
Jakarta HiveMind Project
Documentation

1. HiveMind Project

1.1. Reference

1.1.1. HiveMind Services

In HiveMind, a service is simply an object that implements a particular interface, the service
interface. You supply the service interface (packaged as part of a module). You supply the
core implementation of the interface (in the same module, or in a different module). At
runtime, HiveMind puts it all together.

HiveMind uses four service models: primitive, singleton, threaded and pooled. In the
primitive and singleton models, each service will ultimately be just a single object instance.
In the threaded and pooled models, there may be many instances simultaneously, one for
each thread.

Unlike EJBs, there's no concept of location transparency: services are always local to the
same JVM. Unlike XML-based web services, there's no concept of language transparency:
services are always expressed in terms of Java interfaces. Unlike JMX or Jini, there's no
concept of hot-loading of of services. HiveMind is kept delibrately simple, yet still very
powerful, so that your code is kept simple.

1.1.1.1. Defining Services

A service definition begins with a Java interface, the service interface. Any interface will do,
HiveMind doesn't care, and there's no base HiveMind interface.

A module descriptor may include <service-point> elements to define services. A module may
contain any number of services.

Each <service-point> establishes an id for the service and defines the interface for the
service. An example is provided later in this document.

HiveMind is responsible for supplying the service implementation as needed; in most cases,

Page 1
Copyright © 2004 The Apache Software Foundation All rights reserved.

the service implementation is an additional Java class which implements the service
interface. HiveMind will instantiate the class and configure it as needed. The exact timing is
determined from the service's service model:

• primitive : the service is constructed on first reference
• singleton : the service is not constructed until a method of the service interface is

invoked
• threaded : invoking a service method constructs and binds an instance of the service to

the current thread
• pooled : as with threaded, but service implementations are stored in a pool when

unbound from a thread for future use in other threads.

Additional service models can be defined via the hivemind.ServiceModels configuration
point.

HiveMind uses a system of proxies for most of the service models (all except the primitive
service model, which primarily exists to bootstrap the core HiveMind services used by other
services). Proxies are objects that implement the service interface and take care of details
such as constructing the actual implementation of a service on the fly. These lifecycle issues
are kept hidden from your code behind the proxies.

A service definition may include service contributions, or may leave that for another module.

Ultimately, a service will consist of a core implementation (a Java object that implements the
service interface) and, optionally, any number of interceptors. Interceptors sit between the
core implementation and the client, and add functionality to the core implementation such as
logging, security, transaction demarkation or performance monitoring. Interceptors are yet
more objects that implement the service interface.

Instantiating the core service implementation, configuring it, and wrapping it with any
interceptors is referred to as constructing the service. Typically, a service proxy will be
created first. The first time that a service method is invoked on the proxy, the service
implementation is instantiated and configured, and any interceptors for the service are
created.

1.1.1.2. Extending Services

Any module may contribute to any service extension point. An <implementation> element
contains these contributions. Contributions take three forms:

• Service constructors:
• <create-instance> to instantiate an instance of a Java class as the implementation
• <invoke-factory> to have another service create the implementation

• <interceptor> to add additional logic to a core implementation

Jakarta HiveMind Project Documentation

Page 2
Copyright © 2004 The Apache Software Foundation All rights reserved.

Service Constructors

A service constructor is used to instantiate a Java class as the core implementation instance
for the service.

There are two forms of service constructors: instance creators and implementation factories.

An instance creator is represented by a <create-instance> element. It includes a class
attribute, the Java class to instantiate.

An implementation factory is represented by a <invoke-factory> element. It includes a
service-id attribute, the id of a service implementation factory service (which implements the
ServiceImplementationFactory interface). The most common example is the
hivemind.BuilderFactory service.

Implementation Factories

An implementation factory is used to create a core implementation for a service at runtime.

Often, the factory will need some additional configuration information. For example, the
hivemind.lib.EJBProxyFactory service uses its parameters to identify the JNDI name of the
EJB's home interface, as well as the home interface class itself.

Parameters to factory services are the XML elements enclosed by the <invoke-factory>
element. Much like a configuration contribution, these parameters are converted from XML
into Java objects before being provided to the factory.

The most common service factory is hivemind.BuilderFactory. It is used to construct a
service and then set properties of the service implementation object.

Interceptor Contributions

An interceptor contribution is represented by an <interceptor> element. The service-id
attribute identifies a service interceptor factory service: a service that implements the
ServiceInterceptorFactory interface.

An interceptor factory knows how to create an object that implements an arbitrary interface
(the interface being defined by the service extension point), adding new functionality. For
example, the hivemind.LoggingInterceptor factory creates an instance that logs entry and exit
to each method.

The factory shouldn't care what the service interface itself is ... it should adapt to whatever
interface is defined by the service extension point it will create an instance for.

Jakarta HiveMind Project Documentation

Page 3
Copyright © 2004 The Apache Software Foundation All rights reserved.

A service extension point may have any number of interceptor contributions. If the order in
which interceptors are applied is important, then the optional before and after attributes
can be specified.

A Stack of Interceptors
In this example, is was desired that any method logging occur first, before the other
interceptors. This ensures that the time taken to log method entry and exit is not included in
the performance statistics (gathered by the performance interceptor). To ensure that the
logging interceptor is the first, or earliest, interceptor, the special value * (rather than a list of
interceptor service ids) is given for its before attribute (within the <interceptor> element).
This forces the logging interceptor to the front of the list (however, only a single interceptor
may be so designated).

Likewise, the security checks should occur last, after logging and after performance; this is
accomplished by setting the after attribute to *. The performance interceptor naturally
falls between the two.

This is about as complex as an interceptor stack is likely to grow. However, through the use
of explicit dependencies, almost any arraingment of interceptors is possible ... even when
different modules contribute the interceptors.

Interceptors implement the toString() method to provide a useful identification for the
interceptor, for example:
< Interceptor: hivemind.LoggingInterceptor for
com.myco.MyService(com.myco.MyServiceInterface)>

This string identifies the interceptor service factory (hivemind.LoggingInterceptor), the
service extension point (com.myco.MyService) and the service interface
(com.myco.MyServiceInterface).

If toString() is part of the service interface (really, a very rare case), then the interceptor
does not override the service implementation's method.

1.1.1.3. A short example

As an example, let's create an interface with a single method, used to add together two
numbers.

package com.myco.mypackage;

public interface Adder
{
public int add(int arg1, int arg2);

}

Jakarta HiveMind Project Documentation

Page 4
Copyright © 2004 The Apache Software Foundation All rights reserved.

We could define many methods, and the methods could throw exceptions. Once more,
HiveMind doesn't care.

We need to create a module to contain this service. We'll create a simple HiveMind
deployment descriptor. This is an SDL file, named hivemodule.sdl, that must be included in
the module's META-INF directory.

module (id=com.myco.mypackage version="1.0.0")
{
service-point (id=Adder interface=com.myco.mypackage.Adder)

}

The complete id for this service is com.myco.mypackage.Adder , formed from the
module id and the service id. Commonly, the service id will exactly match the complete
name of the service interface, but this is not required.

Normally, the <service-point> would contain a <create-instance> or <invoke-factory>
element, used to create the core implementation. For this example, we'll create a second
module that provides the implementation. First we'll define the implementation class.

package com.myco.mypackage.impl;

import com.myco.mypackage.Adder;

public class AdderImpl implements Adder
{
public int add(int arg1, int arg2)
{
return arg1 + arg2;

}
}

That's what we meant by a POJO. We'll create a second module to provide this
implementation.

module (id=com.myco.mypackage.impl version="1.0.0")
{
implementation (service-id=com.myco.mypackage.Adder)
{
create-instance (class=com.myco.mypackage.impl.AdderImpl)

}
}

The runtime code to access the service is very streamlined:

Registry registry = . . .
Adder service = (Adder) registry.getService("com.myco.mypackage.Adder", Adder.class);
int sum = service.add(4, 7);

Another module may provide an interceptor:

Jakarta HiveMind Project Documentation

Page 5
Copyright © 2004 The Apache Software Foundation All rights reserved.

module (id=com.myco.anotherpackage version="1.0.0")
{
implementation (service-id=com.myco.mypackage.Adder)
{
interceptor (service-id=hivemind.LoggingInterceptor)

}
}

Here the Logging interceptor is applied to the service extension point. The interceptor will be
inserted between the client code and the core implementation. The client in the code example
won't get an instance of the AdderImpl class, it will get an instance of the interceptor, which
internally invokes methods on the AdderImpl instance. Because we code against interfaces
instead of implementations, the client code neither knows nor cares about this.

1.1.1.4. Primitive Service Model

The simplest service model is the primitive service model; in this model the service is
constructed on first reference. This is appropriate for services such as service factories and
interceptor factories, and for several of the basic services provided in the hivemind module.

1.1.1.5. Singleton Service Model

Constructing a service can be somewhat expensive; it involves instantiating a core service
implementation, configuring its properties (some of which may also be services), and
building the stack of interceptors for the service. Although HiveMind encourages you to
define your application in terms of a large number of small, simple, testable services, it is
also desirable to avoid a cascade of unneccesary object creation due to the dependencies
between services.

To resolve this, HiveMind defers the actual creation of services by default. This is controled
by the model attribute of the <service-point> element; the default model is singleton.

When a service is first requested a proxy for the service is created. This proxy implements
the same service interface as the actual service and, the first time a method of the service
interface is invoked, will force the construction of the actual service (with the core service
implementation, interceptors, references to other services, and so forth).

In certain cases (including many of the fundamental services provided by HiveMind) this
behavior is not desired; in those cases, the primitive service model is specified. In addition,
there is rarely a need to defer service implementation or service interceptor factory services.

1.1.1.6. Threaded Service Model

In general, singleton services (using the singleton or primitive service models) should be

Jakarta HiveMind Project Documentation

Page 6
Copyright © 2004 The Apache Software Foundation All rights reserved.

sufficient. In some cases, the service may need to keep some specific state. State and
multithreading don't mix, so the threaded service model constructs, as needed, a service
instance for the current thread. Once constructed, the service instance stays bound to the
thread until it is discarded. The particular service implementation is exclusive to the thread
and is only accessible from that thread.

The threaded service model uses a special proxy class (fabricated at runtime) to support this
behavior; the proxy may be shared between threads but methods invoked on the proxy are
redirected to the private service implementation bound to the thread. Binding of a service
implementation to a thread occurs automatically, the first time a service method is invoked.

The service instance is discarded when notified to cleanup; this is controlled by the
hivemind.ThreadEventNotifier service. If your application has any threaded services, you are
responsible for invoking the fireThreadCleanup() method of the service.

A core implementation may implement the Discardable interface. If so, it will receive a
notification as the service instance is discarded.

HiveMind includes a servlet filter to take care creating the Registry and managing the
ThreadEventNotifier service.

1.1.1.7. Pooled Service Model

The pooled service model is very similar to the threaded model, in that a service
implementation will be exclusively bound to a particular thread (until the thread is cleaned
up). Unlike the threaded model, the service is not discarded; instead it is stored into a pool
for later reuse with the same or a different thread.

As with the threaded model, all of this binding and unbinding is hidden behind a dynamically
fabricated proxy class.

Core service implementations may implement the RegistryShutdownListener interface to
receive a callback for final cleanups (as with the singleton and deferred service models).

In addition, a service may implement the PoolManageable interface to receive callbacks
specific to the pooled service. The service is notified when it is activated (bound to a thread)
and deactivated (unbound from the thread and returned to the pool).

1.1.1.8. Service Lifecycle

As discussed, the service model determines when a service is instantiated. In many cases, the
service needs to know when it has been created (to perform any final initializations) or when
the Registry has been shut down.

Jakarta HiveMind Project Documentation

Page 7
Copyright © 2004 The Apache Software Foundation All rights reserved.

A core service implementation may also implement the RegistryShutdownListener interface.
When a Registry is shutdown, the registryDidShutdown() method is invoked on all
services (and many other objects, such as proxies). The order in which these notifications
occur is not defined. A service may release any resources it may hold at this time. It should
not invoke methods on other service interfaces.

The threaded service model does not register services for Registry shutdown notification;
regardless of whether the core service implementation implements the
RegistryShutdownListener interface or not. Instead, the core service implementation should
implement the Discardable interface, to be informed when a service bound to a thread is
discarded.

It is preferred that, whenever possible, services use the singleton service model (the default)
and not the primitive model. All the service models (except for the primitive service model)
expose a proxy object (implementing the service interface) to client code (included other
services). These proxies are aware of when the Registry is shutdown and will throw an
exception when a service method is invoked on them.

1.1.1.9. Services and Events

It is fairly common that some services will produce events and other services will consume
events. The use of the hivemind.BuilderFactory to construct a service simplifies this, using
the < event-listener> element. The BuilderFactory can register a core service
implementation (not the service itself!) as a listener of events produced by some other
service.

The producing service must include a matched pair of listener registration methods, i.e., both
addFooListener() and removeFooListener. Note that only the implementation
class must implement the listener interface; the service interface does not have to extend the
listener interface. The core service implementation is registered directly with the producer
service, bypassing any interceptors or proxies.

1.1.1.10. Frequently Asked Questions

• Why do I pass the interface class to getService()?
This is to add an additional level of error checking and reporting. HiveMind knows, from
the module descriptors, the interface provided by the service extension point, but it can't
tell if you know that. By passing in the interface you'll cast the returned service to,
HiveMind can verify that you won't get a ClassCastException. Instead, it throws an
exception with more details (the service extension point id, the actual interface provided,
and the interface you passed it).

Jakarta HiveMind Project Documentation

Page 8
Copyright © 2004 The Apache Software Foundation All rights reserved.

• What if no module provides a core implementation of the service?
HiveMind checks for a service constructor when the registry itself is assembled. If a
service extension point has no service constructor, an error is logged (identifying the
extension point id). In addition, getService() will throw an
ApplicationRuntimeException.

• What if I need to do some initializations in my service?
If you have additional initializations that can't occur inside your core service
implementations constructor (for instance, if the initializations are based on properties set
after the service implementation object is instantiated), then your class should use the
hivemind.BuilderFactory to invoke an initializer method.

• What if I don't invoke Registry.cleanupThread()?
Then service implementations bound to the current thread stay bound. When the thread is
next used to process a request, the same services, in whatever state they were left in, will
be used. This may not be desirable in a servlet or Tapestry application, as some state from
a client may be left inside the services, and a different client may be associated with the
thread in later executions.

• What if I want my service to be created early, not just when needed?
Contribute your service into the hivemind.EagerLoad configuration; this will force
HiveMind to instantiate the service on startup. This is often used when developing an
application, so that configuration errors are caught early; it may also be useful when a
service should be instantiated to listen for events from some other service.

1.1.2. Configuration Points

A central concept in HiveMind is configuration extension points. Once you have a set of
services, its natural to want to configure those services. In HiveMind, a configuration point
contains an unordered list of elements. Each element is contributed by a module ... any
module may make contributions to any configuration point.

There is no explicit connection between a service and a configuration point, though it is often
the case that a service and a configuration point will be similarily named (or even identically
named; services and configuration points are in seperate namespaces). Any relationship
between a service and an configuration point is explicit only in code ... the service may be
configured with the elements of a configuration point and operate on those elements in some
way.

1.1.2.1. Defining a Configuration Point

A module may include <configuration-point> elements to define new configuration points. A

Jakarta HiveMind Project Documentation

Page 9
Copyright © 2004 The Apache Software Foundation All rights reserved.

configuration point may specify the expected, or allowed, number of contributions:

• Zero or one
• Zero or more (the default)
• At least one
• Exactly one

At runtime, the number of actual contributions is checked against the constraint and an error
is reported if the number doesn't match.

Defining the Contribution Format

A significant portion of an configuration point is the <schema> element ... this is used to
define the format of contributions that may be made inside <contribution> elements.
Contributions take the form of XML elements and attributes, the <schema> element
identifies which elements and which attributes and provides rules that transform the
contributions into Java objects.

This is very important: what gets fed into an configuration point (in the form of contributed
<contribution>s) is XML. What comes out on the other side is a list of configured Java
objects. Without these XML transformation rules, it would be necessary to write Java code to
walk the tree of XML elements and attributes to create the Java objects; instead this is done
inside the module deployment descriptor, by specifying a <schema> for the configuration
point, and providing rules for processing each contributed element.

If a contribution from an <contribution> is invalid, then a runtime error is logged and the
contribution is ignored. The runtime error will identify the exact location (the file, line
number and column number) of the contribution so you can go fix it.

The <schema> element contains <element> elements to describe the XML elements that may
be contributed. <element>s contain <attribute>s to define the attributes allowed for those
elements. <element>s also contain <rules> used to convert the contributed XML into Java
objects.

Here's an example from the HiveMind test suite. The Datum object has two properties: key
and value.

configuration-point (id=Simple)
{
schema
{
element (name=datum)
{
attribute (name=key required=true)
attribute (name=value required=true)

Jakarta HiveMind Project Documentation

Page 10
Copyright © 2004 The Apache Software Foundation All rights reserved.

conversion (class=hivemind.test.config.impl.Datum)
}

}
}

contribution (configuration-id=Simple)
{
datum (key=key1 value=value1)
datum (key="another key" value=<<A value with a "quote" in it>>)

}

The <conversion> element creates an instance of the class, and initializes its properties from
the attributes of the contributed element (the datum and its key and value attributes). For
more complex data, the <map> and <rules> elements add power (and complexity).

This extra work in the module descriptor eliminates a large amount of custom Java code that
would otherwise be necessary to walk the XML contributions tree and convert elements and
attributes into objects and properties. Yes, you could do this in your own code ... but would
you really include all the error checking that HiveMind does? Or the line-precise error
reporting? Would you bother to create unit tests for all the failure conditions?

Using HiveMind allows you to write the schema and rules and know that the conversion
from XML to Java objects is done uniformly, efficiently and robustly.

The end result of this mechanism is very concise, readable contributions (as shown in the
<contribution> in the example).

In addition, it is common for multiple configuration points to share the exact same schema.
By assigning an id attribute to a <schema> element, you may reference the same schema for
multiple configuration points. For example, the hivemind.FactoryDefaults and
hivemind.ApplicationDefaults configuration points use the same schema. The hivemind
module deployment descriptor accomplishes this by defining a schema for one configuration
point, then referencing it from another:

schema (id=Defaults)
{
element (name=default)
{
. . .

}
}

configuration-point (id=FactoryDefaults schema-id=Defaults)

Like service points and configuration points, schemas may be referenced within a single
module using an unqualified id, or referenced between modules using a fully qualified id
(that is, prefixed with the module's id).

Jakarta HiveMind Project Documentation

Page 11
Copyright © 2004 The Apache Software Foundation All rights reserved.

1.1.2.2. Accessing Configuration Points

Like services, configuration points are meant to be easy to access (the only trick is getting a
reference to the registry to start from).

Registry registry = . . .;
List elements = registry.getConfiguration("com.myco.MyConfig");

int count = elements.size();
for (int i = 0; i < count; i++)
{
MyElement element = (MyElement) elements.get(i);

. . .
}

Note:
Although it is possible to access configurations via the Registry, it is often not a good idea. It is unlikely that you want the
information contained in a configuration as an unordered list. A best practice is to always access the configuration through a
service, which can organize and validate the data in the configuration.

The list of elements is always returned as an unmodifiable list. An empty list may be
returned.

The order of the elements in the list is not defined. If order is important, you should create a
new (modifiable) list from the returned list and sort it.

Note that the elements in the list are no longer the XML elements and attributes that were
contributed, the rules provided in the configuration point's <schema> are used to convert the
contributed XML into Java objects.

1.1.2.3. Lazy Loading

At application startup, all the module deployment descriptors are located and parsed and
in-memory objects created. Validations (such as having the correct number of contributions)
occur at this stage.

The list of elements for an configuration point is not created until the first call to
Registry.getConfiguration() for that configuration point.

In fact, it is not created even then. When the element list for an configuration point is first
accessed, what's returned is not really the list of elements; it's a proxy, a stand-in for the real
data. The actual elements are not converted until they are actually needed, in much the same
way that the creation of services is deferred.

Jakarta HiveMind Project Documentation

Page 12
Copyright © 2004 The Apache Software Foundation All rights reserved.

In general, you will never know (or need to know) this; when you access the size() of the
list or get() any of its elements, the conversion of contributions into Java objects will be
triggered, and those Java objects will be returned in the list.

If there are minor errors in the contribution, then you may see errors logged; if the
<contribution> contributions are singificantly malformed, HiveMind may be unable to
recover and will throw a runtime exception.

1.1.2.4. Substitution Symbols

The information provided by HiveMind module descriptors is entirely static, but in some
cases, some aspects of the configuration should be dynamic. For example, a database URL or
an e-mail address may not be known until runtime (a sophisticated application may have an
installer which collects this information).

HiveMind supports this notion through substitution symbols. These are references to values
that are supplied at runtime. Substitution symbols can appear inside literal values ... both as
XML attributes, and as character data inside XML elements.

Example:

contribution (configuration-id=com.myco.MyConfig)
{
value { "dir/foo.txt" }
value { "${config.dir}/${config.file}" }

}

This example contributes two elements to the com.myco.MyConfig configuration point.
The first contribution is simply the text dir/foo.txt. In the second contribution, the
content contains substitution symbols (which use a syntax derived from the Ant build tool).
Symbol substitution occurs before <schema> rules are executed, so the config.dir and
config.file symbols will be converted to strings first, then whatever rules are in place to
convert the value element into a Java object will be executed.

Symbol Sources

This begs the question: where do symbol values come from? The answser is application
dependent. HiveMind itself defines a configuration configuration point for this purpose:
hivemind.SymbolSources. Contributions to this configuration point define new objects that
can provide values for symbols, and identify the order in which these objects should be
consulted.

If at runtime none of the configured SymbolSources provides a value for a given symbol then
HiveMind will leave the reference to that symbol as is, including the surrounding ${ and }.

Jakarta HiveMind Project Documentation

Page 13
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://ant.apache.org/

Additionally an error will be logged.

1.1.2.5. Frequently Asked Questions

• Are the any default implementations of SymbolSource?
There is now an configuration point for setting factory defaults:
hivemind.FactoryDefaults . A second configuration point, for application defaults,
overrides the factory defaults: hivemind.ApplicationDefaults.

SystemPropertiesSymbolSource is a one-line implementation that allows access to
system properties as substitution symbols. Note that this configuration is not loaded by
default.

Additional implementations may follow in the future.

• What's all this about schemas and rules?
A central goal of HiveMind is to reduce code clutter. If configuration point contributions
are just strings (in a .properties file) or just XML, that puts a lot of burden on the
developer whose code reads the configuration to then massage it into useful objects. That
kind of ad-hoc code is notoriously buggy; in HiveMind it is almost entirely absent.
Instead, all the XML parsing occurs inside HiveMind, which uses the schema and rules to
validate and convert the XML contributions into Java objects.

You can omit the schema, in which case the elements are left as XML (instances of
Element and your code is responsible for walking the elements and attributes ... but why
bother? Far easier to let HiveMind do the conversions and validations.

• How do I know if the element list is a proxy or not?
Basically, you can't, short of performing an instanceof check. There isn't any need to
tell the difference between the deferred proxy to the element list and the actual element
list; they are both immutable and both behave identically.

1.1.3. Simple Data Language

One of the frequent criticisms of J2EE is: too much XML. That is, every small aspect of a
J2EE application requires a big XML deployment descriptor to be generated (by hand, or
generated from code in some way). What's interesting is what's in those XML files:
configuration data containing simple strings and identifiers.

XML is overkill for these purposes: its a markup language, designed to add semantic
meaning to documents that normally have a literal meaning (that is, documents that are
supposed to be read primarily by persons, not other programs). Like many technologies, its
intended use has been co-opted (to what degree is debatable). XML for real documents such

Jakarta HiveMind Project Documentation

Page 14
Copyright © 2004 The Apache Software Foundation All rights reserved.

as XHTML or SVG make sense. The complexity of SOAP mandates an industrial strength
syntax to express its complex structure. But for the majority of uses of XML within the J2EE
stack, it simply is vastly more complex than is necessary.

The complexity comes at some cost ... XML is very verbose, a tangle of punctuation (such as
<, > and quotes) and repetition (start tags and end tags). Even experienced developers often
need to take a bit of time to visually and mentally parse an XML snippet.

Through HiveMind release 1.0-alpha-4, HiveMind was as guilty as the next project in XML
usage. HiveMind module deployment descriptors would, at least, centralize the XML
concerning a service, and enforce some amount of uniformity.

Release 1.0-alpha-5 introduces Simple Data Language, an alternative to the use of XML in
HiveMind. XML will continue to be supported as a first class citizen, but in HiveMind, there
is not such a compelling reason to use it!

1.1.3.1. Goals

The goals of SDL are to provide the bare essentials needed for a hierachical data language,
but keep is spare and readable. Unecessary typing is to be avoided, so the use of quotes is
made optional whereever possible. SDL syntax should be reasonably obvious to an interested
observer.

1.1.3.2. Examples

Before getting bogged down in a formal specification for SDL, a few simple examples will
explain just about everything. Compare the following two HiveMind module deployment
descriptors, which express identical information:

Traditional XML Format:

<?xml version="1.0"?>

<module id="some.module" version="1.0.0">
<configuration id="ControlPipeline">
<schema>
<element name="processor">

<attribute name="name" required="true"/>
<attribute name="service-id" required="true" translator="service"/>
<attribute name="before"/>
<attribute name="after"/>

<conversion class="some.module.PipelineContribution">
<map property="controlService" attribute="service-id"/>

</conversion>

Jakarta HiveMind Project Documentation

Page 15
Copyright © 2004 The Apache Software Foundation All rights reserved.

</element>
</schema>

</configuration>
</module>

SDL format:

module (id=some.module version="1.0.0")
{
configuration (id=ControlPipeline)
{
schema
{
element (name=processor)
{
attribute (name=name required=true)
attribute (name=service-id required=true translator=service)
attribute (name=before)
attribute (name=after)

conversion (class=some.module.PipelineContribution)
{
map (property=controlService attribute=service-id)

}
}

}
}

}

Some observations:

• SDL uses open and close braces to denote containment of elements within another
element

• Attributes, as a list of name-value pairs, are placed in parenthesis following the element
name

• Elements without attributes can omit the parenthesis (example: schema)
• Elements that do not contain other elements can omit the open and close braces denoting

thier body (example: attribute)
• Most common strings do not have to be quoted
• All whitespace not inside quotes is ignored

1.1.3.3. Whitespace

All whitespace (outside of literals) is ingored. Whitespace is considered to be:

• Spaces
• Tabs
• Newlines

Jakarta HiveMind Project Documentation

Page 16
Copyright © 2004 The Apache Software Foundation All rights reserved.

• Carriage Returns

1.1.3.4. Comments

Comments are in the format traditional in Java and C:

// This is a comment that extends to the end of the current line.

/* This is a multiline
comment. */

Comments may appear anywhere in an SDL document (except within quoted strings) and are
always ignored.

1.1.3.5. Element and Attribute Names

Element and attribute names must be simple ids. They must start with a letter (or underscore)
and may contain only letters, digits, underscores and dashes. They may not be enclosed in
quotes.

1.1.3.6. Literal Values

Attribute values may be literal values. Literal values are considered one of the following:

• simple ids
• complex ids -- a sequence of simple ids seperated by periods
• numeric values
• Symbol references
• Quoted strings
• Extended literals

Complex ids have the same format as Java class and interface names (but can, additionally,
contain dash characters which are not allowed in Java).

Numeric values consist of an optional sign (+ or -) followed by a integer or decimal value.
In the future, a more expansive definition may be provided.

Symbol references allow Ant-style symbols to be used directly in SDL. Example:

. . .
set-service (service-id=${symbol.for.service-id})

. . .

Support for Ant-style symbols is a convienience (the same syntax is used heavily within
HiveMind). There is no difference between ${symbol.for.service-id} and
"${symbol.for.service-id}" ... both will be processed identically.

Jakarta HiveMind Project Documentation

Page 17
Copyright © 2004 The Apache Software Foundation All rights reserved.

Quoted strings are similar to Java string literals. All whitespace within the string is retained
as-is, including line breaks. A subset of the Java escape codes are currently supported:

• \t (tab)
• \n (newline)
• \r (carriage return)
• \" (quote)
• \\ (slash)

Any other sequence is passed through normally (unescaped).

Extended literals have a different syntax:

. . .
description =

<< A long, multiline string
that may contain "quoted" sections. >>
. . .

Extended literals may contain any character sequence (except >>). Escape sequences in
expanded literals are not interpreted. All whitespace within the delimiters is retained.

1.1.3.7. Literal Gotcha

The body of an element may contain literal text data, just as with XML. Unlike XML,
whitespace is completely removed. Thus the following are equivalent:

first
{
"NowIsTheTime"

}
second
{
"Now" "Is" <<The>> <<Time>>

}

This applies to all forms of literals, including numbers. The following are identical:

pi1
{
3.14159

}
pi2
{
3 .14 159

}

Inside the body of an element, simple ids are interpreted as elements not string literals. In the
following example, root1 and root2 have the same structure (each contains three children

Jakarta HiveMind Project Documentation

Page 18
Copyright © 2004 The Apache Software Foundation All rights reserved.

and no content). leaf contains no children, and its content is child1child2child3.

root1
{
child1 {}
child2 {}
child3 {}

}
root2
{
child1 child2 child3

}
leaf
{
"child1" "child2" "child3"

}

1.1.3.8. TO DO

• Expand the definition of "character" to properly include Unicode
• Add Unicode escape patterns in quoted literals
• Expand the definition of numeric literal to include all Java literals

1.1.4. HiveDoc

HiveMind includes tools for documentating a HiveMind registry ... the combined information
from all modules that are deployed at runtime. At build time, all related HiveMind module
deployment descriptors are parsed and the results combined into a single file. The master file
(which is only used for this documentation) is then converted into a set of HTML files using
XSLT. The end result is much like JavaDoc ... it's fully hyperlinked and allows you to see all
services, configuration points, contributions and schemas clearly.

Incorporated into the generated documentation is user-supplied descriptions. The <attribute>,
<configuration-point>, <element>, <module>, <schema> and <service-point> elements can
enclose a description (as character data), i.e.:

module (id=mymodule version="1.0.0")
{
"A module for my application with my services, etc."

}

The HiveDoc for the HiveMind framework and library is available here.

Note:
Details on building the documentation will be coming soon.

Jakarta HiveMind Project Documentation

Page 19
Copyright © 2004 The Apache Software Foundation All rights reserved.

1.1.5. HiveMind Module Descriptor

The purpose of the module descriptor is to provide a runtime and compile-time description of
each HiveMind module in terms of service and configuration extension points and
contributions to those extension points.

The descriptor is named hivemodule.sdl and is stored in the META-INF directory of
the module.

The root element of the descriptor is the <module> element.

The prefered format is Simple Data Language, in which case, the descriptor should be named
hivemodule.sdl. Alternately, you may name the file hivemodule.xml and use XML.
For the purposes of HiveMind, the two formats are interchangeable.

1.1.5.1. attribute

<attribute> is used to define an attribute within an <element>. Inside a <contribution>, only
known attributes are allowed in elements; unknown attributes will be logged as an error and
ignored. In addition, some attributes are required; again, errors occur if the contributed
element does not provide a value for the attribute.

Attribute Type Required ? Description

name string yes The name of the
attribute.

required boolean boolean If true, the attribute
must be provided in
the contributed
configuration element.
The default is false.

translator string no The translator
configuration that is
used to convert the
attribute into a useable
type. By default, the
attribute is treated as a
single string.

1.1.5.2. configuration-point

The <configuration-point> element defines a configuration extension point.

Attribute Type Required ? Description

Jakarta HiveMind Project Documentation

Page 20
Copyright © 2004 The Apache Software Foundation All rights reserved.

id string yes The simple id of the
service extension
point. The fully
qualified id for the
extension point is
created by prefixing
with the module's id
(and a dot).

occurs unbounded | 0..1
| 1 | 1..n

no The number of
contributions allowed:
• unbounded

(default): any
number

• 0..1: optional
• 1 : required
• 1..n: at least one

schema-id string no Used to reference a
<schema> (in the
same module, or a
different one) that
defines the format of
contributions into the
configuration point.
This may be omitted, in
which case the
extension point will
contain a list of
Element .

Contains: <schema>

<configuration-point> only defines a configuration point, it does not supply any data into that
point. The <contribution> element is used to provide such data.

1.1.5.3. contribution

The <contribution> element contributes elements to an existing configuration extension
point.

Attribute Type Required ? Description

configuration-id string yes Either the id of an
<configuration-point>
within the module, or
the fully qualified id of
an

Jakarta HiveMind Project Documentation

Page 21
Copyright © 2004 The Apache Software Foundation All rights reserved.

<configuration-point>
in another module.

The content of the <contribution> consists of elements. These elements are converted, in
accordance with the configuration point's <schema>, into Java objects.

1.1.5.4. conversion

<conversion> is an alternative to <rules> that is generally simpler and more concise. An
<element> should contain <conversion> or <rules> but not both.

<conversion> is geared towards the typical case; a straight-forward mapping of the element
to an instance of a Java class, and a mapping of the element's attributes to the properties of
the Java object.

Attribute Type Required ? Description

class string yes The fully qualified
name of a Java class
to instantiate.

parent-method string no The name of a method
of the parent object
used to add the
created object to the
parent. The default,
addElement, is
appropriate for
top-level <element>s.

Contains: <map>

Each attribute will be mapped to a property. A limited amount of name mangling occurs: if
the attribute name contains dashes, they are removed, and the character following is
converted to upper case. So, an attribute named "complex-attribute-name" would be mapped
to a property named "complexAttributeName". Only attributes identified with a <attribute>
element will be mapped, others will be ignored.

1.1.5.5. create-instance

<create-instance> is used, within <service-point> and <implementation> to create the core
service implementation for a service by instantiating a class. This is appropriate for simple
services that require no explicit configuration.

Attribute Type Required ? Description

Jakarta HiveMind Project Documentation

Page 22
Copyright © 2004 The Apache Software Foundation All rights reserved.

class class name yes Fully qualified class
name to instantiate.

model primitive |
singleton |
threaded | pooled

no The model used to
construct and manage
the service. singleton
is the default.

Additional service models can be defined via the hivemind.ServiceModels configuration
point.

1.1.5.6. element

The <element> element is used to define an element in a the <schema>. <element> may also
be nested within another <element>, to indicate an element that may be enclosed within
another element.

Attribute Type Required ? Description

name string yes The name of the
element.

content-translator string no The translator
configuration that is
used to convert the
element's content into
a useable type. By
default, the content is
treated as a single
string.

Contains: <attribute>, <conversion>, <element>, <rules>

Future enhancements to the HiveMind framework will include greater sophistication in
defining configuration content.

1.1.5.7. implementation

The <implementation> element contributes a core implementation or interceptors to a service
extension point.

Attribute Type Required ? Description

service-id string yes The id of the service to
extend; this may be a
fully qualified id, or the
local id of a service

Jakarta HiveMind Project Documentation

Page 23
Copyright © 2004 The Apache Software Foundation All rights reserved.

within the same
module.

Contains: <create-instance>, <interceptor>, <invoke-factory>

1.1.5.8. interceptor

<interceptor> contributes an interceptor factory to a service extension point. An interceptor
factory is a service which implements the ServiceInterceptorFactory interface.

When the service is constructed, each invoked interceptor factory will fabricate an
interceptor class to provide additional functionality for the service.

Attribute Type Required ? Description

service-id service id yes The id of the service
that will create the
interceptor for the
service. This may be
the local id of a service
defined within the
same module, or a fully
qualified id.

before string no A list of interceptors
whose behavior should
come later in execution
than this interceptor.

after string no A list of interceptors
whose behavior should
come earlier in
execution than this
interceptor.

Like a service implementation factory, a service interceptor factory may need parameters. As
with <invoke-factory>, parameters to the interceptor factory are enclosed by the
<interceptor> element. The service interceptor factory will decode the parameters using the
schema identified by its parameters-schema-id attribute.

Interceptor ordering is based on dependencies; each interceptor can identify, by interceptor
service id, other interceptors. Interceptors in the before list are deferred until after this
interceptor. Likewise, this interceptor is deferred until after all interceptors in the after list.

Note:
The after dependencies will look familar to anyone who has used Ant or any version of Make. before dependencies are
simply the opposite.

Jakarta HiveMind Project Documentation

Page 24
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://ant.apache.org/

The value for before or after is a list of service ids seperated by commas. Service ids
may be unqualified if they are within the same module. Alternately, the fixed value * may be
used instead of a list: this indicates that the interceptor should be ordered absolutely first or
absolutely last.

1.1.5.9. invoke-factory

The <invoke-factory> element is used to provide a service implementation for a service by
invoking another service, a factory service.

Attribute Type Required ? Description

service-id string yes The id of the factory
service. This may be a
simple id for a service
within the same
module, or a fully
qualified service id.

model primitive |
singleton |
threaded | pooled

no The model used to
construct and manage
the service. singleton
is the default.

A service factory defines its parameters in terms of a schema. The content of the
<invoke-factory> is converted, in accordance with the factory's schema, and provided to the
factory.

Additional service models can be defined via the hivemind.ServiceModels configuration
point.

1.1.5.10. map

The <map> element appears within <conversion> to override the default mapping from an
attribute to a property. By default, the property name is expected to match the attribute name
(with the name mangling described in the description of <conversion>); the <map> element
is used to handle exceptions to the rule.

Attribute Type Required ? Description

attribute string yes The name of the
attribute, which should
match a name defined
by an<attribute> (of the
enclosing <element>).

Jakarta HiveMind Project Documentation

Page 25
Copyright © 2004 The Apache Software Foundation All rights reserved.

property string yes The corresponding
property (of the Java
object specified by the
enclosing
<conversion>)

1.1.5.11. module

The <module> element is the root element.

Attribute Type Required ? Description

id string yes The id should be a
dotted sequence, like a
package name. In
general, the module id
should be the package
name.

version version number yes The version of the
module as a dotted
sequence of three
numbers. Example:
"1.0.0"

Contains: <contribution>, <configuration-point>, <implementation> , <service-point>,
<sub-module>

Note:
The version is not currently used, but a later release of HiveMind will include runtime dependency checking based on version
number.

1.1.5.12. rules

<rules> is a container for element and attribute parsing rules within an <element>. These
rules are responsible for converting the contributed element and its attributes into objects and
object properties. The available rules are documented separately .

1.1.5.13. schema

The <schema> element is used to describe the format of element contributions to an
<configuration-point>, or parameters provided to a service or interceptor factory.

Attribute Type Required ? Description

id string yes Assigns a local id to

Jakarta HiveMind Project Documentation

Page 26
Copyright © 2004 The Apache Software Foundation All rights reserved.

the schema that may
be referenced
elsewhere.

Contains: <element>

At a future time, the <schema> element will be extended to provide more options, to provide
more precise control over the elements that may be provided in an <contribution>. At this
time, a <schema> is simply a list of <element> elements.

Note:
When <schema> appears directly within <configuration-point>, or <parameters-schema> appears directly within
<service-point>, then the id attribute is not allowed.

1.1.5.14. service-point

The <service-point> element defines a service extension point.

Attribute Type Required ? Description

id string yes The simple id of the
service extension
point. The fully
qualified id for the
extension point is
created by prefixing
with the module's id
(and a dot).

interface class name yes The fully qualified
name of the Java
interface supplied by
this service extension
point.

parameters-schema-id string no Used to reference a
<schema> (in the
same module, or a
different one) that
defines parameters
used by the service.
This is used when the
service being defined
is a
ServiceImplementationFactory
or a
ServiceInterceptorFactory.

Jakarta HiveMind Project Documentation

Page 27
Copyright © 2004 The Apache Software Foundation All rights reserved.

Contains: <create-instance>, <interceptor>, <invoke-factory> , <parameters-schema>

1.1.5.15. sub-module

The <sub-module> element is used to identify an additional HiveMind module deployment
descriptor. This is used when a single JAR file contains logically distinct packages, each of
which should be treated as an individual HiveMind module. This can also be useful as a way
to reduce developer conflict against a single, large, central module descriptor by effectively
breaking it into smaller pieces. Sub-modules identified in this way must still have their own
unique module id.

Attribute Type Required ? Description

descriptor string yes Location of the module
descriptor.

The descriptor should be specified as a relative path, either the name of another module
descriptor within the same folder, or within a child folder.

1.1.6. Contribution Processing Rules

The concept of performing a rules-directed conversion of elements and attributes into Java
objects was pioneered (to my knowledge) in the Jakarta Digester framework (which started
inside Tomcat, moved to Struts, and is now available on its own).

The technique is very powerful, even in the limited subset of Digester provided by HiveMind
(over time, the number of available rules will increase).

1.1.6.1. Rules

Rules are attached to <element>s. Each rule object has two methods: the begin() method is
invoked when the element is first encountered. The content of the element is then processed
recursively (which will involve more rules). Once that completes, the end() method is
invoked.

Note: begin() is invoked in the order that rules are defined within the <rules> element.
end() is invoked in inverse order. This rarely makes any difference.

Element processing is based on an object stack. Several rules will manipulate the top object
on the stack, setting properties based on attributes or content. The <create-object> rule will
instantiate a new object at begin() and pop it off the stack at end() .

In several cases, rule descriptions reference the parent and child objects. The top object on
the stack is the child, the object beneath that is the parent. The <set-parent> and

Jakarta HiveMind Project Documentation

Page 28
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://jakarta.apache.org/commons/digester/

<invoke-parent> rules are useful for creating hierarchies of objects.

create-object

The <create-object> rule is used to create a new object, which is pushed onto the stack at
begin(). The object is popped off the stack at end(). <create-object> is typically paired
up with <invoke-parent> to connect the new object (as a child) to a parent object.

Attribute Type Required ? Description

class string yes The complete class
name of the object to
create. The class must
be public, and have a
no-arguments public
constructor.

custom

The <custom> rule is used to provide a custom implementation of the Rule interface. Note
that any such rules must not contain any individual state, as they will be reused, possibly by
multiple threads.

Attribute Type Required ? Description

class string yes The complete class
name of the class
implementing the Rule
interface.

invoke-parent

The <invoke-parent> rule is used to connect the child (top object on the stack) to its parent
(the next object down). A method of the parent is invoked, passing the child as a parameter.
This invocation occurs inside the rule's begin() method; to ensure that the child object is
fully configured before being added to the parent place this rule after all properties of the
child object have been configured.

Attribute Type Required ? Description

method string yes The name of the
method to invoke on
the parent object.

depth number no The depth of the
parent object within the
object stack. The top

Jakarta HiveMind Project Documentation

Page 29
Copyright © 2004 The Apache Software Foundation All rights reserved.

object (the child) is at
depth 0, and default
depth of the parent is
1.

Note:
Top level elements should include an <invoke-parent> rule, and specify the method as addElement. This adds the created,
configured object to the list of contributed objects for the <contribution> (or for service factories, adds the object as a
parameter).

push-attribute

The <push-attribute> rule reads an attribute, converts it with a translator, and pushes the
result onto the stack. It will typically be combined with a <invoke-parent> to get the pushed
value added to the configuration point elements (or to some parent object).

Attribute Type Required ? Description

attribute string yes The name of the
attribute to read.

read-attribute

The <read-attribute> rule reads an attribute from the current element, optionally translates it
(from a string to some other type), and then assigns the value to a property of the top object
on the object stack.

Attribute Type Required ? Description

property string yes The name of the
property of the top
object on the stack to
update.

attribute string yes The name of the
attribute to read.

skip-if-null boolean no If "true" (the default),
then an omitted
attribute will be
ignored. If "false", the
property will be
updated regardless.

translator string no A translator that
overrides the
attribute's translator.

Jakarta HiveMind Project Documentation

Page 30
Copyright © 2004 The Apache Software Foundation All rights reserved.

read-content

The <read-content> rule is similar to <read-attribute>, except it concerns the content of the
current element (the text wrapped by its start and end tags).

Attribute Type Required ? Description

property string yes The name of the
property of the top
object on the stack to
update.

set-module

<set-module> is used to set a property of the top object on the stack to the module which
made the contribution. This is often used when some other attribute of the contribution is the
name of a service or configuration extension point (but it is advantageous to defer access to
the service or configuration). The module can be used to resolve names of services or
configurations that are local to the contributing module.

Attribute Type Required ? Description

property string yes The name of the
property of the top
object to update with
the contributing
module.

set-parent

The <set-parent> rule is used to set a property of the child object to parent object. This
allows for backwards connections from child objects to parent objects.

Attribute Type Required ? Description

property string yes The name of the
property of the child
object to set.

set-property

The <set-property> rule is used to set a property of the top object to a preset value.

Attribute Type Required ? Description

property string yes The name of the

Jakarta HiveMind Project Documentation

Page 31
Copyright © 2004 The Apache Software Foundation All rights reserved.

property of the child
object to set.

value string yes The value to set the
proeprty to. The is
interpreted as with the
smart translator,
meaning that
conversion to normal
Java types (boolean,
int, etc.) will work as
expected.

1.1.6.2. Translators

Commonly, it is necessary to perform some translation or transformation of string attribute
value to convert the value into some other type, such as boolean, integer or date. This can be
accomplished by specifying a translator in the <attribute> element (it also applies to element
content, with the content-translator attribute of the <element> element).

A translator is an object implementing the Translator interface. The translator value
specified in a rule may be either the complete class name of a class implementing the
interface, or one of a number of builtin values.

Translators configurations consist of a translator name, and an optional initalizer string. The
initializer string is separated from the translator id by a comma, ex: int,min=0 (where
min=0 is the initializer string). Initializer strings are generally in the format of
key=value[,key=value]* ... but each Translator is free to interpret the initializer
string its own way.

The following sections describe the basic translators provided with the framework. You can
add additional translators by contributing to the hivemind.Translators configuration point.

bean

The bean translator expects its input to bean in the form service-id:locator. The
service-id references a service implementing BeanFactory.

Note:
This translator is contributed by the hivemind.lib module.

boolean

Jakarta HiveMind Project Documentation

Page 32
Copyright © 2004 The Apache Software Foundation All rights reserved.

The boolean translator converts an input string into a boolean value. "true" is translated to
true, and "false" to false.

A default value is used when the input is blank. Normally, this default is false, but the
"default" key in the initializer can override this (i.e., boolean,default=true).

class

The class translator converts a class name into a Class object. The value must be a fully
qualified class name. A null input value returns null.

Note:
This translator is hard-coded, and does not appear in the hivemind.Translators configuration point.

configuration

The configuration translator converts an input value into a configuration point id, then
obtains the elements for that configuration point as a List. The id may be fully qualified, or a
local id within the contributing module.

A blank input value returns null.

double

The double translator converts the input into an double precision floating point value. It
recognizes three initializer values:

• default: the default value (normally 0) to use when the input is blank
• min: a minimum acceptible value
• max: a maximum acceptible value

enumeration

The enumeration translator converts input strings into enumerated values. Enumeration
requires an initializer string, with a special format:
enumeration,class-name,input=field-name[,input=field-name]*

That is, the initializer begins with the name of the class containing some number of public
static fields. Input values are mapped against field names. Example:
enumeration,java.lang.Boolean,yes=TRUE,no=FALSE

If the input is null or empty, then the translator returns null.

Jakarta HiveMind Project Documentation

Page 33
Copyright © 2004 The Apache Software Foundation All rights reserved.

id-list

Translates a comma-seperated list of ids into a comma-seperated list of fully qualified ids
(qualified against the contributing module). Alternately, passes the value * through as-is. Id
lists are typically used to establish ordering of items within a list, as with <interceptor>.

int

The int translator converts the input into an integer value. It recognizes three initializer
values:

• default: the default value (normally 0) to use when the input is blank
• min: a minimum acceptible value
• max: a maximum acceptible value

long

The long translator converts the input into an long integer (64 bit) value. It recognizes three
initializer values:

• default: the default value (normally 0) to use when the input is blank
• min: a minimum acceptible value
• max: a maximum acceptible value

object

The object translator converts a fully qualified class name into an object instance. The class
must implement a public no-arguments constructor.

qualified-id

Translates an id into a fully qualified id (qualified against the contributing module's id).

resource

The resource translator is used to find a resource packaged with (or near) the module's
deployment descriptor. The input value is the relative path to a file. The translator converts
the input value to a Resource for that file.

If the file doesn't exist, then an error is logged. If a localization of the file exists, then the
Resource for that localization is returned.

service

Jakarta HiveMind Project Documentation

Page 34
Copyright © 2004 The Apache Software Foundation All rights reserved.

The service translator is used to lookup a service in the registry. The input value is either a
local service id from the contributing module, or a fully qualified service id.

service-point

The service translator is used to lookup a service point (not a service) in the registry. The
input value is either a local service id from the contributing module, or a fully qualified
service id.

smart

The smart translator attempts an automatic conversion from a string value (the attribute value
or element content) to a particular type. It determines the type from the property to which the
value will be assigned. Smart translator makes use of the JavaBeans's PropertyEditor class
for the conversion, which allows easy this translator to be used with most common primitive
types, such as int, short and boolean. See the SmartTranslator documentation for more
details.

In general, the smart translator is the useful for most ordinary Java type properties, unless
you want to specify range constraints.

It recognizes one initializer value:

• default: the default value to use when the input is blank

Note:
This translator is hard-coded, and does not appear in the hivemind.Translators configuration point.

1.1.7. Library Dependencies

HiveMind has a number of dependencies on other open-source frameworks. The Ant build
files for HiveMind will automatically download dependencies from the Maven repository on
ibiblio.

File Name Notes

commons-logging-1.0.3.jar Commons-Logging

easymock-1.1.jar EasyMock testing framework Only needed by
HiveMindTestCase, which
exists as the basis of your own
tests.

geronimo-spec-ejb-1.0-M1.jar Geronimo J2EE Server Used by some services of the
HiveMind library. No

Jakarta HiveMind Project Documentation

Page 35
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://ant.apache.org/
http://maven.apache.org/
http://www.ibiblio.org/maven/
http://jakarta.apache.org/commons/logging/
http://www.easymock.org/
http://geronimo.apache.org/

dependencies on Geronimo
itself, just on the
javax.naming and
javax.ejb packages.

javassist-2.6.jar Javassist bytecode library

oro-2.0.6.jar ORO Regular Expressions

spring-full-1.0.1.jar Spring Used by the
hivemind.lib.SpringLookupFactory
service.

werkz-1.0-beta-10.jar Werkz Goal Oriented Process
Framework

In most cases, HiveMind has been built against a "handy" version; in most cases, you can
vary the exact version of a dependency to suite your existing environment. Just remember to
write some tests!

1.2. History of Changes

RSS

1.2.1. Version 1.0-beta-1 (unreleased)

• Added change log. (HLS)
• Refactored ClassFab and related classes for easier reuse outside of HiveMind. Added a

new suite of tests related to ClassFab.(HLS)
• Created two new services in hivemind-lib for creating default implementations of

arbitrary interfaces (DefaultImplementationBuilder) and for using that to create
placeholder services (PlaceholderFactory).(HLS)

• Created MessageFormatter class as a wrapper around ResourceBundle and an easy way
for individual packages to gain access to runtime messages. (HLS)

• Modified the read-attribute rule to allow a translator to be specified (overriding the
translator for the attribute).(HLS)

• Added the qualified-id and id-list translators.(HLS)
• Added the hivemind.lib.PipelineFactory and related code, schemas, tests and

documentation. (HLS)
• Enhance logging of exceptions when setting a service property to a contribution (HLS)

Fixes HIVEMIND-4.
• Added service hivemind.lib.BeanFactoryBuilder. (HLS)
• Removed the <description> element from the module descriptor format; descriptions are

now provided as enclosed text for element that support descriptions. (HLS)

Jakarta HiveMind Project Documentation

Page 36
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://www.jboss.org/products/javassist
http://jakarta.apache.org/oro/
http://www.springframework.org
http://werkz.sourceforge.net/
http://werkz.sourceforge.net/
changes.rss
http://nagoya.apache.org/jira/browse/HIVEMIND-4

• Changed the MethodMatcher classes to use a MethodSignature rather than a Method.
(HLS)

• Changed MessageFormatter to automatically convert Throwables into their message or
class name. (HLS)

• Added FileResource. (HLS)
• Extended hivemind.BuilderFactory to be able to set the ClassResolver; for a service

implementation, and to autowire common properties (log, messages, serviceId,
errorHandler, classResolver) if the properties are writeable and of the correct type. (HLS)

• Added methods newControl(), newMock(), addControl(),
replayControls() and verifyControls() to HiveMindTestCase to
simplify test cases that use multiple EasyMock mock objects. (HLS)

• Changed HiveMindFilter to log a message after it stores the registry into the servlet
context. (HLS)

• Restore the getConfiguration() and expandSymbols() methods to the
Registry interface. (HLS) Fixes HIVEMIND-11.

• SimpleDataLanguageParser calls the ContentHandler with a null namespace argument
instead of "". That leads to some problems if you want to use transformers. (HLS) Thanks
to Dieter Bogdoll. Fixes HIVEMIND-9.

• Fix how certain translator messages are generated to avoid unit test failures. (HLS)
Thanks to Achim Hügen. Fixes HIVEMIND-7.

• Modify the build files to enable debugging by default. (HLS) Fixes HIVEMIND-12.
• Added validation of id attributes in module deployment descriptors (using ORO regular

expressions). (HLS)
• Fix some typos in definition of the hivemind.lib.NameLookup service. (HLS)

1.3. Todo List

1.3.1. Release 1.0

• [lib] JMX Integration # HLS

1.4. HiveMind Downloads

HiveMind distributions are available from the Apache Mirrors. HiveMind is packaged
somewhat differently than most other Apache projects, in that the main distribution includes
binary and source, but that documentation is seperate:

• hivemind-release.tar.gz -- Combined binary/source distribution
• hivemind-release.zip -- Combined binary/source distribution (about twice the size

of the .tar.gz)
• hivemind-release-docs.tar.gz -- The HiveMind documentation (the same as this

site)

Jakarta HiveMind Project Documentation

Page 37
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://www.easymock.org
http://nagoya.apache.org/jira/browse/HIVEMIND-11
http://nagoya.apache.org/jira/browse/HIVEMIND-9
http://nagoya.apache.org/jira/browse/HIVEMIND-7
http://nagoya.apache.org/jira/browse/HIVEMIND-12

Each file also has a MD5 checksum file, so you can verify that what you download is valid,
and a GPG key (.asc) to further verify that there has been no tampering.

Note:
Under Internet Explorer, the .tar.gz files do not download with the correct file name. Download them, rename them to .tar.gz
and then open them using WinZip.

1.5. CVS Access

Anonymous CVS access is available as:

:pserver:anoncvs@cvs.apache.org:/home/cvspublic/jakarta-hivemind

In addition, the CVS repository may be browsed online.

1.6. Tutorials and Information

1.6.1. Bootstrapping the Registry

Before you can access the configuration points and services defined in your application's
module deployment descriptors, you need a registry; here we'll describe how to construct the
registry.

The key class here is RegistryBuilder, which contains code for locating and parsing the
module deployment descriptors and constructing a registry from the combined data. The
descriptors are all found on the class path; they'll include the descriptors for HiveMind itself
with descriptors packaged into your application's JARs.

Note:
As HiveMind grows in popularity, we may start to see third party frameworks come bundled with HiveMind module
deployment descriptors ... but it's too soon for that, now.

Let's examine how all this comes together. The layout of the project is shown below.

[Project Layout]

1.6.1.1. Service Interfaces and Implementations

The first step is to define the service interface:

package hivemind.examples;

public interface Adder

Jakarta HiveMind Project Documentation

Page 38
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://cvs.apache.org/viewcvs.cgi/jakarta-hivemind/

{
public int add(int arg0, int arg1);

}

Next we need an implementation for that service:

package hivemind.examples.impl;

import hivemind.examples.Adder;

public class AdderImpl implements Adder
{

public int add(int arg0, int arg1)
{
return arg0 + arg1;

}

}

The example includes three additional interfaces and matching implementations: for a
Subtracter, Multiplier, Divider, and lastly, a Calculator that combines them together:

package hivemind.examples;

public interface Calculator extends Adder, Subtracter, Multiplier, Divider
{

}

The Calculator implementation will require some wiring; it expects that each of the other
four services (Adder, Substracter, Multiplier and Divider) will be plugged into it:

package hivemind.examples.impl;

import hivemind.examples.Adder;
import hivemind.examples.Calculator;
import hivemind.examples.Divider;
import hivemind.examples.Multiplier;
import hivemind.examples.Subtracter;

public class CalculatorImpl implements Calculator
{
private Adder _adder;
private Subtracter _subtracter;
private Multiplier _multiplier;
private Divider _divider;

public void setAdder(Adder adder)
{
_adder = adder;

}

Jakarta HiveMind Project Documentation

Page 39
Copyright © 2004 The Apache Software Foundation All rights reserved.

public void setDivider(Divider divider)
{
_divider = divider;

}

public void setMultiplier(Multiplier multiplier)
{
_multiplier = multiplier;

}

public void setSubtracter(Subtracter subtracter)
{
_subtracter = subtracter;

}

public int add(int arg0, int arg1)
{
return _adder.add(arg0, arg1);

}

public int subtract(int arg0, int arg1)
{
return _subtracter.subtract(arg0, arg1);

}

public int multiply(int arg0, int arg1)
{
return _multiplier.multiply(arg0, arg1);

}

public int divide(int arg0, int arg1)
{
return _divider.divide(arg0, arg1);

}
}

1.6.1.2. Module Deployment Descriptor

Finally, we need the HiveMind module deployment descriptor, hivemodule.sdl. This
file is in Simple Data Language format (though equivalent XML is supported if the file is
named hivemodule.xml).

The module descriptor creates each of the services in terms of an interface, and an
implementation. In addition, each service gets its own logging interceptor.

module (id=hivemind.examples version="1.0.0")
{
service-point (id=Adder interface=hivemind.examples.Adder)
{
create-instance (class=hivemind.examples.impl.AdderImpl)
interceptor (service-id=hivemind.LoggingInterceptor)

Jakarta HiveMind Project Documentation

Page 40
Copyright © 2004 The Apache Software Foundation All rights reserved.

}

service-point (id=Subtracter interface=hivemind.examples.Subtracter)
{
create-instance (class=hivemind.examples.impl.SubtracterImpl)
interceptor (service-id=hivemind.LoggingInterceptor)

}

service-point (id=Multiplier interface=hivemind.examples.Multiplier)
{
create-instance (class=hivemind.examples.impl.MultiplierImpl)
interceptor (service-id=hivemind.LoggingInterceptor)

}

service-point (id=Divider interface=hivemind.examples.Divider)
{
create-instance (class=hivemind.examples.impl.DividerImpl)
interceptor (service-id=hivemind.LoggingInterceptor)

}

service-point (id=Calculator interface=hivemind.examples.Calculator)
{
invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=hivemind.examples.impl.CalculatorImpl)
{
set-service (property=adder service-id=Adder)
set-service (property=subtracter service-id=Subtracter)
set-service (property=multiplier service-id=Multiplier)
set-service (property=divider service-id=Divider)

}
}

interceptor (service-id=hivemind.LoggingInterceptor)
}

}

Here we've chosen to have the module id, hivemind.examples, match the package name
but that is not an absolute requirement.

The interesting part is the use of the hivemind.BuilderFactory to construct the Calculator
service and connect it to the other four services.

1.6.1.3. Building the Registry

Before your code can access any services (or configuration points), it must construct the
Registry. The Registry is the applications gateway into the services and configurations
managed by HiveMind.

package hivemind.examples;

Jakarta HiveMind Project Documentation

Page 41
Copyright © 2004 The Apache Software Foundation All rights reserved.

import org.apache.hivemind.Registry;
import org.apache.hivemind.impl.RegistryBuilder;

public class Main
{

public static void main(String[] args)
{
int arg0 = Integer.parseInt(args[0]);
int arg1 = Integer.parseInt(args[1]);

Registry registry = RegistryBuilder.constructDefaultRegistry();

Calculator c =
(Calculator) registry.getService("hivemind.examples.Calculator", Calculator.class);

System.out.println("Inputs " + arg0 + " and " + arg1);

System.out.println("Add : " + c.add(arg0, arg1));
System.out.println("Subtract: " + c.subtract(arg0, arg1));
System.out.println("Multiply: " + c.multiply(arg0, arg1));
System.out.println("Divide : " + c.divide(arg0, arg1));

}
}

RegistryBuilder contains a static method for constructing a Registry, which is suitable for
most situations.

Now that we have the registry, we can use the fully qualified id of the Calculator service,
hivemind.examples.Calculator, to get the service implementation. We pass in the
class that we'll be casting the service to ... this allows HiveMind to produce a more
meaningful error than a ClassCastException.

Using the reference to the Calculator service, we can finally invoke the add(),
subtract(), multiply() and divide() methods.

1.6.1.4. Building the Example

Building and running the example using Ant is a snap; all the details are in the build.xml:

<?xml version="1.0"?>

<project name="HiveMind Adder Example" default="jar">

<property name="java.src.dir" value="src/java"/>
<property name="test.src.dir" value="src/test"/>
<property name="conf.dir" value="src/conf"/>
<property name="descriptor.dir" value="src/descriptor"/>
<property name="target.dir" value="target"/>
<property name="classes.dir" value="${target.dir}/classes"/>

Jakarta HiveMind Project Documentation

Page 42
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://ant.apache.org/

<property name="test.classes.dir" value="${target.dir}/test-classes"/>
<property name="example.jar" value="${target.dir}/hivemind-examples.jar"/>
<property name="lib.dir" value="lib"/>
<property name="junit.temp.dir" value="${target.dir}/junit-temp"/>
<property name="junit.reports.dir" value="${target.dir}/junit-reports"/>

<path id="build.class.path">
<fileset dir="${lib.dir}">
<include name="*.jar"/>

</fileset>
</path>

<path id="test.build.class.path">
<path refid="build.class.path"/>
<path location="${classes.dir}"/>

</path>

<path id="run.class.path">
<path refid="build.class.path"/>
<pathelement location="${classes.dir}"/>
<pathelement location="${descriptor.dir}"/>
<pathelement location="${conf.dir}"/>

</path>

<path id="test.run.class.path">
<path refid="run.class.path"/>
<path location="${test.classes.dir}"/>

</path>

<target name="clean" description="Delete all derived files.">
<delete dir="${target.dir}" quiet="true"/>

</target>

<target name="compile" description="Compile all Java code.">
<mkdir dir="${classes.dir}"/>
<javac srcdir="${java.src.dir}" destdir="${classes.dir}" classpathref="build.class.path"/>

</target>

<target name="compile-tests" description="Compile test classes." depends="compile">
<mkdir dir="${test.classes.dir}"/>
<javac srcdir="${test.src.dir}" destdir="${test.classes.dir}" classpathref="test.build.class.path"/>

</target>

<target name="run-tests" description="Run unit tests." depends="compile-tests">

<mkdir dir="${junit.temp.dir}"/>
<mkdir dir="${junit.reports.dir}"/>

<junit haltonfailure="off" failureproperty="junit-failure" tempdir="${junit.temp.dir}">
<classpath refid="test.run.class.path"/>

<formatter type="xml"/>
<formatter type="plain"/>
<formatter type="brief" usefile="false"/>

Jakarta HiveMind Project Documentation

Page 43
Copyright © 2004 The Apache Software Foundation All rights reserved.

<batchtest todir="${junit.reports.dir}">
<fileset dir="${test.classes.dir}">
<include name="**/Test*.class"/>

</fileset>
</batchtest>

</junit>

<fail if="junit-failure" message="Some tests failed."/>

</target>

<target name="jar" description="Construct the JAR file." depends="compile,run-tests">
<jar destfile="${example.jar}">
<fileset dir="${classes.dir}"/>

<fileset dir="${descriptor.dir}"/>
</jar>

</target>

<target name="run" depends="compile" description="Run the Adder service.">
<java classname="hivemind.examples.Main" classpathref="run.class.path" fork="true">
<arg value="11"/>
<arg value="23"/>

</java>
</target>

</project>

The important part is to package both the classes and the HiveMind module deployment
descriptor into the JAR.

The only other oddity was to add src/conf to the runtime classpath; this is to include the
log4j.properties configuration file; otherwise Log4J will write console errors about
missing configuration.

1.6.1.5. Running the Examples

bash-2.05b$ ant run
Buildfile: build.xml

compile:
[mkdir] Created dir: C:\workspace\hivemind-example\target\classes
[javac] Compiling 15 source files to C:\workspace\hivemind-example\target\classes

run:
[java] Inputs 11 and 23
[java] Add : 34
[java] Subtract: -12
[java] Multiply: 253
[java] Divide : 0

Jakarta HiveMind Project Documentation

Page 44
Copyright © 2004 The Apache Software Foundation All rights reserved.

BUILD SUCCESSFUL
Total time: 3 seconds

1.6.2. Case Study #1: Application Startup / Shutdown

Note:
This case study is based on work done for my prior employer, who has not (yet) given approval to mention the project by
name. The package names and module ids have been changed, and some minor changes and simplifications have been made.
The actual name of the product has been disguised as Panorama.

The Panorama product is a fairly large J2EE web application deployed into BEA WebLogic.
Panorama consists of well over six thousand classes, divided into a large number of tools and
services. Panorama has been a production project for several years, long before HiveMind
was available. HiveMind's introduction into Panorama (on something of a trial basis) was to
cleanup the startup and shutdown process for the application.

Panorama runs inside BEA WebLogic as an enterprise application; however, it is still
logically a number of subsystems, many of which require some form of startup or shutdown
logic. For example, the Panorama Help service caches help data stored in the database; the
Panorama Mail tool sets up periodic database cleanup jobs. All told, there are over 40 startup
tasks, and a handful of shutdown tasks.

Prior to HiveMind, a single EJB was the focus of all this startup and shutdown activity. A
small WebLogic startup class would invoke the EJB, and the EJB implementation would
invoke static methods on many other classes (some of which would lookup other EJBs and
invoke methods on them). This approach had grown quite unwieldy, especially in light of
efforts to improve and modularize the Panorama build process. HiveMind was brought in to
rationalize this aspect of Panorama, with the goal being to make the fewest possible changes
to existing code.

An important aspect of startup and shutdown is the order of operations; there are
dependencies between different tasks that must be honored in terms of which task is executed
first.

1.6.2.1. Overview

The appropriate place to build the registry for an EAR is from the web application; it has the
widest view of available classes; the web application classloader has visibility to the web
application and its libraries, all the EJBs deployed in the application, and the system
classloader.

The overall approach is to provide HiveMind module deployment descriptors for the various

Jakarta HiveMind Project Documentation

Page 45
Copyright © 2004 The Apache Software Foundation All rights reserved.

tools and services of Panorama; each module contributes tasks to a Startup or Shutdown
configuration point.

A WebLogic shutdown class is still used and the original EJB still exists to allow an orderly
shutdown. Ultimately, this is required due to class loader issues; the EJB will have visibility
to the HiveMind library, but the startup class may not.

1.6.2.2. Module panorama.framework.startup

The panorama.framework.startup ("initialization and shutdown") module contains
the services and configuration points for startup and shutdown. It also contains Java classes
corresponding to task contributions.

module (id=panorama.framework.startup version="1.0.0")
{
description { "Module for startup and shutdown code within Panorama." }

schema (id=Task)
{
element (name=task)
{
description { "A task which may be executed." }

attribute (name=order required=true)
{
description { "Numeric value used to set the order of execution for tasks." }

}

attribute (name=title required=true)
{
description { "Title displayed as task is executed." }

}

attribute (name=class translator=object)
{
description { "Name of class implementing the Executable interface." }

}

attribute (name=service-id translator=service)
{
description { "Name of service implementing the Executable interface." }

}

conversion (class=com.panorama.framework.startup.service.Task)
{
map (attribute=class property=executable)
map (attribute=service-id property=executable)

// Other attribute map directly
}

Jakarta HiveMind Project Documentation

Page 46
Copyright © 2004 The Apache Software Foundation All rights reserved.

// Nested element

element (name=invoke-static)
{
description { "Used to invoke a public static method of a class." }

attribute (name=class required=true)
{
description { "The name of the class containing the method to invoke." }

}

attribute (name=method)
{
description
{
"The name of the method to invoke. The default method name is "
"init."
}

}

conversion (class=com.panorama.framework.startup.service.StaticTask
parent-method=setExecutable)

{
map (attribute=class property=className)
map (attribute=method property=methodName)

}
}

}
}

configuration-point (id=startup schema-id=Task)
{
description { "Defines startup tasks." }

}

configuration-point (id=Shutdown schema-id=Task)
{
description { "Defines shutdown tasks." }

}

contribution (configuration-id=Startup)
{
task (title=Python order=50 class=com.panorama.framework.startup.common.PythonStartup)

}

contribution (configuration-id=Shutdown)
{
task (title="Update Status" order=100)
{
invoke-static (class=com.panorama.framework.startup.common.PanoramaStatus

method=shutdown)
}

}

Jakarta HiveMind Project Documentation

Page 47
Copyright © 2004 The Apache Software Foundation All rights reserved.

service-point (id=Startup interface=java.lang.Runnable)
{
invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=com.panorama.framework.startup.service.TaskExecutor

log-property=log messages-property=messages)
{
set-configuration (property=tasks configuraton-id=Startup)
set (property=kind value="%startup")

}
}

interceptor (service-id=hivemind.LoggingInterceptor)
}

service-point (id=Shutdown interface=java.lang.Runnable)
{
invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=com.panorama.framework.startup.service.TaskExecutor

log-property=log messages-property=messages)
{
set-configuration (property=tasks configuraton-id=Shutdown)
set (property=kind value="%shutdown")

}
}

interceptor (service-id=hivemind.LoggingInterceptor)
}

}

Notes:

• Extension points, configurations, schemas and services can be specified in any order.
• We use the simplest possible interface for the Startup and Shutdown services:

java.lang.Runnable.

Startup configuration point

The Startup configuration point and the Startup service are closely bound together; the
former contains contributions from all sorts of modules. The service uses those contributions
and executes tasks based on them.

The schema for the Startup configuration point allows a < task> to be contributed. A task
always has an order attribute (used to sort all the contributed elements into an execution
order) and a title attribute (used in output).

The task to execute is specified in one of three ways:

• As a Java class implementing the

Jakarta HiveMind Project Documentation

Page 48
Copyright © 2004 The Apache Software Foundation All rights reserved.

com.panorama.framework.startup.service.Executable interface (using
the class attribute)

• As a HiveMind service, implementing the service (using the service-id attribute)
• As a public static method of a class (using the enclosed < invoke-static> element)

The Executable interface is similar to the java.lang.Runnable interface:

package com.panorama.framework.startup.service;

/**
* Variation of <code>java.lang.Runnable</code> that allows for
* the invoked method to throw an exception.
*/
public interface Executable
{
/**
* Invoked to execute some kind of behavior and possible throw an exception.
* The caller is responsible for catching and reporting the exception.
*/
public void execute() throws Exception;

}

Adding throws Exception to the method signature allows the caller to be responsible
for exception reporting, which simplifies the task implementations. Shortly, we'll see how the
application's master servlet invokes the Startup service.

The Shutdown configuration point and service are effectively clones of the Startup
configuration point and schema.

Task class

The Task class is used to hold the information collected by the Startup configuration point.

package com.panorama.framework.startup.service;

import org.apache.hivemind.Orderable;

/**
* Configuration element for the <code>panorama.framework.startup.Startup</code> or
* <code>panorama.framework.startup.Shutdown</code>
* configuration points. Each element has a title,
* an {@link com.panorama.framework.startup.service.Executable}
* object, and an order
* (used to sort the Tasks into an order of execution).
*/

public class Task implements Orderable, Executable
{
private int _order;
private String _title;

Jakarta HiveMind Project Documentation

Page 49
Copyright © 2004 The Apache Software Foundation All rights reserved.

private Executable _executable;

public void execute() throws Exception
{
_executable.execute();

}

public int getOrder() { return _order; }

public String getTitle() { return _title; }

public void setOrder(int i) { _order = i; }

public void setTitle(String string) { _title = string; }

public Executable getExecutable() { return _executable; }

public void setExecutable(Executable executable) { _executable = executable; }
}

Task implements Executable, simply delegating to its executable property. In
addition, it implements Orderable, which simply defines the order property (but simplifies
sorting of the elements).

Startup service

The Startup and Shutdown services are very similar: similar enough that a single class,
properly configured, can be the service implementation for either service.

package com.panorama.framework.startup.service;

import java.util.List;

import org.apache.hivemind.HiveMind;
import org.apache.hivemind.Messages;
import org.apache.commons.logging.Log;

/**
* Implementation for the <code>panorama.framework.startup.Startup</code>
* and <code>Shutdown</code> services.
* Reads the corresponding configuration, sorts the elements,
* and executes each.
*/
public class TaskExecutor implements Runnable
{
private Log _log;
private Messages _messages;
private List _tasks;

private String _kind;

public void run()

Jakarta HiveMind Project Documentation

Page 50
Copyright © 2004 The Apache Software Foundation All rights reserved.

{
long startTime = System.currentTimeMillis();

List sorted = null;

try
{
sorted = HiveMind.sortOrderables(_tasks);

}
catch (Exception ex)
{
_log.error(_messages.format("initialization-failure", _kind, ex.getMessage()));

return;
}

int count = sorted.size();
int failureCount = 0;

for (int i = 0; i < count; i++)
{
Task task = (Task)sorted.get(i);

if (execute(task))
failureCount++;

}

Long elapsedTime = new Long(System.currentTimeMillis() - startTime);

if (failureCount > 0)
_log.warn(
_messages.format(
"task-failure-summary",
new Object[] {
Integer.toString(failureCount),
Integer.toString(count),
_kind,
elapsedTime }));

else
_log.info(
_messages.format("task-summary", Integer.toString(count), _kind, elapsedTime));

}

/**
* Executes a single task.
* @param task the task to execute.
* @return true if the task fails (throws an exception).
*/
private boolean execute(Task task)
{
if (_log.isInfoEnabled())
_log.info(_messages.format("executing-task", _kind, task.getTitle()));

try

Jakarta HiveMind Project Documentation

Page 51
Copyright © 2004 The Apache Software Foundation All rights reserved.

{
task.execute();

return false;
}
catch (Exception ex)
{
_log.error(_messages.format("task-failure", _kind, task.getTitle(), ex.getMessage()));

return true;
}

}

public void setKind(String string)
{
_kind = string;

}

public void setLog(Log log)
{
_log = log;

}

public void setMessages(Messages messages)
{
_messages = messages;

}

public void setTasks(List list)
{
_tasks = list;

}

}

HiveMind has a static convienience method, sortOrderables() , used to sort a list of
Orderable objects into order, which is used here. Remember that the contributions to the
Startup (and Shutdown) configuration points are made from multiple modules and there's no
way to predict in what order those contributions will show up in the tasks property, which
is why explicit sorting is necessary.

At one time, there was a discussion about using a thread pool to allow execution of some of
the tasks in parallel. That's a premature optimization: even with over forty startup tasks,
startup still only takes about forty seconds.

StaticTask class

The StaticTask class allows an arbitrary public static method of a class to be treated like an
Executable.

Jakarta HiveMind Project Documentation

Page 52
Copyright © 2004 The Apache Software Foundation All rights reserved.

package com.panorama.framework.startup.service;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

import org.apache.hivemind.ApplicationRuntimeException;
import org.apache.hivemind.impl.BaseLocatable;
import org.apache.commons.lang.StringUtils;

/**
* Implementation of
* {@link com.panorama.framework.startup.service.Executable}
* that Invokes a static method on a public class.
*/
public class StaticTask extends BaseLocatable implements Executable
{
private String _className;
private String _methodName = "init";

public void execute() throws Exception
{
checkNull("className", _className);
checkNull("methodName", _methodName);

Class clazz = Class.forName(_className);
Method m = clazz.getMethod(_methodName, null);

try
{
m.invoke(null, null);

}
catch (InvocationTargetException ex)
{
Throwable t = ex.getTargetException();

if (t instanceof Exception)
throw (Exception)t;

throw ex;
}

}

private void checkNull(String propertyName, String value)
{
if (StringUtils.isBlank(value))
throw new ApplicationRuntimeException(
"Property " + propertyName + " of " + this + " is null.",
getLocation(),
null);

}

public String getClassName()
{
return _className;

Jakarta HiveMind Project Documentation

Page 53
Copyright © 2004 The Apache Software Foundation All rights reserved.

}

public String getMethodName()
{
return _methodName;

}

/**
* Sets the name of a class containing a static method that will be executed.
*/
public void setClassName(String string)
{
_className = string;

}

/**
* Sets the name of a public static method taking no parameters. The default is "init".
*
*/
public void setMethodName(String string)
{
_methodName = string;

}

}

The class implements Locatable , which is used in method isNull() when reporting
errors; the location will be the location of the <invoke-static> element the StaticTask instance
was created from.

1.6.2.3. Other Modules

Other modules, in their HiveMind module deployment descriptors, make contributions into
the Startup and Shutdown configuration points of the panorama.framework.startup
module. For example:

module (id=panorama.coreservice.mail version="1.0.0")
{
contribution (configuration-id=panorama.framework.startup.Startup)
{
task (title=Mail order=2600 class=com.panorama.coreservice.mail.startup.MailStartup)

}
}

Here, the Mail service contributes an instance of class MailStartup. Other modules take
advantage of the < invoke-static> element:

module (id=panorama.coreservice.garbagecollection version="1.0.0")
{
contribution (configuration-id=panorama.framework.startup.Startup)
{

Jakarta HiveMind Project Documentation

Page 54
Copyright © 2004 The Apache Software Foundation All rights reserved.

task (title="Scheduling Garbage Collection" order=3900)
{
invoke-static (class=com.panorama.coreservice.garbagecollection.startup.GarbageCollectionStartup)

}
}

}

1.6.2.4. Application Startup

The master servlet for the web application is responsible for constructing the registry and
storing it so that other code may access it.

public void init() throws ServletException
{
LOG.info("*** Bootstrapping HiveMind Registry ***");

if (PanoramaRuntime.getHiveMindRegistry() != null)
{
LOG.info(
"Registry is already initialized (the application appears to have been redeployed).");

return;
}

try
{
RegistryBuilder builder = new RegistryBuilder(new RegistryBuilderErrorHandler());

ClassResolver resolver = new DefaultClassResolver();

builder.processModules(resolver);

Registry registry = builder.constructRegistry(Locale.getDefault());

PanoramaRuntime.setHiveMindRegistry(registry);

Runnable startup =
(Runnable)registry.getService("panorama.framework.startup.Startup", Runnable.class);

LOG.info("*** Executing panorama.framework.startup.Startup service ***");

startup.run();
}
catch (Exception ex)
{
LOG.error(
"Unable to execute panorama.framework.startup.Startup service: " + ex.getMessage());

}
}

After building the registry, the servlet uses the Startup service to indirectly execute all the
startup tasks.

Jakarta HiveMind Project Documentation

Page 55
Copyright © 2004 The Apache Software Foundation All rights reserved.

1.6.2.5. Handling Shutdown

We take advantage of a WebLogic extension to know when the application server is being
shut down.

package com.panorama.framework.startup;

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

import com.panorama.framework.startup.ejb.Shutdown;
import com.panorama.framework.startup.ejb.ShutdownHome;

/**
* Shutdown class called by the WebLogic container.
*/
public class Shutdown
{

private final static String EJB_JNDI_NAME =
"com.panorama.framework.startup.ejb.initshutHome";

/** Prevent instantiation */
private Shutdown()
{
}

/**
* Gets the Shutdown EJB and invokes <code>shutdown()</code>.
*/

public static void main(String args[]) throws Exception
{

InitialContext context = new InitialContext();
ShutdownHome home =

(ShutdownHome)PortableRemoteObject.narrow(
context.lookup(EJB_JNDI_NAME),
ShutdownHome.class);

Shutdown bean = (Shutdown)home.create();

bean.shutdown();
}

}

The implementation of the initshut EJB is similarily straight-forward:

package com.panorama.framework.startup.ejb;

import java.rmi.RemoteException;

Jakarta HiveMind Project Documentation

Page 56
Copyright © 2004 The Apache Software Foundation All rights reserved.

import javax.ejb.CreateException;

import org.apache.hivemind.HiveMind;
import org.apache.hivemind.Registry;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.panorama.framework.ejb.BaseSessionBean;

/**
* Handles shutdown logic.
*
*/

public class ShutdownEJB extends BaseSessionBean
{
private static final Log LOG = LogFactory.getLog(ShutdownEJB.class);

public void ejbCreate() throws RemoteException, CreateException
{
}

/**
* Called by J2EE Container shutdown class for Panorama shutdown processing.
*
* <p>
* Gets the <code>panorama.framework.startup.Shutdown</code> service and executes it.
*
*/

public void shutdown() throws RemoteException
{
Registry registry = PanoramaRuntime.getHiveMindRegistry();

if (registry == null)
{
LOG.error(
"No HiveMind module registry is in place, unable to execute an orderly shutdown.");
return;

}

Runnable r =
(Runnable)registry.getService("panorama.framework.startup.Shutdown", Runnable.class);

r.run();

LOG.info("**** Panorama shutdown complete ****");
}

}

1.6.2.6. Summary

This case study has shown how easy it is to leverage HiveMind for a complex task. A

Jakarta HiveMind Project Documentation

Page 57
Copyright © 2004 The Apache Software Foundation All rights reserved.

monolithic EJB was broken down into tiny, agile contributions to a configuration point. The
startup and shutdown logic is kept close to the contributing modules, in those modules'
HiveMind deployment descriptors. Contributions are in expressive, easily readable XML.

A single class is used to implement multiple, similar services, just by configuring it as
needed. Links between different aspects of the system (such as the servlet initialization code
and the Startup service) are kept simple and agile.

The small amount of code necessary to orchestrate all this is fully tested in a unit test suite.

The end result: an agile, easily extended system. HiveMind has provided the tools and
environment to support an elegant, data-driven solution ... replacing the old, code-heavy EJB
implementation.

1.6.3. Inversion of Control

Seems like Inversion of Control is all the rage these days. The Avalon project is completely
based around it. Avalon uses detailed assembly descriptions to tie services together ... there's
no way an Avalon component can "look up" another component; in Avalon you explicitly
connect services together.

That's the basic concept of Inversion of Control; you don't create your objects, you describe
how they should be created. You don't directly connect your components and services
together in code, you describe which services are needed by which components, and the
container is responsible for hooking it all together. The container creates all the objects, wires
them together by setting the necessary properties, and determines when methods are invoked.

More recently, this concept has been renamed Dependency Injection.

There are three different implementation pattern types for IoC:

type-1 Services need to implement a dedicated
interface through which they are provided with
an object from which they can look up
dependencies (other services). This is the
pattern used by the earlier containers provided
by Avalon.

type-2 Services dependencies upon are assigned via
JavaBeans properties (setter methods). Both
HiveMind and Spring use this approach.

type-3 Services dependencies are provided as
constructor parameters (and are not exposed as
JavaBeans properties). This is the exclusive
approach used by PicoContainer, and is also

Jakarta HiveMind Project Documentation

Page 58
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://www.springframework.org

used in HiveMind and Spring.

HiveMind is a much looser system than Avalon. HiveMind doesn't have an explicit assembly
stage; it wires together all the modules it can find at runtime. HiveMind is responsible for
creating services (including core implementations and interceptors). It is quite possible to
create service factories that do very container-like things, including connecting services
together. hivemind.BuilderFactory does just that, instantiating an object to act as the core
service implementation, then setting properties of the object, some of which are references to
services and configuration point element data.

In HiveMind, you are free to mix and match type-2 (property injection) and type-3
(constructor injection), setting some (or all) dependencies via a constructor and some (or all)
via JavaBeans properties.

In addition, JavaBeans properties (for dependencies) can be write-only. You only need to
provide a setter method. The properties are properties of the core service implementation,
there is no need for the accessor methods to be part of the service interface.

HiveMind's lifecycle support is much more rudimentary than Avalon's. Your service
implementations can get hivemindcallbacks when they are first created, and when they are
discarded, by implementing certain interfaces.

Purist inversion of control, as in Avalon, may be more appropriate in well-constrained
systems containing untrusted code. HiveMind is a layer below that, not an application server,
but a microkernel. Although I can see using HiveMind as the infrastructure of an application
server, even an Avalon application server, it doesn't directly overlap otherwise.

1.6.4. HiveMind Localization

Every HiveMind module may have its own set of messages. Messages are stored alongside
the module deployment descriptor, as META-INF/hivemodule.properties (within
the module's JAR).

Note:
In actuality, the name of the properties file is created by stripping off the extension (".sdl" or ".xml") from the descriptor name
and appending the localization code and ".properties". This is relevant only if you load your module deployment descriptors
from a non-standard location, possibly via the <sub-module> element.

Services can gain access to localized messages, as an instance of Messages , which includes
methods for accessing messages and formatting messages with arguments.

In a module descriptor, within the <contribution> and <invoke-factory> elements, you can
reference a localized message in an attribute or element content simply by prefixing the

Jakarta HiveMind Project Documentation

Page 59
Copyright © 2004 The Apache Software Foundation All rights reserved.

message key with '%'. Examples:

contribution (configuration-id=...)
{
some-item (message="%message.key")
{
"%other.message.key"

}
}

The two keys (message.key and other.message.key) are searched for in the
contributing module's messages.

HiveMind gracefully recovers from undefined messages. If a message is not in the properties
file, then HiveMind provides a substitute value by converting the key to upper-case and
adding brackets, i.e. [MESSAGE.KEY]. This allows your application to continue running,
but clearly identifies missing messages.

By adding additional files, message localization can be accomplished. For example, adding a
second file, META-INF/hivemodule_fr.properties would provide French
language localizations. Any common keys between the two files defer to the more specific
file.

1.6.4.1. Setting the locale

When a Registry is created by the RegistryBuilder, a locale is specified. This is the locale for
the Registry and, by extension, for all Modules in the registry. The locale may not be
changed.

1.6.5. HiveMind Multi-Threading

HiveMind is specifically targetted for J2EE: deployment in a WAR or EAR, particularly as
part of a Tapestry application. Of course, J2EE is not a requirement, and HiveMind is quite
useful even in a simple, standalone environment.

In the world of J2EE, multi-threading is always an issue. HiveMind services are usually
singletons, and must be prepared to operate in a multi-threaded environment. That means
services should not have any specific state, much like a servlet.

1.6.5.1. Construction State

HiveMind expects that initially, work will progress in a single startup thread. This is the early
state, the construction state, where the module deployment descriptors are located and
parsed, and the contents used to assemble the registry; this is the domain of RegistryBuilder .

Jakarta HiveMind Project Documentation

Page 60
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://jakarta.apache.org/tapestry/

The construction activities are not thread-safe. This includes the parser, and other code
(virtually all of which is hidden from your application).

The construction state ends when the RegistryBuilder returns the Registry from
method constructRegistry(). The registry is thread-safe.

1.6.5.2. Runtime State

Everything that occurs with the Registry and modules must be thread-safe. Key methods are
always synchronized. In particular, the methods that construct a service and construct
configuration point elements are thread-safe. Operations such as building the interceptor
stack, instantiating core service implementations, and converting XML to Java objects
operate in a thread-safe manner. However, different threads may be building different
services simultaneously. This means that, for example, an interceptor service implementation
must still be thread-safe, since it may be called upon to generate interceptors for two or more
different services simultaneously.

On the other hand, the Java objects constructed from XML <rules> don't need to be
thread-safe, since that construction is synchronized properly ... only a single thread will be
converting XML to Java objects for any single configuration point.

1.6.5.3. Managing Service State

When services simply must maintain state between method invocations, there are several
good options:

• Store the data in an object passed to or returned from the service
• Make use of the hivemind.ThreadLocalStorage service to store the data in a thread-local

map.
• Make use of the threaded or pooled service models, which allow a service to keep its

state between service method invocations.

1.6.6. HiveMind Servlet Filter

HiveMind includes a feature to streamline the use of HiveMind within a web application: a
servlet filter that can automatically construct the HiveMind Registry and ensure that
end-of-request thread cleanup occurs.

The filter class is HiveMindFilter. It constructs a standard HiveMind Registry when
initialized, and will shutdown the Registry when the containing application is undeployed.

Each request will be terminated with a call to the Registry's cleanupThread() method, which
will cleanup any thread-local values, including service implementations that are bound to the

Jakarta HiveMind Project Documentation

Page 61
Copyright © 2004 The Apache Software Foundation All rights reserved.

current thread.

The HiveMindFilter class includes a static method for accessing the Registry.

1.6.6.1. Deployment Descriptor

To make use of the filter, it must be declared inside the web deployment descriptor
(web.xml). Filters can be attached to servlets, or URL patterns, or both. Here's an example:

<filter>
<filter-name>HiveMindFilter</filter-name>
<filter-class>org.apache.hivemind.servlet.HiveMindFilter</filter-class>

</filter>

<servlet>
<servlet-name>MyServlet</servlet-name>
<servlet-class>myco.servlets.MyServlet</servlet-class>

</servlet>

<filter-mapping>
<filter-name>HiveMindFilter</filter-name>
<servlet-name>MyServlet</servlet-name>

</filter-mapping>

1.6.7. Creating New Interceptors

Interceptors are used to add behavior to a HiveMind service after the fact. An interceptor sits
between the client code and the core service implementation; it implements the service
interface. For each method in the service interface, the interceptor will re-invoke the method
on the next object in the chain ... either another interceptor, or the core service
implementation.

That's not useful ... but when the interceptor does something before and/or after re-invoking
the method, it can easily add quite a bit of useful, robust functionality.

In fact, if you've heard about "Aspect Oriented Programming", interceptors are simply one
kind of aspect, a method introduction, based on the service interface.

Be warned; interceptors are an example of programs writing other programs; it's a whole new
level of abstraction and requires a bit of getting used to. Also, note that the term "interceptor"
can mean two different, related things: a service interceptor factory or a fabricated class
created by the factory; this should be obvious by the context.

1.6.7.1. Interceptor Factories

Interceptors are created, at runtime, by service interceptor factories. A service interceptor

Jakarta HiveMind Project Documentation

Page 62
Copyright © 2004 The Apache Software Foundation All rights reserved.

factory builds a custom class at runtime using the Javassist library. The class is then
instantiated.

Note:
The use of Javassist is not mandated but is generally easy and is more efficient at runtime. It is possible to accomplish the same
thing using JDK proxies.

Interceptor factories are HiveMind services which implement the ServiceInterceptorFactory
interface. This interface has a single method, createInterceptor() , which is passed:

• The InterceptorStack (an object used to manage the process of creating interceptors for a
service)

• The Module which invoked the interceptor factory
• A list of parameters

Like service implementation factories, interceptor factories may take parameters; they may
identify a <schema> which is used to convert any XML enclosed by the <interceptor>
element into Java objects. Many interesting interceptors can be created without needing
parameters to guide the fabrication of the interceptor class.

1.6.7.2. Implementing the NullInterceptor

To demonstrate how easy it is to create an interceptor, we'll start with a NullInterceptor.
NullInterceptor does not add any functionality, it simply re-invokes each method on its inner.
The inner is the next interceptor, or the core service implementation ... an interceptor doesn't
know or care which.

Simple interceptors, those which do not take any parameters, are implemented by subclassing
AbstractServiceInterceptorFactory. It does most of the work, organizing the process of
creating the class and methods ... even adding a toString() method implementation
automatically.

NullInterceptor Class

Most of the work for creating a standard service interceptor factory is taken care of by the
AbstractServiceInterceptorFactory base class. All that's left is to define what happens for
each method in the service interface.

package com.example.impl;

import java.lang.reflect.Modifier;

import org.apache.hivemind.service.ClassFab;
import org.apache.hivemind.service.impl.AbstractServiceInterceptorFactory;

Jakarta HiveMind Project Documentation

Page 63
Copyright © 2004 The Apache Software Foundation All rights reserved.

public class NullInterceptor extends AbstractServiceInterceptorFactory
{

protected void addServiceMethodImplementation(
ClassFab classFab,
String methodName,
Class returnType,
Class[] parameterTypes,
Class[] exceptionTypes)

{
classFab.addMethod(
Modifier.PUBLIC,
methodName,
returnType,
parameterTypes,
exceptionTypes,
"{ return ($r) _inner." + methodName + "($$); }");

}
}

The addServiceMethodImplementation() method is invoked for each service
method. It is passed the ClassFab, an object which represents a class being fabricated, which
allows new fields, methods and constructors to be added.

ClassFab and friends are just a wrapper around the Javassist framework, a library used for
runtime bytecode enhancement and other aspect oriented programming tasks. HiveMind uses
only a small fraction of the capabilities of Javassist. Javassist's greatest feature is how new
code is specified ... it looks like ordinary Java source code, with a few additions.

The _inner variable is a private instance variable, the inner for this interceptor. The ($r)
reference means "cast to the return type for this method", and properly handles void methods.
The $$ is a placeholder for a comma-seperated list of all the parameters to the method.

Put together, this simply says "reinvoke the method on the next instance."

AbstractServiceInterceptorFactory is responsible for creating the _inner variable and
building the constructor which sets it up, as well as invoking the constructor on the
completed interceptor class.

Declaring the Service

To use a service, it is necessary to declare the service in a module deployment descriptor.
The AbstractServiceInterceptorFactory base class expects two properties to be set when the
service is constructed, serviceId and factory:

service-point (id=NullInterceptor interface=org.apache.hivemind.ServiceInterceptorFactory)
{

Jakarta HiveMind Project Documentation

Page 64
Copyright © 2004 The Apache Software Foundation All rights reserved.

invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=com.example.impl.NullInterceptor service-id-property=serviceId)
{
set-service (property=factory service-id=hivemind.ClassFactory)

}
}

}

1.6.7.3. Implementing the hivemind.LoggingInterceptor service

A more involved example is the LoggingInterceptor service, which adds logging capabilities
to services. It's a bit more involved than NullInterceptor, and so overrides more methods of
AbstractServiceInterceptorFactory.

Note:
The logging interceptor has changed recently, to allow flexibilty (via parameters) on which methods are logged. This
document has not yet been updated.

AbstractLoggingInterceptor base class

In most cases, an abstract base class for the interceptor is provided; in this case, it is
AbstractLoggingInterceptor. This class provides several protected methods used by
fabricated interceptors. To help ensure that there are no conflicts between the method of the
service interface and the methods provided by the super-class, the provided methods are
named with a leading underscore. These methods are:

• _logEntry() to log entry to a method
• _logExit() to log exit from a method, with return value
• _logVoidExit() to log exit from a void method (no return value)
• _logException() to log an exception thrown when the method is executed
• _isDebugEnabled() to determine if debugging is enabled or disabled

In addition, there's a protected constructor, which takes an instance of
org.apache.commons.logging.Log that must be invoked from the fabricated
subclass.

Method getInterceptorSuperclass() is used to tell
AbstractServiceInterceptorFactory which class to use as the base:
protected Class getInterceptorSuperclass() { return

AbstractLoggingInterceptor.class; }

Creating the infrastructure

The method createInfrastructure() is used to add fields and constructors to the

Jakarta HiveMind Project Documentation

Page 65
Copyright © 2004 The Apache Software Foundation All rights reserved.

interceptor class.

protected void createInfrastructure(InterceptorStack stack, ClassFab classFab)
{
Class topClass = stack.peek().getClass();

classFab.addField("_inner", topClass);

classFab.addConstructor(new Class[] { Log.class, topClass },
null,
"{ super($1); _inner = $2; }");

}

Since, when a interceptor is created, the inner object has already been created, we can use its
actual type for the _inner field. This results in a much more efficient method invocation
than if _inner's type was the service interface.

Instantiating the Instance

The method instantiateInterceptor() is used to create a new instance from the
fully fabricated class.

protected Object instantiateInterceptor(InterceptorStack stack, Class interceptorClass) throws Exception
{
Object stackTop = stack.peek();
Class topClass = stackTop.getClass();
Log log = LogFactory.getLog(stack.getServiceExtensionPointId());

Constructor c = interceptorClass.getConstructor(new Class[] { Log.class, topClass });

return c.newInstance(new Object[] { log, stackTop });
}

This implementation gets the top object from the stack (the inner object for this interceptor)
and the correct Log instance (based on the service extension point id ... for the service being
extended with the interceptor). The constructor, created by createInfrastructure()
is accessed and invoked to create the interceptor.

Adding the Service Methods

The last, and most complex, part of this is the method which actually creates each service
method.

protected void addServiceMethodImplementation(
ClassFab classFab,
String methodName,
Class returnType,
Class[] parameterTypes,

Jakarta HiveMind Project Documentation

Page 66
Copyright © 2004 The Apache Software Foundation All rights reserved.

Class[] exceptions)
{
boolean isVoid = (returnType == void.class);

BodyBuilder builder = new BodyBuilder();

builder.begin();
builder.addln("boolean debug = _isDebugEnabled();");

builder.addln("if (debug)");
builder.add(" _logEntry(");
builder.addQuoted(methodName);
builder.addln(", $args);");

if (!isVoid)
{
builder.add(ClassFabUtils.getJavaClassName(returnType));
builder.add(" result = ");

}

builder.add("_inner.");
builder.add(methodName);
builder.addln("($$);");

if (isVoid)
{
builder.addln("if (debug)");
builder.add(" _logVoidExit(");
builder.addQuoted(methodName);
builder.addln(");");

}
else
{
builder.addln("if (debug)");
builder.add(" _logExit(");
builder.addQuoted(methodName);
builder.addln(", ($w)result);");
builder.addln("return result;");

}

builder.end();

MethodFab methodFab =
classFab.addMethod(
Modifier.PUBLIC,
methodName,
returnType,
parameterTypes,
exceptions,
builder.toString());

builder.clear();

builder.begin();

Jakarta HiveMind Project Documentation

Page 67
Copyright © 2004 The Apache Software Foundation All rights reserved.

builder.add("_logException(");
builder.addQuoted(methodName);
builder.addln(", $e);");
builder.addln("throw $e;");
builder.end();

String body = builder.toString();

int count = exceptions == null ? 0 : exceptions.length;

for (int i = 0; i < count; i++)
{
methodFab.addCatch(exceptions[i], body);

}

// Catch and log any runtime exceptions, in addition to the
// checked exceptions.

methodFab.addCatch(RuntimeException.class, body);
}

A bit more is going on here; since the method bodies for the fabricated methods are more
complex, we're using the BodyBuilder class to help assemble them (but still keep the final
method body neat and readable). BodyBuilder's begin() and end() methods take care of open
and close braces, as well as indentation inside a code block.

When you implement logging in your own classes, you often invoke the method
Log.isDebugEnabled() multiple times ... but in the fabricated class, the method is only
invoked once and cached for the duration of the call ... a little efficiency gained back.

Likewise, if a method can throw an exception or return from the middle, its hard to be
assured that you've logged every exit, or overy thrown exception; taking this code out into an
interceptor class ensures that its done consistently and properly.

1.6.7.4. Implementing Interceptors with Parameters

Interceptor factories may take parameters ... but then their implementation can't be based on
AbstractServiceInterceptorFactory. The hivemind.LoggingInterceptor is an example of such
a factory (its parameters determine which methods do and don't get logging). The basic
approach is the same ... you just need a little extra work to validate, interpret and use the
parameters.

When would such as thing be useful? One example is declarative security; you could specify,
on a method-by-method basis, which methods were restricted to which roles.

1.6.7.5. Conclusion

Interceptors are a powerful concept that allow you to add consistent, efficient, robust

Jakarta HiveMind Project Documentation

Page 68
Copyright © 2004 The Apache Software Foundation All rights reserved.

behavior to your services. It takes a little while to wrap your brain around the idea of classes
writing the code for other classes ... but once you do, a whole world of advanced techniques
opens up to you!

1.6.8. Overriding a Service

It is not uncommon to want to override an existing service and replace it with a new
implementation. This goes beyond simply intercepting the service ... the goal is to replace the
original implementation with a new implementation. This occurs frequently in Tapestry
where frequently an existing service is replaced with a new implementation that handles
application-specific cases (and delegates most cases to the default implementation).

Note:
Plans are afoot to refactor Tapestry 3.1 to make considerable use of HiveMind. Many of the ideas represented in HiveMind
germinated in earlier Tapestry releases.

HiveMind doesn't have an explicit mechanism for accomplishing this ... that's because its
reasonable to replace and wrap existing services just with the mechanisms already available.

1.6.8.1. Step One: A non-overridable service

To describe this technique, we'll start with a ordinary, every day service. In fact, for
discussion purposes, there will be two services: Consumer and Provider. Ultimately, we'll
show how to override Provider. Also for discussion purposes, we'll do all of this in a single
module, though (of course) you can as easily split it up across many modules.

To begin, we'll define the two services, and set Provider as a property of Consumer:

module (id=ex.override version="1.0.0")
{
service-point (id=Provider interface=ex.override.Provider)
{
create-instance (class=ex.override.impl.ProviderImpl)

}

service-point (id=Consumer interface=ex.override.Consumer)
{
invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=ex.override.impl.Consumer)
{
set-service (property=provider service-id=Provider)

}
}

}

Jakarta HiveMind Project Documentation

Page 69
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://jakarta.apache.org/tapestry/
http://jakarta.apache.org/tapestry/

}

1.6.8.2. Step Two: Add some indirection

In this step, we still have just the two services ... Consumer and Provider, but they are linked
together less explicitly, by using substitution symbols.

module (id=ex.override version="1.0.0")
{
service-point (id=Provider interface=ex.override.Provider)
{
create-instance (class=ex.override.impl.ProviderImpl)

}

contribution (configuration-id=hivemind.FactoryDefaults)
{
default (symbol=ex.override.Provider value=ex.override.Provider)

}

service-point (id=Consumer interface=ex.override.consumer)
{
invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=ex.override.impl.Consumer)
{
set-service (property=provider service-id=${ex.override.Provider})

}
}

}
}

The end result is the same ... the symbol ex.override.Provider evaluates to the
service id ex.override.Provider and the end result is the same as step one. We
needed to use a fully qualified service id because, ultimately, we don't know in which
modules the symbol will be referenced.

1.6.8.3. Step Three: Override!

The final step is to define a second service and slip it into place. For kicks, the
OverrideProvider service will get a reference to the original Provider service.

module (id=ex.override version="1.0.0")
{
service-point (id=Provider interface=ex.override.Provider)
{
create-instance (class=ex.override.impl.ProviderImpl)

}

contribution (configuration-id=hivemind.FactoryDefaults)
{

Jakarta HiveMind Project Documentation

Page 70
Copyright © 2004 The Apache Software Foundation All rights reserved.

default (symbol=ex.override.Provider value=ex.override.Provider)
}

service-point (id=OverrideProvider interface=ex.override.Provider)
{
invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=ex.override.impl.OverrideProviderImpl)
{
set-service (property=defaultProvider service-id=Provider)

}
}

}

// ApplicationDefaults overrides FactoryDefaults

contribution (configuration-id=hivemind.ApplicationDefaults)
{

// Must specify the fully qualified service id (the symbol
// may be evaluated in an unknown context later)

default (symbol=ex.override.Provider value=ex.override.OverrideProvider)
}

service-point (id=Consumer interface=ex.override.consumer)
{
invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=ex.override.impl.Consumer)
{
set-service (property=provider service-id=${ex.override.Provider})

}
}

}
}

The new service, OverrideProvider, gets a reference to the original service using its real id. It
can't use the symbol that the Consumer service uses, because that would end up pointing it at
itself. Again, in this example it's all happening in a single module, but it could absolutely be
split up, with OverrideProvider and the configuration to hivemind.ApplicationDefaults in an
entirely different module.

hivemind.ApplicationDefaults overrides hivemind.FactoryDefaults. This means that the
Consumer will be connected to ex.override.OverrideProvider.

Note that the <service-point> for the Consumer doesn't change between steps two and three.

1.6.8.4. Limitations

The main limitation to this approach is that you can only do it once for a service; there's no
way to add an EvenMoreOverridenProvider service that wraps around OverrideProvider (that

Jakarta HiveMind Project Documentation

Page 71
Copyright © 2004 The Apache Software Foundation All rights reserved.

wraps around Provider). Making multiple contributions to the hivemind.ApplicationDefaults
configuration point with the name symbol name will result in a runtime error ... and
unpredictable results.

This could be addressed by adding another source to the hivemind.SymbolSources
configuration.

To be honest, if this kind of indirection becomes extremely frequent, then HiveMind should
change to accomidate the pattern, perhaps adding an <override> element, similar to a
<interceptor> element.

1.7. Reports

1.7.1. Project License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical

Jakarta HiveMind Project Documentation

Page 72
Copyright © 2004 The Apache Software Foundation All rights reserved.

transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct

Jakarta HiveMind Project Documentation

Page 73
Copyright © 2004 The Apache Software Foundation All rights reserved.

or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade

Jakarta HiveMind Project Documentation

Page 74
Copyright © 2004 The Apache Software Foundation All rights reserved.

names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

Jakarta HiveMind Project Documentation

Page 75
Copyright © 2004 The Apache Software Foundation All rights reserved.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1.7.2.

2. Module: hivemind

2.1. Services

2.1.1. hivemind.BuilderFactory Service

The BuilderFactory service is a service implementation factory ... a service that is used to
construct other services.

The general usage of the BuilderFactory is:

invoke-factory (service-id=hivemind.BuilderFactory)
{
construct (class=... log-property=... messages-property=...
service-id-property=... initialize-method=...
error-handler-property=... class-resolver-property=...)

{
log
messages
service-id
error-handler
class-resolver
string { ... }
boolean { ... }
configuration { ... }
int { ... }
long { ... }
resource { ... }
service { ... }

event-listener (service-id=... event-site-name=...)
set (property=... value=...)
set-configuration (property=... configuration-id=...)
set-resource (property=... path=...)
set-service (property=... service-id=...)

Jakarta HiveMind Project Documentation

Page 76
Copyright © 2004 The Apache Software Foundation All rights reserved.

}
}

The attributes of the construct element are used to specify the implementation class and
set common service properties. Nested elements supply the constructor parameters and
configure other specific properties of the implementation (the set-... elements).

2.1.1.1. construct

Attribute Required ? Description

class yes The fully qualified name of the
class to instantiate.

class-resolver-property no The property to receive the
module's ClassResolver.

error-handler-property no The name of a property to
recieve the module's
ErrorHandler instance (which is
used to report recoverable
errors).

initialize-method no The name of a method (public,
no parameters) to invoke after
the service is constructed, to
allow it to perform any final
initializion before being put into
use.

log-property no The name of a property which
will be assigned a
org.apache.commons.logging.Log
instance for the service. The
Log is created from the
complete service id (not the
name of the class). If ommitted,
no Log will be assigned.

messages-property no Allows the Messages for the
module to be assigned to a
property of the instance.

service-id-property no Allows the service id of the
constructed service to be
assigned to a property of the
service implementation.

The remaining elements are enclosed by the <construct> element, and are used to supply

Jakarta HiveMind Project Documentation

Page 77
Copyright © 2004 The Apache Software Foundation All rights reserved.

constructor parameters and configure properties of the constructed service implementation.

2.1.1.2. Autowiring

BuilderFactory will automatically set certain common properties of the service
implementation. By using standard names (and standard types), the need to specify attributes
log-property, error-handler-property, etc. is avoided. Simply by having a
writable property with the correct name and type is sufficient:

Property name Property Type

classResolver ClassResolver

errorHandler ErrorHandler

log org.apache.commons.logging.Log

messages Messages

serviceId String

2.1.1.3. Constructor Parameter Elements

The following table summarizes the elements which can be used to specify constructor
parameters for the class to instantiate. These elements can be mixed freely with the properties
configuring elements. It is important to know that the number, type, and order of the
constructor parameter elements determine the constructor that will be used to instantiate the
implementation.

Element Matched Parameter Type Passed Parameter Value

error-handler ErrorHandler The module's ErrorHandler,
user to report recoverable
errors.

log org.apache.commons.logging.LogThe Log is created from the
complete service id (not the
name of the class) of the
created service.

messages org.apache.hivemind.Messages The Messages object of the
invoking module.

service-id java.lang.String The service id of the
constructed service.

string java.lang.String This element's content.

Jakarta HiveMind Project Documentation

Page 78
Copyright © 2004 The Apache Software Foundation All rights reserved.

boolean boolean This element's content. Must be
either "true" or "false".

configuration java.util.List The List of the elements of the
configuration specified by this
element's content as a
configuration id. The id can
either by a simple id for a
configuration within the same
module as the constructed
service, or a complete id.

int int This element's content parsed
as an integer value.

long long This element's content parsed
as a long value.

resource org.apache.hivemind.Resource This element's content parsed
as a path to a Resource, which
is relative to the contributing
module's deployment
descriptor. If available, a
localized version of the
Resource will be selected.

service interface corresponding to
specified service

The implementation of the
service with the id given in this
element's content. The id can
either be a simple id for a
service within the same module
as the constructed service, or a
complete id.

2.1.1.4. Service Property Configuring Elements

event-listener

Attribute Description

service-id The service which produces events. The service
must provide, in its service interface, the
necessary add and remove listener methods.

name The name of an event set to be registered. If not
specified, all applicable event sets are used.

If the name attribute is not specified, then BuilderFactory will register for all applicable event

Jakarta HiveMind Project Documentation

Page 79
Copyright © 2004 The Apache Software Foundation All rights reserved.

sets. For each event set provided by the specified service, BuilderFactory will check to see if
the service instance being constructed implements the corresponding listener interface ... if
so, the constructed service instance is added as a listener. When the name attribute is
specified, the constructed service instance is registered as a listener of just that single type.

Event notifications go directly to the constructed service instance; they don't go through any
proxies or interceptors for the service. The service instance must implement the listener
interface, the constructed service's service interface does not have to extend the listener
interface. In other words, event notifications are "behind the scenes", not part of the public
API of the service.

It is perfectly acceptible to include multiple <event-listener> elements for a number of
different event producing services.

It is not enough for the event producer service to have an add listener method (i.e.,
addPropertyChangeListener(PropertyChangeListener)). To be recognized
as an event set, there must also be a corresponding remove listener method (i.e.,
removePropertyChangeListener(PropertyChangeListener)), even though
BuilderFactory does not make use of the remove method. This is an offshoot of how the
JavaBeans API defines event sets.

set

Attribute Description

property The name of the property to set.

value A value to assigned to the property. The value
will be converted to an appropriate type for the
property.

set-configuration

Attribute Description

property The name of the property to set.

configuration-id The id of a configuration, either a simple id for a
configuration within the same module as the
constructed service, or a complete id. The
property will be assigned a List of the
elements of the configuration.

set-resource

Jakarta HiveMind Project Documentation

Page 80
Copyright © 2004 The Apache Software Foundation All rights reserved.

Attribute Description

property The name of the property to set.

path The path to a Resource, relative to the
contributing module's deployment descriptor. If
available, a localized version of the Resource
will be selected.

set-service

Attribute Description

property The name of the property to set.

service-id The id of a service, either a simple id for a
service within the same module as the
constructed service, or a complete id. The
property will be assigned the service.

2.1.2. hivemind.LoggingInterceptor Service

The LoggingInterceptor service is used to add logging capability to a service, i.e.:

interceptor (service-id=hivemind.LoggingInterceptor)
{
include (method=...)
exclude (method=...)

}

The service make take parameters (which control which methods will be logged).

The logging interceptor uses a Log derived from the service id (of the service to which
logging is being added).

The service logs, at debug level, the following events:

• Method entry (with parameters)
• Method exit (with return value, if applicable)
• Thrown exceptions (checked and runtime)

By default, the interceptor will log all methods. By supplying parameters to the interceptor,
you can control exactly which methods should be logged. The include and exclude
parameter elements specify methods to be included (logged) and excluded (not logged). The
method attribute is a method pattern, a string used to match methods based on name,
number of parameters, or type of parameters; see the MethodMatcher class for more details.

A method which does not match any supplied pattern will be logged.

Jakarta HiveMind Project Documentation

Page 81
Copyright © 2004 The Apache Software Foundation All rights reserved.

2.1.3. hivemind.ShutdownCoordinator Service

Service implementations that need to perform any special shutdown logic should implement
the RegistryShutdownListener interface, and let thehivemind.BuilderFactory register them
for notifications.

2.1.4. hivemind.ThreadLocalStorage Service

The ThreadLocalStorage service implements the ThreadLocalStorage interface. This service
acts as a kind of Map for temporary data. The map is local to the current thread, and is
cleared at the end of the transaction.

It is your responsibility to ensure that keys are unique, typically by prefixing them with a
module id or package name.

2.2. Configurations

2.2.1. hivemind.ApplicationDefaults Configuration

The ApplicationDefaults configuration is used to set default values for substitution symbols.
Application defaults override contributions to hivemind.FactoryDefaults. The contribution
format is the same FactoryDefaults:

default (symbol=... value=...)

2.2.2. hivemind.EagerLoad Configuration

The EagerLoad configuration allows services to be constructed when the Registry is first
initialized. Normally, HiveMind goes to great lengths to ensure that services are only
constructed when they are first needed. Eager loading is appropriate during development (to
ensure that services are configured properly), and some services that are event driven may
need to be instantiated early, so that they may begin receiving event notifications even before
their first service method is invoked.

Care should be taken when using services with the pooled or threaded service models to
invoke cleanup the thread immediately after creating the Registry.

Contributions are as follows:

load (service-id=...)

2.2.3. hivemind.FactoryDefaults Configuration

Jakarta HiveMind Project Documentation

Page 82
Copyright © 2004 The Apache Software Foundation All rights reserved.

The FactoryDefaults configuration is used to set default values for substitution symbols.
Contributions look like:

default (symbol=... value=...)

Values defined here can be overriden by making a contribution to
hivemind.ApplicationDefaults.

2.2.4. hivemind.ServiceModels Configuration

The ServiceModels configuration defines the available service models. Service models
control the lifecycle of services: when they are created and when they are destroyed (often
tied to the current thread's activity).

The contribution format defines the name and class for each service model:

service-model (name=... class=...)

An instance of the specified class will be instantiated. The class must implement the
ServiceModelFactory interface (which creates an instance of the actual service model for a
particular service extension point).

Names of service models must be unique; it is not possible to override the built-in service
model factories.

2.2.5. hivemind.SymbolSources Configuration

The SymbolSources configuration is used to define new SymbolSources (providers of values
for substitution symbols).

Contributions are of the form:

source (name=... before=... after=... class=... service-id=...)

Sources are ordering based on the name, before and after elements. before and
after may be comma-seperated lists of other sources, may be the simple value *, or may
be omitted.

Only one of class and service-id attributes should be specified. The former is the
complete name of a class (implementing the SymbolSource interface). The second is used to
contribute a service (which must also implement the interface).

2.2.6. hivemind.Translators Configuration

The Translators configuration defines the translators that may be used with XML conversion

Jakarta HiveMind Project Documentation

Page 83
Copyright © 2004 The Apache Software Foundation All rights reserved.

rules.

The contribution format defines the name and class for each service model:

translator (name=... class=...)

An instance of the specified class will be instantiated. The class must implement the
Translator interface. It should have a no-args and/or single String constructor.

Names of translators must be unique; it is not possible to override the existing service model
translators. A single translator, class , is hard-coded into HiveMind, the others appear as
ordinary contributions.

2.3. Ant Tasks

2.3.1. ConstructRegistry Ant Task

Reads some number of HiveMind module descriptors and assembles a single registry file
from them. The output registry consists of a <registry> element which contains one
<module> element for each module descriptor read. This registry is useful for generating
documentation.

The registry XML is only updated if it does not exist, or if any of the module deployment
descriptor is newer.

This task is implemented as org.apache.hivemind.ant.ConstructRegistry.

2.3.1.1. Parameters

Attribute Description Required

output The file to write the registry to. Yes

2.3.1.2. Parameters specified as nested elements

descriptors

A path-like structure, used to identify which HiveMind module descriptors
(hivemodule.sdl and hivemind.xml) should be included.

Each path element should either be a module deployment descriptor, or be a JAR containing
a deployment descriptor (in the META-INF folder).

2.3.1.3. Examples

Jakarta HiveMind Project Documentation

Page 84
Copyright © 2004 The Apache Software Foundation All rights reserved.

Create target/registry.xml from all hivemodule.xml descriptors found inside
the src directory.

<constructregistry output="target/registry.xml">
<descriptors>
<fileset dir="src">
<include name="**/hivemodule.xml"/>

</fileset>
</descriptors>

</constructregistry>

2.3.2. ManifestClassPath Ant Task

Converts a classpath into a space-separated list of items used to set the Manifest
Class-Path attribute.

This is highly useful when modules are packaged together inside an Enterprise Application
Archive (EAR). Library modules may be deployed inside an EAR, but (in the current J2EE
specs), there's no way for such modules to be added to the classpath in the deployment
descriptor; instead, each JAR is expected to have a Manifest Class-Path attribute identifying
the exactly list of JARs that should be in the classpath. This Task is used to generate that list.

This task is implemented as org.apache.hivemind.ant.ManifestClassPath.

2.3.2.1. Parameters

Attribute Description Required

property The name of a property to set
as a result of executing the
task.

Yes

directory If specified, then the directory
attribute does two things:
• It acts as a filter, limiting the

results to just those elements
that are within the directory

• It strips off the directory as a
prefix (plus the separator),
creating results that are
relative to the directory.

No

2.3.2.2. Parameters specified as nested elements

classpath

Jakarta HiveMind Project Documentation

Page 85
Copyright © 2004 The Apache Software Foundation All rights reserved.

A path-like structure, used to identify what the classpath should be.

2.3.2.3. Examples

Generate a list of JARs inside the ${target} directory as relative paths and use it to set
the Class-Path manifest attribute.

<manifestclasspath directory="${target}" property="manifest.class.path">
<classpath refid="build.class.path"/>

</manifestclasspath>

<jar . . .>
<manifest>
<attribute name="Class-Path" value="${manifest.class.path}"/>
. . .

</manifest>
</jar>

2.4. Reports

2.4.1.

2.4.2.

3. Module: hivemind.lib

3.1. Services

3.1.1. hivemind.lib.BeanFactoryBuilder Service

The BeanFactoryBuilder services is used to construct a BeanFactory instance. An
BeanFactory will vend out instances of classes. A logical name is mapped to a particular Java
class to be instantiated.

Client code can retrieve beans via the factory's get() method. Beans are retrieved using a
locator, which consists of a name and an optional initializer seperated by commas. The
initializer is provided to the bean via an alternate constructor that takes a single string
parameter. Initializers are used, typically, to initialize properties of the bean, but the actual
implementation is internal to the bean class.

3.1.1.1. Usage

Jakarta HiveMind Project Documentation

Page 86
Copyright © 2004 The Apache Software Foundation All rights reserved.

The general usage is as follows:

invoke-factory (service-id=hivemind.lib.BeanFactoryBuilder)
{
factory (vend-class=... configuration-id=... default-cacheable=...)

}

The vend-class attribute is the name of a class all vended objects must be assignable to
(as a class or interface). This is used to validate contributed bean definitions. By default it is
java.lang.Object.

The configuration-id is the id of the companion configuration (used to define object
classes).

The optional default-cacheable attribute sets the default for whether instantiated
beans should be cached for reuse. By default this is true, which is appropriate for most use
cases where the vended objects are immutable.

3.1.1.2. Configuration

Each BeanFactory service must have a configuration, into which beans are contributed:

configuration-point (id=... schema-id=hivemind.lib.BeanFactoryContribution)

Contributions into the configuration are used to specify the bean classes to instantiate, as:

bean (name=... class=... cacheable=...)

name is a unique name used to reference an instance of the class.

class is the Java class to instantiate.

cacheable determines whether instances of the class are cacheable (that is, have
immutable internal state and should be reused), or non-cacheable (presumably, because of
mutable internal state).

3.1.2. hivemind.lib.DefaultImplementationBuilder Service

The DefaultImplementationBuilder service is used to create default implementations of
interfaces. As described in the service interface JavaDoc, methods return null, 0 or false
(depending on return type) and otherwise do nothing.

3.1.3. hivemind.lib.EJBProxyFactory Service

Jakarta HiveMind Project Documentation

Page 87
Copyright © 2004 The Apache Software Foundation All rights reserved.

The EJBProxyFactory service is used to construct a HiveMind service that delegates to an
EJB stateless session bean. The EJB's remote interface is the service interface. When the first
service method is invoked, the fabricated proxy will perform a JNDI lookup (using the
NameLookup service), and invokes create() on the returned home interface.

The single service instance will be shared by all threads.

The general usage is as follows:

invoke-factory (service-id=hivemind.lib.EJBProxy)
{
parameters (home-interface=... jndi-name=... name-lookup-service=...)

}

The home-interface attribute is the complete class name for the home interface, and is
required.

The jndi-name attribute is the name of the EJB's home interface, also required.

The name-lookup-service-id attribute is optional and rarely used; it is an alternate
service implementing the NameLookup interface to be used for JNDI lookups.

3.1.4. hivemind.lib.NameLookup Service

The NameLookup service is a thin wrapper around JNDI lookup. It is used by the
EJBProxyFactory service to locate EJBs.

The implementation makes use of three symbols (all of whose values default to null):

• java.naming.factory.initial
• java.naming.factory.url.pkgs
• java.naming.provider.url

By supplying overrides of these values, it is possible to configure how the NameLookup
service generates the InitialContext used for performing the JNDI lookup.

3.1.5. hivemind.lib.PlaceholderFactory Service

The PlaceholderFactory service is a service implementation factory that uses the
DefaultImplementationBuilder service to create placeholder implementations for services.
Placeholders do nothing at all.

3.1.6. hivemind.lib.PipelineFactory Service

The PipelineFactory services is used to construct a pipeline consisting of a series of filters.
The filters implement an interface related to the service interface.

Jakarta HiveMind Project Documentation

Page 88
Copyright © 2004 The Apache Software Foundation All rights reserved.

Each method of the service interface has a corresponding method in the filter interface with
an identical signature, except that an additional parameter, whose type matches the service
interface has been added.

For example, a service interface for transforming a string:

package mypackage;

public interface StringTransformService
{
public String transform(String inputValue);

}

The corresponding filter interface:

package mypackage;

public interface StringTransformFilter
{
public String transform(String inputValue, StringTransformService service);

}

The service parameter may appear at any point in the parameter list, though the convention of
listing it last is recommended.

The filters in a pipeline are chained together as follows:

Pipeline Calling Sequence
The bridge objects implement the service interface (and are created dynamically at runtime).
The terminator at the end also implements the service interface. This can be an object or a
service; if no terminator is specified, a default implementation is created and used. Only a
single terminator is allowed.

A pipeline is always created in terms of a service and a configuration. The service defines the
service interface and identifies a configuration. The configuration conforms to the
hivemind.lib.Pipeline schema and is used to specify filters and the terminator.
Filters may be ordered much like <interceptor>s, using before and after attributes. This
allows different modules to contribute filters into the service's pipeline.

3.1.6.1. Usage

The general usage is as follows:

invoke-factory (service-id=hivemind.lib.PipelineFactory)
{
create-pipeline (filter-interface=... configuration-id=... terminator-service-id=...)

}

Jakarta HiveMind Project Documentation

Page 89
Copyright © 2004 The Apache Software Foundation All rights reserved.

The filter-interface attribute is the complete class name of the filter interface.

The configuration-id is the id of the companion configuration (used to define filters).

The optional terminator-service-id attribute is used to specify a terminator service
directly (a terminator may also be contributed into the pipline configuration).

3.1.6.2. Configuration

Each pipeline service must have a configuration, into which filters are contributed:

configuration-point (id=... schema-id=hivemind.lib.Pipeline)

3.1.6.3. Contributions

Contributions into the configuration are used to specify the filters and the terminator. Filters
and terminators can be specified as services or as objects.

filter

filter (service-id=... before=... after=...)

Contributes a filter as a service. The optional before and after attributes are lists of the
ids of other filters in the pipeline, used to set the ordering of the filters. They may be
comma-seperated lists of filter ids (or filter names), or simple * to indicate absolute
positioning.

filter-bean

filter-bean (name=... before=... after=...)

Contributes a bean (from a BeanFactory). The name is of the format
service-id:name[,initializer]

filter-object

filter-object (name=... class=... before=... after=...)

Contributes a filter as an instance of the provided class. The name attribute is required and
will be qualified with the contributing module id. before and after are optional, as with
the <filter> element.

Jakarta HiveMind Project Documentation

Page 90
Copyright © 2004 The Apache Software Foundation All rights reserved.

terminator
terminator (service-id=...)

Specifies the terminator service for the pipeline. Only a single terminator may be specified,
and the terminator service provided in the factory parameters takes precendence over a
terminator in the configuration.

terminator-bean

terminator-bean (name=...)

Contributes a terminator as a bean from a BeanFactory service.

terminator-object
terminator-object (class=...)

Specifies the termnator for the pipeline as an object (intead of as a service).

3.1.7. hivemind.lib.RemoteExceptionCoordinator Service

The RemoteExceptionCoordinator is used to propogate notifications of remote exceptions
throughout the HiveMind repository. When any individual service encounters a remote
exception, it notifies all listeners, who release all remote object proxies.

The service interface, RemoteExceptionCoordinator, allows objects that implement the
RemoteExceptionListener interface to be registered for notification, and includes a method
for firing notifications.

3.1.8. hivemind.lib.SpringLookupFactory Service

The SpringLookupFactory supports integration with the Spring framework, another
open-source lightweight container. SpringLookupFactory is a service constructor that obtains
a core service implementation from a Spring BeanFactory .

By default, the BeanFactory is obtained from the DefaultSpringBeanFactoryHolder. Part
of your application startup code requires that you start a Spring instance and inform the
DefaultSpringBeanFactoryHolder about it.

The SpringLookupFactory expects exactly one parameter element:

lookup-bean (name=... source-service-id=...)

The name attribute is the name of the bean to look for inside the Spring BeanFactory.

Jakarta HiveMind Project Documentation

Page 91
Copyright © 2004 The Apache Software Foundation All rights reserved.

http://www.springframework.org

The optional source-service-id attribute allows an alternate service to be used to
obtain the BeanFactory. The identified service must implement the
SpringBeanFactorySource interface.

3.2. Reports

3.2.1.

3.2.2.

4. Other Resources

5. Complete Site

6. Related Projects

Jakarta HiveMind Project Documentation

Page 92
Copyright © 2004 The Apache Software Foundation All rights reserved.

	1 HiveMind Project
	1.1 Reference
	1.1.1 HiveMind Services
	1.1.1.1 Defining Services
	1.1.1.2 Extending Services
	1.1.1.2.1 Service Constructors
	1.1.1.2.2 Implementation Factories
	1.1.1.2.3 Interceptor Contributions

	1.1.1.3 A short example
	1.1.1.4 Primitive Service Model
	1.1.1.5 Singleton Service Model
	1.1.1.6 Threaded Service Model
	1.1.1.7 Pooled Service Model
	1.1.1.8 Service Lifecycle
	1.1.1.9 Services and Events
	1.1.1.10 Frequently Asked Questions

	1.1.2 Configuration Points
	1.1.2.1 Defining a Configuration Point
	1.1.2.1.1 Defining the Contribution Format

	1.1.2.2 Accessing Configuration Points
	1.1.2.3 Lazy Loading
	1.1.2.4 Substitution Symbols
	1.1.2.4.1 Symbol Sources

	1.1.2.5 Frequently Asked Questions

	1.1.3 Simple Data Language
	1.1.3.1 Goals
	1.1.3.2 Examples
	1.1.3.3 Whitespace
	1.1.3.4 Comments
	1.1.3.5 Element and Attribute Names
	1.1.3.6 Literal Values
	1.1.3.7 Literal Gotcha
	1.1.3.8 TO DO

	1.1.4 HiveDoc
	1.1.5 HiveMind Module Descriptor
	1.1.5.1 attribute
	1.1.5.2 configuration-point
	1.1.5.3 contribution
	1.1.5.4 conversion
	1.1.5.5 create-instance
	1.1.5.6 element
	1.1.5.7 implementation
	1.1.5.8 interceptor
	1.1.5.9 invoke-factory
	1.1.5.10 map
	1.1.5.11 module
	1.1.5.12 rules
	1.1.5.13 schema
	1.1.5.14 service-point
	1.1.5.15 sub-module

	1.1.6 Contribution Processing Rules
	1.1.6.1 Rules
	1.1.6.1.1 create-object
	1.1.6.1.2 custom
	1.1.6.1.3 invoke-parent
	1.1.6.1.4 push-attribute
	1.1.6.1.5 read-attribute
	1.1.6.1.6 read-content
	1.1.6.1.7 set-module
	1.1.6.1.8 set-parent
	1.1.6.1.9 set-property

	1.1.6.2 Translators
	1.1.6.2.1 bean
	1.1.6.2.2 boolean
	1.1.6.2.3 class
	1.1.6.2.4 configuration
	1.1.6.2.5 double
	1.1.6.2.6 enumeration
	1.1.6.2.7 id-list
	1.1.6.2.8 int
	1.1.6.2.9 long
	1.1.6.2.10 object
	1.1.6.2.11 qualified-id
	1.1.6.2.12 resource
	1.1.6.2.13 service
	1.1.6.2.14 service-point
	1.1.6.2.15 smart

	1.1.7 Library Dependencies

	1.2 History of Changes
	1.2.1 Version 1.0-beta-1 (unreleased)

	1.3 Todo List
	1.3.1 Release 1.0

	1.4 HiveMind Downloads
	1.5 CVS Access
	1.6 Tutorials and Information
	1.6.1 Bootstrapping the Registry
	1.6.1.1 Service Interfaces and Implementations
	1.6.1.2 Module Deployment Descriptor
	1.6.1.3 Building the Registry
	1.6.1.4 Building the Example
	1.6.1.5 Running the Examples

	1.6.2 Case Study #1: Application Startup / Shutdown
	1.6.2.1 Overview
	1.6.2.2 Module panorama.framework.startup
	1.6.2.2.1 Startup configuration point
	1.6.2.2.2 Task class
	1.6.2.2.3 Startup service
	1.6.2.2.4 StaticTask class

	1.6.2.3 Other Modules
	1.6.2.4 Application Startup
	1.6.2.5 Handling Shutdown
	1.6.2.6 Summary

	1.6.3 Inversion of Control
	1.6.4 HiveMind Localization
	1.6.4.1 Setting the locale

	1.6.5 HiveMind Multi-Threading
	1.6.5.1 Construction State
	1.6.5.2 Runtime State
	1.6.5.3 Managing Service State

	1.6.6 HiveMind Servlet Filter
	1.6.6.1 Deployment Descriptor

	1.6.7 Creating New Interceptors
	1.6.7.1 Interceptor Factories
	1.6.7.2 Implementing the NullInterceptor
	1.6.7.2.1 NullInterceptor Class
	1.6.7.2.2 Declaring the Service

	1.6.7.3 Implementing the hivemind.LoggingInterceptor service
	1.6.7.3.1 AbstractLoggingInterceptor base class
	1.6.7.3.2 Creating the infrastructure
	1.6.7.3.3 Instantiating the Instance
	1.6.7.3.4 Adding the Service Methods

	1.6.7.4 Implementing Interceptors with Parameters
	1.6.7.5 Conclusion

	1.6.8 Overriding a Service
	1.6.8.1 Step One: A non-overridable service
	1.6.8.2 Step Two: Add some indirection
	1.6.8.3 Step Three: Override!
	1.6.8.4 Limitations

	1.7 Reports
	1.7.1 Project License
	1.7.2

	2 Module: hivemind
	2.1 Services
	2.1.1 hivemind.BuilderFactory Service
	2.1.1.1 construct
	2.1.1.2 Autowiring
	2.1.1.3 Constructor Parameter Elements
	2.1.1.4 Service Property Configuring Elements
	2.1.1.4.1 event-listener
	2.1.1.4.2 set
	2.1.1.4.3 set-configuration
	2.1.1.4.4 set-resource
	2.1.1.4.5 set-service

	2.1.2 hivemind.LoggingInterceptor Service
	2.1.3 hivemind.ShutdownCoordinator Service
	2.1.4 hivemind.ThreadLocalStorage Service

	2.2 Configurations
	2.2.1 hivemind.ApplicationDefaults Configuration
	2.2.2 hivemind.EagerLoad Configuration
	2.2.3 hivemind.FactoryDefaults Configuration
	2.2.4 hivemind.ServiceModels Configuration
	2.2.5 hivemind.SymbolSources Configuration
	2.2.6 hivemind.Translators Configuration

	2.3 Ant Tasks
	2.3.1 ConstructRegistry Ant Task
	2.3.1.1 Parameters
	2.3.1.2 Parameters specified as nested elements
	2.3.1.2.1 descriptors

	2.3.1.3 Examples

	2.3.2 ManifestClassPath Ant Task
	2.3.2.1 Parameters
	2.3.2.2 Parameters specified as nested elements
	2.3.2.2.1 classpath

	2.3.2.3 Examples

	2.4 Reports
	2.4.1
	2.4.2

	3 Module: hivemind.lib
	3.1 Services
	3.1.1 hivemind.lib.BeanFactoryBuilder Service
	3.1.1.1 Usage
	3.1.1.2 Configuration

	3.1.2 hivemind.lib.DefaultImplementationBuilder Service
	3.1.3 hivemind.lib.EJBProxyFactory Service
	3.1.4 hivemind.lib.NameLookup Service
	3.1.5 hivemind.lib.PlaceholderFactory Service
	3.1.6 hivemind.lib.PipelineFactory Service
	3.1.6.1 Usage
	3.1.6.2 Configuration
	3.1.6.3 Contributions
	3.1.6.3.1 filter
	3.1.6.3.2 filter-bean
	3.1.6.3.3 filter-object
	3.1.6.3.4 terminator
	3.1.6.3.5 terminator-bean
	3.1.6.3.6 terminator-object

	3.1.7 hivemind.lib.RemoteExceptionCoordinator Service
	3.1.8 hivemind.lib.SpringLookupFactory Service

	3.2 Reports
	3.2.1
	3.2.2

	4 Other Resources
	5 Complete Site
	6 Related Projects

