the predefined types have names that are prefixed with uima.cas or uima.tcas, for
example:

uima.cas.TOP

uima.cas.String

uima.cas.Long

uima.cas.FSArray

uima.cas.StringList

uima.tcas.Annotation.

For a complete list of predefined types, see the CAS API documentation.

The elementType of a feature is optional, and applies only when the rangeTypeName
is uima.cas.FSArray or uima.cas.FSList The elementType specifies what type
of value can be assigned as an element of the array or list. This must be the name
of a non-primitive type. If omitted, it defaults to uima.cas.TOP, meaning that any
FeatureStructure can be assigned as an element the array or list. Note: depending on the
CAS Interface that you use in your code, this constraint may or may not be enforced.
Note: At run time, the elementType is available from a runtime Feature object (using the
a_feature_object.getRange().getComponentType() method) only when specified for
the uima.cas.FSArray ranges; it isn't available for uima.cas.FSList ranges.

The multipleReferencesAllowed feature is optional, and applies only when the
rangeTypeName is an array or list type (it applies to arrays and lists of primitive as well

String Subtypes

8 Component Descriptor Reference UIMA Version 2.3.0

as non-primitive types). Setting this to false (the default) indicates that this feature has
exclusive ownership of the array or list, so changes to the array or list are localized. Setting
this to true indicates that the array or list may be shared, so changes to it may affect other
objects in the CAS. Note: there is currently no guarantee that the framework will enforce
this restriction. However, this setting may affect how the CAS is serialized.

2.3.4. String Subtypes

There is one other special type that you can declare – a subset of the String type that
specifies a restricted set of allowed values. This is useful for features that can have only
certain String values, such as parts of speech. Here is an example of how to declare such a
type:

<typeDescription>

 <name>PartOfSpeech</name>

 <description>A part of speech.</description>

 <supertypeName>uima.cas.String</supertypeName>

 <allowedValues>

 <value>

 <string>NN</string>

 <description>Noun, singular or mass.</description>

 </value>

 <value>

 <string>NNS</string>

 <description>Noun, plural.</description>

 </value>

 <value>

 <string>VB</string>

 <description>Verb, base form.</description>

 </value>

 ...

 </allowedValues>

</typeDescription>

2.4. Analysis Engine Descriptors

Analysis Engine (AE) descriptors completely describe Analysis Engines. There are two
basic types of Analysis Engines – Primitive and Aggregate. A Primitive Analysis Engine is
a container for a single annotator, where as an Aggregate Analysis Engine is composed of a
collection of other Analysis Engines. (For more information on this and other terminology,
see Chapter 2, UIMA Conceptual Overview in UIMA Overview & SDK Setup).

Both Primitive and Aggregate Analysis Engines have descriptors, and the two types
of descriptors have some similarities and some differences. Section 2.4.1, “Primitive
Analysis Engine Descriptors” [9] discusses Primitive Analysis Engine descriptors.
Section 2.4.2, “Aggregate Analysis Engine Descriptors” [26] then describes how
Aggregate Analysis Engine descriptors are different.

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.conceptual

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 9

2.4.1. Primitive Analysis Engine Descriptors

2.4.1.1. Basic Structure

<?xml version="1.0" encoding="UTF-8" ?>

<analysisEngineDescription

 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>

 <primitive>true</primitive>

 <annotatorImplementationName> [String] </annotatorImplementationName>

 <analysisEngineMetaData>

 ...

 </analysisEngineMetaData>

 <externalResourceDependencies>

 ...

 </externalResourceDependencies>

 <resourceManagerConfiguration>

 ...

 </resourceManagerConfiguration>

</analysisEngineDescription>

The document begins with a standard XML header. The recommended root tag is
<analysisEngineDescription>, although <taeDescription> is also allowed for
backwards compatibility.

Within the root element we declare that we are using the XML namespace http://
uima.apache.org/resourceSpecifier. It is required that this namespace be used;
otherwise, the descriptor will not be able to be validated for errors.

The first subelement, <frameworkImplementation>, currently must have the value
org.apache.uima.java, or org.apache.uima.cpp. In future versions, there may be
other framework implementations, or perhaps implementations produced by other
vendors.

The second subelement, <primitive>, contains the Boolean value true, indicating that
this XML document describes a Primitive Analysis Engine.

The next subelement, <annotatorImplementationName> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class
name for Java implementations, or the name of a .dll or .so file for C++ implementations.

The <analysisEngineMetaData> object contains descriptive information about the
analysis engine and what it does. It is described in Section 2.4.1.2, “Analysis Engine
MetaData” [10].

Primitive Analysis Engine Descriptors

10 Component Descriptor Reference UIMA Version 2.3.0

The <externalResourceDependencies> and <resourceManagerConfiguration>
elements declare the external resource files that the analysis engine relies upon. They are
optional and are described in Section 2.4.1.10, “External Resource Dependencies” [22]
and Section 2.4.1.11, “Resource Manager Configuration” [23].

2.4.1.2. Analysis Engine MetaData

<analysisEngineMetaData>

 <name> [String] </name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <configurationParameters> ... </configurationParameters>

 <configurationParameterSettings>

 ...

 </configurationParameterSettings>

 <typeSystemDescription> ... </typeSystemDescription>

 <typePriorities> ... </typePriorities>

 <fsIndexCollection> ... </fsIndexCollection>

 <capabilities> ... </capabilities>

 <operationalProperties> ... </operationalProperties>

</analysisEngineMetaData>

The analysisEngineMetaData element contains four simple string fields – name,
description, version, and vendor. Only the name field is required, but providing values
for the other fields is recommended. The name field is just a descriptive name meant to be
read by users; it does not need to be unique across all Analysis Engines.

The other sub-elements – configurationParameters,
configurationParameterSettings, typeSystemDescription, typePriorities,
fsIndexes, capabilities and operationalProperties are described in the following
sections. The only one of these that is required is capabilities; the others are optional.

2.4.1.3. Configuration Parameter Declaration

Configuration Parameters are made available to annotator implementations and
applications by the following interfaces: AnnotatorContext 2 (passed as an argument to
the initialize() method of a version 1 annotator), ConfigurableResource (every Analysis
Engine implements this interface), and the UimaContext (passed as an argument to the

2Deprecated; use UimaContext instead.

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 11

initialize() method of a version 2 annotator) (you can get this from any resource, including
Analysis Engines, using the method getUimaContext()).

Use AnnotatorContext within version 1 annotators and UimaContext for version 2
annotators and outside of annotators (for instance, in CasConsumers, or the containing
application) to access configuration parameters.

Configuration parameters are set from the corresponding elements in the XML descriptor
for the application. If you need to programmatically change parameter settings within
an application, you can use methods in ConfigurableResource; if you do this, you need
to call reconfigure() afterwards to have the UIMA framework notify all the contained
analysis components that the parameter configuration has changed (the analysis engine's
reinitialize() methods will be called). Note that in the current implementation, only
integrated deployment components have configuration parameters passed to them;
remote components obtain their parameters from their remote startup environment. This
will likely change in the future.

There are two ways to specify the <configurationParameters> section – as a list of
configuration parameters or a list of groups. A list of parameters, which are not part of
any group, looks like this:

<configurationParameters>

 <configurationParameter>

 <name>[String]</name>

 <description>[String]</description>

 <type>String|Integer|Float|Boolean</type>

 <multiValued>true|false</multiValued>

 <mandatory>true|false</mandatory>

 <overrides>

 <parameter>[String]</parameter>

 <parameter>[String]</parameter>

 ...

 </overrides>

 </configurationParameter>

 <configurationParameter>

 ...

 </configurationParameter>

 ...

</configurationParameters>

For each configuration parameter, the following are specified:

• name – the name by which the annotator code refers to the parameter. All
parameters declared in an analysis engine descriptor must have distinct names.
(required). The name is composed of normal Java identifier characters.

• description – a natural language description of the intent of the parameter
(optional)

• type – the data type of the parameter's value – must be one of String, Integer,
Float, or Boolean (required).

Primitive Analysis Engine Descriptors

12 Component Descriptor Reference UIMA Version 2.3.0

• multiValued – true if the parameter can take multiple-values (an array), false if
the parameter takes only a single value (optional, defaults to false).

• mandatory – true if a value must be provided for the parameter (optional, defaults
to false).

• overrides – this is used only in aggregate Analysis Engines, but is included here for
completeness. See Section 2.4.2.4, “Configuration Parameter Overrides” [29] for
a discussion of configuration parameter overriding in aggregate Analysis Engines.
(optional)

A list of groups looks like this:

<configurationParameters defaultGroup="[String]"

 searchStrategy="none|default_fallback|language_fallback" >

 <commonParameters>

 [zero or more parameters]

 </commonParameters>

 <configurationGroup names="name1 name2 name3 ...">

 [zero or more parameters]

 </configurationGroup>

 <configurationGroup names="name4 name5 ...">

 [zero or more parameters]

 </configurationGroup>

 ...

</configurationParameters>

Both the <commonParameters> and <configurationGroup> elements contain zero or
more <configurationParameter> elements, with the same syntax described above.

The <commonParameters> element declares parameters that exist in all groups. Each
<configurationGroup> element has a names attribute, which contains a list of group
names separated by whitespace (space or tab characters). Names consist of any number of
non-whitespace characters; however the Component Descriptor Editor tool restricts this
to be normal Java identifiers, including the period (.) and the dash (-). One configuration
group will be created for each name, and all of the groups will contain the same set of
parameters.

The defaultGroup attribute specifies the name of the group to be used in the case where
an annotator does a lookup for a configuration parameter without specifying a group
name. It may also be used as a fallback if the annotator specifies a group that does not
exist – see below.

The searchStrategy attribute determines the action to be taken when the context is
queried for the value of a parameter belonging to a particular configuration group, if that

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 13

group does not exist or does not contain a value for the requested parameter. There are
currently three possible values:

• none – there is no fallback; return null if there is no value in the exact group
specified by the user.

• default_fallback – if there is no value found in the specified group, look in the
default group (as defined by the default attribute)

• language_fallback – this setting allows for a specific use of configuration parameter
groups where the groups names correspond to ISO language and country codes (for
an example, see below). The fallback sequence is: <lang>_<country>_<region> →

<lang>_<country> → <lang> → <default>.

Example

<configurationParameters defaultGroup="en"

 searchStrategy="language_fallback">

 <commonParameters>

 <configurationParameter>

 <name>DictionaryFile</name>

 <description>Location of dictionary for this

 language</description>

 <type>String</type>

 <multiValued>false</multiValued>

 <mandatory>false</mandatory>

 </configurationParameter>

 </commonParameters>

 <configurationGroup names="en de en-US"/>

 <configurationGroup names="zh">

 <configurationParameter>

 <name>DBC_Strategy</name>

 <description>Strategy for dealing with double-byte

 characters.</description>

 <type>String</type>

 <multiValued>false</multiValued>

 <mandatory>false</mandatory>

 </configurationParameter>

 </configurationGroup>

</configurationParameters>

In this example, we are declaring a DictionaryFile parameter that can have a different
value for each of the languages that our AE supports – English (general), German, U.S.
English, and Chinese. For Chinese only, we also declare a DBC_Strategy parameter.

Primitive Analysis Engine Descriptors

14 Component Descriptor Reference UIMA Version 2.3.0

We are using the language_fallback search strategy, so if an annotator requests the
dictionary file for the en-GB (British English) group, we will fall back to the more general
en group.

Since we have defined en as the default group, this value will be returned if the context
is queried for the DictionaryFile parameter without specifying any group name, or if a
nonexistent group name is specified.

2.4.1.4. Configuration Parameter Settings

If no configuration groups were declared, the <configurationParameterSettings>
element looks like this:

<configurationParameterSettings>

 <nameValuePair>

 <name>[String]</name>

 <value>

 <string>[String]</string> |

 <integer>[Integer]</integer> |

 <float>[Float]</float> |

 <boolean>true|false</boolean> |

 <array> ... </array>

 </value>

 </nameValuePair>

 <nameValuePair>

 ...

 </nameValuePair>

 ...

</configurationParameterSettings>

There are zero or more nameValuePair elements. Each nameValuePair contains a name
(which refers to one of the configuration parameters) and a value for that parameter.

The value element contains an element that matches the type of the parameter. For single-
valued parameters, this is either <string>, <integer> , <float>, or <boolean>. For
multi-valued parameters, this is an <array> element, which then contains zero or more
instances of the appropriate type of primitive value, e.g.:

<array><string>One</string><string>Two</string></array>

If configuration groups were declared, then the <configurationParameterSettings>
element looks like this:

<configurationParameterSettings>

 <settingsForGroup name="[String]">

 [one or more <nameValuePair> elements]

 </settingsForGroup>

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 15

 <settingsForGroup name="[String]">

 [one or more <nameValuePair> elements]

 </settingsForGroup>

...

</configurationParameterSettings>

where each <settingsForGroup> element has a name that matches one of the
configuration groups declared under the <configurationParameters> element and
contains the parameter settings for that group.

Example

Here are the settings that correspond to the parameter declarations in the previous
example:

<configurationParameterSettings>

 <settingsForGroup name="en">

 <nameValuePair>

 <name>DictionaryFile</name>

 <value><string>resourcesEnglishdictionary.dat></string></value>

 </nameValuePair>

 </settingsForGroup>

 <settingsForGroup name="en-US">

 <nameValuePair>

 <name>DictionaryFile</name>

 <value><string>resourcesEnglish_USdictionary.dat</string></value>

 </nameValuePair>

 </settingsForGroup>

 <settingsForGroup name="de">

 <nameValuePair>

 <name>DictionaryFile</name>

 <value><string>resourcesDeutschdictionary.dat</string></value>

 </nameValuePair>

 </settingsForGroup>

 <settingsForGroup name="zh">

 <nameValuePair>

 <name>DictionaryFile</name>

 <value><string>resourcesChinesedictionary.dat</string></value>

 </nameValuePair>

 <nameValuePair>

 <name>DBC_Strategy</name>

 <value><string>default</string></value>

 </nameValuePair>

 </settingsForGroup>

Primitive Analysis Engine Descriptors

16 Component Descriptor Reference UIMA Version 2.3.0

</configurationParameterSettings>

2.4.1.5. Type System Definition

<typeSystemDescription>

 <name> [String] </name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <imports>

 <import ...>

 ...

 </imports>

 <types>

 <typeDescription>

 ...

 </typeDescription>

 ...

 </types>

</typeSystemDescription>

A typeSystemDescription element defines a type system for an Analysis Engine. The
syntax for the element is described in Section 2.3, “Type System Descriptors” [5].

The recommended usage is to import an external type system, using the import syntax
described in Section 2.2, “Imports” [4] of this chapter. For example:

<typeSystemDescription>

 <imports>

 <import location="MySharedTypeSystem.xml">

 </imports>

</typeSystemDescription>

This allows several AEs to share a single type system definition. The file
MySharedTypeSystem.xml would then contain the full type system information,
including the name, description, vendor, version, and types.

2.4.1.6. Type Priority Definition

<typePriorities>

 <name> [String] </name>

 <description>[String]</description>

 <version>[String]</version>

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 17

 <vendor>[String]</vendor>

 <imports>

 <import ...>

 ...

 </imports>

 <priorityLists>

 <priorityList>

 <type>[TypeName]</type>

 <type>[TypeName]</type>

 ...

 </priorityList>

 ...

 </priorityLists>

</typePriorities>

The <typePriorities> element contains zero or more <priorityList> elements;
each <priorityList> contains zero or more types. Like a type system, a type priorities
definition may also declare a name, description, version, and vendor, and may import
other type priorities. See Section 2.2, “Imports” [4] for the import syntax.

Type priority is used when iterating over feature structures in the CAS. For example, if
the CAS contains a Sentence annotation and a Paragraph annotation with the same span
of text (i.e. a one-sentence paragraph), which annotation should be returned first by an
iterator? Probably the Paragraph, since it is conceptually “bigger,” but the framework
does not know that and must be explicitly told that the Paragraph annotation has priority
over the Sentence annotation, like this:

<typePriorities>

 <priorityList>

 <type>org.myorg.Paragraph</type>

 <type>org.myorg.Sentence</type>

 </priorityList>

</typePriorities>

All of the <priorityList> elements defined in the descriptor (and in all component
descriptors of an aggregate analysis engine descriptor) are merged to produce a single
priority list.

Subtypes of types specified here are also ordered, unless overridden by another user-
specified type ordering. For example, if you specify type A comes before type B, then
subtypes of A will come before subtypes of B, unless there is an overriding specification
which declares some subtype of B comes before some subtype of A.

If there are inconsistencies between the priority list (type A declared before type B in one
priority list, and type B declared before type A in another), the framework will throw an
exception.

Primitive Analysis Engine Descriptors

18 Component Descriptor Reference UIMA Version 2.3.0

User defined indexes may declare if they wish to use the type priority or not; see the next
section.

2.4.1.7. Index Definition

<fsIndexCollection>

 <name>[String]</name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <imports>

 <import ...>

 ...

 </imports>

 <fsIndexes>

 <fsIndexDescription>

 ...

 </fsIndexDescription>

 <fsIndexDescription>

 ...

 </fsIndexDescription>

 </fsIndexes>

</fsIndexCollection>

The fsIndexCollection element declares Feature Structure Indexes, each of which defined
an index that holds feature structures of a given type. Information in the CAS is always
accessed through an index. There is a built-in default annotation index declared which
can be used to access instances of type uima.tcas.Annotation (or its subtypes), sorted
based on their begin and end features. For all other types, there is a default, unsorted
(bag) index. If there is a need for a specialized index it must be declared in this element of
the descriptor. See Section 4.7, “Indexes and Iterators” [72] for details on FS indexes.

Like type systems and type priorities, an fsIndexCollection can declare a name,
description, vendor, and version, and may import other fsIndexCollections. The
import syntax is described in Section 2.2, “Imports” [4].

An fsIndexCollection may also define zero or more fsIndexDescription elements,
each of which defines a single index. Each fsIndexDescription has the form:

<fsIndexDescription>

 <label>[String]</label>

 <typeName>[TypeName]</typeName>

 <kind>sorted|bag|set</kind>

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 19

 <keys>

 <fsIndexKey>

 <featureName>[Name]</featureName>

 <comparator>standard|reverse</comparator>

 </fsIndexKey>

 <fsIndexKey>

 <typePriority/>

 </fsIndexKey>

 ...

 </keys>

</fsIndexDescription>

The label element defines the name by which applications and annotators refer to this
index. The typeName element contains the name of the type that will be contained in this
index. This must match one of the type names defined in the <typeSystemDescription>.

There are three possible values for the <kind> of index. Sorted indexes enforce an
ordering of feature structures, and may contain duplicates. Bag indexes do not enforce
ordering, and also may contain duplicates. Set indexes do not enforce ordering and may
not contain duplicates. If the <kind>element is omitted, it will default to sorted, which is
the most common type of index.

Note: There is usually no need to explicitly declare a Bag index in your
descriptor. As of UIMA v2.1, if you do not declare any index for a type (or any of
its supertypes), a Bag index will be automatically created.

An index may define zero or more keys. These keys determine the sort order of the feature
structures within a sorted index, and determine equality for set indexes. Bag indexes
do not use keys, and equality is determined by Feature Structure identity (that is, two
elements are considered equal if and only if they are exactly the same feature structure,
located in the same place in the CAS). Keys are ordered by precedence – the first key is
evaluated first, and subsequent keys are evaluated only if necessary.

Each key is represented by an fsIndexKey element. Most fsIndexKeys contains a
featureName and a comparator. The featureName must match the name of one of the
features for the type specified in the <typeName> element for this index. The comparator
defines how the features will be compared – a value of standard means that features will
be compared using the standard comparison for their data type (e.g. for numerical types,
smaller values precede larger values, and for string types, Unicode string comparison is
performed). A value of reverse means that features will be compared using the reverse of
the standard comparison (e.g. for numerical types, larger values precede smaller values,
etc.). For Set indexes, the comparator direction is ignored – the keys are only used for the
equality testing.

Primitive Analysis Engine Descriptors

20 Component Descriptor Reference UIMA Version 2.3.0

Each key used in comparisons must refer to a feature whose range type is String, Float, or
Integer.

There is a second type of a key, one which contains only the <typePriority/>. When this
key is used, it indicates that Feature Structures will be compared using the type priorities
declared in the <typePriorities> section of the descriptor.

2.4.1.8. Capabilities

<capabilities>

 <capability>

 <inputs>

 <type allAnnotatorFeatures="true|false"[TypeName]</type>

 ...

 <feature>[TypeName]:[Name]</feature>

 ...

 </inputs>

 <outputs>

 <type allAnnotatorFeatures="true|false"[TypeName]</type>

 ...

 <feature>[TypeName]:[Name]</feature>

 ...

 </output>

 <languagesSupported>

 <language>[ISO Language ID]</language>

 ...

 </languagesSupported>

 <inputSofas>

 <sofaName>[name]</sofaName>

 ...

 </inputSofas>

 <outputSofas>

 <sofaName>[name]</sofaName>

 ...

 </outputSofas>

 </capability>

 <capability>

 ...

 </capability>

 ...

</capabilities>

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 21

The capabilities definition is used by the UIMA Framework in several ways, including
setting up the Results Specification for process calls, routing control for aggregates based
on language, and as part of the Sofa mapping function.

The capabilities element contains one or more capability elements. In Version 2 and
onwards, only one capability set should be used (multiple sets will continue to work for a
while, but they're not logically consistently supported).

Each capability contains inputs, outputs, languagesSupported, inputSofas, and
outputSofas. Inputs and outputs element are required (though they may be empty);
<languagesSupported>, <inputSofas>, and <outputSofas> are optional.

Both inputs and outputs may contain a mixture of type and feature elements.

<type...> elements contain the name of one of the types defined in the type system or
one of the built in types. Declaring a type as an input means that this component expects
instances of this type to be in the CAS when it receives it to process. Declaring a type as an
output means that this component creates new instances of this type in the CAS.

There is an optional attribute allAnnotatorFeatures, which defaults to false if omitted.
The Component Descriptor Editor tool defaults this to true when a new type is added
to the list of inputs and/or outputs. When this attribute is true, it specifies that all of
the type's features are also declared as input or output. Otherwise, the features that
are required as inputs or populated as outputs must be explicitly specified in feature
elements.

<feature...> elements contain the “fully-qualified” feature name, which
is the type name followed by a colon, followed by the feature name, e.g.
org.myorg.TokenAnnotation:lemma. <feature...> elements in the <inputs> section
must also have a corresponding type declared as an input. In output sections, this is not
required. If the type is not specified as an output, but a feature for that type is, this means
that existing instances of the type have the values of the specified features updated. Any
type mentioned in a <feature> element must be either specified as an input or an output
or both.

language elements contain one of the ISO language identifiers, such as en for English, or
en-US for the United States dialect of English.

The list of language codes can be found here: http://www.ics.uci.edu/pub/ietf/http/related/
iso639.txt and the country codes here: http://www.chemie.fu-berlin.de/diverse/doc/
ISO_3166.html

<inputSofas> and <outputSofas> declare sofa names used by this component. All Sofa
names must be unique within a particular capability set. A Sofa name must be an input or
an output, and cannot be both. It is an error to have a Sofa name declared as an input in
one capability set, and also have it declared as an output in another capability set.

A <sofaName> is written as a simple Java-style identifier, without any periods in the
name, except that it may be written to end in “.*”. If written in this manner, it specifies

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Primitive Analysis Engine Descriptors

22 Component Descriptor Reference UIMA Version 2.3.0

a set of Sofa names, all of which start with the base name (the part before the .*) followed
by a period and then an arbitrary Java identifier (without periods). This form is used to
specify in the descriptor that the component could generate an arbitrary number of Sofas,
the exact names and numbers of which are unknown before the component is run.

2.4.1.9. OperationalProperties

Components can specify specific operational properties that can be useful in deployment.
The following are available:

<operationalProperties>

 <modifiesCas> true|false </modifiesCas>

 <multipleDeploymentAllowed> true|false </multipleDeploymentAllowed>

 <outputsNewCASes> true|false </outputsNewCASes>

</operationalProperties>

ModifiesCas, if false, indicates that this component does not modify the CAS. If it is not
specified, the default value is true except for CAS Consumer components.

multipleDeploymentAllowed, if true, allows the component to be deployed multiple
times to increase performance throught scale-out techniques. If it is not specified, the
default value is true, except for CAS Consumer and Collection Reader components.

Note: If you wrap one or more CAS Consumers inside an aggregate
as the only components, you must explicitly specify in the aggregate the
multipleDeploymentAllowed property as false (assuming the CAS Consumer
components take the default here); otherwise the framework will complain about
inconsistent settings for these.

outputsNewCASes, if true, allows the component to create new CASes during processing,
for example to break a large artifact into smaller pieces. See Chapter 7, CAS Multiplier
Developer's Guide in UIMA Tutorial and Developers' Guides for details.

2.4.1.10. External Resource Dependencies

<externalResourceDependencies>

 <externalResourceDependency>

 <key>[String]</key>

 <description>[String] </description>

 <interfaceName>[String]</interfaceName>

 <optional>true|false</optional>

 </externalResourceDependency>

 <externalResourceDependency>

 ...

 </externalResourceDependency>

 ...

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 23

</externalResourceDependencies>

A primitive annotator may declare zero or more <externalResourceDependency>
elements. Each dependency has the following elements:

• key – the string by which the annotator code will attempt to access the resource.
Must be unique within this annotator.

• description – a textual description of the dependency

• interfaceName – the fully-qualified name of the Java interface through which the
annotator will access the data. This is optional. If not specified, the annotator can
only get an InputStream to the data.

• optional – whether the resource is optional. If false, an exception will be thrown if
no resource is assigned to satisfy this dependency. Defaults to false.

2.4.1.11. Resource Manager Configuration

<resourceManagerConfiguration>

 <name>[String]</name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <imports>

 <import ...>

 ...

 </imports>

 <externalResources>

 <externalResource>

 <name>[String]</name>

 <description>[String]</description>

 <fileResourceSpecifier>

 <fileUrl>[URL]</fileUrl>

 </fileResourceSpecifier>

 <implementationName>[String]</implementationName>

 </externalResource>

 ...

 </externalResources>

 <externalResourceBindings>

 <externalResourceBinding>

 <key>[String]</key>

 <resourceName>[String]</resourceName>

 </externalResourceBinding>

 ...

 </externalResourceBindings>

Primitive Analysis Engine Descriptors

24 Component Descriptor Reference UIMA Version 2.3.0

</resourceManagerConfiguration>

This element declares external resources and binds them to annotators' external resource
dependencies.

The resourceManagerConfiguration element may optionally contain an import, which
allows resource definitions to be stored in a separate (shareable) file. See Section 2.2,
“Imports” [4] for details.

The externalResources element contains zero or more externalResource elements,
each of which consists of:

• name – the name of the resource. This name is referred to in the bindings
(see below). Resource names need to be unique within any Aggregate
Analysis Engine or Collection Processing Engine, so the Java-like
org.myorg.mycomponent.MyResource syntax is recommended.

• description – English description of the resource

• Resource Specifier – Declares the location of the resource. There are different
possibilities for how this is done (see below).

• implementationName – The fully-qualified name of the Java class that will be
instantiated from the resource data. This is optional; if not specified, the resource
will be accessible as an input stream to the raw data. If specified, the Java class
must implement the interfaceName that is specified in the External Resource
Dependency to which it is bound.

One possibility for the resource specifier is a <fileResourceSpecifier>, as shown
above. This simply declares a URL to the resource data. This support is built on the Java
class URL and its method URL.openStream(); it supports the protocols “file”, “http”
and “jar” (for referring to files in jars) by default, and you can plug in handlers for other
protocols. The URL has to start with file: (or some other protocol). It is relative to either
the classpath or the “data path”. The data path works like the classpath but can be set
programmatically via ResourceManager.setDataPath(). Setting the Java System
property uima.datapath also works.

file:com/apache.d.txt is a relative path; relative paths for resources are resolved using
the classpath and/or the datapath. For the file protocol, URLs starting with file:/ or file:///
are absolute. Note that file://org/apache/d.txt is NOT an absolute path starting with
“org”. The “//” indicates that what follows is a host name. Therefore if you try to use this
URL it will complain that it can't connect to the host “org”

Another option is a <fileLanguageResourceSpecifier>, which is intended to support
resources, such as dictionaries, that depend on the language of the document being
processed. Instead of a single URL, a prefix and suffix are specified, like this:

<fileLanguageResourceSpecifier>

 <fileUrlPrefix>file:FileLanguageResource_implTest_data_</fileUrlPrefix>

Primitive Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 25

 <fileUrlSuffix>.dat</fileUrlSuffix>

</fileLanguageResourceSpecifier>

The URL of the actual resource is then formed by concatenating the prefix, the language
of the document (as an ISO language code, e.g. en or en-US – see Section 2.4.1.8,
“Capabilities” [20] for more information), and the suffix.

A third option is a customResourceSpecifier, which allows you to plug in an arbitrary
Java class. See Section 2.8, “Custom Resource Specifiers” [38] for more information.

The externalResourceBindings element declares which resources are bound to which
dependencies. Each externalResourceBinding consists of:

• key – identifies the dependency. For a binding declared in a primitive analysis
engine descriptor, this must match the value of the key element of one of the
externalResourceDependency elements. Bindings may also be specified in
aggregate analysis engine descriptors, in which case a compound key is used – see
Section 2.4.2.5, “External Resource Bindings” [30] .

• resourceName – the name of the resource satisfying the dependency. This must
match the value of the name element of one of the externalResource declarations.

A given resource dependency may only be bound to one external resource; one external
resource may be bound to many dependencies – to allow resource sharing.

2.4.1.12. Environment Variable References

In several places throughout the descriptor, it is possible to reference environment
variables. In Java, these are actually references to Java system properties. To reference
system environment variables from a Java analysis engine you must pass the environment
variables into the Java virtual machine by using the -D option on the java command line.

The syntax for environment variable references is <envVarRef>[VariableName]</
envVarRef> , where [VariableName] is any valid Java system property name.
Environment variable references are valid in the following places:

• The value of a configuration parameter (String-valued parameters only)
• The <annotatorImplementationName> element of a primitive AE descriptor
• The <name> element within <analysisEngineMetaData>
• Within a <fileResourceSpecifier> or <fileLanguageResourceSpecifier>

For example, if the value of a configuration parameter were specified as:
<string><envVarRef>TEMP_DIR</envVarRef>/temp.dat</string> , and the value of
the TEMP_DIR Java System property were c:/temp, then the configuration parameter's
value would evaluate to c:/temp/temp.dat.

Note: The Component Descriptor Editor does not support environment variable
references. If you need to, however, you can use the source tab view in the CDE to
manually add this notation.

Aggregate Analysis Engine Descriptors

26 Component Descriptor Reference UIMA Version 2.3.0

2.4.2. Aggregate Analysis Engine Descriptors

Aggregate Analysis Engines do not contain an annotator, but instead contain one or more
component (also called delegate) analysis engines.

Aggregate Analysis Engine Descriptors maintain most of the same structure as Primitive
Analysis Engine Descriptors. The differences are:

• An Aggregate Analysis Engine Descriptor contains the element
<primitive>false</primitive> rather than <primitive>true</primitive>.

• An Aggregate Analysis Engine Descriptor must not include a
<annotatorImplementationName> element.

• In place of the <annotatorImplementationName>, an Aggregate Analysis Engine
Descriptor must have a <delegateAnalysisEngineSpecifiers> element. See
Section 2.4.2.1, “Delegate Analysis Engine Specifiers” [26].

• An Aggregate Analysis Engine Descriptor may provide a <flowController>
element immediately following the <delegateAnalysisEngineSpecifiers>.
Section 2.4.2.2, “FlowController” [27].

• Under the analysisEngineMetaData element, an Aggregate Analysis Engine
Descriptor may specify an additional element -- <flowConstraints>.
See Section 2.4.2.3, “FlowConstraints” [27]. Typically only one of
<flowController> and <flowConstraints> are specified. If both are specified,
the <flowController> takes precedence, and the flow controller implementation
can use the information in specified in the <flowConstraints> as part of its
configuration input.

• An aggregate Analysis Engine Descriptors must not contain a
<typeSystemDescription> element. The Type System of the Aggregate Analysis
Engine is derived by merging the Type System of the Analysis Engines that the
aggregate contains.

• Within aggregate Analysis Engine Descriptors, <configurationParameter>
elements may define <overrides>. See Section 2.4.2.4, “Configuration Parameter
Overrides” [29] .

• External Resource Bindings can bind resources to dependencies declared by
any delegate AE within the aggregate. See Section 2.4.2.5, “External Resource
Bindings” [30].

• An additional optional element, <sofaMappings>, may be included.

2.4.2.1. Delegate Analysis Engine Specifiers

<delegateAnalysisEngineSpecifiers>

Aggregate Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 27

 <delegateAnalysisEngine key="[String]">

 <analysisEngineDescription>...</analysisEngineDescription> |

 <import .../>

 </delegateAnalysisEngine>

 <delegateAnalysisEngine key="[String]">

 ...

 </delegateAnalysisEngine>

 ...

</delegateAnalysisEngineSpecifiers>

The delegateAnalysisEngineSpecifiers element contains one or more
delegateAnalysisEngine elements. Each of these must have a unique key, and must
contain either:

• A complete analysisEngineDescription element describing the delegate analysis
engine OR

• An import element giving the name or location of the XML descriptor for the
delegate analysis engine (see Section 2.2, “Imports” [4]).

The latter is the much more common usage, and is the only form supported by the
Component Descriptor Editor tool.

2.4.2.2. FlowController

<flowController key="[String]">

 <flowControllerDescription>...</flowControllerDescription> |

 <import .../>

 </flowController>

The optional flowController element identifies the descriptor of the FlowController
component that will be used to determine the order in which delegate Analysis Engine are
called.

The key attribute is optional, but recommended; it assigns the FlowController an
identifier that can be used for configuration parameter overrides, Sofa mappings, or
external resource bindings. The key must not be the same as any of the delegate analysis
engine keys.

As with the delegateAnalysisEngine element, the flowController element may
contain either a complete flowControllerDescription or an import, but the import is
recommended. The Component Descriptor Editor tool only supports imports here.

2.4.2.3. FlowConstraints

If a <flowController> is not specified, the order in which delegate Analysis
Engines are called within the aggregate Analysis Engine is specified using the

Aggregate Analysis Engine Descriptors

28 Component Descriptor Reference UIMA Version 2.3.0

<flowConstraints> element, which must occur immediately following the
configurationParameterSettings element. If a <flowController> is specified, then
the <flowConstraints> are optional. They can be used to pass an ordering of delegate
keys to the <flowController>.

There are two options for flow constraints -- <fixedFlow> or
<capabilityLanguageFlow>. Each is discussed in a separate section below.

Fixed Flow

<flowConstraints>

 <fixedFlow>

 <node>[String]</node>

 <node>[String]</node>

 ...

 </fixedFlow>

</flowConstraints>

The flowConstraints element must be included immediately following the
configurationParameterSettings element.

Currently the flowConstraints element must contain a fixedFlow element. Eventually,
other types of flow constraints may be possible.

The fixedFlow element contains one or more node elements, each of which contains
an identifier which must match the key of a delegate analysis engine specified in the
delegateAnalysisEngineSpecifiers element.

Capability Language Flow

<flowConstraints>

 <capabilityLanguageFlow>

 <node>[String]</node>

 <node>[String]</node>

 ...

 </capabilityLanguageFlow>

</flowConstraints>

If you use <capabilityLanguageFlow>, the delegate Analysis Engines named by the
<node> elements are called in the given order, except that a delegate Analysis Engine
is skipped if any of the following are true (according to that Analysis Engine's declared
output capabilities):

• It cannot produce any of the aggregate Analysis Engine's output capabilities for the
language of the current document.

• All of the output capabilities have already been produced by an earlier Analysis
Engine in the flow.

Aggregate Analysis Engine Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 29

For example, if two annotators produce org.myorg.TokenAnnotation feature structures
for the same language, these feature structures will only be produced by the first
annotator in the list.

Note: The flow analysis uses the specific types that are specified in the output
capabilities, without any expansion for subtypes. So, if you expect a type TT and
another type SubTT (which is a subtype of TT) in the output, you must include
both of them in the output capabilities.

2.4.2.4. Configuration Parameter Overrides

In an aggregate Analysis Engine Descriptor, each <configurationParameter> element
should contain an <overrides> element, with the following syntax:

<overrides>

 <parameter>

 [delegateAnalysisEngineKey]/[parameterName]

 </parameter>

 <parameter>

 [delegateAnalysisEngineKey]/[parameterName]

 </parameter>

 ...

</overrides>

Since aggregate Analysis Engines have no code associated with them, the only way in
which their configuration parameters can affect their processing is by overriding the
parameter values of one or more delegate analysis engines. The <overrides> element
determines which parameters, in which delegate Analysis Engines, are overridden by this
configuration parameter.

For example, consider an aggregate Analysis Engine Descriptor that contains
delegate Analysis Engines with keys annotator1 and annotator2 (as declared in the
<delegateAnalysisEngine> element – see Section 2.4.2.1, “Delegate Analysis Engine
Specifiers” [26]) and also declares a configuration parameter as follows:

<configurationParameter>

 <name>AggregateParam</name>

 <type>String</type>

 <overrides>

 <parameter>annotator1/param1</parameter>

 <parameter>annotator2/param2</parameter>

 </overrides>

</configurationParameter>

The value of the AggregateParam parameter (whether assigned in the aggregate
descriptor or at runtime by an application) will override the value of parameter param1

Aggregate Analysis Engine Descriptors

30 Component Descriptor Reference UIMA Version 2.3.0

in annotator1 and also override the value of parameter param2 in annotator2. No other
parameters will be affected.

For historical reasons only, if an aggregate Analysis Engine descriptor declares a
configuration parameter with no explicit overrides, that parameter will override any
parameters having the same name within any delegate analysis engine. This usage is
strongly discouraged. The UIMA SDK currently supports this usage but logs a warning
message to the log file. This support may be dropped in future versions.

2.4.2.5. External Resource Bindings

Aggregate analysis engine descriptors can declare resource bindings that bind resources
to dependencies declared in any of the delegate analysis engines (or their subcomponents,
recursively) within that aggregate. This allows resource sharing. Any binding at this
level overrides (supersedes) any binding specified by a contained component or their
subcomponents, recursively.

For example, consider an aggregate Analysis Engine Descriptor that contains
delegate Analysis Engines with keys annotator1 and annotator2 (as declared in the
<delegateAnalysisEngine> element – see Section 2.4.2.1, “Delegate Analysis Engine
Specifiers” [26]), where annotator1 declares a resource dependency with key
myResource and annotator2 declares a resource dependency with key someResource .

Within that aggregate Analysis Engine Descriptor, the following
resourceManagerConfiguration would bind both of those dependencies to a single
external resource file.

<resourceManagerConfiguration>

 <externalResources>

 <externalResource>

 <name>ExampleResource</name>

 <fileResourceSpecifier>

 <fileUrl>file:MyResourceFile.dat</fileUrl>

 </fileResourceSpecifier>

 </externalResource>

 </externalResources>

 <externalResourceBindings>

 <externalResourceBinding>

 <key>annotator1/myResource</key>

 <resourceName>ExampleResource</resourceName>

 </externalResourceBinding>

 <externalResourceBinding>

 <key>annotator2/someResource</key>

 <resourceName>ExampleResource</resourceName>

 </externalResourceBinding>

 </externalResourceBindings>

</resourceManagerConfiguration>

Flow Controller Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 31

The syntax for the externalResources declaration is exactly the same as described
previously. In the resource bindings note the use of the compound keys, e.g. annotator1/
myResource. This identifies the resource dependency key myResource within the
annotator with key annotator1. Compound resource dependencies can be multiple levels
deep to handle nested aggregate analysis engines.

2.4.2.6. Sofa Mappings

Sofa mappings are specified between Sofa names declared in this aggregate descriptor
as part of the <capability> section, and the Sofa names declared in the delegate
components. For purposes of the mapping, all the declarations of Sofas in any of the
capability sets contained within the <capabilities> element are considered together.

<sofaMappings>

 <sofaMapping>

 <componentKey>[keyName]</componentKey>

 <componentSofaName>[sofaName]</componentSofaName>

 <aggregateSofaName>[sofaName]</aggregateSofaName>

 </sofaMapping>

 ...

</sofaMappings>

The <componentSofaName> may be omitted in the case where the component is not
aware of Multiple Views or Sofas. In this case, the UIMA framework will arrange for the
specified <aggregateSofaName> to be the one visible to the delegate component.

The <componentKey> is the key name for the component as specified in the list of
delegate components for this aggregate.

The sofaNames used must be declared as input or output sofas in some capability set.

2.5. Flow Controller Descriptors
The basic structure of a Flow Controller Descriptor is as follows:

<?xml version="1.0" ?>

<flowControllerDescription

 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>

 <implementationName>[ClassName]</implementationName>

 <processingResourceMetaData>

 ...

 </processingResourceMetaData>

 <externalResourceDependencies>

 ...

 </externalResourceDependencies>

Collection Processing Component Descriptors

32 Component Descriptor Reference UIMA Version 2.3.0

 <resourceManagerConfiguration>

 ...

 </resourceManagerConfiguration>

</flowControllerDescription>

The frameworkImplementation element must always be set to the value
org.apache.uima.java.

The implementationName element must contain the fully-qualified class name of the Flow
Controller implementation. This must name a class that implements the FlowController
interface.

The processingResourceMetaData element contains essentially the same information as
a Primitive Analysis Engine Descriptor's analysisEngineMetaData element, described in
Section 2.4.1.2, “Analysis Engine MetaData” [10].

The externalResourceDependencies and resourceManagerConfiguration elements
are exactly the same as in Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [23].

2.6. Collection Processing Component Descriptors
There are three types of Collection Processing Components – Collection Readers, CAS
Initializers (deprecated as of UIMA Version 2), and CAS Consumers. Each type of
component has a corresponding descriptor. The structure of these descriptors is very
similar to that of primitive Analysis Engine Descriptors.

2.6.1. Collection Reader Descriptors

The basic structure of a Collection Reader descriptor is as follows:

<?xml version="1.0" ?>

<collectionReaderDescription

 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>

 <implementationName>[ClassName]</implementationName>

 <processingResourceMetaData>

 ...

 </processingResourceMetaData>

 <externalResourceDependencies>

 ...

 </externalResourceDependencies>

 <resourceManagerConfiguration>

Collection Reader Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 33

 ...

 </resourceManagerConfiguration>

</collectionReaderDescription>

The frameworkImplementation element must always be set to the value
org.apache.uima.java.

The implementationName element contains the fully-qualified class name of the
Collection Reader implementation. This must name a class that implements the
CollectionReader interface.

The processingResourceMetaData element contains essentially the same information as
a Primitive Analysis Engine Descriptor's' analysisEngineMetaData element:

<processingResourceMetaData>

 <name> [String] </name>

 <description>[String]</description>

 <version>[String]</version>

 <vendor>[String]</vendor>

 <configurationParameters>

 ...

 </configurationParameters>

 <configurationParameterSettings>

 ...

 </configurationParameterSettings>

 <typeSystemDescription>

 ...

 </typeSystemDescription>

 <typePriorities>

 ...

 </typePriorities>

 <fsIndexes>

 ...

 </fsIndexes>

 <capabilities>

 ...

 </capabilities>

</processingResourceMetaData>

The contents of these elements are the same as that described in Section 2.4.1.2, “Analysis
Engine MetaData” [10], with the exception that the capabilities section should not

CAS Initializer Descriptors (deprecated)

34 Component Descriptor Reference UIMA Version 2.3.0

declare any inputs (because the Collection Reader is always the first component to receive
the CAS).

The externalResourceDependencies and resourceManagerConfiguration elements
are exactly the same as in the Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [23].

2.6.2. CAS Initializer Descriptors (deprecated)

The basic structure of a CAS Initializer Descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<casInitializerDescription

 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>

 <implementationName>[ClassName] </implementationName>

 <processingResourceMetaData>

 ...

 </processingResourceMetaData>

 <externalResourceDependencies>

 ...

 </externalResourceDependencies>

 <resourceManagerConfiguration>

 ...

 </resourceManagerConfiguration>

</casInitializerDescription>

The frameworkImplementation element must always be set to the value
org.apache.uima.java.

The implementationName element contains the fully-qualified class name of the CAS
Initializer implementation. This must name a class that implements the CasInitializer
interface.

The processingResourceMetaData element contains essentially the same information as
a Primitive Analysis Engine Descriptor's' analysisEngineMetaData element, as described
in Section 2.4.1.2, “Analysis Engine MetaData” [10], with the exception of some
changes to the capabilities section. A CAS Initializer's capabilities element looks like this:

<capabilities>

 <capability>

 <outputs>

 <type allAnnotatorFeatures="true|false">[String]</type>

 <type>[TypeName]</type>

CAS Consumer Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 35

 ...

 <feature>[TypeName]:[Name]</feature>

 ...

 </outputs>

 <outputSofas>

 <sofaName>[name]</sofaName>

 ...

 </outputSofas>

 <mimeTypesSupported>

 <mimeType>[MIME Type]</mimeType>

 ...

 </mimeTypesSupported>

 </capability>

 <capability>

 ...

 </capability>

 ...

</capabilities>

The differences between a CAS Initializer's capabilities declaration and an Analysis
Engine's capabilities declaration are that the CAS Initializer does not declare any input
CAS types and features or input Sofas (because it is always the first to operate on a CAS),
it doesn't have a language specifier, and that the CAS Initializer may declare a set of
MIME types that it supports for its input documents. Examples include: text/plain, text/
html, and application/pdf. For a list of MIME types see http://www.iana.org/assignments/
media-types/. This information is currently only for users' information, the framework
does not use it for anything. This may change in future versions.

The externalResourceDependencies and resourceManagerConfiguration elements
are exactly the same as in the Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [23]).

2.6.3. CAS Consumer Descriptors

The basic structure of a CAS Consumer Descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<casConsumerDescription

 xmlns="http://uima.apache.org/resourceSpecifier">

 <frameworkImplementation>org.apache.uima.java</frameworkImplementation>

 <implementationName>[ClassName]</implementationName>

 <processingResourceMetaData>

 ...

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Service Client Descriptors

36 Component Descriptor Reference UIMA Version 2.3.0

 </processingResourceMetaData>

 <externalResourceDependencies>

 ...

 </externalResourceDependencies>

 <resourceManagerConfiguration>

 ...

 </resourceManagerConfiguration>

</casConsumerDescription>

The frameworkImplementation element currently must have the value
org.apache.uima.java, or org.apache.uima.cpp.

The next subelement, <annotatorImplementationName> is how the UIMA framework
determines which annotator class to use. This should contain a fully-qualified Java class
name for Java implementations, or the name of a .dll or .so file for C++ implementations.

The frameworkImplementation element must always be set to the value
org.apache.uima.java.

The implementationName element must contain the fully-qualified class name of the CAS
Consumer implementation, or the name of a .dll or .so file for C++ implementations. For
Java, the named class must implement the CasConsumer interface.

The processingResourceMetaData element contains essentially the same information as
a Primitive Analysis Engine Descriptor's analysisEngineMetaData element, described
in Section 2.4.1.2, “Analysis Engine MetaData” [10], except that the CAS Consumer
Descriptor's capabilities element should not declare outputs or outputSofas (since CAS
Consumers do not modify the CAS).

The externalResourceDependencies and resourceManagerConfiguration elements
are exactly the same as in Primitive Analysis Engine Descriptors (see Section 2.4.1.10,
“External Resource Dependencies” [22] and Section 2.4.1.11, “Resource Manager
Configuration” [23].

2.7. Service Client Descriptors

Service Client Descriptors specify only a location of a remote service. They are therefore
much simpler in structure. In the UIMA SDK, a Service Client Descriptor that refers
to a valid Analysis Engine or CAS Consumer service can be used in place of the actual
Analysis Engine or CAS Consumer Descriptor. The UIMA SDK will handle the details of
calling the remote service. (For details on deploying an Analysis Engine or CAS Consumer
as a service, see Section 3.6, “Working with Remote Services” in UIMA Tutorial and
Developers' Guides.

The UIMA SDK is extensible to support different types of remote services. In future
versions, there may be different variations of service client descriptors that cater to

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services

Service Client Descriptors

UIMA Version 2.3.0 Component Descriptor Reference 37

different types of services. For now, the only type of service client descriptor is the
uriSpecifier, which supports the SOAP and Vinci protocols.

<?xml version="1.0" encoding="UTF-8" ?>

<uriSpecifier xmlns="http://uima.apache.org/resourceSpecifier">

 <resourceType>AnalysisEngine | CasConsumer </resourceType>

 <uri>[URI]</uri>

 <protocol>SOAP | SOAPwithAttachments | Vinci</protocol>

 <timeout>[Integer]</timeout>

 <parameters>

 <parameter name="VNS_HOST" value="some.internet.ip.name-or-address"/>

 <parameter name="VNS_PORT" value="9000"/>

 <parameter name="GetMetaDataTimeout" value="[Integer]"/>

 </parameters>

</uriSpecifier>

The resourceType element is required for new descriptors, but is currently allowed to be
omitted for backward compatibility. It specifies the type of component (Analysis Engine or
CAS Consumer) that is implemented by the service endpoint described by this descriptor.

The uri element contains the URI for the web service. (Note that in the case of Vinci, this
will be the service name, which is looked up in the Vinci Naming Service.)

The protocol element may be set to SOAP, SOAPwithAttachments, or Vinci; other
protocols may be added later. These specify the particular data transport format that will
be used.

The timeout element is optional. If present, it specifies the number of milliseconds to wait
for a request to be processed before an exception is thrown. A value of zero or less will
wait forever. If no timeout is specified, a default value (currently 60 seconds) will be used.

The parameters element is optional. If present, it can specify values for each of the
following:

• VNS_HOST: host name for the Vinci naming service.

• VNS_PORT: port number for the Vinci naming service.

• GetMetaDataTimeout: timeout period (in milliseconds) for the GetMetaData call. If
not specified, the default is 60 seconds. This may need to be set higher if there are a
lot of clients competing for connections to the service.

If the VNS_HOST and VNS_PORT are not specified in the descriptor, the values used for these
comes from parameters passed on the Java command line using the -DVNS_HOST=<host>
and/or -DVNS_PORT=<port> system arguments. If not present, and a system argument is
also not present, the values for these default to localhost for the VNS_HOST and 9000 for
the VNS_PORT.

For details on how to deploy and call Analysis Engine and CAS Consumer services, see
Section 3.6, “Working with Remote Services” in UIMA Tutorial and Developers' Guides.

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services

Custom Resource Specifiers

38 Component Descriptor Reference UIMA Version 2.3.0

2.8. Custom Resource Specifiers
A Custom Resource Specifier allows you to plug in your own Java class as a UIMA
Resource. For example you can support a new service protocol by plugging in a Java class
that implements the UIMA AnalysisEngine interface and communicates with the remote
service.

A Custom Resource Specifier has the following format:

<?xml version="1.0" encoding="UTF-8" ?>

<customResourceSpecifier xmlns="http://uima.apache.org/resourceSpecifier">

 <resourceClassName>[Java Class Name]</resourceClassName>

 <parameters>

 <parameter name="[String]" value="[String]"/>

 <parameter name="[String]" value="[String]"/>

 </parameters>

</customResourceSpecifier>

The resourceClassName element must contain the fully-qualified name of a Java class
that can be found in the classpath (including the UIMA extension classpath, if you have
specified one using the ResourceManager.setExtensionClassPath method). This class
must implement the UIMA Resource interface.

When an application calls the UIMAFramework.produceResource method and passes a
CustomResourceSpecifier, the UIMA framework will load the named class and call its
initialize(ResourceSpecifier,Map) method, passing the CustomResourceSpecifier
as the first argument. Your class can override the initialize method and use the
CustomResourceSpecifier API to get access to the parameter names and values
specified in the XML.

If you are using a custom resource specifier to plug in a class that implements a new
service protocol, your class must also implement the AnalysisEngine interface.
Generally it should also extend AnalysisEngineImplBase. The key methods
that should be implemented are getMetaData, processAndOutputNewCASes,
collectionProcessComplete, and destroy.

CPE Descriptor Reference 39

Chapter 3. Collection Processing Engine
Descriptor Reference

A UIMA Collection Processing Engine (CPE) is a combination of UIMA components
assembled to analyze a collection of artifacts. A CPE is an instantiation of the UIMA
Collection Processing Architecture, which defines the collection processing components,
interfaces, and APIs. A CPE is executed by a UIMA framework component called the
Collection Processing Manager (CPM), which provides a number of services for deploying
CPEs, running CPEs, and handling errors.

A CPE can be assembled programmatically within a Java application, or it can be
assembled declaratively via a CPE configuration specification, called a CPE Descriptor.
This chapter describes the format of the CPE Descriptor.

Details about the CPE, including its function, sub-components, APIs, and related tools,
can be found in Chapter 2, Collection Processing Engine Developer's Guide in UIMA Tutorial
and Developers' Guides. Here we briefly summarize the CPE to define terms and provide
context for the later sections that describe the CPE Descriptor.

3.1. CPE Overview

Figure 3.1. CPE Runtime Overview

An illustration of the CPE runtime is shown in Figure 3.1, “CPE Runtime
Overview” [39]. Some of the CPE components, such as the queues and processing
pipelines, are internal to the CPE, but their behavior and deployment may be configured
using the CPE Descriptor. Other CPE components, such as the Collection Reader and CAS

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe

Notation

40 CPE Descriptor Reference UIMA Version 2.3.0

Processors, are defined and configured externally from the CPE and then plugged in to the
CPE to create the overall engine. The parts of a CPE are:

Collection Reader
understands the native data collection format and iterates over the collection
producing subjects of analysis

CAS Initializer1

initializes a CAS with a subject of analysis

Artifact Producer
asynchronously pulls CASes from the Collection Reader, creates batches of CASes and
puts them into the work queue

Work Queue
shared queue containing batches of CASes queued by the Artifact Producer for
analysis by Analysis Engines

B1-Bn
individual batches containing 1 or more CASes

AE1-AEn
Analysis Engines arranged by a CPE descriptor

Processing Pipelines
each pipeline runs in a separate thread and contains a replicated set of the Analysis
Engines running in the defined sequence

Output Queue
holds batches of CASes with analysis results intended for CAS Consumers

CAS Consumers
perform collection level analysis over the CASes and extract analysis results, e.g.,
creating indexes or databases

3.2. Notation
CPE Descriptors are XML files. This chapter uses an informal notation to specify the
syntax of CPE Descriptors.

The notation used in this chapter is:

• An ellipsis (...) inside an element body indicates that the substructure of that
element has been omitted (to be described in another section of this chapter). An
example of this would be:

<collectionReader>

1Deprecated

Imports

UIMA Version 2.3.0 CPE Descriptor Reference 41

...

</collectionReader>

• An ellipsis immediately after an element indicates that the element type may be
repeated arbitrarily many times. For example:

<parameter>[String]</parameter>

<parameter>[String]</parameter>

...

indicates that there may be arbitrarily many parameter elements in this context.

• An ellipsis inside an element means details of the attributes associated with that
element are defined later, e.g.:

<casProcessor ...>

• Bracketed expressions (e.g. [String]) indicate the type of value that may be used at
that location.

• A vertical bar, as in true|false, indicates alternatives. This can be applied to literal
values, bracketed type names, and elements.

Which elements are optional and which are required is specified in prose, not in the
syntax definition.

3.3. Imports
As of version 2.2, a CPE Descriptor can use the same import mechanism as other
component descriptors. This allows referring to component descriptors using either
relative paths (resolved relative to the location of the CPE descriptor) or the classpath/
datapath. For details see Chapter 2, Component Descriptor Reference [3].

The follwing older syntax is still supported, but not recommended:

<descriptor>

 <include href="[URL or File]"/>

</descriptor>

The [URL or File] attribute is a URL or a filename for the descriptor of the incorporated
component. The argument is first attempted to be resolved as a URL.

Relative paths in an include are resolved relative to the current working directory (NOT
the CPE descriptor location as is the case for import). A filename relative to another
directory can be specified using the CPM_HOME variable, e.g.,

<descriptor>

 <include href="${CPM_HOME}/desc_dir/descriptor.xml"/>

</descriptor>

CPE Descriptor Overview

42 CPE Descriptor Reference UIMA Version 2.3.0

In this case, the value for the CPM_HOME variable must be provided to the CPE by
specifying it on the Java command line, e.g.,

java -DCPM_HOME="C:/Program Files/apache/uima/cpm" ...

3.4. CPE Descriptor Overview

A CPE Descriptor consists of information describing the following four main elements.

1. The Collection Reader, which is responsible for gathering artifacts and initializing
the Common Analysis Structure (CAS) used to support processing in the UIMA
collection processing engine.

2. The CAS Processors, responsible for analyzing individual artifacts, analyzing across
artifacts, and extracting analysis results. CAS Processors include Analysis Engines
and CAS Consumers.

3. Operational parameters of the Collection Processing Manager (CPM), such as
checkpoint frequency and deployment mode.

4. Resource Manager Configuration (optional).

The CPE Descriptor has the following high level skeleton:

<?xml version="1.0"?>

<cpeDescription>

 <collectionReader>

...

 </collectionReader>

 <casProcessors>

...

 </casProcessors>

 <cpeConfig>

...

 </cpeConfig>

 <resourceManagerConfiguration>

...

 </resourceManagerConfiguration>

</cpeDescription>

Details of each of the four main elements are described in the sections that follow.

3.5. Collection Reader

The <collectionReader> section identifies the Collection Reader and optional CAS
Initializer that are to be used in the CPE. The Collection Reader is responsible for
retrieval of artifacts from a collection outside of the CPE, and the optional CAS Initializer
(deprecated as of UIMA Version 2) is responsible for initializing the CAS with the artifact.

Error handling for Collection Readers

UIMA Version 2.3.0 CPE Descriptor Reference 43

A Collection Reader may initialize the CAS itself, in which case it does not require a CAS
Initializer. This should be clearly specified in the documentation for the Collection Reader.
Specifying a CAS Initializer for a Collection Reader that does not make use of a CAS
Initializer will not cause an error, but the specified CAS Initializer will not be used.

The complete structure of the <collectionReader> section is:

<collectionReader>

 <collectionIterator>

 <descriptor>

 <import ...> | <include .../>

 </descriptor>

 <configurationParameterSettings>...</configurationParameterSettings>

 <sofaNameMappings>...</sofaNameMappings>

 </collectionIterator>

 <casInitializer>

 <descriptor>

 <import ...> | <include .../>

 </descriptor>

 <configurationParameterSettings>...</configurationParameterSettings>

 <sofaNameMappings>...</sofaNameMappings>

 </casInitializer>

</collectionReader>

The <collectionIterator> identifies the descriptor for the Collection Reader,
and the <casInitializer> identifies the descriptor for the CAS Initializer.
The format and details of the Collection Reader and CAS Initializer descriptors
are described in Section 2.6.1, “Collection Reader Descriptors” [32] . The
<configurationParameterSettings> and the <sofaNameMappings> elements are
described in the next section.

3.5.1. Error handling for Collection Readers

The CPM will abort if the Collection Reader throws a large number of consecutive
exceptions (default = 100). This default can by changed by using the Java initialization
parameter -DMaxCRErrorThreshold xxx.

3.6. CAS Processors
The <casProcessors> section identifies the components that perform the analysis on
the input data, including CAS analysis (Analysis Engines) and analysis results extraction
(CAS Consumers). The CAS Consumers may also perform collection level analysis, where
the analysis is performed (or aggregated) over multiple CASes. The basic structure of the
CAS Processors section is:

<casProcessors

 dropCasOnException="true|false"

 casPoolSize="[Number]"

 processingUnitThreadCount="[Number]">

CAS Processors

44 CPE Descriptor Reference UIMA Version 2.3.0

 <casProcessor ...>

 ...

 </casProcessor>

 <casProcessor ...>

 ...

 </casProcessor>

 ...

</casProcessors>

The <casProcessors> section has two mandatory attributes and one optional attribute
that configure the characteristics of the CAS Processor flow in the CPE. The first
mandatory attribute is a casPoolSize, which defines the fixed number of CAS instances
that the CPM will create and use during processing. All CAS instances are maintained in
a CAS Pool with a check-in and check-out access. Each CAS is checked-out from the CAS
Pool by the Collection Reader and initialized with an initial subject of analysis. The CAS is
checked-in into the CAS Pool when it is completely processed, at the end of the processing
chain. A larger CAS Pool size will result in more memory being used by the CPM. CAS
objects can be large and care should be taken to determine the optimum size of the CAS
Pool, weighing memory tradeoffs with performance.

The second mandatory <casProcessors> attribute is processingUnitThreadCount,
which specifies the number of replicated Processing Pipelines. Each Processing Pipeline
runs in its own thread. The CPM takes CASes from the work queue and submits each
CAS to one of the Processing Pipelines for analysis. A Processing Pipeline contains one
or more Analysis Engines invoked in a given sequence. If more than one Processing
Pipeline is specified, the CPM replicates instances of each Analysis Engine defined in the
CPE descriptor. Each Processing Pipeline thread runs independently, consuming CASes
from work queue and depositing CASes with analysis results onto the output queue. On
multiprocessor machines, multiple Processing Pipelines can run in parallel, improving
overall throughput of the CPM.

Note: The number of Processing Pipelines should be equal to or greater than
CAS Pool size.

Elements in the pipeline (each represented by a <casProcessor> element) may indicate that
they do not permit multiple deployment in their Analysis Engine descriptor. If so, even
though multiple pipelines are being used, all CASes passing through the pipelines will be
routed through one instance of these marked Engines.

The final, optional, <casProcessors> attribute is dropCasOnException. It defines a
policy that determines what happens with the CAS when an exception happens during
processing. If the value of this attribute is set to true and an exception happens, the CPM
will notify all registered listeners of the exception (see Section 2.3.1, “Using Listeners” in
UIMA Tutorial and Developers' Guides), clear the CAS and check the CAS back into the CAS
Pool so that it can be re-used. The presumption is that an exception may leave the CAS
in an inconsistent state and therefore that CAS should not be allowed to move through

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe.using_listeners

Specifying an Individual CAS Processor

UIMA Version 2.3.0 CPE Descriptor Reference 45

the processing chain. When this attribute is omitted the CPM's default is the same as
specifying dropCasOnException="false".

3.6.1. Specifying an Individual CAS Processor

The CAS Processors that make up the Processing Pipeline and the CAS Consumer
pipeline are specified with the <casProcessor> entity, which appears within the
<casProcessors> entity. It may appear multiple times, once for each CAS Processor
specified for this CPE.

The order of the <casProcessor> entities with the <casProcessors> section specifies the
order in which the CAS Processors will run. Although CAS Consumers are usually put at
the end of the pipeline, they need not be. Also, Aggregate Analysis Engines may include
CAS Consumers.

The overall format of the <casProcessor> entity is:

<casProcessor deployment="local|remote|integrated" name="[String]" >

 <descriptor>

 <import ...> | <include .../>

 </descriptor>

 <configurationParameterSettings>...</configurationParameterSettings>

 <sofaNameMappings>...</sofaNameMappings>

 <runInSeparateProcess>...</runInSeparateProcess>

 <deploymentParameters>...</deploymentParameters>

 <filter/>

 <errorHandling>...</errorHandling>

 <checkpoint batch="Number"/>

</casProcessor>

The <casProcessor> element has two mandatory attributes, deployment and name. The
mandatory name attribute specifies a unique string identifying the CAS Processor.

The mandatory deployment attribute specifies the CAS Processor deployment mode.
Currently, three deployment options are supported:

integrated
indicates integrated deployment of the CAS Processor. The CPM deploys and collocates
the CAS Processor in the same process space as the CPM. This type of deployment
is recommended to increase the performance of the CPE. However, it is NOT
recommended to deploy annotators containing JNI this way. Such CAS Processors
may cause a fatal exception and force the JVM to exit without cleanup (bringing
down the CPM). Any UIMA SDK compliant pure Java CAS Processors may be safely
deployed this way.

The descriptor for an integrated deployment can, in fact, be a remote service
descriptor. When used this way, however, the CPM error recovery options (see below)
operate in the integrated mode, which means that many of the retry options are not
available.

Specifying an Individual CAS Processor

46 CPE Descriptor Reference UIMA Version 2.3.0

remote
indicates non-managed deployment of the CAS Processor. The CAS Processor
descriptor referenced in the <descriptor> element must be a Vinci Service Client
Descriptor, which identifies a remotely deployed CAS Processor service (see
Section 3.6, “Working with Remote Services” in UIMA Tutorial and Developers' Guides).
The CPM assumes that the CAS Processor is already running as a remote service and
will connect to it using the URI provided in the client service descriptor. The lifecycle
of a remotely deployed CAS Processor is not managed by the CPM, so appropriate
infrastructure should be in place to start/restart such CAS Processors when necessary.
This deployment provides fault isolation and is implementation (i.e., programming
language) neutral.

local
indicates managed deployment of the CAS Processor. The CAS Processor descriptor
referenced in the <descriptor> element must be a Vinci Service Deployment Descriptor,
which configures a CAS Processor for deployment as a Vinci service (see Section 3.6,
“Working with Remote Services” in UIMA Tutorial and Developers' Guides). The CPM
deploys the CAS Processor in a separate process and manages the life cycle (start/
stop) of the CAS Processor. Communication between the CPM and the CAS Processor
is done with Vinci. When the CPM completes processing, the process containing the
CAS Processor is terminated. This deployment mode insulates the CPM from the CAS
Processor, creating a more robust deployment at the cost of a small communication
overhead. On multiprocessor machines, the separate processes may run concurrently
and improve overall throughput.

A number of elements may appear within the <casProcessor> element.

3.6.1.1. <descriptor> Element

The <descriptor> element is mandatory. It identifies the descriptor for the
referenced CAS Processor using the syntax described in Section 2.4, “Analysis Engine
Descriptors” [8].

• For remote CAS Processors, the referenced descriptor must be a Vinci Service Client
Descriptor, which identifies a remotely deployed CAS Processor service.

• For local CAS Processors, the referenced descriptor must be a Vinci Service
Deployment Descriptor.

• For integrated CAS Processors, the referenced descriptor must be an Analysis Engine
Descriptor (primitive or aggregate).

See Section 3.6, “Working with Remote Services” in UIMA Tutorial and Developers' Guides
for more information on creating these descriptors and deploying services.

3.6.1.2. <configurationParameterSettings> Element

This element provides a way to override the contained Analysis Engine's parameters
settings. Any entry specified here must already be defined; values specified replace the

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services

Specifying an Individual CAS Processor

UIMA Version 2.3.0 CPE Descriptor Reference 47

corresponding values for each parameter. For Cas Processors, this mechanism is only
available when they are deployed in “integrated” mode. For Collection Readers and
Initializers, it always is available.

The content of this element is identical to the component descriptor for specifying
parameters (in the case where no parameter groups are specified)2. Here is an example:

<configurationParameterSettings>

 <nameValuePair>

 <name>CivilianTitles</name>

 <value>

 <array>

 <string>Mr.</string>

 <string>Ms.</string>

 <string>Mrs.</string>

 <string>Dr.</string>

 </array>

 </value>

 </nameValuePair>

 ...

</configurationParameterSettings>

3.6.1.3. <sofaNameMappings> Element

This optional element provides a mapping from defined Sofa names in the component, or
the default Sofa name (if the component does not declare any Sofa names). The form of
this element is:

<sofaNameMappings>

 <sofaNameMapping cpeSofaName="a_CPE_name"

 componentSofaName="a_component_Name"/>

 ...

</sofaNameMappings>

There can be any number of <sofaNameMapping> elements contained in the
<sofaNameMappings> element. The componentSofaName attribute is optional; leave it out
to specify a mapping for the _InitialView - that is, for Single-View components.

3.6.1.4. <runInSeparateProcess> Element

The <runInSeparateProcess> element is mandatory for local CAS Processors, but
should not appear for remote or integrated CAS Processors. It enables the CPM to
create external processes using the provided runtime environment. Applications launched
this way communicate with the CPM using the Vinci protocol and connectivity is enabled
by a local instance of the VNS that the CPM manages. Since communication is based on
Vinci, the application need not be implemented in Java. Any language for which Vinci

2An earlier UIMA version required these to have a suffix of “_p”, e.g., “string_p”. This is no longer required, but this format
is accepted, also, for backward compatibility.

Specifying an Individual CAS Processor

48 CPE Descriptor Reference UIMA Version 2.3.0

provides support may be used to create an application, and the CPM will seamlessly
communicate with it. The overall structure of this element is:

<runInSeparateProcess>

 <exec dir="[String]" executable="[String]">

 <env key="[String]" value ="[String]"/>

 ...

 <arg>[String]</arg>

 ...

 </exec>

</runInSeparateProcess>

The <exec> element provides information about how to execute the referenced CAS
Processor. Two attributes are defined for the <exec> element. The dir attribute is
currently not used – it is reserved for future functionality. The executable attribute
specifies the actual Vinci service executable that will be run by the CPM, e.g., java, a
batch script, an application (.exe), etc. The executable must be specified with a fully
qualified path, or be found in the PATH of the CPM.

The <exec> element has two elements within it that define parameters used to construct
the command line for executing the CAS Processor. These elements must be listed in the
order in which they should be defined for the CAS Processor.

The optional <env> element is used to set an environment variable. The variable key will
be set to value. For example,

<env key="CLASSPATH" value="C:Javalib"/>

will set the environment variable CLASSPATH to the value C:Javalib. The <env> element
may be repeated to set multiple environment variables. All of the key/value pairs will be
added to the environment by the CPM prior to launching the executable.

Note: The CPM actually adds ALL system environment variables when it
launches the program. It queries the Operating System for its current system
variables and one by one adds them to the program's process configuration.

The <arg> element is used to specify arbitrary string arguments that will appear on the
command line when the CPM runs the command specified in the executable attribute.

For example, the following would be used to invoke the UIMA Java implementation of the
Vinci service wrapper on a Java CAS Processor:

<runInSeparateProcess>

 <exec executable="java">

 <arg>-DVNS_HOST=localhost</arg>

 <arg>-DVNS_PORT=9099</arg>

 <arg>org.apache.uima.reference_impl.analysis_engine.service.

vinci.VinciAnalysisEngineService_impl</arg>

 <arg>C:uimadescdeployCasProcessor.xml</arg>

Specifying an Individual CAS Processor

UIMA Version 2.3.0 CPE Descriptor Reference 49

 </exec>

<runInSeparateProcess>

This will cause the CPM to run the following command line when starting the CAS
Processor:

java -DVNS_HOST=localhost -DVNS_PORT=9099

 org.apache.uima.reference_impl.analysis_engine.service.vinci.\\

 VinciAnalysisEngineService_impl

 C:uimadescdeployCasProcessor.xml

The first argument specifies that the Vinci Naming Service is running on the localhost.
The second argument specifies that the Vinci Naming Service port number is 9099.
The third argument (split over 2 lines in this documentation) identifies the UIMA
implementation of the Vinci service wrapper. This class contains the main method that
will execute. That main method in turn takes a single argument – the filename for the
CAS Processor service deployment descriptor. Thus the last argument identifies the Vinci
service deployment descriptor file for the CAS Processor. Since this is the same descriptor
file specified earlier in the <descriptor> element, the string ${descriptor} can be used
to refer to the descriptor, e.g.:

<arg>${descriptor}</arg>

The CPM will expand this out to the service deployment descriptor file referenced in the
<descriptor> element.

3.6.1.5. <deploymentParameters> Element

The <deploymentParameters> element defines a number of deployment parameters that
control how the CPM will interact with the CAS Processor. This element has the following
overall form:

<deploymentParameters>

 <parameter name="[String]" value="..." type="string|integer" />

 ...

</deploymentParameters>

The name attribute identifies the parameter, the value attribute specifies the value
that will be assigned to the parameter, and the type attribute indicates the type of the
parameter, either string or integer. The available parameters include:

service-access
string parameter whose value must be “exclusive”, if present. This parameter is
only effective for remote deployments. It modifies the Vinci service connections to
be preallocated and dedicated, one service instance per pipe-line. It is only relevant
for non-Integrated deployement modes. If there are fewer services instances that
are available (and alive – responding to a “ping” request) than there are pipelines,
the number of pipelines (the number of concurrent threads) is reduced to match

Specifying an Individual CAS Processor

50 CPE Descriptor Reference UIMA Version 2.3.0

the number of available instances. If not specified, the VNS is queried each time a
service is needed, and a “random” instance is assigned from the pool of available
instances. If a services dies during processing, the CPM will use its normal error
handling procedures to attempt to reconnect. The number of attempts is specified
in the CPE descriptor for each Cas Processor using the <maxConsecutiveRestarts
value="10" action="kill-pipeline" waitTimeBetweenRetries="50"/> xml
element. The “value” attribute is the number of reconnection tries; the “action”
says what to do if the retries exceed the limit. The “kill-pipeline” action stops the
pipeline that was associated with the failing service (other pipelines will continue to
work). The CAS in process within a killed pipeline will be dropped. These events are
communicated to the application using the normal event listener mechanism. The
waitTimeBetweenRetries says how many milliseconds to wait inbetween attempts to
reconnect.

vnsHost
(Deprecated) string parameter specifying the VNS host, e.g., localhost for local
CAS Processors, host name or IP address of VNS host for remote CAS Processors.
This parameter is deprecated; use the parameter specification instead inside the Vinci
Service Client Descriptor, if needed. It is ignored for integrated and local deployments.
If present, for remote deployments, it specifies the VNS Host to use, unless that is
specified in the Vinci Service Client Descriptor.

vnsPort
(Deprecated) integer parameter specifying the VNS port number. This parameter
is deprecated; use the parameter specification instead inside the Vinci Service Client
Descriptor, if needed. It is ignored for integrated and local deployments. If present, for
remote deployments, it specifies the VNS Port number to use, unless that is specified
in the Vinci Service Client Descriptor.

For example, the following parameters might be used with a CAS Processor deployed in
local mode:

<deploymentParameters>

 <parameter name="service-access" value="exclusive" type="string"/>

</deploymentParameters>

3.6.1.6. <filter> Element

The <filter> element is a required element but currently should be left empty. This element
is reserved for future use.

3.6.1.7. <errorHandling> Element

The mandatory <errorHandling> element defines error and restart policies for the
CAS Processor. Each CAS Processor may define different actions in the event of errors
and restarts. The CPM monitors and logs errant behaviors and attempts to recover the
component based on the policies specified in this element.

Specifying an Individual CAS Processor

UIMA Version 2.3.0 CPE Descriptor Reference 51

There are two kinds of faults:

1. One kind only occurs with non-integrated CAS Processors – this fault is either a
timeout attempting to launch or connect to the non-integrated component, or some
other kind of connection related exception (for instance, the network connection
might timeout or get reset).

2. The other kind happens when the CAS Processor component (an Annotator, for
example) throws any kind of exception. This kind may occur with any kind of
deployment, integrated or not.

The <errorHandling> has specifications for each of these kinds of faults. The format of this
element is:

<errorHandling>

 <maxConsecutiveRestarts action="continue|disable|terminate"

 value="[Number]"/>

 <errorRateThreshold action="continue|disable|terminate" value="[Rate]"/>

 <timeout max="[Number]"/>

</errorHandling>

The mandatory <maxConsecutiveRestarts> element applies only to faults of the first
kind, and therefore, only applies to non-integrated deployments. If such a fault occurs, a
retry is attempted, up to value="[Number]" of times. This retry resets the connection (if
one was made) and attempts to reconnect and perhaps re-launch (see below for details).
The original CAS (not a partially updated one) is sent to the CAS Processor as part of the
retry, once the deployed component has been successfully restarted or reconnected to.

The action attribute specifies the action to take when the threshold specified by the
value="[Number]" is exceeded. The possible actions are:

continue
skip any further processing for this CAS by this CAS Processor, and pass the CAS to
the next CAS Processor in the Pipeline.

The “restart” action is done, because it is needed for the next CAS.

If the dropCasOnException="true", the CPM will NOT pass the CAS to the next CAS
Processor in the chain. Instead, the CPM will abort processing of this CAS, release the
CAS back to the CAS Pool and will process the next CAS in the queue.

The counter counting the restarts toward the threshold is only reset after a CAS is
successfully processed.

disable
the current CAS is handled just as in the continue case, but in addition, the CAS
Processor is marked so that its process() method will not be called again (i.e., it will be
“skipped” for future CASes)

Specifying an Individual CAS Processor

52 CPE Descriptor Reference UIMA Version 2.3.0

terminate
the CPM will terminate all processing and exit.

The definition of an error for the <maxConsecutiveRestarts> element differs slightly for
each of the three CAS Processor deployment modes:

local
Local CAS Processors experience two general error types:

• launch errors – errors associated with launching a process

• processing errors – errors associated with sending Vinci commands to the
process

A launch error is defined by a failure of the process to successfully register with the
local VNS within a default time window. The current timeout is 15 minutes. Multiple
local CAS Processors are launched sequentially, with a subsequent processor launched
immediately after its previous processor successfully registers with the VNS.

A processing error is detected if a connection to the CAS Processor is lost or if the
processing time exceeds a specified timeout value.

For local CAS Processors, the <maxConsecutiveRestarts> element specifies the number
of consecutive attempts made to launch the CAS Processor at CPM startup or after the
CPM has lost a connection to the CAS Processor.

remote
For remote CAS Processors, the <maxConsecutiveRestarts> element applies to errors
from sending Vinci commands. An error is detected if a connection to the CAS
Processor is lost, or if the processing time exceeds the timeout value specified in the
<timeout> element (see below).

integrated
Although mandatory, the <maxConsecutiveRestarts> element is NOT used for
integrated CAS Processors, because Integrated CAS Processors are not re-instantiated/
restarted on exceptions. This setting is ignored by the CPM for Integrated CAS
Processors but it is required. Future version of the CPM will make this element
mandatory for remote and local CAS Processors only.

The mandatory <errorRateThreshold> element is used for all faults – both those
above, and exceptions thrown by the CAS Processor itself. It specifies the number of
retries for exceptions thrown by the CAS Processor itself, a maximum error rate, and the
corresponding action to take when this rate is exceeded. The value attribute specifies the
error rate in terms of errors per sample size in the form “N/M”, where N is the number of
errors and M is the sample size, defined in terms of the number of documents.

The first number is used also to indicate the maximum number of retries. If this
number is less than the <maxConsecutiveRestarts value="[Number]">, it will
override, reducing the number of “restarts” attempted. A retry is done only if the
dropCasOnException is false. If it is set to true, no retry occurs, but the error is counted.

Specifying an Individual CAS Processor

UIMA Version 2.3.0 CPE Descriptor Reference 53

When the number of counted errors exceeds the sample size, an action specified by
the action attribute is taken. The possible actions and their meaning are the same as
described above for the <maxConsecutiveRestarts> element:

• continue

• disable

• terminate

The dropCasOnException="true" attribute of the <casProcessors> element modifies
the action taken for continue and disable, in the same manner as above. For example:

<errorRateThreshold value="3/1000" action="disable"/>

specifies that each error thrown by the CAS Processor itself will be retried up to 3 times
(if dropCasOnException is false) and the CAS Processor will be disabled if the error rate
exceeds 3 errors in 1000 documents.

If a document causes an error and the error rate threshold for the CAS Processor is not
exceeded, the CPM increments the CAS Processor's error count and retries processing
that document (if dropCasOnException is false). The retry means that the CPM calls the
CAS Processor's process() method again, passing in as an argument the same CAS that
previously caused an exception.

Note: The CPM does not attempt to rollback any partial changes that may have
been applied to the CAS in the previous process() call.

Errors are accumulated across documents. For example, assume the error rate threshold is
3/1000. The same document may fail three times before finally succeeding on the fourth
try, but the error count is now 3. If one more error occurs within the current sample of
1000 documents, the error rate threshold will be exceeded and the specified action will be
taken. If no more errors occur within the current sample, the error counter is reset to 0 for
the next sample of 1000 documents.

The <timeout> element is a mandatory element. Although mandatory for all CAS
Processors, this element is only relevant for local and remote CAS Processors. For
integrated CAS Processors, this element is ignored. In the current CPM implementation
the integrated CAS Processor process() method is not subject to timeouts.

The max attribute specifies the maximum amount of time in milliseconds the CPM
will wait for a process() method to complete When exceeded, the CPM will generate
an exception and will treat this as an error subject to the threshold defined in the
<errorRateThreshold> element above, including doing retries.

Retry action taken on a timeout

The action taken depends on whether the CAS Processor is local (managed) or remote
(unmanaged). Local CAS Processors (which are services) are killed and restarted, and
a new connection to them is established. For remote CAS Processors, the connection to

CPE Operational Parameters

54 CPE Descriptor Reference UIMA Version 2.3.0

them is dropped, and a new connection is reestablished (which may actually connect to a
different instance of the remote services, if it has multiple instances).

3.6.1.8. <checkpoint> Element

The <checkpoint> element is an optional element used to improve the performance of
CAS Consumers. It has a single attribute, batch, which specifies the number of CASes in a
batch, e.g.:

<checkpoint batch="1000">

sets the batch size to 1000 CASes. The batch size is the interval used to mark a point in
processing requiring special handling. The CAS Processor's batchProcessComplete()
method will be called by the CPM when this mark is reached so that the processor can
take appropriate action. This mark could be used as a mechanism to buffer up results in
CAS Consumers and perform time-consuming operations, such as check-pointing, that
should not be done on a per-document basis.

3.7. CPE Operational Parameters
The parameters for configuring the overall CPE and CPM are specified in the
<cpeConfig> section. The overall format of this section is:

<cpeConfig>

 <startAt>[NumberOrID]</startAt>

 <numToProcess>[Number]</numToProcess>

 <outputQueue dequeueTimeout="[Number]" queueClass="[ClassName]" />

 <checkpoint file="[File]" time="[Number]" batch="[Number]"/>

 <timerImpl>[ClassName]</timerImpl>

 <deployAs>vinciService|interactive|immediate|single-threaded

 </deployAs>

</cpeConfig>

This section of the CPE descriptor allows for defining the starting entity, the number
of entities to process, a checkpoint file and frequency, a pluggable timer, an optional
output queue implementation, and finally a mode of operation. The mode of operation
determines how the CPM interacts with users and other systems.

The <startAt> element is an optional argument. It defines the starting entity in the
collection at which the CPM should start processing.

The implementation in the CPM passes this argument to the Collection Reader as the
value of the parameter “startNumber”. The CPM does not do anything else with this

CPE Operational Parameters

UIMA Version 2.3.0 CPE Descriptor Reference 55

parameter; in particular, the CPM has no ability to skip to a specific document - that
function, if available, is only provided by a particular Collection Reader implementation.

If the <startAt> element is used, the Collection Reader descriptor must define a single-
valued configuration parameter with the name startNumber. It can declare this value to
be of any type; the value passed in this XML element must be convertible to that type.

A typical use is to declare this to be an integer type, and to pass the sequential document
number where processing should start. An alternative implementation might take a
specific document ID; the collection reader could search through its collection until it
reaches this ID and then start there.

This parameter will only make sense if the particular collection reader is implemented to
use the startNumber configuration parameter.

The <numToProcess> element is an optional element. It specifies the total number of
entities to process. Use -1 to indicate ALL. If not defined, the number of entities to process
will be taken from the Collection Reader configuration. If present, this value overrides the
Collection Reader configuration.

The <outputQueue> element is an optional element. It enables plugging in a custom
implementation for the Output Queue. When omitted, the CPM will use a default output
queue that is based on First-in First-out (FIFO) model.

The UIMA SDK provides a second implementation for the
Output Queue that can be plugged in to the CPM, named “
org.apache.uima.collection.impl.cpm.engine.SequencedQueue ”.

This implementation supports handling very large documents that are split into “chunks”;
it provides a delivery mechanism that insures the sequential order of the chunks using
information carried in the CAS metadata. This metadata, which is required for this
implementation to work correctly, must be added as an instance of a Feature Structure
of type org.apache.es.tt.DocumentMetaData and referred to by an additional feature
named esDocumentMetaData in the special instance of uima.tcas.DocumentAnnotation
that is associated with the CAS. This is usually done by the Collection Reader; the instance
contains the following features:

sequenceNumber
[Number] the sequential number of a chunk, starting at 1. If not a chunk (i.e. complete
document), the value should be 0.

documentId
[Number] current document id. Chunks belonging to the same document have
identical document id.

isCompleted
[Number] 1 if the chunk is the last in a sequence, 0 otherwise.

url
[String] document url.

CPE Operational Parameters

56 CPE Descriptor Reference UIMA Version 2.3.0

throttleID
[String] special attribute currently used by OmniFind.

This implementation of a sequenced queue supports proper sequencing of CASes in
CPM deployments that use document chunking. Chunking is a technique of splitting
large documents into pieces to reduce overall memory consumption. Chunking does not
depend on the number of CASes in the CAS Pool. It works equally well with one or more
CASes in the CAS Pool. Each chunk is packaged in a separate CAS and placed in the Work
Queue. If the CAS Pool is depleted, the CollectionReader thread is suspended until a CAS
is released back to the pool by the processing threads. A document may be split into 1, 2,
3 or more chunks that are analyzed independently. In order to reconstruct the document
correctly, the CAS Consumer can depend on receiving the chunks in the same sequential
order that the chunks were “produced”, when this sequenced queue implementation is
used. To plug in this sequenced queue to the CPM use the following specification:

<outputQueue dequeueTimeout="100000" queueClass=

"org.apache.uima.collection.impl.cpm.engine.SequencedQueue"/>

where the mandatory queueClass attribute defines the name of the class and the second
mandatory attribute, dequeueTimeout specifies the maximum number of milliseconds to
wait for the expected chunk.

Note: The value for this timeout must be carefully determined to avoid
excessive occurrences of timeouts. Typically, the size of a chunk and the type of
analysis being done are the most important factors when deciding on the value
for the timeout. The larger the chunk and the more complicated analysis, the more
time it takes for the chunk to go from source to sink. You may specify 0, in which
case, the timeout is disabled - i.e., it is equivalent to an infinitely long timeout.

If the chunk doesn't arrive in the configured time window, the entire document is
presumed to be invalid and the CAS is dropped from further processing. This action
occurs regardless of any other error action specification. The SequencedQueue invalidate
the document, adding the offending document's metadata to a local cache of invalid
documents.

If the time out occurs, the CPM notifies all registered listeners (see Section 2.3.1, “Using
Listeners” in UIMA Tutorial and Developers' Guides) by calling entityProcessComplete(). As
part of this call, the SequencedQueue will pass null instead of a CAS as the first argument,
and a special exception – CPMChunkTimeoutException. The reason for passing null as the
first argument is because the time out occurs due to the fact that the chunk has not been
received in the configured timeout window, so there is no CAS available when the timeout
event occurs.

The CPMChunkTimeoutException object includes an API that allows the listener to
retrieve the offending document id as well as the other metadata attributes as defined
above. These attributes are part of each chunk's metadata and are added by the Collection
Reader.

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe.using_listeners
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe.using_listeners

CPE Operational Parameters

UIMA Version 2.3.0 CPE Descriptor Reference 57

Each chunk that SequencedQueue works on is subjected to a test to determine if the chunk
belongs to an invalid document. This test checks the chunk's metadata against the data in
the local cache. If there is a match, the chunk is dropped. This check is only performed for
chunks and complete documents are not subject to this check.

If there is an exception during the processing of a chunk, the CPM sends a notification
to all registered listeners. The notification includes the CAS and an exception. When the
listener notification is completed, the CPM also sends separate notifications, containing
the CAS, to the Artifact Producer and the SequencedQueue. The intent is to stop adding
new chunks to the Work Queue that belong to an “invalid” document and also to deal
with chunks that are en-route, being processed by the processing threads.

In response to the notification, the Artifact Producer will drop and release back to the CAS
Pool all CASes that belong to an “invalid” document. Currently, there is no support in the
CollectionReader's API to tell it to stop generating chunks. The CollectionReader keeps
producing the chunks but the Artifact Producer immediately drops/releases them to the
CAS Pool. Before the CAS is released back to the CAS Pool, the Artifact Producer sends
notification to all registered listeners. This notification includes the CAS and an exception
– SkipCasException.

In response to the notification of an exception involving a chunk, the SequencedQueue
retrieves from the CAS the metadata and adds it to its local cache of “invalid” documents.
All chunks de-queued from the OutputQueue and belonging to “invalid” documents
will be dropped and released back to the CAS Pool. Before dropping the CAS, the CPM
sends notification to all registered listeners. The notification includes the CAS and
SkipCasException.

The <checkpoint> element is an optional element. It specifies a CPE checkpoint
file, checkpoint frequency, and strategy for checkpoints (time or count based). At
checkpoint time, the CPM saves status information and statistics to the checkpoint file.
The checkpoint file is specified in the file attribute, which has the same form as the href
attribute of the <include> element described in Section 3.3, “Imports” [41]. The time
attribute indicates that a checkpoint should be taken every [Number] seconds, and the
batch attribute indicates that a checkpoint should be taken every [Number] batches.

The <timerImpl> element is optional. It is used to identify a custom timer plug-in class to
generate time stamps during the CPM execution. The value of the element is a Java class
name.

The <deployAs> element indicates the type of CPM deployment. Valid contents for this
element include:

vinciService
Vinci service exposing APIs for stop, pause, resume, and getStats

interactive
provide command line menus (start, stop, pause, resume)

Resource Manager Configuration

58 CPE Descriptor Reference UIMA Version 2.3.0

immediate
run the CPM without menus or a service API

single-threaded
run the CPM in a single threaded mode. In this mode, the Collection Reader, the
Processing Pipeline, and the CAS Consumer Pipeline are all running in one thread
without the work queue and the output queue.

3.8. Resource Manager Configuration
External resource bindings for the CPE may optionally be specified in an element:

<resourceManagerConfiguration href="..."/>

For an introduction to external resources, refer to Section 1.5.4, “Accessing External
Resource Files” in UIMA Tutorial and Developers' Guides.

In the resourceManagerConfiguration element, the value of the href attribute refers
to another file that contains definitions and bindings for the external resources used by
the CPE. The format of this file is the same as the XML snippet Section 2.4.2.5, “External
Resource Bindings” [30] . For example, in a CPE containing an aggregate analysis engine
with two annotators, and a CAS Consumer, the following resource manager configuration
file would bind external resource dependencies in all three components to the same
physical resource:

<resourceManagerConfiguration>

 <!-- Declare Resource -->

 <externalResources>

 <externalResource>

 <name>ExampleResource</name>

 <fileResourceSpecifier>

 <fileUrl>file:MyResourceFile.dat</fileUrl>

 </fileResourceSpecifier>

 </externalResource>

 </externalResources>

 <!-- Bind component resource dependencies to ExampleResource -->

 <externalResourceBindings>

 <externalResourceBinding>

 <key>MyAE/annotator1/myResourceKey</key>

 <resourceName>ExampleResource</resourceName>

 </externalResourceBinding>

 <externalResourceBinding>

 <key>MyAE/annotator2/someResourceKey</key>

 <resourceName>ExampleResource</resourceName>

 </externalResourceBinding>

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae.accessing_external_resource_files
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae.accessing_external_resource_files

Example CPE Descriptor

UIMA Version 2.3.0 CPE Descriptor Reference 59

 <externalResourceBinding>

 <key>MyCasConsumer/otherResourceKey</key>

 <resourceName>ExampleResource</resourceName>

 </externalResourceBinding>

 </externalResourceBindings>

</resourceManagerConfiguration>

In this example, MyAE and MyCasConsumer are the names of the Analysis Engine and CAS
Consumer, as specified by the name attributes of the CPE's <casProcessor> elements.
annotator1 and annotator2 are the annotator keys specified within the Aggregate AE
Descriptor, and myResourceKey, someResourceKey, and otherResourceKey are the keys
of the resource dependencies declared in the individual annotator and CAS Consumer
descriptors.

3.9. Example CPE Descriptor

<?xml version="1.0" encoding="UTF-8"?>

<cpeDescription>

 <collectionReader>

 <collectionIterator>

 <descriptor>

 <import location=

 "../collection_reader/FileSystemCollectionReader.xml"/>

 </descriptor>

 </collectionIterator>

 </collectionReader>

 <casProcessors dropCasOnException="true" casPoolSize="1"

 processingUnitThreadCount="1">

 <casProcessor deployment="integrated"

 name="Aggregate TAE - Name Recognizer and Person Title Annotator">

 <descriptor>

 <import location=

 "../analysis_engine/NamesAndPersonTitles_TAE.xml"/>

 </descriptor>

 <deploymentParameters/>

 <filter/>

 <errorHandling>

 <errorRateThreshold action="terminate" value="100/1000"/>

 <maxConsecutiveRestarts action="terminate" value="30"/>

 <timeout max="100000"/>

 </errorHandling>

 <checkpoint batch="1"/>

 </casProcessor>

 <casProcessor deployment="integrated" name="Annotation Printer">

 <descriptor>

 <import location="../cas_consumer/AnnotationPrinter.xml"/>

 </descriptor>

 <deploymentParameters/>

Example CPE Descriptor

60 CPE Descriptor Reference UIMA Version 2.3.0

 <filter/>

 <errorHandling>

 <errorRateThreshold action="terminate" value="100/1000"/>

 <maxConsecutiveRestarts action="terminate" value="30"/>

 <timeout max="100000"/>

 </errorHandling>

 <checkpoint batch="1"/>

 </casProcessor>

 </casProcessors>

 <cpeConfig>

 <numToProcess>1</numToProcess>

 <deployAs>immediate</deployAs>

 <checkpoint file="" time="3000"/>

 <timerImpl/>

 </cpeConfig>

</cpeDescription>

CAS Reference 61

Chapter 4. CAS Reference
The CAS (Common Analysis System) is the part of the Unstructured Information
Management Architecture (UIMA) that is concerned with creating and handling the data
that annotators manipulate.

Java users typically use the JCas (Java interface to the CAS) when manipulating objects
in the CAS. This chapter describes an alternative interface to the CAS which allows
discovery and specification of types and features at run time. It is recommended for use
when the using code cannot know ahead of time the type system it will be dealing with.

Use of the CAS as described here is also recommended (or necessary) when components
add to the definitions of types of other components. This UIMA feature allows users to
add features to a type that was already defined elsewhere. When this feature is used in
conjunction with the JCas, it can lead to problems with class loading. This is because
different JCas representations of a single type are generated by the different components,
and only one of them is loaded (unless you are using Pear descriptors). Note: we do not
recommend that you add features to pre-existing types. A type should be defined in one
place only, and then there is no problem with using the JCas. However, if you do use this
feature, do not use the JCas. Similarly, if you distribute your components for inclusion in
somebody else's UIMA application, and you're not sure that they won't add features to
your types, do not use the JCas for the same reasons.

CASes passed to Annotator Components are either a base CAS or a regular CAS. Base
CASes are only passed to Multi-View components - they are like regular CASes, but
do not have user accessible indexes or Sofas. They are used by the component only for
switching to other CAS views, which are regular CASes.

4.1. Javadocs
The subdirectory docs/api contains the documentation details of all the classes, methods,
and constants for the APIs discussed here. Please refer to this for details on the methods,
classes and constants, specifically in the packages org.apache.uima.cas.*.

4.2. CAS Overview
There are three1 main parts to the CAS: the type system, data creation and manipulation,
and indexing. We will start with a brief description of these components.

4.2.1. The Type System

The type system specifies what kind of data you will be able to manipulate in your
annotators. The type system defines two kinds of entities, types and features. Types are

1A fourth part, the Subject of Analysis, is discussed in Chapter 5, Annotations, Artifacts, and Sofas in UIMA Tutorial and Developers'
Guides.

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aas

Creating/Accessing/Changing data

62 CAS Reference UIMA Version 2.3.0

arranged in a single inheritance tree and define the kinds of entities (objects) you can
manipulate in the CAS. Features optionally specify slots or fields within a type. The
correspondence to Java is to equate a CAS Type to a Java Class, and the CAS Features
to fields within the type. A critical difference is that CAS types have no methods; they
are just data structures with named slots (features). These features can have as values
primitive things like integers, floating point numbers, and strings, and they also can hold
references to other instances of objects in the CAS. We call instances of the data structures
declared by the type system “feature structures” (not to be confused with “features”).
Feature structures are similar to the many variants of record structures found in computer
science.2

Each CAS Type defines a supertype; it is a subtype of that supertype. This means that
any features that the supertype defines are features of the subtype; in other words, it
inherits its supertype's features. Only single inheritance is supported; a type's feature set
is the union of all of the features in its supertype hierarchy. There is a built-in type called
uima.cas.TOP; this is the top, root node of the inheritance tree. It defines no features.

The values that can be stored in features are either built-in primitive values or references
to other feature structures. The primitive values are boolean, byte, short (16 bit
integers), integer (32 bit), long (64 bit), float (32 bit), double (64 bit floats) and strings;
the official names of these are uima.cas.Boolean, uima.cas.Byte, uima.cas.Short,
uima.cas.Integer, uima.cas.Long, uima.cas.Float , uima.cas.Double and
uima.cas.String . The strings are Java strings, and characters are Java characters.
Technically, this means that characters are UTF-16 code points, which is not quite
the same as a Unicode character. This distinction should make no difference for
almost all applications. The CAS also defines other basic built-in types for arrays of
these, plus arrays of references to other objects, called uima.cas.IntegerArray ,
uima.cas.FloatArray, uima.cas.StringArray, uima.cas.FSArray, etc.

The CAS also defines a built-in type called uima.tcas.Annotation which inherits from
uima.cas.AnnotationBase which in turn inherits from uima.cas.TOP. There are two
features defined by this type, called begin and end, both of which are integer valued.

4.2.2. Creating, accessing and manipulating data

Creating and accessing data in the CAS requires knowledge about the types and features
defined in the type system. The idea is similar to other data access APIs, such as the
XML DOM or SAX APIs, or database access APIs such as JDBC. Contrary to those APIs,
however, the CAS does not use the names of type system entities directly in the APIs.
Rather, you use the type system to access type and feature entities by name, then use these
entities in the data manipulation APIs. This can be compared to the Java reflection APIs:
the type system is comparable to the Java class loader, and the type and feature objects to
the java.lang.Class and java.lang.reflect.Field classes.

2 The name “feature structure” comes from terminology used in linguistics.

Creating and using indexes

UIMA Version 2.3.0 CAS Reference 63

Why does it have to be this complicated? You wouldn't normally use reflection to create
a Java object, either. As mentioned earlier, the JCas provides the more straightforward
method to manipulate CAS data. The CAS access methods described here need only be
used for generic types of applications that need to be able to handle any kind of data (e.g.,
generic tooling) or when the JCas may not be used for other reasons. The generic kinds of
applications are exactly the ones where you would use the reflection API in Java as well.

4.2.3. Creating and using indexes

Each view of a CAS provides a set of indexes for that view. Instances of feature structures
can be added to a view's indexes. These indexes provide the only way for other annotators
to locate existing data in the CAS. The only way for an annotator to use data that another
annotator has created is by using an index (or the method getAllIndexedFS of the object
FSIndexRepository) to retrieve feature structures the first annotator created. If you want
the data you create to be visible to other annotators, you must explicitly call methods
which add it to the indexes — you must index it.

Indexes are named and are associated with a CAS Type; they are used to index instances
of that CAS type (including instances of that type's subtypes). If you are using multiple
views (see Chapter 6, Multiple CAS Views of an Artifact in UIMA Tutorial and Developers'
Guides), each view contains a separate instantiation of all of the indexes. To access an
index, you minimally need to know its name. A CAS view provides an index repository
which you can query for indexes for that view. Once you have a handle to an index, you
can get information about the feature structures in the index, the size of the index, as well
as an iterator over the feature structures.

Indexes are defined in the XML descriptor metadata for the application. Each CAS View
has its own, separate instantiation of indexes based on these definitions, kept in the view's
index repository. When you obtain an index, it is always from a particular CAS view.
When you index an item, it is always added to all indexes where it belongs, within just
one repository. You can specify different repositories (associated with different CAS
views) to use; a given Feature Structure instance may be indexed in more than one CAS
View.

Iterators allow you to enumerate the feature structures in an index. FS iterators provide
two kinds of APIs: the regular Java iterator API, and a specific FS iterator API where
the usual Java iterator APIs (hasNext() and next()) are replaced by isValid(),
moveToNext() (which does not return an element) and get(). Which API style
you use is up to you, but we do not recommend mixing the styles as the results are
sometimes unexpected. If you just want to iterate over an index from start to finish,
either style is equally appropriate. If you also use moveTo(FeatureStructure fs) and
moveToPrevious(), it is better to use the special FS iterator style.

Note: The reason to not mix these styles is that you might be thinking that
next() followed by moveToPrevious() would always work. This is not true, because
next() returns the "current" element, and advances to the next position, which

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.mvs

Built-in CAS Types

64 CAS Reference UIMA Version 2.3.0

might be beyond the last element. At that point, the interator becomes "invalid",
and by the iterator contracts, moveToNext and moveToPrevious are not allowed
on "invalid" iterators; when an iterator is not valid, all bets are off. But you can call
these methods on the iterator — moveToFirst(), moveToLast(), or moveTo(FS) — to
reset it.

Indexes are created by specifying them in the annotator's or aggregate's resource
descriptor. An index specification includes its name, the CAS type being indexed, the kind
of index it is, and an (optional) ordering relation on the feature structures to be indexed.
At startup time, all index specifications are combined; duplicate definitions (having the
same name) are allowed only if their definitions are the same.

Feature structure instances need to be explicitly added to the index repository by a
method call. Feature structures that are not indexed will not be visible to other annotators,
(unless they are located via being referenced by some other feature of another feature
structure, which is indexed, or through a chain of these).

The framework defines an unnamed bag index which indexes all types. The only access
provided for this index is the getAllIndexedFS(type) method on the index repository,
which returns an iterator over all indexed instances of the specified type (including its
subtypes) for that CAS View.

The framework defines one standard, built-in annotation index, called AnnotationIndex,
which indexes the uima.tcas.Annotation type: all feature structures of type
uima.tcas.Annotation or its subtypes are automatically indexed with this built-in index.

The ordering relation used by this index is to first order by the value of the “begin”
features (in ascending order) and then by the value of the “end” feature (in descending
order). This ordering insures that longer annotations starting at the same spot come before
shorter ones. For Subjects of Analysis other than Text, this may not be an appropriate
index.

4.3. Built-in CAS Types
The CAS has two kinds of built-in types – primitive and non-primitive. The primitive
types are:

• uima.cas.Boolean
• uima.cas.Byte
• uima.cas.Short
• uima.cas.Integer
• uima.cas.Long
• uima.cas.Float
• uima.cas.Double
• uima.cas.String

The Byte, Short, Integer, and Long are all signed integer types, of length 8, 16,
32, and 64 bits. The Double type is 64 bit floating point. The String type can be sub-

Built-in CAS Types

UIMA Version 2.3.0 CAS Reference 65

typed to create sets of allowed values; see Section 2.3.4, “String Subtypes” [8]. These
types can be used to specify the range of a String-valued feature. They act like Strings,
but have additional checking to insure the setting of values into them conforms to one of
the allowed values. Note that the other primitive types cannot be used as a supertype for
another type definition; only uima.cas.String can be sub-typed.

The non-primitive types exist in a type hierarchy; the top of the hierarchy is the type
uima.cas.TOP. All other non-primitive types inherit from some supertype.

There are 9 built-in array types. These arrays have a size specified when they are created;
the size is fixed at creation time. They are named:

• uima.cas.BooleanArray
• uima.cas.ByteArray
• uima.cas.ShortArray
• uima.cas.IntegerArray
• uima.cas.LongArray
• uima.cas.FloatArray
• uima.cas.DoubleArray
• uima.cas.StringArray
• uima.cas.FSArray

The uima.cas.FSArray type is an array whose elements are arbitrary other feature
structures (instances of non-primitive types).

There are 3 built-in types associated with the artifact being analyzed:
• uima.cas.AnnotationBase
• uima.tcas.Annotation
• uima.tcas.DocumentAnnotation

The AnnotationBase type defines one system-used feature which specifies for an
annotation the subject of analysis (Sofa) to which it refers. The Annotation type extends
from this and defines 2 features, taking uima.cas.Integer values, called begin and end.
The begin feature typically identifies the start of a span of text the annotation covers; the
end feature identifies the end. The values refer to character offsets; the starting index is 0.
An annotation of the word “CAS” in a text “CAS Reference” would have a start index of
0, and an end index of 3; the difference between end and start is the length of the span the
annotation refers to.

Annotations are always with respect to some Sofa (Subject of Analysis – see Chapter 5,
Annotations, Artifacts, and Sofas in UIMA Tutorial and Developers' Guides .

Note: Artifacts which are not text strings may have a different interpretation
of the meaning of begin and end, or may define their own kind of annotation,
extending from AnnotationBase.

The DocumentAnnotation type has one special instance. It is a subtype of the Annotation
type, and the built-in definition defines one feature, language, which is a string indicating

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aas
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aas

Accessing the type system

66 CAS Reference UIMA Version 2.3.0

the language of the document in the CAS. The value of this language feature is used by
the system to control flow among annotators when the “CapabilityLanguageFlow” mode
is used, allowing the flow to skip over annotators that don't process particular languages.
Users may extend this type by adding additional features to it, using the XML Descriptor
element for defining a type.

Note: We do not recommend extending the DocumentAnnotation type. If you
do, you must not use the JCas, for the reasons stated earlier.

Each CAS view has a different associated instance of the DocumentAnnotation type. On
the CAS, use getDocumentationAnnotation() to access the DocumentAnnotation.

There are also built-in types supporting linked lists, similar to the ones available in Java
and other programming languages. Their use is constrained by the usual properties of
linked lists: not very space efficient, no (efficient) random access, but an easy choice if you
don't know how long your list will be ahead of time. The implementation is type specific;
there are different list building objects for each of the primitive types, plus one for general
feature structures. Here are the type names:

• uima.cas.FloatList
• uima.cas.IntegerList
• uima.cas.StringList
• uima.cas.FSList

• uima.cas.EmptyFloatList
• uima.cas.EmptyIntegerList
• uima.cas.EmptyStringList
• uima.cas.EmptyFSList

• uima.cas.NonEmptyFloatList
• uima.cas.NonEmptyIntegerList
• uima.cas.NonEmptyStringList
• uima.cas.NonEmptyFSList

For the primitive types Float, Integer, String and FeatureStructure, there is a base
type, for instance, uima.cas.FloatList. For each of these, there are two subtypes,
corresponding to a non-empty element, and a marker that serves to indicate the end of
the list, or an empty list. The non-empty types define two features – head and tail. The
head feature holds the particular value for that part of the list. The tail refers to the next
list object (either a non-empty one or the empty version to indicate the end of the list).

There are no other built-in types. Users are free to define their own type systems, building
upon these types.

4.4. Accessing the type system
During annotator processing, or outside an annotator, access the type system by calling
CAS.getTypeSystem().

TypeSystemPrinter example

UIMA Version 2.3.0 CAS Reference 67

However, CAS annotators implement an additional method, typeSystemInit(), which
is called by the UIMA framework before the annotator's process method. This method,
implemented by the annotator writer, is passed a reference to the CAS's type system
metadata. The method typically uses the type system APIs to obtain type and feature
objects corresponding to all the types and features the annotator will be using in its
process method. This initialization step should not be done during an annotator's initialize
method since the type system can change after the initialize method is called; it should
not be done during the process method, since this is presumably work that is identical
for each incoming document, and so should be performed only when the type system
changes (which will be a rare event). The UIMA framework guarantees it will call the
typeSystemInit method of an annotator whenever the type system changes, before
calling the annotator's process() method.

The initialization done by typeSystemInit() is done by the UIMA framework when you
use the JCas APIs; you only need to provide a typeSystemInit() method, as described
here, when you are not using the JCas approach.

4.4.1. TypeSystemPrinter example

Here is a code fragment that, given a CAS Type System, will print a list of all types.

// Get all type names from the type system

// and print them to stdout.

private void listTypes1(TypeSystem ts) {

 // Get an iterator over types

 Iterator typeIterator = ts.getTypeIterator();

 Type t;

 System.out.println("Types in the type system:");

 while (typeIterator.hasNext()) {

 // Retrieve a type...

 t = (Type) typeIterator.next();

 // ...and print its name.

 System.out.println(t.getName());

 }

 System.out.println();

}

This method is passed the type system as a parameter. From the type system, we can get
an iterator over all known types. If you run this against a CAS created with no additional
user-defined types, we should see something like this on the console:

Types in the type system:

uima.cas.Boolean

uima.cas.Byte

uima.cas.Short

uima.cas.Integer

uima.cas.Long

uima.cas.ArrayBase

...

TypeSystemPrinter example

68 CAS Reference UIMA Version 2.3.0

If the type system had user-defined types these would show up too. Note that some of
these types are not directly creatable – they are types used by the framework in the type
hierarchy (e.g. uima.cas.ArrayBase).

CAS type names include a name-space prefix. The components of a type name are
separated by the dot (.). A type name component must start with a Unicode letter,
followed by an arbitrary sequence of letters, digits and the underscore (_). By convention,
the last component of a type name starts with an uppercase letter, the rest start with a
lowercase letter.

Listing the type names is mildly useful, but it would be even better if we could see the
inheritance relation between the types. The following code prints the inheritance tree in
indented format.

private static final int INDENT = 2;

private void listTypes2(TypeSystem ts) {

 // Get the root of the inheritance tree.

 Type top = ts.getTopType();

 // Recursively print the tree.

 printInheritanceTree(ts, top, 0);

}

private void printInheritanceTree(TypeSystem ts, Type type, int level) {

 indent(level); // Print indentation.

 System.out.println(type.getName());

 // Get a vector of the immediate subtypes.

 Vector subTypes =

 ts.getDirectlySubsumedTypes(type);

 ++level; // Increase the indentation level.

 for (int i = 0; i < subTypes.size(); i++) {

 // Print the subtypes.

 printInheritanceTree(ts, (Type) subTypes.get(i), level);

 }

}

// A simple, inefficient indenter

private void indent(int level) {

 int spaces = level * INDENT;

 for (int i = 0; i < spaces; i++) {

 System.out.print(" ");

 }

}

This example shows that you can traverse the type hierarchy by starting
at the top with TypeSystem.getTopType and by retrieving subtypes with
TypeSystem.getDirectlySubsumedTypes().

The Javadocs also have APIs that allow you to access the features, as well as what the
allowed value type is for that feature. Here is sample code which prints out all the features

Using CAS APIs: Feature Structures

UIMA Version 2.3.0 CAS Reference 69

of all the types, together with the allowed value types (the feature “range”). Each feature
has a “domain” which is the type where it is defined, as well as a “range”.

private void listFeatures2(TypeSystem ts) {

 Iterator featureIterator = ts.getFeatures();

 Feature f;

 System.out.println("Features in the type system:");

 while (featureIterator.hasNext()) {

 f = (Feature) featureIterator.next();

 System.out.println(

 f.getShortName() + ": " +

 f.getDomain() + " -> " + f.getRange());

 }

 System.out.println();

}

We can ask a feature object for its domain (the type it is defined on) and its range (the type
of the value of the feature). The terminology derives from the fact that features can be
viewed as functions on subspaces of the object space.

4.4.2. Using the CAS APIs to create and modify feature
structures

Assume a type system declaration that defines two types: Entity and Person. Entity has
no features defined within it but inherits from uima.tcas.Annotation – so it has the begin
and end features. Person is, in turn, a subtype of Entity, and adds firstName and lastName
features. CAS type systems are declaratively specified using XML; the format of this XML
is described in Section 2.3, “Type System Descriptors” [5].

<!-- Type System Definition -->

<typeSystemDescription>

 <types>

 <typeDescription>

 <name>com.xyz.proj.Entity</name>

 <description />

 <supertypeName>uima.tcas.Annotation</supertypeName>

 </typeDescription>

 <typeDescription>

 <name>Person</name>

 <description />

 <supertypeName>com.xyz.proj.Entity </supertypeName>

 <features>

 <featureDescription>

 <name>firstName</name>

 <description />

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 <featureDescription>

 <name>lastName</name>

 <description />

Using CAS APIs: Feature Structures

70 CAS Reference UIMA Version 2.3.0

 <rangeTypeName>uima.cas.String</rangeTypeName>

 </featureDescription>

 </features>

 </typeDescription>

 </types>

</typeSystemDescription>

To be able to access types and features, we need to know their names. The CAS
interface defines constants that hold the names of built-in feature names, such as, e.g.,
CAS.TYPE_NAME_INTEGER. It is good programming practice to create such constants for
the types and features you define, for your own use as well as for others who will be using
your annotators.

/** Entity type name constant. */

public static final String ENTITY_TYPE_NAME = "com.xyz.proj.Entity";

/** Person type name constant. */

public static final String PERSON_TYPE_NAME = "com. xyz.proj.Person";

/** First name feature name constant. */

public static final String FIRST_NAME_FEAT_NAME = "firstName";

/** Last name feature name constant. */

public static final String LAST_NAME_FEAT_NAME = "lastName";

Next we define type and feature member variables; these will hold the values of the type
and feature objects needed by the CAS APIs, to be assigned during typeSystemInit().

// Type system object variables

private Type entityType;

private Type personType;

private Feature firstNameFeature;

private Feature lastNameFeature;

private Type stringType;

The type system does not throw an exception if we ask for something that is not known,
it simply returns null; therefore the code checks for this and throws a proper exception.
We require all these types and features to be defined for the annotator to work. One might
imagine situations where certain computations are predicated on some type or feature
being defined in the type system, but that is not the case here.

// Get a type object corresponding to a name.

// If it doesn't exist, throw an exception.

private Type initType(String typeName)

 throws AnnotatorInitializationException {

 Type type = ts.getType(typeName);

 if (type == null) {

 throw new AnnotatorInitializationException(

 AnnotatorInitializationException.TYPE_NOT_FOUND,

 new Object[] { this.getClass().getName(), typeName });

Creating feature structures

UIMA Version 2.3.0 CAS Reference 71

 }

 return type;

}

// We add similar code for retrieving feature objects.

// Get a feature object from a name and a type object.

// If it doesn't exist, throw an exception.

private Feature initFeature(String featName, Type type)

 throws AnnotatorInitializationException {

 Feature feat = type.getFeatureByBaseName(featName);

 if (feat == null) {

 throw new AnnotatorInitializationException(

 AnnotatorInitializationException.FEATURE_NOT_FOUND,

 new Object[] { this.getClass().getName(), featName });

 }

 return feat;

}

Using these two functions, code for initializing the type system described above would be:

public void typeSystemInit(TypeSystem aTypeSystem)

 throws AnalysisEngineProcessException {

 this.typeSystem = aTypeSystem;

 // Set type system member variables.

 this.entityType = initType(ENTITY_TYPE_NAME);

 this.personType = initType(PERSON_TYPE_NAME);

 this.firstNameFeature =

 initFeature(FIRST_NAME_FEAT_NAME, personType);

 this.lastNameFeature =

 initFeature(LAST_NAME_FEAT_NAME, personType);

 this.stringType = initType(CAS.TYPE_NAME_STRING);

}

Note that we initialize the string type by using a type name constant from the CAS.

4.5. Creating feature structures
To create feature structures in JCas, we use the Java “new” operator. In the CAS, we use
one of several different API methods on the CAS object, depending on which of the 10
basic kinds of feature structures we are creating (a plain feature structure, or an instance
of the built-in primitive type arrays or FSArray). There are is also a method to create an
instance of a uima.tcas.Annotation, setting the begin and end values.

Once a feature structure is created, it needs to be added to the CAS indexes (unless
it will be accessed via some reference from another accessible feature structure). The
CAS provides this API: Assuming aCAS holds a reference to a CAS, and token holds a
reference to a newly created feature structure, here's the code to add that feature structure
to all the relevant CAS indexes:

 // Add the token to the index repository.

Accessing or modifying Features

72 CAS Reference UIMA Version 2.3.0

 aCAS.addFsToIndexes(token);

There is also a corresponding removeFsFromIndexes(token) method on CAS objects.

Because some of the indexes (the Sorted and Set types) use comparators defined on
particular values of the features of an indexed type, if you change the values of those
features being used in the index key, the correct way to do this is to

1. remove the item from all indexes where it is indexed, in all views where it is
indexed,

2. update the value of the features being used as keys,
3. add the item back to the indexes, in all views.

4.6. Accessing or modifying features of feature
structures

Values of individual features for a feature structure can be set or referenced, using a set
of methods that depend on the type of value that feature is declared to have. There are
methods on FeatureStructure for this: getBooleanValue, getByteValue, getShortValue,
getIntValue, getLongValue, getFloatValue, getDoubleValue, getStringValue, and
getFeatureValue (which means to get a value which in turn is a reference to a feature
structure). There are corresponding “setter” methods, as well. These methods on the
feature structure object take as arguments the feature object retrieved earlier in the
typeSystemInit method.

Using the previous example, with the type system initialized with type personType and
feature lastNameFeature, here's a sample code fragment that gets and sets that feature:

// Assume aPerson is a variable holding an object of type Person

// get the lastNameFeature value from the feature structure

String lastName = aPerson.getStringValue(lastNameFeature);

// set the lastNameFeature value

aPerson.setStringValue(lastNameFeature, newStringValueForLastName);

The getters and setters for each of the primitive types are defined in the Javadocs as
methods of the FeatureStructure interface.

4.7. Indexes and Iterators

Each CAS can have many indexes associated with it; each CAS View contains a complete
set of instantions of the indexes. Each index is represented by an instance of the type
org.apache.uima.cas.FSIndex. You use the object org.apache.uima.cas.FSIndexRepository,
accessible via a method on a CAS object, to retrieve instances of indexes. There are
methods that let you select the index by name, by type, or by both name and type. Since
each index is already associated with a type, passing both a name and a type is valid
only if the type passed in is the same type or a subtype of the one declared in the index

Built-in Indexes

UIMA Version 2.3.0 CAS Reference 73

specification for the named index. If you pass in a subtype, the returned FSIndex object
refers to an index that will return only items belonging to that subtype (or subtypes of that
subtype).

The returned FSIndex objects are used, in turn, to create iterators. There is also a method
on the Index Repository, getAllIndexedFS, which will return an iterator over all indexed
Feature Structures (for that CAS View), in no particular order. The iterators created can
be used like common Java iterators, to sequentially retrieve items indexed. If the index
represents a sorted index, the items are returned in a sorted order, where the sort order is
specified in the XML index definition. This XML is part of the Component Descriptor, see
Section 2.4.1.7, “Index Definition” [18].

Feature structures should not be added to or removed from indexes while iterating
over them; a ConcurrentModificationException is thrown when this is detected. Certain
operations are allowed with the iterators after modification, which can “reset” this
condition, such as moving to beginning, end, or moving to a particular feature structure.
So - if you have to modify the index, you can move it back to the last FS you had retrieved
from the iterator, and then continue, if that makes sense in your application.

4.7.1. Built-in Indexes

An unnamed built-in bag index exists which holds all feature structures which are
indexed. The only access to this index is the method getAllIndexedFS(Type) which returns
an iterator over all indexed Feature Structures.

The CAS also contains a built-in index for the type uima.tcas.Annotation, which
sorts annotations in the order in which they appear in the document. Annotations are
sorted first by increasing begin position. Ties are then broken by decreasing end position
(so that longer annotations come first). Annotations that match in both their begin
and end features are sorted using the Type Priority (see Section 2.4.1.6, “Type Priority
Definition” [16])

4.7.2. Adding Feature Structures to the Indexes

Feature Structures are added to the indexes by calling the
FSIndexRepository.addFS(FeatureStructure) method or the equivalent convenience
method CAS.addFsToIndexes(FeatureStructure). This adds the Feature Structure to
all indexes that are defined for the type of that FeatureStructure (or any of its supertypes).
Note that you should not add a Feature Structure to the indexes until you have set values
for all of the features that may be used as sort keys in an index.

4.7.3. Iterators

Iterators are objects of class org.apache.uima.cas.FSIterator. This class extends
java.util.Iterator and implements the normal Java iterator methods, plus additional
ones that allow moving both forwards and backwards.

Special iterators for Annotation types

74 CAS Reference UIMA Version 2.3.0

4.7.4. Special iterators for Annotation types

The built-in index over the uima.tcas.Annotation type named “AnnotationIndex”
has additional capabilities. To use them, you first get a reference to this built-in index
using either the getAnnotationIndex method on a CAS View object, or by asking the
FSIndexRepository object for an index having the particular name “AnnotationIndex”,
for example:

AnnotationIndex idx = aCAS.getAnnotationIndex();

// or you can iterate over a specific subtype of Annotation:

AnnotationIndex idx = aCAS.getAnnotationIndex(aType);

This object can be used to produce several additional kinds of iterators. It can produce
unambiguous iterators; these skip over elements until it finds one where the start position
of the next annotation is equal to or greater than the end position of the previously
returned annotation.

It can also produce several kinds of subiterators; these are iterators whose annotations
fall within the span of another annotation. This kind of iterator can also have the
unambiguous property, if desired. It also can be “strict” or not; strict means that the
returned annotation lies completely within the span of the controlling annotation. Non-
strict only implies that the beginning of the returned annotation falls within the span of
the controlling annotation.

There is also a method which produces an AnnotationTree object, which contains
nodes representing the results of doing a strict, unambiguous subiterator over the span
of some controlling annotation. For more details, please refer to the Javadocs for the
org.apache.uima.cas.text package.

4.7.5. Constraints and Filtered iterators

There is a set of API calls that build constraint objects. These objects can be used directly
to test if a particular feature structure matches (satisfies) the constraint, or they can be
passed to the createFilteredIterator method to create an iterator that skips over instances
which fail to satisfy the constraint.

It is possible to specify a feature value located by following a chain of references starting
from the feature structure being tested. Here's a scenario to explore this concept. Let's
suppose you have the following type system (namespaces are omitted for clarity):

Token, having a feature PartOfSpeech which holds a reference to another
type (POS)

POS (a type with many subtypes, each representing a different part of
speech)

Noun (a subtype of POS)

Constraints and Filtered iterators

UIMA Version 2.3.0 CAS Reference 75

ProperName (a subtype of Noun), having a feature Class which holds an
integer value encoding some information about the proper noun.

If you want to filter Token instances, such that only those tokens get through which are
proper names of class 3 (for example), you would need a test that started with a Token
instance, followed its PartOfSpeech reference to another instance (the ProperName
instance) and then tested the Class feature of that instance for a value equal to 3.

To support this, the filtering approach has components that specify tests, and components
that specify “paths”. The tests that can be done include testing references to type
instances to see if they are instances of some type or its subtypes; this is done with a
FSTypeConstraint constraint. Other tests check for equality or, for numeric values, ranges.

Each test may be combined with a path – to get to the value to test. Tests that start from a
feature structure instance can be combined with and and or connectors. The Javadocs for
these are in the package org.apache.uima.cas in the classes that end in Constraint, plus the
classes ConstraintFactory, FeaturePath and CAS. Here's an example; assume the variable
cas holds a reference to a CAS instance.

// Start by getting the constraint factory from the CAS.

ConstraintFactory cf = cas.getConstraintFactory();

// To specify a path to an item to test, you start by

// creating an empty path.

FeaturePath path = cas.createFeaturePath();

// Add POS feature to path, creating one-element path.

path.addFeature(posFeat);

// You can extend the chain arbitrarily by adding additional

// features.

// Create a new type constraint.

// Type constraints will check that structures

// they match against have a type at least as specific

// as the type specified in the constraint.

FSTypeConstraint nounConstraint = cf.createTypeConstraint();

// Set the type (by default it is TOP).

// This succeeds if the type being tested by this constraint

// is nounType or a subtype of nounType.

nounConstraint.add(nounType);

// Embed the noun constraint under the pos path.

// This means, associate the test with the path, so it tests the

// proper value.

// The result is a test which will

// match a feature structure that has a posFeat defined

// which has a value which is an instance of a nounType or

CAS API's Javadocs

76 CAS Reference UIMA Version 2.3.0

// one of its subtypes.

FSMatchConstraint embeddedNoun = cf.embedConstraint(path, nounConstraint);

// Create a type constraint for token (or a subtype of it)

FSTypeConstraint tokenConstraint = cf.createTypeConstraint();

// Set the type.

tokenConstraint.add(tokenType);

// Create the final constraint by conjoining the two constraints.

FSMatchConstraint nounTokenCons = cf.and(nounConstraint, tokenConstraint);

// Create a filtered iterator from some annotation iterator.

FSIterator it = cas.createFilteredIterator(annotIt, nounTokenCons);

4.8. The CAS API's – a guide to the Javadocs

The CAS APIs are organized into 3 Java packages: cas, cas.impl, and cas.text. Most of
the APIs described here are in the cas package. The cas.impl package contains classes
used in serializing and deserializing (reading and writing to external strings) the XCAS
form of the CAS (XCAS is an XML serialization of the CAS). The XCAS form is used
for transporting the CAS among local and remote annotators, or for storing the CAS in
permanent storage. The cas.text contains the APIs that extend the CAS to support artifact
(including “text”) analysis.

4.8.1. APIs in the CAS package

The main objects implementing the APIs discussed here are shown in the diagram below.
The hierarchy represents that there is a way to get from an upper object to an instance of
the lower object, usually by using a method on the upper object; this is not an inheritance
hierarchy.

APIs in the CAS package

UIMA Version 2.3.0 CAS Reference 77

Figure 4.1. CAS Object hierarchy

The main Interface is the CAS interface. This has most of the functionality of the CAS,
except for the type system metadata access, and the indexing access. JCas and CAS are
alternative representations and API approaches to the CAS; each has a method to get the
other. You can mix JCas and CAS APIs in your application as needed. To use the JCas
APIs, you have to create the Java classes that correspond to the CAS types, and include
them in the Java class path of the application. If you have a CAS object, you can get a JCas
object by using the getJCas() method call on the CAS object; likewise, you can get the CAS
object from a JCas by using the getCAS() method call on the JCas object. There is also a
low level CAS interface that is not part of the official API, and is intended for internal use
only – it is not documented here.

The type system metadata APIs are found in the TypeSystem interface. The objects
defining each type and feature are defined by the interfaces Type and Feature. The Type
interface has methods to see what types subsume other types, to iterate over the types
available, and to extract information about the types, including what features it has. The
Feature interface has methods that get what type it belongs to, its name, and its range (the
kind of values it can hold).

The FSIndexRepository gives you access to methods to get instances of indexes,
and also provides access to the iterator over all indexed feature structures:
getAllIndexedFS(aType). The FSIndex and AnnotationIndex objects give you methods
to create instances of iterators.

Iterators and the CAS methods that create new feature structures return FeatureStructure
objects. These objects can be used to set and get the values of defined features within
them.

JCas Reference 79

Chapter 5. JCas Reference
The CAS is a system for sharing data among annotators, consisting of data structures
(definable at run time), sets of indexes over these data, metadata describing these,
subjects of analysis, and a high performance serialization/deserialization mechanism. JCas
provides Java approach to accessing CAS data, and is based on using generated, specific
Java classes for each CAS type.

Annotators process one CAS per call to their process method. During processing,
annotators can retrieve feature structures from the passed in CAS, add new ones, modify
existing ones, and use and update CAS indexes. Of course, an annotator can also use
plain Java Objects in addition; but the data in the CAS is what is shared among annotators
within an application.

All the facilities present in the APIs for the CAS are available when using the JCas APIs;
indeed, you can use the getCas() method to get the corresponding CAS object from a JCas
(and vice-versa). The JCas APIs often have helper methods that make using this interface
more convenient for Java developers.

The data in the CAS are typed objects having fields. JCas uses a set of generated Java
classes (each corresponding to a particular CAS type) with “getter” and “setter” methods
for the features, plus a constructor so new instances can be made. The Java classes don't
actually store the data in the class instance; instead, the getters and setters forward to
the underlying CAS data representation. Because of this, applications which use the
JCas interface can share data with annotators using plain CAS (i.e., not using the JCas
approach).

Users can modify the JCas generated Java classes by adding fields to them; this allows
arbitrary non-CAS data to also be represented within the JCas objects, as well; however,
the non-CAS data stored in the JCas object instances cannot be shared with annotators
using the plain CAS.

Data in the CAS initially has no corresponding JCas type instances; these are created
as needed at the first reference. This means, if your annotator is passed a large CAS
having millions of CAS feature structures, but you only reference a few of them, and no
previously created Java JCas object instances were created by upstream annotators, the
only Java objects that will be created will be those that correspond to the CAS feature
structures that you reference.

The JCas class Java source files are generated from XML type system descriptions. The
JCasGen utility does the work of generating the corresponding Java Class Model for the
CAS types. There are a variety of ways JCasGen can be run; these are described later. You
include the generated classes with your UIMA component, and you can publish these
classes for others who might want to use your type system.

Name Spaces

80 JCas Reference UIMA Version 2.3.0

The specification of the type system in XML can be written using a conventional
text editor, an XML editor, or using the Eclipse plug-in that supports editing UIMA
descriptors.

Changes to the type system are done by changing the XML and regenerating the
corresponding Java Class Models. Of course, once you've published your type system for
others to use, you should be careful that any changes you make don't adversely impact the
users. Additional features can be added to existing types without breaking other code.

A separate Java class is generated for each type; this type implements the CAS
FeatureStructure interface, as well as having the special getters and setters for the
included features. In the current implementation, an additional helper class per type
is also generated. The generated Java classes have methods (getters and setters) for the
fields as defined in the XML type specification. Descriptor comments are reflected in the
generated Java code as Java-doc style comments.

5.1. Name Spaces

Full Type names consist of a “namespace” prefix dotted with a simple name. Namespaces
are used like packages to avoid collisions between types that are defined by different
people at different times. The namespace is used as the Java package name for generated
Java files.

Type names used in the CAS correspond to the generated Java classes directly. If the CAS
name is com.myCompany.myProject.ExampleClass, the generated Java class is in the
package com.myCompany.myProject, and the class is ExampleClass.

An exception to this rule is the built-in types starting with uima.cas and uima.tcas;
these names are mapped to Java packages named org.apache.uima.jcas.cas and
org.apache.uima.jcas.tcas.

5.2. XML description element

Each XML type specification can have <description ... > tags. The description for a type
will be copied into the generated Java code, as a Javadoc style comment for the class.
When writing these descriptions in the XML type specification file, you might want to use
html tags, as allowed in Javadocs.

If you use the Component Description Editor, you can write the html tags normally,
for instance, “<h1>My Title</h1>”. The Component Descriptor Editor will take care of
coverting the actual descriptor source so that it has the leading “<” character written as
“<”, to avoid confusing the XML type specification. For example, <p> would be written
in the source of the descriptor as <p>. Any characters used in the Javadoc comment
must of course be from the character set allowed by the XML type specification. These
specifications often start with the line <?xml version=“1.0” encoding=“UTF-8” ?>, which
means you can use any of the UTF-8 characters.

Mapping built-in CAS types to Java types

UIMA Version 2.3.0 JCas Reference 81

5.3. Mapping built-in CAS types to Java types

The built-in primitive CAS types map to Java types as follows:

uima.cas.Boolean → boolean

uima.cas.Byte → byte

uima.cas.Short → short

uima.cas.Integer → int

uima.cas.Long → long

uima.cas.Float → float

uima.cas.Double → double

uima.cas.String → String

5.4. Augmenting the generated Java Code

The Java Class Models generated for each type can be augmented by the user. Typical
augmentations include adding additional (non-CAS) fields and methods, and import
statements that might be needed to support these. Commonly added methods include
additional constructors (having different parameter signatures), and implementations of
toString().

To augment the code, just edit the generated Java source code for the class named the
same as the CAS type. Here's an example of an additional method you might add; the
various getter methods are retrieving values from the instance:

public String toString() { // for debugging

 return "XsgParse "

 + getslotName() + ": "

 + getheadWord().getCoveredText()

 + " seqNo: " + getseqNo()

 + ", cAddr: " + id

 + ", size left mods: " + getlMods().size()

 + ", size right mods: " + getrMods().size();

}

5.4.1. Persistence of additional data

If you add custom instance fields to JCas cover classes, these exist in the JCas cover object
instance, but not in the CAS itself. Each time a CAS object is referenced (by an iterator,
or by following a Feature Structure reference), a new JCas cover object instance may be
created. If you need these values, you can (a) make them CAS values if possible, or (b)
hold a reference to the the particular JCas cover object instance in your Java code. For
some simple cases, setting the the performance tuning option JCAS_CACHE_ENABLE
(see Section 3.9, “Performance Tuning Options” in UIMA Tutorial and Developers' Guides)

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#tug.application.pto

Keeping hand-coded augmentations when regenerating

82 JCas Reference UIMA Version 2.3.0

to true will cause the same JCas cover object that was previously used for a particular CAS
Feature Structure to be reused. However, this capability won't work when other factors
interfere with the ability to reuse the same object. Pear isolation is an example of this.

Because of this, and because the JCas Cache holds on to the JCas cover objects beyond
their useful life and prevents them from being garbage collected, it is normally
recommended running with the JCAS_CACHE_ENABLE set to "false".

5.4.2. Keeping hand-coded augmentations when
regenerating

If the type system specification changes, you have to re-run the JCasGen generator. This
will produce updated Java for the Class Models that capture the changed specification.
If you have previously augmented the source for these Java Class Models, your changes
must be merged with the newly (re)generated Java source code for the Class Models.
This can be done by hand, or you can run the version of JCasGen that is integrated with
Eclipse, and use automatic merging that is done using Eclipse's EMF plug-in. You can
obtain Eclipse and the needed EMF plug-in from http://www.eclipse.org/.

If you run the generator version that works without using Eclipse, it will not merge Java
source changes you may have previously made; if you want them retained, you'll have to
do the merging by hand.

The Java source merging will keep additional constructors, additional fields, and any
changes you may have made to the readObject method (see below). Merging will not
delete classes in the target corresponding to deleted CAS types, which no longer are in the
source – you should delete these by hand.

Warning: The merging supports Java 1.4 syntactic constructs only. JCasGen
generates Java 1.4 code, so as long as any code you change here also sticks to only
Java 1.4 constructs, the merge will work. If you use Java 5 or later specific syntax
or constructs, the merge operation will likely fail to merge properly.

5.4.3. Additional Constructors

Any additional constructors that you add must include the JCas argument. The first line of
your constructor is required to be

this(jcas); // run the standard constructor

where jcas is the passed in JCas reference. If the type you're defining extends
uima.tcas.Annotation, JCasGen will automatically add a constructor which
takes 2 additional parameters – the begin and end Java int values, and set the
uima.tcas.Annotation begin and end fields.

Here's an example: If you're defining a type MyType which has a feature parent, you
might make an additional constructor which has an additional argument of parent:

http://www.eclipse.org/

Modifying generated items

UIMA Version 2.3.0 JCas Reference 83

MyType(JCas jcas, MyType parent) {

 this(jcas); // run the standard constructor

 setParent(parent); // set the parent field from the parameter

}

5.4.3.1. Using readObject

Fields defined by augmenting the Java Class Model to include additional fields represent
data that exist for this class in Java, in a local JVM (Java Virtual Machine), but do not exist
in the CAS when it is passed to other environments (for example, passing to a remote
annotator).

A problem can arise when new instances are created, perhaps by the underlying system
when it iterates over an index, which is: how to insure that any additional non-CAS fields
are properly initialized. To allow for arbitrary initialization at instance creation time, an
initialization method in the Java Class Model, called readObject is used. The generated
default for this method is to do nothing, but it is one of the methods that you can modify
– to do whatever initialization might be needed. It is called with 0 parameters, during the
constructor for the object, after the basic object fields have been set up. It can refer to fields
in the CAS using the getters and setters, and other fields in the Java object instance being
initialized.

A pre-existing CAS feature structure could exist if a CAS was being passed to this
annotator; in this case the JCas system calls the readObject method when creating the
corresponding Java instance for the first time for the CAS feature structure. This can
happen at two points: when a new object is being returned from an iterator over a CAS
index, or a getter method is getting a field for the first time whose value is a feature
structure.

5.4.4. Modifying generated items
The following modifications, if made in generated items, will be preserved when
regenerating.

The public/private etc. flags associated with methods (getters and setters). You can change
the default (“public”) if needed.

“final” or “abstract” can be added to the type itself, with the usual semantics.

5.5. Merging types
Type definitions are merged by the framework from all the components being run
together.

5.5.1. Aggregate AEs and CPEs as sources of types
When running aggregate AEs (Analysis Engines), or a set of AEs in a collection processing
engine, the UIMA framework will build a merged type system (Note: this “merge” is

JCasGen support for type merging

84 JCas Reference UIMA Version 2.3.0

merging types, not to be confused with merging Java source code, discussed above).
This merged type system has all the types of every component used in the application.
In addition, application code can use UIMA Framework APIs to read and merge type
descriptions, manually.

In most cases, each type system can have its own Java Class Models generated
individually, perhaps at an earlier time, and the resulting class files (or .jar files containing
these class files) can be put in the class path to enable JCas.

However, it is possible that there may be multiple definitions of the same CAS type, each
of which might have different features defined. In this case, the UIMA framework will
create a merged type by accumulating all the defined features for a particular type into
that type's type definition. However, the JCas classes for these types are not automatically
merged, which can create some issues for JCas users, as discussed in the next section.

5.5.2. JCasGen support for type merging

When there are multiple definitions of the same CAS type with different features defined,
then JCasGen can be re-run on the merged type system, to create one set of JCas Class
definitions for the merged types, which can then be shared by all the components.
Directions for running JCasGen can be found in Chapter 7, JCasGen User's Guide in UIMA
Tools Guide and Reference. This is typically done by the person who is assembling the
Aggregate Analysis Engine or Collection Processing Engine. The resulting merged Java
Class Model will then contain get and set methods for the complete set of features. These
Java classes must then be made available in the class path, replacing the pre-merge versions
of the classes.

If hand-modifications were done to the pre-merge versions of the classes, these must be
applied to the merged versions, as described in section Section 5.4.2, “Keeping hand-
coded augmentations when regenerating” [82], above. If just one of the pre-merge
versions had hand-modifications, the source for this hand-modified version can be
put into the file system where the generated output will go, and the -merge option for
JCasGen will automatically merge the hand-modifications with the generated code. If both
pre-merged versions had hand-modifications, then these modifications must be manually
merged.

An alternative to this is packaging the components as individual PEAR files, each with
their own version of the JCas generated Classes. The Framework (as of release 2.2) can run
PEAR files using the pear file descriptor, and supply each component with its particular
version of the JCas generated class.

5.5.3. Impact of Type Merging on Composability of
Annotators

The recommended approach in UIMA is to build and maintain type systems as separate
components, which are imported by Annotators. Using this approach, Type Merging does

../tools/tools.pdf#ugr.tools.jcasgen

Adding Features to DocumentAnnotation

UIMA Version 2.3.0 JCas Reference 85

not occur because the Type System and its JCas classes are centrally managed and shared
by the annotators.

If you do choose to create a JCas Annotator that relies on Type Merging (meaning that
your annotator redefines a Type that is already in use elsewhere, and adds its own
features), this can negatively impact the reusability of your annotator, unless your
component is used as a PEAR file.

If not using PEAR file packaging isolation capability, whenever anyone wants to combine
your annotator with another annotator that uses a different version of the same Type,
they will need to be aware of all of the issues described in the previous section. They will
need to have the know-how to re-run JCasGen and appropriately set up their classpath to
include the merged Java classes and to not include the pre-merge classes. (To enable this,
you should package these classes separately from other .jar files for your annotator, so that
they can be more easily excluded.) And, if you have done hand-modifications to your JCas
classes, the person assembling your annotator will need to properly merge those changes.
These issues significantly complicate the task of combining annotators, and will cause
your annotator not to be as easily reusable as other UIMA annotators.

5.5.4. Adding Features to DocumentAnnotation

There is one built-in type, uima.tcas.DocumentAnnotation, to which applications
can add additional features. (All other built-in types are "feature-final" and you
cannot add additional features to them.) Frequently, additional features are added to
uima.tcas.DocumentAnnotation to provide a place to store document-level metadata.

For the same reasons mentioned in the previous section, adding features to
DocumentAnnotation is not recommended if you are using JCas. Instead, it is
recommended that you define your own type for storing your document-level
metadata. You can create an instance of this type and add it to the indexes in the
usual way. You can then retrieve this instance using the iterator returned from the
methodgetAllIndexedFS(type) on an instance of a JFSIndexRepository object. (As of
UIMA v2.1, you do not have to declare a custom index in your descriptor to get this to
work).

If you do choose to add features to DocumentAnnotation, there are additional issues
to be aware of. The UIMA SDK provides the JCas cover class for the built-in definition
of DocumentAnnotation, in the separate jar file uima-document-annotation.jar.
If you add additional features to DocumentAnnotation, you must remove this jar file
from your classpath, because you will not want to use the default JCas cover class. You
will need to re-run JCasGen as described in Section 5.5.2, “JCasGen support for type
merging” [84]. JCasGen will generate a new cover class for DocumentAnnotation,
which you must place in your classpath in lieu of the version in uima-document-
annotation.jar.

Also, this is the reason why the method JCas.getDocumentAnnotationFs() returns
type TOP, rather than type DocumentAnnotation. Because the DocumentAnnotation

Using JCas within an Annotator

86 JCas Reference UIMA Version 2.3.0

class can be replaced by users, it is not part of uima-core.jar and so the core UIMA
framework cannot have any references to it. In your code, you may “cast” the result
of JCas.getDocumentAnnotationFs() to type DocumentAnnotation, which must be
available on the classpath either via uima-document-annotation.jar or by including a
custom version that you have generated using JCasGen.

5.6. Using JCas within an Annotator

To use JCas within an annotator, you must include the generated Java classes output from
JCasGen in the class path.

An annotator written using JCas is built by defining a class for the annotator that extends
JCasAnnotator_ImplBase. The process method for this annotator is written

public void process(JCas jcas)

 throws AnalysisEngineProcessException {

 ... // body of annotator goes here

}

The process method is passed the JCas instance to use as a parameter.

The JCas reference is used throughout the annotator to refer to the particular JCas instance
being worked on. In pooled or multi-threaded implementations, there will be a separate
JCas for each thread being (simultaneously) worked on.

You can do several kinds of operations using the JCas APIs: create new feature structures
(instances of CAS types) (using the new operator), access existing feature structures
passed to your annotator in the JCas (for example, by using the next method of an iterator
over the feature structures), get and set the fields of a particular instance of a feature
structure, and add and remove feature structure instances from the CAS indexes. To
support iteration, there are also functions to get and use indexes and iterators over the
instances in a JCas.

5.6.1. Creating new instances using the Java “new”
operator

The new operator creates new instances of JCas types. It takes at least one parameter, the
JCas instance in which the type is to be created. For example, if there was a type Meeting
defined, you can create a new instance of it using:

Meeting m = new Meeting(jcas);

Other variations of constructors can be added in custom code; the single parameter
version is the one automatically generated by JCasGen. For types that are subtypes of
Annotation, JCasGen also generates an additional constructor with additional “begin” and
“end” arguments.

Getters and Setters

UIMA Version 2.3.0 JCas Reference 87

5.6.2. Getters and Setters

If the CAS type Meeting had fields location and time, you could get or set these by using
getter or setter methods. These methods have names formed by splicing together the word
“get” or “set” followed by the field name, with the first letter of the field name capitalized.
For instance

getLocation()

The getter forms take no parameters and return the value of the field; the setter forms take
one parameter, the value to set into the field, and return void.

There are built-in CAS types for arrays of integers, strings, floats, and feature structures.
For fields whose values are these types of arrays, there is an alternate form of getters and
setters that take an additional parameter, written as the first parameter, which is the index
in the array of an item to get or set.

5.6.3. Obtaining references to Indexes

The only way to access instances (not otherwise referenced from other instances) passed in
to your annotator in its JCas is to use an iterator over some index. Indexes in the CAS are
specified in the annotator descriptor. Indexes have a name; text annotators have a built-in,
standard index over all annotations.

To get an index, first get the JFSIndexRepository from the JCas using the method
jcas.getJFSIndexRepository(). Here are the calls to get indexes:

JFSIndexRepository ir = jcas.getJFSIndexRepository();

ir.getIndex(name-of-index) // get the index by its name, a string

ir.getIndex(name-of-index, Foo.type) // filtered by specific type

ir.getAnnotationIndex() // get AnnotationIndex

ir.getAnnotationIndex(Foo.type) // filtered by specific type

For convenience, the getAnnotationIndex method is available directly on the JCas object
instance; the implementation merely forwards to the associated index repository.

Filtering types have to be a subtype of the type specified for this index in its index
specification. They can be written as either Foo.type or if you have an instance of Foo, you
can write

fooInstance.jcasType.casType.

Foo is (of course) an example of the name of the type.

Updating Indexes

88 JCas Reference UIMA Version 2.3.0

5.6.4. Adding (and removing) instances to (from) indexes

CAS indexes are maintained automatically by the CAS. But you must add any instances of
feature structures you want the index to find, to the indexes by using the call:

myInstance.addToIndexes();

Do this after setting all features in the instance which could be used in indexing, for
example, in determining the sorting order. After indexing, do not change the values of
these particular features because the indexes will not be updated. If you need to change
the values, you must first remove the instance from the CAS indexes, change the values,
and then add the instance back. To remove an instance from the indexes, use the method:

myInstance.removeFromIndexes();

Note: It's OK to change feature values which are not used in determining sort
ordering (or set membership), without removing and re-adding back to the index.

When writing a Multi-View component, you may need to index instances in multiple CAS
views. The methods above use the indexes associated with the current JCas object. There
is a variation of the addToIndexes / removeFromIndexes methods which takes one
argument: a reference to a JCas object holding the view in which you want to index this
instance.

myInstance.addToIndexes(anotherJCas)

myInstance.removeFromIndexes(anotherJCas)

You can also explicitly add instances to other views using the addFsToIndexes method
on other JCas (or CAS) objects. For instance, if you had 2 other CAS views (myView1 and
myView2), in which you wanted to index myInstance, you could write:

myInstance.addToIndexes(); //addToIndexes used with the new operator

myView1.addFsToIndexes(myInstance); // index myInstance in myView1

myView2.addFsToIndexes(myInstance); // index myInstance in myView2

The rules for determining which index to use with a particular JCas object are designed
to behave the way most would think they should; if you need specific behavior, you can
always explicitly designate which view the index adding and removing operations should
work on.

The rules are: If the instance is a subtype of AnnotationBase, then the view is the view
associated with the annotation as specified in the feature holding the view reference in
AnnotationBase. Otherwise, if the instance was created using the "new" operator, then
the view is the view passed to the instance's constructor. Otherwise, if the instance was
created by getting a feature value from some other instance, whose range type is a feature
structure, then the view is the same as the referring instance. Otherwise, if the instance

Using Iterators

UIMA Version 2.3.0 JCas Reference 89

was created by any of the Feature Structure Iterator operations over some index, then it is
the view associated with the index.

5.6.5. Using Iterators

Once you have an index obtained from the JCas, you can get an iterator from the index;
here is an example:

FSIndexRepository ir = jcas.getFSIndexRepository();

FSIndex myIndex = ir.getIndex("myIndexName");

FSIterator myIterator = myIndex.iterator();

JFSIndexRepository ir = jcas.getJFSIndexRepository();

FSIndex myIndex = ir.getIndex("myIndexName", Foo.type); // filtered

FSIterator myIterator = myIndex.iterator();

Iterators work like normal Java iterators, but are augmented to support additional
capabilities. Iterators are described in the CAS Reference, Section 4.7, “Indexes and
Iterators” [72].

5.6.6. Class Loaders in UIMA

The basic concept of a UIMA application includes assembling engines into a flow. The
application made up of these Engines are run within the UIMA Framework, either by the
Collection Processing Manager, or by using more basic UIMA Framework APIs.

The UIMA Framework exists within a JVM (Java Virtual Machine). A JVM has the
capability to load multiple applications, in a way where each one is isolated from the
others, by using a separate class loader for each application. For instance, one set of UIMA
Framework Classes could be shared by multiple sets of application - specific classes, even
if these application-specific classes had the same names but were different versions.

5.6.6.1. Use of Class Loaders is optional

The UIMA framework will use a specific ClassLoader, based on how ResourceManager
instances are used. Specific ClassLoaders are only created if you specify an
ExtensionClassPath as part of the ResourceManager. If you do not need to support
multiple applications within one UIMA framework within a JVM, don't specify an
ExtensionClassPath; in this case, the classloader used will be the one used to load the
UIMA framework - usually the overall application class loader.

Of course, you should not run multiple UIMA applications together, in this way, if
they have different class definitions for the same class name. This includes the JCas
“cover” classes. This case might arise, for instance, if both applications extended
uima.tcas.DocumentAnnotation in differing, incompatible ways. Each application
would need its own definition of this class, but only one could be loaded (unless
you specify ExtensionClassPath in the ResourceManager which will cause the UIMA
application to load its private versions of its classes, from its classpath).

Issues accessing JCas objects outside of UIMA Engine Components

90 JCas Reference UIMA Version 2.3.0

5.6.7. Issues accessing JCas objects outside of UIMA
Engine Components

If you are using the ExtensionClassPaths, the JCas cover classes are loaded under a class
loader created by the ResourceManager part of the UIMA Framework. If you reference the
same JCas classes outside of any UIMA component, for instance, in top level application
code, the JCas classes used by that top level application code also must be in the class path
for the application code.

Alternatively, you could do all the JCas processing inside a UIMA component (and do no
processing using JCas outside of the UIMA pipeline).

5.7. Setting up Classpath for JCas
The JCas Java classes generated by JCasGen are typically compiled and put into a JAR file,
which, in turn, is put into the application's class path.

This JAR file must be generated from the application's merged type system. This is most
conveniently done by opening the top level descriptor used by the application in the
Component Descriptor Editor tool, and pressing the Run-JCasGen button on the Type
System Definition page.

5.8. PEAR isolation
As of version 2.2, the framework supports component descriptors which are PEAR
descriptors. These descriptors define components plus include information on the class
path needed to run them. The framework uses the class path information to set up a
localized class path, just for code running within the PEAR context. This allows PEAR files
requiring different versions of common code to work well together, even if the class names
in the different versions have the same names.

PEAR Reference 91

Chapter 6. PEAR Reference
A PEAR (Processing Engine ARchive) file is a standard package for UIMA components.
This chapter describes the PEAR 1.0 structure and specification.

The PEAR package can be used for distribution and reuse by other components or
applications. It also allows applications and tools to manage UIMA components
automatically for verification, deployment, invocation, testing, etc.

Currently, there is an Eclipse plugin and a command line tool available to create PEAR
packages for standard UIMA components. Please refer to Chapter 8, PEAR Packager User's
Guide in UIMA Tools Guide and Reference for more information about these tools.

PEARs distributed to new targets can be installed at those targets. UIMA includes a tool
for installing PEARs; see Chapter 10, PEAR Installer User's Guide in UIMA Tools Guide and
Reference for more information about installing PEARs.

An installed PEAR can be used as a component within a UIMA pipeline, by specifying the
pear descriptor that is created when installing the pear. See Section 6.3, “PEAR package
descriptor” [103].

6.1. Packaging a UIMA component

For the purpose of describing the process of creating a PEAR file and its internal structure,
this section describes the steps used to package a UIMA component as a valid PEAR file.
The PEAR packaging process consists of the following steps:

• Section 6.1.1, “Creating the PEAR structure” [91]

• Section 6.1.2, “Populating the PEAR structure” [93]

• Section 6.1.3, “Creating the installation descriptor” [94]

• Section 6.1.5, “Packaging the PEAR structure into one file” [100]

6.1.1. Creating the PEAR structure

The first step in the PEAR creation process is to create a PEAR structure. The PEAR
structure is a structured tree of folders and files, including the following elements:

• Required Elements:

• The metadata folder which contains the PEAR installation descriptor and
properties files.

• The installation descriptor (metadata/install.xml)

../tools/tools.pdf#ugr.tools.pear.packager
../tools/tools.pdf#ugr.tools.pear.packager
../tools/tools.pdf#ugr.tools.pear.installer

Creating the PEAR structure

92 PEAR Reference UIMA Version 2.3.0

• A UIMA analysis engine descriptor and its required code, delegates (if any),
and resources

• Optional Elements:

• The desc folder to contain descriptor files of analysis engines, delegates
analysis engines (all levels), and other components (Collection Readers, CAS
Consumers, etc).

• The src folder to contain the source code

• The bin folder to contain executables, scripts, class files, dlls, shared libraries,
etc.

• The lib folder to contain jar files.

• The doc folder containing documentation materials, preferably accessible
through an index.html.

• The data folder to contain data files (e.g. for testing).

• The conf folder to contain configuration files.

• The resources folder to contain other resources and dependencies.

• Other user-defined folders or files are allowed, but should be avoided.

Figure 6.1. The PEAR Structure

Populating the PEAR structure

UIMA Version 2.3.0 PEAR Reference 93

6.1.2. Populating the PEAR structure

After creating the PEAR structure, the component's descriptor files, code files, resources
files, and any other files and folders are copied into the corresponding folders of the PEAR
structure. The developer should make sure that the code would work with this layout of
files and folders, and that there are no broken links. Although it is strongly discouraged,
the optional elements of the PEAR structure can be replaced by other user defined files
and folder, if required for the component to work properly.

Note: The PEAR structure must be self-contained. For example, this means
that the component must run properly independently from the PEAR root folder
location. If the developer needs to use an absolute path in configuration or
descriptor files, then he/she should put these files in the “conf” or “desc” and
replace the path of the PEAR root folder with the string “$main_root” . The tools
that deploy and use PEAR files should localize the files in the “conf” and “desc”
folders by replacing the string “$main_root” with the local absolute path of the
PEAR root folder. The “$main_root” macro can also be used in the Installation
descriptor (install.xml)

Currently there are three types of component packages depending on their deployment:

6.1.2.1. Standard Type

A component package with the standard type must be a valid Analysis Engine, and all the
required files to deploy it locally must be included in the PEAR package.

6.1.2.2. Service Type

A component package with the service type must be deployable locally as a supported
UIMA service (e.g. Vinci). In this case, all the required files to deploy it locally must be
included in the PEAR package.

6.1.2.3. Network Type

A component package with the network type is not deployed locally but rather in the
“remote” environment. It's accessed as a network AE (e.g. Vinci Service). The component
owner has the responsibility to start the service and make sure it's up and running before
it's used by others (like a webmaster that makes sure the web site is up and running). In
this case, the PEAR package does not have to contain files required for deployment, but
must contain the network AE descriptor (see Section 1.1.4, “Creating the XML Descriptor”
in UIMA Tutorial and Developers' Guides) and the <DESC> tag in the installation descriptor
must point to the network AE descriptor. For more information about Network Analysis
Engines, please refer to Section 3.6, “Working with Remote Services” in UIMA Tutorial and
Developers' Guides .

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae.creating_xml_descriptor
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.remote_services

Creating the installation descriptor

94 PEAR Reference UIMA Version 2.3.0

6.1.3. Creating the installation descriptor

The installation descriptor is an xml file called install.xml under the metadata folder of the
PEAR structure. It's also called InsD. The InsD XML file should be created in the UTF-8
file encoding. The InsD should contain the following sections:

• <OS>: This section is used to specify supported operating systems

• <TOOLKITS>: This section is used to specify toolkits, such as JDK, needed by the
component.

• <SUBMITTED_COMPONENT>: This is the most important section in the
Installation Descriptor. It's used to specify required information about the
component. See Section 6.1.4, “Installation Descriptor: template” [94] for
detailed information about this section.

• <INSTALLATION>: This section is explained in section Section 6.2, “Installing a
PEAR package” [101] .

6.1.4. Documented template for the installation
descriptor:

The following is a sample “documented template” which describes content of the
installation descriptor install.xml:

<? xml version="1.0" encoding="UTF-8"?>

<!-- Installation Descriptor Template -->

<COMPONENT_INSTALLATION_DESCRIPTOR>

 <!-- Specifications of OS names, including version, etc. -->

 <OS>

 <NAME>OS_Name_1</NAME>

 <NAME>OS_Name_2</NAME>

 </OS>

 <!-- Specifications of required standard toolkits -->

 <TOOLKITS>

 <JDK_VERSION>JDK_Version</JDK_VERSION>

 </TOOLKITS>

 <!-- There are 2 types of variables that are used in the InsD:

 a) $main_root , which will be substituted with the real path to the

 main component root directory after installing the

 main (submitted) component

 b) $component_id$root, which will be substituted with the real path

 to the root directory of a given delegate component after

 installing the given delegate component -->

 <!-- Specification of submitted component (AE) -->

 <!-- Note: submitted_component_id is assigned by developer; -->

 <!-- XML descriptor file name is set by developer. -->

 <!-- Important: ID element should be the first in the -->

Installation Descriptor: template

UIMA Version 2.3.0 PEAR Reference 95

 <!-- SUBMITTED_COMPONENT section. -->

 <!-- Submitted component may include optional specification -->

 <!-- of Collection Reader that can be used for testing the -->

 <!-- submitted component. -->

 <!-- Submitted component may include optional specification -->

 <!-- of CAS Consumer that can be used for testing the -->

 <!-- submitted component. -->

 <SUBMITTED_COMPONENT>

 <ID>submitted_component_id</ID>

 <NAME>Submitted component name</NAME>

 <DESC>$main_root/desc/ComponentDescriptor.xml</DESC>

 <!-- deployment options: -->

 <!-- a) "standard" is deploying AE locally -->

 <!-- b) "service" is deploying AE locally as a service, -->

 <!-- using specified command (script) -->

 <!-- c) "network" is deploying a pure network AE, which -->

 <!-- is running somewhere on the network -->

 <DEPLOYMENT>standard | service | network</DEPLOYMENT>

 <!-- Specifications for "service" deployment option only -->

 <SERVICE_COMMAND>$main_root/bin/startService.bat</SERVICE_COMMAND>

 <SERVICE_WORKING_DIR>$main_root</SERVICE_WORKING_DIR>

 <SERVICE_COMMAND_ARGS>

 <ARGUMENT>

 <VALUE>1st_parameter_value</VALUE>

 <COMMENTS>1st parameter description</COMMENTS>

 </ARGUMENT>

 <ARGUMENT>

 <VALUE>2nd_parameter_value</VALUE>

 <COMMENTS>2nd parameter description</COMMENTS>

 </ARGUMENT>

 </SERVICE_COMMAND_ARGS>

 <!-- Specifications for "network" deployment option only -->

 <NETWORK_PARAMETERS>

 <VNS_SPECS VNS_HOST="vns_host_IP" VNS_PORT="vns_port_No" />

 </NETWORK_PARAMETERS>

 <!-- General specifications -->

 <COMMENTS>Main component description</COMMENTS>

 <COLLECTION_READER>

 <COLLECTION_ITERATOR_DESC>

 $main_root/desc/CollIterDescriptor.xml

 </COLLECTION_ITERATOR_DESC>

Installation Descriptor: template

96 PEAR Reference UIMA Version 2.3.0

 <CAS_INITIALIZER_DESC>

 $main_root/desc/CASInitializerDescriptor.xml

 </CAS_INITIALIZER_DESC>

 </COLLECTION_READER>

 <CAS_CONSUMER>

 <DESC>$main_root/desc/CASConsumerDescriptor.xml</DESC>

 </CAS_CONSUMER>

 </SUBMITTED_COMPONENT>

 <!-- Specifications of the component installation process -->

 <INSTALLATION>

 <!-- List of delegate components that should be installed together -->

 <!-- with the main submitted component (for aggregate components) -->

 <!-- Important: ID element should be the first in each -->

 <!-- DELEGATE_COMPONENT section. -->

 <DELEGATE_COMPONENT>

 <ID>first_delegate_component_id</ID>

 <NAME>Name of first required separate component</NAME>

 </DELEGATE_COMPONENT>

 <DELEGATE_COMPONENT>

 <ID>second_delegate_component_id</ID>

 <NAME>Name of second required separate component</NAME>

 </DELEGATE_COMPONENT>

 <!-- Specifications of local path names that should be replaced -->

 <!-- with real path names after the main component as well as -->

 <!-- all required delegate (library) components are installed. -->

 <!-- <FILE> and <REPLACE_WITH> values may use the $main_root or -->

 <!-- one of the $component_id$root variables. -->

 <!-- Important: ACTION element should be the first in each -->

 <!-- PROCESS section. -->

 <PROCESS>

 <ACTION>find_and_replace_path</ACTION>

 <PARAMETERS>

 <FILE>$main_root/desc/ComponentDescriptor.xml</FILE>

 <FIND_STRING>../resources/dict/</FIND_STRING>

 <REPLACE_WITH>$main_root/resources/dict/</REPLACE_WITH>

 <COMMENTS>Specify actual dictionary location in XML component

 descriptor

 </COMMENTS>

 </PARAMETERS>

 </PROCESS>

 <PROCESS>

 <ACTION>find_and_replace_path</ACTION>

 <PARAMETERS>

 <FILE>$main_root/desc/DelegateComponentDescriptor.xml</FILE>

 <FIND_STRING>

Installation Descriptor: template

UIMA Version 2.3.0 PEAR Reference 97

local_root_directory_for_1st_delegate_component/resources/dict/

 </FIND_STRING>

 <REPLACE_WITH>

 $first_delegate_component_id$root/resources/dict/

 </REPLACE_WITH>

 <COMMENTS>

 Specify actual dictionary location in the descriptor of the 1st

 delegate component

 </COMMENTS>

 </PARAMETERS>

 </PROCESS>

 <!-- Specifications of environment variables that should be set prior

 to running the main component and all other reused components.

 <VAR_VALUE> values may use the $main_root or one of the

 $component_id$root variables. -->

 <PROCESS>

 <ACTION>set_env_variable</ACTION>

 <PARAMETERS>

 <VAR_NAME>env_variable_name</VAR_NAME>

 <VAR_VALUE>env_variable_value</VAR_VALUE>

 <COMMENTS>Set environment variable value</COMMENTS>

 </PARAMETERS>

 </PROCESS>

 </INSTALLATION>

</COMPONENT_INSTALLATION_DESCRIPTOR>

6.1.4.1. The SUBMITTED_COMPONENT section

The SUBMITTED_COMPONENT section of the installation descriptor (install.xml) is
used to specify required information about the UIMA component. Before explaining
the details, let's clarify the concept of component ID and “macros” used in the
installation descriptor. The component ID element should be the first element in the
SUBMITTED_COMPONENT section.

The component id is a string that uniquely identifies the component. It should use the
JAVA naming convention (e.g. com.company_name.project_name.etc.mycomponent).

Macros are variables such as $main_root, used to represent a string such as the full path of
a certain directory.

The values of these macros are defined by the PEAR installation process, when the PEAR
is installed, and represent the values local to that particular installation. The values are
stored in the metadata/PEAR.properties file that is generated during PEAR installation.
The tools and applications that use and deploy PEAR files replace these macros with the
corresponding values in the local environment as part of the deployment process in the
files included in the conf and desc folders.

Currently, there are two types of macros:

Installation Descriptor: template

98 PEAR Reference UIMA Version 2.3.0

• $main_root, which represents the local absolute path of the main component root
directory after deployment.

• $component_id$root, which represents the local absolute path to the root directory of
the component which has component_id as component ID. This component could be,
for instance, a delegate component.

For example, if some part of a descriptor needs to have a path to the data subdirectory
of the PEAR, you write $main_root/data. If your PEAR refers to a delegate component
having the ID “my.comp.Dictionary”, and you need to specify a path to one of this
component's subdirectories, e.g. resource/dict, you write $my.comp.Dictionary
$root/resources/dict.

6.1.4.2. The ID, NAME, and DESC tags

These tags are used to specify the component ID, Name, and descriptor path using the
corresponding tags as follows:

<SUBMITTED_COMPONENT>

 <ID>submitted_component_id</ID>

 <NAME>Submitted component name</NAME>

 <DESC>$main_root/desc/ComponentDescriptor.xml</DESC>

6.1.4.3. Tags related to deployment types

As mentioned before, there are currently three types of PEAR packages, depending on the
following deployment types

Standard Type

A component package with the standard type must be a valid UIMA Analysis Engine, and
all the required files to deploy it must be included in the PEAR package. This deployment
type should be specified as follows:

<DEPLOYMENT>standard</DEPLOYMENT>

Service Type

A component package with the service type must be deployable locally as a supported
UIMA service (e.g. Vinci). The installation descriptor must include the path for the
executable or script to start the service including its arguments, and the working directory
from where to launch it, following this template:

<DEPLOYMENT>service</DEPLOYMENT>

<SERVICE_COMMAND>$main_root/bin/startService.bat</SERVICE_COMMAND>

<SERVICE_WORKING_DIR>$main_root</SERVICE_WORKING_DIR>

<SERVICE_COMMAND_ARGS>

 <ARGUMENT>

Installation Descriptor: template

UIMA Version 2.3.0 PEAR Reference 99

 <VALUE>1st_parameter_value</VALUE>

 <COMMENTS>1st parameter description</COMMENTS>

 </ARGUMENT>

 <ARGUMENT>

 <VALUE>2nd_parameter_value</VALUE>

 <COMMENTS>2nd parameter description</COMMENTS>

 </ARGUMENT>

</SERVICE_COMMAND_ARGS>

Network Type

A component package with the network type is not deployed locally, but rather in a
“remote” environment. It's accessed as a network AE (e.g. Vinci Service). In this case, the
PEAR package does not have to contain files required for deployment, but must contain
the network AE descriptor. The <DESC> tag in the installation descriptor (See section
2.3.2.1) must point to the network AE descriptor. Here is a template in the case of Vinci
services:

<DEPLOYMENT>network</DEPLOYMENT>

<NETWORK_PARAMETERS>

 <VNS_SPECS VNS_HOST="vns_host_IP" VNS_PORT="vns_port_No" />

</NETWORK_PARAMETERS>

6.1.4.4. The Collection Reader and CAS Consumer tags

These sections of the installation descriptor are used by any specific Collection Reader or
CAS Consumer to be used with the packaged analysis engine.

6.1.4.5. The INSTALLATION section

The <INSTALLATION> section specifies the external dependencies of the component and
the operations that should be performed during the PEAR package installation.

The component dependencies are specified in the <DELEGATE_COMPONENT> sub-
sections, as shown in the installation descriptor template above.

Important: The ID element should be the first element in each
<DELEGATE_COMPONENT> sub-section.

The <INSTALLATION> section may specify the following operations:

• Setting environment variables that are required to run the installed component.

This is also how you specify additional classpaths for a Java component - by
specifying the setting of an environmental variable named CLASSPATH. The
buildComponentClasspath method of the PackageBrowser class builds a classpath
string from what it finds in the CLASSPATH specification here, plus adds a
classpath entry for all Jars in the lib directory. Because of this, there is no need to

Packaging the PEAR structure into one file

100 PEAR Reference UIMA Version 2.3.0

specify Class Path entries for Jars in the lib directory, when using the Eclipse plugin
pear packager or the Maven Pear Packager.

When specifying the value of the CLASSPATH environment
variable, use the semicolon ";" as the separator character, regardless
of the target Operating System conventions. This delimiter will be
replaced with the right one for the Operating System during PEAR
installation.

If your component needs to set the UIMA datapath you must specify the necessary
datapath setting using an environment variable with the key uima.datapath. When
such a key is specified the getComponentDataPath method of the PackageBrowser
class will return the specified datapath settings for your component.

Warning: Do not put UIMA Framework Jars into the lib directory of
your PEAR; doing so will cause system failures due to class loading issues.

• Note that you can use “macros”, like $main_root or $component_id$root in the
VAR_VALUE element of the <PARAMETERS> sub-section.

• Finding and replacing string expressions in files.

• Note that you can use the “macros” in the FILE and REPLACE_WITH elements of
the <PARAMETERS> sub-section.

Important: the ACTION element always should be the 1st element in each <PROCESS>
sub-section.

By default, the PEAR Installer will try to process every file in the desc and conf directories
of the PEAR package in order to find the “macros” and replace them with actual path
expressions. In addition to this, the installer will process the files specified in the
<INSTALLATION> section.

Important: all XML files which are going to be processed should be created using UTF-8
or UTF-16 file encoding. All other text files which are going to be processed should be
created using the ASCII file encoding.

6.1.5. Packaging the PEAR structure into one file

The last step of the PEAR process is to simply zip the content of the PEAR root folder (not
including the root folder itself) to a PEAR file with the extension “.pear”.

To do this you can either use the PEAR packaging tools that are described in “Chapter 8,
PEAR Packager User's Guide in UIMA Tools Guide and Reference” or you can use the PEAR
packaging API that is shown below.

To use the PEAR packaging API you first have to create the necessary information for the
PEAR package:

../tools/tools.pdf#ugr.tools.pear.packager
../tools/tools.pdf#ugr.tools.pear.packager

Installing a PEAR package

UIMA Version 2.3.0 PEAR Reference 101

 //define PEAR data

 String componentID = "AnnotComponentID";

 String mainComponentDesc = "desc/mainComponentDescriptor.xml";

 String classpath ="$main_root/bin;";

 String datapath ="$main_root/resources;";

 String mainComponentRoot = "/home/user/develop/myAnnot";

 String targetDir = "/home/user/develop";

 Properties annotatorProperties = new Properties();

 annotatorProperties.setProperty("sysProperty1", "value1");

To create a complete PEAR package in one step call:

PackageCreator.generatePearPackage(

 componentID, mainComponentDesc, classpath, datapath,

 mainComponentRoot, targetDir, annotatorProperties);

The created PEAR package has the file name <componentID>.pear and is located in the
<targetDir>.

To create just the PEAR installation descriptor in the main component root directory call:

PackageCreator.createInstallDescriptor(componentID, mainComponentDesc,

 classpath, datapath, mainComponentRoot, annotatorProperties);

To package a PEAR file with an existing installation descriptor call:

PackageCreator.createPearPackage(componentID, mainComponentRoot,

 targetDir);

The created PEAR package has the file name <componentID>.pear and is located in the
<targetDir>.

6.2. Installing a PEAR package

The installation of a PEAR package can be done using the PEAR installer tool (see
Chapter 10, PEAR Installer User's Guide in UIMA Tools Guide and Reference, or by an
application using the PEAR APIs, directly.

During the PEAR installation the PEAR file is extracted to the installation directory and
the PEAR macros in the descriptors are updated with the corresponding path. At the end
of the installation the PEAR verification is called to check if the installed PEAR package
can be started successfully. The PEAR verification use the classpath, datapath and the
system property settings of the PEAR package to verify the PEAR content. Necessary Java
library path settings for native libararies, PATH variable settings or system environment
variables cannot be recognized automatically and the use must take care of that manually.

Note: By default the PEAR packages are not installed directly to the specified
installation directory. For each PEAR a subdirectory with the name of the PEAR's

../tools/tools.pdf#ugr.tools.pear.installer

Installing a PEAR file using the PEAR APIs

102 PEAR Reference UIMA Version 2.3.0

ID is created where the PEAR package is installed to. If the PEAR installation
directory already exists, the old content is automatically deleted before the new
content is installed.

6.2.1. Installing a PEAR file using the PEAR APIs

The example below shows how to use the PEAR APIs to install a PEAR package and
access the installed PEAR package data. For more details about the PackageBrowser API,
please refer to the Javadocs for the org.apache.uima.pear.tools package.

File installDir = new File("/home/user/uimaApp/installedPears");

File pearFile = new File("/home/user/uimaApp/testpear.pear");

boolean doVerification = true;

try {

 // install PEAR package

 PackageBrowser instPear = PackageInstaller.installPackage(

 installDir, pearFile, doVerification);

 // retrieve installed PEAR data

 // PEAR package classpath

 String classpath = instPear.buildComponentClassPath();

 // PEAR package datapath

 String datapath = instPear.getComponentDataPath();

 // PEAR package main component descriptor

 String mainComponentDescriptor = instPear

 .getInstallationDescriptor().getMainComponentDesc();

 // PEAR package component ID

 String mainComponentID = instPear

 .getInstallationDescriptor().getMainComponentId();

 // PEAR package pear descriptor

 String pearDescPath = instPear.getComponentPearDescPath();

 // print out settings

 System.out.println("PEAR package class path: " + classpath);

 System.out.println("PEAR package datapath: " + datapath);

 System.out.println("PEAR package mainComponentDescriptor: "

 + mainComponentDescriptor);

 System.out.println("PEAR package mainComponentID: "

 + mainComponentID);

 System.out.println("PEAR package specifier path: " + pearDescPath);

 } catch (PackageInstallerException ex) {

 // catch PackageInstallerException - PEAR installation failed

 ex.printStackTrace();

 System.out.println("PEAR installation failed");

 } catch (IOException ex) {

 ex.printStackTrace();

 System.out.println("Error retrieving installed PEAR settings");

 }

PEAR package descriptor

UIMA Version 2.3.0 PEAR Reference 103

To run a PEAR package after it was installed using the PEAR API see the example below.
It use the generated PEAR specifier that was automatically created during the PEAR
installation. For more details about the APIs please refer to the Javadocs.

File installDir = new File("/home/user/uimaApp/installedPears");

File pearFile = new File("/home/user/uimaApp/testpear.pear");

boolean doVerification = true;

try {

 // Install PEAR package

 PackageBrowser instPear = PackageInstaller.installPackage(

 installDir, pearFile, doVerification);

 // Create a default resouce manager

 ResourceManager rsrcMgr = UIMAFramework.newDefaultResourceManager();

 // Create analysis engine from the installed PEAR package using

 // the created PEAR specifier

 XMLInputSource in =

 new XMLInputSource(instPear.getComponentPearDescPath());

 ResourceSpecifier specifier =

 UIMAFramework.getXMLParser().parseResourceSpecifier(in);

 AnalysisEngine ae =

 UIMAFramework.produceAnalysisEngine(specifier, rsrcMgr, null);

 // Create a CAS with a sample document text

 CAS cas = ae.newCAS();

 cas.setDocumentText("Sample text to process");

 cas.setDocumentLanguage("en");

 // Process the sample document

 ae.process(cas);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

6.3. PEAR package descriptor
To run an installed PEAR package directly in the UIMA framework the pearSpecifier
XML descriptor can be used. Typically during the PEAR installation such an specifier is
automatically generated and contains all the necessary information to run the installed
PEAR package. Settings for system environment variables, system PATH settings or Java
library path settings cannot be recognized automatically and must be set manually when
the JVM is started.

Note: The PEAR may contain specifications for "environment variables" and
their settings. When such a PEAR is run directly in the UIMA framework, those
settings (except for Classpath and Data Path) are converted to Java System
properties, and set to the specified values. Java cannot set true environmental

PEAR package descriptor

104 PEAR Reference UIMA Version 2.3.0

variables; if such a setting is needed, the application would need to arrange to do
this prior to invoking Java.

The generated PEAR descriptor is located in the component root directory of the installed
PEAR package and has a filename like <componentID>_pear.xml.

The PEAR package descriptor looks like:

<?xml version="1.0" encoding="UTF-8"?>

<pearSpecifier xmlns="http://uima.apache.org/resourceSpecifier">

 <pearPath>/home/user/uimaApp/installedPears/testpear</pearPath>

</pearSpecifier>

The pearPath setting in the descriptor must point to the component root directory of the
installed PEAR package.

Note: It is not possible to share resources between PEAR Analysis Engines that
are instantiated using the PEAR descriptor. The PEAR runtime created for each
PEAR descriptor has its own specific ResourceManager (unless exactly the same
Classpath and Data Path are being used).

XMI CAS Serialization Reference 105

Chapter 7. XMI CAS Serialization Reference
This is the specification for the mapping of the UIMA CAS into the XMI
(XML Metadata Interchange1) format. XMI is an OMG standard for
expressing object graphs in XML. The UIMA SDK provides support for XMI
through the classes org.apache.uima.cas.impl.XmiCasSerializer and
org.apache.uima.cas.impl.XmiCasDeserializer.

7.1. XMI Tag
The outermost tag is <XMI> and must include a version number and XML namespace
attribute:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

 <!-- CAS Contents here -->

</xmi:XMI>

XML namespaces2 are used throughout. The “xmi” namespace prefix is used to identify
elements and attributes that are defined by the XMI specification. The XMI document
will also define one namespace prefix for each CAS namespace, as described in the next
section.

7.2. Feature Structures
UIMA Feature Structures are mapped to XML elements. The name of the element is
formed from the CAS type name, making use of XML namespaces as follows.

The CAS type namespace is converted to an XML namespace URI by the following rule:
replace all dots with slashes, prepend http:///, and append .ecore.

This mapping was chosen because it is the default mapping used by the Eclipse Modeling
Framework (EMF)3 to create namespace URIs from Java package names. The use of the
http scheme is a common convention, and does not imply any HTTP communication.
The .ecore suffix is due to the fact that the recommended type system definition for a
namespace is an ECore model, see Chapter 8, XMI and EMF Interoperability in UIMA
Tutorial and Developers' Guides.

Consider the CAS type name “org.myproj.Foo”. The CAS namespace (“org.myorg.”) is
converted to the XML namespace URI is http:///org/myproj.ecore.

The XML element name is then formed by concatenating the XML namespace prefix
(which is an arbitrary token, but typically we use the last component of the CAS
namespace) with the type name (excluding the namespace).

1 For details on XMI see Grose et al. Mastering XMI. Java Programming with XMI, XML, and UML. John Wiley & Sons, Inc. 2002.
2http://www.w3.org/TR/xml-names11/
3 For details on EMF and Ecore see Budinsky et al. Eclipse Modeling Framework 2.0. Addison-Wesley. 2006.

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.xmi_emf

Primitive Features

106 XMI CAS Serialization Reference UIMA Version 2.3.0

So the example “org.myproj.Foo” FeatureStructure is written to XMI as:

<xmi:XMI

 xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:myproj="http:///org/myproj.ecore">

 ...

 <myproj:Foo xmi:id="1"/>

 ...

</xmi:XMI>

The xmi:id attribute is only required if this object will be referred to from elsewhere in the
XMI document. If provided, the xmi:id must be unique for each feature.

All namespace prefixes (e.g. “myproj”) in this example must be bound to URIs using the
“xmlns...” attribute, as defined by the XML namespaces specification.

7.3. Primitive Features

CAS features of primitive types (String, Boolean, Byte, Short, Integer, Long , Float, or
Double) can be mapped either to XML attributes or XML elements. For example, a CAS
FeatureStructure of type org.myproj.Foo, with features:

begin = 14

end = 19

myFeature = "bar"

could be mapped to:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:myproj="http:///org/myproj.ecore">

 ...

 <myproj:Foo xmi:id="1" begin="14" end="19" myFeature="bar"/>

 ...

</xmi:XMI>

or equivalently:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:myproj="http:///org/myproj.ecore">

 ...

 <myproj:Foo xmi:id="1">

 <begin>14</begin>

 <end>19</end>

 <myFeature>bar</myFeature>

 </myproj:Foo>

 ...

</xmi:XMI>

Reference Features

UIMA Version 2.3.0 XMI CAS Serialization Reference 107

The attribute serialization is preferred for compactness, but either representation is
allowable. Mixing the two styles is allowed; some features can be represented as attributes
and others as elements.

7.4. Reference Features
CAS features that are references to other feature structures (excluding arrays and lists,
which are handled separately) are serialized as ID references.

If we add to the previous CAS example a feature structure of type org.myproj.Baz, with
feature “myFoo” that is a reference to the Foo object, the serialization would be:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:myproj="http:///org/myproj.ecore">

 ...

 <myproj:Foo xmi:id="1" begin="14" end="19" myFeature="bar"/>

 <myproj:Baz xmi:id="2" myFoo="1"/>

 ...

</xmi:XMI>

As with primitive-valued features, it is permitted to use an element rather than an
attribute. However, the syntax is slightly different:

<myproj:Baz xmi:id="2">

 <myFoo href="#1"/>

<myproj.Baz>

Note that in the attribute representation, a reference feature is indistinguishable from an
integer-valued feature, so the meaning cannot be determined without prior knowledge of
the type system. The element representation is unambiguous.

7.5. Array and List Features
For a CAS feature whose range type is one of the CAS array or list types, the XMI
serialization depends on the setting of the “multipleReferencesAllowed” attribute for that
feature in the UIMA Type System Description (see Section 2.3.3, “Features” [7]).

An array or list with multipleReferencesAllowed = false (the default) is serialized as a
“multi-valued” property in XMI. An array or list with multipleReferencesAllowed = true
is serialized as a first-class object. Details are described below.

7.5.1. Arrays and Lists as Multi-Valued Properties

In XMI, a multi-valued property is the most natural XMI representation for most cases.
Consider the example where the FeatureStructure of type org.myproj.Baz has a feature
myIntArray whose value is the integer array {2,4,6}. This can be mapped to:

<myproj:Baz xmi:id="3" myIntArray="2 4 6"/>

Arrays and Lists as First-Class Objects

108 XMI CAS Serialization Reference UIMA Version 2.3.0

or equivalently:

<myproj:Baz xmi:id="3">

 <myIntArray>2</myIntArray>

 <myIntArray>4</myIntArray>

 <myIntArray>6</myIntArray>

</myproj:Baz>

Note that String arrays whose elements contain embedded spaces MUST use the latter
mapping.

FSArray or FSList features are serialized in a similar way. For example an FSArray feature
that contains references to the elements with xmi:id's “13” and “42” could be serialized as:

<myproj:Baz xmi:id="3" myFsArray="13 42"/>

or:

<myproj:Baz xmi:id="3">

 <myFsArray href="#13"/>

 <myFsArray href="#42"/>

</myproj:Baz>

7.5.2. Arrays and Lists as First-Class Objects

The multi-valued-property representation described in the previous section does
not allow multiple references to an array or list object. Therefore, it cannot be used
for features that are defined to allow multiple references (i.e. features for which
multipleReferencesAllowed = true in the Type System Description).

When multipleReferencesAllowed is set to true, array and list features are serialized
as references, and the array or list objects are serialized as separate objects in the XMI.
Consider again the example where the FeatureStructure of type org.myproj.Baz has a
feature myIntArray whose value is the integer array {2,4,6}. If myIntArray is defined with
multipleReferencesAllowed=true, the serialization will be as follows:

<myproj:Baz xmi:id="3" myIntArray="4"/>

or:

<myproj:Baz xmi:id="3">

 <myIntArray href="#4"/>

</myproj:Baz>

with the array object serialized as

<cas:IntegerArray xmi:id="4" elements="2 4 6"/>

or:

Null Array/List Elements

UIMA Version 2.3.0 XMI CAS Serialization Reference 109

<cas:IntegerArray xmi:id="4">

 <elements>2</elements>

 <elements>4</elements>

 <elements>6</elements>

</cas:IntegerArray>

Note that in this case, the XML element name is formed from the CAS type name (e.g.
“uima.cas.IntegerArray”) in the same way as for other FeatureStructures. The elements
of the array are serialized either as a space-separated attribute named “elements” or as a
series of child elements named “elements”.

List nodes are just standard FeatureStructures with “head” and “tail” features, and are
serialized using the normal FeatureStructure serialization. For example, an IntegerList
with the values 2, 4, and 6 would be serialized as the four objects:

<cas:NonEmptyIntegerList xmi:id="10" head="2" tail="11"/>

<cas:NonEmptyIntegerList xmi:id="11" head="4" tail="12"/>

<cas:NonEmptyIntegerList xmi:id="12" head="6" tail="13"/>

<cas:EmptyIntegerList xmi:id"13"/>

This representation of arrays allows multiple references to an array of list. It also allows
a feature with range type TOP to refer to an array or list. However, it is a very unnatural
representation in XMI and does not support interoperability with other XMI-based
systems, so we instead recommend using the multi-valued-property representation
described in the previous section whenever it is possible.

7.5.3. Null Array/List Elements

In UIMA, an element of an FSArray or FSList may be null. In XMI, multi-valued
properties do not permit null values. As a workaround for this, we use a dummy instance
of the special type cas:NULL, which has xmi:id 0. For example, in the following example
the “myFsArray” feature refers to an FSArray whose second element is null:

<cas:NULL xmi:id="0"/>

<myproj:Baz xmi:id="3">

 <myFsArray href="#13"/>

 <myFsArray href="#0"/>

 <myFsArray href="#42"/>

</myproj:Baz>

7.6. Subjects of Analysis (Sofas) and Views

A UIMA CAS contain one or more subjects of analysis (Sofas). These are serialized no
differently from any other feature structure. For example:

<?xml version="1.0"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi=http://www.omg.org/XMI

Linking XMI docs to Ecore Type System

110 XMI CAS Serialization Reference UIMA Version 2.3.0

 xmlns:cas="http:///uima/cas.ecore">

 <cas:Sofa xmi:id="1" sofaNum="1"

 text="the quick brown fox jumps over the lazy dog."/>

</xmi:XMI>

Each Sofa defines a separate View. Feature Structures in the CAS can be members of
one or more views. (A Feature Structure that is a member of a view is indexed in its
IndexRepository, but that is an implementation detail.)

In the XMI serialization, views will be represented as first-class objects. Each View has
an (optional) “sofa” feature, which references a sofa, and multi-valued reference to the
members of the View. For example:

<cas:View sofa="1" members="3 7 21 39 61"/>

Here the integers 3, 7, 21, 39, and 61 refer to the xmi:id fields of the objects that are
members of this view.

7.7. Linking an XMI Document to its Ecore Type
System

If the CAS Type System has been saved to an Ecore file (as described in Chapter 8,
XMI and EMF Interoperability in UIMA Tutorial and Developers' Guides), it is possible to
store a link from an XMI document to that Ecore type system. This is done using an
xsi:schemaLocation attribute on the root XMI element.

The xsi:schemaLocation attribute is a space-separated list that represents a mapping
from namespace URI (e.g. http:///org/myproj.ecore) to the physical URI of the .ecore file
containing the type system for that namespace. For example:

xsi:schemaLocation=

 "http:///org/myproj.ecore file:/c:/typesystems/myproj.ecore"

would indicate that the definition for the org.myproj CAS types is contained in the file c:/
typesystems/myproj.ecore. You can specify a different mapping for each of your CAS
namespaces, using a space separated list. For details see Budinsky et al. Eclipse Modeling
Framework.

7.8. Delta CAS XMI Format
The Delta CAS XMI serialization format is designed primarily to reduce the overhead
serialization when calling annotators configured as services. Only Feature Structures and
Views that are new or modified by the service are serialized and returned by the service.

The classes org.apache.uima.cas.impl.XmiCasSerializer and
org.apache.uima.cas.impl.XmiCasDeserializer support serialization of only the

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.xmi_emf
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.xmi_emf

Delta CAS XMI Format

UIMA Version 2.3.0 XMI CAS Serialization Reference 111

modifications to the CAS. A caller is expected to set a marker to indicate the point from
which changes to the CAS are to be tracked.

A Delta CAS XMI document contains only the Feature Structures and Views that have
been added or modified. The new and modified Feature Structures are represented in
exactly the format as in a complete CAS serialization. The cas:View element has been
extended with three additional attributes to represent modifications to View membership.
These new attributes are added_members, deleted_members and reindexed_members.
For example:

<cas:View sofa="1" added_members="63 77" deleted_member="7 61" reindexed_members="39" />

Here the integers 63, 77 represent xmi:id fields of the objects that have been newly added
members to this View, 7 and 61 are xmi:id fields of the objects that have been removed
from this view and 39 is the xmi:id of an object to be reindexed in this view.

	UIMA References
	Table of Contents
	Chapter 1. Javadocs
	1.1. Using named Eclipse User Libraries

	Chapter 2. Component Descriptor Reference
	2.1. Notation
	2.2. Imports
	2.3. Type System Descriptors
	2.3.1. Imports
	2.3.2. Types
	2.3.3. Features
	2.3.4. String Subtypes

	2.4. Analysis Engine Descriptors
	2.4.1. Primitive Analysis Engine Descriptors
	2.4.1.1. Basic Structure
	2.4.1.2. Analysis Engine MetaData
	2.4.1.3. Configuration Parameter Declaration
	Example

	2.4.1.4. Configuration Parameter Settings
	Example

	2.4.1.5. Type System Definition
	2.4.1.6. Type Priority Definition
	2.4.1.7. Index Definition
	2.4.1.8. Capabilities
	2.4.1.9. OperationalProperties
	2.4.1.10. External Resource Dependencies
	2.4.1.11. Resource Manager Configuration
	2.4.1.12. Environment Variable References

	2.4.2. Aggregate Analysis Engine Descriptors
	2.4.2.1. Delegate Analysis Engine Specifiers
	2.4.2.2. FlowController
	2.4.2.3. FlowConstraints
	Fixed Flow
	Capability Language Flow

	2.4.2.4. Configuration Parameter Overrides
	2.4.2.5. External Resource Bindings
	2.4.2.6. Sofa Mappings

	2.5. Flow Controller Descriptors
	2.6. Collection Processing Component Descriptors
	2.6.1. Collection Reader Descriptors
	2.6.2. CAS Initializer Descriptors (deprecated)
	2.6.3. CAS Consumer Descriptors

	2.7. Service Client Descriptors
	2.8. Custom Resource Specifiers

	Chapter 3. Collection Processing Engine Descriptor Reference
	3.1. CPE Overview
	3.2. Notation
	3.3. Imports
	3.4. CPE Descriptor Overview
	3.5. Collection Reader
	3.5.1. Error handling for Collection Readers

	3.6. CAS Processors
	3.6.1. Specifying an Individual CAS Processor
	3.6.1.1. <descriptor> Element
	3.6.1.2. <configurationParameterSettings> Element
	3.6.1.3. <sofaNameMappings> Element
	3.6.1.4. <runInSeparateProcess> Element
	3.6.1.5. <deploymentParameters> Element
	3.6.1.6. <filter> Element
	3.6.1.7. <errorHandling> Element
	Retry action taken on a timeout

	3.6.1.8. <checkpoint> Element

	3.7. CPE Operational Parameters
	3.8. Resource Manager Configuration
	3.9. Example CPE Descriptor

	Chapter 4. CAS Reference
	4.1. Javadocs
	4.2. CAS Overview
	4.2.1. The Type System
	4.2.2. Creating, accessing and manipulating data
	4.2.3. Creating and using indexes

	4.3. Built-in CAS Types
	4.4. Accessing the type system
	4.4.1. TypeSystemPrinter example
	4.4.2. Using the CAS APIs to create and modify feature structures

	4.5. Creating feature structures
	4.6. Accessing or modifying features of feature structures
	4.7. Indexes and Iterators
	4.7.1. Built-in Indexes
	4.7.2. Adding Feature Structures to the Indexes
	4.7.3. Iterators
	4.7.4. Special iterators for Annotation types
	4.7.5. Constraints and Filtered iterators

	4.8. The CAS API's – a guide to the Javadocs
	4.8.1. APIs in the CAS package

	Chapter 5. JCas Reference
	5.1. Name Spaces
	5.2. XML description element
	5.3. Mapping built-in CAS types to Java types
	5.4. Augmenting the generated Java Code
	5.4.1. Persistence of additional data
	5.4.2. Keeping hand-coded augmentations when regenerating
	5.4.3. Additional Constructors
	5.4.3.1. Using readObject

	5.4.4. Modifying generated items

	5.5. Merging types
	5.5.1. Aggregate AEs and CPEs as sources of types
	5.5.2. JCasGen support for type merging
	5.5.3. Impact of Type Merging on Composability of Annotators
	5.5.4. Adding Features to DocumentAnnotation

	5.6. Using JCas within an Annotator
	5.6.1. Creating new instances using the Java “new” operator
	5.6.2. Getters and Setters
	5.6.3. Obtaining references to Indexes
	5.6.4. Adding (and removing) instances to (from) indexes
	5.6.5. Using Iterators
	5.6.6. Class Loaders in UIMA
	5.6.6.1. Use of Class Loaders is optional

	5.6.7. Issues accessing JCas objects outside of UIMA Engine Components

	5.7. Setting up Classpath for JCas
	5.8. PEAR isolation

	Chapter 6. PEAR Reference
	6.1. Packaging a UIMA component
	6.1.1. Creating the PEAR structure
	6.1.2. Populating the PEAR structure
	6.1.2.1. Standard Type
	6.1.2.2. Service Type
	6.1.2.3. Network Type

	6.1.3. Creating the installation descriptor
	6.1.4. Documented template for the installation descriptor:
	6.1.4.1. The SUBMITTED_COMPONENT section
	6.1.4.2. The ID, NAME, and DESC tags
	6.1.4.3. Tags related to deployment types
	Standard Type
	Service Type
	Network Type

	6.1.4.4. The Collection Reader and CAS Consumer tags
	6.1.4.5. The INSTALLATION section

	6.1.5. Packaging the PEAR structure into one file

	6.2. Installing a PEAR package
	6.2.1. Installing a PEAR file using the PEAR APIs

	6.3. PEAR package descriptor

	Chapter 7. XMI CAS Serialization Reference
	7.1. XMI Tag
	7.2. Feature Structures
	7.3. Primitive Features
	7.4. Reference Features
	7.5. Array and List Features
	7.5.1. Arrays and Lists as Multi-Valued Properties
	7.5.2. Arrays and Lists as First-Class Objects
	7.5.3. Null Array/List Elements

	7.6. Subjects of Analysis (Sofas) and Views
	7.7. Linking an XMI Document to its Ecore Type System
	7.8. Delta CAS XMI Format

