UIMA Tools Guide and Reference

Written and maintained by the Apache UIMA Development Community

Version 2.3.0-incubating

Copyright © 2004, 2006 International Business Machines Corporation
Copyright © 2006, 2010 The Apache Software Foundation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing incubation
at the Apache Software Foundation (ASF). Incubation is required of all newly accepted
projects until a further review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection of the completeness
or stability of the code, it does indicate that the project has yet to be fully endorsed by the
ASF.

License and Disclaimer. The ASF licenses this documentation to you under the

Apache License, Version 2.0 (the "License"); you may not use this documentation except

in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and
its contents are distributed under the License on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

Trademarks. All terms mentioned in the text that are known to be trademarks or
service marks have been appropriately capitalized. Use of such terms in this book should
not be regarded as affecting the validity of the the trademark or service mark.

Published January, 2010

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. CDE User's GUIAEccouiiiiiiiiiiiiiiiiiic e 1
1.1. Launching the Component Descriptor Editorc..ccoccoiiiiiii 1
1.2. Creating a New AE DeScriptorcoooiiiiiiiiiiiiii 1
1.3. Pages within the Editorccccoiiiiiiiii 4

1.3.1. Adjusting the display of pagescccccevviiiiiiiiiiiiiiiiiiiii, 4
1.4. OVerview Page ..ot 4
1.4.1. Implementation Detailscccoooiiiiiiiii 4
1.4.2. Runtime Informationcccccoiiiiiiiiiiiii 5
1.4.3. Overall Identification Informationccccoeciiiiiiiiiii e, 5
1.5. Aggregate Pagecccccooviiiiiiiiiiiii 5
1.5.1. Adding components more than onceccccceoeiiiiiiiiiii, 7
1.5.2. Adding or Removing components in a flowccccccoeviiiii, 8
1.5.3. Adding remote Analysis Enginesccccocoiiiiiiiiiiiiii, 8
1.5.4. Connecting to Remote Servicescccooviiiiiiiiiiiiinii, 9
1.5.5. Finding Analysis Engines by searchingccccccccoiviiiiiiiiinn. 10
1.5.6. Component Engine FIOWccccoiiiiiiiiiiiiiiiii 10
1.6. Parameters Definition Pagec.ccooviiiiiiiiiiiiiiic 11
1.6.1. USING ZTOUPS ..eeveiuiiiiiiiiiiiii e 13
1.6.2. Parameter declarations for Aggregatesccccoovvviiiiiiiiiiniiinnnnn. 15
1.7. Parameter Settings Pageccccoeiiiiiiiiiniiii 16
1.8. Type System Pageccccccooiiiiiiiiiiiiiiiiii 17
1.8.1. EXPOTItiNg ..ooooiiiiiiiiiiiiiiii e 22
1.9. Capabilities Pagec..ccocuiiiiiiiiiiiiiiii 22
1.9.1. Sofa (and view) name MapPPiNgsccceecvveeeriiuiiieiiiiiieeeiiiiee e 25
1.10. IndeXeS Paecovviiiiiiiiiiiiiiiiiiiii 27
1.11. Resources Pageccccvvviiiiiiiiiiiiiiiiiiieee 30
1111 Binding .oooovveiiiiiiiiicic 32
1.11.2. Resources with Aggregatesccccceiiiiiiiiiiiiiiiii, 33
1.11.3. Imports and EXPOItScooiiiiiiiiiiiiiiiiiiiiii 33
1.12. Source Pageccocvviiiiiiiiiiiiii 33
1.12.1. Source formatting — indentationccccccoovviiiiiiiii 34
1.13. Creating a Self-Contained Type Systemccccccuviiiiiiiiiiiiiiiiiiii, 34
1.14. Creating Other Descriptor Componentsccceovviiiiiieiiiiiiiiciiieceees 36

2. CPE Configurator User's GUidecccoovviiiiiiiiiiiiiiicccc 37
2.1. Limitations of the CPE Configuratorccccoooiiiiiiiiiiiiiiiiiiiicie 37
2.2. Starting the CPE Configuratorcccccoeiiiiiiiiiiiiiiiiiiic 37
2.3. Selecting Component Descriptorscocviiiiiiiiiiiiiiiiiiiiiiccici 38
2.4. Running a Collection Processing Enginec...cccooviiiiiiiiiiiiiiiii, 39
2.5. The File MeNUccccooouiiiiiiiiiiiiiiii i 39
2.6. The Help MeNUcooocuviiiiiiiiiiiiiiiiiiiiiiiiiii e 40

3. Document Analyzer User's GUIAecccoeiiiiiiiiiiiiiiiiiiiiiiiieeee s 41
3.1. Starting the Document Analyzerccccccoiviiiiiiiiiiii s 41
3.2. Running an AEcccccoiiii 41

UIMA Tools Guide and Reference iii

UIMA Tools Guide and Reference

3.3. Viewing the Analysis Resultscccccccoiiiiiiiiii 42

3.4. Configuring the Annotation VIewercccccciiiiiiiiiiiiii, 44

3.5. Interactive Modeccccoiiiiiiiiiiiiiiii 45

3.6. VIEW MOdeoooiiiiiiiiiiiiiiiiiii 45

4. Annotation VIEWETcccceiiiiiiiiiiiiiiiiiiiii 47
5. CAS Visual Debuggercccciiiiiiiiiiiiiiiiic 49
5.1, INtroductionccooiiiiiiiiiiiii 49
5.1.1. Running CVDcooiiiiiiiii 49

5.1.2. Command line parametersccccoevuiriiiiiiiiiiiiiiiiiicc 50

5.2. Error Handlingcccocciiiiiiiiiiiiiii 50

5.3. Preferences Filecccccoooiiiiiiiiiiiiii 51

5.4. The MENUScooiiiiiiiiiiiiiiii i 51
5.4.1. The File MenuUccccccoiiiiiiiiiiiiiiiiiiiii 51

5.4.2. The Edit Menucccoiiiiiiiiiiiiiiiii 54

5.4.3. The Run Menuccocciiiiiiiiiiiiiiiii 54

5.4.4. The tools MENUcooiiiiiiiiiiiii 55

5.5. The Main Display Areacccooouviiiiiiiiiiiiiiiiiii 57
5.5.1. The Status Barcccccoviiiiiiiiiii 59

5.5.2. Keyboard Navigation and Shortcutscccccoiiiiiiiiiiii, 60

6. Cas Editor User's GUIdeccccoeiiiiiiiiiiiiiiiiiiiii 61
6.1. INtroductioncccooiiiiiiiiiiii 61

6.2. PTOJECtS .oooiii 61
6.2.1. Cas Editor Project structurecccccooviiiiiiiiiiiiiiii 61

6.2.2. Add a type Systemcccooviiiiiiiiii 62

6.2.3. Add corpus folderc.ccooviiiiiiiiiii 63

6.3. Annotation editorccccciiiiiiiiiiiii 63
6.3.1. EdItOT ..oooiiiiiiiiicic 63

6.3.2. OUtline VIEWccciiiiiiiiiiiiiiiiii 64

6.3.3. Edit VIEWS ...oooiiiiiiiiiii 65

6.3.4. FeatureStructure Viewcccooiiiiiiiiiiiiii 65

6.4. Cas processor integrationccoccuvviiiiiiiiiiiiiii 66

7. JCaSGEN USEI'S GUIAE ...covvuniiiiiiieiiiiie e et e et e e e e et e e e e ate e e eaa e e s saaeneeeeasanaeeenes 67
7.1. Running stand-alone without Eclipseccccccciiiiiiiiii, 68

7.2. Running stand-alone with Eclipsecccccccoiiiiiiiiiiis 68

7.3. Running within Eclipsecccccccciiiiiiiii 69

8. PEAR Packager User's GUideccccceiiiiiiiiiiiiiiiiiiiiiicc e 71
8.1. Using the PEAR Eclipse Plugincccccooviiiiiiiiiiiiiiicc 71
8.1.1. Add UIMA Nature to your projectcccccoeviiiiiiiiiiiiniiniiiiciiiecen 71

8.1.2. Using the PEAR Generation Wizardc..ccoccoiiiiiiiiiiiiii, 73

8.2. Using the PEAR command line packagercccccooviiiiiiiiiiiiiiniiinn, 77

9. The PEAR Packaging Maven Pluginccccoviiiiiiiiiii, 79
9.1. Specifying the PEAR Packaging Maven Plugincccccoviiiiiiiiiiiininns 79

9.2. Automatically including dependenciescccccccovvnviiiiiiiiiii, 81

9.3. Installing The PEAR Packaging PIuginccccccovvviiiiiiiiiiiiiniin, 82

9.4. Running from the command linecccooii 83

iv UIMA Tools Guide and Reference UIMA Version 2.3.0

UIMA Tools Guide and Reference

9.5. Building the PEAR Packaging Plugin From Sourcecccccccoiviiiiininn 83
10. PEAR Installer User's GUidec..ccccviiiiiiiiiiiiiiiiiccccc 85
11. PEAR Merger User's Guidecccciiiiiiiiiiiiiiiiiiiiiiic e 87
11.1. Details of the merging processcccccovviiiiiiiiiiiiiiici e 87
11.2. Testing and Modifying the resulting PEARccccooiiiiiiii 88

11.3. Restrictions and Limitations

UIMA Version 2.3.0 UIMA Tools Guide and Reference v

Chapter 1. Component Descriptor Editor
User's Guide

The Component Descriptor Editor is an Eclipse plug-in that provides a forms-based
interface for creating and editing UIMA XML descriptors. It supports most of the
descriptor formats, except the Collection Processing Engine descriptor, the PEAR package
descriptor and some remote deployment descriptors.

1.1. Launching the Component Descriptor Editor

Here's how to launch this tool on a descriptor contained in the examples. This presumes
you have installed the examples as described in the SDK Installation and Setup chapter.
* Expand the uimaj-examples project in the Eclipse Navigator or Package Explorer
view
¢ Within this project, browse to the file descriptors/tutorial/ex1/
RoomNumberAnnotator.xml.

* Right-click on this file and select Open With - Component Descriptor Editor. (If
this option is not present, check to make sure you installed the plug-ins as described
Section 3.1, “Installation” in UIMA Overview & SDK Setup. The EMF plugin is also
required.).

¢ This should open a graphical editor and display the contents of the
RoomNumberAnnotator descriptor.

1.2. Creating a New AE Descriptor

A new AE descriptor file may be created by selecting the File —~ New - Other... menu.
This brings up the following dialog:

CDE User's Guide 1

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.installation

Creating a New AE Descriptor

= New =
Select a wizard

Wizards:

- UIMA |~
B Analysis Engine Descriptor File
b % Type System Descriptor File
-z Callection Processing Components
B cas Consumer Descriptor File
& cas Initializer Descriptor File
e @’ Collection Reader Descriptor File
== Importable Parts
@’ External Resource and Bindings (Resource Manager Configuration) Descriptor File
%’ Flow Controller Descriptor File
Index Collection Descriptor File
Type Priorities Descriptor File F"}

{_I i "ll

= Back Mext = Firish I Cancel |

If the user then selects UIMA and Analysis Engine Descriptor File, and clicks the
Next > button, the following dialog is displayed. We will cover creating other kinds of
components later in the documentation.

B New Analysis Engine Descriptor File &

Analysis Engine (AE) Descriptor File
Create a new AE Descriptar File

Farent Folder:]test Browse... I

File name:]ae Descriptorml

« Back et l Finish I Cancel J

After entering the appropriate parent folder and file name, and clicking Finish, an initial
AE descriptor file is created with the given name, and the descriptor is opened up within
the Component Descriptor Editor.

CDE User's Guide UIMA Version 2.3.0

Creating a New AE Descriptor

At this point, the display inside the Component Descriptor Editor is the same whether
one started by creating a new AE descriptor, as in the preceding paragraph, or one merely
opened a previously created AE descriptor from, say, the Package Explorer view. We show
a previously created AE in the figure below:

2 RegExAnnotator.xml 2 = m
|RegExAnnotator, xmi

Overview

ol
wum

Implementation Language € C/C++ & Java
Engine Type & Primitve O Aggregate

+ Runtime Information

This section describes information abDL.I-t.HCI'A' to run this component
updates the CAS

multiple deployment allowed

D returns new artifacts

Mame of the Java dass file com.ibm.uima.examples. cas. RegExAnnotator

+ Owerall Identification Information

This section specifies the basic identification infarmation for this descriptor
Mame RegEx Annotator

Version

Vendar

Description: | Matches regular expressions in document text,

Gverview_. Agagregate Parameters [Parameter Settings Type System Capa.I:;i.Ii.ﬁes Inn::lexes [Resources Source

To see all the information shown in the main editor pane with less scrolling, double click
the title tab to toggle between the “full screen” and normal views.

It is possible to set the Component Descriptor Editor as the default editor for all .xml files

by going to Window - Preferences, and then selecting File Associations on the left, and
*xml on the right, and finally by clicking on Component Descriptor Editor, the Default
button and then OK. If AE and Type System descriptors are not the primary .xml files you
work with within the Eclipse environment, we recommend not setting the Component
Descriptor Editor as your default editor for all .xml files. To open an .xml file using the
Component Descriptor Editor, if the Component Descriptor Editor is not set as your
default editor, right click on the file in the Package Explorer, or other navigational view,

and select Open With — Component Descriptor Editor. This choice is remembered by
Eclipse for subsequent open operations.

UIMA Version 2.3.0 CDE User's Guide 3

Pages within the Editor

1.3. Pages within the Editor

The Component Descriptor Editor follows a standard Eclipse paradigm for these kinds
of editors. There are several pages in the editor; each one can be selected, one at a time,
by clicking on the bottom tabs. The last page contains the actual XML source file being
edited, and is displayed as plain text.

The same set of tabs appear at the bottom of each page in the Component Descriptor
Editor. The Component Descriptor Editor uses this “multi-page editor” paradigm to give
the user a view of conceptually distinct portions of the Descriptor metadata in separate
pages. At any point in time the user may click on the Source tab to view the actual

XML source. The Component Descriptor Editor is, in a way, just a fancy GUI for editing
the XML. The tabs provide quick access to the following pages: Overview, Aggregate,
Parameters, Parameter Settings, Type System, Capabilities, Indexes, Resources, and
Source. We discuss each of these pages in turn.

1.3.1. Adjusting the display of pages

Most pages in the editor have a “sash” bar. This is a light gray bar which separates sub-
sections of the page. This bar can be dragged with the mouse to adjust how the display
area is split between the two sash panes. You can also change the orientation of the Sash so
it splits vertically, instead of horizontally, by clicking on the small icons at the top right of
the page that look like this:

im E
o - N
e

All of the sections on a page have subtitles, with an indicator to the left which you can
click to collapse or expand that particular section. Collapsing sections can sometimes be
useful to free up screen area for other sections.

1.4. Overview Page

Normally, the first page displayed in the Component Descriptor Editor is the Overview
page (the name of the page is shown in the GUI panel at the top left). If there is an
error reading and parsing the source, the Source page is shown instead, giving you the
opportunity to correct the problem. For many components, the Overview page contains
three sections: Implementation Details, Runtime Information and overall Identification
Information.

1.4.1. Implementation Details

In the Implementation Details section you specify the Implementation Language and
Engine Type. There are two kinds of Engines: Aggregate, and non-Aggregate (also called
Primitive). An Aggregate engine is one which is composed of additional component

4 CDE User's Guide UIMA Version 2.3.0

Runtime Information

engines and contains no code, itself. Several of the pages in the Component Descriptor
Editor have different formats, depending on the engine type.

1.4.2.

Runtime Information

Runtime information is only applicable for primitive engines and is disabled for
aggregates and other kinds of descriptors. This is where you specify the class name of

the annotator implementation, if you are doing a Java implementation, or the C++ shared
object or dll name, if you are doing a C++ implementation. Most Analysis Engines will
specify that they update the CAS, and that they may be replicated (for performance
reasons) when deployed. If a particular Analysis Engine must see every CAS (for instance,
if it is counting the number of CASes), then uncheck the “multiple deployment allowed”
box. If the Analysis Engine doesn't update the CAS, uncheck the “updates the CAS” box.
(Most CAS Consumers do not update the CAS, and this parameter defaults to unchecked
for new CAS Consumer descriptors).

Analysis engines are written using the CAS Multiplier APIs (see Chapter 7, CAS Multiplier
Developer’s Guide in UIMA Tutorial and Developers” Guides) can create additional CASes for
analysis. To specify that they do this, check the “returns new artifacts”.

1.4.3. Overall Identification Information

The Name should be a human-readable name that describes this component. The Version,
Vendor, and Description fields are optional, and are arbitrary strings.

1.5. Aggregate Page

For primitive Analysis Engines, Flow Controllers or Collection Processing components,
the Aggregate page is not used. For aggregate engines, the page looks like this:
& NamesandperscriTities TAE. sl 51
MamesAndPersoriTites_TAE.xmi
Aggregate Delegates and Flows

! Component Engines * Component Engine Flow
Thee folowing engines are incudsd in this aggregats. Choose a fow type and describe the execution order of
YOUr ENgines.
Delegate | Key Neme | The table shows the delegates usng ther kay namas.
if-l;"cfmﬂTl‘Jeﬁ-mtal:Df_'-"'-tifm-'\lnrn:s&ﬂ','.:-:'nl PersonTiteAnnotator Elovw Mind: Fived Flow —

!f:‘-linrale!me-:mm _RegEx_TAE . xml NameR ecogrirer

[T resmerecogrizer
[PersonTiteAnnotator

i]
ge [

[t] [Ferevr]

Overview | Agoregate | Parameters Parameter Settings Type System | Capabiities | Indexes | Resources | Source

On the left we see a list of component engines, and on the right information about the
flow. If you hover the mouse over an item in the list of component engines, that engine's

UIMA Version 2.3.0 CDE User's Guide 5

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cm

Aggregate Page

description meta data will be shown. If you right-click on one of these items, you get an
option to open that delegate descriptor in another editor instance. Any changes you make,
however, won't be seen until you close and reopen the editor on the importing file.

Engines can be added to the list on the left by clicking the Add button at the bottom of the
Component Engine section. This brings up one of the following two dialogs:

Select one or more component engines from the workspace:

- examples ~
.Classpath i |
project

bin

data

deploy

descriptors
MixedAggregate. xml
analysis_engine
Cas_consumer
cas_multiplier

F-[

+

[s

rallartinn Ararcccinaanninas

2 2]
OR

[Eirn'.r-.'se the file system...

) Import by Name
@ Import By Location

Add selected AEs to end of flow

Cancel

This dialog lets you select a descriptor from your workspace, or browse the file system to
select a descriptor.

Or, if you have selected to import by name, this dialog is shown:

CDE User's Guide UIMA Version 2.3.0

Adding components more than once

Select one or more component engines from the workspace:

by-name xml resource source of by-name resource [
MixedAggregate. xml C:\a\Edipse\3. 3apache\examples\descriptors
analysis_engine/GovernmentOfficalRecognizer_RegEx_TAE.xml C:\a'\Edipse\3. 3\apacheexamples \descriptors
analysis_engine MamesAndGovernmentOffidals_TAE.xml C:\a\Edipse\3. 3apache\examples\descriptors
analysis_engine/MamesAndPersonTites_TAE., xml C:\a'\Edipse\3. 3\apacheexamples \descriptors
analysis_engine PersonTitleAnnatator. xml C:\a\Edipse\3. 3apache\examples\descriptors
analysis_enginePersonTiteAnnotator_WithinNamesOnly, xml C:\a'\Edipse\3. 3\apacheexamples \descriptors
analysis_engine RegExAnnotator.xml C:\a\Edipse\3. 3apache\examples\descriptors
analysis_engine,/SimpleEmailRecognizer_RegEx_TAE. xml C:\a'\Edipse\3. 3\apacheexamples \descriptors
armzlucic ammina Tirmnlahblzmal armanizor DanBy TAE wml T2l Aineal? Fanarhalovamnlacidacrrintare .v.

4 ¥
OR

(=) Impart by Name
O Import By Location

Add selected AEs to end of flow

Cancel

You can specify that the import should be by Name (the name is looked up using

both the Project's class path, and DataPath), or by location. If it is by name, the dialog
shows the available xml files on the class path, to pick from. If the one you want isn't
showing, this means it isn't on the enclosing Eclipse Java Project's classpath, nor on the
datapath, and one of those needs to be updated to include the path to the resource. If

the name picked is conf conpany/ prod/ xyz. xm , the name in the descriptor will be

“com conpany. prod. xyz”. The "Browse the file system..." button is disabled when import
by name is checked, because the file system is not the source of the imports - rather, its the
resources on the classpath or datapath that are.

If it is by location, the file reference is converted to a relative reference if possible, in the
descriptor.

The final selection at the bottom tells whether or not the selected engine(s) should
automatically be added to the end of the flow section (the right section on the Aggregate
page). The OK button does not become activated until a descriptor file is selected.

To remove an analysis engine from the component engine list simply select an engine and
click the Remove button, or press the delete key. If the engine is already in the flow list
you will be warned that deletion will also delete the specified engine from this list.

1.5.1. Adding components more than once

Components may be added to the left panel more than once. Each of these components
will be given a key which is unique. A typical reason this might be done is to use a
component in a flow several times, but have each use be associated with different
configuration parameters (different configuration parameters can be associated with each
instance).

UIMA Version 2.3.0 CDE User's Guide 7

Adding or Removing components in a flow

1.5.2. Adding or Removing components in a flow

The button in-between the Component Engines and the Flow List, labeled >>, adds a
chosen engine to the flow list and the button labeled << removes an engine from the flow
list. To add an engine to the flow list you must first select an engine from the left hand list,
and then press the >> button. Engines may appear any number of times in the flow list. To
remove an engine from the flow list, select an engine from the right hand list and press the
<< button.

1.5.3. Adding remote Analysis Engines

There are two ways to add remote engines: add an existing descriptor, which specifies

a remote engine (just as if you were adding a non-remote engine) or use the Add

Remote button which will create a remote descriptor, save it, and then import it, all in

one operation. The Add Remote button enables you to easily specify the information
needed to create a Service Client descriptor for a remote AE - one that runs on a different
computer connected over the network. The Service Client descriptor is described in
Section 2.7, “Service Client Descriptors” in UIMA References. The Add Remote button
creates this descriptor, saves it as a file in the workspace, and imports it into the aggregate.

Of course, if you already have a Service Client descriptor, you can add it to the set of
delegates, just like adding other kinds of analysis engines.

After clicking on Add Remote, the following dialog is displayed:

8 CDE User's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.component_descriptor.service_client

Connecting to Remote Services

Fill in the information about the remote service and press OK
Service kind: Analysis Engine or Cas Consumer:

| AnalysisEngine -
Protocol Service Type:

[vina =
LRI

|
Key (a short mnemonic for this service):
|
Where the generated remate desariptor file wil be stored:
C:fafEdipee 3. 1. 2/15_runtimetest descriptors fanalysis_engine . xmi

Timeout, in miliseconds. This is ignored for the Vind protocol, Specify O to wait forever. If not spedfied, a default tmeout is used.

—

For the Vind protocol, you can optionally spedfy the Host/Port for the Vind Name Service
VNS HOST |
VNS PORT |

[¥ Add to end of flow

(" Import by Mame
¥ Import By Location

| i]c:mcer[

To define a remote service you specify the Service Kind, Protocol Service Type, URI and
Key. You can also specify a Timeout in milliseconds, used by the SOAP service, and a VNS
Host and Port used by the Vinci Service. Just like when one adds an engine from the file
system, you have the option of adding the engine to the end of the flow. The Component
Descriptor Editor currently only supports Vinci and SOAP services using this dialog.

Remote engines are added to the descriptor using the <import ... > syntax. The information
you specify here is saved in the Eclipse project as a file, using a generated name, <key-
name>.xml, where <key-name> is the name you listed as the Key. Because of this, the key-
name must be a valid file name. If you want a different name, you can change the path
information in the dialog box.

1.5.4. Connecting to Remote Services

If you are using the Vinci protocol, it requires that you specify the location of the Vinci
Name Server (an IP address and a Port number). You can specify these in the service
descriptor, or globally, for your Eclipse workspace, using the Eclipse menu item: Window

— Preferences... -~ UIMA Preferences. If the remote service is available (up and running),

UIMA Version 2.3.0 CDE User's Guide 9

Finding Analysis Engines by searching

additional operations become possible. For instance, hovering the mouse over the remote
descriptor will show the description metadata from the remote service.

1.5.5. Finding Analysis Engines by searching

The next button that appears between the component engine list and the flow list is the
Find AE button. When this button is pressed the following dialog is displayed, which
allows one to search for AEs by name, by input or output types, or by a combination of
these criteria. This function searches the existing Eclipse workspace for matching *.xml
descriptor source files; it does not look inside Jar files.

pe o

—IFind an Analysis Engine (AE), CAS Consumer, or Remote Service Descriptor %

Specify @ name pattern and/or additional constraints, and then push the Search button

Descriptor file name pattern {e.g. ab®cde):

|

Descriptor must specify the input type:

Descriptor must specify the output type:

|

Loak in:

] Al projects -

Search |

The search automatically adds a “match any characters” - style (*) wildcard at the
beginning and end of anything entered. Thus, if person is specified for an output

type, a “*person*” search is performed. Such a search would match such things as
“my.namespace.person” and “person.governmentOfficial.” One can search in all projects
or one particular project. The search does an implicit and on all fields which are left non-
blank.

1.5.6. Component Engine Flow

The UIMA SDK currently supports three kinds of sequencing flows: Fixed,
CapabilityLanguageFlow (see the section called “Capability Language Flow” in UIMA
References), and user-defined. The first two require specification of a linear flow sequence;
this linear flow sequence can also be read by a user-defined flow controller (what use is
made of it is up to the user-defined flow controller). The Component Engine Flow section
allows specification of these items.

The pull-down labeled Flow Kind picks between the three flow models. When the user-
defined flow is selected, the Browse and Search buttons become enabled to let you pick
the flow controller XML descriptor to import.

10

CDE User's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.aggregate.flow_constraints.capability_language_flow

Parameters Definition Page

+ Component Engine Flow

Choose a flow type and describe the execution order of your engines.
The table shows the delegates using their key names.,

Flaw Kind: | User-defined Flow ||
Flow Controller: |, fflow_controller \hiteboardFlowCantroller. xml
Key Mame: WhiteboardFlowController
B MameRecognizer I:l
ﬁPersun‘l’lﬂe.ﬁ.nnntator -

The key name value is set automatically from the XML descriptor being imported, and
enables parameters to be overridden for that descriptor (see following sections).

The Up and Down buttons to the right in the Flow section are activated when an engine
in the flow is selected. The Up button moves the selected engine up one place in the
execution order, and down moves the selected engine down one place in the execution
order. Remember that engines can appear multiple times in the flow (or not at all).

1.6. Parameters Definition Page

There are two pages for parameters: the first one is where parameters are defined, and the
second one is where the parameter settings are configured. The first page is the Parameter
Definition page and has two alternatives, depending on whether or not the descriptor is
an Aggregate or not. We start with a description of parameter definitions for Primitive
engines, CAS Consumers, Collection Readers, CAS Initializers, and Flow Controllers.
Here is an example:

UIMA Version 2.3.0 CDE User's Guide 11

Parameters Definition Page

@Gnvemmerﬁ@f‘ficialHeu:u:ugnizer_ﬂeg Ex_TAExml &5 ™ B

[E==

Configuration Parameters

This section shows all configuration parameters defined far this engine.
[Use Parameter Groups

[=|- zMot in any group: d
Multi Opt String MName: Pattems
Muli Opt String Name: Typehames
Muli Opt String Name: ContainingAnnotation Types
Single Opt Boolean MName: Annotate ErtireContainingAnnotation

Remaove

Mot Used

Owerview | Aggregate | Parameters | Paramet.... | Type Sy... | Capabil... | Indexes | Resources | Source |

The first checkbox at the top simplifies things if you are not using Parameter Groups

(see the following section for a discussion of groups). In this case, leave the check box
unchecked. The main area shows a list of parameter definitions. Each parameter has a
name, which must be unique for this Analysis Engine. The other three attributes specify
whether the parameter can have a single or multiple values (an array of values), whether
it is Optional or Mandatory, and what the value type it can hold (String, Integer, Float, and
Boolean).

In addition to using the buttons on the right to edit this information, you can double-click
a parameter to edit it, or remove (delete) a selected parameter by pressing the delete key.
Use the Add button to add a new parameter to the list.

Parameters have an additional description field, which you can specify when you add or
edit a parameter. To see the value of the description, hover the mouse over the item, as
shown in the picture below:

CDE User's Guide UIMA Version 2.3.0

Using groups

2 GovemmertOfficialRecognizer RegBx TAE xmil &2 &

[EEs

ek

.....

.....

Thiz section shows all corfiguration parameters defined far this engine.
[Use Parameter Groups

= Mot in amy group =
Mutti Opt String Mame: Pattems
Mutti Opt String Mame: TypeMames
Mutti Opt String Mame: ContainingAnnatation Types

Sif Mames of CAS Types to create far the pattems found. The indexes of Edit
this amay comespond to the indexes of the Pattems or PattemFiles
amays. f a match iz found for Pattems]i], it will result in an

_|annotation of type TypeNames[].

Add

Mot U

Dhwerview 5 Agaregate '.F.'E.narngt,ars:; Paramet. .. Type Sy... Capabil... | Indexes : Resources | >>1

1.6.1. Using groups

The group concept for parameters arose from the observation that sets of parameters
were sometimes associated with different configuration needs. As an example, you might
have an Analysis Engine which needed different configuration based on the language of a
document.

To use groups, you check the “Use Parameter Groups” box. When you do this, you get
the ability to add groups, and to define parameters within these groups. You also get a
capability to define “Common” parameters, which are parameters which are defined for
all groups. Here is a screen shot showing some parameter groups in use:

UIMA Version 2.3.0 CDE User's Guide 13

Using groups

| Bf GovemmentOfficialRecognizer RegBx TAExml &2 | B “aeconfigurstionaml &2 B

Configuration Parameters

This section shows all corfiguration parameters defined for this engine.
sz Parameter Groups

Default Group | |
SearnchStrateqy |r‘-|'3'|'lE -
: <Mot in any group:s Add
= =Cammon:
Single Req Integer Mame: myMNewFam2 AddGroup
Multi Req Boolean Mame:x
= GROUP Mames: myMNewGroup Edit
Multi Opt Float MName: 57
—- GROUP Mames: myNewGroup2 mg3 Remove

Single Opt Integer MName: parameterinGroup2
| Overview -;’-‘nggregate | Parameters | Paramet... | -'i?,-rpe .53,.'___ [Capabil_._ Indexes | 5’}-_;;-,

You can see the “<Common>" parameters as well as two different sets of groups.

The Default Group is an optional specification of what Group to use if the parameter is
not available for the group requested.

The Search strategy specifies what to do when a parameter is not available for the
group requested. It can have the values of None, language_fallback, or default_fallback.
These are more fully described in the section Section 2.4.1.3, “Configuration Parameter
Declaration” in UIMA References .

Groups are added using the Add Group button. Once added, they can be edited or
removed, using the buttons to the right, or the standard gestures for editing (double-
clicking the item) and removing (pressing the delete key after an item is selected).
Removing a group removes all the parameter definitions in the group. If you try and
remove the “<Common>" group, it just removes the parameters in the group.

Each entry for a group in the table specifies one or more group names. For example,
the highlighted entry above, specifies two groups: “myNewGroup2” and “mg3”. The
parameter definition underneath is considered to be in both groups.

14

CDE User's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.configuration_parameter_declaration
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.configuration_parameter_declaration

Parameter declarations for Aggregates

1.6.2. Parameter declarations for Aggregates

Aggregates declare parameters which always must override a parameter setting for a
component making up the aggregate. They do this using the version of this page which is
shown when the descriptor is an Aggregate; here's an example:

[Nomes ndGavemmentOficidls_TAExm ©

Configuration Parameters Debegate Component Parameters
This saction shows 8l corfiguration parameters defined for this engine Thiz saction shows o delegate componerts by their Kay names, and what
= wﬂg:‘.*e.‘ham
Dioubde-chcic & panmater or & group £ you want bo specify cvemdes Tor thess
Defat Growp | || parameters in this aggregate: this wil add & defaut Configuration Parsmeter in
SaarchStralegy !w_rahﬂ :I' this Aggregate for thal pararster, and sed the cvemdes
= Delegate Kay Name: GovemmertDECalRecogniner
=1 Mot in any group> I:l = <Hat in 2y proups
= Multi Opt Sing Name: Patters Muli COpt Steing Name: Paitens
Crommdas: GovemmantOfficisl Recogrizer Pattams I:l Mubi Ot Stng Hame: Typeblames
= MUl Opt Sng Name: Typehiames Muki Cpt Steng Mame: Contaning Anncaation Types
w'}-‘b‘rﬂﬁ hameRacogrizer Typshiamas I:l Single Opt Boclean Mame ArnctsteErareCortanng Srnolaton
< culi = Dwlagate Key Hama: MamaHecogrizer
= <ot in 2y group>
Muki Opi Sing Name: Paitens
(Wl Cet Sting Mame: Typatlames|
Mo Cpt SL—rv; Mame :artmﬁwm'fw-:s
Sngie Opt Boolean MName: Arnotate EntreContaning Annotation
Z 31] Craata Cvamda | [Craate ron-shared Ovemds

Chverview Aggregate | Parsmaters | Farameter Settings | Type System | Capebities | Indexes | Fesources | Source |

There is an additional panel shown (on the right) which lists all of the components by
their key names, and shows for each of them their defined parameters. To add a new
override for one or more of these parameters to the aggregate, select the component
parameter you wish to override and push the Create Override button (or, you can just
double-click the component parameter). This will automatically add a parameter of the
same name (by default — you can change the name if you like) to the aggregate, putting it
into the same group(s) (if groups are being used in the component — this is required), and
setting the properties of the parameter to match those of the component (this is required).

Note: If the name of the parameter being added already is in use in the
aggregate, and the parameters are not compatible, a new parameter name is
generated by suffixing the name with a number. If the parameters are compatible,
the selected component parameter is added to the existing aggregate parameter,
as an additional override. If you don't want this behavior, but want to have a new
name generated in this case, push the Create non-shared Override button instead,
or hold down the “shift” key when double clicking the component parameter.

In the above example, the user has just double-clicked the “TypeNames” parameter in the
“NameRecognizer” component. This added that parameter to this aggregate under the
“<Not in any group>" section — since it wasn't part of a group.

Once you have added a parameter definition to the aggregate, you can use the buttons
on the right side of the left panel to add additional overrides or remove parameters or

UIMA Version 2.3.0 CDE User's Guide 15

Parameter Settings Page

their overrides. You can also remove groups; removing a group is like removing all the
parameter definitions in the group.

In addition to adding one parameter at a time from a component, you can also add all the
parameters for a group within a component, or all the parameters in the component, by
selecting those items.

If you double-click (or push Create Override) the “<Common>" group or a parameter
in the <Common> group in a component, a special group is created in the Aggregate
consisting of all of the groups in that component, and the overriding parameter (or
parameters) are added to that. This is done because each component can have different
groups belonging to the Common group notion; the Common group for a component is
just shorthand for all the groups in that component.

The Aggregate's specification of the default group and search strategy override any
specifications contained in the components.

1.7. Parameter Settings Page

The Parameter Settings page is rather straightforward; it is where the user defines
parameter settings for their engines. An example of such a page is given below:

| = PersonTitle Annotatorsml £7 O
Configuration Parameters Values
This section list all configuration parameters, ather as plain Specify the value of the selected configuration
paramelers, or as part of one or more groups. Select one to parameter.
ghow, or get the value in the right hand panel.
i x Value
= <Mot in any group>
Multi RegSting Mame: GvilianTites
Vice Presidant -
;'-ﬂull: Req Sting !.\kame: it ary Tithes President
Muli Req Sting Name: Govemment itles| Vice Pres.
Single Opt Sting Name: Containing Annotation Typ Pres,
| Govemor
Value list: Lt. Govemor E
o []
Lt. Gov.
S =
(€] » Sen.

Orverview ngragata'Pmeim Parameter Settings | Type System'Capabﬂm Indexes | Resources | Source

For single valued attributes, the user simply types the default value into the Value box on
the right hand side. For multi-valued parameters the user should use the Add, Edit and
Remove buttons to manage the list of multiple parameter values.

Values within groups are shown with each group separately displayed, to allow
configuring different values for each group.

Values are checked for validity. For Boolean values in a list, use the words t rue or f al se.

16

CDE User's Guide UIMA Version 2.3.0

Type System Page

Note: 1f you specify a value in a single-valued parameter, and then delete all the
characters in the value, the CDE will treat this as if you wanted to not specify any
setting for this parameter. In order to specify a 0 length string setting for a String-
valued parameter, you will have to manually edit the XML using the “Source” tab.

1.8. Type System Page

This page declares the type system used by the annotator. For aggregates it is derived
by merging the type systems of all constituent AEs. The types used by the AE constitute
the language in which the inputs and outputs are described in the Capabilities page and
also affect the choice of indexes on the Indexes page. The Type System page looks like the
following;:

E’ PersonTileAnnotator_WithinhamesOnly. sl £3 ==
[PersonTitleAnnotator_WithinhamesOnly. xmi '

Type System Definition

i Types (or Classes) + Imported Type Systems
The following types (dasses) are defined in this analysis engine descriptor. The following type systems are
The grayed out items are imported or merged from other descriptors, and cannat be induded as part of this one.

edited here. (To edit them, edit their source files). | 2o l | : E

Type Mame or Feature Name | SuperType or Range | | Bement Type | ——

= PersonTite Annotation

Kind Pegm'ﬁtlel{md &dd... Kind | AR J
—| PersonTitdekind String

Alloveed Value: Civilian

Allovesd L'_.alue: Military Eatove

Allowed Value: Government

Name Annotation

Dumﬁew..ﬁ.gg'egate Parameters Parameter Settings | Type System Capé)i.lities.hdexes Resources | Source |

Before discussing this page in detail, it is important to note that there are two settings that
affect the operation of this page. These are accessed by selecting the UIMA - Settings

(or by going to the Eclipse Window — Preferences — UIMA Preferences) and checking
or unchecking one of the following: “Auto generate .java files when defining types” and
“Display fully qualified type names.”

When the Auto generate option is checked and the development language for the AE is
Java, any time a change is made to a type and the change is saved, the corresponding .java
tiles are generated using the JCasGen tool. The results are stored in the primary source
directory defined for the project. The primary source directory is that listed first when

you right click on your project and select Properties — Java Build Path, click on the
Source tab and look in the list box under the text that reads: “Source folder on build
path.” If no source folders are defined, you will get a warning that you have no source
folders defined and JCasGen will not be run. (For information on JCasGen see Chapter 7,

UIMA Version 2.3.0 CDE User's Guide 17

Type System Page

JCasGen User’s Guide [67]). When JCasGen is run, you can monitor the progress of the
generation by observing the status on the Eclipse status line (normally at the bottom of
the Eclipse window). JCasGen runs on the fully-merged type system, consisting of the
type specification plus any imported type system, plus (for aggregates) the merged type
systems of all the components in an aggregate.

Warning: If the components of the aggregate have different definitions for

the same type name, the CDE will show a warning. It is possible to continue past
this warning, in which case the CDE will produce the correct Java source files
representing the merged types (that is, the type definition that contains all of

the features defined on that type by all of your components). However, it is not
recommended to use this feature (of having different definitions for the same
type name) since it can make it difficult to combine/package your annotator with
others. See Section 5.5, “Merging Types” in UIMA References for more information.

Note: In addition to running automatically, you can manually run JCasGen on
the fully merged type system by clicking the JCasGen button, or by selecting Run
JCasGen from the UIMA pulldown menu:

i TAE xml - Eclipse Platform

ot Run UIMA Window Help

Run JCasGen ot

Settings P v Auto generate JCAS source java files when changing types
E’ NamesAndPersonTitles T2 + Display fully qualfied type names

a T

When “Display fully qualified type names” is left unchecked, the namespace of types

is not displayed, i.e. if a fully qualified type name is my.namespace.person, only the
abbreviated type name person will be displayed. In the Type page diagram shown above,
“Display fully qualified type names” is in fact unchecked.

To add, edit, or remove types the buttons on the top left section are used. When adding or
editing types, fully qualified type names should of course be used, regardless of whether
the “Display fully qualified type names” is unchecked. Removing or editing a type will
have a cascading effect in that the type removal/edit will effect inputs, outputs, indexes
and type priorities in the natural way.

When a type is added, this dialog is shown:

CDE User's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.jcas.merging_types_from_other_specs

Type System Page

_ 1 Add a Type

Use this panel to spedfy a type.

Type names must be globally unique, unless you are intentionally redefining
another type.

Type Name 1smne.hpename.you,thmse

Supertype: | uima,tcas,Annotation Browse

Description:

OK I Cancel

Type names should be specified using a namespace. The namespace is like a Java package
name, and serves to insure type names are unique. It also serves as the package name for
the generated JCas classes. The namespace name is the set of names up to the last period
in the string.

The supertype must be picked from an existing type. The entry field for the supertype
supports Eclipse-style content assist. To use it, put the cursor in the supertype field, and
type a letter or two of the supertype name (lower case is fine), either starting with the
name space, or just with the type name (without the name space), and hold down the
Control key and then press the spacebar. When you do this, you can see a list of suitable
matching types. You can then type more letters to narrow down your choices, or pick the
right entry with the mouse.

To see the available types and pick one, press the Browse button. This will show the
available types, and as you type letters for the type name (in lower case — capitalization

is ignored), the available types that match are narrowed. When you've typed enough to
specify the type you want, press Enter. Or you can use the list of matching type names and
pick the one you want with the mouse.

Once you've added the type, you can add features to it by highlighting the type, and
pressing the Add button.

If the type being defined is a subtype of uima.cas.String, the Add button allows you to
add allowed values for the string, instead of adding features.

To edit a type or feature, you can double click the entry, or highlight the entry and press
the Edit button. To delete a type or feature, you highlight the entry to be deleted, and click
the delete button or push the delete key.

UIMA Version 2.3.0 CDE User's Guide 19

Type System Page

If the range of a feature is an array or one of the built-in list types, an additional
specification allows you to specify if multiple references to the object referenced by this
feature are allowed. If they are not allowed then the XMI serialization of instances of this
type use a more efficient format.

If the range of a feature is an array of Feature Structures, then it is possible to specify an
element type for the array. This information is used in the XMI serialization and also by
the JCas generation routines to generate more efficient code.

"~ Add a Feature

Use this panel to add or edit a feature
The feature name must be unigue within this type

Feature Name |arra1,rExample

Range Type: | uima.cas.FSArray Browse I

References: | Mot Specified - defaults to multiple references not allowed |«

Element Type: [examp!e.?ersm‘i‘uﬂe | Browse I
Description:
QK Cancel

It is also possible to import type systems for inclusion in your descriptor. To do this,
use the Type Import panel's Add. .. button. This allows you to import a type system
descriptor.

When importing by name, the name is resolved using the class path for the Eclipse
project containing the descriptor file being edited, or by looking up this name in the
UIMA DataPath. The DataPath can be set by pushing the Set DataPath button. It will be
remembered for this Eclipse project, as a project Property, so you only have to set it once
(per project). The value of the DataPath setting is written just like a class path, and can
include directories or JAR files, just as is true for class paths.

The following dialog allows you to pick one or more files from the Eclipse workspace, or
one file (at a time) from the file system:

20

CDE User's Guide UIMA Version 2.3.0

Type System Page

7 -1

= Import File(s) Selection

Use this panel to select a file in the Workspace

=I- uimaj-examples ry

.dlasspath B |

project

bin

data

deploy

= descriptors

MixedAgaregate, xml
—I- analysis_engine

GovernmentOffidalRecognizer_RegEx_TAE.xml
MamesAndGovernmentOfficials_TAE. xml
MamesAndPersonTitles_TAE.xml ™

™

T

¥

OR

[Bruwse the file system...

() Import by Name
(%) Import By Location

Cancel

This is essentially the same dialog as was used to add component engines to an aggregate.
To import from a type system descriptor that is not part of your Eclipse workspace, click
the Browse the file system.... button.

Imported types are validated, and if OK, they are added to the list in the Imported Type
Systems section of the Type System page. Any types they define are merged with the
existing type system.

Imported types and features which are only defined in imports are shown in the Type
System section, but in a grayed-out font; these type cannot be edited here. To change
them, open up the imported type system descriptor, and change them there.

If you hover the mouse over an import specification, it will show more information about
the import. If you right-click, it will bring up a context menu that allows opening the
imported file in the Editor, if the imported file is part of the Eclipse workspace. Changes
you make, however, won't be seen until you close and reopen the editor on the importing
file.

It is not possible to define types for an aggregate analysis engine. In this case the type
system is computed from the component AEs. The Type System information is shown in a
grayed-out font.

UIMA Version 2.3.0 CDE User's Guide 21

Exporting

1.8.1. Exporting

In addition to importing type specifications, you can export as well. When you push the
Export... button, the editor will create a new importable XML descriptor for the types in
this type system, and change the existing descriptor to import that newly created one.

| Export an importable part
Spedfy a base file name, and perhaps alter the path where it should be stored,
and press OK

Base file name (without path or following ".xmi":

| myTypes

Where the generated part descriptor file will be stored:

C: [Edipse fworkspace fexamples /descriptors/analysis_engine fmyTypes. xml

" Import by Name
* Import By Location

oK | Cancel [

The base file name you type is inserted into the path in the line below automatically. You
can change the path where the generated part descriptor is stored by overtyping the lower
text box. When you click OK, the new part descriptor will be generated, and the current
descriptor will be changed to import that part.

1.9. Capabilities Page

Capabilities come in “sets”. You can have multiple sets of capabilities; each one specifies
languages supported, plus inputs and outputs of the Analysis Engine. The idea behind
having multiple sets is the concept that different inputs can result in different outputs.
Many Analysis Engines, though, will probably define just one set of capabilities. A sample
Capabilities page is given below:

22 CDE User's Guide UIMA Version 2.3.0

Capabilities Page

Person Title Annotator xml
Capabilities: Inputs and Outputs =
+ Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in
termns of the Types and Featurss.

| Name | Input | Output | Name Space | [Add Setl
(=i Set Capabilty
(=] Languages | Add L |
Sofas - I Add Type |
¥pe K::on e exa | 24 Sofa |
|, d/Edit Features |
[¢ |
| Remove |

b Sofa Mappings (Only used in aggregate Descriptors)

Overview Aggregate Parameters | Parameter Settings | Type System !Capabfditi&qi Indums_”z

When defining the capabilities of a primitive analysis engine, input and output types can
be any type defined in the type system. When defining the capabilities of an aggregate
the inputs must be a subset of the union of the inputs in the constituent analysis engines
and the outputs must be a subset of the union of the outputs of the constituent analysis
engines.

To add a type, first select something in the set you wish to add the type to, and press Add
Type. The following dialog appears presenting the user with a list of types which are
candidates for additional inputs:

& Add Types to a Capability Set %]

Mark one or more types as Input and/or Output by clicking the mouse in the
comesponding input and/or output column, and press OK

Type Name |m|01pu|TweNun&maca|
iAnnotation uima tcas i
Document Annotation uima tcas

Person TitleKind example

UIMA Version 2.3.0 CDE User's Guide 23

Capabilities Page

Follow the instructions to mark the types as input and / or output (a type can be both). By
default, the <all features> flag is set to true. If you want to specify a subset of features of a
type, read on.

When types have features, you can specify what features are input and / or output. A type
doesn't have to be an output to have an output feature. For example, an Analysis Engine
might be passed as input a type Token, and it adds (outputs) a feature to the existing
Token types. If no new Token instances were created, it would not be an output Type, but
it would have features which are output.

To specify features as input and / or output (they can be both), select a type, and press
Add. The following dialog box appears:

E&ﬁyfﬂmkﬂuﬂfﬂ'w %)

Designate by mouse chicking one or more features in the Input and/or Output
column, to designate as Input and/or Output press "OK"

Kind Yes

OK Cancel

To mark a feature as being input and / or output, click the mouse in the input and / or
output column for the feature. If you select <all features>, it unmarks any individual
feature you selected, since <all features> subsumes all the features.

The Languages part of the capability is where you specify what languages are supported
by the Analysis Engine. Supported languages should be listed using either a two letter
ISO-639 language code, or an ISO-639 language code followed by a hyphen and then a
two-letter ISO-3166 country code. Add a language by selecting Languages and pressing
the Add button. The dialog for adding languages is given below.

?!Mdtagmya

Enter a two letter 1S0-835 language code, followed optionally by a twodetter
1S0-3166 country code (Examples: fr or fr-CA)

| b I Cancel

The Sofa part of the capability is optional; it allows defining Sofa names that this
component uses, and whether they are input (meaning they are created outside of
this component, and passed into it), or output (meaning that they are created by this
component). Note that a Sofa can be either input or output, but can't be both.

24

CDE User's Guide UIMA Version 2.3.0

Sofa (and view) name mappings

To add a Sofa name (which is synonymous with the view name), press the Add Sofa
button, and this dialog appears:

— | Add a Sofa &

Use this panel to specify a Sofa Name.

Sofa names must be unique within a Capabilty Set, and are simple names without
name spaces (no dots in the name).

Type the name in the box below, and specify f & is an input Sofa
{created outside of this component), or an output Sofa (created by this
component).

Sofa Name [mmNewSufaName

Input / Output: = Input € Output

OKICanodl

1.9.1. Sofa (and view) name mappings

Sofa names, once created, are used in Sofa Mappings. These are optional mappings, done
in an aggregate, that specify which Sofas are the same ones but with different names. The
Sofa Mappings section is minimized unless you are editing an Aggregate descriptor, and
have one or more Sofa names defined for the aggregate. In that case, the Sofa Mappings
section will look like this:

UIMA Version 2.3.0 CDE User's Guide 25

Sofa (and view) name mappings

] NamesAndGovemmentOfficials_TAEaml ©2 =
NamesAndGovemmentOfficials_TAE xmi
Capabilities: Inputs and Outputs H=
i —

This section describes the languages handled, and the inputs needed and outputs provided in
tems of the Types and Featunes.

I Languages | Add Language |
::1 | Add Type |
=] Sofas
MylputSofe e | AddSofa |
Type: GovemmentOfficial Output example
Type: Name Output example | Edi... |
€] = > | Remove |
= Sofa Mappings

Thiz section shows all defined Sofas for an Aggregate and their mappings to the component
Sofas.

Add Aggregate Sofa Names using the Capabilities section; Select an Aggregate Sofa Name
and Add/Edt mappings for that Sofa in this section.

= ik =
o S
GovemmentOfficial Recognizer/so2
= MylnputSofa
GovemmentOfficial Recognizer/sol

NameRecognizer
Outputs

Here the aggregate has defined two input Sofas, named “MyInputSofa”, and
“AnotherSofa”. Any named sofas in the aggregate's capabilities will appear in the Sofa
Mapping section, listed either under Inputs or Outputs. Each name in the Mappings has
0 or more delegate (component) sofa names mapped to it. A delegate may have multiple
Sofas, as in this example, where the GovernmentOfficialRecognizer delegate has Sofas
named “sol” and “s02”.

Delegate components may be written as Single-View components. In this case, they have
one implicit, default Sofa (“_InitialView”), and to map to it you use the form shown

for the “NameRecognizer” — you map to the delegate's key name in the aggregate,
without specifying a Sofa name. You can also specify the sofa name explicitly, e.g.,
NameRecognizer/_Initial View.

CDE User's Guide UIMA Version 2.3.0

Indexes Page

To add a new mapping, select the Aggregate Sofa name you wish to add the mapping
for, and press the Add button. This brings up a window like this, showing all available
delegates and their Sofas; select one or more (use the normal multi-select methods) of
these and press OK to add them.

" Assign Components and their sofas to an Aggregate Sofa Name

Change the selection as needed to reflect bindings.

Select all the delegate sofas from the list below which should be associated with the aggregate sofa name “Mylnput Sofa”.
Hold down the Shift or Control keys to select multiple tems.

iGovemmentOfficialRecognizer/so] |
GovemmentCOfficialRecognizer/so2
NameRecognizer

| OK I Cancel

To edit an existing mapping, select the mapping and press Edit. This will show the
existing mapping with all mapped items “selected”, and other available items unselected.
Change the items selected to match what you want, deselecting some, and perhaps
selecting others, and press OK.

1.10.

Indexes Page

The Indexes page is where the user declares what indexes and type priority lists are
used by the analysis engine. Indexes are used to determine which Feature Structures of a
particular type are fetched, using an iterator in the UIMA API. An unpopulated Indexes
page is displayed below:

UIMA Version 2.3.0 CDE User's Guide 27

Indexes Page

& PersonTitieAnnotator_WithinNamesOnly.xml 52 | Fm
PersonTitieAnnotator_WithinhamesOnly. xml
Indexes i B
+ Indexes ! Index Imports
The following indexes are defined on the type system for this The following index
engine. definitions are induded as
part of this one,

= Annotation Index (Builtin) Annotation sorted
begin Standard

e e tnd s | [

Set DataPath
end Reverse —
TYPE PRIORITY Standard l_l kind | Locationame |

| | |
|‘ [| | } | - T\d'pe Pm'itv
= Priority Lists Imports

This section shows the defined Pricirity Lists The following type priority
imports are induded as part
of the type priorities:
[hdd. | [Femove)
Set DataPath

lCndlLucaumMnel

HEEREEE

Agoregate | Parameters | Parameter Settings | Type System | Capabilities | Indexes |Resources >

Both indexes and type priority lists can have imports. These imports work just like the
type system imports, described above. Both indexes and type priority lists can be exported
to new component descriptors, using the Export... button, just like the type system export
operation described above.

The built-in Annotation Index is always present. It is based on the built-in type

ui ma. t cas. Annot ati on and has keys begin (Ascending), end (Descending) and
TYPE_PRIORITY. There are no built-in type priorities, so this last sort item does not play a
role in the index unless type priorities are specified.

Type priority may be combined with other keys. Type priorities are defined in the Priority
Lists section, using one or more priority list. A given priority list gives an ordering among
a group of types. Types that appear higher in the priority list are given higher priority, in

28

CDE User's Guide UIMA Version 2.3.0

Indexes Page

other words, they sort first when TYPE_PRIORITY is specified as the index key. Subtypes
of these types are also ordered in a consistent manner, unless overridden by another
specific type priority specification. To get the ordering used among all the types, all of
the type priority lists are merged. This gives a partial ordering among the types. Ties

are resolved in an unspecified fashion. The Component Descriptor Editor checks for
incompatible orderings, and informs the user if they exist, so they can be corrected.

To create a new index, use the Add Index button in the top left section. This brings up this
dialog:

B Add an index

Add or Edit an index specification

The Index name must be globally unigue.

Index Mame: |ea-‘.amp|e.index'|

CAS Type ?luima.tcas.ﬂnncltation Browse

Feature Name 1 Sorting Direction

Index Kind: ported [

Sort Keys:

|
end Standard
E

Add
begin Standard

(€] | 2 J

0K | Cancel |

Each index needs a globally unique index name. Every index indexes one CAS type
(including its subtypes). If you're using Eclipse 3.2 or later, the entry field for this has
content assist (start typing the type name and press Control — Spacebar to get help, or
press the Browse button to pick a type).

Indexes can be sorted, in which case you need to specify one or more keys to sort on.
Sort keys are selected from features whose range type is Integer, Float, or String. Some
elements will be disabled if they are not relevant. For instance, if the index kind is “bag”,
you cannot provide sort keys. The order of sort keys can be adjusted using the up and
down buttons, if necessary.

Note: There is usually no need to explicitly declare a Bag index in your
descriptor. As of UIMA v2.1, if you do not declare any index for a type (or any of
its supertypes), a Bag index will be automatically created. This index is accessed
using the get Al | | ndexedFS(. . .) method defined on the index repository.

A set index will contain no duplicates of the same type, where a duplicate is defined by
the indexing comparator. That is, if you commit two feature structures of the same type

UIMA Version 2.3.0 CDE User's Guide 29

Resources Page

that are equal with respect to the indexing comparator, only the first one will be entered
into the index. Note that you can still have duplicates with respect to the indexing order,
if they are of a different type. A set index is not guaranteed to be sorted. If no keys are
specified for a set index, then all instances are considered by default to be equal, so only
the first instance (for a particular type or subtype of the type being indexed) is indexed.
On the other hand, “bag” indicates that all annotation instances are indexed, including
duplicates.

The Priority Lists section of the Indexes page is used to specify Priority Lists of types.
Priority Lists are unnamed ordered sets of type names. Add a new priority list by clicking
the Add Set button. Add a type to an existing priority list by first selecting the set, and
then clicking Add. You can use the up and down buttons to adjust the order as necessary;
these buttons move the selected item up or down.

Although it is possible to import self-contained index and type priority files, the creation
of such files is not yet supported by the Component Descriptor Editor. If you create these
tiles using another editor, they can be imported using the corresponding Import panels,
shown on the right. Imports are specified in the same manner as they are for Type System
imports.

1.11.

Resources Page

The resources page describes resource dependencies (for primitive Analysis Engines) and
external Resource specification and their bindings to the resource dependencies.

Only primitive Analysis Engines define resource dependencies. Primitive and Aggregate
Analysis Engines can define external resources and connect them (bind them) to resource
dependencies.

When an Aggregate is providing an external resource to be bound to a dependency,

the binding is specified using a possibly multi-level path, starting at the Aggregate,

and specify which component (by its key name), and then if that component is, in turn,

an Aggregate, which component (again by its key name), and so on until you reach a
primitive. The sequence of key names is made into the binding specification by joining the
parts with a “/” character. All of this is done for you by the Component Descriptor Editor.

Any external resource provided by an Aggregate will override any binding provided by
any lower level component for the same resource dependency.

There are two views of the Resources page, depending on whether the Analysis Engine is
an Aggregate or Primitive. Here's the view for a Primitive:

30

CDE User's Guide UIMA Version 2.3.0

Resources Page

2 PersonTitleAnnotatar_WithinNamesOnly. xml 52
PersonTiteAnnotator WithinMamesOnly. xml

Resources

+ Resources Needs, Definitions and
Bindings

Specify External Resources; Bind them to
dependendies on the right panel by selecting the
corresponding dependency and dicking Bind.

Bindings

The following definitions are incuded:
| Add... | | RErinye |

Set DataPath

Kind I L ocationMame I

+ Resource Dependencies

Primitives dedare what resources they need. A
primitive can anly bind to one external resource.

Bound | Optional? | Keys | tntert

3 IR

To declare a resource dependency, click the Add button in the right hand panel. This puts

up the dialog:

=

Add an Bdemal Resource Dependency
The only required field is the key name,

which must be unigue within this primitive Analysis Engine descriptar.

Key [

Diescription:

Inteface I

[Check this box f this resource is optional

[F Cancel

UIMA Version 2.3.0

CDE User's Guide

31

Binding

The Key must be unique within the descriptor declaring it. The Interface, if present, is the
name of a Java interface the Analysis Engine uses to access the resource.

Declare actual External resource on the left side of the page. Clicking “Add” brings up this
dialog:

.MdeﬂmﬂFhﬂmn:e[Hiritim .

Define and name an extemal resounce

The first URL field iz used to identify the extemal resource.

if both URL fields are used. they form a name by concatenating the first with the
document language and then with the second (suffod) UEL.

The {optional) Implementation specifies a Java class which implements the
interface used by the Analysis Engine to access the resource.

MName: J|
Description:

URL: |
URL Suffic |
Implementation |

i, | Cancel

The Name must be unique within this Analysis Engine. The URL identifies a file resource.
If both the URL and URL suffix are used, the file resource is formed by combining the first
URL part with the language-identifier, followed by the URL suffix; see Section 2.4.1.11,
“Resource Manager Configuration” in UIMA References . URLs may be written as
“relative” URLSs; in this case they are resolved by looking them up relative to the classpath
and/or datapath. A relative URL has the path part starting without an intial “/”; for
example: file:my/directory/file. An absolute URL starts with file:/ or file:/// or file://
some.network.address/. For more information about URLs, please read the javaDoc
information for the Java class “URL”.

The Implementation is optional, and if given, must be a Java class that implements the
interface specified in any Resource Dependencies this resource is bound to.

1.11.1. Binding

Once you have an external resource definition, and a Resource Dependency, you can bind
them together. To do this, you select the two things (an external resource definition, and a
Resource Dependency) that you want to bind together, and click Bind.

32 CDE User's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.xml.component_descriptor.aes.primitive.resource_manager_configuration
../references/references.pdf#ugr.ref.xml.component_descriptor.aes.primitive.resource_manager_configuration

Resources with Aggregates

1.11.2. Resources with Aggregates

When editing an Aggregate Descriptor, the Resource definitions panel will show all the
resources at the primitive level, with paths down through the components (multiple
levels, if needed) to get to the primitives. The Aggregate can define external resources,
and bind them to one or more uses by the primitives.

1.11.3. Imports and Exports

Resource definitions and their bindings can be imported, just like other imports. Existing
Resource definitions and their bindings can be exported to a new importable part, and
replaced with an import for that importable part, using the “Export...” button, just like the
similar function on the Type System page.

1.12. Source Page

The Source page is a text view of the xml content of the Analysis Engine or Type System
being configured. An example of this page is displayed below:

2 NemesAndGovemmentOfficials_TAExm 17
{Names AndGovemmentOfficials_TAE xmi
<tasDescription xmlns="http:/ uvima.watson.ibm.com/resour
<frameworkInplementation>com.ibm.uins . java</frameworkImplementacions>
<primitive>false</primitive>
<delegatednalysisEngineSpecifieras
<delegateinalysisEngine key="Gow

romentOfficialRecognize

<import location="GovernmentcOf
</delegateAnalysisEngine>
<delegateAnalysisEngine key="HameRecognizer™>

<import location="SimplelameRecognizer RegEx TAE.xnml"/S>

</delegatefinal ysisEngine>

icialRecognizer RegEx TAE.xml"/>

<analysisEngineMecaData>

<name>fggregate TAE - Name BRecognizer and Government Official Recognizer</
<deacription>Dectects Names and Government Officiala</deacription> W
| Overview Aggregate | Parameters | Paramater Settings | Type System Capabilities | Indexes ' Resources | Source

Changes made in the GUI are immediately reflected in the xml source, and changes made
in the xml source are immediately reflected back in the GUI. The thought here is that

the GUI view and the Source view are just two ways of looking at the same data. When
the data is in an unsaved state the file name is prefaced with an asterisk in the currently
selected file tab in the editor pane inside Eclipse (as in the example above).

You may accidentally create invalid descriptors or XML by editing directly in the Source
view. If you do this, when you try and save or when you switch to a different view, the
error will be detected and reported. In the case of saving, the file will be saved, even if it is
in an error state.

UIMA Version 2.3.0 CDE User's Guide 33

Source formatting — indentation

1.12.1. Source formatting — indentation

The XML is indented using an indentation amount saved as a global UIMA preference.

To change this preference, use the Eclipse menu item: Windows — Preferences — UIMA
Preferences.

1.13. Creating a Self-Contained Type System

It is also possible to use the Component Descriptor Editor to create or edit self-contained
type systems. To create a self-contained type system, select the menu item File — New

— Other and then select Type System Descriptor File. From the next page of the selection
wizard specify a Parent Folder and File name and click Finish.

.Hew

Select a wizard

Wizards:

+-[= Eclipge Modeling Framewari
+-[= BExample EMF Model Creation Wizards
== Java
= Java Emitter Templates
= Plug-n Development
= Simple
-2 UIMA
@ Analysis Engine Descriptor File
% Type System Descriptar File
+-[= Examples

[+

1]+ [E

Mext = Cancel

34 CDE User's Guide UIMA Version 2.3.0

Creating a Self-Contained Type System

.EMTIBESESIEIIDESCﬁﬂﬂrﬁlﬂ .
Type System Descriptor File

Create a new Type System Descriptor file

Parent Folder:]Hestr"descriptDrsfanah'sis_engine Browse. ..

Eile name:]l“ﬂjE SystemDescriptorxml

< Back | Finish | Cancel

This will take you to a version of the Component Descriptor Editor for editing a type
system file which contains just three pages: an overview page, a type system page, and a
source page. The overview page is a bit more spartan than in the case of an AE. It looks
like the following:

| .@.mm&mml = ==
;tg,rpesystem xmi
Overview

s

|AIm=k

i
(L

= Overall Identification Information
Thig gection specifies the basic identfication information for this

descriptor

Mame bypesystem
Yersion 1.0
Wendar

Description: /& sample description would go here |

__Ovenfiew: Type System Source ,

Just like an AE has an associated name, version, vendor and description, the same is
true of a self-contained type system. The Type System page is identical to that in an AE
descriptor file, as is the Source page. Note that a self-contained type system can import
type systems just like the type system associated with an AE.

A type system component can also be created from an existing descriptor which contains
a type system definition section, by clicking on the Export... button on the Type System

page.

UIMA Version 2.3.0 CDE User's Guide 35

Creating Other Descriptor Components

1.14. Creating Other Descriptor Components

The new wizard can create several other kinds of components: Collection Processing
Management (CPM) components, flow controllers, and importable parts (besides Type
Systems, described above, Indexes, Type Priorities, and Resource Manager Configuration
imports).

The CPM components supported by this editor include the Collection Reader, CAS
Initializer, and CAS Consumer descriptors. Each of these is basically treated just like a
primitive AE descriptor, with small changes to accommodate the different semantics. For
instance, a CAS Consumer can't declare in its capabilities section that it outputs types or
features.

Flow controllers are components that control the flow of CASes within an aggregate, an
are edited in a similar fashion as a primitive Analysis Engine.

The importable part support requires context information to enable the editor to work,
because much of the power of this editor comes from extensive checking that requires
additional information, other than what is available in just the importable part. For
instance, when you create or edit an Indexes import, the facility for adding new indexes
needs the type information, which is not present in this part when it is edited alone.

To overcome this, when you edit these descriptors, you will be asked to specify a context
descriptor, usually a descriptor which would import the part being edited, which would
have the additional information needed.

Various methods are used to guess what the context descriptor should be - and if the
guess is correct, you can just press the Enter key to confirm. The last successful context file
is remembered and will be suggested as the context file to use at the next edit session

36

CDE User's Guide UIMA Version 2.3.0

Chapter 2. Collection Processing Engine
Configurator User's Guide

A Collection Processing Engine (CPE) processes collections of artifacts (documents) through
the combination of the following components: a Collection Reader, Analysis Engines, and
CAS Consumers. !

The Collection Processing Engine Configurator(CPE Configurator) is a graphical tool that
allows you to assemble and run CPEs.

For an introduction to Collection Processing Engine concepts, including developing the
components that make up a CPE, read Chapter 2, Collection Processing Engine Developer’s
Guide in UIMA Tutorial and Developers” Guides. This chapter is a user's guide for using the
CPE Configurator tool, and does not describe UIMA's Collection Processing Architecture
itself.

2.1. Limitations of the CPE Configurator

The CPE Configurator only supports basic CPE configurations.

It only supports “Integrated” deployments (although it will connect to remotes if
particular CAS Processors are specified with remote service descriptors). It doesn't
support configuration of the error handling. It doesn't support Sofa Mappings; it assumes
all Single-View components are operating with the _InitialView Sofa. Multi-View
components will not have their names mapped. It sets up a fixed-sized CAS Pool.

To set these additional options, you must edit the CPE Descriptor XML file directly. See
Chapter 3, Collection Processing Engine Descriptor Reference in UIMA References for the
syntax. You may then open the CPE Descriptor in the CPE Configurator and run it. The
changes you applied to the CPE Descriptor will be respected, although you will not be able
to see them or edit them from the GUL

2.2. Starting the CPE Configurator

The CPE Configurator tool can be run using the cpeGui shell script, which is located in
the bi n directory of the UIMA SDK. If you've installed the example Eclipse project (see
Section 3.2, “Setting up Eclipse to view Example Code” in UIMA Ouverview & SDK Setup,
you can also run it using the “UIMA CPE GUI” run configuration provided in that project.

Note: If you are planning to build a CPE using components other than
the examples included in the UIMA SDK, you will first need to update your
CLASSPATH environment variable to include the classes needed by these
components.

!Earlier versions of UIMA supported another component, the CAS Initializer, but this component is now deprecated in UIMA
Version 2.

CPE Configurator User's Guide 37

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.cpe
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code

Selecting Component Descriptors

When you first start the CPE Configurator, you will see the main window shown here:

ﬂ Coltection Processing Engine Configurator M= =)
Fie View Help

Drescriptor: Browise.

Unstructured Information Management Architecture

A Apache ewbasar Praject.

Calection Reader

Minahpsis Emgines

(o) (=] (]

CAS Consumers

(e) =< (2

— @aam‘

alzed

2.3. Selecting Component Descriptors

The CPE Configurator's main window is divided into three sections, one each for the
Collection Reader, Analysis Engines, and CAS Consumers.’

In each section of the CPE Configurator, you can select the component(s) you want to
use by browsing to (or typing the location of) their XML descriptors. You must select a
Collection Reader, and at least one Analysis Engine or CAS Consumer.

When you select a descriptor, the configuration parameters that are defined in that
descriptor will then be displayed in the GUI; these can be modified to override the values
present in the descriptor.

For example, the screen shot below shows the CPE Configurator after the following
components have been chosen:

*There is also a fourth pane, for the CAS Initializer, but it is hidden by default. To enable it click the Vi ew - CAS
Initializer Panel menuitem.

38

CPE Configurator User's Guide UIMA Version 2.3.0

Running a Collection Processing Engine

exanpl es/ descriptors/col |l ecti onReader/Fi | eSyst enCol | ecti onReader . xmni
exanpl es/ descri pt or s/ anal ysi s_engi ne/ NanesAndPer sonTi t| es_TAE. xm
exanpl es/ descri pt ors/ cas_consuner/ Xm Wit er CasConsuner . xm

f Callection Procesing Engine Configurator l=JOkd
Fie Miew Help

E@\ Unstructured Information Management Architecture

A Aveche monbeisr Projeci

Colection Reader

Desorptor | \RlesystemCalectionReadsr i

Input Cirectarys | 24y apache-inal examplesidats
Encoding:

Language:

Anzlysis Engines

[Ad:l... ” £]l B |

[3] Agoregate TAE - Mame Recoonizer and Persan Tith Anratator |

CAS Carsumers

[Ladd.. |[=< |[2>]

[5) #mi Writer CAS Corsumer

Outpuk Direchonys o ipampiuimal_outpus

— (D) n| m

ritialzed

2.4. Running a Collection Processing Engine

After selecting each of the components and providing configuration settings, click the play
(forward arrow) button at the bottom of the screen to begin processing. A progress bar
should be displayed in the lower left corner. (Note that the progress bar will not begin to
move until all components have completed their initialization, which may take several
seconds.) Once processing has begun, the pause and stop buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes
successfully, you will be presented with a performance report.

2.5. The File Menu

The CPE Configurator's File Menu has the following options:

UIMA Version 2.3.0 CPE Configurator User's Guide 39

The Help Menu

Open CPE Descriptor

Save CPE Descriptor

Save Options (submenu)

Refresh Descriptors from File System

Clear All
e Exit

Open CPE Descriptor will allow you to select a CPE Descriptor file from disk, and will
read in that CPE Descriptor and configure the GUI appropriately.

Save CPE Descriptor will create a CPE Descriptor file that defines the CPE you have
constructed. This CPE Descriptor will identify the components that constitute the CPE, as
well as the configuration settings you have specified for each of these components. Later,
you can use “Open CPE Descriptor” to restore the CPE Configurator to the state. Also,
CPE Descriptors can be used to easily run a CPE from a Java program — see Section 3.3.1,
“Running a CPE from a Descriptor” in UIMA Tutorial and Developers’ Guides .

CPE Descriptors also allow specifying operational parameters, such as error handling
options that are not currently available for configuration through the CPE Configurator.
For more information on manually creating a CPE Descriptor, see Chapter 3, Collection
Processing Engine Descriptor Reference in UIMA References .

The Save Options submenu has one item, "Use <import>". If this item is checked (the
default), saved CPE descriptors will use the <i npor t > syntax to refer to their component
descriptors. If unchecked, the older <i ncl ude> syntax will be used for new components
that you add to your CPE using the GUI. (However, if you open a CPE descriptor that
used <import>, these imports will not be replaced.)

Refresh Descriptors from File System will reload all descriptors from disk. This is useful
if you have made a change to the descriptor outside of the CPE Configurator, and want to
refresh the display.

Clear All will reset the CPE Configurator to its initial state, with no components selected.

Exit will close the CPE Configurator. If you have unsaved changes, you will be prompted
as to whether you would like to save them to a CPE Descriptor file. If you do not save
them, they will be lost.

When you restart the CPE Configurator, it will automatically reload the last CPE
descriptor file that you were working with.

2.6. The Help Menu

The CPE Configurator's Help menu provides “About” information and some very simple
instructions on how to use the tool.

40

CPE Configurator User's Guide UIMA Version 2.3.0

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.running_a_cpe_from_a_descriptor
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.application.running_a_cpe_from_a_descriptor
../references/references.pdf#ugr.ref.xml.cpe_descriptor
../references/references.pdf#ugr.ref.xml.cpe_descriptor

Chapter 3. Document Analyzer User's Guide

The Document Analyzer is a tool provided by the UIMA SDK for testing annotators and
AEs. It reads text files from your disk, processes them using an AE, and allows you to
view the results. The Document Analyzer is designed to work with text files and cannot
be used with Analysis Engines that process other types of data.

For an introduction to developing annotators and Analysis Engines, read Chapter 1,
Annotator and Analysis Engine Developer’s Guide in UIMA Tutorial and Developers’ Guides.
This chapter is a user's guide for using the Document Analyzer tool, and does not describe
the process of developing annotators and Analysis Engines.

3.1. Starting the Document Analyzer

To run the Document Analyzer, execute the docunent Anal yzer script that is in the bi n
directory of your UIMA SDK installation, or, if you are using the example Eclipse project,
execute the “UIMA Document Analyzer” run configuration supplied with that project.

Note that if you're planning to run an Analysis Engine other than one of the examples
included in the UIMA SDK, you'll first need to update your CLASSPATH environment
variable to include the classes needed by that Analysis Engine.

When you first run the Document Analyzer, you should see a screen that looks like this:

[# Document Analyzer I-__[Q]@

Fie Help

.I'_'.Fi:l!l Unstructured Information Management Architecture

A Apache Incubator Project

Input Directory: cilapache-umalecamplesidata
Cutput Directory: clapache-umalexamplesidatal processed Browse,,

Lecation of Anafysis Enging XML Descriptor: c:lapache-uimalexamplesidescriptors)anahysis_engins\PersonTileannatator, xml
EML Tag containing Tect (optional):
Language: #n |

Character Encoding: UTF-2 o |

[oo || mnteractice || view |

3.2. Running an AE

To run a AE, you must first configure the six fields on the main screen of the Document
Analyzer.

Document Analyzer User's Guide 41

../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae
../tutorials_and_users_guides/tutorials_and_users_guides.pdf#ugr.tug.aae

Viewing the Analysis Results

Input Directory: Browse to or type the path of a directory containing text files that you
want to analyze. Some sample documents are provided in the UIMA SDK under the
exanpl es/ dat a directory.

Output Directory: Browse to or type the path of a directory where you want output to

be written. (As we'll see later, you won't normally need to look directly at these files, but
the Document Analyzer needs to know where to write them.) The files written to this
directory will be an XML representation of the analyzed documents. If this directory
doesn't exist, it will be created. If the directory exists, any files in it will be deleted (but the
tool will ask you to confirm this before doing so). If you leave this field blank, your AE
will be run but no output will be generated.

Location of AE XML Descriptor: Browse to or type the path of the descriptor for the AE
that you want to run. There are some example descriptors provided in the UIMA SDK
under the exanpl es/ descri pt or s/ anal ysi s_engi ne and exanpl es/ descri ptors/
tutorial directories.

XML Tag containing Text: This is an optional feature. If you enter a value here, it specifies
the name of an XML tag, expected to be found within the input documents, that contains
the text to be analyzed. For example, the value TEXT would cause the AE to only analyze
the portion of the document enclosed within <TEXT>...</TEXT> tags. Also, any XML tags
occuring within that text will be removed prior to analysis.

Language: Specify the language in which the documents are written. Some Analysis
Engines, but not all, require that this be set correctly in order to do their analysis. You can
select a value from the drop-down list or type your own. The value entered here must be
an ISO language identifier, the list of which can be found here: http://www.ics.uci.edu/
pub/iett/http/related/is0639.txt.

Character Encoding: The character encoding of the input files. The default, UTF-8,
also works fine for ASCII text files. If you have a different encoding, enter it here.
For more information on character sets and their names, see the Javadocs for

j ava. ni o. char set . Char set .

Once you've filled in the appropriate values, press the “Run” button.

If an error occurs, a dialog will appear with the error message. (A stack trace will also
be printed to the console, which may help you if the error was generated by your own
annotator code.) Otherwise, an “Analysis Results” window will appear.

3.3. Viewing the Analysis Results

After a successful analysis, the “Analysis Results” window will appear.

42 Document Analyzer User's Guide UIMA Version 2.3.0

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

Viewing the Analysis Results

ﬁ Analysis Results

These are the Analyzed Documents.
=elect viewver type and double-click file to open.

|BM_LifeSciences txt
hewy_IBM_Fellowws
SeminarChallengesinSpeechRecognition fxt
TrainableihformationExtractionSystems tx
UiMASummerSchool 2003 td
LIMA_Serminars bt
WistzonConferenceRooms tx

Resutts Display Format. (3) | eff () Jw user colors

{HTML () whL

[Edit Style Map ”_ Performance Stats ”_ Close]

The “Results Display Format” options at the bottom of this window show the different

ways you can view your analysis — the Java Viewer, Java Viewer (JV) with User Colors,
HTML, and XML. The default, Java Viewer, is recommended.

Once you have selected your desired Results Display Format, you can double-click on one

of the files in the list to view the analysis done on that file.

For the Java viewer, the results display looks like this (for the AE descriptor exanpl es/

descriptors/tutorial / ex4/ Meeti ngDet ect or AE. xm):

.~

1

=

LA, Suammir Sl

I, H0E
LAV 101 - The Bew LM introdaction
(Hards-on Tuborial)
S COUAM- 50PN i HAWY GRS

Bargust 39, 2003
FROGT Tuborial
FrOCLAM- 5 DO in HAR (HHHSS

Saptember 15, M3

U, 00 LA, Schearced Togecs
{Horsdz-on Tuborialy

‘2 DOUAM- 5 O0F iy HAY 1 5-FED

Seplessher 17, 2003
The LBMA Sy=tess infegration Test and Mardening Servce
The “SITH

3 DOPW-4 300M in HAW GN-K35

UM, Summer Sciool Tutoral and Présentofion Detals
UBMA, 10 The e LUBWA, butonial
Taasriey Auguet 28 S 00AM - &500M in GH-KEE

LBVLE 101 | & handis-on progeammng tuboral

[Documentarectali... [Mesting [+] Dateannct

[seectaa || Deseleczan | viewsriiode (5 seecislions () Entes

| EECk IR T $0 See Annotaton Delad

-

UIMA Version 2.3.0

Document Analyzer User's Guide

43

Configuring the Annotation Viewer

You can click the mouse on one of the highlighted annotations to see a list of all its
features in the frame on the right.

If there are multiple annotation types in the view, you can control which ones are selected
by using the checkboxes in the legend, the Select All button, or the Deselect All button.

If you are viewing a CAS that contains multiple subjects of analysis, then a selector will
appear at the bottom right of the Annotation Viewer window. This will allow you to
choose the Sofa that you wish to view. Note that only text Sofas containing a non-null
document are available for viewing.

3.4. Configuring the Annotation Viewer

The “JV User Colors” and the HTML viewer allow you to specify exactly which colors are
used to display each of your annotation types. For the Java Viewer, you can also specify
which types should be initially selected, and you can hide types entirely.

To configure the viewer, click the “Edit Style Map” button on the “Analysis Results”
dialog. You should see a dialog that looks like this:

|
"o Stylo Map Editar B
[Bpedas || cotapse s 4] 8 @J
o b Lma enamples Bkenizer Sentere | Annotston Lubel . Arrctalion Type | Foshas Backgroursd Freeground Checked Haden
i o i gxmple s Bokeniter Token Cardanch e o Lima Bolmpls kel e Sardinicn |] [+] a]
Jic [oomm o ke ervamples dokerizer- Token |] [(]
(o) o) i)

To change the color assigned to a type, simply click on the colored cell in the
“Background” column for the type you wish to edit. This will display a dialog that allows
you to choose the color. For the HTML viewer only, you can also change the foreground
color.

If you would like the type to be initially checked (selected) in the legend when the viewer
is first launched, check the box in the “Checked” column. If you would like the type to
never be shown in the viewer, click the box in the “Hidden” column. These settings only
affect the Java Viewer, not the HTML view.

When you are done editing, click the “Save” button. This will save your choices to a file in
the same directory as your AE descriptor. From now on, when you view analysis results
produced by this AE using the “JV User Colors” or “HTML” options, the viewer will be
configured as you have specified.

44

Document Analyzer User's Guide UIMA Version 2.3.0

Interactive Mode

3.5. Interactive Mode

Interactive Mode allows you to analyze text that you type or cut-and-paste into the tool,
rather than requiring that the documents be stored as files.

In the main Document Analyzer window, you can invoke Interactive Mode by clicking the
“Interactive” button instead of the “Run” button. This will display a dialog that looks like
this:

,.
ﬁ Annotation Input

Type-or cut-and-paste in your text to be annotated. Then click on &nalyze.

The quick browen fox jumps over the lazy dog.

Results Display Format. (@ JavaViewer | JWusercolors) HTML O XML

[Analyze ” Close]

You can type or cut-and-paste your text into this window, then choose your Results
Display Format and click the “Analyze” button. Your AE will be run on the text that you
supplied and the results will be displayed as usual.

3.6. View Mode

If you have previously run a AE and saved its analysis results, you can use the Document
Analyzer's View mode to view those results, without re-running your analysis. To do
this, on the main Document Analyzer window simply select the location of your analyzed
documents in the “Output Directory” dialog and click the “View” button. You can then
view your analysis results as described in Section Section 3.3, “Viewing the Analysis
Results” [42].

UIMA Version 2.3.0 Document Analyzer User's Guide 45

Chapter 4. Annotation Viewer

The Annotation Viewer is a tool for viewing analysis results that have been saved to your
disk as external XML representations of the CAS. These are saved in a particular format
called XML In the UIMA SDK, XML versions of CASes can be generated by:

* Running the Document Analyzer (see Chapter 3, Document Analyzer User's
Guide [41], which saves an XML representations of the CAS to the specified output
directory.

* Running a Collection Processing Engine that includes the XMI
Writer CAS Consumer (exanpl es/ descri pt or s/ cas_consuner/
Xm Wi terCasConsuner. xm).

* Explicitly creating XML representations of the CAS from your own application
using the org.apache.uima.cas.impl. XMISerializer class. The best way to
learn how to do this is to look at the example code for the XMI Writer CAS
Consumer, located in exanpl es/ src/ or g/ apache/ ui ma/ exanpl es/ xmni /
Xm Wi terCasConsuner.java. 1

Note: The Annotation Viewer only shows CAS views where the Sofa data type
is a String.

You can run the Annotation Viewer by executing the annot at i onVi ewer shell script
located in the bin directory of the UIMA SDK or the "UIMA Annotation Viewer" Eclipse
run configuration in the ui maj - exanpl es project. This will open the following window:

F'ﬁ Annotation Viewer g @ -\

File Help

.r_i':-,l Unstructured Information Management Architecture
lI i

. An Apache meubator Praject.
Input Directary: | Criapache-uimalexamplesidatalprocessed

TypeSysten or AE Descripkor File: | Zi\apache-uimalexamplesidescriptors analysis_engineiPersc | Browse.,

Select an input directory (which must contain XMI files), and the descriptor for the AE
that produced the Analysis (which is needed to get the type system for the analysis). Then
press the “View” button.

This will bring up a dialog where you can select a viewing format and double-click on
a document to view it. This dialog is the same as the one that is described in Section 3.3,
“Viewing the Analysis Results” [42].

Annotation Viewer 47

Chapter 5. CAS Visual Debugger

5.1. Introduction

The CAS Visual Debugger is a tool to run text analysis engines in UIMA and view the
results. The tool is implemented as a stand-alone GUI tool using Java's Swing library.

This is a developer's tool. It is intended to support you in writing text analysis annotators
for UIMA (Unstructured Information Management Architecture). As a development tool,
the emphasis is not so much on pretty pictures, but rather on navigability. It is intended
to show you all the information you need, and show it to you quickly (at least on a fast
machine ;-).

The main purpose of this application is to let you browse all the data that was created
when you ran an analysis engine over some text. The display mimics the access methods
you have in the CAS API in terms of indexes, types, feature structures and feature values.

As in the CAS, there is special support for annotations. Clicking on an annotation will
select the corresponding text, and conversely, you can display all annotations that cover a
given position in the text. This will be explained in more detail in the section on the main
display area.

As usual, the graphics in this manual are for illustrative purposes and may not look 100%
like the actual version of CVD you are running. This depends on your operating system,
your version of Java, and a variety of other factors.

5.1.1.

Running CVD

You will usually want to start CVD from the command line, or from Eclipse. To start CVD
from the command line, you minimally need the uima-core and uima-tools jars. Below is a
sample command line for sh and its offspring.

java -cp ${U MA_HOVE}/ | i b/ ui ma-core.jar:${U MA_HOVE}/ | i b/ ui ma-tool s. jar
or g. apache. ui ma. t ool s. cvd. CVD

However, there is no need to type this. The ${UIMA_HOME]}/bin directory contains a
cvd.sh and cvd.bat file for Unix/Linux/MacOS and Windows, respectively.

In Eclipse, you have a ready to use launch configuration available when you have
installed the UIMA sample project (see Section 3.2, “Setting up Eclipse to view Example
Code” in UIMA Owverview & SDK Setup). Below is a screenshot of the the Eclipse Run
dialog with the CVD run configuration selected.

CAS Visual Debugger 49

../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup.example_code

Command line parameters

Run a Java application

TEX O -
type filter text

4 Edipse Application
":B Equinox OSGi Framework
il Java Applet
=-[T] Java Application
3 cvo

=iz

37 uIMA CPE GUI

3] UMA Document Analyzer
[3] UIMA JCasGen

E UIMA JCasGen Merge
71 UIMA PEAR Installer

Create, manage, and run configurations ;_..

Mame:

G Main

UIMA CAS Visual Debugger

()= Arguments | =5, JRE | “+; Classpath EﬂSource !
Project:

uimaj-examples

Browse. ..

Main class:
org.apache. uima. tools.annot_view. Gladis

[tndude libraries when searching for a main dass

[indude inherited mains when searching for a main dass

|:| Stop in main

5.1.2. Command line parameters

You can provide some command line parameters to influence the startup behavior of
CVD. For example, if you want to run a certain analysis engine on a certain text over and
over again (for debugging, say), you can make CVD load the annotator and text at startup
and execute the annotator. Here's a list of the supported command line options.

Table 5.1. Command line options

Option

Description

-text <textFil e>

Loads the text file <t ext Fi | e>

-desc <descriptorFile>

Loads the descriptor <descri ptorFi | e>

- exec

Runs the pre-loaded annotator; only
allowed in conjunction with - desc

- dat apat h <dat apat h>

Sets the data path to <dat apat h>

-ini <iniFile> Makes CVD use alternative ini
file <t ext Fi | e> (default is ~/
annotViewer.pref)

-1 ookandf eel <Infd ass> Uses alternative look-and-feel <| nf O ass>

5.2. Error Handling

On encountering an error, CVD will pop up an error dialog with a short, usually

incomprehensible message.

Often, the error message will claim that there is more

information available in the log file, and sometimes, this is actually true; so do go and
check the log. You can view the log file by selecting the appropriate item in the "Tools"

menu.

50

CAS Visual Debugger

UIMA Version 2.3.0

Preferences File

Exception

® org.apache.uima.analysis_engine.AnalysisEngineProcessException
More detailed information is in the log file.

5.3. Preferences File

The program will attempt to read on startup and save on exit a file called
annotViewer.pref in your home directory. This file contains information about choices
you made while running the program: directories (such as where your data files are) and
window sizes. These settings will be used the next time you use the program. There is no
user control over this process, but the file format is reasonably transparent, in case you
feel like changing it. Note, however, that the file will be overwritten every time you exit
the program.

If you use CVD for several projects, it may be convenient to use a different ini files for
each project. You can specify the ini file CVD should use with the

-ini <iniFile>

parameter on the command line.

5.4. The Menus

We give a brief description of the various menus. All menu items come with mnemonics
(e.g., Alt-F X will exit the program). In addition, some menu items have their own
keyboard accelerators that you can use anywhere in the program. For example, Ctrl-S will
save the text you've been editing.

5.4.1. The File Menu

The File menu lets you load, create and save text, load and save color settings, and import
and export the XCAS format. Here's a screenshot.

UIMA Version 2.3.0 CAS Visual Debugger 51

The File Menu

CAS Visual Debugger (CVD)
Eile| Edit Run Tools Help

New Text... Ctrl-N
Open Text File Ctrl-0
Save Text As...

Code Page]
Recently used ... »

Load Color Settings
Save Color Settings

Read Type System File

Exit

Below is a list of the menu items, together with an explanation.

* New Text... Clears the text area. Text you type is written to an anonymous buffer.
You can use "Save Text As..." to save the text you typed to a file. Note: whenever you
modify the text, be it through typing, loading a file or using the "New Text..." menu
item, previous analysis results will be lost. Since the previous analysis is specific to

the text, modifying the text invalidates the analysis.

* Open Text File. Loads a new text file into the viewer. The next time you run an

analysis engine, it will run the text you loaded last. Depending on the annotator

you're using, the program may run slow with very large text files, so you may want

to experiment.

* Save Text File. Saves the currently open text file. If no file is currently loaded
(either because you haven't loaded a file, or you've used the "New Text..." menu
item), this menu item is disabled (and Ctrl-S will do nothing).

e Save Text As... Save the text to a file of your choosing. This can be an existing file,

which is then overwritten, or it can be a new file that you're creating.

¢ Change Code Page. Allows you to change the code page that is used to load
and save text files. If you're sure the text you're loading is in ASCII or one of the 8-
bit extensions such as ISO-8859-1 (ISO Latin1), there is probably nothing you need
to do. Just load the text and look at the display. If you see no funny characters or

square boxes, chances are your selected code page is compatible with your text file.
Note that the code page setting is also in effect when you save files. You can observe

the effects with a hex editor or by just looking at the file size. For example, if you

save the default text This is where the text goes. toa file on Windows using

the default code page, the size of the file will be 28 bytes. If you now change the

code page to UTF-16 and save the file again, the file size will be 58 bytes: two bytes

for each character, plus two bytes for the byte-order mark. Now switch the code

52

CAS Visual Debugger UIMA Version 2.3.0

The File Menu

page back to the default Windows code page and reload the UTF-16 file to see the
difference in the editor. CVD will display all code pages that are available in the
JVM you're running it on. The first code page in the list is the default code page of
your system. This is also CVD's default if you don't make a specific choice. Your
code page selection will be remembered in CVD's ini file.

* Load Color Settings. Load previously saved color settings from a file (see Tools/
Customize Annotation Display). It is highly recommended that you only load
automatically generated files. Strange things may happen if you try to load the
wrong file format. On startup, the program attempts to load the last color settings
file that you loaded or saved during a previous session. If you intend to use the
same color settings as the last time you ran the program, there is therefore no need
to manually load a color settings file.

¢ Save Color Settings. Save your customized color settings (see Tools/Customize
Annotation Display). The file is a Java properties file, and as such, reasonably
transparent. What is not transparent is the encoding of the colors (integer encoding
of 24-bit RGB values), so changing the file by hand is not really recommended.

* Read Type System File. Load a type system file. This allows you to load an
XCAS file without having to have access to the corresponding annotator.

* Write Type System File. Create a type system file from the currently loaded type
definitions. In addition, you can save the current CAS as a XCAS file (see below).
This allows you to later load the type system and XCAS to view the CAS without
having to rerun the annotator.

* Read XMI CAS File. Read an XMI CAS file. Important: XMI CAS is a
serialization format that serializes a CAS without type system and index
information. It is therefore impossible to read in a stand-alone XMI CAS file.

XMI CAS files can only be interpreted in the context of an existing type system.
Consequently, you need to first load the Analysis Engine that was used to create the
XMI file, to be able to load that XMI file.

* Write XMI CAS File. Writes the current analysis out as an XMI CAS file.

* Read XCAS File. Read an XCAS file. Important: XCAS is a serialization format
that serializes a CAS without type system and index information. It is therefore
impossible to read in a stand-alone XCAS file. XCAS files can only be interpreted in
the context of an existing type system. Consequently, you need to load the Analysis
Engine that was used to create the XCAS file to be able to load it. Loading a XCAS
tile without loading the Analysis Engine may produce strange errors. You may
get syntax errors on loading the XCAS file, or worse, everything may appear to go
smoothly but in reality your CAS may be corrupted.

* Write XCAS File. Writes the current analysis out as an XCAS file.

e Exit. Exits the program. Your preferences will be saved.

UIMA Version 2.3.0 CAS Visual Debugger 53

The Edit Menu

5.4.2. The Edit Menu

Edit | Run To

Undo ctrl-=Z

8 cut ctlx

Copy ctrl-c
Paste Ctrl-V

The "Edit" menu provides a standard text editing menu with Cut, Copy and Paste, as well
as unlimited Undo.

Note that standard keyboard accelerators Ctrl-X, Ctrl-C, Ctrl-V and Ctrl-Z can be used for
Cut, Copy, Paste and Undo, respectively. The text area supports other standard keyboard
operations such as navigation HOME, Ctrl-HOME etc., as well as marking text with Shift-
<ArrowKey>.

5.4.3. The Run Menu

File Edit gun| Tools Help

Analysis R | oad AE ctr-L
CAS Indey Run HmmTagger TAE Cti-R
o= Sofalf gun M T rT1 CAG

o= Annot

Run collectionProcessComplete

Recently used ... 4
Language]
Set data path

In the Run menu, you can load and run text analysis engines.

* Load AE. Loads and initializes a text analysis engine. Choosing this menu item

will display a file open dialog where you should choose an XML descriptor of a
Text Analysis Engine to process the current text. Even if the analysis engine runs
fast, this will take a while, since there is a lot of setup work to do when a new TAE
is created. So be patient. When you develop a new annotator, you will often need
to recompile your code. Gladis will not reload your annotator code. When you
recompile your code, you need to terminate the GUI and restart it. If you only make
changes to the XML descriptor, you don't need to restart the GUI. Simply reload the
XML file.

Run AE. Before you have (successfully) loaded a TAE, this menu item will be
disabled. After you have loaded a TAE, it will be enabled, and the name changes
according to the name of the TAE you have loaded. For example, if you've loaded
"The World's Fastest Parser", you will have a menu item called "Run The World's
Fastest Parser". When you choose the item, the TAE is run on whatever text you
have currently loaded. After a TAE has run successfully, the index window in the

54

CAS Visual Debugger UIMA Version 2.3.0

The tools menu

upper left-hand corner of the screen should be updated and show the indexes that
were created by this run. We will have more to say about indexes and what to do
with them later.

Run AE on CAS. This allows you to run an analysis engine on the current CAS.
This is useful if you have loaded a CAS from an XCAS file, and would like to run
further analysis on it.

Run collectionProcessComplete. ~ When you select this item, the analysis engine's
collectionProcessComplete() method is called.

Performance Report. After you've run your analysis, you can view a
performance report. It will show you where the time went: which component used
how much of the processing time.

Recently used. Collects a list of recently used analysis engines as a short-cut for
loading.

Language. Some annotators do language specific processing. For example, if
you run lexical analysis, the results may be quite different depending on what the
analysis engine thinks the language of the document is. With this menu item, you
can manually set the document language. Alternatively, you can use an automatic
language identification annotator. If the analysis engines you're working with are
language agnostic, there is no need to set the language.

54.4. The tools menu

The tools menu contains some assorted utilities, such as the log file viewer. Here you can
also set the log level for UIMA. A more detailed description of some of the menu items
follows below.

5.4.4.1. View Type System

¢ uimatcas Annotation &

Options
uimajcastong +| |Feature Value Type Defined On
vima.cas.Dauble Ei sofa uima.cas.Sofa uima.cas . Annotation...
uima.cas. Sofa : begin |uima.cas.Integer uima.tcas.Annotation
¢ uima.cas.AnnotationBase Ei end uima.cas.Integer uimatcas.Annatation
;Kind |example.PersonTitleKind |example.PersonTitle

uima.tcas.Documents
example EmailAddre
example Mame

org.apache.uima.exal | ¢
org.apache.uima.exal | &

1]

Il | v |

Brings up a new window that displays the type system. This menu item is disabled until
the first time you have run an analysis engine, since there is no type system to display
until then. An example is shown above.

UIMA Version 2.3.0 CAS Visual Debugger 55

The tools menu

You can view the inheritance tree on the left by expanding and collapsing nodes. When
you select a type, the features defined on that type are displayed in the table on the right.
The feature table has three columns. The first gives the name of the feature, the second

one the type of the feature (i.e., what values it takes), and the third column displays the
highest type this feature is defined on. In this example, the features "begin" and "end" are
inherited from the built-in annotation type.

In the options menu, you can configure if you want to see inherited features or not (not yet
implemented).

5.4.4.2. Show Selected Annotations

& AnnotationIndex - nlu.ne.NamedEntity 1Ol x|

While the House and Senate intelligence oversight committee have received classified 1=
infarmation ahout planned covert operations against , the C.IA has nottold
lawmakers how the agency and the Bush administration see those operations fitting into
the larger war on , arthe global wear on terrorism, Congressional officials said.

"What they haven't told us is how does the intelligence piece fit into the larger offensive
against, or how do these exira demands on our intelligence capabilities effect our

commitment to the war on terrorism in PpRENEENR" said one official.

Congressional leaders complained that they have heen left in the dark on how the
intelligence community will be used just as they are about to debate a resolution to
supportwar with .

Congressional leaders said the decision to fight the Congressional request may stem
from a fear of exposing divisions within the intellinence community over the
administration's strategy, perhaps including a debate between the agency and the
Pentagon overthe military's rale in intelligence operations in .

Defense Donald H. Rumsfeld has been moving to strengthen his control over
the military's intelligence apparatus, potentially setting up a turfwar for dominance among
American intelligence officials. Mr. BEumsfeld has also heen pushing to expand the role of |

Figure 5.1. Annotations produced by a statistical named entity tagger

To enable this menu, you must have run an analysis engine and selected the
“AnnotationIndex" or one of its subnodes in the upper left hand corncer of the screen. It
will bring up a new text window with all selected annotations marked up in the text.

Figure 5.1, “ Annotations produced by a statistical named entity tagger ” [56] shows
the results of applying a statistical named entity tagger to a newspaper article. Some
annotation colors have been customized: countries are in reverse video, organizations
have a turquois background, person names are green, and occupations have a maroon
background. The default background color is yellow. This color is also used if there is
more than one annotation spanning a certain text. Clearly, this display is only useful if
you don't have any overlapping annotations, or at least not too many.

This menu item is also available as a context menu in the Index Tree area of the main
window. To use it, select the annotation index or one of its subnodes, right-click to bring
up a popup menu, and select the only item in the popup menu. The popup menu is
actually a better way to invoke the annotation display, since it changes according to the
selection in the Index Tree area, and will tell you if what you've selected can be displayed
or not.

56

CAS Visual Debugger UIMA Version 2.3.0

The Main Display Area

5.5. The Main Display Area

The main display area has three sub-areas. In the upper left-hand corner is the index
display, which shows the indexes that were defined in the AE, as well as the types of the
indexes and their subtypes. In the lower left-hand corner, the content of indexes and sub-
indexes is displayed (FS display). Clicking on any node in the index display will show
the corresponding feature structures in the FS display. You can explore those structures
by expanding the tree nodes. When you click on a node that represents an annotation,
clicking on it will cause the corresponding text span to marked in the text display.

File Edit Run Tools Help

Analysis Results ————— |- C:\icode\ApacheUIMAWIimaj-examples'srcimain'data‘Apach
CAS Index Repository Welcome to Apache UIMA (Unstructured Information Z
o= Sofalndex [0] Management Architecture), a incubator project of the
o Annotationindex [443] Apache Software Foundation (ASF).

Qur goal is a thriving community of users and
developers of UIMA frameworks, suppoarting
components for analysing unstructured content such as
tesdt, audio and viden.

Whatis UIMA?

Annotationindex - uimateas An= || ||| Unstructured Information Management applications are
T [0.89] I=|| ||| software systems that analyze large volumes of
o= [0]= uima tcas.Docume unstructured information in arder to discover knowledge
o [1]=org.apache.uima.g thatis relevantto an end user.
o= [2]= arg.apache.uima.g UIMA is a framework and SDK for developing such
o [3]= arg.apache.uima.g applications. An example UIM application might ingest
e plain text and identify entities, such as persons, places,
¢ sofa = uima.cas.5o0 arganizations; ar relations, such as warks-for ar
begin=12 located-at.
end=12 LIIMA enables such an application to be decompased
o= [8]= org.apache.uima.g_ || ||| into components, for example "language identification”
o [6] = org.apache.uima.g || ||| -= "language specific segmentation” -= "sentence
4 Ill | [»] boundary detection” -= "entity detection (personiplace

b ([

[13:30:13] Done running AE Agaregate TAE - Tokenizer, Name Recog |UIMA_AnaIysis_ |n: 12-

Figure 5.2. State of GUI after running an analysis engine

Figure 5.2, “State of GUI after running an analysis engine” [57] shows the state after
running the UIMA_Analysis_Example.xml aggregate from the uimaj-examples project.
There are two indexes in the index display, and the annotation index has been selected.
Note that the number of structures in an index is displayed in square brackets after the
index name.

Since displaying thousands of sister nodes is both confusing and slow, nodes are grouped
in powers of 10. As soon as there are no more than 100 sister nodes, they are displayed
next to each other.

In our example, a name annotation has been selected, and the corresponding token text
is highlighted in the text area. We have also expanded the token node to display its
structure (not much to see in this simple example).

In Figure 5.2, “State of GUI after running an analysis engine” [57], we selected an
annotation in the FS display to find the corresponding text. We can also do the reverse

UIMA Version 2.3.0 CAS Visual Debugger 57

The Main Display Area

and find out what annotations cover a certain point in the text. Let's go back to the name
recognizer for an example.

File Edit Run Tools Help
Analysis Results ———— |-C:icode\ApacheUIMAWImaj-examplesisrcimain\ata\Apach

CAS Index Repository with some support for Perl, Python and TCL. -

o= Sofalndex [0]

o Annotationindex [443] o
Apache UIMA mailing lists:

gers - uima-user@incubator.apache.org
Developers - uima-devi@incubator.apache.org
Commits - uima-commits@incubator.apache.org

Annotationindex - uima tcas Al
¢ [0.98]
o~ [0] = uimatcas. Documea Michael Baessler
@ [1]= org.apache.uima.g —
o [2] = arg.apache.uima.g Position: 2267
@ [3]= org.apache.uima.g [0] = uima.tcas.DocumentAnnotation

Apache UIMA project committers:

L] »

o [4]= example.Name [371] = org.apache.uima.examples.tokenizer.Sentence
o= [5] = org.apache.uima.g

o [6] = arg.apache.uima.d [402] = example.Name

o [T]= org.apache.uima.g [403] = org.apache.uima.examples.tokenizer.Token
o [8]= example.Mame
o= [9]= org.apache.uima.q =|| || Ken Coar (ASF member and Vice President)
] i | [»] Sam Ruby (A5F member) E‘

[13:30:13] Done running AE Agaregate TAE - Tokenizer, Name Recogn |UIMA_AnaIysis_ | r 2267

Figure 5.3. Finding annotations for a specific location in the text

We would like to know if the Michael Baessler has been recognized as a name. So we
position the cursor in the corresponding text span somewhere, then right-click to bring up
the context menu telling us which annotations exist at this point. An example is shown in
Figure 5.3, “ Finding annotations for a specific location in the text ” [58].

CAS Visual Debugger UIMA Version 2.3.0

The Status Bar

File Edit Run Tools Help
Analysis Results ————— |- C:\icode\ApacheUIMA'wimaj-examples'src'main'data\Apach

CAS Index Repository with some support for Perl, Python and TCL. -

o= Sofalndex [0]

o Annotationindex [443] S
Apache UIMA mailing lists:

Users - uima-user@incubator.apache.org
Developers - uima-devi@incubator.apache.org
Commits - uima-commits@incubator.apache.org

o= [34] = org.apache.uimal-2| Apache UIMA project committers:

& [95] = org.apache.uima

o= [96] = org.apache.uima Michael Elaesslerl

o [97] = arg.apache.uima Edward Epstein

o= [98] = org.apache.uima Thilo Goetz

@ [99] = arg.apache.uima Adam Lally —i
o= [100..199] Marshall Schor
&~ [200..239] =]
o= [300..359] | L
& [400] = arg.apache.uima.ex Apache UIMA praject Mentars:
o= [401] = arg.apache.uima.ey_ |
o [402] = example Name ||| ||| Ken Coar (ASF member and Vice President)

4] i | [»] Sam Ruby (43F memhber) |~

W13:30:13] Done running AE Agareaate TAE - Tokenizer, Name Reci [UIMA_Analysis_ [2267 - 2233

Figure 5.4. Selecting an annotation from the context
menu will highlight that annotation in the FS display

At this point (Figure 5.3, “ Finding annotations for a specific location in the text

” [58]), we only know that somewhere around the text cursor position (not visible

in the picture), we discovered a name. When we select the corresponding entry in the
context menu, the name annotation is selected in the FS display, and its covered text is
highlighted. Figure 5.4, “ Selecting an annotation from the context menu will highlight
that annotation in the FS display ” [59] shows the display after the name node has
been selected in the popup menu.

We're glad to see that, indeed, Michael Baessler is considered to be a name. Note that in
the FS display, the corresponding annotation node has been selected, and the tree has been
expanded to make the node visible.

NB that the annotations displayed in the popup menu come from the annotations
currently displayed in the FS display. If you didn't select the annotation index or one of its
sub-nodes, no annotations can be displayed and the popup menu will be empty.

5.5.1. The Status Bar

At the bottom of the screen, some useful information is displayed in the status bar.

The left-most area shows the most recent major event, with the time when the event
terminated in square brackets. The next area shows the file name of the currently loaded
XML descriptor. This area supports a tool tip that will show the full path to the file.

The right-most area shows the current cursor position, or the extent of the selection, if a
portion of the text has been selected. The numbers correspond to the character offsets that
are used for annotations.

UIMA Version 2.3.0 CAS Visual Debugger 59

Keyboard Navigation and Shortcuts

5.5.2. Keyboard Navigation and Shortcuts

The GUI can be completely navigated and operated through the keyboard. All menus and
menu items support keyboard mnemonics, and some common operations are accessible
through keyboard accelerators.

You can move the focus between the three main areas using Tab (clockwise) and Shi f t -
Tab (counterclockwise). When the focus is on the text area, the Tab key will insert the
corresponding character into the text, so you will need touse Ctrl - Taband Ctr| - Shi f t -
Tab instead. Alternatively, you can use the following key bindings to jump directly to

one of the areas: Ct r| - T to focus the text area, Ctr| - | for the index repository frame and

Ctr | - F for the feature structure area.

Some additional keyboard shortcuts are available only in the text area, suchas Ctr| - X
for Cut, &t rl - Cfor Copy, Ct rl -V for Paste and Ct r | - Z for Undo. The context menu in
the text area can be evoke through the Al t - Ent er shortcut. Text can be selected using the
arrow keys while holding the Shi ft key.

The following table shows the supported keyboard shortcuts.

Table 5.2. Keyboard shortcuts

Shortcut Action Scope
arl-0 Open text file Global
arl-s Save text file Global
Grl-L Load AE descriptor Global
arl-R Run current AE Global
crl-1 Switch focus to index Global
repository
arl-T Switch focus to text area Global
arl-F Switch focus to FS area Global
Crl-X Cut selection Text
arl-C Copy selection Text
arl-v Paste selection Text
arl-z Undo Text
Alt-Enter Show context menu Text
CAS Visual Debugger UIMA Version 2.3.0

Chapter 6. Apache UIMA Cas Editor User's
Guide

6.1. Introduction

The CAS Editor is an annotation tool which supports manual and automatic annotation
(via running UIMA annotators) of CASes stored in files. Currently only text-based CAS
are supported. The CAS Editor can visualize and edit all feature structures. Feature
Structures which are annotations can additionally be viewed and edited directly on text.

6.2. Projects

The CAS Editor operates only with special Eclipse projects created using the menu pick
for new Projects -> Other -> Cas Editor -> Cas Editor Project. The CAS Editor operates on
artifacts in one or more of these kinds of projects. It is not possible to use the Cas Editor to
open artifacts which are located outside of a project.

6.2.1. Cas Editor Project structure

A Cas Editor project includes these elements:

* Type system The type system must be present for opening a CAS file or running a
CAS processor.

* Corpus folder A corpus folder is a collection of CAS files in the project. A project can
have multiple corpus folders.

* CAS file The CAS itself. It must be located in a corpus folder and must end with
".xmi" or".xcas" to be recognized as a CAS file.

* CAS Processor folder A processor folder contains Analysis Engine and CAS
Consumer Descriptors. The CAS processor folder is also put on the data path for the
processors when they are run. A project can have multiple processor folders.

* Analysis Engine Descriptor Configuration for an Analysis Engine which can be
used to annotate CAS files in a corpus folder. To be recognized as Analysis Engine
Descriptor the file must end with ".xml", contain an Analysis Engine Descriptor and
must be placed in a processor folder.

* Consumer Descriptor Configuration for a Consumer which can be fed with the CAS
files in a corpus. To be recognized as Consumer Descriptor the file must end with
".xml", contain a Cas Consumer Descriptor and must be placed in a processor folder.

These elements are shown differently than normal files and folders in the corpus explorer
view. In addition to the listed elements a project can also contain files and folders e.g.

Cas Editor User's Guide 61

Add a type system

for documentation. If one of these special elements contains an error, a marker which
describes the problem is added to the file and shown in the editor (the file itself is not
marked).

The corpus explorer with a project looks like this:

[corpus Explorer

= d Test
= 4, processor
| PersonTitleAnnotatorxml
@Typesystem
- @ corpus
1 0.xmi
] 1.xmi
] 10.xmi
] 11.xmi
] 110.xmi
] 111.xmi

6.2.2. Add a type system

Its strongly recommended to first add a valid type system to the project; other functions
are only available if the type system is present. Use copy and paste to import an existing
type system (no drag n' drop support). Editing of the type system is supported, but
afterwards all editors should be reopened to recognize the type system change.

After the type system file is added, you need to make the CAS Editor aware of its
existence. To do this open the Properties dialog for the project and then select the type
system as shown here:

62

Cas Editor User's Guide UIMA Version 2.3.0

Add corpus folder

Properties for testing

type filter text Project

Annotations
Project

Processor Folders
DateFinder New..
Remove
Up
. Down
=
Corpus Folders
New...
Remove
Up
. Down
L=
Typesystem TypeSystem.xm Browse...

Line Length Hint 80

Restore Defaults Apply

Cancel OK
&4

Now the new type system element can be seen in the project tree of the corpus explorer.

6.2.3. Add corpus folder

To add a corpus folder first create a new folder. Then open the Properties dialog and add
the folder to the list of corpus folders. It than appears as a corpus folder in the corpus
explorer.

The corpus explorer automatically hides all non-CAS files in the corpus folder. The CAS
tiles are organized in a flat hierarchy; sub folders which contain CAS files are not shown.

6.3. Annotation editor

The annotation editor shows the text with annotations and provides different views to
show aspects of the CAS.

6.3.1. Editor

The editor has an associated, changable CAS Type. This type is called the editor "mode".
By default the editor only shows annotation of this type. Actions and views are sensitive
to this mode. To change the mode for the editor, use the "Mode" menu in the editor
context menu.

The editor can also show annotations of other Types. To do this, use the "Show" menu
in the context menu. The annotation renderer and rendering layer can be changed in the
Properties dialog. After the change all editors should be re-opened.

The editor automatically selects annotations of the editor mode Type that are near the
cursor. This selection is then synchronized or displayed in other views.

UIMA Version 2.3.0 Cas Editor User's Guide 63

Outline view

To create an annotation manually using the editor, mark a piece of text and then press
the enter key. This creates an annotation of the type of the editor mode, having bounds
corresponding to the selection.

It is also possible to choose the annotation type; press shift + enter (smart insert) for this.
Then a dialog asks for the annotation type to create, either select the desired type or use
the associated key shortcut.

To delete an annotation select it and press the delete key. Only annotations of the editor
mode can be selected.

oo |

Eﬂ July 14, the father of a family got painfully injured

after he had tried to start o barbecue.| [D'JE flaring flames burnt
instantly through his jacket, which he managed to pull off
'last—minute.] E‘lthou{g{b the wounds weren't life-threatening, it was
urgent to bring him directly into ambulance. Eut the only hospital
that had opened that Sunday was the Paracelsus Hospital in §3939
Weilheim, which was 2 hours away. Convulsed with pain, the man
finally arrived in Stifterstrafe 15,

where the personal immediately togk care of hirnJ

AR AL

6.3.2. Outline view

The outline view gives an overview of the annoations which are shown in the editor, the
annotation are grouped by type. There are actions to increase or decrease the bounds of
the selected annotation. There is also an action to merge selected annotations. The outline
has second view mode where only annotations of the current editor mode are shown. The
style can be switched in the view menu.

64

Cas Editor User's Guide UIMA Version 2.3.0

Edit Views

o= outline - ([l FeatureStructure View

- a4 e e
b O 3 3 b4

Text

=~ Person
KAREM
JESPER
Ole Due Mielsen

= Date
1922
1922
1922
1970

< Token
vaffelisen
fra

Helsingar

Commim s e

6.3.3. Edit Views

The Edit Views show details about the currently selected annotations or feature structures.
It is possible to change primitive values in this view. Referenced feature structures can

be created and deleted including arrays. To link a feature structures with other feature
structures it can be pinned to the edit view. This means that it does not change if the
selection changes.

[l Edit View| A
Feature Value
p sofa [Sofa)
begin 739
end 749
day null
month null
year null

6.3.4. FeatureStructure View

The FeatureStructure View lists all feature structures of a specified type. The type is
selected in the type combobox.

UIMA Version 2.3.0 Cas Editor User's Guide 65

Cas processor integration

Its possible to create and delete feature structures of every type.

Outline [T_"Feature "

Create ¥

Type: com.calcucare.nlp.Token ti

Token (id=25) m
Token (id=35)
Token (id=45)
Token (id=55)
Token (id=65)
Token (id=75)
Token (id=85)
Token (id=95)
Token (id=105)
Token (id=115)
Token (id=125)
Token (id=135)
Token (id=145)
Token (id=155)
Token (id=165)
Token (id=175)
Token (id=185)
Token (id=195)
Token (id=205)
Token (id=215) 1
Token (id=225) v

6.4. Cas processor integration

An Analysis Engine can be run against either a whole corpus or just a few CAS files. To
do this select a corpus or some CAS files and then choose in the context menu the correct
Analysis Engine. The filename of the Analysis Engine must end with ".xml" otherwise it is
not recognized as an Analysis Engine.

The CAS Consumer can be fed with the CAS files loaded from a corpus. To do this select
a corpus and then select the consumer in the context menu. To add a CAS Consumer
Descriptor paste a file into the processor folder. The filename must end with ".xml";
otherwise it is not recognized as consumer.

66

Cas Editor User's Guide UIMA Version 2.3.0

Chapter 7. JCasGen User's Guide

JCasGen reads a descriptor for an application (either an Analysis Engine Descriptor, or
a Type System Descriptor), creates the merged type system specification by merging
all the type system information from all the components referred to in the descriptor,
and then uses this merged type system to create Java source files for classes that enable
JCas access to the CAS. Java classes are not produced for the built-in types, since these
classes are already provided by the UIMA SDK. (An exception is the built-in type

ui ma. t cas. Docunent Annot at i on, see the warning below.)

Warning: If the components comprising the input to the type merging process
have different definitions for the same type name, JCasGen will show a warning,
and in some environments may offer to abort the operation. If you continue past
this warning, JCasGen will produce correct Java source files representing the
merged types (that is, the type definition containing all of the features defined

on that type by all of the components). It is recommended that you do not use

this capability (of having two different definitions for the same type name, with
different feature sets) since it can make it difficult to combine/package your
annotator with others. See Section 5.5, “Merging Types” in UIMA References for
more information.

There are several versions of JCasGen. The basic version reads an XML descriptor

which contains a type system descriptor, and generates the corresponding Java Class
Models for those types. Variants exist for the Eclipse environment that allow merging the
newly generated Java source code with previously augmented versions; see Section 5.4,
“Augmenting the generated Java Code” in UIMA References for a discussion of how the
Java Class Models can be augmented by adding additional methods and fields.

Input to JCasGen needs to be mostly self-contained. In particular, any types that are
defined to depend on user-defined supertypes must have that supertype defined, if

the supertype is ui ma. t cas. Annot ati on or a subtype of it. Any features referencing
ranges which are subtypes of uima.cas.String must have those subtypes included. If this
is not followed, a warning message is given stating that the resulting generation may be
inaccurate.

JCasGen is typically invoked automatically when using the Component Descriptor
Editor (see Section 1.8, “Type System Page” [17]), but can also be run using a shell script.
These scripts can take 0, 1, or 2 arguments. The first argument is the location of the file
containing the input XML descriptor. The second argument specifies where the generated
Java source code should go. If it isn't given, JCasGen generates its output into a subfolder
called JCas (or sometimes JCasNew — see below), of the first argument's path.

If no arguments are given to JCasGen, then it launches a GUI to interact with the user
and ask for the same input. The GUI will remember the arguments you previously used.
Here's what it looks like:

JCasGen User's Guide 67

../references/references.pdf#ugr.ref.jcas.merging_types_from_other_specs
../references/references.pdf#ugr.ref.jcas.augmenting_generated_code
../references/references.pdf#ugr.ref.jcas.augmenting_generated_code

Running stand-alone without Eclipse

% JCasGen E]@

File Help

.ﬁ?‘ Unstructured Information Management Architecture
5

. An Apache meubator Praject.

‘Weloome to the JCazGen tool. You can drag corners to resize.

} C:/uima/examples/descriptors/analysis_engine/PersonTitlelnnotator. xml
Input File:

ftemp
COutput Directory:

Status

When running with automatic merging of the generated Java source with previously
augmented versions, the output location is where the merge function obtains the source
for the merge operation.

As is customary for Java, the generated class source files are placed in the appropriate
subdirectory structure according to Java conventions that correspond to the package
(name space) name.

The Java classes must be compiled and the resulting class files included in the class path of
your application; you make these classes available for other annotator writers using your
types, perhaps packaged as an xxxjar file. If the xxx.jar file is made to contain only the
Java Class Models for the CAS types, it can be reused by any users of these types.

7.1. Running stand-alone without Eclipse

There is no capability to automatically merge the generated Java source with previous
versions, unless running with Eclipse. If run without Eclipse, no automatic merging of the
generated Java source is done with any previous versions. In this case, the output is put in
a folder called “JCasNew” unless overridden by specifying a second argument.

The distribution includes a shell script/bat file to run the stand-alone version, called
jeasgen.

7.2. Running stand-alone with Eclipse

If you have Eclipse and EMF (EMF = Eclipse Modeling Framework; both of these are
available from http://www.eclipse.org) installed (version 3 or later) JCasGen can merge
the Java code it generates with previous versions, picking up changes you might have

68

JCasGen User's Guide UIMA Version 2.3.0

http://www.eclipse.org

Running within Eclipse

inserted by hand. The output (and source of the merge input) is in a folder “JCas” under
the same path as the input XML file, unless overridden by specifying a second argument.

You must install the UIMA plug-ins into Eclipse to enable this function.

The distribution includes a shell script/bat file to run the stand-alone with Eclipse
version, called jcasgen_merge. This works by starting Eclipse in “headless” mode (no
GUI) and invoking JCasGen within Eclipse. You will need to set the ECLIPSE_HOME
environment variable or modify the jcasgen_merge shell script to specify where to find
Eclipse. The version of Eclipse needed is 3 or higher, with the EMF plug-in and the UIMA
runtime plug-in installed. A temporary workspace is used; the name/location of this is
customizable in the shell script.

Log and error messages are written to the UIMA log. This file is called uima.log, and is
located in the default working directory, which if not overridden, is the startup directory
of Eclipse.

7.3. Running within Eclipse

There are two ways to run JCasGen within Eclipse. The first way is to configure an Eclipse
external tools launcher, and use it to run the stand-alone shell scripts, with the arguments
filled in. Here's a picture of a typical launcher configuration screen (you get here by
navigating from the top menu: Run —> External Tools —> External tools...).

UIMA Version 2.3.0 JCasGen User's Guide 69

Running within Eclipse

& Extemal Tools %]

X

Create, manage, and run configurations

Configuration pame:]run JCasGen

;:'% Art

%: E Main |€§'? Ha‘reshlﬁ Qnmmun!
- $Bg Prog

; & - Location:

: Browse Waorkspace...
e IC:“.uima_1 0.00bin%jcasgen_merge bat

Browse File System...

Waorking Directory:

Browse Workispace. .
IC SatEclipseworkspace test

Browse File System... I

Arguments:

c\path4o-nput-descriptor'my{Types xml & \temp Yanables. .. |

Mote: Enclose an argument containing spaces using double-quates).
Mot applicable for varables.

W Buntool in background

Mew Apply Revert

Run Close

The second way (which is the normal way it's done) to run within Eclipse is to use the
Component Descriptor Editor (CDE) (see Chapter 1, Component Descriptor Editor User’s
Guide [1]). This tool can be configured to automatically launch JCasGen whenever the type
system descriptor is modified. In this release, this operation completely regenerates the
files, even if just a small thing changed. For very large type systems, you probably don't
want to enable this all the time. The configurator tool has an option to enable/disable this
function.

70 JCasGen User's Guide UIMA Version 2.3.0

Chapter 8. PEAR Packager User's Guide

A PEAR (Processing Engine ARchive) file is a standard package for UIMA (Unstructured
Information Management Architecture) components. The PEAR package can be used for
distribution and reuse by other components or applications. It also allows applications
and tools to manage UIMA components automatically for verification, deployment,
invocation, testing, etc. Please refer to Chapter 6, PEAR Reference in UIMA References for
more information about the internal structure of a PEAR file.

This chapter describes how to use the PEAR Eclipse plugin or the PEAR command line
packager to create PEAR files for standard UIMA components.

8.1. Using the PEAR Eclipse Plugin

The PEAR Eclipse plugin is automatically installed if you followed the directions in
Chapter 3, Setting up the Eclipse IDE to work with UIMA in UIMA Overview & SDK Setup.
The use of the plugin involves the following two steps:

¢ Add the UIMA nature to your project

* Create a PEAR file using the PEAR generation wizard

8.1.1. Add UIMA Nature to your project

First, create a project for your UIMA component:

* Create a Java project, which would contain all the files and folders needed for your
UIMA component.

* Create a source folder called “src” in your project, and make it the only source
folder, by clicking on “Properties” in your project's context menu (right-click), then
select “Java Build Path”, then add the “src” folder to the source folders list, and
remove any other folder from the list.

* Specify an output folder for your project called bin, by clicking on “Properties” in
your project's context menu (right-click), then select “Java Build Path”, and specify
“your_project_name/bin” as the default output folder.

Then, add the UIMA nature to your project by clicking on “Add UIMA Nature” in the
context menu (right-click) of your project. Click “Yes” on the “Adding UIMA custom
Nature” dialog box. Click “OK” on the confirmation dialog box.

PEAR Packager User's Guide 71

../references/references.pdf#ugr.ref.pear
../overview_and_setup/overview_and_setup.pdf#ugr.ovv.eclipse_setup

Add UIMA Nature to your project

Java - Eclipse Platform

File Edit Source Refactor Navigate Search Project Run Window Heip
e -0 -Q - BHEGG- @ B | & 1ava gt
'S o ; <=Plug-n Devel. ..
A B Hierarchy JUnit O o< Outine 3 =
= W An outline is not avaiable.
+ L,-_;ﬂ com, ibm.uima. My Analysis New ¥
Go Into
Open in Neswy Window
Open Type Hierarchy F4
| Copy Cirl+C
73] anisole 70 B =
H Delete Delete
Source Alt4shift+s »
Refactor Alt+Shift+T #
£y Import...
L Bxport...
= Refresh F5
cormn.ibm, uima, My AnalysisEngine Close Project
¥ Add UIMA Nature
Run 4

Adding the UIMA nature to your project creates the PEAR structure in your project. The
PEAR structure is a structured tree of folders and files, including the following elements:

* Required Elements:

* The metadata folder which contains the PEAR installation descriptor and
properties files.

¢ The installation descriptor (metadata/install.xml)
* Optional Elements:

® The desc folder to contain descriptor files of analysis engines, component
analysis engines (all levels), and other component (Collection Readers, CAS
Consumers, etc).

e The src folder to contain the source code

¢ The bin folder to contain executables, scripts, class files, dlls, shared libraries,

etc.

¢ The lib folder to contain jar files.

72 PEAR Packager User's Guide UIMA Version 2.3.0

Using the PEAR Generation Wizard

* The doc folder containing documentation materials, preferably accessible
through an index.html.

¢ The data folder to contain data files (e.g. for testing).

¢ The conf folder to contain configuration files.

* The resources folder to contain other resources and dependencies.
e Other user-defined folders or files are allowed, but should be avoided.

For more information about the PEAR structure, please refer to the “Processing Engine
Archive” section.

Root

desc

C

bin

O

oc

conf
data

i

resources

Figure 8.1. The Pear Structure

8.1.2. Using the PEAR Generation Wizard

Before using the PEAR Generation Wizard, add all the files needed to run your
component including descriptors, jars, external libraries, resources, and component
analysis engines (in the case of an aggregate analysis engine), etc. Do not add Jars for the
UIMA framework, however. Doing so will cause class loading problems at run time.

If you're using a Java IDE like Eclipse, instead of using the output folder (usually bi n as
the source of your classes, it's recommended that you generate a Jar file containing these
classes.

UIMA Version 2.3.0 PEAR Packager User's Guide 73

Using the PEAR Generation Wizard

Then, click on “Generate PEAR file” from the context menu (right-click) of your project, to
open the PEAR Generation wizard, and follow the instructions on the wizard to generate
the PEAR file.

8.1.2.1. The Component Information page

The first page of the PEAR generation wizard is the component information page.
Specify in this page a component ID for your PEAR and select the main Analysis
Engine descriptor. The descriptor must be specified using a pathname relative

to the project's root (e.g. “desc/MyAE.xml”). The component id is a string that
uniquely identifies the component. It should use the JAVA naming convention (e.g.
org.apache.uima.mycomponent).

Optionally, you can include specific Collection Iterator, CAS Initializer (deprecated as of
Version 2.1), or CAS Consumers. In this case, specify the corresponding descriptors in this

page.

& PEAR Generation Wizard @

UIMA - Installation Descriptor - Component Information

Enter information about your UIMA component. The required fields are indicated with a ().
The descriptor must be specified using paths relative to the project’s root (e.g. "desc/MyTAE.xml").

w

Component Information
Component ID*: 1 com.ibm.uima.MyAnalysisEngine
Component Descriptor™=;] desc'MyAnnotatorDescriptor.xmi Browse...

[~ Setoptional descriptors (Optional)

Collection Iterator Descriptor: |

CAS Initializer Descriptor: |

[

CAS Consumer Descriptor: |

I Next > | riis Cancel

Figure 8.2. The Component Information Page

8.1.2.2. The Installation Environment page

The installation environment page is used to specify the following;:
¢ Preferred operating system
* Required JDK version, if applicable.

PEAR Packager User's Guide UIMA Version 2.3.0

Using the PEAR Generation Wizard

* Required Environment variable settings. This is where you specify special
CLASSPATH paths. You do not need to specify this for any Jar that is listed in
the your eclipse project classpath settings; those are automatically put into the
generated CLASSPATH. Nor should you include paths to the UIMA Framework
itself, here. Doing so may cause class loading problems.

non

CLASSPATH segments are written here using a semicolon ";" as the separator;
during PEAR installation, these will be adjusted to be the correct character for the
target Operating System.

In order to specify the UIMA datapath for your component you have to create an
environment variable with the property name ui ma. dat apat h. The value of this
property must contain the UIMA datapath settings.

Path names should be specified using macros (see below), instead of hard-coded absolute
paths that might work locally, but probably won't if the PEAR is deployed in a different
machine and environment.

Macros are variables such as $main_root, used to represent a string such as the full path of
a certain directory.

These macros should be defined in the PEAR.properties file using the local values. The
tools and applications that use and deploy PEAR files should replace these macros (in
the files included in the conf and desc folders) with the corresponding values in the local
environment as part of the deployment process.

Currently, there are two types of macros:

* $main_root, which represents the local absolute path of the main component root
directory after deployment.

* $component_id$root, which represents the local absolute path to the root directory of
the component which has component_id as component ID. This component could be,
for instance, a delegate component.

UIMA Version 2.3.0 PEAR Packager User's Guide 75

Using the PEAR Generation Wizard

= PEAR Generation Wizard @

UIMA - Installation Descriptor - Installation Environment

Set the installation environment options and the system properties {e.g. dasspath) for your component.
Note: ClassPath entries must stact with Sman_root/

™ Set installation environment options {Optonal)

Operating System: | = | 2o% version:

I™ setsystem properbes {(Optonal)

[Preperty Hame | Property vaiue
CLASSRATH Smain_rootfbin; $main_root/ib fcasTutorial.jar;.. .
€ >

< Back Mext = Cancel

Figure 8.3. The Installation Environment Page

8.1.2.3. The PEAR file content page

The last page of the wizard is the “PEAR file Export” page, which allows the user to select
the files to include in the PEAR file. The metadata folder and all its content is mandatory.
Make sure you include all the files needed to run your component including descriptors,
jars, external libraries, resources, and component analysis engines (in the case of an
aggregate analysis engine), etc. It's recommended to generate a jar file from your code as
an alternative to building the project and making sure the output folder (bin) contains the
required class files.

Eclipse compiles your class files into some output directory, often named "bin" when you
take the usual defaults in Eclipse. The recommended practice is to take all these files and
put them into a Jar file, perhaps using the Eclipse Export wizard. You would place that Jar
file into the PEAR | i b directory.

Note: 1t you are relying on the class files generated in the output folder (usually
called bin) to run your code, then make sure the project is built properly, and

all the required class files are generated without errors, and then put the output
folder (e.g. $main_root/bin) in the classpath using the option to set environment
variables, by setting the CLASSPATH variable to include this folder (see the
“Installation Environment” page. Beware that using a Java output folder named
"bin" in this case is a poor practice, because the PEAR installation tools will
presume this folder contains binary executable files, and will adds this folder to
the PATH environment variable.

76

PEAR Packager User's Guide UIMA Version 2.3.0

Using the PEAR command line packager

PEAR Generation Wizard

PEAR file

Export resources to a Pear file on the local fle system, %

- ﬂh‘l com.ibm.uima. MyAnalysisEngine

Ei= bin
H& conf
[F= data
[l desc
& doc

G [
Fl&= metadata
[Fl& resources
F& sc

Select Types... | sdectAl | Dessectmr |

To pear fle: | c/\myPEARS \wom. bm.uima. MyAnalyisEngrne| w| Bromse..,

Opbons:
[¥ Compress the contents of the fie

<Back | |Frusi1|{1amd

Figure 8.4. The PEAR File Export Page

8.2. Using the PEAR command line packager

The PEAR command line packager takes some PEAR package parameter settings on the
command line to create an UIMA PEAR file.

To run the PEAR command line packager you can use the provided runPearPackager (.bat
for Windows, and .sh for Unix) scripts. The packager can be used in three different modes.

* Mode 1: creates a complete PEAR package with the provided information (default
mode)

runPear Packager -conpl D <conponent | D>
- mai nConpDesc <mai nConponent Desc> [- cl asspat h <cl asspat h>]
[- dat apat h <dat apat h>] - mai nConpDi r <mai nConponent Di r >
-targetDir <targetDir> [-envVars <propertiesFil ePat h>]

The created PEAR file has the file name <componentID>.pear and is located in the
<targetDir>.

* Mode 2: creates a PEAR installation descriptor without packaging the PEAR file

runPear Packager -create -conpl D <conponent| D>
- mai nConpDesc <nmi nConponent Desc> [-cl asspat h <cl asspat h>]

UIMA Version 2.3.0 PEAR Packager User's Guide 77

Using the PEAR command line packager

[-dat apat h <dat apat h>] - nai nConpDi r <mai nConponent Di r >
[-envVars <propertiesFil ePat h>]

The PEAR installation descriptor is created in the <mainComponentDir>/metadata
directory.

* Mode 3: creates a PEAR package with an existing PEAR installation descriptor

runPear Packager -package -conpl D <conponent | D>
-mai nConpbDi r <mai nConponentDir> -targetDir <targetDir>

The created PEAR file has the file name <componentID>.pear and is located in the
<targetDir>.

The modes 2 and 3 should be used when you want to manipulate the PEAR installation
descriptor before packaging the PEAR file.

Some more details about the PearPackager parameters is provided in the list below:
* <conponent | D>: PEAR package component ID.
* <mai nConponent Desc>: Main component descriptor of the PEAR package.

* <cl asspat h>: PEAR classpath settings. Use $main_root macros to specify path
entries. Use ; to separate the entries.

* <dat apat h>: PEAR datapath settings. Use $main_root macros to specify path
entries. Use ; to separate the path entries.

* <mai nConponent Di r >: Main component directory that contains the PEAR package
content.

¢ <target Di r>: Target directory where the created PEAR file is written to.

* <properti esFil ePat h>: Path name to a properties file that contains environment
variables that must be set to run the PEAR content.

78

PEAR Packager User's Guide UIMA Version 2.3.0

Chapter 9. The PEAR Packaging Maven Plugin

UIMA includes a Maven plugin that supports creating PEAR packages using Maven.
When configured for a project, it assumes that the project has the PEAR layout, and will
copy the standard directories that are part of a PEAR structure under the project root into
the PEAR, excluding files that start with a period ("."). It also will put the Jar that is built
for the project into the lib/ directory and include it first on the generated classpath.

The classpath that is generated for this includes the artifact's Jar first, any user specified
entries second (in the order they are specified), and finally, entries for all Jars found in the
lib/ directory (in some arbitrary order).

9.1. Specifying the PEAR Packaging Maven Plugin

To use the PEAR Packaging Plugin within a Maven build, the plugin must be added to the
plugins section of the Maven POM as shown below:

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. ui ma</ gr oupl d>
<artifact| d>Pear Packagi ngMavenPl ugi n</arti fact!| d>

<I-- if versionis ontted, then -->

<I-- version is inherited from parent's plugi nManagenent section -->
<!-- otherw se, include a version el enent here -->

<l-- says to | oad Maven extensions

(such as packagi ng and type handlers) fromthis plugin -->
<ext ensi ons>t r ue</ ext ensi ons>
<executi ons>
<executi on>
<phase>package</ phase>
<I-- where you specify details of the thing being packaged -->
<configurati on>

<cl asspat h>
<I-- PEAR file conponent classpath settings -->
$mai n_root/|ib/sanple.jar

</ cl asspat h>

<mai nConponent Desc>
<!-- PEAR file main conponent descriptor -->
desc/ ${artifactld}. xm

</ mai nConponent Desc>

<conponent | d>
<!-- PEAR file conponent ID -->
${artifactld}

The PEAR Packaging Maven Plugin 79

Specifying the PEAR Packaging Maven Plugin

</ conponent | d>

<dat apat h>
<I-- PEAR file U MA datapath settings -->
$mai n_r oot/ resour ces

</ dat apat h>

</ confi guration>
<goal s>
<goal >package</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

</ pl ugi ns>
</ bui | d>

To configure the plugin with the specific settings of a PEAR package, the

<confi gur ati on> element section is used. This sections contains all parameters that
are used by the PEAR Packaging Plugin to package the right content and set the specific
PEAR package settings. The details about each parameter and how it is used is shown
below:

* <cl asspat h> - This element specifies the classpath settings for the PEAR
component. The Jar artifact that is built during the current Maven build is
automatically added to the PEAR classpath settings and does not have to be added
manually. In addition, all Jars in the lib directory and its subdirectories will be
added to the generated classpath when the PEAR is installed.

Note: Use $main_root variables to refer to libraries inside the PEAR

package. For more details about PEAR packaging please refer to the Apache
UIMA PEAR documentation.

* <mai nConponent Desc> - This element specifies the relative path to the main
component descriptor that should be used to run the PEAR content. The path must
be relative to the project root. A good default to use is desc/ ${artifactld}.xni.

* <conponent | D> - This element specifies the PEAR package component ID. A good
default touseis ${artifact!d}.

* <dat apat h> - This element specifies the PEAR package UIMA datapath settings. If
no datapath settings are necessary, this element can be omitted.

Note: Use $main_root variables to refer libraries inside the PEAR
package. For more details about PEAR packaging please refer to the Apache
UIMA PEAR documentation.

For most Maven projects it is sufficient to specify the parameters described above. In
some cases, for more complex projects, it may be necessary to specify some additional

80 The PEAR Packaging Maven Plugin UIMA Version 2.3.0

Automatically including dependencies

configuration parameters. These parameters are listed below with the default values that
are used if they are not added to the configuration section shown above.

* <mai nConponent Di r > - This element specifies the main component directory where
the UIMA nature is applied. By default this parameter points to the project root
directory - ${basedir}.

* <target Di r> - This element specifies the target directory where the result of the
plugin are written to. By default this parameters points to the default Maven output
directory - ${basedir}/target

9.2. Automatically including dependencies

A key concept in PEARSs is that they allow specifying other Jars in the classpath. You can
optionally include these Jars within the PEAR package.

The PEAR Packaging Plugin does not take care of automatically adding these Jars (that the
PEAR might depend on) to the PEAR archive. However, this behavior can be manually
added to your Maven POM. The following two build plugins hook into the build cycle
and insure that all runtime dependencies are included in the PEAR file.

The dependencies will be automatically included in the PEAR file using this procedure;
the pear install process also will automatically adds all files in the lib directory (and sub
directories) to the classpath.

The maven- dependency- pl ugi n copies the runtime dependencies of the PEAR into the
|'i b folder, which is where the PEAR packaging plugin expects them.

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven- dependency- pl ugi n</artifactld>
<executi ons>
<l-- Copy the dependencies to the |lib folder for the PEAR to copy -->
<execution>
<i d>copy- dependenci es</i d>
<phase>package</ phase>
<goal s>
<goal >copy- dependenci es</ goal >
</ goal s>
<confi gurati on>
<out put Di rect ory>${basedi r}/|i b</ out put Di rect ory>
<over Wit eSnapshot s>t rue</ over Wi t eSnapshot s>
<i ncl udeScope>runti me</i ncl udeScope>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>

UIMA Version 2.3.0 The PEAR Packaging Maven Plugin 81

Installing The PEAR Packaging Plugin

</ pl ugi ns>
</ bui | d>

The second Maven plug-in hooks into the cl ean phase of the build life-cycle, and deletes
the l'i b folder.

Note: With this approach, the | i b folder is automatically created, populated,
and removed during the build process. Therefore it should not go into the source
control system and neither should you manually place any jars in there.

<bui | d>
<pl ugi ns>
<pl ugi n>

<artifactld>maven-antrun-plugi n</artifactld>
<executi ons>
<l-- Clean the libraries after packaging -->
<execution>
<i d>C eanLi b</i d>
<phase>cl ean</ phase>
<configuration>
<t asks>
<del ete qui et="true"
fail OnError="fal se">
<fileset dir="1ib" includes="**/*_jar"/>
</ del et e>
</t asks>
</ confi guration>
<goal s>
<goal >run</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

</ pl ugi ns>
</ bui | d>

9.3. Installing The PEAR Packaging Plugin

If you specify the Apache Incubating Repository as one of the repositories for your maven
configuration, then the ui na- pear - maven- pl ugi n. j ar will be automatically fetched
when needed. This is typically specified in the POM, the Maven .settings file or in a parent
POM, using this format:

<repositories>
<repository>
<i d>apache-i ncubati ng-repository</id>
<url >http://peopl e. apache. or g/ repo/ n2-i ncubati ng-reposi tory</url >

82 The PEAR Packaging Maven Plugin UIMA Version 2.3.0

Running from the command line

<r el eases>
<I-- never: because artifacts are never updated in the repo -->
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
</repository>
</repositories>

Otherwise, the ui ma- pear - maven- pl ugi n. j ar file must be manually installed into
your local repository. See http://maven.apache.org/general. html#importing-jars. The
information you need to do this is:

e - Dgroupl d=or g. apache. ui ma

e -Dartifactl d=Pear Packagi ngMavenPl ugi n

e - Dversi on=2. 3. 0-i ncubat i ng (change this to the version you want)

* - Dpackagi ng=j ar

e - Dgener at ePon¥t r ue

9.4. Running from the command line

The pear packager can be run as a maven command. To enable this, you have to add the
following to your maven settings file:

<settings>
<pl ugi NG oups>
<pl ugi nG oup>or g. apache. ui ma</ pl ugi nG oup>
</ pl ugi nG oups>

To invoke the pear packager using maven, use the command:

nvn ui ma- pear : package <parameters...>

The settings are the same ones used in the configuration above, specified as -D variables
where the variable name is pear.parameterName. For example:

mvn ui ma- pear: package - Dpear. mai nConponent Desc=desc/ nydescri ptor. xm
- Dpear . conponent | d=f oo

9.5. Building the PEAR Packaging Plugin From
Source

The plugin code is available in the Apache subversion repository at: http://svn.apache.org/
repos/asf/incubator/uima/uimaj/trunk/PearPackagingMavenPlugin. Use the following
command line to build it (you will need the Maven build tool, available from Apache):

#Pear Packagi ngMavenPl ugi n> nvn instal |

UIMA Version 2.3.0 The PEAR Packaging Maven Plugin 83

http://maven.apache.org/general.html#importing-jars
http://svn.apache.org/repos/asf/incubator/uima/uimaj/trunk/PearPackagingMavenPlugin
http://svn.apache.org/repos/asf/incubator/uima/uimaj/trunk/PearPackagingMavenPlugin

Building the PEAR Packaging Plugin From Source

This maven command will build the tool and install it in your local maven repository,
making it available for use by other maven POMs. The plugin version number is
displayed at the end of the Maven build as shown in the example below. For this example,
the plugin version number is: 2. 3. 0-i ncubat i ng

[INFO Installing

/ code/ apache/ Pear Packagi ngMavenP| ugi n/ t ar get /

Pear Packagi ngMavenPl ugi n- 2. 3. 0-i ncubati ng. j ar

to

/ maven-reposi tory/repository/ org/ apache/ ui ma/ Pear Packagi ngMavenPl ugi n/
2. 3. 0-incubati ng/

Pear Packagi ngMavenPl ugi n- 2. 3. 0-i ncubati ng. j ar

[INFO [plugin:updat eRegi stry]

[INFQ ------m - oo
[INFQ BU LD SUCCESSFUL

[INFQ ----mmmmmmmmmm oo oo oo oo oo
[INFO Total tinme: 6 seconds

[INFQ Finished at: Tue Nov 13 15:07:11 CET 2007

[INFQ Final Menory: 10M 24M

T o

84

The PEAR Packaging Maven Plugin UIMA Version 2.3.0

Chapter 10. PEAR Installer User's Guide

PEAR (Processing Engine ARchive) is a new standard for packaging UIMA compliant
components. This standard defines several service elements that should be included

in the archive package to enable automated installation of the encapsulated UIMA
component. The major PEAR service element is an XML Installation Descriptor that
specifies installation platform, component attributes, custom installation procedures and
environment variables.

The installation of a UIMA compliant component includes 2 steps: (1) installation of

the component code and resources in a local file system, and (2) verification of the
serviceability of the installed component. Installation of the component code and
resources involves extracting component files from the archive (PEAR) package in a
designated directory and localizing file references in component descriptors and other
configuration files. Verification of the component serviceability is accomplished with the
help of standard UIMA mechanisms for instantiating analysis engines.

Local PEAR Installation, Verification and Testing W %
e e L S
-1'._{1'-. Unstructured Information Management Architecture

m. Ar Apache Incubator Praject

PE&R File:

Browise. ..

Instalation Directorys:

To launch the PEAR Installer, use the script in the UIMA bin directory:
runPear | nstaller.bat orrunPearlnstaller.sh.

PEAR Installer User's Guide 85

PEAR Installer is a simple GUI based Java application that helps installing UIMA
compliant components (analysis engines) from PEAR packages in a local file system. To
install a desired UIMA component the user needs to select the appropriate PEAR file

in a local file system and specify the installation directory (optional). If no installation
directory is specified, the PEAR file is installed to the current working directory. By
default the PEAR packages are not installed directly to the specified installation directory.
For each PEAR a subdirectory with the name of the PEAR's ID is created where the

PEAR package is installed to. If the PEAR installation directory already exists, the old
content is automatically deleted before the new content is installed. During the component
installation the user can read messages printed by the installation program in the message
area of the application window. If the installation fails, appropriate error message is
printed to help identifying and fixing the problem.

After the desired UIMA component is successfully installed, the PEAR Installer allows
testing this component in the CAS Visual Debugger (CVD) application, which is provided
with the UIMA package. The CVD application will load your UIMA component using

its XML descriptor file. If the component is loaded successfully, you'll be able to run it
either with sample documents provided in the <Ul MA_HOVE>/ exanpl es/ dat a directory,
or with any other sample documents. See Chapter 5, CAS Visual Debugger [49] for more
information about the CVD application. Running your component in the CVD application
helps to make sure the component will run in other UIMA applications. If the CVD
application fails to load or run your component, or throws an exception, you can find
more information about the problem in the uima.log file in the current working directory.
The log file can be viewed with the CVD.

PEAR Installer creates a file named set env. t xt in the <conponent _r oot >/ net adat a
directory. This file contains environment variables required to run your component in

any UIMA application. It also creates a PEAR descriptor (see also Section 6.3, “PEAR
package descriptor” in UIMA References) file named <conponent | D>_pear . xni in the
<conponent _r oot > directory that can be used to directly run the installed pear file in your
application.

The metadata/setenv.txt is not read by the UIMA framework anywhere. It's there for
use by non-UIMA application code if that code wants to set environment variables. The
metadata/setenv.txt is just a "convenience" file duplicating what's in the xml.

The setenv.txt file has 2 special variables: the CLASSPATH and the PATH. The
CLASSPATH is computed from any supplied CLASSPATH environment variable, plus
the jars that are configured in the PEAR structure, including subcomponents. The PATH is
similarly computed, using any supplied PATH environment variable plus it includes the
"bin" subdirectory of the PEAR structure, if it exists.

PEAR Installer User's Guide UIMA Version 2.3.0

../references/references.pdf#ugr.ref.pear.specifier
../references/references.pdf#ugr.ref.pear.specifier

Chapter 11. PEAR Merger User's Guide

The PEAR Merger utility takes two or more PEAR files and merges their contents, creating
anew PEAR which has, in turn, a new Aggregate analysis engine whose delegates are the
components from the original files being merged. It does this by (1) copying the contents
of the input components into the output component, placing each component into a
separate subdirectory, (2) generating a UIMA descriptor for the output Aggregate analysis
engine and (3) creating an output PEAR file that encapsulates the output Aggregate.

The merge logic is quite simple, and is intended to work for simple cases. More complex
merging needs to be done by hand. Please see the Restrictions and Limitations section,
below.

To run the PearMerger command line utility you can use the runPearMerger scripts (.bat
for Windows, and .sh for Unix). The usage of the tooling is shown below:

runPear Merger 1st _input_pear file ... nth_input_pear _file
-n out put_anal ysi s_engi ne_nane [-f output_pear_file]

The first group of parameters are the input PEAR files. No duplicates are allowed here.
The - n parameter is the name of the generated Aggregate Analysis Engine. The optional
- f parameter specifies the name of the output file. If it is omitted, the output is written to
out put _anal ysi s_engi ne_nane. pear in the current working directory.

During the running of this tool, work files are written to a temporary directory created in
the user's home directory.

11.1.

Details of the merging process

The PEARs are merged using the following steps:
1. A temporary working directory, is created for the output aggregate component.

2. Each input PEAR file is extracted into a separate 'input_component_name' folder
under the working directory.

3. The extracted files are processed to adjust the '$main_root' macros. This operation
differs from the PEAR installation operation, because it does not replace the macros
with absolute paths.

4. The output PEAR directory structure, 'metadata’ and 'desc' folders under the
working directory, are created.

5. The UIMA AE descriptor for the output aggregate component is built in the
'desc' folder. This aggregate descriptor refers to the input delegate components,
specifying 'fixed flow' based on the original order of the input components in the

PEAR Merger User's Guide 87

Testing and Modifying the resulting PEAR

command line. The aggregate descriptor's 'capabilities’ and 'operational properties'
sections are built based on the input components' specifications.

6. A new PEAR installation descriptor is created in the 'metadata’ folder, referencing
the new output aggregate descriptor built in the previous step.

7. The content of the temporary output working directory is zipped to created the
output PEAR, and then the temporary working directory is deleted.

The PEAR merger utility logs all the operations both to standard console output and to a
log file, pm.log, which is created in the current working directory.

11.2.

Testing and Modifying the resulting PEAR

The output PEAR file can be installed and tested using the PEAR Installer. The output
aggregate component can also be tested by using the CVD or DocAnalyzer tools.

The PEAR Installer creates Eclipse project files (.classpath and .project) in the root
directory of the installer PEAR, so the installed component can be imported into the
Eclipse IDE as an external project. Once the component is in the Eclipse IDE, developers
may use the Component Descriptor Editor and the PEAR Packager to modify the output
aggregate descriptor and re-package the component.

11.3.

Restrictions and Limitations

The PEAR Merger utility only does basic merging operations, and is limited as follows.
You can overcome these by editing the resulting PEAR file or the resulting Aggregate
Descriptor.

1. The Merge operation specifies Fixed Flow sequencing for the Aggregate.

2. The merged aggregate does not define any parameters, so the delegate parameters
cannot be overridden.

3. No External Resource definitions are generated for the aggregate.
4. No Sofa Mappings are generated for the aggregate.

5. Name collisions are not checked for. Possible name collisions could occur in the
fully-qualified class names of the implementing Java classes, the names of JAR files,
the names of descriptor files, and the names of resource bindings or resource file
paths.

6. The input and output capabilities are generated based on merging the capabilities
from the components (removing duplicates). Capability sets are ignored - only the
first of the set is used in this process, and only one set is created for the generated
Aggregate. There is no support for merging Sofa specifications.

88

PEAR Merger User's Guide UIMA Version 2.3.0

Restrictions and Limitations

7. No Indexes or Type Priorities are created for the generated Aggregate. No checking
is done to see if the Indexes or Type Priorities of the components conflict or are
inconsistent.

8. You can only merge Analysis Engines and CAS Consumers.

9. Although PEAR file installation descriptors that are being merged can have specific
XML elements describing Collection Reader and CAS Consumer descriptors, these
elements are ignored during the merge, in the sense that the installation descriptor
that is created by the merge does not set these elements. The merge process does
not use these elements; the output PEAR's new aggregate only references the
merged components' main PEAR descriptor element, as identified by the PEAR
element:

<SUBM TTED_COVPONENT>
<DESC>t he_conponent . xm </ DESC>. . .
</ SUBM TTED_COVPONENT>

UIMA Version 2.3.0 PEAR Merger User's Guide 89

	UIMA Tools Guide and Reference
	Table of Contents
	Chapter 1. Component Descriptor Editor User's Guide
	1.1. Launching the Component Descriptor Editor
	1.2. Creating a New AE Descriptor
	1.3. Pages within the Editor
	1.3.1. Adjusting the display of pages

	1.4. Overview Page
	1.4.1. Implementation Details
	1.4.2. Runtime Information
	1.4.3. Overall Identification Information

	1.5. Aggregate Page
	1.5.1. Adding components more than once
	1.5.2. Adding or Removing components in a flow
	1.5.3. Adding remote Analysis Engines
	1.5.4. Connecting to Remote Services
	1.5.5. Finding Analysis Engines by searching
	1.5.6. Component Engine Flow

	1.6. Parameters Definition Page
	1.6.1. Using groups
	1.6.2. Parameter declarations for Aggregates

	1.7. Parameter Settings Page
	1.8. Type System Page
	1.8.1. Exporting

	1.9. Capabilities Page
	1.9.1. Sofa (and view) name mappings

	1.10. Indexes Page
	1.11. Resources Page
	1.11.1. Binding
	1.11.2. Resources with Aggregates
	1.11.3. Imports and Exports

	1.12. Source Page
	1.12.1. Source formatting – indentation

	1.13. Creating a Self-Contained Type System
	1.14. Creating Other Descriptor Components

	Chapter 2. Collection Processing Engine Configurator User's Guide
	2.1. Limitations of the CPE Configurator
	2.2. Starting the CPE Configurator
	2.3. Selecting Component Descriptors
	2.4. Running a Collection Processing Engine
	2.5. The File Menu
	2.6. The Help Menu

	Chapter 3. Document Analyzer User's Guide
	3.1. Starting the Document Analyzer
	3.2. Running an AE
	3.3. Viewing the Analysis Results
	3.4. Configuring the Annotation Viewer
	3.5. Interactive Mode
	3.6. View Mode

	Chapter 4. Annotation Viewer
	Chapter 5. CAS Visual Debugger
	5.1. Introduction
	5.1.1. Running CVD
	5.1.2. Command line parameters

	5.2. Error Handling
	5.3. Preferences File
	5.4. The Menus
	5.4.1. The File Menu
	5.4.2. The Edit Menu
	5.4.3. The Run Menu
	5.4.4. The tools menu
	5.4.4.1. View Type System
	5.4.4.2. Show Selected Annotations

	5.5. The Main Display Area
	5.5.1. The Status Bar
	5.5.2. Keyboard Navigation and Shortcuts

	Chapter 6. Apache UIMA Cas Editor User's Guide
	6.1. Introduction
	6.2. Projects
	6.2.1. Cas Editor Project structure
	6.2.2. Add a type system
	6.2.3. Add corpus folder

	6.3. Annotation editor
	6.3.1. Editor
	6.3.2. Outline view
	6.3.3. Edit Views
	6.3.4. FeatureStructure View

	6.4. Cas processor integration

	Chapter 7. JCasGen User's Guide
	7.1. Running stand-alone without Eclipse
	7.2. Running stand-alone with Eclipse
	7.3. Running within Eclipse

	Chapter 8. PEAR Packager User's Guide
	8.1. Using the PEAR Eclipse Plugin
	8.1.1. Add UIMA Nature to your project
	8.1.2. Using the PEAR Generation Wizard
	8.1.2.1. The Component Information page
	8.1.2.2. The Installation Environment page
	8.1.2.3. The PEAR file content page

	8.2. Using the PEAR command line packager

	Chapter 9. The PEAR Packaging Maven Plugin
	9.1. Specifying the PEAR Packaging Maven Plugin
	9.2. Automatically including dependencies
	9.3. Installing The PEAR Packaging Plugin
	9.4. Running from the command line
	9.5. Building the PEAR Packaging Plugin From Source

	Chapter 10. PEAR Installer User's Guide
	Chapter 11. PEAR Merger User's Guide
	11.1. Details of the merging process
	11.2. Testing and Modifying the resulting PEAR
	11.3. Restrictions and Limitations

