
Tagger Annotator Documentation
Authors: The Apache UIMA Development Community

Version 2.3.0

Copyright © 2008, 2009 The Apache Software Foundation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing incubation
at the Apache Software Foundation (ASF). Incubation is required of all newly accepted
projects until a further review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection of the completeness
or stability of the code, it does indicate that the project has yet to be fully endorsed by the
ASF.

License and Disclaimer. The ASF licenses this documentation to you under the
Apache License, Version 2.0 (the "License"); you may not use this documentation except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and
its contents are distributed under the License on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

Trademarks. All terms mentioned in the text that are known to be trademarks or
service marks have been appropriately capitalized. Use of such terms in this book should
not be regarded as affecting the validity of the the trademark or service mark.

http://www.apache.org/licenses/LICENSE-2.0

Tagger Annotator Documentation iii

Table of Contents
Introduction ... v
1. Prerequisites ... 1
2. Processing Overview .. 3
3. Annotator Descriptor .. 5

3.1. Configuration Parameters ... 5
3.2. Capabilities .. 6

4. Functionality Test ... 7
5. Overview of the Tagger package ... 9
6. Training Own Models ... 11
7. Evaluation ... 13
A. Theory Behind ... 15
Glossary .. 17
Bibliography ... 19

Introduction v

Introduction
Tagger Annotator is an Apache UIMA statistical analysis engine that annotates tokens
with corresponding grammatical types (parts of speech, or just POS). The tagger is a
standard hidden Markov model (HMM) tagger.

Prerequisites 1

Chapter 1. Prerequisites
The UIMA HMM Tagger annotator assumes that sentences and tokens have already
been annotated in the CAS with Sentence and Token annotations respectively (see e.g.
Whitespace Tokenizer Annotator). Further, the tagger requires a parameter file
which specifies a number of necessary parameters for tagging procedure (see Section 3.1,
“Configuration Parameters” [5]). Two trained models for English and German are
included in the package (in the resources folder). Other models can be trained outside of
the UIMA framework (see Chapter 6, Training Own Models [11]).

Processing Overview 3

Chapter 2. Processing Overview
The algorithm iterates over sentences and tokens in turn to accumulate a list of words.
These are then sent to a processing engine of HMM tagger. For each Token , the posTag
field is updated with the corresponding part of speech (e.g. posTag = "NN" where NN
stands for common noun).

Annotator Descriptor 5

Chapter 3. Annotator Descriptor
Two descriptors are employed to configure tagger's functionality:

• HmmTagger.xml - is a primitive analysis engine descriptor, which defines the tagger
basic functionality and can be combined in an aggregate analysis engine with an
arbitrary tokenizer. This descriptor cannot be used on itself as the tagger alone does
not perfom tokenization.

• HmmTaggerTAE.xml - is an aggregate analysis engine whose only function is to
combine UIMA Whitespace Tokenizer Annotator with HMM Tagger Annotator
and is thereby a "ready to use" tagging descriptor.

3.1. Configuration Parameters
The HMM tagger annotator (HmmTagger.xml) requires the following configuration
parameters:

• NGRAM_SIZE - this parameter is an Integer, defining whether a bi- or trigram model
should be used for tagging (default is N=3).

 <configurationParameters>

 <configurationParameter>

 <name>NGRAM_SIZE</name>

 <type>Integer</type>

 <multiValued>false</multiValued>

 <mandatory>true</mandatory>

 </configurationParameter>

 </configurationParameters>

 <configurationParameterSettings>

 <nameValuePair>

 <name>NGRAM_SIZE</name>

 <value>

 <integer>3</integer>

 </value>

 </nameValuePair>

 </configurationParameterSettings>

• ModelFile - binary file containing the statistical model which should be used for
tagging is defined as an external resource

 <externalResources>

 <externalResource>

 <name>ModelFile</name>

 <description>HMM Tagger model file</description>

 <fileResourceSpecifier>

 <fileUrl>file:german/TuebaModel.dat</fileUrl>

 </fileResourceSpecifier>

Capabilities

6 Annotator Descriptor Apache UIMA Sandbox Version 2.3.0

 <implementationName>org.apache.uima.examples.tagger.ModelResource</implementationName>

 </externalResource>

 </externalResources>

Thus, one can easily use a different model by changing the fileUrl line:
file:german/TuebaModel.dat. (NB. New models must be located in the resources
folder.) After these two parameters have been set, the tagger is ready to use.

3.2. Capabilities
As the tagger inherits tokenization indexes from the CAS, uima.SentenceAnnotation
and uima.TokenAnnotation with their begin and end features respectively have to be
defined as input capabilities in the HMM Tagger annotator descriptor. Token receives also
an additional posTag feature as an output capability.

<capabilities>

 <capability>

 <inputs>

 <type>org.apache.uima.TokenAnnotation</type>

 <type allAnnotatorFeatures="true">org.apache.uima.SentenceAnnotation</type>

 <feature>org.apache.uima.TokenAnnotation:end</feature>

 <feature>org.apache.uima.TokenAnnotation:begin</feature>

 </inputs>

 <outputs>

 <type>org.apache.uima.TokenAnnotation</type>

 <feature>org.apache.uima.TokenAnnotation:posTag</feature>

 <feature>org.apache.uima.TokenAnnotation:end</feature>

 <feature>org.apache.uima.TokenAnnotation:begin</feature>

 </outputs>

 </capability>

 </capabilities>

Functionality Test 7

Chapter 4. Functionality Test
The TaggerTest is a JUnit test file (available in the test folder), which provides an
opportunity to test provided models for English and German, as well as the basic
functionality of the tagger. In order to check whether the tagger's configuration is correct,
just run this file as JUnit Test and you should get the following output:

Tesing German Model...

The used model is:resources/german/TuebaModel.dat

61646 distinct words in the model

Number of part-of-speech tags used: 54

These are: [$(, $,, $., ADJA, ADJD, ADV, APPO, APPR, APPRART, APZR, ART, CARD, ...]

Testing German trigram tagger..

[Jerry, liebt, Wansley, .]

expected: [NE, VVFIN, NE, $.]

tagger output: [NE, VVFIN, NE, $.]

Very Good!

==

Tesing English Model...

The used model is:resources/english/BrownModel.dat

56012 distinct words in the model

Number of part-of-speech tags used: 473

These are: [', '', (,), *, ,, --, ., :, ``, abl, abn, abx, ap, ap$, at, be, bed, ...]

Testing English trigram tagger...

[Jerry, loves, Wansley, .]

expected: [np, vbz, np, .]

tagger output: [np, vbz, np, .]

Very Good!

Overview of the Tagger package 9

Chapter 5. Overview of the Tagger package
The package org.apache.uima.examples.tagger contains:

• two interfaces:

1. IModelResource - model resource interface

2. Tagger - general tagger interface, in case one would want to integrate further
tagger types.

• three classes:

1. HMMTagger - hidden Markov model tagger for UIMA, that is using Viterbi
algorithm to compute the most probable part-of-speech sequence for a given
list of tokens.

2. Viterbi - implementation of the Viterbi Algorithm. This class makes up the
core of the tagger.

3. ModelResource.java - implementation of the IModelResource

Training Own Models 11

Chapter 6. Training Own Models
Though we decide not to include training directly into UIMA framework,
one can easily train other models for different pre-annotated corpora outside
of the UIMA using ModelGeneration class, available in the subpackage
org.apache.uima.examples.tagger.trainAndTest. This subpackage includes some
further files needed for training of own models:

• MappingInterface - defines mapping for a tagset. For example, one may wish
to map a more detailed tagset to a less distinctive one (i.e. tell a program to tag
all verbs as just VERB instead of differentiating between verb infinitive, verb
imperative, etc. Two sample implementations for MappingInterface are included,
namely TagMappingBrown (mapping reducing Brown corpus tagset from more than
400 tags to 93) and GrobMappingTueba(mapping German STTS tagset from 54 tags
to basic 11 categories plus special symbols and punctuation)

• ModelGeneration - trains an N-gram model for the tagger, iterating over a List
of Tokens. Writes the resulting model to a binary file. At the moment, only bi-
and trigram models are supported. Further N-grams can be easily integrated.
ModelGeneration is not concerned with the fact, whether the training corpus
is given as a single file or as a directory containing a number of files, as this is
a CORPUS_READER implementation issue. Two supplied readers include both a
reader for a corpus as a single file (TT_FormatReadercode>) or as a directory
(BrownReadercode>)

• Interface CorpusReader - should be used to implement corpus readers for own
corpora; the objective of the reader is to take charge of the preprocessing and
transform tokenized units (usually words) into a List of Token objects. Two sample
implementations of CorpusReader are included:

1. BrownReader - for the Brown corpus from the nltk distribution
(nltk.sourceforge.net)

2. TT_FormatReader - for the corpora in TreeTagger format, i.e. one word per
line with tags separated from the words by tabs.

To train a new model, one should adjust a number of parameters in the
"tagger.properties" file, which is in Java properties file format (see tagger.properties
file [11]). After the parameters are set, you just need to run ModelGeneration.java

######## This is the default tagger.properties file

######## This file is used for training and testing only,

######## The configuration for tagging is directly tuned in the descriptor "HmmTagger.xml"

########################## BOTH FOR TRAINING AND EVALUATION ################################

######## THESE ARE THE DEFAULT MODEL FILES FOR GERMAN AND ENGLISH

12 Training Own Models Apache UIMA Sandbox Version 2.3.0

######## You can either uncomment one of them, if you want to replace given models with your own one,

#MODEL_FILE = resources/german/TuebaModel.dat

#MODEL_FILE = resources/english/BrownModel.dat

######## or specify a completely different name

MODEL_FILE =

######## If mapping of tags is desired, uncomment the following

#DO_MAPPING = true

####### EXAMPLES OF MAPPING CLASSES

Basic mapping for the Brown corpus (nltk distribution) tagset: to get 93 tags out of 473

#MAPPING = org.apache.uima.examples.tagger.TagMappingBrown

Basic mapping for STTS tagset: from 54 tags onto the basic ca. 15 classes plus punctuation

#MAPPING = org.apache.uima.examples.tagger.GrobMappingTueba

If you implement your own mapping, you should specify here in the same manner as above a java-path to the class

MAPPING =

####### FILE CONTAINING TRAINING CORPUS:

####### can be in specified either as an absolute or as a relative path

####### e.g. FILE = ../../tueba_tigerFormat.txt or FILE = C:/Data/tueba.txt

FILE =

######## If corpus is in a different format and cannot be read with the provided READERS,

######## you should specify here a java-path to the class (s. examples below)

#CORPUS_READER = org.apache.uima.examples.tagger.trainAndTest.TT_FormatReader

#CORPUS_READER = org.apache.uima.examples.tagger.trainAndTest.BrownReader

CORPUS_READER =

################# ONLY FOR EVALUATION ###############################

######### GOLD STANDARD CORPUS FILE:

######### can be specified as an absolute or as a relative path

e.g. GOLD_STANDARD = ../../tueba_tigerFormat.txt or GOLD_STANDARD = C:/Data/tueba.txt

GOLD_STANDARD =

######### Here we specify whether one intends to test a bi- or a trigram model (default is a trigram model)

N=3

Evaluation 13

Chapter 7. Evaluation
To evaluate performance if a "gold standard" corpus is available, one can use the following
provided file:

• TaggerEvaluation.java - can be used to evaluate the tagger and/or new models
on a manually annotated corpus.

HMMTagger was evaluated for English and German. For English, it was trained on 80%
of the Brown corpus (180,000 tokens) and tested on the rest unseen 20%. The achieved
accuracy was about 96%, test corpus contained 4.5% of unknown tokens.

For German, it achieves between 95% and 96% accuracy when trained and tested on the
same type of corpus, i.e. with 80% of corpus used for training and 20% for testing. The
accuracy goes a bit down when tagging is performed for different types of corpora than
the training one, mostly due to the growing number of unknown words.

Theory Behind 15

Appendix A. Theory Behind
This chapter is just a sketch of the statistical model undelying the tagger. Hidden Markov
Models (HMMs) are the mainstay of the applications employing statistical modeling
in any form, like speech recognition and production systems, signal processing, part of
speech tagging. A Hidden Markov Model is a probabilistic function of a Markov process.
A Markov process is a process that fulfills Markov assumptions. Markov assumptions are:

• limited horizon - Markov processes are states without memory, except
for condition of the current state. Though we usually consider sequences of
variables that are not independent of each other, it often suffices to know the
value of the current situation without going deep into the past happenings. As [
ManningSchuetze99] put it, we do not really need to know, how many books were
in the library last week or last year in order to predict how many books there will be
tomorrow. It is often enough to know the current situation. Thereby, future states in
the Markov process are independent of the past, they only depend on the present.
Let X = (X 1 , ..., X T) be a sequence of random variables taking the values from
the finite state space S = (s 1 , ..., s N) , then a limited horizon property could be
formalized by:

P(X t+1 = s k |X 1 , ..., X t) = P(X t+1 = s k |X t)

• time invariance

The probabilities do not change over time, i.e. if we know that the probability of
observing a rainbow after the rain is equal to 90\%, we know that it should be true
for today as well as for tomorrow.

If X conforms to these two properties, then it is said to be a Markov chain. One can
describe a Markov chain by a transition matrix:

A = a i,j = P(X t+1 = s j |X t =s i)

- with a i,j >= 0 (for all i,j) and the sum of all transition probabilities from state i (a i,j)
should be equal to 1 (for all i)

Markov models can be used whenever one needs to model the probability of a linear
sequence of variables. One distinguishes Visible Markov Models (VMM) vs. Hidden
Markov Models. The difference is that when we work with "visible" events, we can
directly estimate the corresponding probabilities (which is the case if training corpus is
available to train own models for HMM taggers). Finding a sequence of part of speech
tags (i.e. Viterbi part of the tagger) in contrast is a hidden Markov model as the states
(tags) are not directly observable.

The goal of HMM - based tagger is to find part of speech tags (= hidden states) that generate
a sequence of words (= observable states). Most of the known implementations of POS
taggers are viewing text as being produced by a hidden Markov model, so that tagging

16 Theory Behind Apache UIMA Sandbox Version 2.3.0

can be regarded as a Markov process deciding which states the system went through to
generate a given text.

General Form of HMM

A HMM is a five-tuple: (S, O, #, A, B)

where:

• S - the set of states (here: parts of speech)

• K - the set of observations (here: words)

• # - initial state probabilities

• A - state transitions probabilities

• B - symbol emissions probabilities

Further, X t (state sequence) and O t (output sequence) are given. Tagging procedure
is then the following:

1. t := 1

2. Start in state s i with probability # i (i.e., X 1 = i)

3. forever do:

• Move from s i to s j with probability a i,j (i.e. X t+1 = j)

• Emit observation symbol o t = k with probability b i,j,k

• t := T+1

4. end

Despite their limitations, HMM-s are one of the most successful techniques in natural
language processing and are widely used, especially in sequence tagging applications.
The best statistical taggers all perform at about the same level of accuracy.

Glossary 17

Glossary

HMM
Hidden Markov
Model

POS
Part of Speech

Bibliography 19

Bibliography
[ManningSchuetze99] Christopher Manning and Hinrich Schuetze. Foundations of Statistical Natural

Language Processing . Copyright © 1999. MIT Press.

	Tagger Annotator Documentation
	Table of Contents
	Introduction
	Chapter 1. Prerequisites
	Chapter 2. Processing Overview
	Chapter 3. Annotator Descriptor
	3.1. Configuration Parameters
	3.2. Capabilities

	Chapter 4. Functionality Test
	Chapter 5. Overview of the Tagger package
	Chapter 6. Training Own Models
	Chapter 7. Evaluation
	Appendix A. Theory Behind
	Glossary
	Bibliography

