[image: image1.wmf]
Widget Developer’s Guide

For use with Wookie Engine v0.9; 25 May, 2009

1. Introduction

How widgets work

A widget is a miniature web application designed to work within a particular kind of framework, called a widget engine. Unlike normal web applications, a widget doesn’t execute server-side code directly (e.g. written in PHP), but instead executes code in the browser using JavaScript, and access a range of web services offered by the widget engine.

Wookie Engine is a widget engine that is designed to enable widgets to be used in a wide range of web applications; we call a web application that has widgets in it a widget container (or just plain container).

Widget containers take care of all the main business of being a web application, like letting users log in, managing content and so on – or whatever it is they do – while Wookie Engine just supplies the functionality to add widgets to the mix.

When you create a widget, you are only interacting directly with the widget engine, and not the container – the container may sometimes set preferences your widget may use (like the user’s name to display in your widget), but for the most part you are calling the services offered by the widget engine.

So when you develop a widget for Wookie, you are enabling it to be presented in a range of web applications, which may include things like Wordpress, Elgg, Moodle, Sharepoint and so on.

Wookie enables widgets to be used in these applications through the use of plugins. This means there is some code which is native to that web application’s framework that can talk to Wookie and request widgets.

This guide focuses on what you need to know in order to create widgets that you can upload to the Wookie widget engine that can then be made available to widget containers through their plugins.

There are two companion guides to this document you may want to take a look at:

· The Wookie Server Administrators Guide contains information about how to install, configure and run the widget engine itself

· The Wookie Plugin Developer’s Guide contains information about how to write a plugin for a web application so it can become a widget container
2. Creating Basic Widgets

Planning your widget

A good widget focuses on performing a single task well with a very clear and appropriate graphical style. A good way to get started with designing a widget is to create a graphical mockup of the widget in its various states.

	For this tutorial, we’re creating a rather silly weather widget that just shows today’s forecast. Its really only of use to people in offices without windows, but it should demonstrate the basics of creating and deploying a widget.

Our weather widget has a very simple layout, with a main display and a settings display where you can choose your city:

[image: image2.wmf]

Widget file structure

A widget typically consists of the following files:

· The widget manifest file (config.xml), which describes the widget

· A HTML start page, typically “index.html”

· One or more Javascript (.js) files that implement widget’s functionality

· One or more stylesheets (.css) that control the appearance of the widget

· An icon (icon.png) for the widget

· Additional media assets such as images

For example, an unpackaged weather widget might look like this:

[image: image3.png]
config.xml

[image: image4.png]
index.html

[image: image5.png]
weather.js

[image: image6.png]
weather.css

[image: image7.png]
icon.png

[image: image8.wmf] images

[image: image9.png]
cloudy.png

[image: image10.png]
rainy.png

[image: image11.png]
sunny.png

[image: image12.png]
snowy.png

Widgets can also support internationalisation by organising these files into localised folders. Each localised folder can contain files that override the defaults when the widget is deployed in a particular location. For example, we can offer the widget with French and German localised resources:

[image: image13.png]
config.xml

[image: image14.png]
index.html

[image: image15.png]
weather.js

[image: image16.png]
weather.css

[image: image17.png]
icon.png

[image: image18.wmf] images

[image: image19.png]
cloudy.png

[image: image20.png]
rainy.png

[image: image21.png]
sunny.png

[image: image22.png]
snowy.png

[image: image23.wmf] locales

[image: image24.wmf] de

[image: image25.png]
index.html

[image: image26.png]
weather.css

[image: image27.wmf] fr

[image: image28.png]
index.html

Localised folders need to be placed in a top level folder called “locales”, and be named according to the appropriate ISO two-letter language code, and can contain any resources or structures you want. A localised folder can contain just the HTML file, or can override other resources such as the icon, stylesheet, javascript and so on. You must, however, within your localised start file reference the appropriate assets – the widget engine will launch using the appropriate start file in your localised folder, but it won’t rewrite any URLs for you.

If you don’t use localised folders, then the engine will look for the default index.html file, or whichever file is defined as the starting file in the widget manifest (config.xml).

A good starting point for developing a new widget is to take an existing widget as your starting point, and to replace each of the parts with your own code when you’re ready.

The start file

Your start file is a HTML document that is loaded by Wookie into the iFrame in the target container, and is the starting point for rendering your widget.

The design of the start file is entirely up to you, but in general it should set out the structural elements of the widget (e.g. named <div> tags for each item of the Widget’s interface), and reference your Javascript and CSS files.

In general the start file can be quite small and simple, as usually widgets make extensive use of Javascript and CSS for dynamic functionality and appearance.

	Our weather widget’s index.html file has a <div> for the front and the back (where the settings are); the front <div> has blocks for the content – the weather picture, the city, and temperature. We also have a place for the buttons to go. We also put some links in for our stylesheet, and our javascript.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <META HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

 <title>Weather</title>

 <script type='text/javascript' src='weather.js' charset='utf-8'></script>

 <link rel="stylesheet" href="weather.css" type="text/css"/>

</head>

<body onload="weather()">

 <div id="front">

<div id="weather"></div>

 <div id="city"></div>

<div id="temperature"></div>

<div id="settings">

 <input type="submit" class="groovybutton" id ="settings" value="settings" onClick="showBack()">

</div>

 </div>

 <div id="back">

 <div id="controls">

 <select id="city_selector" name="city_selector" onchange="setCity()">

 <option>Belfast</option>

 <option>Birmingham</option>

 <option>London</option>

 <option selected>Manchester</option>

 </select>

 <input type="submit" class="groovybutton" id ="done" value="Done" onClick="showFront()">

 </div>

 </div>

</body>

<!-- fix forIE cashing - must go here even though its in the wrong place

<META HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">

</HEAD>

-->

</html>

Writing your Javascript code

The JavaScript you create really depends on what you want your widget to be able to do; the main thing you need to bear in mind are the kinds of services that you can call upon the Wookie engine to do for you. Wookie can:

· Store and retrieve your user’s preferences, or any other settings unique to the widget

· Maintain data shared between all instances of your widget in a common context; for example, a chat log and buddy list for a chat widget

· Send events between widgets in the same context; for example, if a user sets their location in one widget on their profile page, the widget can send a message to other widgets on the same page.

· Handle calls to external web services and feeds through a proxy service. This is important, as otherwise your widget cannot communicate with other services as this poses a security risk.

For all of these services, your widget can make use of the shared Widget object that Wookie makes available to your JavaScript code. To invoke the Widget object, you simply call one of its functions; for example:

Widget.preferences.setItem(“foo”, “bar”);
Working with user preferences

As you’ve probably guessed from reading the previous section, Wookie offers a preferences service for your widget based on key-value pairs. There are two methods:

Widget.preferences.getItem(key)

Widget.preferences.setItem(key. Value)
The key can be any arbitrary string, and the value can be any kind of variable; typically a string, some XML, or a JSON object.

Defaults

As well as dynamically setting preferences in JavaScript, you can also set default preferences in your config.xml file, for example:

<preference name=”city” value=”manchester”/>
These values are loaded by Wookie when you install a widget, and are set each time someone instantiates the widget. You can, however, override these default values in your scripts. For more information, see the section titled Creating a widget manifest file.
Contextual preferences

While for the most part the preferences for a widget are set by your own JavaScript code, you can use the preferences.getItem(key) method to gain access to properties that have been set by the container that is displaying your widget. This is because Woookie plugins have access to a service that can set default values for widgets; for more information, see the Wookie Plugin Developer’s Guide. In general the kinds of defaults your widget can access are things like the user’s display name, and whether the user has moderator rights.

While the container can set any properties it wants to, in order to take advantage of these values your widget needs to know what values to ask for. The Wookie Plugin Developer’s Guide recommends that containers set the following values where appropriate:

· username, as a string containing a display name for the user (not necessarily their login name or account

· moderator, as a Boolean value, with True indicating that the current user has moderation privileges within the context the widget is located in

So, for example, a chat widget can call preferenceForKey(“username”, fooHandler) to obtain a chat handle for the current user, and preferenceForKey(“moderator”, barHandler) to check if the current user gets access to the moderator controls, like locking the forum or whatever moderator features the widget wants to offer.

If you include references to container-set defaults, you should make sure that you include code that handles where these values are not set. For example, a chat widget should be able to either generate a random handle (e.g. “chatter#2232”) for anonymous (not logged in) users, or display a message saying that chat is only available when logged in to the application. Likewise if “moderator” is not set, then a widget may assume a value of “False” as the default.

This is particularly important when your widget makes use of container-specific properties, as you have to have a strategy for dealing with situations where the widget is being used with a different container that does not set these values.

	Our weather widget wants to be able to make use of preferences to maintain the user’s location information so they don’t have to keep setting it each time they load the widget. To do this we use the preferences.getItem() method:
function weather(){

var pref = Widget.preferences.getItem("city");

if (pref && pref !="null"){

 city = pref;

 startFetchingWeather();

 }

}
With this code we’re not going to try and fetch any weather data until we’ve checked for a city preference. If no preference has been set, we just keep the default value.

If the container sets the “city” value based on the user’s profile, then the widget will be automatically configured; otherwise the user will have to set it themselves the first time.

If the user does select a city on the “back” of our widget, we want to store this, so:

function setCity(){

 var select = document.getElementById("city_selector");

 city = select.options[select.selectedIndex].value;

 Widget.preferences.setItem("city", city);

 fetchWeatherData();

}

Working with external web services and APIs

Most widgets – or at least, a lot of the more interesting ones – will make use of external services of one kind of another. Whether its to fetch a feed of interesting items, or just to make use of handy shared services for things like unit conversions. To call an external service your widget needs to implement an AJAX request and handle the response, and to do without breaching the security restrictions of the user’s browser.

Luckily, Wookie handles the latter aspect for you by providing a built-in proxy service that lets you call services through the same Wookie server that is serving your widget, avoiding the dreaded Same Origin Policy Violation error. The downside is that you have to make sure that any servers your widget needs to call are listed in Wookie’s whitelist.

For information on how to do this, check the Wookie Engine Adminsitrator’s Guide; however, you should declare the sites you need to access in your widget configuration file.

To invoke an external service, you need to construct a proxy URL. Wookie provides a handy method for this:

Widget.proxify(url)

This method returns a “proxified” version of a URL you provide it, for example:

Widget.proxify(http://www.foo.bar/xyz);

Will return something like:

http://www.mywookieserver.com:8080/proxy?instanceid_key=452462363456453653456&url=http://www.foo.bar/xyz

The actual details of the URL the method generates aren’t all that interesting, the main thing is that you can go ahead and call it, assuming you’ve added “www.foo.bar” to Wookie’s whitelist.

There are many patterns for making AJAX service calls; you can use existing helper libraries such as Prototype, or just code it directly yourself. As long as you proxify your URL, you should be fine.

If your service requires authentication, however, you need to check the section in the Advanced chapter.

	For our weather widget, we’re going to load an RSS feed from the BBC’s Weather service for our user’s home city. We implement this with a series of functions; first we have a scheduler that keeps checking the feed every so often:

function startFetchingWeather()

{

 fetchWeatherData();

 timer = setInterval ('fetchWeatherData();', 240000);

}
Next, we have the function that actually fetches the feed, based on a lookup of the user’s city:

var cities = new Array;

cities['belfast'] = '1';

cities['birmingham'] = '2';

cities['manchester'] = '9';

cities['london'] = '8';

function fetchWeatherData(){

 var loc = "http://feeds.bbc.co.uk/weather/feeds/rss/5day/world/"+cities[city]+".xml";

 loc = Widget.proxify(loc);

 var xml_request = new XMLHttpRequest();

xml_request.open("GET", loc, true);

xml_request.onreadystatechange = function()

{

if(xml_request.readyState == 4 && xml_request.status == 200){

parseXMLData(xml_request.responseXML);

buildOutput();

}

}

xml_request.setRequestHeader("Cache-Control", "no-cache");

xml_request.send(null);

}

This function calls the service, and then on successful completion invokes our methods for parsing the feed and updating the display. The parse function is rather rudimentary:

var iconTable = new Array;

iconTable['sunny'] = 'images/sunny.png';

iconTable['sunnyintervals'] = 'images/sunny.png';

iconTable['rainy'] = 'images/rainy.png';

iconTable['lightshowers'] = 'images/rainy.png';

iconTable['drizzle'] = 'images/rainy.png';

iconTable['lightrain'] = 'images/rainy.png';

iconTable['heavyrain'] = 'images/rainy.png';

iconTable['snowy'] = 'images/snowy.png';

iconTable['cloudy'] = 'images/cloudy.png';

function parseXMLData(xmlobject){

 // The BBC formats weather feeds like this:

 // <title>Wednesday: cloudy, Max Temp: 10°C (50°F), Min Temp: 10°C (50°F)</title>

 var root = xmlobject.getElementsByTagName('rss')[0];

 var channel = root.getElementsByTagName('channel')[0];

 var item = channel.getElementsByTagName("item")[0];

 var title = item.getElementsByTagName("title")[0].firstChild.nodeValue;

 var desc = title.split(":")[1];

 desc = desc.split(",")[0];

 desc = desc.split(" ").join(""); //remove whitespace

 var temperature = title.split(":")[2];

 temperature = temperature.split(",")[0];

 celsius = temperature.split("(")[0];

 fahrenheit = temperature.split("(")[1];

 icon = '';

}

This sets the values of the properties we then use to update the display:

function updateDisplay()

{

var iconDiv = document.getElementById("weather");

iconDiv.innerHTML = icon;

var locationDiv = document.getElementById("city");

locationDiv.innerHTML = city;

 var tempDiv = document.getElementById("temperature");

tempDiv.innerHTML = "<p>"+celsius+"</p>";

}

Of course you wouldn’t really make something this basic for a “real” weather widget – we have nothing here for handling errors, for example - but hopefully you can see the basic methodology for calling a service.

Creating a widget manifest file

Before you can deploy a widget on your Wookie server you need to give it a manifest file that describes the widget and provides some configuration details that the engine can use when it renders your widget in a container application.

The manifest file must be called config.xml, must be located at the root of your widget’s file structure, and must conform to the W3C Widgets: Packaging and Configuration v1.0 specification. You can also provide different language versions of your manifest in localized folders, as described earlier in this guide.

The key things to consider for your manifest are:

· It must have a root element called <widget> with attributes for the height and width of the widget. This is important as many containers will display your widget in an iFrame based on this information. It also needs a unique id; a URL is a good way to manage this.

· It must have a <name>, and preferably also a <description>.

· If you want to provide an icon for your widget, make sure you include an <icon> element with a src attribute set to the filename of your widget’s icon.

· Include a <content> element with the src attribute set to the filename of your start file; this will default to index.html, but it doesn’t hurt to make this explicit.

· If your widget uses external services, include an access element for each: <access uri="http://feeds.bbc.co.uk/weather/"/>
· If you want to set default values for any preferences, include <preference> elements with <name> and <value> attributes.

· If you like, you can add your name in the <author> element, and provide a <license> containing your copyright information.

There are many other settings you can make in the widget manifest; for more details take a look at the W3C specification.

	Our weather widget’s manifest looks like this:

<?xml version="1.0" encoding="utf-8"?>

<widget xmlns="http://www.w3.org/ns/widgets"

 id="http://www.getwookie.org/widgets/weather"

 version="1.0"

 height="125"

 width="125">

<name>Weather</name>

<description>A silly Weather widget</description>

<icon src="icon.png"/>

<content src="index.html"/>

<access uri="http://feeds.bbc.co.uk/weather/"/>

<author>Scott Wilson</author>

<licence>Example license (based on MIT License)

Copyright (c) 2008 The Foo Bar Corp.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 </licence>

<preference name="city" value="Manchester"/>

</widget>

Packaging and deploying widgets with Wookie

Once you’ve created a widget, including its manifest, you can simply package your widget and upload it to your server.

To package a widget, make a Zip archive of all the files that make up the widget. Make sure that when you do this that the files are at the root of the archive, and not all nested inside a subfolder.

Once you’ve zipped your widget, change the file extension to “.wgt”, and you can upload it to Wookie using the management interface. When you’ve uploaded your widget you need to allocate it a service type, and add any services required to the proxy whitelist.

For more details, see the Wookie Engine Administrator’s Guide.
2. Creating Advanced Widgets

Locking and unlocking widgets

In some cases you want to be able to let users lock a widget so that other user’s cannot make any changes. To implement this feature you need to be making use of event notifications, so your widget manifest must include:

<feature name=”comet” required=”true”/>

To lock or unlock a widget, the API provides two methods:

Widget.lock()

Widget.unlock()
The methods can have a callback function attached, but in general this method is fairly safe to call without it.

To make use of locking and unlocking, your widget needs to be able to respond to locking and unlocking events that are pushed from the Wookie server. To do this you need to create handler functions that respond to the events; for example:

Widget.onLocked = handleLocked;

Widget.onUnlocked = handleUnlocked;
These declarations assign “handleLocked” to be invoked when the widget receives an event notifying it that the widget has been locked, and “handleUnlocked” to be invoked on receiving an event notifying it that the widget has been unlocked.

For a detailed example of locking, look at the source code of the default chat widget included with Wookie server.

Working with shared data

If you want widgets to have collaborative or social functionality, you need to make use of the shared data API. Shared Data provides methods for storing and accessing data that can be shared among all instances of a widget that share a common context.

The meaning of “context” varies according to how the Wookie Plugin is configured to work with the container, but typically means a widget occupying a single space in the system. For example, for Wordpress the context is the blog; for Moodle it’s the course; for Elgg it’s the user profile page. For more information on contexts, see the Plugin Developer’s Guide.

To implement this feature you need to be making use of event notifications, so your widget manifest must include:

<feature name=”comet” required=”true”/>
The Shared Data API contains the following methods:

Widget.appendSharedDataForKey(key, value, callback)

Widget.setSharedDataForKey(key, value, callback)

Widget.sharedDataForKey(key, callback)
The appendSharedDataForKey() method is a safe way of setting a shared value as it will only append the value you set to the end of the existing value of the shared data entry. You can use this method to do things like append messages to a shared chat log, for example.

The calls are asynchronous, and so it is not reliable to just invoke some of the methods on Widget without providing a callback handler. For example:

Widget.sharedDataForKey(“foo”,”bar”,myHandler);

This means that when the service returns a value, your handler is called. If you need to call a series of services, a common way to do this is to chain the handlers together, e.g.:

Widget.setSharedDataForKey(“foo”, myHandler);

function myHandler(data){

sharedDataForKey(“bar”, myOtherHandler);

}

function myOtherHandler(data){

// do something

}
Chaining service calls like this prevents your widget from getting into a tangle of colliding responses that can affect the validity of its state.

The get and set methods work in a similar fashion to the preference methods; however, you need to take care of how you use them as multiple users are using your widget, which makes it highly likely that messages will overlap each other causing the state to be inconsistent. In general you should only use setSharedDataForKey() and sharedDataForKey() for values that are designed to be only ever set by a single widget instance, but are designed to be read by multiple instances.

For example, if you have a voting widget, you may want to store each user’s vote separately, but add them together to make the final score; this makes it possible for the user to change their vote without potentially messing up the tally if several users were to try to change it at the same time.

To generate an instance-specific shared data key, you should invoke the instanceId atrribute:

Widget.instanceId

This returns a unique identifier for your widget instance.

Whenever a shared data value is set or appended, widgets receive an event notifying them of the changes. Your widget can handle notifications by setting a function as the event handler in your script; for example:

Widget.onSharedUpdate = handleSharedUpdate;

This sets the handleSharedUpdate method to be invoked whenever there is an event notifying the widget that a shared data value has been updated.

Each event contains an array of keys for the values that have been updated; your widget can use these to determine what actions, if any, that it needs to take. For example:

function handleUpdate(keys){

 for (String key:keys){

 if(key.equals("chat"){

sharedDataForKey("chat", refreshChatDisplay());

 }

 }

}

There are many different strategies that can be employed for working with shared data; a good starting point is to look at the code for the default widgets provided with the Wookie Engine.

In some cases, the functionality you need for your widget may be more than the shared data API can offer, in which case you should consider connecting to an external service to implement the features remotely.

Working with state coupling events

This feature will be added in v1.0 of Wookie Server.
Working with secure services

Whenever your widget needs to call a secure service, you face a range of options for how to handle this situation. Each has its pros and cons.

Ask the user to directly provide their login information to the widget, and then access the service prefixing the authentication details

This has the benefit of simplicity but is extremely poor practice from the viewpoint of security and user education. Not only is the widget able to act on behalf of the user, it means storing credentials in plain text on the Widget Engine, which requires that the person running that server has to make sure its database is safe from snooping.

If you really, really must do this, then you can add the optional username and password parameters onto the proxified URL for the service.

Use an access ticket

An alternative to using credentials is to generate a ticket from the service that the user can paste into the widget instead of their credentials. The ticket can be specific to the widget and not usable by other agents or applications, enabling the service to track usage.

The advantage of this approach is nothing sensitive is saved in the Widget Engine database, or transmitted insecurely over the network. The disadvantage is that it shifts responsibility to the service for generating and managing tickets.

To use a ticket-based solution requires adding the appropriate ticket parameter to the service call.

Use oAuth

OAuth is a standard ticket architecture used by a number of services, including Google’s applications and services. OAuth provides a mechanism for an application to request access to a service, prompting the user to login and grant a ticket.

OAuth is the most likely future scenario for accessing secure services in a consistent, user-centric way. Unfortunately, the current version of Wookie has not yet implemented it, so you’ll have to wait!

Appendix A: Widget API Reference

Core W3C features

Note that the W3C specification is evolving, and these features are subject to change.

interface Widget {

 readonly attribute DOMString viewMode;

 readonly attribute DOMString locale;

 readonly attribute DOMString identifier;

 readonly attribute DOMString authorInfo;

 readonly attribute DOMString authorEmail;

 readonly attribute DOMString authorHref;

 readonly attribute DOMString name;

 readonly attribute DOMString description;

 readonly attribute DOMString version;

 readonly attribute unsigned short width;

 readonly attribute unsigned short height;

 attribute Storage preferences;

 attribute Function onmodechange;

 boolean hasFeature(in DOMString url);

 void openURL(in DOMString url);

 void getAttention();

 void showNotification(in DOMString title, in DOMString message, in Function onclick);

}

Wookie extended features

These features are made available by Wookie as extensions to the W3C Widgets specifications, and are not yet supported by other implementations.

Attributes

Widget.instanceId

The read-only identifier generated by the widget engine for this widget instance

Methods

Widget.sharedDataForKey(key, callback)

Returns the value of shared data for key, or undefined if there is no match. When completed, invokes callback with the return value.

Widget.setSharedDataForKey(key, value, callback)

Sets the value of shared data for key to value, overriding any existing value. . If there is no match, creates a new shared data entry for key with value. When completed, invokes callback with the return value.

Widget.appendSharedDataForKey(key, value, callback)

Appends the value of shared data for key with value. If there is no matching key, creates a new shared data entry for key and sets it to value. When completed, invokes callback with the return value.

Widget.proxify(url)

Returns the proxified version of url.

Widget.lock()

Sets the state of the widget to locked.

Widget.unlock()

Sets the state of the widget to unlocked.

Events

Widget.onSharedDataUpdate

Called when a shared data entry is updated with the array of shared data keys affected.

Widget.onLocked

Called when the state of the widget is set to Locked.

Widget.onUnlocked

Called when the state of the widget is set to Unlocked.

