Apache UIMA Lucene CAS
Indexer Documentation

Authors: The Apache UIMA Development Community

Version 2.3.0

Copyright © 2008, 2009 The Apache Software Foundation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing incubation
at the Apache Software Foundation (ASF). Incubation is required of all newly accepted
projects until a further review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection of the completeness
or stability of the code, it does indicate that the project has yet to be fully endorsed by the
ASF.

License and Disclaimer. The ASF licenses this documentation to you under the
Apache License, Version 2.0 (the "License"); you may not use this documentation except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and
its contents are distributed under the License on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

Trademarks. All terms mentioned in the text that are known to be trademarks or
service marks have been appropriately capitalized. Use of such terms in this book should
not be regarded as affecting the validity of the the trademark or service mark.

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

INErOAUCHION ...evviiiiiiiiii i v
1. Mapping Configurationccccceiiiiiiiiiiiiiiiiiiiccc e 1
1.1, TOKEN SOUICEScooiiiiiiiiiiiiiii it 1
1.1.1. Covered Textccceiiiiiiiiiiiiiiiiiiiii i 1

1.1.2. Feature Valuescccccooiiiiiiiiiiiiiiiiiiii i 1

1.1.3. Feature Values of referenced Feature Structuresc.cccccoviiinnnn. 2

1.1.4. Supported feature typesccccocciiiiiiiiiiiiiiiii 3

1.2. Token Stream ALIGNMENtcccevvviiiiiiiiiiiiiiiiii e 3

1.3. Token Filters ... 4
1.3.1. Deploying your own Token Filtersccccccoviiiii . 4

2. Mapping File Referenceccccccccooiiiiiiiiiiiiiii 7
2.1. Mapping File Structureccccccooviiiiiiiiii 7

2.2. Mapping File Elementsccccccooiiiiiiiiiiiiiiiii 7

2.3. Filters Referencecccccccciiiiiiiiiiiiiiiiiiiiiii 12
2.3.1. Addition Filterccccooiiiiiiiiiiiii 12

2.3.2. Hypernyms Filtercccccoiiiiiiiiiiie, 13

2.3.3. Position Filtercccccciiiiiiiiiiiiiiiii i, 13

2.3.4. Replace Filterccccccciiiiiiiiiiiiiiii 14

2.3.5. Snowball Filterccccooiiiiiiiiiiiiiiiii 14

2.3.6. Splitter Filterccccooiiiiiiiiiiiiii 15

2.3.7. Concatenate Filtercccoccoiiiiiiiiiiiiiiiiii 15

2.3.8. Stopword Filtercccooiiiiiiiiiiiiiii 15

2.3.9. Unique Filtercccooiiiiiiiiiiiii 16

2.3.10. Upper Case Filtercccooviiiiiiiiiiiiiiiiiiiiiiiiiiiccee 16

2.3.11. Lower Case Filterccccccoiiiiiiiiiiiiiiiiiiiic 16

3. Index Writer Configurationccccooiiiiiiiiiiiiiiiiii 17
4. Descriptor Parametersc.cccooviiiiiiiiiiiiiiiii 19

Apache UIMA Lucene CAS Indexer Documentation iii

Introduction

The Lucene CAS Indexer (Lucas) is a UIMA CAS consumer that stores CAS data in a
Lucene index. Lucas allows to exploit the results of collection processing for information
retrieval purposes in a fast and flexible way. The consumer transforms annotation objects
from annotation indexes into Lucene token objects and creates token streams from them.
Token streams can be further processed by token filters before they are stored into a
certain field of a index document. The mapping between UIMA annotations and Lucene
tokens and token filtering is configurable by a xml file, whereas the index writer is
configured by a properties file.

To use Lucas, at first a mapping file must be created. You have to decide which annotation
types should be present in the index and how your index layout should look like, or more
precisely, which fields should be contained in the index. Optionally you can add token
filters for further processing. Its also possible to deploy your own token filters.

Lucas can run in multiple deployment scenarios where different instances share one index
writer. This shared index writer instance is configured via a properties file and managed
by the resource manager.

Introduction v

Chapter 1. Mapping Configuration

This chapter discusses the mapping between UIMA annotations and Lucene tokens in
detail.

1.1. Token Sources

The mapping file describes the structure and contents of the generated Lucene index.
Each CAS in a collection is mapped to a Lucene document. A Lucene document consists
of fields, whereas a CAS contains multiple annotation indexes on different sofas. An
annotation object can mark a text, can hold feature values or reference other feature
structures. For instance, an annotation created by an entity mapper marks a text area and
may additionally contain a identifier for the mapped entity. For this reason Lucas knows
three different sources of Lucene token values:

* The covered text of a annotation object.
* One or more feature values of a annotation object.

* One or more feature values of a feature structure directly or indirectly referenced by
an annotation object.

If a feature has multiple values, that means it references a FSArray instance, then one
token is generated for each value. In the same manner tokens are generated from each
feature value, if more then one feature is provided. Alternatively, you can provide a
featureValueDelimiterString which is used to concatenate different feature values from one
annotation object to generate only one token. Each generated Lucene token has the same
offset as the source annotation feature structure.

1.1.1.

Covered Text

As mentioned before represents the covered text of annotation objects one possible source
for Lucene token values. The following example creates a index with one title field which
contains covered texts from all token annotations which are stored in the title sofa.

<fields>
<field name="title” index="yes”>
<annot at i ons>
<annotation sofa=“title” type=“de.julielab.types. Token”/>
</ annot ati ons>
<field>
</fields>

1.1.2.

Feature Values

The feature values of annotation objects are another source for token values. Consider the
example below.

Mapping Configuration 1

Feature Values of referenced Feature Structures

<fields>
<field name="cel | s” index="yes”>
<annot at i ons>
<annot ati on sofa="“text” type=“de.julielab.types.Cell"”>
<f eat ures>
<feature nanme="specificType”>
</ features>
</ annot at i on>
</ annot ati ons>
<fiel d>
</fields>

The field cells contains a token stream generated from the annotation index of type
de.julielab.types.Cell . Each generated token will contain the value of the feature specificType
of the enclosing annotation object.

The next example illustrates how multiple feature values can be combined by using a
featureValueDelimiterString . If no featureValueDelimiterString is provided, a single token is
generated from each feature value.

<fields>
<field nane="aut hors” index="“no” stored="yes">
<annot at i ons>
<annotation sofa="“text” type=“de.julielab.types. Author”
featureVal ueDelinmterString=", ">
<f eat ur es>
<f eature nanme="“forenane”/>
<f eat ure nanme="surenane”/>
</ features>
</ annot ati on>
</ annot ati ons>
<field>
</fields>

1.1.3.

Feature Values of referenced Feature Structures

Since annotation objects may reference other feature structures, it may be desirable to
use these feature structures as source for Lucene token values. To achieve this, we utilize
feature paths to address these feature structures. Consider the example below.

<fiel ds>
<field name=“cities” index="yes”>
<annot ati ons>
<annot ation sofa="text” type=“de.julielab.types. Author”
featurePath="affiliati on. address">
<f eat ures>
<feature name=“city”>
</features>
</ annot at i on>
</ annot ati ons>
<field>

Mapping Configuration Apache UIMA Sandbox Version 2.3.0

Supported feature types

</fields>

The type de.julielab.types. Author has a feature affiliation which points to a affiliation
feature structure. This affiliation feature structure in turn has a feature address which
references a address feature structure. This path of references is expressed as the feature
path affiliation.address . A feature path consists of feature names separated by a ".". Please
consider that the city feature is a feature of the "address" feature structure and not of the
author annotation object.

1.1.4. Supported feature types

At the moment not all feature types are supported. Only this feature types are currently
supported:

e String
e String Array
* Number Types: Double, Float, Long, Integer, Short

Consider that you need to provide a number format string if you want to use number
types.

1.2. Token Stream Alignment

In the examples above all defined Lucene fields contain only one annotation based

token stream. There are a couple of reasons for the fact that the simple mapping of each
annotation index to separate Lucene fields is not a optimal strategy. One practical reason
is that the lucene highlighting will not work for scenarios where more than one annotation
type are involved. Additionally, the tf-idf weighting of terms does not work probably if
annotations are separated from real text. Lucas is able to merge token streams and align
them according to their token offsets. The resulting merged token stream is then stored in
a field. The next example demonstrates this merging feature.

<fiel ds>
<field nane="text” index="yes” nerge="true”>
<annot at i ons>
<annot ati on sofa="text” type=“de.julielab.types. Token”/>
<annot ati on sofa="text” type=“de.julielab.types.Cell”>
<f eat ures>
<f eature nanme="specificType”>
</features>
</ annot ati on>
</ annot ati ons>
<field>
</fields>

Consider the merge attribute of the field tag. It causes the alignment of the two token
streams generated from the de.julielab.types.Token and de.julielab.types.Cell annotations.

Apache UIMA Sandbox Version 2.3.0 Mapping Configuration 3

Token Filters

If this attribute is set to false or it is left, then the annotation token streams were
concatenated.

1.3. Token Filters

Token filters are the Lucene approach to enable operations on token streams. In typical

Lucene applications token filters are combined with a tokenizer to build analyzers. In a
typical Lucas application the tokenization is already given by annotation indexes. Lucas
allows to apply token filters to certain annotation token streams or to the merged or
concatenated field token stream as whole. The following example demonstrates how
token filters are defined in the mapping file.

<fiel ds>
<field nane="text” index="yes” nerge="true”>
<filters>
<filter name="| owercase"/>
</[filters>
<annot ati ons>
<annot ation sofa="text” type=“de.julielab.types. Token”>
<filters>
<filter name="stopwords"
fil ePat h="resources/stopwords.txt"/>
</filters>
</ annot at i on>
<annot ation sofa="text” type=“de.julielab.types.Cell”>
<f eat ures>
<f eature nanme="specificType”>
</features>
</ annot at i on>
</ annot ati ons>
<field>
</fields>

The lowercase token filter is applied to the complete field content and the stopword

filter is only applied to the annotation token stream which is generated from the

de julielab.types.Token annotation index. Both filters are predefined filters which are
included in the Lucas distribution. A reference of all predefined token filters is covered in
Chapter 2, Mapping File Reference [7].

1.3.1. Deploying your own Token Filters

For scenarios where the built in token filters where not sufficient, you can provide your
own token filters. Simple token filters which don't need any further parameterization,
need to have a public constructor, which takes a token stream as the only parameter. The
next example shows how a such a token filter is referenced in the mapping file.

<fields>
<field name="text” index="yes”>
<annot at i ons>

4 Mapping Configuration Apache UIMA Sandbox Version 2.3.0

Deploying your own Token Filters

<annotation sofa=“text” type=“de.julielab.types.Cell”>
<filters>
<filter className="org.exanple. MyFilter"/>
</filters>
<f eat ur es>
<f eature nane="specificType”>
</ features>
</ annot ati on>
</ annot ati ons>
<field>
</fields>

The attribute className must reference the canonical class name of the the filter. In

cases where the token filter has parameters we need to provide a factory for it. This
factory must implement the org.apache.uima.indexer.analysis. TokenFilterFactory interface.
This interface defines a method createTokenFilter which takes a token stream and a
java.util. Properties object as parameters. The properties object will include all attribute
names as keys and their values which are additionally defined in the filter tag. Consider
the example below for a demonstration.

<fields>
<field nane="text” index="yes”>
<annot at i ons>
<annotation sofa=“text” type=“de.julielab.types.Cell”>
<filters>
<filter factoryCd assNane="or g. exanpl e. MyTokenFi | t er Fact ory"
par anet er 1="val uel" paraneter2="val ue2"/>
</[filters>
<f eat ures>
<f eature nanme="specificType”>
</ f eat ures>
</ annot at i on>
</ annot ati ons>
<field>
</fields>

In the example above the token filter factory is new instantiated for every occurrence in
the mapping file. In scenarios where token filters use large resources, this will be a waste
of memory and time. To reuse a factory instance we need to provide a name and a reuse
attribute. The example below demonstrate how we can reuse a factory instance.

<fields>
<field nane="text” index="yes”>
<annot ati ons>
<annot ation sofa="text” type=“de.julielab.types.Cell”>
<filters>
<filter factoryC assNanme="org. exanpl e. MyTokenFi | t er Fact ory"
name="nyFactory" reuse="true"
myResour ceFi | ePat h="pat hToResour ce"/ >
</filters>
<f eat ures>

Apache UIMA Sandbox Version 2.3.0 Mapping Configuration

Deploying your own Token Filters

<f eature nanme=“specificType”>
</ features>
</ annot ati on>
</ annot ati ons>
<field>
</fields>

Mapping Configuration Apache UIMA Sandbox Version 2.3.0

Chapter 2. Mapping File Reference

After introducing the basic concepts and functions this chapter offers a complete reference
of the mapping file elements.

2.1. Mapping File Structure

The raw mapping file structure is sketched below.

<fiel ds>
<field ..>
<filters>
<filter ../>

</[filters>

<annot ati ons>

<annotation ..>
<filters>
<filter ../>

</filters>
<f eat ur es>

<feature ..>

</ f eat ures>
</ annot ati on>

</ annot at i ons>
<field>

</fields>

2.2. Mapping File Elements

This section describes the mapping file elements and their attributes.
* fields element
¢ fields container element
® contains: fi el d+
* field element
o describes a Lucene field

e contains: filters?, annotations

Mapping File Reference 7

http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/document/Field.html

Mapping File Elements

Table 2.1. field element attributes

name allowed default value | mandatory description
values
name string - yes the name of
the field”
index yesInol no no See
no_norms| Field.Index®
no_tfl
no_norms_tf
termVector no |l positions| | no no See
offsets| Field.TermVectq
positions_offset
stored yesInol no no See
compress Field.Store”
merge boolean false no If this attribute

is set to true,
all contained
annotation
token streams
are merged
according to
their offset.
The tokens
position
increment are
adopted in
the case of
overlapping.

* filters element

e container element for filters

e contains: filter+

e filter element

* Describes a token filter® instance. Token filters can either be predefined or
self-provided.

Mapping File Reference

Apache UIMA Sandbox Version 2.3.0

http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/document/Field.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/document/Field.Index.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/document/Field.TermVector.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/document/Field.Store
http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/analysis/TokenFilter.html

Mapping File Elements

Table 2.2. filter element attributes

name allowed default value | mandatory description
values

name string - no the name

to reference
either a
predefined
filter (see
predefined
filter
reference) or a
reused filter

className string - no The canonical
class name of
a token filter.
the token
filter class
must provide
a single
argument
constructor
which takes
the token
stream as
parameter.

factoryClassNagstring - no The canonical
class name

of a token
filter factory.
the token
filter factory
class must
implement the
org.apache.uimp.indexer.a
See

Section 1.3, “
Token Filters
” [4] for a
example.

reuse boolean - false Enables token

filter factory

Apache UIMA Sandbox Version 2.3.0 Mapping File Reference 9

Mapping File Elements

name allowed default value | mandatory description
values

reuse. This
makes sense if
a token filter
use resources
which should
be cached.
Because token
filters where
referenced by
their names,
you need also
to provide a
name.

string - - Filters

may have
their own
parameter
attributes
which are
explained in
the Chapter 2,
Mapping File
Reference [7]..

® annotations element
¢ container element for annotations
® contains: annot at i on+
® annotation element
¢ Describes a token stream which is generated from a CAS annotation index.
® contains: f eat ur es?

Table 2.3. annotation element attributes

name allowed default value | mandatory description
values
type string - yes The canonical
type

Mapping File Reference Apache UIMA Sandbox Version 2.3.0

Mapping File Elements

name allowed default value | mandatory description
values

name. E.g.
"uima.cas.Annofation"

sofa string Initial View yes Determines
from which
sofa the
annotation
index is taken

featurePath string - no Allows to
address
feature
structures
which are
associated
with the
annotation
object.
Features are
separated by a

"nn

tokenizer cas! cas no Determines
white_space| which
standard tokenization
is used. "cas"
uses the
tokenization
given by the
contained
annotation
token streams,
"standard"
uses the
standard
tokenizer’

featureValueDelistitapString - no If this
parameter is
provided all
feature values
of the targeted
feature
structure are

Apache UIMA Sandbox Version 2.3.0 Mapping File Reference 11

http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/analysis/standard/StandardTokenizer.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/analysis/standard/StandardTokenizer.html

Filters Reference

name allowed default value | mandatory description
values
concatenated
and delimited
by this string.

* features element

e Container element for features.

e contains: f eat ur e+

* feature element

e Describes a certain feature of the addressed feature structure. Values of this
features serve as token source.

Table 2.4. feature element attributes

name allowed default value | mandatory description
values
name string - yes The feature
name.
numberFormat | string - no Allows to
convert
number

features to
strings. See
DecimalNumbe

rFormat®

2.3. Filters Reference

Lucas comes with a couple of predefined token filters. This section provides a complete
reference for this filters.

2.3.1. Addition Filter

Adds suffixes or prefixes to tokens.

<filter name="addition" prefix="PRE_"/>

12

Mapping File Reference

Apache UIMA Sandbox Version 2.3.0

http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html

Hypernyms Filter

Table 2.5. addition filter attributes

name allowed values | default value

mandatory

description

prefix string -

no

A pefix which
is added to the
front of each
token.

postfix string -

no

A post which
is added to the
end of each
token.

2.3.2. Hypernyms Filter

Adds hypernyms of a token with the same offset and position increment 0.

<filter name="hypernyns" filePath="/path/to/nyFile.txt"/>

Table 2.6. hypernym filter attributes

name allowed values | default value mandatory description

filePath string - yes The hypernym
file path. Each
line of the file

contains one
token with its

hypernyms.
The file must
have the
following
format:
TOKEN_TEXT=HYP
HYPERNYM| . .
2.3.3. Position Filter
Allows to select only the first or the last token of a token stream, all other tokens are
discarded.
<filter name="position" position="last"/>
Apache UIMA Sandbox Version 2.3.0 Mapping File Reference 13

ERNYML|

Replace Filter

Table 2.7. position filter attributes

name

allowed values | default value

mandatory

description

position

first|last -

yes

If position is
set to first the
only the the
first token of
the underlying
token stream
is returned, all
other tokens
are discarded.
Otherwise, if
position is set
to last, only the
last token is

returned.
2.3.4. Replace Filter
Allows to replace token texts.
<filter nanme="repl ace" filePath="/path/to/nyFile.txt"/>
Table 2.8. replace filter attributes
name allowed values | default value mandatory description
filePath string - yes The token text
replacement

file path. Each
line consists

of the original
token text and
the replacement
and must have
the following
format:
TOKEN_TEXT=REPR

2.3.5. Snowball Filter

Integration of the Lucene snowball filter’

? http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/analysis/snowball/SnowballFilter.html

14

Mapping File Reference

Apache UIMA Sandbox Version 2.3.0

LACEMENT_TEXT

http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/analysis/snowball/SnowballFilter.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/analysis/snowball/SnowballFilter.html

Splitter Filter

<filter name="snowbal "

Table 2.9. snowball filter attributes

st enmer Nanme=" Ger man"/ >

Apache UIMA Sandbox Version 2.3.0

name allowed values | default value mandatory description
stemmerName | snowball English no See snowball
stemmer filter
names. documentation'”
2.3.6. Splitter Filter
Splits tokens at a certain string.
<filter name="splitter" splitString=","/>
Table 2.10. splitter filter attributes
name allowed values | default value mandatory description
splitString string - yes The string on
which tokens
are split.
2.3.7. Concatenate Filter
Concatenates token texts with a certain delimiter string.
<filter name="concatenate" concatString=";"/>
Table 2.11. concatenate filter attributes
name allowed values | default value mandatory description
concatString string - yes The string
with which
token texts are
concatenated.
2.3.8. Stopword Filter
Integration of the Lucene stop filter'!
<filter name="stopwords" fil ePath="/path/to/ nmyStopwords.txt"/>
n http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/analysis/StopFilter.html
Mapping File Reference 15

http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/analysis/snowball/SnowballFilter.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/analysis/snowball/SnowballFilter.html
http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/analysis/snowball/SnowballFilter.html
http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/analysis/StopFilter.html
http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/analysis/StopFilter.html

Unique Filter

Table 2.12. stopword filter attributes

name allowed values | default value mandatory description

filePath string - no The stopword
file path. Each
line of the

file contains

a single
stopword.

ignoreCase boolean false no Defines if the
stop filter
ignores the case
of stop words.

2.3.9. Unique Filter

Filters tokens with the same token text. The resulting token stream contains only tokens
with unique texts.

<filter nanme="uni que"/>

2.3.10. Upper Case Filter

Turns the text of each token into upper case.

<filter nanme="uppercase"/>

2.3.11. Lower Case Filter

Turns the text of each token into lower case.

<filter nanme="|owercase"/>

16 Mapping File Reference Apache UIMA Sandbox Version 2.3.0

Chapter 3. Index Writer Configuration

The index writer used by Lucas can be configured separately. To allow Lucas to run
in multiple deployment scenarios, different Lucas instances can share one index
writer instance. This is handled by the resource manager. To configure the resource
manager and the index writer properly, the Lucas descriptor contains a resource
binding i ndexWi ter Provi der. A IndexWriterProvider creates a index writer from
a properties file. The file path and name of this properties file must be set in the
Lucasl ndexW i t er Provi der resource section of the descriptor.

The properties file can contain the following properties.
* i ndexPat h - the path to the index directory
e RAMBUT f er Si ze - (number value), see IndexWriter.ramBufferSize!
e useConpoundFi | eFor mat - (boolean value), see IndexWriter.useCornpoumdFormat2
e maxFi el dLengt h - (boolean value), see IndexWriter.maxFieldLength3

* uni quel ndex - (boolean value), if set to t r ue, host name and process identifier are
added to the index name. (Only tested on linux systems)

Index Writer Configuration 17

http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/index/IndexWriter.html#setRAMBufferSizeMB(double)
http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/index/IndexWriter.html#setUseCompoundFile(boolean)
http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/index/IndexWriter.html#setMaxFieldLength(int)

Chapter 4. Descriptor Parameters

Because Lucas is configured by the mapping file, the descriptor has only one parameter:

* mappi ngFi | e - the file path to the mapping file.

Descriptor Parameters

19

	Apache UIMA Lucene CAS Indexer Documentation
	Table of Contents
	Introduction
	Chapter 1. Mapping Configuration
	1.1. Token Sources
	1.1.1. Covered Text
	1.1.2. Feature Values
	1.1.3. Feature Values of referenced Feature Structures
	1.1.4. Supported feature types

	1.2. Token Stream Alignment
	1.3. Token Filters
	1.3.1. Deploying your own Token Filters

	Chapter 2. Mapping File Reference
	2.1. Mapping File Structure
	2.2. Mapping File Elements
	2.3. Filters Reference
	2.3.1. Addition Filter
	2.3.2. Hypernyms Filter
	2.3.3. Position Filter
	2.3.4. Replace Filter
	2.3.5. Snowball Filter
	2.3.6. Splitter Filter
	2.3.7. Concatenate Filter
	2.3.8. Stopword Filter
	2.3.9. Unique Filter
	2.3.10. Upper Case Filter
	2.3.11. Lower Case Filter

	Chapter 3. Index Writer Configuration
	Chapter 4. Descriptor Parameters

